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Abstract

High dimensional data consists of matrices with a large number of features and is

common across many fields of study, including genetics, imaging, and toxicology. This

type of data is challenging to analyze because of its size, and many traditional methods

are difficult to implement or interpret with such data. One way of handling high dimen-

sional data is dimension reduction, which aims to reduce high rank, high-dimensional

data sets into low-rank approximations, which maintain important components of the

structures of the matrices but are easier to use in models. The most common method

for dimension reduction of a single matrix is principal components analysis (PCA).

Multi-source data are high dimensional data in which multiple data sources share a

dimension. When two or more data sets share a feature set, this is called horizontal

integration. When two or more data sets share a sample set, this is called vertical inte-

gration. Traditionally, there are two ways to approach such a data set: either analyze

each data source separately or treat them as one data set. However, these analyses may

miss important features that are unique to each data source or miss important relation-

ships between the data sources. A number of recent methods have been developed for

analyzing multi-source data that are either vertically or horizontally integrated. One

such method is Joint and Individual Variation Explained (JIVE), which decomposes the

variation in multi-source data sets into structure that is shared between data sources

(called joint structure) and structure that is unique to each of the data sources (called

individual structure) [Lock et al., 2013]. We have created an R package, r.jive, that

implements the JIVE algorithm and provides visualization tools for multi-source data,

making multi-source methods more accessible. While there are several methods for

data sets with horizontal or vertical integration, there have been no previous methods

for data sets with simultaneous horizontal and vertical integration (which we call bidi-

mensional integration). We introduce a method called Linked Matrix Factorization that

allows for simultaneous decomposition of multi-source data sets with bidimensional in-

tegration. We also introduce a method for bidimensionally integrated data that are not

normally distributed, called Generalized Linked Matrix Factorization, which is based

on generalized linear models rather than ordinary least squares.
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Chapter 1

Introduction

1.1 Dimension Reduction

Recent technological advances in biomedical research have led to a growing number

of platforms for collecting large amounts of health data. Genetic sequencing, gene

expression measurements, and MRI scans often result in expansive, unwieldy data sets.

These data sets are known as high-dimensional data, and they often contain thousands

or more features. Because of their size, these data sets present interesting challenges

because they can be difficult to visualize and are often structurally complex. They

typically have very high rank, which is a measure of the number of patterns present in the

data. One way to reduce their complexity is dimension reduction. Dimension reduction

methods decompose large high-rank matrices into smaller, low rank components. These

methods extract the features that explain most of the variability while making data

much simpler for data visualization and statistical models. There are a number of

matrix decomposition methods that can be used for dimension reduction.

1.1.1 Principal Components Analysis

The most commonly used method for dimension reduction is principal component anal-

ysis (PCA). PCA is used to find a small number of patterns in a data set that can

explain most of its variability. The result of PCA is a set of scores, which represent

patterns in the rows, and loadings, which represent patterns in the columns. Principal

component analysis is often used for dimension reduction in regression models, as the

1



2

first few principal components scores can be used as covariates in a regression model.

This is especially useful when the number of covariates is greater than the number of

observations.

A PCA can be computed using a singular value decomposition (SVD). An SVD of

a matrix X has the following form:

X = UΣV T ,

where Σ is a diagonal matrix containing the singular values of X and U and V are

unitary. The columns of U and V are the left and right singular vectors, respectively. U

represents the loadings, and V represents the scores. In the context of gene expression

data, where the columns of X are the samples and the rows are the genes, then the rows

of U represent the patterns that account for the variability across the genes, and the

rows of V represent the patterns that account for the variability across the samples. An

important component of the SVD is the rank. The rank of the SVD determines number

of components in the model. By choosing a rank smaller than the rank of the original

data, we can obtain a low-rank approximation of the data. If X is an m × n matrix,

then a rank r SVD will yield Um×r and Vn×r.

When the data set is centered and scaled, PCA is equivalent to computing the SVD.

Using the SVD, the scores of a PCA are ΣV T and the loadings are U .

1.1.2 Alternating Least Squares

Another method for dimension reduction of a matrix is alternating least squares (ALS)

[De Leeuw et al., 1976]. Alternating least squares is a method that can be used to

estimate regression parameters when both the covariates and the coefficients are un-

known. Consider the following regression equation: Y = αβ + E. We can obtain least

squares estimates for α and β by alternating between estimation of α holding β fixed

and estimation of β holding α fixed. In both cases, the estimates can be obtained using

ordinary least squares regression. In a matrix context, we can use this to estimate scores

and loadings for a rank r approximation, alternatively estimating U with V fixed and

V with U fixed to minimize ‖X−UV T ‖ . Consider a matrix Xm×n with loadings Um×r

and scores Vn×r, where X ≈ UV T . The algorithm to estimate the ALS decomposition
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for a matrix is given below:

1. Initialize V̂ .

2. Treating V̂ as fixed, estimate Û using ordinary least squares (Û = (V̂ T V̂ )−1V̂ TX)

3. Treating Û as fixed, estimate V̂ using ordinary least squares (V̂ = (ÛT Û)−1ÛTX)

4. Repeat steps 2 and 3 until the solution converges.

If r is chosen smaller than the rank of the original data set, then X̂ = UV T is a low-rank

approximation of X.

1.1.3 Exponential PCA

PCA and ALS are both based on an assumption that the residuals from the low-rank

approximation are normally distributed. This may not always be a valid assumption, for

example binary outcomes may be best modeled with a binomial distribution. Collins

et al. [2002] generalized PCA to model any exponential family distribution with the

exponential PCA model. A detailed explanation of exponential family distributions is

given in Chapter 4.

1.2 Multi-source Data

One particular challenge to analysis of high-dimensional data sets comes when an anal-

ysis involves multiple data sets that are related to each other. When multiple data sets

share a common sample set (e.g. gene expression and protein expression data for the

same set of samples) or a common feature set (e.g. gene expression data from samples of

different tumor subtypes), we call this multi-source data. Although they share a sample

set or a feature set, each of these data sources may have different features that make

them unique. There are three types of multi-source data that we will address in this

paper: vertical integration, horizontal integration, and bidimensional integration.

1.2.1 Vertical Integration

Vertically integrated multi-source data sets have a shared sample set. Vertical integra-

tion is common in genetics data, where multiple types of data, such as gene expression,
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DNA methylation, and miRNA expression, are often collected for the same set of sam-

ples. Each data source has the same samples along the columns, but the features of

each are different along the rows. As an example, the breast cancer data set we con-

sider in Chapter 2 has three types of features (mRNA expression, DNA methylation,

and miRNA expression) for one common set of tumor samples [Cancer Genome Atlas

Network, 2012].

1.2.2 Horizontal Integration

Horizontally integrated data sets share a feature set. These data involve the same

type of data (such as gene expression) collected across multiple different sample sets.

For example, Yang et al. [2017] used the r.jive package (Chapter 2) to analyze gene

expression of glioblastoma samples from both males and females. Both data sources

share a common set of features gene expression), but they have different sample sets

(male glioblastoma samples and female glioblastoma samples, respectively).

1.2.3 Bidimensional Integration

Bidimensional integration occurs in data sets that involve both vertical and horizon-

tal integration. While there have been many recent methods developed for analyses of

vertical and horizontally integrated multi-source data sets, there have been no meth-

ods to date for analyzing bidimensional data. In their book Integrating Omics Data,

Tseng et al. [2015] do not discuss any methods for bidimensionally integrated data sets

even though much of the book is about vertical integration and horizontal integration

separately. We discuss bidimensional integration in more detail in Chapters 3 and 4.

1.2.4 Motivating Data Sets

In Chapter 2, we consider a breast cancer data set from The Cancer Genome Atlas

(TCGA) [Cancer Genome Atlas Network, 2012]. This publicly available multi-source

genomic data set contains 3 data sources for 348 breast cancer (BRCA) tumor samples:

mRNA expression, DNA methylation, and miRNA data. All three of these data sources

share a common set of tumor samples, but each contains a different type of information

concerning the genome or its transcription.
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We consider bidimensional integration in Chapter 3. The motivating example for

that chapter is a cytotoxicity data set, which consists of three data sources: cytotoxicity

data (cell lines vs. chemicals), chemical attribute data (chemicals vs. attributes), and

genetic data for the cell lines (cell lines vs. genes) [Abdo et al., 2015]. In this case,

two of the data sets share a sample space (cell lines) and two share a feature space

(chemicals).

We consider another application with bidimensional integration in Chapter 4. Our

motivating example in that chapter is a baseball data set with three data sources:

batting data, pitching data, and batting averages for specific batters against specific

pitchers. The batter versus pitcher data shares its batters with the batting data and

its pitchers with the pitching data. In this case, the batter versus pitcher data are

proportions, so they are better modeled using a binomial distribution.

1.3 Multi-source Dimension Reduction

Until recently, there was little statistical methodology for integrative analyses of high-

dimensional multi-source data. Previously, multi-source data had often been either

treated as separate analyses or treated as a single combined data set and analyzed

without distinction. However, both of these approaches have limitations. Treating the

data as a single data source may miss important features that are unique to each of

the data sources. Likewise, analyzing these data sources separately may miss important

associations or interactions between them. These limitations have motivated a num-

ber of methods for the integrative analysis of multi-source data, allowing analyses of

these data sources together while recognizing that each data source may possess unique

features.

There are several methods for estimating the structure that is common to multiple

data sources (which we refer to as joint structure). One of these models is canonical-

correlation analysis (CCA) [Hotelling, 1936]. CCA is a method that focuses on the

correlation between data sources. It is used to find a linear combination of two matrices

such that their correlation is maximized. For matrices X1 and X2, the first pair of CCA

components is

argmaxw1,w2
Corr(w1X1, w2X2).
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Additional pairs of CCA components are computed by maximizing this correlation

while enforcing orthogonality with previous components. CCA has problems with over-

fitting when there are more features than samples, so it is generally not useful for

high-dimensional data. Partial least squares regression (PLS) [Wold, 2004] is a similar

method, but instead of finding a linear combination that maximizes the correlation,

PLS finds a linear combination that maximizes the covariance. The first pair of PLS

components are

argmaxw1,w2
Cov(w1X1, w2X2).

Unlike CCA, PLS does not have issues with overfitting and is applicable to high-

dimensional data. However, structured noise present in X1 but not X2 and visa versa

can have a strong influence on the PLS components.

Simultaneous component analysis (SCA) is another set of methods for finding the

joint variation [Kiers and ten Berge [1989];Millsap and Meredith [1988];ten Berge et al.

[1992];Van Deun et al. [2009]]. For K data sources {X1, ..., XK} the SCA decomposition

can be found using the following expression:

min
T,Pk

K∑
k=1

‖Xk − TP Tk ‖2

In this case, the resulting matrix T represents the joint scores, and each Pk represents

the joint loadings for each data source. SCA is essentially a PCA of the concatenated

matrix [XT
1 |...|XT

K ]T .

Some recent methods have been developed to use a decomposition of the data that

separates the structure that is common to all of the sources (which we refer to as joint

structure) and the structure that is unique to each source (which we refer to as individual

structure). Some methods for computing joint variation alone are heavily influenced by

the individual structure. We alluded to this issue for PLS, and it is also a limitation

of SCA [Schouteden et al., 2013]. This issue can be resolved by estimating both the

joint and the individual structures of the data and by constraining the components

so that they are orthogonal to each other. In addition, this allows us to consider the

unique contributions of each data set to the overall structure of the data, capturing

some relationships that may have been missed by the joint structure only methods.
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As mentioned previously, structured noise present in X1 but not X2 and visa versa

can have a strong influence on the PLS components. This issue is fixed with O2-PLS

[Trygg, 2002].O2-PLS is similar to PLS, but it instead fits the structured noise unique to

each of X1 and X2. The covariate components and the unique components are estimated

such that they are orthogonal to each other. O2-PLS is limited to the case of 2 data

sources, but the On-PLS method further extends this algorithm to the case of more

than two data sources [Löfstedt and Trygg, 2011b].

DIStinct and COmmon-Simultaneous Component Analysis (DISCO-SCA) is similar

to SCA, but it finds both joint (common) and individual (distinct) variation [Schouteden

et al., 2013]. To accomplish this, it first finds the SCA components that contribute

significantly to the covariance of the data. Then, it rotates the remaining data so that

it is orthogonal to the joint components.

Common and Orthogonal Basis Extraction (COBE) is another method for separating

the joint and individual structure of a multi-source data set [Zhou et al., 2015]. This

algorithm uses a QR decomposition to find the basis vectors for the joint structure, then

finds individual structure such that the individual structure is orthogonal to the joint

structure.

1.3.1 Joint and Individual Variation Explained

One decomposition method developed to handle these multi-source data sets is Joint

and Individual Variation Explained (JIVE) [Lock et al., 2013]. JIVE was developed

as a multi-source extension of principal components analysis (PCA) that allows the

simultaneous decomposition of multiple matrices which share a common sample set.

JIVE quantifies the amount of joint (shared) variation between data sources as well

as the amount of individual (unique) variation specific to each data source, reduces

dimensionality, and allows for visual exploration of joint and individual structure.

JIVE can also be used as a processing step prior to the application of other meth-

ods, such as clustering techniques [Hellton and Thoresen, 2014]. JIVE was designed

for the analysis of biomedical data from multiple technologies, but has been used for

other diverse applications, such as the analysis of data that were processed using differ-

ent computational pipelines [Kuligowski et al., 2015] and the analysis of rail commute

patterns at different times of day [Jere et al., 2014].
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The algorithm alternates between computing singular value decompositions (SVDs)

of the joint matrix, which is the vertical concatenation of feature matrices, and of the

individual matrices to minimize the overall sum of squared residuals. The decomposition

results in three components: (1) a matrix representing the joint structure of the data,

(2) a matrix representing the individual structure of each data set, and (3) a residual

matrix containing the variability in the data set that cannot be attributed to the joint

or individual structures. The factorized form of the JIVE model for two data sources,

X1 and X2, is shown given by the following equations:

X1 = U1S +W1S1 + E1

X2 = U2S +W2S2 + E2

U1 and U2 are the joint loadings, S is the shared set of joint scores, W1 and W2 are

the individual loadings, S1 and S2 are the individual scores, and E1 and E2 are the

residuals.

An important factor to consider when estimating matrix decompositions is rank

selection. The rank of a matrix decomposition is the number of components in each

part. This is a particularly challenging aspect of multi-source data analysis because the

overall rank of the full data set can be attributed to a combination of joint structure,

individual structure, and random noise. Therefore, with multi-source data, we need to

simultaneously estimate the joint and individual ranks of the data. A non-parametric

option for rank selection is a permutation test, as originally described in Lock et al.

[2013]. Alternatively, BIC model selection offers a parametric alternative for choosing

ranks. This method was initially implemented in Jere et al. [2014] and is extended in

Chapter 2 [O’Connell and Lock, 2016].

1.3.2 Generalized Association Study

Like SVD, JIVE is based on the assumption that, given the low rank approximation,

the residuals are normally distributed. In practice, the data may follow some other

distribution. For non-normal multi-source data, Li and Gaynanova [2017] developed

the Generalized Association Study (GAS), a method for simultaneous decompositions of

multiple matrices that follow exponential family distributions. GAS allows for analysis
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of heterogeneous data, or data that contain different error distributions. JIVE is a

special case of GAS in which the data sets are all normally distributed.

1.4 Contributions

While there have been many recent multi-source data methods developed, they tend to

be limited to particular data structures. In particular, most methods, including JIVE

[Lock et al., 2013], are limited to the case where only the sample set is shared between

data sets. My dissertation research has focused on two primary goals: (1) improving

existing methodology for multi-source data (Chapter 2) and (2) developing new methods

to accomodate diverse forms of multi-source data that are not addressed with existing

methodology (Chapter 3 and 4).

In my first project, we created an R package that implements and extends the JIVE

algorithm [O’Connell and Lock, 2016]. Previously, only spartan Matlab code was avail-

able to perform JIVE. We created the R.JIVE package, for which our intentions were

threefold: (1) to improve the accessibility of this method among the bioinformatics com-

munity, (2) to implement important extensions and improvements of the JIVE method,

and (3) to allow for quick and flexible visualization of JIVE results. This package is

covered in more detail in Chapter 2.

My second project was to extend JIVE to situations in which at least one data source

shares both its sample set and its feature set with other data sources (in particular, the

case where its sample set is shared with one matrix and its feature set with a different

matrix, see Figure 1). We have created an algorithm for these data sets which we

call Linked Matrix Factorization (LMF), which is discussed in detail in section 3. The

motivating example for this project was a toxicology data set, in which there were three

data sources: (1) cytotoxicity data, (2) cell line genetics data, and (3) chemical attribute

data. In this data set, the cytotoxicity data shares one dimension (cell lines) with the

genetic data, but it shares its other dimension (chemicals) with the chemical attribute

data. The LMF algorithm allows us to analyze the variability of such data sets, which

previous multi-source decomposition methods would not be able to process.

Like JIVE, GAS [Li and Gaynanova, 2017] is limited to data which share either

feature sets or sample sets, but not both. My third project was to create a method that
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was able to handle exponential family data like GAS in the context of matrices with

both shared feature sets and sample sets like LMF. This method, Generalized Linked

Matrix Factorization is detailed in Chapter 4.



Chapter 2

R.JIVE

In this chapter, we introduce an R [R Core Team, 2018] package called r.jive [O’Connell

and Lock, 2017], which implements the JIVE algorithm. The primary goal of this project

was to improve the accessibilty of the JIVE algorithm [Lock et al., 2013] to other re-

searchers. We also made some improvements and extensions to the algorithm, which

give users more flexibility with the package. Additionally, we added several plotting

functions to help visualize the results of the JIVE decomposition.

2.1 The JIVE model

JIVE decomposes a multi-source dataset into three components: an approximation

of rank r capturing joint variation across sources (J), approximations of rank ri for

structured variation individual to each source (A), and residual noise (E). For a multi-

source data set {X1, ..., Xn}, the decomposition for the ith data source is as follows.

Xi = Ji +Ai + Ei

For the decomposition to be unique, J and A must be orthogonal to each other. This

constraint is imposed during the estimation of the model. For dimension reduction and

interpretation it is helpful to consider the factorized form of the JIVE decomposition,

which is analogous to PCA. In PCA, the factorized decomposition of a matrix X can

be written as X = US, where U represents the loadings and S represents the scores.

11
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Joint structure corresponds to an r-dimensional sample subspace revealing patterns

that explain substantial variability across multiple sources, whereas individual struc-

ture corresponds to an ri-dimensional sample subspace revealing patterns that explain

substantial variation in one source but not others. Below is the factorized model for a

JIVE decomposition of two data sources, Xm1×n and Ym2×n.

X = U1S +W1S1

Y = U2S +W2S2

U1 and U2 are the source-specific joint loading matrices, which have dimension m1×r
and m2 × r, respectively. S is the r × n joint score matrix, which is the same for both

X and Y . These joint scores can be used to identify any patterns in the joint structure

of the data. W1 and W2 are the source-specific individual loading matrices, which also

have dimension m1 × r and m2 × r, respectively. S1 and S2 are the source-specific

individual score matrices, which have dimension r × n and m2 × r, respectively. These

individual score matrices can be used to identify any patterns exclusive to a particular

data source. For identifiability of the JIVE decomposition, it is necessary and sufficient

that the rows of the joint structure J and the rows of the individual structure Ai are

orthogonal for each data source. If we have k data sources, and m is the total rows

across all data sources, this means JATi = 0m×m for i = 1, ..., k. Any combination of J

and Ai can be transformed such that this condition holds, so this ortogonality constraint

does not restrict the solution space.

2.2 Improvements

One improvement we made to the algorithm was adding the ability to handle matri-

ces with missing data. To do this, we used the SVDmiss function from the package

SpatioTemporal [Lindstrom et al., 2018]. Normally, an SVD is undefined when missing

values are present, but SVDmiss allows us to estimate the SVD by alternating between

SVD and least squares estimation to impute missing values. This is an important im-

provement to the JIVE algorithm because missing data is very common in practice.
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Another extension made to the JIVE algorithm was the option to enforce orthog-

onality between individual structure matrices. The original JIVE algorithm enforces

orthogonality between the joint and individual structures but not between each of the

individual structures. If ranks are properly specified, then the individual structures

will be orthogonal to each other because any non-orthogonal variance will be placed in

the joint structure. However, enforcing the orthogonality between individual structure

matrices allows the model to be more robust to rank misspecification.

Finally, we included two different rank selection methods in the package. The first

one, a permutation-based approach, was presented in the original JIVE paper [Lock

et al., 2013]. The second rank selection method is a forward selection algorithm using

BIC as the model criterion. The BIC rank selection algorithm included in the package

is a modified version of the algorithm proposed in Jere et al. [2014]. This rank selection

algorithm is motivated by considering the JIVE results as a parameterized model with

normally distributed error:

Xi = UiS +WiSi + Ei,

where Xi : di × n are data for source i and the entries of Ei (the residual noise) are

assumed to be independent and normally distributed with mean 0 and variance σ2
i .

In the factorized decomposition, Ui : di × r gives the loadings for the joint structure,

S : r × n is the joint score matrix, Wi : di × ri gives the loadings for the individual

structure, and Si : ri×n is the individual score matrix. Under this framework, the BIC

for the given model depends on the number of entries in each data matrix Ni (because

data are compressed via SVD beforehand, Ni = n2 if di > n in the original data), the

sum of squared error for each data matrix SSEi = ||Xi − UiS −WiSi||2F , and the total

number of free parameters p. The number of free parameters p is essentially the total

number of entries in the score and loading matrices, but accounts for orthogonality

restrictions:

p =
r−1∑
j=0

(n− j) +
k∑
i=1

r−1∑
j=0

(di − j) +
k∑
i=1

ri−1∑
j=0

[(n− r − j) + (di − j)].
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The formula for BIC is then

k∑
i=1

Nilog(SSEi/Ni)) + p · log

(
k∑
i=1

Ni

)
.

The algorithm for estimating ranks based on BIC is a forward selection procedure.

Several functions are provided to summarize and generate quick publication-quality

visualizations of the results in the form of a barchart, heatmaps, or PCA plots. The first

of these are barcharts showing the distribution of variability among the joint structure,

individual structure, and residuals. These plots can provide the user with an idea of

how much of the variability is attributed to each source. The second type of plots are

the heatmaps, which allow the visualization of patterns in the data. The heatmaps

can be sorted based on either the joint structure or the indiidual structure, allowing

the user to see clustering patterns in both joint and individual structure. The third

type of plot is a PCA plot, which plots the components of either the joint of individual

structure against each other, which provides another way to search for clusters in the

data. Examples of all of these plots are given in section 2.7.

2.3 The JIVE algorithm

The JIVE algorithm as implemented by r.jive begins with an SVD using the SVDmiss

function from the package SpatioTemporal on each of the data sources. With this initial

SVDmiss step, we accomplish two things. First, it allows us to use the JIVE algorithm

on data sets with missing data. Second, we can use this step for dimension reduction

when the shared dimension is smaller than the non-shared dimension. We can do this

because the data is at most rank n, where n is the number of columns in the data set.

From the SVD, the reduced data set is ΣV T for each data source. This data reduction

improves the computation time of the algorithm.

The next step is centering and scaling the data set. To center, we subtract off the

row means from each data set. To scale, we divide each data source by its Frobenius

norm. Without scaling, true joint structure might be misclassified as individual struc-

ture because of a difference in variances between data sets. The subsequent steps depend

on the chosen rank selection method.
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If the ranks are known, the algorithm procedes directly to the JIVE decomposition

using the given ranks. For k data sources {X ′1, ..., X ′k}′, the individual structure matrix A

= {A′1, ..., A′k}′ is initialized to a matrix of 0’s. Then it creates a new matrix XJoint = X -

A. It then compute the joint structure matrix J = {J ′1, ..., J ′k}′ by a rank r singular value

decomposition of XJoint. If we are enforcing orthogonality between individual structures,

it creates XIndividual = (X - J)(I - VV’)
∏
k 6=i(I − ViV ′i ). Otherwise, it sets XIndividual

= (X - J)(I - VV’). This step ensures the orthogonality of the joint and individual

structures by projecting the individual structure matrix onto the space orthogonal to

the joint structure. For each data source, it then computes the individual structure

matrix Ai by a rank ri singular value decomposition of XIndividual. Repeating these

steps, it alternates estimating J and A until the solution converges.

If permutation test rank selection option is chosen, we begin with the permutation

test, as described in Lock et al. [2013]. Then, the JIVE decomposition is computed as

above using the ranks chosen by the permutation test. The permutation test and the

JIVE algorithm are then alternated until the permutation test selects the same ranks

in consecutive iterations.

For BIC rank selection, the package uses a forward selection algorithm. First, it

calculates BIC for the JIVE decomposition with ranks of 0 for joint and individual

structure. Then, it calculates the BIC for each model with one added to a single rank

(either to joint rank or to one of the individual ranks). These BIC values are then

compared. If the lowest BIC is the model with all rank 0, then that model is chosen

and the algorithm stops. Otherwise, it continues to add one to each of the ranks and

calculate the BIC values for each model. When adding one to any of the ranks increases

BIC, then the selection algorithm stops and the model with the lowest BIC is chosen.

2.4 Pseudocode

The r.jive package uses four different algorithms to handle the computation of the

JIVE decomposition. The pseudocode for the algorithms is provided here.
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2.4.1 jive(...)

All JIVE decompositions should be called using the jive(...) function. The jive(...)

function then makes calls to other jive-based functions depending on the method. Here

is the algorithm:

1. Use SVDmiss (package SpatioTemporal) to predict and replace missing values.

2. Center each row of the data (unless otherwise specified).

3. By default, scale each data set by dividing by the Frobenius norm (unless otherwise

specified).

4. If using known ranks or the BIC selection algorithm, reduce each data source

using a singular value decomposition. Using the singular values (Σ) and the right

singular values (V) of the given source, the reduced data set is ΣV ′. Save the left

singular vectors (U). If using the permutation rank selection algorithm, this step

is done within that function for each iteration (see jive.perm).

5. Call the appropriate function to evaluate the JIVE decomposition. If the ranks

are known, go straight to the jive iteration function (see jive.iter). If using

a permutation test to estimate ranks, go to the permutation test rank selection

algorithm (see jive.perm). If using BIC to select ranks, go to the BIC rank

selection algorithm (see bic.jive).

6. For each source, transform the results back to the original dimensions by premul-

tiplying the joint and individual results each by the left-singular vectors for that

source (given ranks and BIC-selected ranks only).

7. Return results (lists for joint and individual structure matrices and ranks used in

the decomposition).

2.4.2 jive.iter(...)

This function evaluates the JIVE decomposition for a list of k data sets for a given set

of ranks (joint rank r and individual ranks r1, ..., rk). The algorithm is:
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1. Initialize individual structure matrix A = {A′1, ..., A′k}′ to a matrix of 0’s with

dimensions of the original data (X = {X ′1, ..., X ′k}′).

2. Set XJoint = X - A

3. Set J = {J ′1, ..., J ′k}′ by a rank r singular value decomposition of XJoint. Save the

right singular values (V). If r=0, set J and V to matrices of 0’s.

4. If enforcing orthogonality between individual structures and this is not the first

iteration of this algorithm, set XIndividual = (X - J)(I - VV’)
∏
k 6=i(I − ViV

′
i ).

Otherwise, set XIndividual = (X - J)(I - VV’).

5. For each i in 1 to k, set Ai by a rank ri singular value decomposition of XIndividual.

If enforcing orthogonality between individual structures, save the right singular

values (Vi).

6. If enforcing orthogonality between individual structures and this is the first iter-

ation, set Ai = Ai
∏
k 6=i(I − ViV ′i ).

7. Repeat steps 2-6 until the Frobenius norm of the difference between the current

and previous iteration in both J and A is less than some threshold.

8. Return results (J, A, and the ranks used in the decomposition).

2.4.3 jive.perm(...)

This function runs the permutation test rank selection algorithm, which is the default

method for choosing ranks in r.jive. The algorithm is as follows:

1. Choose the number of permutations, nperms, and the significance threshold, α.

2. Estimation of joint rank r:

(a) Calculate the singular values of the original data (X = {X ′1, ..., X ′k}′). Let λj

be the jth singular value.

(b) Permute the columns within each data set (Xi).

(c) Calculate the singular values of each permutation. Let λpermj be the 100(1 -

α) percentile of the jth singular values from the permuted matrices.
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(d) Choose r such that λj > λpermj for all j ≤ r.

3. Estimation of each individual rank ri:

(a) Calculate the singular values of the original data (Xi). Let λj be the jth

singular value.

(b) Permute the columns within each row.

(c) Calculate the singular values of each permutation. Let λpermj be the 100(1 -

α) percentile of the jth singular values from the permuted matrices.

(d) Choose ri such that λj > λpermj for all j ≤ ri.

4. Reduce each data source with a singular value decomposition. Using the singular

values (Σ) and the right singular values (V), the reduced data set is ΣV’. Save the

left singular vectors (U).

5. Get the JIVE decomposition (see jive.iter) of X using the current ranks r and

r1, ..., rk.

6. Transform the results for each data source back to the original dimensions by

premultiplying the joint and individual results each by the left singular vectors for

that source.

7. Repeat steps 2-6, replacing X with (X - A) in joint rank estimation and Xi with

(Xi - Ji) in individual rank estimation, until two consecutive iterations give the

same ranks.

8. Return results (J, A, and the ranks chosen).

2.4.4 bic.jive(...)

This function runs a BIC rank selection algorithm, a modified version of the algorithm

proposed in Jere et al. [2014]. This algorithm is motivated by considering the JIVE

results as a parameterized model with normally distributed error:

Xi = UiS +WiSi + Ei,
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where Xi : di × n are data for source i and the entries of Ei (the residual noise) are

assumed to be independent and normally distributed with mean 0 and variance σ2
i .

In the factorized decomposition, Ui : di × r gives the loadings for the joint structure,

S : r × n is the joint score matrix, Wi : di × ri gives the loadings for the individual

structure, and Si : ri×n is the individual score matrix. Under this framework, the BIC

for the given model depends on the number of entries in each data matrix Ni (because

data are compressed via SVD beforehand, Ni = n2 if di > n in the original data), the

sum of squared error for each data matrix SSEi = ||Xi − UiS −WiSi||2F , and the total

number of free parameters p. The number of free parameters p is essentially the total

number of entries in the score and loading matrices, but accounts for orthogonality

restrictions:

p =

r−1∑
j=0

(n− j) +

k∑
i=1

r−1∑
j=0

(di − j) +

k∑
i=1

ri−1∑
j=0

[(n− r − j) + (di − j)].

The formula for BIC is then

k∑
i=1

Nilog(SSEi/Ni)) + p · log

(
k∑
i=1

Ni

)
.

The algorithm for estimating ranks based on BIC is a forward selection procedure:

1. Initialize joint rank r and all individual ranks ri to 0.

2. Calculate BIC for the JIVE decomposition with ranks r and r1, ..., rk. Set this as

the current BIC value.

3. Calculate BIC for the JIVE decomposition with ranks (r+1) and r1, ..., rk and

the decomposition with rank r and r1, ..., ri + 1, ..., rk for each i.

4. If any of the BIC values from step 3 are less than the current BIC value, set the

ranks to those of the model with the lowest BIC. Set the current BIC to that

value.

5. Repeat steps 3 and 4 until the current BIC value is less than all of the BIC values

calculated in step 3.
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6. Return the JIVE decomposition of the chosen model, as well as the chosen ranks.

2.5 Rank Selection Simulation

We randomly generated 100 simulated datasets to compare the rank selection procedures

under varying conditions. For each simulation, the dimensions of each data source

(n: number of shared columns, d1: number of variables in source 1, d2: number of

variables in source 2) were simulated from a discrete uniform(10, 100) distribution using

the sample function in R. The joint rank and individual ranks for each source were

similarly generated from a discrete uniform(0, 4) distribution. The error variance (σ2)

was simulated from a continuous uniform(0, 2) distribution.

Low rank structure was generated by simulating score and loading matrices, using

the dimensions given above. Each element of the score and loading matrices was gener-

ated from a standard normal distribution. Each element of the error matrices (E1 and

E2) was drawn from a normal(0,σ2) distribution. The final simulated data sets X1 and

X2 were generated as follows:

X1 = U1S +W1S1 + E1

X2 = U2S +W2S2 + E2.

The simulations were analyzed using the permutation and BIC rank selection meth-

ods, both with and without enforcing orthogonality among the individual structure. We

compared the accuracy between methods using the following metric for relative error

(where Jest and Aest are the joint and individual structure estimates, respectively, and

J and A are the true structure matrices):

ErrorJIVE =
||Jest − J ||2 + ||Aest −A||2

||J ||2 + ||A||2
.

We also consider the total squared error of the selected ranks:

ErrorRank = (rest − r)2 + (r1 − r1,est)
2 + (r2 − r2,est)

2.

The results are shown in Table 1.
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JIVE error BIC Perm BIC⊥ Perm⊥
Mean 0.631 0.463 0.640 0.365
Minimum 0.011 0.009 0.011 0.011
1st quartile 0.116 0.190 0.186 0.157
Median 0.766 0.402 0.703 0.308
3rd quartile 1.000 0.580 1.000 0.497
Maximum 1.362 1.999 1.476 1.099

Rank error BIC Perm BIC⊥ Perm⊥
Mean 11.4 3.4 12.2 3.5
Minimum 0.0 0.0 0.0 0.0
1st quartile 0.0 1.0 1.0 0.0
Median 8.5 2.0 9.0 2.0
3rd quartile 20.3 3.0 21.0 3.0
Maximum 48.0 26.0 48.0 29.00

Table 2.1: Relative squared error for the JIVE estimates, and squared error for the
selected ranks. The mean and five number summary are shown over 100 simulations.
For each simulation permutation testing and BIC are used to select the ranks without
orthogonality between individual structure (BIC, Perm) and with orthogonality between
individual structure (BIC⊥, Perm⊥).

The selected ranks under permutation testing are generally better than the selected

ranks under BIC, and in both cases the accuracy of the selected ranks is not substantially

better or worse after enforcing orthogonality. With orthogonality enforced, permutation

testing gave correct ranks for all joint and individual structure matrices in 36% of sim-

ulations whereas BIC gave all correct ranks in 23% of simulations. Both methods were

generally conservative in estimation of joint structure. BIC underestimated joint rank in

52% of simulations and overestimated in just 11% of simulations, whereas permutation

testing underestimated in 37% of simulations and overestimated in 15% of simulations.

For BIC individual ranks were underestimated in 49.5% of cases and overestimated in

11% of cases, whereas for permutation testing individual ranks were underestimated in

19.5% of cases and overestimated in 25.0% of cases.

Overall, permutation testing gave more accurate estimates of joint and individual

structure than BIC, reflecting the more accurate rank estimation of permutation test-

ing. Furthermore, estimates with orthogonality enforced between individual structure

were generally more accurate than estimates without orthogonality enforced, and this
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improvement is especially evident under permutation testing. The enforcement of or-

thogonality ensures that structure that is truly joint will not be estimated as individual

when the ranks are misspecified, and this is likely responsible for its improved perfor-

mance.

Because of its low error in comparison to the other methods, the default rank selec-

tion method for the r.jive package is the permutation test, and orthogonality is enforced

among individual structures by default.

2.6 Scalability

For applications that involve high-dimensional genomics or other large-scale data, com-

putational efficiency is very important. Computing time for the JIVE algorithm can

depend on several factors, including the data dimensions, sample size, ranks of joint and

individual structure, and number of iterations required for convergence. The application

presented in Section 2.7 requires approximately 15 minutes to estimate the ranks via

permutation, and 2 minutes to run the JIVE algorithm with given ranks.

The algorithms implemented in the r.jive package include some features that help

to reduce computation time substantially. Prior to estimating the JIVE decomposition,

if the row dimension is larger than the shared column dimension for a given data source,

the data are compressed via an initial SVD (see Step 4 of the pseudocode in Sections 2.4.1

and 2.4.3). This will convert a di × n dimensional matrix to an n × n dimensional

matrix with no loss of information for determining the JIVE decomposition. Thus the

computational speed of the JIVE algorithm using fixed ranks, or estimating the ranks

via BIC, is relatively robust to the dimensionality of each data source. However, use of

permutation testing to select the ranks requires permuting the rows and computing the

singular values of the original data several times, and therefore the computational speed

under permutation testing is more dependent on the data dimensions. Computation

time for the JIVE algorithm is also considerably improved by avoiding computing the

singular vectors except where they are needed, which is particularly helpful when using

the permutation test for rank selection because only the singular values are needed, not

the singular vectors.

Table 2.2 gives the results of a simple simulation to illustrate the effects of the data
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dimensions on computing speed. For this simulation, all of the data were simulated with

rank 1 joint structure and rank (1,1) individual structure. Data were simulated at three

different shared column dimensions (50, 200, and 1000) and four different row dimensions

(100, 1000, 10000, and 100000). Scores, loadings, and errors were simulated from a

standard normal distribution, as in Section 2.5. As expected, running the algorithm

with given ranks was substantially faster than estimating the ranks. Because of the

initial SVD dimension reduction step in the algorithm, the computation time of the

BIC rank selection method was predominantly dependent on only the column dimension

(i.e., the sample size). The computation time of the permutation rank selection method,

however, increased with the row dimensions and the column dimension.

Dimension Time (Minutes)
n d1 d2 Given Perm BIC

50 100 100 0.036 0.128 0.495
50 1000 1000 0.039 0.310 2.141
50 10000 10000 0.059 1.901 2.102
50 100000 100000 0.208 17.015 1.349
200 100 100 0.061 0.378 4.064
200 1000 1000 0.096 1.758 5.258
200 10000 10000 0.203 12.860 2.403
200 100000 100000 1.412 108.825 3.920
1000 100 100 0.165 1.305 11.379
1000 1000 1000 4.478 38.251 287.569
1000 10000 10000 6.313 210.315 208.038
1000 100000 100000 32.056 2177.514* 87.655

Table 2.2: Timing of the JIVE algorithm for various dimensions under different rank
selection methods, on a laptop with a 2.5 GHz Intel Core i7 processor and 16 GB
RAM. All of the computation times are average run times from 5 simulations, with the
exception of the permutation test at the highest dimensions (*), which was only run
once.

In cases where a direct application of the JIVE algorithm is computationally pro-

hibitive, it may be useful to reduce the dimensionality of the data prior to running

JIVE. One such approach is to perform dimension reduction via PCA beforehand, and

estimate the JIVE decomposition based on the first few principal components of each

data source. Another option is feature selection, in which features are filtered by some
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criteria (for example, removing genes with less variable expression) before running JIVE.

2.7 Vignette: BRCA Application

The following vignette illustrates r.jive using publicly available multi-source genomic

data for 348 breast cancer (BRCA) tumor samples from The Cancer Genome Atlas

data freeze [Cancer Genome Atlas Network, 2012]. We applied the JIVE algorithm to

the mRNA expression, DNA methylation, and miRNA data, processed as previously

described [Lock and Dunson, 2013]. There were 654 genes in the mRNA expression

data, 574 loci in the DNA methylation data, and 423 loci in the miRNA expression

data. All three data sources are shared by the 348 tumor samples.

2.7.1 Loading the data

First, if you have not done so already, install and load the package via CRAN:

install.packages("r.jive")

library(r.jive)

The package requires two dependencies: SpatioTemporal for inputing missing

values, and gplots for some plotting functions.

To load the BRCA data, enter

data(BRCA data)

These data consist of a single list object Data that contains the data. The list has one

entry for each of three different molecular sources:

• Data[[1]] (Data$Expression): gene expression matrix for 654 genes (rows) and

348 samples (columns)

• Data[[2]] (Data$Methylation): DNA methylation matrix for 574 cg sites (rows)

and 348 samples (columns)

• Data[[3]] (Data$miRNA): miRNA expression matrix for 423 cg sites (rows) and

348 samples (columns).
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The 348 columns are shared by the data sources (here, they correspond to tumor

samples), and must be in the same order. This is the general data format recognized

by jive.

These data were originally obtained from the data freeze for TCGA’s flagship BRCA

publication [Cancer Genome Atlas Network, 2012]. The data were filtered and processed

as described in [Lock and Dunson, 2013]. Lock and Dunson [2013] describe an analysis

of these data to identify jointly present sample clusters, and these clusters are loaded

here as the vector clusts. Here we will only use the cluster labels to visualize and

interpret results.

We estimate the decomposition on the BRCA data with these and other defaults.

(This can take some time to complete, about 15 min, to compute the same estimates

more quickly with given ranks see below.)

Results = jive(Data)

> Estimating joint and individual ranks via permutation...

Running JIVE algorithm for ranks:

joint rank: 2 , individual ranks: 21 14 20

JIVE algorithm converged after 113 iterations.

Re-estimating joint and individual ranks via permutation...

Running JIVE algorithm for ranks:

joint rank: 2 , individual ranks: 20 12 19

JIVE algorithm converged after 131 iterations.

Re-estimating joint and individual ranks via permutation...

Running JIVE algorithm for ranks:

joint rank: 2 , individual ranks: 20 12 18

JIVE algorithm converged after 113 iterations.

Re-estimating joint and individual ranks via permutation...

Running JIVE algorithm for ranks:

joint rank: 2 , individual ranks: 20 12 18

JIVE algorithm converged after 113 iterations.

The output shown are the ranks used for each call to the base JIVE algorithm (here,
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4 calls) and the number of iterations until convergence for each call. The method ends

when the ranks are the same for two consecutive calls. For this example, the chosen

ranks are

• rank 2 joint structure

• rank 32 structure individual to gene expression

• rank 22 structure individual to methylation, and

• rank 23 structure individual to miRNA.

The results are given as an object of the S3 class JIVE, with values including

• Results$data: A list of the three data matrices used for JIVE estimation. These

are centered and scaled versions of the original data matrices (by default, each

data matrix is scaled by its total variation).

• Results$joint: A list of three data matrices giving estimated joint structure for

each source.

• Results$indiv: A list of three data matrices giving estimated individual structure

for each source.

Each list is labeled with the names given in the original input data (e.g.,

Results$data$Expression gives the scaled expression data). These are also used as

labels for figures that depict the JIVE results.

To simply estimate the JIVE decomposition with the ranks determined above, enter

Results = jive(Data,method="given",rankJ=2,rankA=c(32,22,23))

these results are identical to those obtained after running the method with rank selec-

tion.

2.7.2 Visualization and interpretation

The r.jive package provides three functions that generate figures with very different

views of the JIVE results, and we briefly illustrate each function here. All three take

an object of class JIVE as input, with additional optional parameters.

The most simple function is showVarExplained, which displays a barchart of the

amount of variation explained by joint and individual estimates in each data source.

Here we save the resulting figure for the BRCA data as a .png file, shown in Figure 2.1.
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png("VarExplained.png",height=300,width=450)

showVarExplained(Results)

dev.off()

Figure 2.1: Decomposition of variation for each data source in the BRCA data.

The variation explained by joint structure is similar to that for individual structure

for gene expression and methylation data, despite the much higher rank of individual

structure (e.g., rank 32 individual vs. rank 2 joint for expression). The overall de-

composition is remarkably similar between the expression and methylation data. The

estimated joint structure explains slightly less variability in the miRNA data, which has

more individual structure.

We can display the actual JIVE estimates, in the form of low-rank matrix approx-

imations, as heatmaps using the showHeatmaps function. By default, this will create

heatmaps of the full JIVE decomposition (Data = Joint + Individual + Residual) and
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order the rows and columns of all matrices by complete linkage clustering of the joint

structure. For larger datasets, performing the clustering and rendering the images can

take some time; for these data the process takes less than a minute. You may need to

fiddle with the image dimensions a bit for the results to look nice (if the dimensions are

too small, the text may be cut-off).

png("HeatmapsBRCA.png",height=465,width=705)

showHeatmaps(Results)

dev.off()

Figure 2.2: Heatmaps of JIVE estimates for the BRCA data, with row and column
ordering determined by joint structure.

The heatmaps for the BRCA data are shown in Figure 2.2. The columns (samples)

are vertically aligned for all heatmaps, with red correspoding to higher values and blue

lower values. The estimated joint structure shows clear joint patterns that can also

be seen in three of the original data heatmaps. However, note that the joint structure

appears less prominently in the miRNA data heatmap, as the joint structure explains
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less of the miRNA variability.

In addition, the showHeatmaps function includes options to specify how to order

rows and columns, and which matrices to display; for details enter ?showHeatmaps. For

example, we can order by the individual methylation structure (data source 2) and show

only this heatmap (Figure 2.3).

png("HeatmapIndivMeth.png",height=400,width=400)

showHeatmaps(Results,order_by=2,show_all=FALSE)

dev.off()

Figure 2.3: Heatmap of the individual structure of the methylation data source, with
the rows and columns ordered based on clustering of the individual structure of this
data source.
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The dominating factor here appears to be a mean effect, distinguishing those samples

with relatively high methylation genome-wide from those with relatively low methyla-

tion.

To further examine the biological relevance of the estimated joint structure, we con-

sider the “point cloud” view provided by the showPCA function. This shows the patterns

in the column space that maximize variability of joint or individual structure, analo-

gous to principal components. Any number of components from the joint or different

individual structure estimates can be shown in multi-panel scatterplots. First, we view

the two components of joint structure (note: because the joint structure is rank 2, it

has only 2 principal components). We color these components by the clusters defined

in the clusts variable.

Colors = rep(’black’,348)

Colors[clusts==2] = ’green’

Colors[clusts==3] = ’purple’

png("JointPCA.png",height=400,width=400)

showPCA(Results,n_joint=2,Colors=Colors)

dev.off()

We see in Figure 2.4 that the estimated joint corresponds well to the three previ-

ously identified clusters. Specifically, one pattern distinguishes Basal-like tumor samples

(cluster 1) from other samples; among the remaining samples a subgroup of Luminal

A tumors with a low fraction of genomic alteration and improved clinical prognosis

(cluster 2) is distinguished.

For a broader view, we show the first component of joint structure with the first

component of each of the three individual structures (Figure 2.5).

png("MorePCA.png",height=600,width=600)

showPCA(Results,n_joint=1,n_indiv=c(1,1,1),Colors=Colors)

dev.off()

A clustering effect is not apparent in the individual components shown, besides a

very slight distinction between clusters 2 and 3 in the expression individual component.

This suggests that the coordinated expression, methylation, and miRNA activity in
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BRCA tumors is primarily driven by the cluster effects mentioned above, whereas the

activity specific to each data source is driven by other biological components.
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Figure 2.4: The two principal components of joint structure of the BRCA data, colored
by previously determined integrative clusters; cluster 1 is at the top, cluster 2 is lower
left, and cluster 3 is lower right.
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Figure 2.5: The first joint and the first individual components of the JIVE decomposition
of the BRCA data plotted against each other, colored again by tumor type.



Chapter 3

Linked Matrix Factorization

3.1 Introduction

Recent technological advances in biomedical research have led to a growing number of

platforms for collecting large amounts of health data. Molecular profiling modalities

such as genetic sequencing and gene expression microarrays, and imaging modalities

such as MRI scans, yield high-dimensional data with complex structure. Methods that

simplify such data by identifying latent patterns that explain most of the variability are

very useful for exploratory visualization of systematic variation, dimension reduction,

missing data imputation, and other tasks. For a single data matrix X : m × n, this

simplification can be accomplished via a principal components analysis (PCA) or via

other approaches to low-rank matrix factorization [Wall et al., 2003]. For example, X

may represent a microarray with expression measurements for m genes for n biological

samples. It is also increasingly common to have multiple linked high-dimensional data

matrices for a single study, e.g.,

X1 : m1 × n,X2 : m2 × n, . . . ,Xk : mk × n (3.1)

with n shared columns. In the multi-source context (3.1) X1 may represent expres-

sion for m1 genes, X2 may represent abundance of m2 proteins, and X3 may represent

abundance of m3 metabolites, for a common set of n samples. For such data a straight-

forward ad-hoc approach is to perform a separate PCA of each matrix Xi. However,

34
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patterns of systematic variability may be shared between blocks; for example, it is rea-

sonable to expect that some sample patterns that are present in gene expression data

are also present in proteins. Thus, separate factorizations can be inefficient and un-

derpowered to accurately recover these joint signals, and they also provide no insight

into the connections between data matrices that are often of scientific interest. An al-

ternative approach is to perform a single joint PCA analysis of the concatenated data

X : (m1 +m2 + · · ·+mk)×n, and this approach has been referred to as consensus PCA

[Westerhuis et al., 1998]. However, a consensus PCA approach assumes that all sys-

tematic patterns are shared across data matrices, and lacks power to accurately recover

signals that may exist in only one data matrix.

The recent ubiquity of high-dimensional multi-source data has motivated more flex-

ible methods for scenario (3.1). A guiding principle for several such methods is to

simultaneously model features that are shared across multiple sources (i.e., joint) and

features that are specific to each source (i.e., individual). Methods that follow this

strategy have been developed that extend well-established exploratory techniques such

as partial least squares [Löfstedt and Trygg, 2011a], non-parametric Bayesian modeling

[Ray et al., 2014], non-negative factorization [Yang and Michailidis, 2016], and simulta-

neous components analysis [Schouteden et al., 2014]. The Joint and Individual Variation

Explained (JIVE) method [Lock et al., 2013] is a direct extension of PCA, distinguishing

components that explain covariation (joint structure) among sources and components

that explain variation that is individual to each data source. This distinction simplifies

interpretation, and also improves accuracy to recover underlying signals because struc-

tured individual variation can interfere with finding important joint signal, just as joint

structure can obscure important signal that is individual to a data source.

Multi-source data integration (3.1) has been termed vertical integration [Tseng et al.,

2015]. Related dimension reduction and pattern recognition methods have also been

developed specifically for the horizontal integration of a single data source measured for

multiple sample groups [Kim et al., 2017, Huo et al., 2016]:

X1 : m× n1, X2 : m× n2, . . . , Xk : m× nk. (3.2)

Other approaches have been developed for a collection of matrices that share both
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dimensions, such as the population value decomposition (PVD) [Crainiceanu et al.,

2011]:

X1 : m× n,X2 : m× n, . . . ,Xk : m× n. (3.3)

PVD was designed for the analysis of aligned image populations and produces a joint

low-rank factorization for scenario (3.3) with shared row and column components; sim-

ilar techniques have also been developed in the computer science literature [Ye, 2005].

Another approach for scenario (3.3) is to treat the data as a single multi-way array

(i.e., tensor) X : m × n × k and apply well-established tensor factorizations such as

the CANDECOMP/PARAFAC [Harshman, 1970] and Tucker [Tucker, 1966] factoriza-

tion that extend PCA and related matrix dimension reduction methods to higher-order

arrays. Neither PVD nor a tensor factorization approach distinguishes joint and individ-

ual structure among the constituent data matrices. The Linked Tucker2 Decomposition

[Yokota and Cichocki, 2014] and Bayesian Multi-view tensor factorization [Khan and

Kaski, 2014] methods do allow for the decomposition of joint and individual structure,

under an extended scenario for (3.3) where the collection of m × n matrices can be

grouped into sets of size di:

X1 : m× n× d1,X2 : m× n× d2, . . . ,Xk : m× n× dk. (3.4)

Acar et al. [2011] describe a method for the joint factorization of a matrix and a tensor,

but their approach does not allow for the decomposition of joint and individual structure.

In this chapter we address the simultaneous low-rank factorization and decomposi-

tion of joint and individual structure for the novel context of bidimensionally integrated

data, linked data in which there is both vertical and horizontal integration. Our mo-

tivating example is a large-scale cytotoxicity study [Abdo et al., 2015] that consists of

three interlinked high-content data matrices:

1. X : m1 × n1: A cytotoxicity matrix with a measure of cell death for n1 chemicals

across a panel of m1 genetically distinct cell lines,

2. Y : m2×n1: A chemical attribute matrix with m2 molecular attributes measured

for the n1 chemicals, and
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3. Z : m1 × n2: A genomic matrix with n2 single nucleotide polymorphisms (SNP)

measured for each of the m1 cell lines.

Note that X shares its row set with Z and its column set with Y , as illustrated in

Figure 3.1. These data were made public as part of a DREAM challenge for open science

[Eduati et al., 2015]. We are particularly interested in investigating the interaction

between chemical toxicity, genomics, and measurable chemical attributes, i.e., what

systematic variability in X is shared by Y and Z?

We introduce a method called Linked Matrix Factorization (LMF), that gives a

unified and parsimonious low-rank factorization of these three data matrices. We also

extend the framework of the JIVE method to allow for the decomposition of joint

and individual structure in this context with LMF-JIVE. This extension requires new

approaches to estimation and new theoretical results concerning the uniqueness, iden-

tifiability, and minimal parametrization of the decomposition. We illustrate how the

results can facilitate the visual exploration of joint and individual systematic variation.

We also describe how the factorization can be used in conjunction with an Expectation-

Maximization (EM) algorithm [Dempster et al., 1977] for the principled imputation of

missing values and complete analysis of multi-source data, even when entire rows or

columns are missing from the constituent data matrices.

In what follows we first describe a novel joint low-rank factorization of these data

in Section 3.2, before describing the extension to joint and individual structure in Sec-

tion 3.3. In Section 3.5 we discuss missing data imputation, and in Section 3.6 we discuss

different approaches to select the joint and individual ranks (i.e., number of components)

in the factorization. Sections 3.2, 3.3, 3.5, and 3.6 each include simulation studies, to

assess each facet of the proposed methodology. In Section 3.7 we describe the results of

the cytotoxicity application, and in Section 3.8 we give some concluding remarks.

3.2 Joint Factorization

3.2.1 Model

We will refer to the three matrices involved in the LMF as X, Y , and Z, where X shares

its column space with Y and its row space with Z (Figure 3.1). Let the dimensions of
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Figure 3.1: The structure of data for which the LMF algorithm was designed to analyze.
The X and Y matrices share a sample set and have a common column space. Similarly,
the X and Z matrices share a feature set and have a common row space.

X be m1 × n1, the dimensions of Y be m2 × n1, and the dimensions of Z be m1 × n2.

Our task is to leverage shared structure across X, Y , and Z in a simultaneous low-rank

factorization. We define a joint rank r approximation for the three data matrices as

follows:

X = USxV
T + Ex

Y = UySyV
T + Ey

Z = USzV
T
z + Ez

• U is an m1 × r matrix representing the row structure shared between X and Z

• V is an n1× r matrix representing the column structure shared between X and Y

• Uy is an m2 × r matrix representing how the shared column structure is weighted

over the rows of Y

• Vz is an n2× r matrix representing how the shared row structure is weighted over
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the columns of Z

• Sx, Sy, and Sz are r × r scaling matrices for X, Y , and Z, respectively, and

• Ex, Ey and Ez are error matrices in which the entries are independent and have

mean 0.

For the remainder of this chapter we will subsume the scaling matrices Sy and Sz into

the Uy and Vz matrices, respectively, for a more efficient parameterization: Y ≈ UyV
T

and Z ≈ UV T
Z . A graphical representation of this model is given in Figure 3.2. For

identifiability of the components it suffices to assume that the columns of U and V are

orthonormal and Sx is diagonal (see Section 3.2.3).
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Figure 3.2: The factorized from of the LMF decomposition. X and Z share a common
set of cell loadings U , and X and Y share a common set of chemical scores V .
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3.2.2 Estimation

For notational convenience we denote the following concatenated matrices that span

shared dimensions : Ũ = [USx Uy], Ṽ = [V Sx Vz], Ỹ = [XT Y T ]T , Z̃ = [X Z]. To

estimate the joint structure, we iteratively minimize the sum of squared residuals

SSE = ||Ex||2F + ||Ey||2F + ||Ez||2F ,

using an alternating least squares algorithm, where || · ||F defines the Frobenius norm.

Given initial values, the algorithm proceeds by iteratively updating the components U ,

V , Uy, Vy, and Sx. In practice we first center and scale the three data sets, which

prevents any of the matrices from having a disproportionately large influence on the

joint components. Next, we initialize Ṽ as the first r right singular vectors of the

singular value decomposition (SVD) of Z̃. We initialize Sx as the identity matrix, so

that V is the first n1 columns of Ṽ . We then repeatedly cycle through the following

local least-squares minimization steps with other components held fixed:

1. Update Uy via ordinary least squares: Uy = (V TV )−1V TY

2. Update U via ordinary least squares: U = (Ṽ T Ṽ )−1Ṽ T Z̃

3. Scale U by dividing each column by its Frobenius norm

4. Update Ũ : Ũ = [USx Uy]

5. Update V via ordinary least squares: V = (ŨT Ũ)−1ŨT Ỹ

6. Update Vz via ordinary least squares: Vz = (UTU)−1UTZ

7. Scale V by dividing each column by its Frobenius norm

8. Update Sx via least squares; define W : np × r such that the i’th column of

W is the vectorization of the product of the ith columns of U and V , W [, i] =

vec(U [, i]V [, i]T ), then the diagonal entries of Sx are (W TW )−1W Tvec(X)

9. Update Ũ and Ṽ to incorporate the new Sx.
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The algorithm will improve the SSE at each step until convergence, resulting in the

following rank r estimates for the joint structure:

Jx = USxV
T

Jy = UyV
T

Jz = UV T
z .

(3.5)

3.2.3 Diagonalizing Sx

Importantly, by constraining Sx to be a diagonal matrix we do not limit our solution

space. This result is given in Proposition 1 below, and the proof is given in Web

Appendix F. This simplifies the parameterization, facilities the identifiability of the

components, and improves computation time by only estimating the diagonal elements

of Sx. This property does not extend to other scenarios where constituent data matrices

share both rows and columns (3.3), such as the PVD factorization [Crainiceanu et al.,

2011].

Proposition 1. Assume we have a decomposition in the form of Equation (3.5). Then

the components of the decomposition can be rotated such that Sx is a diagonal matrix.

Proof. Let S∗x be a matrix of rank r. Suppose a set of matrices has the decomposition

U∗S∗xV
∗T , U∗yV

∗T , and U∗V ∗Tz . Then we can take a rank r SVD of S∗x. For this SVD,

let P = the left singular vectors, Q = the right singular vectors, and Sx = the singular

values. If we let U = U∗P and V = V ∗Q, then, we can rewrite this matrix decomposition

as USxV
T , where Sx is a diagonal matrix because it represents the singular values of

S∗x. Then we can set Uy = U∗yP and Vz = V ∗z Q. This gives us a decomposition in the

form of Equation 3.5 in which Sx is diagonal.

3.2.4 Simulation Study

We ran a simulation to assess the accuracy of the LMF algorithm to recover underly-

ing joint structure. The results suggest that the LMF algorithm does a good job of

recovering the underlying joint structure even in the presence of random noise. They

also demonstrated that with increasing noise the reconstruction error, a measure rep-

resenting the algorithm’s ability to estimate the true underlying joint structure of the
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data, and the residual error, the estimated random noise, both increase linearly, but

the reconstruction error remains small. A detailed description of this simulation and its

results is given in Web Appendix B.

We ran a simulation to test the ability of the LMF algorithm to recover the true

underlying joint structure of the data. To generate the data, we simulated from the

model, generating random matrices for the joint components. There were 100 simulated

data sets. All elements of the joint structure components, U , Sx, V , Uy, and Vz,

were simulated from a Normal(0, 1) distribution. Error matrices were simulated from a

Normal(0, 1) distribution. The simulated data sets had 50 rows and 50 columns, and

the rank of the joint structure was 2. The LMF algorithm was run with a convergence

threshold of .00001 and a maximum 5000 iterations.

We evaluated the performance of the LMF algorithm in these simulations by two

criteria. First, we calculated the relative reconstruction error, which measures the

algorithm’s ability to retrieve the true joint structure of the data. We scale the recon-

struction residuals by the total structure to get the relative reconstruction error:

Erec =
‖Jx − J truex ‖2F + ‖Jy − J truey ‖2F + ‖Jz − J truez ‖2F

‖J truex ‖2F + ‖J truey ‖2F + ‖J truez ‖2F

where

J truex = USxV
T , J truey = UyV

T , and J truez = UV T
z .

For the second criterion we consider the relative residual error, which measures the

amount of variability in the data that is captured by the estimated joint structure:

Eres =
‖Jx −X‖2F + ‖Jy − Y ‖2F + ‖Jz − Z‖2F

‖X‖2F + ‖Y ‖2F + ‖Z‖2F
.

Over the 100 simulations, the mean reconstruction error was 0.122 with a standard

deviation of 0.042. The mean residual error was 0.588 with a standard deviation of

0.074. This relatively small value for the mean reconstruction error in contrast to the

mean residual error suggests that the LMF algorithm does a good job of recovering the

underlying joint structure even in the presence of random noise.

We also ran a simulation with varying error variance to see how differences in error

variance affect the accuracy of the decomposition. This simulation was similar to the
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above simulation, but instead of the error matrices being drawn from a normal(0,1)

distribution, they were drawn from a normal(0, σ2) distribution, where σ2 took on

a value of i
100 for the ith simulated data set, varying between 0.01 and 1. The rela-

tionship between error variance (σ2) and reconstruction error is shown in Figure 3.3a,

and the relationship between error variance and residual error is shown in Figure 3.3b.

These results demonstrate that in the presence of minimal noise the data are exactly

captured with the converged low rank approximation; with increasing noise both the

reconstruction error and residual error increase linearly, but the reconstruction error

remains small.
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Figure 3.3: The relationship between the error variance of a data set and the recon-
struction error (a) or residual error (b) in the LMF decomposition.

3.3 Joint and Individual Decomposition

3.3.1 Model

We extend the joint factorization approach of Section 3.2 to allow for structured low

rank variation that is individual to each data matrix. For this model, we define the
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joint structures as in Section 3.2:

Jx = USxV
T , Jy = UySyV

T , Jz = USzV
T
z . (3.6)

The individual structure is defined as follows:

Ax = UixSixV
T
ix , Ay = UiySiyV

T
iy , Az = UizSizV

T
iz (3.7)

where the individual components are given by

• Uij for j = {x, y, z}, matrices representing the row structure unique to each matrix

• Sij for j = {x, y, z}, matrices representing the scaling for the individual structure

of each matrix, and

• Vij for j = {x, y, z)}, matrices representing the column structure unique to each

matrix.

The full model with joint and individual structure is :

X = Jx +Ax + Ex

Y = Jx +Ax + Ey

Z = Jx +Ax + Ez.

(3.8)

We define this joint and individual factorization as LMF-JIVE. In practice, we do not

estimate the scaling matrices Six, Siy, and Siz, and instead allow them to be subsumed

into the row and column structure matrices.
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3.3.2 Estimation

To estimate the joint and individual structure, we extend the alternating least squares

algorithm from Section 3.2.2. Define the low rank approximations for individual struc-

ture

Ax = UixSixV
T
ix

Ay = UiySiyV
T
iy

Az = UizSizV
T
iz .

(3.9)

Let r be the rank of joint structure as defined in Section 3.2.2, and let rx, ry, and rz be

the ranks of the individual structure Ax, Ay, and Az, respectively. The estimation algo-

rithm proceeds by iteratively updating the components of {Jx, Jy, Jz} and {Ax, Ay, Az}
to minimize the total sum of squared residuals until convergence. Thus, to estimate joint

structure we define the partial residuals XJ = X−Ax, Y J = Y −Ay, and ZJ = Z−Az.
We similarly define XI = X − Jx, Y I = Y − Jy, and ZI = Z − Jz. In practice we

center and scale the three data sets, as for the joint LMF model. We also initialize Ṽ ,

Sx, and Uy as in the joint LMF model (see Section 3.2.2). For LMF-JIVE, we must

also initialize Ax, Ay, and Az to matrices of zeros. We then repeat the following steps

until convergence (when the total sum of squares for the joint and individual estimates

between the current iteration and the previous iteration is less than a chosen threshold)

or until we reach the maximum number of iterations:

1. Set XJ = X −Ax, Y J = Y −Ay, and ZJ = Z −Az.

2. Define concatenations Ỹ = [(XJ)T (Y J)T ]T and Z̃ = [XJ ZJ ].

3. Update U via ordinary least squares: U = (Ṽ T Ṽ )−1Ṽ T Z̃

4. Scale U by dividing each column by its Frobenius norm.

5. Update Ũ = [USx Uy]

6. Update V via ordinary least squares V = (ŨT Ũ)−1ŨT Ỹ

7. Update Vz via ordinary least squares: Vz = (UTU)−1UTZJ

8. Scale V by dividing each column by its Frobenius norm.
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9. Update Uy via ordinary least squares: Uy = (V TV )−1V TY J

10. Update Sx via least squares; define W : np × r such that the i’th column of

W is the vectorization of the product of the ith columns of U and V , W [, i] =

vec(U [, i]V [, i]T ), then the diagonal entries of Sx are (W TW )−1W Tvec(X)

11. Recalculate Ũ and Ṽ with the newly updated Sx.

12. Set XI = X −Ax, Y I = Y −Ay, and ZI = Z −Az.

13. Update Ax via a rank rx SVD of XI , wherein Uix gives the right singular vectors,

Vix gives the left singular vectors, and Six gives the singular values.

14. Update Ay via a rank ry SVD of Y I , and update Az via a rank rz SVD of ZI

After convergence, we suggest applying the following transformation to assure that

the joint and individual structures are orthogonal for Y and Z:

J⊥y = Jy +AyP
R
J , A

⊥
y = Ay −AyPRJ

J⊥z = Jz + PCJ Az, A
⊥
z = Az − PCJ Az.

(3.10)

Here, PCJ = UUT is the projection onto the column space of Jx, and PRJ = V V T is

the projection onto the row space of Jx. This transformation makes the joint and indi-

vidual structures identifiable; this and other properties are investigated in Sections 3.4

and 3.4.3. The main scientific rationale for the orthogonalizing transformation is that

any structure in the individual matrices that is in the column or row space of Jx should

reasonably be considered joint structure.

In the preceding algorithm we begin with the estimation of joint structure, with

Ax, Ay and Az initialized to matrices of zeros. We could alternatively estimate the

individual structure first, by initializing Jx, Jy, and Jz to matrices of zeros. We also

consider this alternative approach in Section 3.4.3.
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3.4 Theoretical Results

3.4.1 Uniqueness

Below we show that the LMF-JIVE decomposition for the structure of matrix X is

unique and identifiable. The proof rests on the defining assumption that shared row

and column spaces are the same for joint structure, but different for individual structure.

Theorem 1. Assume X̃ = Jx + Ax, Ỹ = Jy + Ay, and Z̃ = Jz + Az, the structured

components of the LMF model, where

row(Jx) = row(Jy) , row(Ax) ∩ row(Ay) = {0} , row(Jx) ∩ row(Ax) = {0}

and

col(Jx) = col(Jz) , col(Ax) ∩ col(Az) = {0} , col(Jx) ∩ col(Ax) = {0}.

If also X̃ = J∗x +A∗x, Ỹ = J∗y +A∗y, and Z̃ = J∗z +A∗z where

row(J∗x) = row(J∗y ) , row(A∗x) ∩ row(A∗y) = {0} , row(J∗x) ∩ row(A∗x) = {0}

and

col(J∗x) = col(J∗z ) , col(A∗x) ∩ col(A∗z) = {0} , col(J∗x) ∩ col(A∗x) = {0},

then Jx = J∗x and Ax = A∗x.

Proof. We first show that Jx and J∗x have the same row and column spaces. By Theorem

1.1 in the supplement of Lock et al. [2013] there exists a unique orthogonal decomposition

of X̃ and Ỹ :

X̃ = J⊥x +A⊥x J⊥x A
⊥T
x = 0m1×m1

Ỹ = J⊥y +A⊥y J⊥y A
⊥T
y = 0m2×m2

such that row(Jx) = row(J⊥x ) and row(J∗x) = row(J⊥x ). Thus row(Jx) = row(J⊥x ), and

by a symmetric argument col(Jx) = col(J∗x).

We next show that Ax and A∗x have the same row and column spaces, by showing

that they have the same null spaces. Define the nullspace of Ax, N(Ax) = {v ∈ Rn1 :
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Axv = 0}, and take v ∈ N(Ax). If v ∈ N(Jx), then

Xv = Jxv +Axv = 0 + 0 = 0,

and v ∈ N(J∗x) because row(Jx) = row(J∗x). So, v ∈ N(A∗x) because

0 = J∗xv +A∗xv = A∗xv.

If v /∈ N(Jx), then

Xv = Jxv ∈ col(Jx).

So, because col(Jx) = col(J∗x),

J∗xv +A∗xv ∈ col(J∗x).

Thus A∗xv = 0, because col(Jx) ∩ col(Ax) = {0}, and we again conclude v ∈ N(A∗x). It

follows that N(Ax) ⊆ N(A∗x); symmetric arguments show N(A∗x) ⊆ N(Ax), N(ATx ) ⊆
N(A∗

T

x ), and N(A∗
T

x ) ⊆ N(ATx ). Thus N(Ax) = N(A∗x) and N(ATx ) = N(A∗
T

x ), so

row(Ax) = row(A∗x) and col(Ax) = col(A∗x).

Define Jdiff = Jx − J∗x and Adiff = Ax −A∗x, and consider that

Jdiff +Adiff = X̃ − X̃ = 0m1×n1 .

Note that row(Jdiff) ⊆ row(Jx) because row(Jx) = row(J∗x), and row(Adiff) ⊆ row(Ax)

because row(Ax) = row(A∗x), so row(Jdiff) ∩ row(Adiff) = {0}. For any v ∈ Rn1 ,

Jdiff v +Adiff v = 0,

and therefore Jdiff v = 0 and Adiff v = 0. It follows that Jdiff = Adiff = 0m1×n1 , and thus

Jx = J∗x and Ax = A∗x.

By the inherent identifiability of the decomposition for X, it follows that the en-

tire LMF-JIVE decomposition is identifiable under the orthogonal transformations of

structured variability in Y and Z in Equation (3.10).
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Corollary 1. Assume {Jx, Ax, Jy, Ay, Jz, Az} and {J∗x , A∗x, J∗y , A∗y, J∗z , A∗z} satisfy the

conditions of Theorem 1. Assume, in addition, that the joint and individual structures

for Y and Z are orthogonal for both decompositions:

JyA
T
y = 0m2×m2 , J

T
z Az = 0n2×n2 , J∗yA

∗T
y = 0m2×m2 , J

∗T
z A∗z = 0n2×n2 .

Then {Jx, Ax, Jy, Ay, Jz, Az} = {J∗x , A∗x, J∗y , A∗y, J∗z , A∗z}.

Proof. By Theorem 1, Jx = J∗x and Ax = A∗x. Define PRJ as the projection onto the row

space of X. Then,

Jy +Ay = J∗y +A∗y

→ (Jy +Ay)P
R
J = (J∗y +A∗y)P

R
J

→ JyP
R
J + 0 = J∗yP

R
J + 0

→ Jy = J∗y .

Thus, Ay = A∗y, and an analogous argument shows that Jz = J∗z and Az = A∗z.

3.4.2 Orthogonality

In the classical JIVE algorithm for vertical integration, the joint and individual struc-

tures were restricted to be orthogonal for identifiability and a parsimonious decomposi-

tion. For LMF-JIVE we restrict the joint and individual structures for Y and Z to be

orthogonal, but not for X, which shares a joint row space and column space. As shown

in Section 3.4.1, orthogonality between joint and individual structure in X, in either the

row space or the column space, is not needed for identifiability of the decomposition.

Thus, variation in Y and Z is parsimoniously decomposed into joint, individual and

residual variability, e.g., ||Y ||2F = ||Jy||2F + ||Ay||2F + ||Ey||2F ; however, this is not the case

for X in general: ||X||2F < ||Jx||2F + ||Ax||2F + ||Ex||2F . Interestingly, no such decomposi-

tion exists in general, and so no post-hoc transformation of the converged result for X

that would yield an orthogonal and parsimonious decomposition. This result is given

in Theorem 2.

Theorem 2. Assume X̃ = Jx+Ax, Ỹ = Jy+Ay, and Z̃ = Jz+Az where (ii) row(Jx) =
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row(Jy), (iii) col(Jx) = col(Jz), and (iv) rank(Jx) = rank(Jy) = rank(Jz) = r. As-

sume also J∗x , J
∗
y , J

∗
z , A

∗
x, A

∗
y, and A

∗
z also satisfy properties (i), (ii) and (iii) above and

that in addition their joint and individual matrices for shared subspaces are all orthogo-

nal: row(J∗x) ⊥ row(A∗x), col(J∗x) ⊥ col(A∗x) row(J∗y ) ⊥ row(A∗y) and col(J
∗
z ) ⊥ col(A∗z).

Then, J∗x +A∗x 6= Jx +Ax = X̃.

Proof. We claim that there exist X̃ = J∗x + A∗x, Ỹ = J∗y + A∗y, and Z̃ = J∗z + A∗z that

meet the following conditions:

row(J∗x) = row(J∗y )

col(J∗x) = col(J∗z )

rank(J∗x) = rank(J∗y ) = rank(J∗z ) = r

We also claim that the joint and individual estimates J∗ and A∗ are orthogonal:

row(J∗x) ⊥ row(A∗x)

col(J∗x) ⊥ col(A∗x)

row(J∗y ) ⊥ row(A∗y)

col(J∗z ) ⊥ col(A∗z)

Using a result from Lock et al. [2013], the only estimate that satisfies row(J∗x) =

row(J∗y ) and row(J∗x) ⊥ row(A∗x) under these conditions is J∗x = Jx + AxP
R
J , where

PRJ is the orthogonal projection onto the row space of Jx. Similarly, the conditions

col(J∗x) = col(J∗z ) and col(J∗x) ⊥ col(A∗x) imply that the estimate is J∗x = Jx + PCJ Ax.

However, this implies that AxP
R
J = PCJ Ax, which is not necessarily true in general.

Therefore, such an estimate does not exist.

3.4.3 Simulation Study

Here we present a simulation study to test the ability of the LMF-JIVE algorithm to

recover the true structure of the data. Our simulation design is analogous to that

in Section 3.2.4, but allows for simulated data sets to have both joint and individual
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structure. There were 300 simulated data sets, with three different variability settings

representing equal joint and individual variability, higher joint variability, and higher

individual variability. For the first 100 simulations, all elements of the joint structure

components, U , Sx, V , Uy, and Vz, and the individual structure components, Uix, Vix,

Uiy, Viy, Uiz, and Viz, were simulated from a distribution with mean 0 and variance

1: N(0, 1). For the next 100 simulations, the joint components were simulated from

a N(0, 9) distribution, while the individual structure components were simulated from

N(0, 1). In the last 100 simulations, the joint components were simulated from a N(0, 1)

distribution, and individual components were simulated from N(0, 9). Error matrices

were simulated from a N(0, 1) distribution. As with the previous simulation, the simu-

lated data sets had 50 rows and 50 columns, and the rank of the joint structure was 2.

The rank of the individual structure was also 2 for all three matrices. We chose rank

2 for all structures in the simulation for simplicity, but the algorithm is not limited to

situations of equal rank and rank selection is explored in Section 3.6.

For these simulations, we applied three different versions of the LMF or LMF-JIVE

algorithms. First, we used the joint LMF algorithm, with joint rank equal to the sum

of all joint and individual ranks to capture all structured variation in the data. We also

applied LMF-JIVE with true tranks, initializing by estimating joint structure first (JF)

or individual structure first (IF). We evaluated these algorithms by reconstruction error

and residual error, as follows:

Erec =

∑
i=x,y,z(‖Ji − J truei ‖2F + ‖Ai −Atruei ‖2F )

‖J truex ‖2F + ‖J truey ‖2F + ‖J truez ‖2F + ‖Atruex ‖2F + ‖Atruey ‖2F + ‖Atruez ‖2F

Eres =
‖Jx +Ax −X‖2F + ‖Jy +Ay − Y ‖2F + ‖Jz +Az − Z‖2F

‖X‖2F + ‖Y ‖2F + ‖Z‖2F
.

For the LMF algorithm, Ax, Ay, and Az were set to matrices of zeroes, and we used

a rank of 8 (the sum of the joint and individual ranks). For comparison with the LMF

algorithm, we also included a measure of overall reconstruction error:

Eovr =

∑
i=x,y,z(‖Ji − J truei +Ai −Atruei ‖2F )

‖J truex +Atruex ‖2F + ‖J truey +Atruey ‖2F + ‖J truez +Atruez ‖2F
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Table 3.1: Reconstruction error and residual error for the LMF algorithm and 2 differ-
ent variations of the LMF-JIVE algorithm under equal joint and individual variance,
higher joint variance, and higher individual variance. Key: JF = LMF-JIVE with Joint
structure estimated First; IF = LMF-JIVE with Individual structure estimated First.

Erec Mean (St. Dev.) LMF JF IF

Equal Variance 0.9932 (0.1488) 0.1846 (0.2003) 0.7079 (0.7783)
Higher Joint 0.0194 (0.0037) 0.0017 (0.0008) 1.997 (0.0085)
Higher Ind 1.968 (0.0143) 0.9870 (0.2284) 0.0505 (0.0259)

Eres Mean (St. Dev.) LMF JF IF

Equal Variance 0.1405 (0.0189) 0.1646 (0.0205) 0.1787 (0.0201)
Higher Joint 0.0030 (0.0004) 0.0038 (0.0005) 0.0041 (0.0007)
Higher Ind 0.0049 (0.0005) 0.0096 (0.0018) 0.0057 (0.0007)

Eovr Mean (St. Dev.) LMF JF IF

Equal Variance 0.0608 (0.0076) 0.0323 (0.0063) 0.0503 (0.0179)
Higher Joint 0.0016 (0.0002) 0.0007 (0.0001) 0.0011 (0.0004)
Higher Ind 0.0016 (0.0002) 0.0049 (0.0016) 0.0010 (0.0003)

The results are given in Table 3.1. In general either of the LMF-JIVE settings per-

formed better than the LMF-only settings in terms of Eovr and Erec, demonstrating the

value of distinguishing joint and individual structure. However, the relative performance

of joint-first or individual-first estimation for LMF-JIVE depended on the context, with

individual-first estimation performing better in scenarios with higher individual signal

and joint-first estimation performing better in scenarios with higher joint signal. This

demonstrates that the algorithm does not always converge to a global least-squares so-

lution. Thus, the results can be explained because the initial iteration will capture more

variability with whichever component is estimated first. For this reason, we recommend

using whichever order estimates the structure with the largest variance first or using

both models and comparing them in terms of converged SSE. Between the two joint and

individual models, the mean residual error is similar but the better performing approach

in terms of signal recovery tends to have a lower residual error. The LMF model has

lower residual error than the LMF-JIVE models because it has a joint rank that also

subsumes the individual ranks of the LMF-JIVE models; it is therefore more prone to

over-fitting, and the LMF model has higher reconstruction error than the LMF-JIVE

models.
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3.5 Imputation

In this section, we use the LMF and LMF-JIVE frameworks to introduce an imputa-

tion method for linked data with various forms of missingness, including missing rows

and columns. Our approach extends similar methods that have been created for data

imputation with a single matrix using an SVD. We extend an EM algorithm to it-

eratively impute the missing values using the SVD and compute the SVD given the

imputed values [Kurucz et al., 2007]. Thus, our method proceeds by iteratively updat-

ing missing values with successive applications of LMF-JIVE. Here we focus on missing

data in X because of our interest in the imputation of cytotoxicity data; however, it is

straightforward to extend the approach to impute missing data in Y or Z as well.

3.5.1 Algorithm

The imputation algorithm begins by initiating all of the missing values in the data. For

single missing values, the entries are set to the mean of the row and column means for

that position. If a full row is missing, each entry is set to the column mean for each

column. Similarly if a full column is missing, each entry is set to its respective row

mean. Finally, for the entries where both the row and the column are entirely missing,

the entries are set to the full matrix mean. For a matrix X:

X̂ij = X̄ if row i and column j are both missing

X̂ij = X̄i. if row i is non-missing but column j is missing

X̂ij = X̄.j if row i is missing but column j is non-missing

X̂ij = (X̄i. + X̄.j)/2 if row i and column j are both non-missing

After initializing the matrix, we do the following:

1. Compute the LMF-JIVE decomposition using the imputed matrix X̂. Let Jx be

the joint component estimate for X and Ax be the individual component estimate

for X.

2. Impute the missing values using the decomposition in step 1. For missing entries
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in X, set Xij = X̂ij .

3. Repeat steps 1 and 2 until the algorithm converges. We used the squared Frobenius

norm of the difference between the current and previous estimates of X as our

convergence criterion, with a threshold of 0.0001. For the tth iteration, we stop if

‖X̂(t) − X̂(t−1)‖2F < 0.0001.

This imputation strategy can be considered an EM algorithm, under a normal likeli-

hood model. To formalize this, let µx = USV +UixSixVix, µy = UySV +UiySiyViy, and

µz = USVz +UizSizViz give the mean for each entry in a random matrix. Assume that

the residuals from this model are independent and normally distributed with means µx,

µy, and µz for X, Y , and Z, respectively, and variance σ2. The values in X, Y , and Z

are conditionally independent given the parameter space

{U, S, V, Uy, Vz, Uix, Six, Vix, Uiy, Siy, Viy, Uiz, Siz, Viz},

so the joint likelihood is a product of independent normal likelihoods

logL(U, S, V, Uy, Vz, Uix, Six, Vix, Uiy, Siy, Viy, Uiz, Siz, Viz;X,Y, Z)

∝ log
∏
i,j

[e−
1

2σ2 (Xij−[µx]ij)
2

]
∏
i,j

[e−
1

2σ2 (Yij−[µy ]ij)
2

]
∏
i,j

[e−
1

2σ2 (Zij−[µz ]ij)
2

]

= − 1

2σ2
[
∑
i,j

(Xij − [µx]ij)
2 +

∑
i,j

(Yij − [µy]ij)
2 +

∑
i,j

(Zij − [µz]ij)
2]

This likelihood is maximized when the total sum of squared residuals is minimized,

which is accomplished by the alternating least squares method implemented by the

LMF algorithm. Thus, step (1) in the algorithm above corresponds to an M-step. Step

(2) corresponds to an E-step, where the expected values for X, Y , and Z are given by

their means µx, µy, and µz.

In practice the residual variance σ2 may not be the same across data matrices.

However, when X, Y and Z are normalized to have the same Frobenius norm, the M-

step (1) can be considered to optimize a weighted log-likelihood in which the likelihood

for each data matrix are scaled to contribute equally.
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3.5.2 Simulation

We generated 100 data sets using a simulation scheme analogous to that in Section 3.4.3

under each of 6 settings (2 different matrix dimensions for Y and Z and 3 different noise

variances). In each setting, the X matrix dimensions were 50 × 50. The Y matrix was

m2×50, where m2 was 30 or 200. Similarly, the Z matrix was 50×n2, where n2 was 30

or 200. In all simulations, m2 and n2 were equal. We varied the non-shared dimensions

of Y and Z to see the effect of having more data in Y and Z on the imputation accuracy

for X. We also varied the variance of the noise matrices among 0.1, 1, and 10. The ranks

(r, rx, ry, and rz) were each chosen from a Uniform({0, 1, 2, 3, 4, 5}) distribution. For

each simulation we randomly set 3 rows, 3 columns, and up to 50 additional entries to

missing. We compared 3 different methods for imputation: LMF-JIVE, LMF with only

joint structure (LMF), and SVD. We then evaluated the methods using two different

error calculations: the sum of squared errors for the imputed X matrix compared to the

simulated X matrix and the sum of squared errors for the imputed X matrix compared

to the true underlying structure of the X matrix (Xtrue = USxV
T + UixSixV

T
ix ):

Error(X) = ‖(Xest −X)[missing values]‖2F /‖X[missing values]‖2F (3.11)

Error(Xtrue) = ‖(Xest −Xtrue)[missing values]‖2F /‖Xtrue[missing values]‖2F

These values were computed separately for the two types of missing entries (those miss-

ing an entire row/column and those missing single entries).

A summary of the results are given in Table 3.2. Generally, the LMF-JIVE im-

putations performs better than the SVD imputation, indicating that incorporating in-

formation from Y and Z can improve accuracy. This is especially helpful for the full

row/column missing values, where the SVD imputation can not do better than mean

imputation because there is no information present for estimating those entries with an

SVD (so the SVD error is always greater than 1). An exception is when there is high

noise and the dimensions of Y and Z are small, in which case LMF and LMF-JIVE may

be overfitting. LMF with joint structure universally performed worse than LMF-JIVE

for this study, demonstrating the benefit of decomposing joint and individual structure.
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Table 3.2: Results of the imputation simulations. Error(X) shows how well each method
imputed the simulated data set, while Error(Xtrue) shows how well each method im-
puted the true underlying structure of the simulated data set when excluding ran-
dom noise. Each value is the mean from 100 simulations. The oracle is calculated
as ‖Ex[missing values]‖2F /‖X[missing values]‖2F and represents the best the imputation
can do because of the random noise.

Individual Missing Error(X) Error(Xtrue)
m2, n2 Var(Noise) SVD LMF LMF-JIVE SVD LMF LMF-JIVE Oracle

30 0.1 0.025 0.031 0.024 0.007 0.013 0.005 0.018
200 0.1 0.028 0.028 0.032 0.007 0.006 0.010 0.022
30 1 0.232 0.274 0.218 0.068 0.120 0.051 0.174
200 1 0.222 0.215 0.198 0.067 0.058 0.039 0.165
30 10 1.061 1.185 0.931 1.144 1.495 0.803 0.640
200 10 1.139 0.927 0.85 1.288 0.815 0.580 0.631

Row/Column Missing Error(X) Error(Xtrue)
m2, n2 Var(Noise) SVD LMF LMF-JIVE SVD LMF LMF-JIVE Oracle

30 0.1 1.022 0.968 0.572 1.022 0.965 0.563 0.019
200 0.1 1.023 1.698 0.594 1.024 1.731 0.584 0.023
30 1 1.022 3.967 0.667 1.027 4.788 0.601 0.175
200 1 1.018 7.971 0.618 1.021 9.639 0.536 0.175
30 10 1.016 7.652 1.124 1.050 22.804 1.328 0.650
200 10 1.014 5.399 0.877 1.038 14.088 0.663 0.632
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3.6 Rank Selection Algorithms

Selection of the joint and individual ranks for LMF-JIVE must be considered carefully,

to avoid misallocating joint and individual structure. Several rank selection approaches

have been proposed for JIVE and related methods for vertical integration, including per-

mutation testing [Lock et al., 2013], Bayesian information criterion (BIC) [O’Connell

and Lock, 2016], and likelihood cross-validation [Li and Jung, 2017]. Here we propose

and implement two approaches to rank selection in the LMF-JIVE context: (i) a per-

mutation testing approach extending that used for JIVE (Section 3.6.1), and (ii) a novel

approach based on cross-validated imputation accuracy of missing values (Section 3.6.2).

Our results suggest that the two approaches give similar overall performance regarding

rank recovery; approach (i) is well-motivated if a rigorous and conservative statisti-

cal approach to the identification of joint structure is desired, whereas approach (ii) is

well-motivated if missing value imputation is the primary task.

3.6.1 Permutation Testing

For the permutation test rank selection algorithm, we generate a null distribution for

joint structure by randomly permuting the rows of Z and the columns of Y to break any

associations between the matrices while maintaining the structure within each matrix.

We generate a null distribution for individual structure by an appropriate permutation

of the entries within a matrix, under the motivation that individual low-rank approxima-

tions should give correlated structure that is not explained by the joint approximation.

We iterate between selecting the joint rank from {XJ , Y J , ZJ}, updating the LMF-JIVE

decomposition, and selecting the individual ranks from {XI , Y I , ZI}, until the selected

ranks remain unchanged.

The joint rank is estimated as follows:

1. Let rmax be the maximum possible (or plausible) joint rank (r) for the data.

2. Initialize X̃ = XJ , Ỹ = Y J , and Z̃ = ZJ .

3. Compute the sum of squared residuals for a rank 1 LMF approximation of the

data:

SSR = ‖Jx − X̃‖2F + ‖Jy − Ỹ ‖2F + ‖Jz − Z̃‖2F
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4. Subtract the joint structure from step 3 from XJ , Y J , and ZJ . Set X̃ = X̃ − Jx,

Ỹ = Ỹ − Jy, and Z̃ = Z̃ − Jz.

5. Repeat steps 3 and 4 (rmax − 1) times.

6. Permute the columns of Y and the rows of Z by sampling without replacement,

yielding Yperm and Zperm.

7. Set Ỹ = Yperm, and Z̃ = Zperm.

8. Repeat steps 3 and 4 rmax times using the simulated data set.

9. Repeat steps 6 through 8 for 99 more permutations.

10. Select r as the highest rank such that the SSR of the true data is higher than the

95th percentile of the SSRs for the permuted data.

To estimate the individual ranks of the data sets, we permute all entries of XI , the

entries within each row in Y I , and the entries within each column in ZI . We compute

an SVD of rank ri,max for each of the true data matrices i = X,Y, Z, and also for each

of the permuted matrices. For each matrix, r is then chosen to be the highest rank such

that the rth singular value of the true data is higher than the 95th percentile of the rth

singular values for the permuted data sets.

We used a simulation to test the permutation rank selection algorithm. We simu-

lated 100 data sets with randomly chosen joint and individual ranks from independent

Uniform({0, 1, 2, 3, 4, 5}) distributions. All elements of the joint structure components,

U , Sx, V , Uy, and Vz, and the individual structure components, Uix, Vix, Uiy, Viy, Uiz,

and Viz, were simulated from a Normal(0, 1) distribution.

The simulation showed that the permutation test tends to underestimate joint rank,

and it tends to overestimate the individual rank. It underestimated joint rank in 76%

of the simulations. It overestimated the individual ranks for X, Y , and Z by 51%, 59%,

and 68%, respectively. The individual rank of X was estimated better than the other

ranks, with 43% of simulations getting the correct rank and a mean absolute deviation

of 0.85.
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3.6.2 Cross-validation

We used a forward selection algorithm based on cross-validation missing value imputa-

tion to choose the ranks. The algorithm works by setting a portion of the X matrix

to missing at random, then it uses the imputation method described in Section 3.5 for

various rank combinations, choosing the model with the lowest sum of squared error

(SSE0 = ‖(Xest[missing values] −X[missing values])‖2F ). The forward selection starts

with the model with ranks r, rx, ry, rz = 0, 0, 0, 0 and tests models when adding one to

any of the ranks. Below is a detailed description of the algorithm:

We consider the following forward selection algorithm based on cross-validation miss-

ing value imputation to choose the ranks:

1. Randomly set a portion (full rows, full columns, and some individual entries) of

the matrix entries to missing.

2. Use the imputation algorithm described in Section 4.3.1 to estimate the full matrix,

Xest.

3. Compute the sum of squared error (SSE0 = ‖(Xest[missing values]−X[missing values])‖2F )

for the null imputation with ranks r, rx, ry, rz = 0, 0, 0, 0.

4. Add 1 to each rank and compute the SSE for each resulting imputed matrix.

5. If no models were better than SSE0, then choose that model’s ranks and stop.

6. Otherwise, choose the model with the lowest SSE and set SSE0 to that model’s

SSE.

7. Repeat steps 4 through 6 until adding 1 to any rank does not decrease the SSE of

the imputation.

We tested this cross-validation approach using 100 simulated data sets generated as

in Section 3.6.1. In contrast to the permutation test, the cross-validation method tended

to overestimate the joint rank and underestimate the individual ranks. It correctly esti-

mated joint rank in 30% of simulations and overestimated it in 58%. The mean absolute

deviation for the estimated rank from the true joint rank was 1.17. The estimates for

the individual structure of X were closer, with 58% capturing the true rank and an
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mean absolute deviation of 0.74. The Y and Z individual ranks were underestimated

61% and 62% of the time, respectively. They had a mean absolute deviation of 1.26 (for

Y ) and 1.21 (for Z).

While we chose forward selection here, stepwise selection and an exhaustive search

of all possible combinations are also possible. We tested the stepwise selection and got

almost equivalent results, indicating that the algorithm was seldom taking backwards

steps. A more exhaustive search would have probably yielded more accurate results, as

the SSE was higher for our selected ranks than when using the true ranks in many of the

cases; however, this would have required running the algorithm for 64 rank combinations,

which is computationally infeasible.

3.7 Application to Toxicology Data

We applied the LMF-JIVE algorithm to the toxicity (X), chemical attribute (Y ), and

genotype data (Z). Previous investigations of these data [Abdo et al., 2015, Eduati et al.,

2015] and similar data [Lock et al., 2012] have found clear evidence of systematic cell-

line variability in toxicity for several chemicals, but the genetic drivers of this variability

have not been well characterized. Various analyses presented in Eduati et al. [2015] show

that molecular chemical attributes are significantly predictive of overall (mean) chemical

toxicity. We are interested in assessing the combined predictive power of chemical

attributes and genetics on toxicity using a fully multivariate and unified approach, and

we are also interested more generally in exploring patterns of systematic variability

within and across these three linked data matrices.

For 751 cell lines, the cytotoxic effect of each of 105 different chemicals was quantified

by log(EC10), where EC10 is the dose concentration that results in a 10% decrease in

cell viability; these values make up the toxicity matrix X : 751 × 105. Approximately

1.3 million SNPs were available for each of the 751 cell lines. SNP values were of the

form z = {0, 1, 2}, where z gives the number of minor alleles. We first removed all

SNPs with missing values across any of the 751 cell lines, and removed those SNPS

with a minor allele frequency less than or equal to 5/751 ≈ 0.007. To identify a set

of SNPs with potential relevance to cell toxicity, we performed a simple additive linear

regression to predict toxicity from SNP for each (SNP, chemical) pair. Those SNPs
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with an association p-value less than 10−8 for any chemical were included, resulting

in 441 SNPs Z : 751 × 441. For each of the 105 chemicals, data were available for

9272 quantitative structural attributes defined using the Simplex representation for

molecular structure (SIRMS) [Kuz’min et al., 2008]. Attributes with value 0 for at least

100 chemicals were removed, leaving 2092 attributes. These values were log-transformed

(y = log(y + 1) and centered so that each attribute had mean 0. To identify a set of

attributes with potential relevance to cell toxicity, we performed a simple additive linear

regression to predict toxicity for each (attribute, cell line) pair. Those attributes with

an association p-value less than 10−3 for any cell line were included, resulting in 105

attributes Y : 105×105. All three matrices (X, Y , and Z) were centered to have overall

mean 0, and scaled to have the same Frobenius norm.

We conducted a robust 20-fold cross-validation study to assess the accuracy of re-

covering underlying structure via missing data imputation. For each fold 5% of the

columns of X (chemicals) were withheld as missing, 5% of the rows of X were withheld

as missing, and 5% of the entries of X from the remaining rows and columns are ran-

domly selected to be withheld as missing. The folds were non-overlapping, so that each

entry of X has its column missing exactly once, its row missing exactly once, and its

value missing (with most other values in its row and column present) exactly once, over

the 20 folds. For each fold we impute all missing values as described in Section 4.3.1,

using either a joint-only LMF for {X, Y , Z}, an SVD approach for X only, or a joint

and individual LMF-JIVE approach. For further comparison we also imputed missing

values in X using a nuclear norm penalty via the R package softImpute [Hastie and

Mazumder, 2015].

We select the model ranks via the forward-selection approach of Section 3.6.2, using

the mean squared error for imputed values (averaged over row-missing, column-missing,

and entrywise-missing imputations) as the selection criteria. This results in a joint

factorization with rank r = 4, an SVD factorization with rank rX = 5, and a joint

and individual factorization with ranks r = 3, rX = 4, rY = 2, and rZ = 6. The

relative imputation accuracy (Equation (3.11) for each method is shown in Table 3.3,

broken down by accuracy in imputing entry-wise missing values, column-wise missing,

row-wise missing, and values that are missing their entire row and column. The joint

and individual factorization approach performed comparatively well for all types of
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Table 3.3: Relative error for missing data imputation under different factorization ap-
proaches.

LMF SVD softImpute LMF-JIVE

Missing chemical and cell line 0.878 1.02 1.00 0.854
Missing chemical 0.898 1.02 1.00 0.875
Missing cell line 0.203 0.208 1.00 0.201
Missing entry 0.164 0.112 0.113 0.114

missing data, demonstrating that it is a flexible compromise between the joint only

and individual only (SVD) approaches. SVD and softImpute imputation performed

better than joint imputation for entry-wise missing data, and similarly to joint and

individual imputation. This suggests that the attributes (Y ) and genetics (Z) provide

little additional information on the toxicity for a given [cell line, chemical] pair, given

other values in X. However, where no toxicity data are available for a given cell line

and chemical, imputation accuracy is substantially improved with the joint approaches

that use Y and Z (here SVD imputation using X only can perform no better than a

relative error of 1, because there is no data for the given row and column).

Figure 3.4 shows heatmaps for each of linked the linked matrices, and heatmaps from

their low-rank approximations resulting from the joint and individual factorizations with

the selected ranks. The toxicity data has several chemicals that are universally more

toxic across the cell line panel and several chemicals that are universally less toxic, but

there are also some chemicals that demonstrate clear and structured heterogeneity across

the cell lines. The chemical attribute heatmap shows distinctive patterns corresponding

to more toxic and less toxic chemicals. Patterns in the SNP data that are associated

with toxicity are less visually apparent. However, a plot of the cell line scores for the first

two joint components in Figure 3.5 reveals a prominent racial effect; cell lines that are

derived from native African populations are distinguished from cell lines derived from

non-African populations. The effect of race on toxicity is not strongly detectable when

considering each chemical independently; under independent t-tests for African vs. non-

African populations, the smallest FDR-adjusted [Benjamini and Hochberg, 1995] p-value

is 0.05. However, a permutation-based test using Distance Weighted Discrimination

[Wei et al., 2016] for an overall difference between African and non-African populations
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across the 105 chemicals is highly significant (p-value< 0.001), reinforcing the finding

that toxicity profiles differ by race.	
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Figure 3.4: Heatmaps of the toxicity, attribute, and genotype data matrices (left) and
their low-rank approximations (right).

Figure 3.5: First two cell-line components of joint structure; ’+’ denotes a cell line
derived from a native African population, ’O’ denotes a cell line derived from a non-
African population.
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3.8 Discussion

With a dramatically increasing number of modalities for collecting high-content and

multi-faceted data efficiently, large multi-source and interlinked data sets are becoming

increasingly common. Methods that appropriately address these data without sim-

plifying their structure are needed. Although our development for this chapter was

motivated by a cytotoxicity study, the methodology is relevant to potential applications

in a wide range of other fields. Most notably, new methods for simultaneous horizontal

and vertical integration are needed for integrating molecular “omics” data across mul-

tiple disparate sample sets, e.g., the integration of multi-omics molecular data across

multiple disparate types of cancer (pan-omics pan-cancer). LMF improves on previous

methods for horizontal or vertical integration only, to allow for bi-dimensional integra-

tion. The LMF and LMF-JIVE decompositions can be used for exploratory analyses,

missing data imputation, dimension reduction, and for creating models using the joint

or individual components.

Although we have proposed two rank selection methods for LMF in this paper, both

of them tend to be overly conservative. Other approaches may be more accurate; for

example, some form of efficient search may perform better than forward selection for

the cross-validation rank selection approach. Model-based approaches such as BIC may

also be used, but are generally less accurate in the JIVE context [Section 2.5; O’Connell

and Lock [2016]].

Because the LMF-JIVE algorithm does not always reach a global optimum, it may be

beneficial to try both estimating joint structure first and estimating individual structure

first, as in Section 3.4.3. Alternatively, one can try several randomly generated starting

values.

The LMF algorithm is estimated via a squared residual loss function, which is best

motivated under the assumption that the data are normally distributed. Adjusting

the LMF algorithm to accommodate other likelihoods is an area for future research.

For example, for categorical or count data, a model-based approach with alternative

likelihoods for each dataset may be more appropriate. This idea is explored for the

context of vertical integration in Li and Gaynanova [2017]. In Chapter 4, we introduce

an exponential family model for bidimensionally integrated data.
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For this chapter we have described an application to 3 interlinked data matrices.

All results are trivially extended to data with more than 2 vertically-aligned matrices

(Y1, Y2, . . .) and with more than 2 horizontally-aligned matrices (Z1, Z2, . . .). However,

results concerning uniqueness and identifiability do not readily extend to the context of

multiple matrices that share both their row and column dimensions (X1, X2, . . .), which

is a subject for future research. Another exiting direction of future work are extensions

to higher-order tensors (i.e., multi-way arrays). Current multi-source decomposition

methods, including LMF, are limited to two-dimensional arrays (matrices). However,

multi-source data sets may involve data with more than two dimensions. For example,

for the cytotoxicity data analyzed here, the toxicity matrix is a summary of toxicity data

for multiple concentrations of each chemical. However, we could avoid this summary and

work with the individual concentrations, which would give us a 3-dimensional tensor

for toxicity (cell lines × chemicals × concentrations). Then we would have a multi-

way, multi-source problem that we could solve using LMF if we had a method for

handling joint and individual tensor decompositions. Additionally, a multi-source data

decomposition for higher-order tensors could have potential applications in MRI studies

and personalized medicine. LMF provides an important first step toward more general

higher-order data integration, because it allows multiple dimensions to be shared, which

is is likely to be encountered for multi-source tensor data.



Chapter 4

Generalized Linked Matrix

Factorization

4.1 Introduction

The methods described in Chapters 2 and 3 are based on models that use the squared

error loss function. The LMF algorithm in particular is reliant on ordinary least squares

to estimate the scores and loadings. Such an approach requires that the data are quan-

titative. Moreover, it is best motivated by the assumption that data are normally

distributed, because the least squares estimate maximizes the likelihood under an as-

sumption of normality. Thanks to the central limit theorem, this assumption is often

reasonable to make when using statistics that are based on the mean. In other situa-

tions, the distribution of interest may approximate the normal distribution well enough.

However, some contexts may be much better served with more accurate distributional

assumptions. Many biological outcomes are represented as binary variables, such as

disease or exposure status. In genetics one might be interested in including binary SNP

data in a multi-source data set. We may also be interested in studying proportions,

such as batting averages, as we use in our motivating example in this section. These

data would be better represented by a binomial distribution.

In the context of regression, there are several alternative models to ordinary least

66
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Table 4.1: Common exponential family distributions and their corresponding canonical
links.

Distribution f(x) µ Canonical Link

Normal (2πσ2)−
1
2 e(x−µ)2

θ Identity (g(µ) = µ)

Binomial
(
N
x

)
θx(1− θ)N−x eθ

1+eθ
Logit (g(p) = log p

1−p)

Poisson 1
θe
−θx eθ Log (g(λ) = log λ)

squares that can account for other distributions. Some methods, such as General-

ized Estimating Equations (GEE) [Hardin and Hilbe, 2002], are robust to model mis-

specification. Others are designed for estimating other specific parametric models. Gen-

eralized Linear Models (GLMs), for example, are used to estimate regression models

when the assumed distribution of the response is within the exponential family.

GLMs are used when data are assumed to follow some exponential family distribu-

tion. Exponential familiy distributions are distributions that can be parameterized as

follows:

f(x|θ) = h(x) exp {xθ − b(θ)}.

In this parameterization, h(x) is some function of x that does not depend on θ, and b(θ) is

some function of θ that does not depend on x. Common examples of exponential family

distributions are the normal, binomial, and Poisson distributions. A key component

of the GLM model is the link function, which is a function that relates the natural

parameter θ and the mean µ = E[x]. Under the exponential family model, µ = b′(θ)

and Var[x] = b′′(θ). The canonical link function is defined as g(µ) = b′−1(θ). Commonly

used canonical link functions are shown in Table 4.1.

GLMs are fit using Iteratively Reweighted Least Squares (IRLS) [Green, 1984]. IRLS

is a method that maximizes the likelihood of a GLM by alternating between fitting a

weighted least squares regression and adjusting the weights.

There have been some methods developed to handle matrix decompositions of non-

Gaussian data. An exponential family version of PCA was developed to maximize the

likelihood under exponential family models [Collins et al., 2002]. In the exponential

PCA model, we assume each entry xij of a matrix X follows a particular exponential
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distribution given Θij . Exponential PCA decomposes Θ into loadings U and scores V :

Θ = UV T

In the multi-source context, Li and Gaynanova [2017] introduced the Generalized

Association Study (GAS), which is used for heterogeneous multi-source data with one

shared dimension. Heterogenous data are data that follow different distributions. In

the case of GAS, the different matrices can follow different distributional assumptions.

Their method models a decomposition of the natural parameter space rather than a

decomposition of the mean. They used an IRLS algorithm to estimate either the scores

and loadings for the decomposition at each step. As they mention in their paper, GAS

is identical to JIVE if the data are normally distributed.

For our motivating example for this project, we analyzed a baseball data set with

the intention of estimating and predicting batting averages for particular batters against

particular pitchers. The primary data of interest was a batter vs. pitcher data set,

which had the number of at-bats (AB) and hits (H) between each specific batter and

pitcher combination in Major League Baseball (MLB). We assume that these data can

be represented with a binomial distribution: H ∼ Bin(AB, p), where p represents the

hypothetical true batting average for a particular batter against a particular pitcher.

We also have the pitching stats for all of the pitchers, as well as the batting stats for all

of the batters, so this data set is a multi-source data set in which 2 matrices share the

batters and 2 matrices share the pitchers. This is the same data structure as we used

in the LMF algorithm (the batter vs. pitcher data is X, the pitching data is Y, and the

batting data is Z) (see Chapter 3). The complication is that we now have data that

are heterogenously distributed, as X follows a binomial distribution, while we assume

Y and Z are normally distributed.

In this chapter, we will discuss how we combined the ability to handle multiple shared

dimensions of LMF with the ability to handle heterogeneously distributed matrices of

GAS to create an algorithm for data sets that are heterogeneously distributed with

multiple shared dimensions, which we call Generalized Linked Matrix Factorization

(GLMF).
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4.2 Joint Factorization

Model

As in Chapter 3, we will refer to the three matrices involved in the GLMF as X, Y ,

and Z, where X shares its row space with Y and its column space with Z. The only

difference in the structure of the data is that we assume X, Y , and Z can follow any

exponential family distribution, and each of them can follow different distributions. Let

the dimensions of X be m1 × n1, the dimensions of Y be m2 × n1, and the dimensions

of Z be m1 × n2. Our task is to leverage shared structure across X, Y , and Z in a

simultaneous low-rank factorization.

We begin by assuming exponential family distributions (Fx, Fy, and Fz) on each of

the data sets.

X ∼ FX(ΘX)

Y ∼ FY (ΘY )

Z ∼ FZ(ΘZ)

In the context of the baseball data, we assume

X ∼ Bin(N,P )

Y ∼ N(µY , σ
2
Y )

Z ∼ N(µZ , σ
2
Z)

where P = InverseLogit(ΘX), µY = ΘY , and µZ = ΘZ .

We define a joint rank r approximation for the three data matrices as follows:

ΘX = UV T

ΘY = UyV
T

ΘZ = UV T
z

where each Θ represents the corresponding natural parameter matrix.

• U is an m1× r matrix representing the row structure shared between ΘX and ΘZ
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• V is an n1 × r matrix representing the column structure shared between ΘX and

ΘY

• Uy is an m2 × r matrix representing how the shared column structure is weighted

over the rows of ΘY

• Vz is an n2× r matrix representing how the shared row structure is weighted over

the columns of ΘZ

4.2.1 GLMF Estimation

To estimate the underlying decomposition, we use an approach similar to the alternating

least squares approach that was used for LMF. We alternate between estimating the

loadings U and Uy and the scores V and Vz. At each step, the estimation of the scores

or loadings are done using the IRLS algorithm described in [Li and Gaynanova, 2017].

This algorithm iteratively operates to maximize the likelihood of Θx, ΘY , and ΘZ given

X, Y , and Z, shown below.

L(Θ|X,Y, Z) =
∏
xi∈X

fX(xi|θXi)
∏
yi∈Y

fY (yi|θYi)
∏
zi∈Z

fZ(zi|θZi) (4.1)

In this likelihood, fX , fY , and fZ are the probability density functions for the exponen-

tial family distributions assumed for X, Y , and Z. If we express this in the general form

for exponential family distributions, we have the following lkelihood for the X matrix:

L(ΘX |X) =
∏
xi∈X

hX(xi) exp {xiθXi − b(θXi)}.

The likelihoods for Y and Z can be written similarly.

IRLS Algorithm

The following steps describe the IRLS procedure for estimating the scores V for a matrix

X given the loadings U . Let g() be the link function.

1. By default, all starting weights w are set to 1.
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2. Set the starting values for µ = X. A small correction is made to binomial data so

that the link function does not involve taking the log of zero, which is undefined.

3. Set the natural parameter matrix Θ = g(µ). For heterogeneous data, the link

function may vary across rows or columns. In that case, if we split the data into

n partitions, i = 1, .., n, then we can set each Θi = gi(µi), where gi() is the link

function corresponding to the distribution of the ith partition.

4. Generate an induced response matrix S = Θ + X−µ
dµ
dΘ

Θ
.

5. Set the weights w̃ =

√
w[ dµ

dΘ
Θ]2

V ar(µ) .

Note: For heterogeneous data, steps 4 and 5 are partitioned by distribution (as in

step 3).

6. For each row i, compute the weighted least squared estimate for Vi·:

V̂i· = (UT w̃2U)−1UT w̃2S·i

7. Update Θ = XV̂ T .

8. Repeat Steps 4 through 7 until convergence

A similar procedure is used for estimating V given U . For simplicity in this case,

XT is used as the response instead of X to avoid transpositions within the algorithm,

and the least squares estimate for each row i of Û is Ûi· = (V T w̃2V )−1V T w̃2S∗·i, where

S∗ is the induced response matrix based on XT .

GLMF Algorithm

Given initial values, the algorithm proceeds by iteratively updating the components U ,

V , Uy, and Vy. We first initialize Ṽ = [V TV T
Z ]T as the first r right singular vectors

of the singular value decomposition (SVD) of Z̃. The initial estimate for V is the first

n1 rows of Ṽ . We then repeatedly cycle through the following steps to maximize the

likelihood in Equation 4.1:

1. Update Uy using the IRLS algorithm detailed above, given Y and scores V .
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2. Update U via IRLS, given Z̃ and scores Ṽ .

3. Update Ũ : Ũ = [UT UTy ]T

4. Update V via IRLS, given Ỹ and loadings Ũ .

5. Update Vz via IRLS, given Z and loadings U .

6. Update Ṽ = [V T V T
z ]T .

7. Iterate Steps 1 through 6 until the estimates of µ converge.

We also update the variance estimate σ̂2 to maximize the likelihood for the normally

distributed data at each stage. The algorithm results in the following rank r estimates

for the joint structure natural parameters:

Θx = UV T

Θy = UyV
T

Θz = UV T
z .

(4.2)

4.2.2 Illustrative Simulation

To test the GLMF algorithm’s ability to recover the underlying parameters, we sim-

ulated a single data set with three data sources X, Y , and Z. We simulated rank 3

scores and loadings from a N(0,0.4) distribution. We used these scores and loadings to

construct the natural parameters Θ for the simulated X, Y , and Z matrices. A matrix

N was generated from integer values between 1 and 8, inclusive. An inverse logit was

used to calculate p for X, and X was drawn from a Bin(N, p) distribution. Y and Z

were drawn from N(ΘY ,0.1) and N(ΘZ ,0.1), respectively. We fit a rank 3 GLMF model

to the data. We can see in Figure 4.1 that this low-rank approximation of the data does

a fairly good job of recovering the true values for p, µy = Θy, and µz = Θz.

4.3 Imputation

With the LMF algorithm, we imputed values for the X matrix by alternating between

imputing X using the LMF decomposition scores and loadings and estimating the LMF
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Figure 4.1: Estimated parameters of the GLMF decomposition of a simulated data set
compared to the true parameter values.

decomposition using the imputed values (Section 3.5). In this case, our X matrix con-

tains binomial data instead of normally distributed data, so instead of using the esti-

mated means to impute the missing values, we use the estimated binomial probabilities

to sample the values. In order to impute the binomial missing values in the X, we

alternate between simulating imputed values from the estimated binomial probability

matrix p for X and estimating the p matrix through a GLMF of the imputed X matrix.
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4.3.1 Algorithm

The imputation algorithm begins by initializing the missing values. To initialize X̂,

the imputed matrix based on X, we begin by initializing the p̂ matrix, the working

binomial probability matrix. To do this, we average the observed probabilities over the

rows and over the columns. To compute each estimated p̂ij , we take the average of p̂i·

and p̂·j . Then we use p̂ to impute the missing values in X. For each missing value

Xij , we simulate X̂ij using a single draw from a Bernoulli(p̂ij) distribution. Next, we

fit the GLMF model for X̂ to re-estimate p̂ij . Using this new estimate of p̂ij , we create

a measure p̄ij which is the average over p̂ij from all of the iterations. We repeat the

estimation of X̂ and p̂ until the successive estimates of p̄ converge.

4.3.2 Simulation

We simulated 36 data sets of different ranks 1 through 4 to test the imputation algo-

rithm. We also varied the dimensions of X, Y, and Z among 50,100, and 150, to test the

peformance of the algorithm when Y and Z are larger than X. We compared the GLMF

algorithm to four other imputation methods: mean imputation, SVD imputation, LMF

imputation, and a rank 1 GLMF. For mean imputation, we simply set p̂ to X/N for all

of the non-missing values and set it to the mean of X/N for all of the missing values.

SVD and LMF imputation were performed using X/N with the methods described in

Section 3.5. To compare the methods, we used a measure which we refer to as impu-

tation error, given by the formula below, where ptrue represents the true probability

matrix from which X was simulated, and p̂ is the imputed estimate for p, equal to X̂/N

for mean, SVD, and LMF imputation.

ErrImputation =
‖ptrue − p̂‖2F
‖ptrue‖2F

Results from this simulation are shown in Figure 4.2. Compared to each of the other

methods, the GLMF algorithm had smaller errors on average. Notably, the LMF im-

putation, which assumes all matrices are normally distributed, compares very poorly to

the GLMF imputation in many of the simulations. All of these simulations (in which

the LMF imputation error was greater than 0.8), the dimensions of Y and Z were equal
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Table 4.2: Median imputation errors for the rank r GLMF algorithm compared to mean,
rank r SVD, rank r LMF, and rank 1 GLMF imputation methods, where r was the true
rank of the simulated data before introducing error. Median was used so that the LMF
algorithm results would not be skewed as heavily by the portion of cases in which the
error was unusully high.

Rank GLMF Mean SVD LMF GLMF1

1 0.010 0.026 0.036 0.061 -
2 0.008 0.048 0.040 0.071 0.031
3 0.012 0.071 0.047 0.061 0.051
4 0.013 0.089 0.051 0.054 0.066

to or larger than the dimensions of X. This may suggest that LMF is not very robust

to violations of the normality assumption when the dimensions of Y and Z are larger

than the dimensions of X. In contrast, the GLMF algorithm does not seem to do poorly

when X has smaller dimensions than Y and Z. The GLMF algorithm failed to converge

for one of the simulated data sets. Table 4.2 compares the median imputation error

across the different methods. The GLMF algorithm consistently had the lowest median

imputation error. Even a rank 1 GLMF performed better than using a rank 2 LMF or

a rank 2 SVD when the true rank was 2, suggesting that it may be important to have

the correct assumption about the distribution of the data than about the rank of the

data.

4.4 Baseball Application

We obtained batting data, pitching data, and batter vs. pitcher data for the 2017 season

from MLB.com. We removed pitchers with 20 or fewer innings pitched and batters with

50 or fewer at-bats. The resulting data set contained 516 pitchers and 508 batters.

We used the GLMF algorithm to impute the missing batting averages. To assess the

ability of the algorithm to recover the missing averages accurately, we used 5-fold cross-

validation. For each fold, we set one fifth of the non-missing entries in the data to

missing. Then, we estimated all missing entries using the GLMF algorithm with rank

2. To assess the accuracy, we computed the log likelihoods of the entries in X that

were set to missing using the imputed values as p. We then averaged this measure over

the five folds. We compared this to mean imputation, rank 2 SVD imputation, and
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Table 4.3: Comparison across different imputation methods of the likelihood for X
based on imputed values of the true batting average p.

Method logL(p|X)

GLMF -10780.29
Mean -10782.86
SVD -11037.48
LMF -10983.59

rank 2 LMF imputation, computed as in Section 4.3.2. In the cases of SVD and LMF

impution, we set a lower bound of 0.05 for the estimated batting averages because the

normal model allows values to be zero or negative, which causes the likelihood to be

undefined. The relative performances of these algorithms are summarized in Table 4.3.

GLMF consistently performed better than all three other methods, as it had the highest

likelihood averaged over the cross-validation folds. However, the naive mean imputation

approach was not much worse than GLMF. Mean imputation actually performed better

than SVD and LMF imputation. There are a couple of likely reasons for this. First, since

values could be very small or negative under the normal error distribution, some of the

values in SVD and LMF imputation are very small, and these have a very low likelihood.

Additionally, the mean imputation value of 0.250 is likely a reasonable estimate for most

batting averages because batting averages in the long run tend to fall in the range of

0.200 to 0.300, which is a fairly narrow range.

4.5 Discussion

As we have illustrated through simulations, the GLMF algorithm can be used to generate

a low-rank approximation or impute missing values of a multi-source, heterogeneously

distributed data set. However, although the underlying probability matrix p̂ is iden-

tifiable in our model, the scores and loadings are not identifiable without any other

constraints. If the goal is to recover the scores and loadings, some transformation needs

to be done on the scores and loadings in order to make them identifiable.

We focused on a specific context in this Chapter, in which X followed a binomial

distribution, and Y anf Z followed a normal distribution. But the GLMF algorithm is

applicable to any exponential family distributions in any combination. Although it is
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primarily useful for heterogeneously distributed data, it can also be used for homoge-

neously distributed data, such as all normally distributed or all binomially distributed

data sets. In the case of normally distributed data sets, this is an LMF model, which is

a special case of GLMF.

Although we only used three matrices in our analyses in this section, with the entries

of each following a single distribution, these methods are not limited to this strict data

structure. The heterogeneous IRLS algorithm used to compute joint structure allows

for any number of different distributions. This allows for both modeling more than

two horizontally or vertically integrated data sets simultaneously even if they all follow

different distributions. It also allows the entries within a matrix to follow different

distributions when one of the matrices has variables that follow different distributions.

However, the current algorithm may not be readily applicaple to data with more than

one matrix that is both horizontally and vertically integrated with other matrices.

GLMF extends the LMF algorithm to contexts in which the distribution is assumed

to be in the exponential family. However, there may be cases in which the data follow

distributions that are not within the exponential family. It might be possible to create

a model that uses GEE instead of GLM for joint structure estimation, which could

accommodate such data.
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Figure 4.2: Comparisons between the imputation accuracy of the GLMF model impu-
tation and other imputation methods. The line on the each plot corresponds to equal
imputation errors between the methods. Points above the line suggest that the al-
ternative imputation methods were more accurate for particular simulated data sets,
while points below the line suggest that the GLMF imputation was more accurate (and
therefore had smaller imputation error).



Chapter 5

Conclusion and Discussion

The supply of multi-source data is ever increasing as researchers continue to collect data

from multiple sources. Traditionally, approaches for these data were naive and did not

account for the relationships between data sources. More methods are being developed

to handle such data. One of the biggest challenges in such a fast advancing field is

bridging the gap between the methods development and implementing the methods in

practice. Through the r.jive package, we made multi-source data methods accessible

through a widely used platform. In the future, this package will be updated with

functions to run the LMF and GLMF algorithms as well, putting multiple methods for

analyzing different types of multi-source data in one software package. This will help

others easily apply these methods to their own data sets, allowing multi-source methods

to start replacing more naive approaches to these data in practice.

These methods have potential impact across copious fields of study. In this paper,

we explored applications in genetics, toxicology, and baseball. Genetics data often

encompasses multiple data sources, such as gene expression, miRNA expression, DNA

methylation, and copy number. JIVE allows the analyses of all of these data sources

together, and also allows them to be analyzed alongside other data sources.

One of the most impactful potential uses of these methods is in precision medicine.

LMF or GLMF could be used to study relationships between treatment outcomes and

both patient characteristics and treatment characteristics. In particular, GLMF would

be useful for studies with a binary treatment outcome.

There are a lot of future directions for research in multi-source data methods. A
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number of methods have been developed for decomposition and dimension reduction

of higher-order tensors, data arrays with more than two dimensions. A multi-source

method for linked tensors would be useful for data with several dimensions, such as

imaging data. There may also be use for methods that do not require assumptions

on the distribution of the errors. JIVE and LMF are based on the assumption that

the errors are normally distributed, while GLMF is based on the assumption that they

follow some exponential family distribution.
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Tommy Löfstedt and Johan Trygg. Onpls—a novel multiblock method for the modelling

of predictive and orthogonal variation. Journal of Chemometrics, 25(8):441–455,

2011b.

Roger E Millsap and William Meredith. Component analysis in cross-sectional and

longitudinal data. Psychometrika, 53(1):123–134, 1988.

Michael J O’Connell and Eric F Lock. R.JIVE for exploration of multi-source molecular

data. Bioinformatics, 32(18):2877–2879, 2016.

Michael J. O’Connell and Eric F. Lock. r.jive: Perform JIVE Decomposition for Multi-

Source Data, 2017. URL https://CRAN.R-project.org/package=r.jive. R pack-

age version 2.1.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.

org/.

https://CRAN.R-project.org/package=SpatioTemporal
https://CRAN.R-project.org/package=SpatioTemporal
https://CRAN.R-project.org/package=r.jive
https://www.R-project.org/
https://www.R-project.org/


85

Priyadip Ray, Lingling Zheng, Joseph Lucas, and Lawrence Carin. Bayesian joint anal-

ysis of heterogeneous genomics data. Bioinformatics, 30(10):1370–1376, 2014.

Martijn Schouteden, Katrijn Van Deun, Sven Pattyn, and Iven Van Mechelen. Sca with

rotation to distinguish common and distinctive information in linked data. Behavior

research methods, 45(3):822–833, 2013.

Martijn Schouteden, Katrijn Van Deun, Tom F Wilderjans, and Iven Van Mechelen.

Performing disco-sca to search for distinctive and common information in linked data.

Behavior research methods, 46(2):576–587, 2014.
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