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Abstract

Cancer development involves the inherently stochastic accumulation of genetic muta-

tions, conferring growth advantages to the cells affected by these mutations. Thus, stochas-

tic modeling provides useful insight when studying the evolutionary processes of cancer

initiation and tumor progression. This thesis consists of three projects within the field of

stochastic modeling of cancer evolution.

First we explore the temporal dynamics of spatial heterogeneity during the process

of carcinogenesis from healthy tissue. We utilize a spatial stochastic model of mutation

accumulation and clonal expansion to describe this process. Under a two-step carcinogenesis

model, we analyze two new measures of spatial population heterogeneity. In particular, we

study the typical length-scale of genetic heterogeneity during carcinogenesis and estimate

the size of the clone surrounding a sampled premalignant cell.

Next we study the propagation speed of a premalignant clone during carcinogenesis. We

approximate a premalignant clone in epithelial tissue containing w layers of proliferating

cells (referred to as a “basal zone”) with a biased voter model on a set of w stacked integer

lattices. Using the dual process of the biased voter model, we determine the asymptotic

propagation speed of the premalignant clone in this setting and compare it to the previously

determined speed in epithelial tissue with a single layer of proliferating cells. We then use

this speed to investigate clinical implications for primary tumors detected in various types

of epithelial tissue.

Finally we develop a multi-type branching process model of the tumor progression and

treatment response in glioblastoma multiforme (GBM). GBM recurrence is often attributed

to acquired resistance to the standard chemotherapeutic agent temozolomide (TMZ). Pro-

moter methylation of the DNA repair gene MGMT is frequently linked to TMZ sensitivity.

We develop and parameterize a model using clinical and experimental data, to investigate

the interplay between TMZ and MGMT methylation during GBM treatment. Our model

suggests that TMZ may have an inhibitory effect on maintenance methylation of MGMT

after cell division. Incorporating this effect, we study the optimal TMZ dosing regimen for

GBM patients with high and low levels of MGMT methylation at diagnosis.
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Chapter 1

Introduction

Cancer is a genetic evolutionary process involving abnormal cell growth. Typically this

process involves the accumulation of multiple genetic alterations, disrupting the carefully

regulated cellular behavior within healthy tissue. The genetic alterations can create an

imbalance of cell proliferation and cell death, driving tumor growth, triggering the growth

of new blood vessels, and eventually invading distant tissue to form metastatic tumors [3].

The mechanisms by which these hallmark events occur vary greatly between cancer types

and individual patients, and many of these precise mechanisms remain poorly understood.

Due to the complex and variable nature of cancer, mathematical models provide useful

insight regarding the evolutionary dynamics of cancer initiation and tumor growth. In this

thesis, I describe the use of stochastic models to study various aspects of cancer progression,

including the process of tumor initiation from healthy tissue, the emergence of heterogeneity

within a tumor, and the evolution of drug resistance.

The body of this thesis is divided into three chapters, each describing a project within

the field of evolutionary cancer modeling. Chapters 2 and 3 utilize spatially structured

stochastic models to study carcinogenesis in premalignant epithelial tissue. Chapter 4 fo-

cuses on the emergence of drug resistance within glioblastoma, a highly aggressive type of

brain tumor, using a nonspatial branching process model.

In particular, the project described in Chapter 2 uses a spatial version of a Moran

population model, previously analyzed in [4, 5, 6], in which cells are arranged in a d-

dimensional lattice. In this spatial Moran model, each cell waits an exponentially distributed

amount of time, with respect to its fitness, before dividing, and then randomly chooses one of

its nearest neighbors to replace with its progeny. During division, cells can acquire random

mutational advances that confer fitness advantages to the affected cells. Further details are

1
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provided in section 2.1. In joint work with Marc Ryser1, Kevin Leder2, and Jasmine Foo3,

we use an approximation of the spatial Moran model to analyze the spatial heterogeneity

that arises over time during carcinogenesis [7].

Spatial heterogeneity is an important clinical issue because it provides useful information

for biopsy procedure. Standard biopsy practice involves taking a single sample from an

arbitrary location in a suspected premalignant lesion. This sample is used to determine

whether the lesion is benign, precancerous, or cancerous and to determine the treatment

strategy with the highest likelihood of success. Due to heterogeneity, this single-biopsy

approach can lead to a misdiagnosis; several biopsies across a suspected tissue region would

help to ascertain the full extent of the lesion. In Chapter 2, we develop two spatial measures

of heterogeneity that can be used to suggest how fine or coarse the spatial sampling should

be and to predict the spatial extent of a sampled premalignant clone.

Chapter 3 also focuses on the premalignant phase of cancer development in a spatially

structured population. In joint work with Jasmine Foo and Kevin Leder, we analyze the

the dependence of the propagation speed of a mutant clone on the underlying structure of

the affected tissue. The motivation for this project stems from the fact that some epithelial

tissue-types have multiple layers of proliferating cells, which we refer to as a “basal zone.”

We approximate a basal zone with w layers as a set of w stacked two-dimensional lattices

(Z2 ×Z/wZ), with cells occupying each lattice site, and we use a particle system known as

the biased voter model (BVM) to model the interactions between normal and mutant cells.

Under this framework, the propagation speed of a premalignant clone in a single basal layer

(w = 1) has been studied previously in [5]. We use a similar approach in order to study the

propagation speed in a basal zone with multiple layers of proliferating cells. This approach

relies upon a duality relationship between the BVM and a branching coalescing random

walk. Further details regarding this duality relationship are provided in section 3.2 and in

[8].

After determining the propagation speed as a function of w, we apply the speed within

the framework of ‘field cancerization.’ The term ‘field cancerization,’ or the ‘cancer field

effect,’ refers to the observation that regions (‘fields’) surrounding primary tumors frequently

have an increased risk for the development of recurrent tumors or multiple distinct primary

tumors. Slaughter and colleagues first introduced this terminology in 1953 after repeatedly

observing the emergence of multiple oral squamous cell cancers within a single region of

1Dept. of Surgery, Dept. of Mathematics, Duke University
2Dept. of Industrial and Systems Engineering, University of Minnesota
3Dept. of Mathematics, University of Minnesota
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tissue [9]. In addition to oral squamous cell cancer, the field effect is commonly observed

in Barrett’s esophagus, ductal carcinoma in the breast, and prostate cancer, among others

[10, 11, 12]. There is evidence that the clonal expansion of mutated cells, possessing fitness

advantages over surrounding healthy cells, drives the process of field cancerization [13, 14,

15]. Thus, we can approximate a premalignant field using the group of mutant cells modeled

by the BVM. When we look beyond a single premalignant clone and generalize this model

to allow for further mutations during cell division, we obtain the spatial Moran model,

described previously. Hence in section 3.5, we utilize the clonal propagation speed, as a

function of w, to compare properties of premalignant fields in tissue with basal zones of

varying thickness, and we discuss the resulting clinical implications.

Chapter 4 shifts the focus to malignant stages of cancer development. With collab-

orators Kevin Leder, Andrea Hawkins-Daarud4, Kristin Swanson5, Atique Ahmed6, Russ

Rockne7, and Jasmine Foo, we developed a multitype branching process model to describe

the evolutionary dynamics driving the progression of a highly aggressive type of brain tumor,

known as glioblastoma multiforme (GBM). We incorporate standard treatment components

for GBM, detailed in [2], which consist of surgical resection, radiation, and chemotherapy

with the alkylating agent temozolomide (TMZ) . Increased expression levels of the DNA

repair protein MGMT are associated with resistance to TMZ, and epigenetic silencing of

the MGMT gene via promoter methylation is associated with TMZ sensitivity [16, 17, 18].

For this reason, we integrate detailed mechanisms of DNA methylation and demethylation

within the model, using a variant of the model dynamics described in [1]. Then we inves-

tigate the role of MGMT demethylation in TMZ resistance during the standard treatment

regimen for GBM. We aim to gain understanding of observed methylation patterns between

GBM diagnosis and recurrence, indicating a frequent downward shift in methylation per-

centage between tumor detection and recurrence [19, 20]. We also explore optimal TMZ

dosing strategies during the adjuvant chemotherapy treatment phase, and we compare the

optimal dosing results, contingent upon MGMT methylation status at diagnosis.

4Dept. of Neurosurgery, Mayo Clinic Arizona
5Dept. of Neurosurgery, Mayo Clinic Arizona
6Dept. of Neurological Surgery, Northwestern University
7Beckman Research Institute, City of Hope National Medical Center



Chapter 2

Spatial measures of genetic

heterogeneity during

carcinogenesis

Carcinogenesis, the transformation from healthy tissue to invasive cancer, is a lengthy and

complex process driven by a variety of factors including hereditary predisposition [21], ex-

posure to environmental factors [22] and a changing microenvironment in the affected organ

[23]. Irrespective of the driving factors, most cancers are characterized by the progressive

accumulation of genetic alterations in a small group of founder cells. These alterations are

either deleterious or neutral (passenger mutation), and some can confer a fitness advantage

to the affected cell (driver mutation) by increasing the reproductive rate or inhibiting cell-

regulatory mechanisms [24]. These selective advantages in turn lead to clonal expansion of a

mutant cell population, which provides a fertile backdrop for further genetic alterations. Im-

portantly, the underlying tissue architecture strongly influences the spatial growth patterns

of the premalignant lesions, leading to complex patterns of spatial heterogeneity caused by

competing and overlapping clones of various sizes and genetic ancestries [25].

The extent of spatial heterogeneity arising from this evolutionary process has been

shown to correlate with clinical outcome. For example, genetic clonal diversity in premalig-

nant tissue found in cases of Barrett’s esophagus has been shown to predict progression to

esophageal carcinoma [26]. However, the translation of heterogeneity into patient-specific

clinical progression markers remains challenging because multiple point biopsies per patient

are needed to reliably ascertain the degree of heterogeneity. Thus, there is a critical need

for quantitative tools that (i) inform optimal sampling strategies, (ii) infer the degree of

4
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heterogeneity in premalignant tissue based on sparse sample data, and (iii) predict the

evolution of premalignant lesions and time scale of progression.

In this chapter we develop and analyze a cell-based stochastic model that describes

the evolutionary process of cancer initiation in a spatially structured tissue. This model

is a spatial version of a Moran population model, and has previously been analyzed in

[4, 5, 6]. Using a mesoscopic approximation of this model, we analyze two spatial measures

of heterogeneity that are relevant for the clinical setting. First, we study the probability that

two samples, taken a fixed distance apart from each other, are genetically identical. This

corresponds to a spatial analog of Simpsons’ Index, a traditionally non-spatial measure

of diversity which is defined as the probability that two individuals sampled at random

from a population are identical. This measure, taken as a function of the distance between

samples, provides an estimate of the length scale of heterogeneity in the premalignant tissue.

Heterogeneity measures in premalignant conditions such as Barrett’s esophagus have been

correlated with likelihood of progression to esophageal cancer [26]. As a second measure

of heterogeneity, we study the expected size of a premalignant lesion. This measure may

be useful in scenarios where an isolated point biopsy indicates premalignant tissue without

further information about the extent of the lesion. For both measures, we determine how

they evolve during the transformation from healthy tissue to onset of malignancy, and we

characterize their dependence on cancer-specific parameters such as mutation rates and

fitness advantages. Due to the general formulation of the model, these results provide

a useful tool for studying how heterogeneity and the extent of premalignant lesions vary

between different cancer types.

The influence of spatial structure on the diversity of evolving populations has previously

been studied in the ecological literature. Within that context, R.H. Whittaker introduced

the measures of α-,β- and γ-diversity to denote the average species richness at the single

habitat level (α), the diversity between habitats (β), and total species richness (γ) [27].

These measures are useful to quantify large scale organismal diversity in an ecological set-

ting with spatial variation between well-defined habitats. However in this chapter we are

interested in developing new measures of diversity to specifically explore the intrinsic length

scales of genetic heterogeneity driven by clonal expansion dynamics in a spatially structured

tissue population.

There have been other mathematical modeling efforts on the topic of heterogeneity dur-

ing cancer initiation and expansion. In particular, previous work by Iwasa and Michor

explored the Simpson’s Index in a Moran process of tumorigenesis [28]. This study focused
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on understanding the impact of neutral and advantageous mutations in a non-spatial, ho-

mogeneously mixed population setting. The work by Durrett et. al. [29] developed formulas

for Simpson’s Index and other heterogeneity measures in a multitype branching process

model of cancer evolution. More recently, Dhawan and colleagues [30] developed a com-

putational platform for the comparison of alternative spatial heterogeneity measures as

potential biomarkers for tumor progression.

Finally, within the broader context of spatial tumor growth, our work adds to a vast

body of literature. In [31], Williams and Bjerknes introduced the idea of a spatial model for

clone spread in the basal layer of epithelial tissue and characterized the dynamics by means

of simulations. In [32], Nowak, Michor, and Iwasa used a spatially explicit linear process to

model the mechanisms that organisms have developed to slow down the cellular evolution

leading to cancer. Komorova showed in [33] that the rate of cancer initiation is higher in a

spatial model than in a well-mixed model when the first event is the inactivation of a TSG.

Thalhauser et al. introduced a spatial Moran process that incorporates migration in [34],

and Komorova expanded upon the migration model and looked at invasion probability in

[35]. In addition, Durrett and Moseley studied how major results in the nonspatial Moran

model change in the spatial version and considered how space changes the expected waiting

time for a cell to develop two mutations [4].

The outline of this chapter is as follows: In Section 4.2 we introduce a cell-based stochas-

tic evolutionary model of spatial carcinogenesis, as well as a mesoscopic approximation to

this model that was analyzed in [5]. In Section 2.2 we first analyze the non-spatial Simp-

son’s Index for this spatially-structured population. Then, in Section 2.3 we formulate and

analyze two clinically relevant spatial measures of heterogeneity and study their dependence

on cancer-specific parameters. Finally, we summarize and discuss our findings in Section

2.4.

2.1 Model

We introduce a spatial evolutionary model that describes the dynamic transition from phys-

iological homeostasis to the onset of invasive cancer. In between, the tissue undergoes a

sequence of genetic changes that manifest themselves at the phenotypic level in the form

of increased proliferation rates, and hence a fitness advantage of mutant cells over normal

cells. It is important to note that in many cancers, there is a succinct lack of a clearly

defined genetic sequence [36]. On the other hand, the morphological changes from normal

tissue to dysplasia, carcinoma in situ and invasive cancer is common in carcinomas, which
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account for over 80% of all cancers. Therefore, one might prefer to interpret mutations as

phenotypic transitions rather than genetic aberrations. With this interpretation in mind,

we are going to introduce a linear 3-stage model, where type-0 cells represent normal tissue,

type-1 cells are pre-malignant (dysplasia/CIS) and type-2 cells are malignant cancer cells.

Since disadvantageous mutants die out exponentially fast and hence are very unlikely to

produce a type-2 cell, we only model mutations with a net fitness advantage [37]. Advanta-

geous mutants can arise in many different ways, but a common early event in carcinogenesis

is loss of TP53 function. In this case, a mutation to the first allele of the gene can reduce

function, and a second event, usually loss of the healthy allele, can lead to complete loss of

function [38]. For notational simplicity, we assume that the fitness advantage is the same

for both mutations. Note that this model can be extended to a setting with more than

two mutations, either to represent a more refined phenotypic progression, or to account for

select cancer-specific genetic events.

To render this model spatial, we introduce a cell-based stochastic model on the integer

lattice Zd ∩ [−L/2, L/2]d, where L > 0, and equip this domain with periodic boundary

conditions. On this lattice we have three different types of cells, labeled as type-0, type-1

and type-2. For i ∈ {0, 1, 2} a type i cell reproduces at rate (1 + s)i, and when the cell

reproduces it replaces one of its 2d neighboring cells at random. In addition, we assume

that for i ∈ {0, 1}, a type i cell mutates to type i+1 at rate ui+1. Initially our entire lattice

is occupied by type 0 cells which represent normal cells without any oncogenic mutations.

Tumor initiation is defined as the birth of the first type-2 cell that does not go extinct. In

the biological application we are interested in (somatic cells in the body), L is generally

at least 106 while s, u1 and u2 are quite small. Therefore we will, unless stated otherwise,

restrict our analysis to the regime L � 1, u1 � 1, u2 � 1, and s � 1. Before we can

discuss the specific conditions imposed on the model parameters, we need to review the

dynamic properties of the model.

In [5] we established that the arrival of type-1 mutants that are successful (i.e. whose

progeny does not go extinct) can be described as a Poisson process with rate u1s/(1 + s).

Here, u1 is the mutation rate to type-1 and s/(1+s) is the survival probability of each type-1

mutant. We also characterized the radial expansion rate of type-1 families as a function of

the selective advantage s in each dimension. In particular, it was established in [39, 40] that

each successful type-1 family eventually has a convex, symmetric shape D, whose radius

expands linearly in time. Let e1 be the unit vector in the first axis, and let cd(s) be the

linear expansion rate of the radius of this ball: D ∩ {ze1 : z ∈ R} = [−cd(s), cd(s)]. Then,
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we established that as s→ 0,

cd(s) ∼


s d = 1√

4πs/ log(1/s) d = 2
√

4βds d ≥ 3,

where βd is the probability that two d dimensional simple random walks started at 0 and

e1 = (1, 0, . . . , 0) never collide. Through simulation, we studied the convergence of these

clones in a previous work and demonstrated that a circular shape is reached fairly quickly

(see [5] for details); thus we approximate the growth as circular from the clone’s incep-

tion. With regards to the biology of specific cancer types, this asymptotic shape is a good

approximation for clones in the premalignant stage as long as the microscopic model (the

biased voter process) accurately reflects the dynamics of tissue maintenance. As anecdotal

evidence of this, in [41], imaging shows premalignant lesions in Barrett’s esophagus to be

convex and circular or oval-shaped with smooth edges.

Based on this result, we then introduced a mesoscopic approximation to the model.

Here, the growth of successful mutant families is deterministic, while the arrival of these

families follows a non-homogeneous Poisson process. To ensure that this mesocopic model

accurately recapitulates the dynamics of the cell-based model, we will make the following

assumptions on the relationships between parameters in the model:

(A0) u1 � 1/`(s)(d+2)/2 (2.1)

(A1)

(
cd
u2s

)d/(d+1)

� N

(A2) (Nu1s)
d+1(cddu2s)

−1 → c ∈ [0,∞) (2.2)

(A3) u2 � 1/`(s)

These assumptions generally hold for the parameter ranges appropriate for our biological

application of carcinogenesis, see [5] for details. In addition, we will focus on dimensions

d = 1 and d = 2, since most epithelial tissues can be viewed as one or two dimensional

structures, e.g., the cells lining a mammary duct (d = 1), the crypts in the colon (d = 2),

or the stratified squamous epithelia of the bladder, the cervix and the skin (d = 2).

In the simplified mesoscopic model we consider the cells to live on a spatial continuum

D = [−L,L]d. The state-space of the system is given by a set-valued function χt, which
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characterizes the regions of D occupied by type-1 cells at time t. Mutations to type-1 cells

occur as a Poisson process at rate u1s in the set χct = D\χt, i.e. in regions where type-0 cells

reside. This Poisson process is non-homogeneous because the rate at which the mutations

arrive depends on the size of χct , which depends on t. Each newly created type-1 mutation

initiates an expanding ball whose radius grows linearly at rate cd. Then after k mutations

at the space-time points {(x1, t1), . . . , (xk, tk)}, we have

χt =
k⋃
i=1

Bxi,cd(t−ti),

where Bx,r = {y : ||y − x|| ≤ r} denotes the Euclidean ball of radius r and centered at

x. Thus, the state of the system at any time t is the union of balls occupied by expand-

ing mutant type-1 families. In [5] we proved that under assumption (A2) we can neglect

the possibility that a second mutation arises from a type-1 family that dies out eventually.

Therefore, we model successful type-2 mutations as Poisson arrivals into the space occupied

by type-1 cells, χt, with rate u2s. Recall that in our two-step cancer initiation model, the

type-2 mutant represents a malignant cancer cell.

We define the cancer initiation time σ2 as the time when the first successful type-2 cell is

born. Then, σ2 is a random variable with complimentary cumulative distribution function

given by

P (σ2 > t) = E exp

(
−u2s

∫ t

0
|χt|dt

)
,

where |χt| is the area of type-1 cells at time t.

2.2 Simpson’s Index

Simpson’s Index and Shannon’s Index are two common measures of diversity, but we chose

to look at Simpson’s Index because its spatial analog lends itself well to informing biopsy

procedure. Simpson’s Index, a traditional non-spatial measure of heterogeneity, is defined as

the probability that two individuals, sampled at random from a population, are genetically

identical. More precisely, if there are N types of individuals in a population, the Simpson’s

Index is defined as

R =

N∑
i=1

(
Yi
Y

)2

, (2.3)
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where Yi is the number of individuals of the i-th type, and Y is the size of the entire

population. Although this measure is usually used to characterize well-mixed populations,

we investigate here how it evolves over time within the spatially structured population

described by the mesoscopic spatial model from Section 4.2. In the cancer setting, one

question of interest is to determine the degree of heterogeneity of the premalignant cell

population. In our mesoscopic model, suppose there are Nt type-1 clones present at time

t > 0. We then extend definition (2.3) as the time-dependent quantity

R(t) =

Nt∑
i=1

(
Y1,i(t)

Y1(t)

)2

, (2.4)

where Nt is a Poisson random variable with parameter Nu1st, Y1,i denotes the volume of

the type-1 subclone originating from the ith type 1 mutation, and Y1(t) is the total volume

of all the type-1 families present at time t, i.e. Y1(t) =
∑Nt

k=1 Y1,i(t). From conditions (A0)-

(A3) and Theorem 4 of [5] we know that overlaps between distinct type-1 clones occur with

negligible probability by time σ2. Define the event A = {two clones overlap by σ2}, since

R(t) ∈ [0, 1] we have that

E[R(t);Ac] ≤ E[R(t)] ≤ E[R(t);Ac] + P (A).

Thus if P (A)� 1 we can safely ignore this overlap in the computation of Simpson’s Index.

Building on the theory of size-biased permutations, it is possible to characterize the

distribution of R(t) as follows.

Proposition 2.2.1. The conditional expectation of Simpson’s Index for the spatial meso-

scopic model is

E[R(t)|Nt = n] = nE

[(
S1

Sn

)2
]
, (2.5)

where Sn := B1 + . . .+Bn with Bi are i.i.d. Beta(1
d , 1) random variables.

The proof of this result is found in Appendix A.1.2.

Proposition 2.2.2. The conditional variance of the Simpson’s Index is bounded as follows

[E (R(t) | Nt = n)]2 ≤ n
∫ ∞

0

∫ ∞
0

( r
x

)3
ν1(r) νn−1(x− r) dx dr, (2.6)

where νk is the probability density function of Sk as defined above.
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The derivation of this bound is found in Appendix A.1.3. Finally, the following result

establishes the behavior of Simpson’s Index for large n.

Proposition 2.2.3. Conditioned on Nt = n, R(t) converges to zero in probability as n →
∞.

This result tells us that as the number of clones increases, the probability of selecting

two cells from the same clone goes to zero.
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Figure 2.1: Time-dependence of non-spatial Simpson’s Index R(t). The temporal
evolution of the expected value of the non-spatial Simpson’s Index is shown (A) for varying
values of the mutation rate u1, and (B) for varying values of the fitness advantage s of
preneoplastic cells over normal cells. In both simulations: M1 = M2 = 500, N = 104, and
u1 = 7.5× 10−7, s = 0.1 unless specified.

Next, we use Monte Carlo simulations to evaluate (2.5) and study the temporal evolution

of Simpson’s Index (see Appendix A.1.5 for details on evaluating (2.5)). In Figure 2.1, we

observe that the index first increases until it reaches a maximum, and then starts decaying

in a monotone fashion. Essentially this result stems from the fact that in the early phase

of the model the first few clones are developing and expanding, so the likelihood that

samples come from the same clone increases. The population diversifies as more mutations

are produced. Then Simpson’s Index decreases as it becomes less likely for two cells to

share the same family. Note that this is consistent with the result in Proposition 2.2.3.

Figure 2.1A illustrates that as the mutation rate u1 increases, this process of establishing

mutant families and diversification occurs faster. In particular, the maximum Simpson’s

Index decreases with increasing mutation rate due to shrinking time periods during which

a single clone exists. Finally, Figure 2.1B shows that as the selective advantage s increases,

the growth of mutant families and diversification occurs sooner due to the faster spread of

mutant cells. This result may imply that more aggressive tumors will have a higher level of

heterogeneity.
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2.3 Spatial measures of heterogeneity

In the clinical setting, the spatial heterogeneity of premalignant tissues poses considerable

challenges. It is standard practice to take one biopsy sample from an arbitrary location

in suspected premalignant tissue. Then clinicians typically use molecular information from

this sample to determine whether it is (pre)cancerous as well as its specific cancer sub-type,

if applicable. This information is used to help guide the diagnosis, prediction of prognosis,

and treatment strategies. Due to the heterogeneity of premalignant tissue, such a single-

biopsy approach may lead to incorrect subtype labeling or diagnoses and subsequently, to

suboptimal therapeutic measures. For example, the spatial extent of this clone is unknown

and thus surgical excision or prognosis prediction may be difficult. In view of these issues,

the analysis of several biopsies across the tumor mass upon excision seems necessary. How-

ever, this raises another question of the length-scale of heterogeneity: how fine or coarse

should the spatial sampling be, i.e. how many sections are required for a representative

genetic fingerprint of the heterogeneous tissue?

In order to gain insight into these issues, we focus here on two specific clinical questions

and introduce corresponding measures of spatial heterogeneity.

• Question 1: Given a region of premalignant tissue, what is the expected length-scale

of heterogeneity? (i.e. how far apart should biopsy samples be taken?)

• Question 2: Provided that only a single point biopsy is available, what is the expected

size of the clone present at the biopsy?

Before we introduce analytical expressions for these two measures of spatial heterogeneity

I1 and I2, we introduce notation that will be useful below. Suppose two type-1 mutations

occur at space-time points (x0, t1) and (y0, t2), respectively. Then the two clones will collide

at time

t∗ =
t1 + t2

2
+
||x0 − y0||

2cd
.

Define the vector v = (y − x)/||y − x||. Then the first interaction between the two clones

occurs at location

v∗ = x0 + cdv(t∗ − t1) = y0 − cdv(t∗ − t2).

Next define the half-spaces

H+ = {x ∈ Rd : 〈x, v∗〉 > 0} and H− = {x ∈ Rd : 〈x, v∗〉 < 0},

where 〈·, ·〉 is the inner product in Rd. If x0 ∈ H+ and y0 ∈ H− then the region of space
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influenced by the mutation that occurred at (x0, t1) is

Bx0,cd(t−t1) ∩H+,

and similarly the region influenced by the mutation that occurred at (y0, t2) is given by

By0,cd(t−t2) ∩H−.

Note that we still have

χt = Bx0,cd(t−t1) ∪By0,cd(t−t2),

but we have decomposed χt into regions influenced by the two distinct mutations.

2.3.1 Spatial measure I1: length scale of heterogeneity

A mutation at point (ti, xi) generates a ball Bxi,cd(s)(t−ti) growing linearly in t. Thus at

time t > ti, barring interference, the type-1 family is of size

Y1,i(t) = γdc
d
d(s) (t− ti)d , (2.7)

where γd is the volume of the d-dimensional unit sphere. To determine the length-scale

of spatial heterogeneity, consider a fixed distance r > 0 and pick two cells separated by

r uniformly at random. We define I1(r, t) to be the probability that these two cells are

genetically identical (from the same mutant clonal expansion) at time t. The functional

dependence of I1(r, t) on r provides an estimate of the length scale of heterogeneity and

thus may provide guidance on sampling procedures. For example, a suggested sampling

distance r.5 ≡ {argminr>0I1(r, t) < 0.5} between biopsies would ensure that sampled clones

would be genetically different from neighboring samples 50 percent of the time. The measure

I1(r, t) is a spatial analog of the Simpson’s Index.

The actual analysis of I1(r, t) is quite technical so we will leave the details to the Ap-

pendix for interested readers. However, here we will provide some intuition for our approach

and also provide some graphs demonstrating the dependence of I1 on parameters and time.

We will also provide some comparisons between our analysis (based on the mesoscopic model

approximation) and simulations of I1 in the full cell-based stochastic evolutionary model.

Idea behind calculation. First, the following are the main steps involved in the proofs.

1. Define space-time regions Va and Vb that can influence the state of the cell samples, i.e.

if a mutation occurs in Va or Vb, then its clone can spread to site a or b, respectively,
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by time t

2. Split up the probability that the sampled cells are different by conditioning on the

number of mutations that occur in the space-time region Va ∪ Vb (greater than two

mutations in Va ∪ Vb will have negligible probability on our time scale)

3. Use the Poisson distribution and the volume of the regions to calculate the probability

that one or two mutations occur in the region and the probability that the cells are

different, given that one mutation occurs

4. For the two mutation case, calculate the probability that the cells are different by

splitting up Va∪Vb into subregions and then conditioning on the subregion containing

the first mutation

5. Define associated regions based on the location of the first mutation, which represent

the section of Va ∪ Vb in which a second mutation will make the sampled cells either

different or the same

6. Obtain the probability that the two cells are different by integrating over each subre-

gion, using the associated regions mentioned in the previous step

7. Subtract the probability that the two cells are different from 1 to obtain I1

Now we will describe these steps in a little more detail. Let a, b be the positions of two

cell samples taken at time t0 and assume that ‖a− b‖ = r. Define Dab as the event that the

cells at positions a and b are genetically different at time t. Calculations in sections A.2.1

and A.2.2 of the Appendix demonstrate that P(Dab) only depends on the distance between

the samples ‖a− b‖, as long as cdt+ r � L. Thus, conditioning on the location of a and b

we can conclude that I1(r, t) = 1− P(Dab).

Next we discuss the idea behind calculating P(Dab). Recall that if two clones meet, then

each continues to spread in all directions away from the interacting clone. We will denote

a cell in position x at time t by the coordinate (x, t). Va(t0) and Vb(t0) are the space-time

regions in which a mutation can influence the genetic state of the samples at a and b,

respectively. The union of these regions (Va(t0) ∪ Vb(t0)) represents the space-time region

in which mutations can influence the genetic state of the samples examined at locations a

or b at time t0. Let E(A) be the number of mutations that occur in a region A, and let Ek

be the event {E(Va(t0) ∪ Vb(t0)) = k}. Then, the event Dab can be divided into sub-events
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according to how many mutations have occurred in the spacetime region Va(t0) ∪ Vb(t0)

P(Dab) =
∞∑
i=1

P(Dab ∩ Ei)

The following simple calculation demonstrates that the probability of more than two

type-1 mutations occurring in the region Va(t0)∪Vb(t0) is small for the carcinogenesis setting.

First, we note that the volume |Va(t0) ∪ Vb(t0)| is bounded above by |Va(t0)|+ |Vb(t0)|. In

1D this sum of volumes is c1(s)t20, and in 2D it is 2π
3 c2(s)2t3o, where c1(s) and c2(s) are the

spreading speeds of the single mutant clones in dimensions 1 and 2 respectively, provided in

Section 4.2. Since type-1 mutations arrive into Va(t0)∪Vb(t0) as a Poisson process with rate

u1s, the number of mutations in Va(t0) ∪ Vb(t0) is stochastically dominated by a Poisson

random variable with rate λ = u1s
2t20 in 1D and

λ = u1st
3
0

4πs

log(1/s)

2π

3

in 2D. We note that t0 is a time prior to carcinogenesis when premalignant tissue is sampled,

and in our model tumor initiation occurs at time σ2 when the first successful cell with two

mutations arises. In [5] we found that the appropriate time scale of this process is 1/Nu1s.

Replacing t0 by this time scale in the Poisson rate λ in each dimension we obtain λ ≡ 2/N2u1

in 1D and λ ≡ 8π2

3N3u21s log(1/s)
in 2D.

We assume the point mutation rate in healthy tissue is within the range of 10−7 to

10−10 per base pair per cell division [42, 43, 44]. Selection advantages are more difficult

to ascertain experimentally, but one study has estimated the average advantage s to be

approximately 0.004 [24]. Lastly, the cell population sizes of interest in tissues at risk of

initiating cancer are in the range of 106 and upward. Using these estimates we can easily

calculate that the probability of more than two mutations arriving within the region of

interest is negligible across all reasonable parameter ranges. Thus we can approximate

P(Dab) with the first two terms of the sum above:

P(Dab) ≈ P(Dab ∩ E1) + P(Dab ∩ E2). (2.8)

We then use Bayes’ Theorem to obtain

P(Dab) ≈ P(Dab|E1)P(E1) + P(Dab|E2)P(E2).

We use the Poisson distribution with parameter u1s|Va(t0) ∪ Vb(t0)| to calculate P(E1)
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and P(E2). Then we define the following notation

D(r, t0) = Va(t0)∆Vb(t0)

M(r, t0) = Va(t0) ∩ Vb(t0).

Then given that there is one mutation, the cells will only be different if that mutation

occurs in D(r, t0), so we have

P(Dab|E1) =
|D(r, t0)|

|Va(t0) ∪ Vb(t0)|
.

In 1-D, if there are two mutations, then we divide Va(t0) ∪ Vb(t0) into seven regions

Ri and condition on whether the first mutation occurrs in each of these regions. The most

important distinction between the regions is whether they are located in M(r, t0) or D(r, t0).

Each region Ri has an associated region Zi. If Ri ∈M(r, t0), then Zi represents the region

in which a second mutation makes the sampled cells different. If Ri ∈ D(r, t0), then Zi

represents the region in which a second mutation makes the cells the same.

Then we calculate P(Dab|E2) by summing the probability that the first mutation occurs

in Ri and the second occurs in Zi for each Ri ∈ M(r, t0) or the probability that the first

mutation occurs in Ri and the second does not occur in Zi for each Ri ∈ D(r, t0).

We integrate over the volume of the regions to find the probability that the second

mutation occurs in Zi, given that the first occcurs in Ri, as shown below

P(X2 ∈ Zi|X1 ∈ Ri) =
1

|Ri|

∫
Ri

|Zi(x, t)|
|Va ∪ Vb \Ai(x, t)|

dxdt,

where Ai(x, t) is the region that is affected by the first mutation at (x,t), and thus, the

region where a second mutation cannot occur.

In two dimensions we do not split the space into seven regions, but we use a similar

process and condition on whether the first mutation occurs in M(r, t0) or D(r, t0). The

resulting probability calculations are more complicated in the two-dimensional case. We

do not compute I1 in three dimensions, but we expect it to be much more technically

demanding because the space-time diagram will be four dimensional. In addition we have

found in most epithelial cancers that the early carcinogenesis process is driven by dynamics

in the epithelial basal layer, so the 2-dimensional setting is the most relevant.

The exact calculations for I1 = 1− P(Dab) are provided in Sections A.2.1 and A.2.2 of

the Appendix.
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Agreement with microscopic model simulations. To verify our results we simulated the

full cell-based stochastic evolutionary model and compared the spatial measure I1(r, t) with

our derivations from the previous section. Table 2.1 shows the results of these compar-

isons. Since the cell-based model is very computationally intensive, only 100 simulations

were performed in each set of parameter values; however the Wald confidence intervals are

provided for each set of simulations. In this table we see a close agreement between our

theoretical values for I1 based on the mesoscopic model and the simulations of I1 based on

the microscopic model. For all cases, N = 10000 and r = 10.

Table 2.1: Comparison of I1(r, t) between theory and simulation of the cell-based
stochastic model.

u1 s t Theory I1(r, t) Simulation I1(r, t) 95% CI

0.001 0.01 30 0.98 0.97 (0.94, 1)
0.001 0.01 40 0.96 0.92 (0.87, 0.97)
0.001 0.01 50 0.94 0.9 (0.84, 0.96)
0.001 0.01 60 0.90 0.9 (0.84, 0.96)
0.001 0.01 70 0.88 0.83 (0.76, 0.90)
0.0001 0.1 30 0.9 0.95 (0.91, 0.99)
0.0001 0.1 40 0.84 0.91 (0.85, 0.97)
0.0001 0.1 50 0.8 0.84 (0.77, 0.91)
0.0001 0.1 60 0.79 0.8 (0.72, 0.88)

In Figures 2.2 and 2.3 we demonstrate how the spatial measure of heterogeneity varies

in time for different parameters. In Figure 2.2 we observe that as time increases, I1(r, t)

decreases; this reflects the clonal expansion of existing mutant families leading to an increase

in heterogeneity over time. In addition, as the distance r increases the probability of the

two samples being genetically the same decreases, as expected. Figure 2.3 shows this result

as a function of u1. As the mutation rate increases, I1(r, t) decreases since the heterogeneity

of the tissue increases as more mutant clones emerge. In both figures we see that sensitivity

of I1 to parameter changes increases as r increases. This is natural since the likelihood that

two cells are identical is more likely to change as the distance between the cells increases.
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Figure 2.2: I1 in 2D as a function of sampling time t0. We vary the sampling radius
r and set s = 0.01 and u1 = 1e− 5, so the mutation rate is 1e− 7. We also set the mutant
growth rate cd = 0.25.
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Figure 2.3: I1 in 2D as a function of u1, which contributes to the mutation rate.
Mutations arise according to a Poisson process with rate u1s, and we set s = 0.01. We
vary the sampling radius r and set the sampling time t0 = 300 and the mutant growth rate
cd = 0.25.
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2.3.2 Spatial measure I2: extent of a premalignant lesion

Next, suppose we have obtained a premalignant (type-1) biopsy at a single point in the

tissue at time t. We would like to estimate the expected size of the corresponding clone. In

particular we define I2(r, t) to be the probability that an arbitrarily sampled cell at distance

r is from the same clone as the original sample.

In order to study I2 it is necessary to define the concept of ‘size-biased pick’ from a

sequence of random variables {Xi}i≥1.

Definition 1. A size-biased pick from the sequence (Xi) is a random variable X[1] such

that

P
(
X[1] = Xi

∣∣ X1, . . . Xn

)
=

Xi

X1 + . . .+Xn
.

Suppose that by time t there have been successful mutations at space time points

{(xi, ti)}Ni=1 initiating populations C1,i, 1 ≤ i ≤ N . In the model description we stated

that the assumptions (A0)-(A3) hold throughout the paper. A consequence of these as-

sumptions, proved in Theorem 4 of [5], is that overlaps between distinct type-1 cell is

unlikely. Thus we assume here that for 1 ≤ i ≤ N , C1,i = Bxi,cd(t−ti).

In order to calculate I2, we first choose a clone C[1] via size-biased pick from the different

clones {C1,i}. The radius of this pick is denoted R[1]. For ease of notation we will make the

following substitution throughout the rest of the section C = C[1] and R = R[1]. We next

choose a point, p1, at random from the chosen clone C. We choose a second point p2, at

random a distance r away from p1. In other words, the point p2 is chosen at random from

the circle

S = {x ∈ R2 : |x− p1| = r}.

To calculate I2 we are interested in determining the probability that p2 is contained in C.

More specifically, let us denote the center of C by xo. It is useful to define X = |p1 − xo|
which is a random variable with state space [0, R]. The heterogeneity measure I2(r, t) is

given by:

I2(r, t) ≡ P (p2 ∈ C) = E [P (p2 ∈ C|R,X)] . (2.9)

The following two properties are useful in determining I2:

(i) If X + r ≤ R, then S ⊂ C. To see this consider z ∈ S. Then

|z − xo| = |z − p1 + p1 − xo| ≤ |z − p1|+ |p1 − xo| ≤ r +X ≤ R.
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(ii) If R + X < r then S ∩ C = ∅. To see this take z ∈ C, which of course implies

|z − xo| ≤ R and thus,

|z − p1| = |z − xo + xo − p1| ≤ R+X < r.

We then have that

P (p2 ∈ C|R,X) =


0, R+X < r

1, X + r ≤ R

φ(X,R), otherwise.

(2.10)

We can use the cosine rule to see that

φ(X,R) =
1

π
cos−1

(
X2 + r2 −R2

2Xr

)
. (2.11)

Substituting expressions (2.10) and (2.11) into (2.9) results in a formula for I2 that can be

easily approximated via Monte Carlo simulation. Details of this procedure are provided in

Appendix A.3.

The heterogeneity measure I2 is designed to be an estimate of the extent of a prema-

lignant lesion that has already been detected via one point biopsy. Thus it is of interest

to determine the value of I2 at the time of detection of the premalignant condition (which

itself may be random). Premalignant detection is realistic for some types of cancer that

are tested early, e.g. the premalignant stages of oral squamous cell carcinomas [45] and

esophageal adenocarcinoma in Barrett’s esophagus [26, 46]. We hypothesize that detection

of the premalignancy may occur at a random time τ , which occurs with a rate proportional

to the total man-hours of premalignant lesions. In other words, detection of the condition

is driven by the size and duration of premalignant lesion presence. Let us define τ with the

following:

P (τ > t) = E exp

(
−µ
∫ t

0
|χt|dt

)
, (2.12)

where we recall that |χt| is the volume of type-1 cells at time t. Display (2.12) tell us that

detection occurs at rate µ. Note we assume that (A1-A3) hold with u2s replaced by µ.

In Section A.3 of the Appendix we also develop a numerical approach for estimating
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I2 at the random detection time τ . Interestingly enough, it is computationally easier to

compute I2(r, τ) than I2(r, t).

Numerical examples. In Figure 2.4, I2(r, t) is plotted as a function of r for various values

of u1, s, and t. Figure 2.5 shows analogous plots of I2(r, τ) at the random detection time.

Comparing Figures 2.4 and 2.5 we observe an interesting phenomenon. In particular when

looking at I2 at a fixed time in Figure 2.4 we see that for each r and t, I2 is an increasing

function of both u1 and s. This makes sense if we consider the system at a fixed time.

Then increasing the mutation rate will increase the expected growing time of any clones,

i.e., they are more likely to be born earlier; therefore any clone we select is likely to be

larger, so it is more likely that the second point selected a distance r away will be in the

original clone. Similarly increasing s increases the expected size of clones present at time

t, and thus increases I2(r, t). However, when we look at Figure 2.5 we see that I2(r, τ) is

decreasing in u1. Interestingly by observing the process at the random time τ we flip the

dependence on the parameters u1. This phenomenon results from the fact that increasing

the mutation rate allows for detection to be caused by multiple clones, which will therefore

be smaller at detection than if the detection were driven by a single clone.
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Figure 2.4: I2(r, t) in 2D as a function of sampling radius. Displayed for (A) varying
selection strength, s, (B) varying u1, and (C) varying t. In all panels N = 2e5, and 1e4
Monte Carlo simulations are performed. Unless varied, s = 0.1, u1 = 7.5e− 7, and t is the
median of the detection time τ with µ = 2e− 6.
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Figure 2.5: I2(r, τ) in 2D as a function of sampling radius. In panel (A) we vary the
selection strength, s, and in panel (B) we vary u1. In all panels N = 2e5, we use 1e4 Monte
Carlo simulations, and for the random detection time τ we use µ = 2e−6. If not mentioned
we set s = 0.1, u1 = 7.5e− 7.

2.4 Discussion

In this chapter we have analyzed and examined several measures of heterogeneity in a

spatially structured model of carcinogenesis from healthy tissue. In particular, we first

derived estimates of the traditionally nonspatial measure of diversity, Simpson’s Index, in

the premalignant tissue and studied how the Simpson’s Index changes in time and varies

with parameters. We observed that as expected, the Simpson’s Index decreases over time

as more mutants are produced, and that this process occurs faster in settings with higher

mutation rates or with larger selective advantages. We also formulated and analyzed two

spatially-dependent measures of population heterogeneity, motivated by clinical questions.

In particular we analyzed a measure (I1) that can identify the length-scale of genetic het-

erogeneity during carcinogenesis, as well as a measure (I2) that can estimate the extent of

a surrounding premalignant clone, given a premalignant point biopsy.

We note that in this work we have confined our analysis to a two-step model of car-

cinogenesis. The results can be used in a setting in which a larger number of genetic hits

is required for full malignant transformation. However our heterogeneity estimates would

apply to the population of cells with a single mutation and thus can be used in the setting

of early stages of carcinogenesis only. Incorporating further mutations in the model will be

the subject of future work.

These analyses facilitate a better understanding of how to interpret discrete (in both

time and space) samples from a spatially evolving population during carcinogenesis. For

example, the quantity I2 can be calculated to help determine the expected size of a prema-

lignant lesion, given a point biopsy that is premalignant. In addition the quantity I1 may

be used to generate suggestions for optimal sample spacing in situations where multiple
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biopsies or samples are possible. Finally, we note that although it is possible to calculate

these diversity indices using computational simulation of similar cell-based or agent-based

models, it can be extremely computationally onerous to simulate such models for even small

sized lattices (100x100 sites) for a lengthy period of time, such as during the process of car-

cinogenesis. Therefore the heterogeneity estimates we derive based on our mesoscopic model

in many cases provide the only feasible way to estimate spatial diversity in models living on

a larger lattice e.g., 1000x1000 sites or larger. Given the large number of epithelial cells in

a small area, realistic simulations to determine statistical properties of diversity measures

during carcinogenesis may be completely infeasible. Our results here provide analytical or

rapidly computable expressions that enable a detailed assessment of how these heterogene-

ity measures vary depending on time and depending on tissue/genetic parameters such as

mutation rate and selective advantage conferred by the genetic alteration. These tools can

be utilized to study how tissue heterogeneity in premalignant conditions varies between

sites and tissue types, and thus guide sampling or biopsy procedures across various cancer

types.



Chapter 3

Mutant clone propagation and field

cancerization in epithelial basal

zones

3.1 Introduction

Recall that cancer initiation is typically characterized by the accumulation of successive

genetic alterations that can confer fitness advantages due to increased proliferation capa-

bilities or avoidance of apoptosis signals. The fitness advantages in the affected cells lead

to the expansion of premalignant clones. These clones are more susceptible than normal

tissue to subsequent mutations and eventually tumor initiation. However, the clones are

difficult to detect clinically, so mathematical models can provide useful insight regarding

the temporal dynamics and spread of premalignant tissue.

There have been number of previous papers that use mathematical models to study

the evolutionary process of cancer initiation. One model that has been used to study

carcinogenesis is known as a Moran process, first proposed by Moran in [47], which is

a nonspatial evolutionary model that assumes a well-mixed population. In [48], Nowak

et al. studied the waiting time until a cell in the Moran process acquires two mutations,

signifying cancer initiation. Durrett, Schmidt, and Schweinsberg generalized this framework

to a Moran process, in which cancer initiation occurs after a cell has mutated k times, and

they analyzed the time until this event [49, 50]. Additionally, Komarova et al. introduced

the concept of stochastic tunneling between two homogeneous states in [51], and Iwasa et

al. used the Moran process to analyze the inactivation dynamics of tumor suppressor genes

24
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in [52, 53].

In this chapter, we use a spatially structured model to approximate premalignant clones

in epithelial tissue, i.e. the tissue lining the exterior and interior surfaces of the body.

Tumors arising from epithelial tissue are known as carcinoma, and they account for more

than 80% of human cancer cases [54]. Stratified epithelial tissue is made up of layers of

cells, and the deepest layer is known as the basal layer. The basal layer contains the stem

cells of the epithelium, so these cells proliferate, and the differentiated cells are pushed

upward through the other layers of the epithelial tissue. Hence, the genetic alterations that

eventually lead to cancer initiation arise within the basal layer.

In [55], Durrett, Foo, and Leder analyze the propagation speed of a premalignant clone

on a two-dimensional lattice. The two-dimensional lattice is a good approximation of a

single basal layer. However, some epithelial tissue has more than one layer of proliferating

cells, e.g. glabrous skin or hyperproliferative epidermis. To account for these cases, we

refer to the set of layers containing proliferating cells as the “basal zone.” We provide a

more detailed description of the types of epithelial tissue with multi-layered basal zones in

Section 3.5. This paper focuses on the clonal propagation speed in epithelial basal zones

that are more than one cell thick. We represent such a basal zone as a set of stacked

2-dimensional lattices, and we modify the techniques in [55] to determine the asymptotic

speed as a function of the width of the basal zone.

We use the propagation speed to investigate how various temporal and spatial properties

of premalignant tissue change when the basal zone is more than one cell thick. Many of

these properties were analyzed in [56], and they describe a phenomenon known as ‘field

cancerization’ or the ‘cancer field effect.’ This field effect describes the observation that some

regions surrounding tumors seem to have an increased risk for the development of recurrent

tumors. These regions are known as premalignant fields, and recent studies suggest that

they are caused by genetic alterations that lead to faster cell growth, making the cells more

susceptible to subsequent mutation [13, 14]. Curtius and colleagues review the biological

mechanisms driving field cancerization and the resulting clinical implications in [15]. These

fields are represented by the premalignant clone regions in our model, so after determining

the clonal propagation speed, we use it to compare various properties of premalignant fields

in basal zones that are multiple cells thick to those in tissue containing a single basal layer.

We approximate a premalignant clone using a spatial model of clonal expansion known

as the biased voter model, introduced by Williams and Bjerknes in [57]. Later, Bramson and

Griffeath analyzed this model and proved a shape theorem that describes the asymptotic

behavior of the process in [39, 40]. In this paper, we will discuss the biased voter model
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and a generalized model, which is a spatial version of the Moran process. This generalized

model incorporates mutation, and it has been studied previously in several different papers.

Among these, in [58], Komarova analyzed the time until a cell develops two mutations in a

one dimensional spatial Moran model. Durrett and Moseley extend this work and analyze

the time until a cell has acquired two mutations in d dimensions [59].

In section 3.2 we present the asymptotic propagation speed of a premalignant clone in

a basal zone that is w cells thick. We also include a local central limit theorem and random

walk return time result in section 3.2, which we use within the proof of our main result.

Then in section 3.3 we provide precise descriptions of the relevant particle systems used in

the proof of the speed, and we include a convergence proof that allows us to approximate

the dual process to the biased voter model with a branching Brownian motion. We present

upper and lower bounds for the propagation speed and use these bounds to prove the main

result in section 3.4. Next in section 3.5, we describe an application of the propagation speed

within the context of field cancerization, in which we compare the size of the premalignant

fields in basal zones of differing thickness. Finally, we discuss our findings and future goals

in section 3.6.

3.2 Main result

In this section, we present the asymptotic propagation speed of a mutant clone in an ep-

ithelial basal layer that is w cells thick. First, we establish the relevant notation and make

the notion of propagation speed precise.

Let Zw = Z/wZ. Suppose that each site in Z2 × Zw is occupied either by a type-0 cell

or type-1 cell. Type-1 cells, representing mutant cells, have a relative fitness advantage

β > 0 over type-0 cells, which represent normal cells. Each type-0 and type-1 cell waits

an exponentially distributed amount of time with parameter 1 and 1 + β (with β > 0),

respectively, before splitting into two cells of its type. Then it randomly chooses one of its

nearest neighbors to replace with its daughter cell.

Let ξt denote the set of sites in occupied by type-1 cells Z2×Zw at time t. The process

{ξt : t ≥ 0} is known as the biased voter model (BVM) on Z2 × Zw. We will on occasion

want to make the fitness advantage of the biased voter model explicit, in these cases we

will use the notation {ξt,β : t ≥ 0}. In [39, 40], Bramson and Griffeath showed that ξt,

conditioned on the event that it does not die out, eventually has a convex, symmetric shape
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D, which is a unit ball in an unknown norm. More precisely Theorem 2 of [39] states that

for any ε > 0,

P
(
∃t∗ <∞ : (1− ε)tD ∩ (Z2 × Zw) ⊂ ξt ⊂ (1 + ε)tD, t ≥ t∗|τ∅ =∞

)
= 1,

where τ∅ = inf{t > 0 : ξt = ∅}. Note that [39] proved their result on Zd for d > 1, but

theIr result can be generalized to Z2 × Zw. We provide a description of this generalization

in Section B.5.

Our primary mathematical result is to better understand the shape D, and how this

shape depends on the carcinogenic advantage β and the tissue geometry w. In pursuit of

this define

[−cw(β)e1, cw(β)e1] = {x ∈ R : (x, 0, 0) ∈ D}, (3.1)

where e1 = (1, 0, 0). Our main result describes the small β behavior of the asymptotic

growth rate cw(β).

Theorem 3.2.1. Let ξt be a biased voter model on Z2 × Zw with fitness advantage β > 0.

Let cw(β) be the growth rate of ξt, conditioned on the event that it does not die out, as

described by 3.1. As β → 0,

cw(β) ∼


4
5

√
πwβ

log(1/β) w = 2

2
3

√
πwβ

log(1/β) w > 2.

The proof of Theorem 3.2.1 is provided in section 3.4 and it follows from upper and

lower bounds on the speed, whose proofs are included in the Appendix. The proof of the

propagation speed relies on the duality between the biased voter model and a system of

branching coalescing random walks with migration rate 1 and branching rate β. During

a migration event a particle jumps to one of the 2d nearest neighbors chosen at random,

also during a branching event the resulting daughter particle is placed at random on one

of the 2d nearest neighboring sites. Anytime two particles simultaneously occupy the same

lattice location they coalesce into a single particle. This dual process is constructed using a

graphical representation of the BVM, in which the dual reverses time and traces the lineages

of the particles in ξt. See [60] or [8] for a description of this construction.

Let ζ̃t ⊂ Z2 × Zw denote the dual process of the BVM ξt. By construction, ζ̃t and ξt
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satisfy the following duality relation,

P(ξAt ∩B 6= ∅) = P(ζ̃Bt ∩A 6= ∅), (3.2)

where the notation ξAt , ζ̃
B
t indicates that ξ0 = A, and ζ̃0 = B.

Since each particle in the dual process ζ̃t behaves as a random walk, we proved the

following local central limit theorem (LCLT) on Zd×Zw to describe the asymptotic behavior

of each particle.

Theorem 3.2.2 (Local Central Limit Theorem on Zd ×Zw). Let (Yt)t≥0 be a simple sym-

metric random walk on Zd × Zw with jump rate α. Then if w = 2,

lim
t→∞

(αt)d/2 P(Yt = x) = w−1

(
2d+ 1

4π

)d/2
, ∀x ∈ Zd × Zw.

and if w > 2,

lim
t→∞

(αt)d/2 P(Yt = x) = w−1

(
d+ 1

2π

)d/2
, ∀x ∈ Zd × Zw.

We include the proof of this theorem in Appendix section B.1.

In order to prove an upper bound for the speed, we consider a pruned dual process,

which does not include the particles that coalesce with their parents shortly after birth.

Then we approximate this pruned dual process with a branching random walk, which ex-

cludes every particle that quickly coalesces with its parent but does not allow for any other

coalescence in the process. Since coalescence slows down the process, the propagation speed

of the branching random walk provides an upper bound for the speed of the dual process.

We use the LCLT on Z2 × Zw to prove the following result, which describes the timing

of a random walk’s first return to the origin. This is used to determine the probability of

coalescence between a parent and daughter particle before a specific time.

For the random walk {Yt : t ≥ 0} starting at the origin define the time of its first jump

by J1 and the time of first return to the origin as

T0 = inf{t > J1 : Yt = 0}.

Then we have the following result for the asymptotics of the tail probability of T0.
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Theorem 3.2.3. As t→∞,

P(T0 > t) ∼


4πw

5 log(αt) w = 2

2πw
3 log(αt) w > 2.

The proof of this theorem is provided in Appendix section B.2.

We also use the branching random walk resulting from pruning the dual process to

provide a lower bound on the speed of the dual process. This proof relies on the weak

convergence of a scaled version of the branching random walk to a branching Brownian mo-

tion; we provide the proof of this convergence in the next section. We work with branching

Brownian motion because it is possible to use a block construction argument to show that

it dominates a percolation process, and known percolation results provide then provide the

desired lower bound on the propagation speed.

Throughout this paper we will use the following notation. We will denote a vector in

Z2×Zw by z = (z1, z2, z3). Also we will denote the ith unit vector by ei. In addition we will

use the following Landau notation for non-negative functions as x→∞: f(x) = O(g(x)) if

lim supx→∞ f(x)/g(x) <∞, and f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0.

3.3 Approximating the dual process

In this section, we define notation to describe the dual process, branching Brownian motion,

and a few modified processes that we use to determine the propagation speed of the BVM.

3.3.1 Dual process

Recall that the dual process ζ̃t is a system of branching coalescing random walks. Each

particle in ζ̃t has jump rate 1, and each gives birth to a new particle at rate β. The new

offspring is placed at a randomly chosen neighboring site.

We represent each particle with a path (Z̃it)t∈[0,T ], in which Z̃it ∈ Z2×Zw is the location

of the i-th particle at time t. Let Z̃ be the product of these paths,

Z̃ =
(
Z̃1, Z̃2, Z̃3, . . .

)
,
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where

Z̃t =
(
Z̃1
t , Z̃

2
t , . . . , Z̃

N
t ,∞, . . .

)
,

and we use the symbol ∞ as a place holder for particles that have not been created yet.

For all i ∈ Z+,

Z̃i : [0, T ]→ (Z2 × Zw) ∪ {∞}.

Note that

ζ̃t =
{
Z̃it : Z̃it <∞

}
.

For any set A ∈ Z2 × Zw, let

ζ̃t(A) :=
{
Z̃it ∈ A

}
.

For particles i and j define their coalescence time as

σij = inf{t > 0 : Z̃it = Z̃jt , Z̃
i
t 6=∞}.

If i < j then for t > σij we set Z̃jt = ∞. In other words, the path of the particle with the

higher index changes to ∞ after time t, and the path of the lower index particle continues

to follow the system dynamics.

Let K be the number of initial particles in ζ̃t, so K = |ζ̃0|. For all i > K, let pt(i) be

the index of the parent of the particle with path {Z̃is : 0 ≤ s ≤ t}. We will say pt(i) = 0 if

Z̃it ≡ ∞, and pt(i) = i for i ≤ K and all t ≥ 0. In addition define the nth iterate of p by

p(n).

Let C̃t(i) be the set of children of particle Z̃i by time t, so

C̃t(i) = {Z̃j : pt(j) = i}.

Let D̃t(i) be the set of all descendants of particle Z̃i by time t, so

D̃t(i) = {Z̃j : ∃n s.t. p
(n)
t (j) = i}.

Define b̃j as the branching time of the particle with path Z̃j . We let b̃i = 0 for i ≤ K,

since the the first K particles are included in the process at time 0.

3.3.2 Pruned dual process

Next, we introduce a pruned dual process ζ̂t, which eliminates the particles that coalesce

with another particle shortly after birth.
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Analogously to Z̃t, we can represent the pruned dual with a product of paths Ẑi =

(Ẑit)t∈[0,T ], such that

Ẑ =
(
Ẑ1, Ẑ2, Ẑ3, . . .

)
,

and

ζ̂t =
{
Ẑit : Ẑi ∈ Ẑ, Ẑit <∞

}
.

Let

τ(β) :=
1

β
√

log( 1
β )
,

where τ(β) is the waiting period after each branching event. A newborn particle in the dual

process only joins the pruned dual if it does not coalesce with another particle by τ(β) time

units after its birth. Also we do not allow particles to branch during the initial τ(β) time

units after its creation.

Note that the path of a new particle that coalesces with a non-parent before time τ(β)

will not be a part of the process at time τ(β), but to serve as a placeholder, its path Ẑi ∈ Ẑ,

and Ẑi ≡ ∞.

After a particle is added to the process (τ(β) time units after its birth), we assume that

branching and coalescence occurs exactly as it does in the dual ζ̃t.

Note that for A,B ∈ Z2 × Zw,

P
(
ζ̃Bt ∩A 6= ∅

)
≥ P

(
ζ̂Bt ∩A 6= ∅

)
.

3.3.3 Branching random walk

We also introduce a branching random walk ζt with jump rate 1 and branching rate β,

which we will use to approximate the pruned dual ζ̂t.

Similarly to the dual and pruned dual processes, we represent the location of each

particle in the BRW with a path (Zit)t∈[0,T ], and

Z =
(
Z1, Z2, Z3, . . .

)
ζt =

{
Zit : Zi ∈ Z,Zit <∞

}
.

Most of the coalescence events in ζ̃t occur between parent and daughter particles shortly

after the daughter particle is born. Thus in ζt, we exclude every particle that coalesces with

its parent before time τ(β).
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Recall (b̃j)j∈Z+ are the branching times in ζ̃t, and let (b̂j)j∈Z+ and (bj)j∈Z+ be the

branching times in ζ̂t and ζt, respectively. For i > K, if

Z̃it = Z̃pit for some t ∈
[
b̃i, b̃i + τ(β)

)
,

then Z̃i /∈ Z and b̃i /∈ (b̂j)j∈Z+ ∪ (bj)j∈Z+ . However, if

Z̃it 6= Z̃pit for all t ∈
[
b̃i, b̃i + τ(β)

)
,

then this is considered a successful branching event in ζt and ζ̂t; therefore,

(b̃i + τ(β)) ∈ (b̂j)j∈Z+ ∩ (bj)j∈Z+ .

Suppose b̃i + τ(β) = bn, i.e. the branching time for the n-th new particle in ζt. Then

Znt =∞ for all t < b̃i + τ(β), and Zn
b̃i+τ(β)

= Z̃i
b̃i+τ(β)

.

Otherwise, since ζt is a branching random walk, we assume that particles in ζt do not

coalesce when they meet.

Similarly to ζ̂t, we let

Ct(i) = {Zjt : pt(j) = i}

and

Dt(i) = {Zj : ∃n s.t. p
(n)
t (j) = i}.

3.3.4 Scaled process

We define a scaling factor h(β) in order to obtain weak convergence to branching Brownian

motion as β → 0. Let

h(β) =
1

β
log(1/β).

Let ζβt be the scaled version of ζt, in which we scale space so that the particles live on
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(Z2 × Zw)/
√
h(β), and we run time at rate h(β). Hence for any A ⊂ (Z2 × Zw)/

√
h(β),

|ζβt (A)| =
∑
Zit∈Zt

1{Zit(h(β)t)√
h(β)

∈A
}

=
∑
Zit∈Zt

1{
Zit(h(β)t)∈

√
h(β)A

}

=
∣∣∣ζh(β)t

(√
h(β) A

)∣∣∣ .
Similarly to the unscaled BRW, we represent ζβt as a product of paths,

Zβ =
(
Z1,β, Z2,β, Z3,β, . . .

)
.

Let (bβj )j∈Z+ be the branching times in ζβt , where each bβj = h(β)bj . As before we denote

the children and offspring of particle i at time t by Cβt (i) and Dβ
t (j) respectively.

3.3.5 Branching Brownian motion

Let Rw := R mod w. Let χt be a branching Brownian motion on R2 ×Rw with branching

rate 4πw
5 if w = 2 or branching rate 2πw

3 otherwise.

More specifically, we assume that χt starts with K initial particles, each of which moves

independently as standard Brownian motion. Each particle waits an exponentially dis-

tributed amount of time with parameter 4πw
5 if w = 2 or parameter 2πw

3 otherwise before

dividing to form two identical particles. Both particles continue along independent Brown-

ian paths starting at the same location, with the same branching rate.

We represent χt as a product of continuous paths Y i = (Y i
t )t∈[0,T ], such that

Yt =
(
Y 1, Y 2, Y 2, . . .

)
.

Let (τj)j∈Z+ be the branching times of χt.

3.3.6 Modified Skorokhod topology

Now we describe the space in which Z̃, Ẑt, Zt, and Yt live. Let D([0, T ],R2 × Rw) be the

space of Cadlag paths. For simplicity, we will denote this space by DT .

Let D̂T be a modification of DT so that paths can take on the value ∞. The ∞ acts as

a placeholder for the time before a particle is born. Ẑi, Zi, Y i ∈ D̂T for all i ∈ Z+.

We must make some adjustments to the standard Skorokhod metric dT in order to
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account for the fact that paths can take on the value ∞, so we define

|(f − g)(t)| =


0 if f(t) =∞, g(t) =∞
∞ if f(t) =∞, g(t) 6=∞
∞ if f(t) 6=∞, g(t) =∞

If f(t) 6=∞ and g(t) 6=∞, then |(f−g)(t)| is the Euclidean norm, modified for the periodic

boundary on Rw. In particular, if f(t) = (p1, p2, p3) and g(t) = (q1, q2, q3), then

|(f − g)(t)| =
√

(q1 − p1)2 + (q2 − p2)2 + (min{q3 − p3, w − (q3 − p3)})2.

Otherwise, dT is defined as usual, and it induces the Skorokhod topology on the modified

space D̂T of Cadlag paths.

Let DT be the space consisting of infinite products of Cadlag paths in D̂T , as shown

below,

DT = {(x1, x2, . . .) : ∃k0 s.t. ∀k ≤ k0, xk ∈ D̂T , ∀k > k0, xk =∞}.

Note that Z̃, Ẑ, Z ∈ Dh(β)T , while Zβ and Y take values in DT .

We use the following metric to measure the distance between any X,Y ∈ DT :

dp,T (X,Y ) = sup
i
{dT (xi, yi)},

where X = (x1, x2, . . .) and Y = (y1, y2, . . .).

3.3.7 Convergence of BRW to BBM

Next, we show that the scaled branching random walk ζβt converges weakly to the branching

Brownian motion χt. We will use this in the proof of the lower bound for the speed of spread

of the BVM.

Lemma 3.3.1. Let χt be a branching Brownian motion with infinitesimal variance σ2 = 1
3

and branching rate 4πw
5 if w = 2 or branching rate 2πw

3 otherwise.

Assume initial conditions Y0 = (x1, x2, . . . , xK ,∞, . . .) and Zβ0 = (xβ1 , x
β
2 , . . . , x

β
K ,∞, . . .),

where x1, x2, . . . , xK ∈ R2 × Rw and xβi =
1√
h(β)

[√
h(β) xi

]
. Then as β → 0,

Zβ =⇒ Y,

where the weak convergence is with respect to the metric dp,T .
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Proof. We first identify the limit of the branching rate of ζβt . We will show that as

β → 0, µβ → 4πw
5 when w = 2 and µβ → 2πw

3 when w > 2.

The branching rate of the scaled dual process ζ̂βt is βh(β). In our branching random

walk, we only count branching events where particles do not collide with their parent for

their first τ(β) time units. We can use Theorem 3.2.3 to find the rate of branching events in

ζβt . In our particular case, let X1 and X2 be independent simple random walks on Zd×Zw
with jump rate 1, representing a parent and daughter particle. The initial conditions are

as follows: X1
0 = 0, and X2

0 is one of the nearest neighbors of 0, each with probability 1
6 .

Define their difference as

X̄t = X1
t −X2

t ,

which is a simple random walk with jump rate 2. Let

T0 = inf{t > 0 : X1
t = X2

t } = inf{t > 0 : X̄t = 0}.

A successful branching event occurs when T0 > τ(β). Then by Theorem 3.2.3, if w > 2,

µβ = βh(β)P (T0 > τ(β))

∼ βh(β) · 2πw

3 log (2τ(β))

= log(1/β) · 2πw

3 log

(
2

β
√

log(1/β)

)

=
2πw log(1/β)

3 log(1/β) + 3 log 2− 3
2 log(log(1/β))

∼ 2πw

3
as β → 0. (3.3)

Analogously, if w = 2, then µβ ∼ 4πw
5 as β → 0.

Based on this result we know that |ζβ| is dominated by branching process with birth

rate 2πw/3 (in the case in which w > 2), and in particular

E
[
|ζβT |

]
≤ Ke2πwT/3.

Therefore given ε > 0 we can find an Mε <∞ such that P
(
|ζβT | > Mε

)
< ε. We can thus

restrict our analysis to the set where |ζβT | ≤ Mε. Therefore to establish weak convergence

we only need to show the following three things: i) the rate of branching converges to the
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desired limit, ii) the displacement of offspring from parent converges to zero, and iii) the

paths of particles converge to Brownian motion. We have already established item (i) in

(3.3), so we will next establish item (ii).

We will show that as β → 0, the displacement between any parent and daughter particle

Zi, Zj ∈ ζt at the time of branching converges to 0 in probability. Define

U = β−1/2(log(1/β))1/3.

In the unscaled BRW ζt, (3.2.3) implies that as β → 0, if w > 2,

P (T0 > τ(β)) ∼ 2πw

3 log (2τ(β))

=
2πw

3 log

(
2

β
√

log(1/β)

)
∼ 2πw

3 log(1/β)
as β → 0. (3.4)

Then by (3.4), as β → 0,

P
(
|X1

τ(β) −X
2
τ(β)| ≥ U

∣∣∣ T0 > τ(β)
)
≤ 1

P(T0 > τ(β))
P
(
|X1

τ(β) −X
2
τ(β)| ≥ U

)
≤ 3 log(1/β)

2πw

(
β−1/2(log(1/β))1/3

)−2
τ(β)

=
3 log(1/β)

2πw
· β

log(1/β))2/3
· 1

β
√

log( 1
β )

=
3

2πw log(1/β))1/6
, (3.5)

where the second inequality follows from Chebyshev’s inequality.

Note that
|X1
τ(β)
−X2

τ(β)
|√

h(β)
is the corresponding distance on (Z2 × Zw)/

√
h(β). Therefore,

lim
β→0

P
(
|X1

τ(β) −X
2
τ(β)| ≥ U

∣∣∣ T0 > τ(β)
)

= lim
β→0

P

(
|X1

τ(β) −X
2
τ(β)|√

h(β)
≥ U√

h(β)

∣∣∣∣∣T0 > τ(β)

)
= 0,
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and

lim
β→0

U√
h(β)

= lim
β→0

(log(1/β))1/3

√
β

·

√
β

log(1/β)

= lim
β→0

1

(log(1/β))1/6
= 0.

Similarly, if w = 2, then P (T0 > τ(β)) ∼ 4πw

5 log(1/β)
, and the previous argument holds

in this case as well.

Hence, for all w and for parent and daughter particles Z1,β, Z2,β ∈ Zβ that split at time

bi,

|Zi,βbi − Z
j,β
bi
| =⇒ 0. (3.6)

We next establish that the paths of Zβ converge to Brownian motions as β → 0. Let

Ri = [bi, T ). Then let Zi,β|Ri be the restriction of Zi,β to the domain Ri. In other words,

Zi,β|Ri : Ri → (Z2 × Zw)/
√
h(β),

and for t ∈ Ri,
Zi,β|Ri(t) = Zi,βt .

For i ≤ K, Zi,β|Ri ≡ Zi,β. For each i, Zi,β|Ri is a random walk, who steps have mean 0 and

covariance matrix (1/3)I3, where I3 is the 3 × 3 identity matrix. Therefore, by Donsker’s

Functional CLT on D (Theorem 14.1 in [61])

Zi,β|Ri =⇒W |Ri ∀i as β → 0, (3.7)

where W is 3 dimensional Brownian motion with zero drift and covariance matrix (1/3)I3.

One remaining technicality is that the path of a particle is not a simple random walk

because we condition the particle on not hitting its parent. However, this conditioning is

only carried out for the first τ(β) time units which is negligible on the time scale h(β).

Combining (3.3), (3.6), and (3.7), we have shown that as β → 0,

Zβ =⇒ Y.

�
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In Appendix B.3, we show that lim
β→0

P
(
dp(Z

β, Ẑβ) > δ
)

= 0. Therefore, by Slutsky’s

Theorem, Lemmas 3.3.1 and B.3.2 imply that

Ẑβ =⇒ Y as β → 0.

3.4 Proof of the main result

In this section, we state a lower bound on the speed, whose proof we provide in the Appendix,

and we claim an upper bound on the speed, whose proof is not yet complete. Then assuming

this upper bound, we prove the main result.

Our goal will be to show that in the small β regime the speed of the BVM matches with

the following expression

a(w, β) =


4
5

√
πwβ

log(1/β) w = 2

2
3

√
πwβ

log(1/β) w > 2.
(3.8)

In section 3.3.7, we proved that the BRW ζβt converges weakly to the branching Brownian

motion χt as β → 0. We use this result in the proof of the lower bound for the propagation

speed, which is stated below. We will show that for any ε > 0 the BVM conditioned on

survival will hit the point

xε(t;β) = ba(w, β)te1(1− ε)c

at time t in the small β and large t limit.

Lemma 3.4.1. Let {ξt,β : t ≥ 0} be a biased voter model on Z2×Zw with fitness advantage

β > 0 and define τ∅ = min{t : ξ0
t = ∅}, Then for any ε > 0

lim
β→0

lim
t→∞

P (ξt,β ∩ {xε(t;β)} 6= ∅|τ∅ =∞) = 1.

The proof is provided in Appendix section B.4. In the proof, we use a block construc-

tion to renormalize the paths of the branching Brownian motion χt and show that the χt

dominates a percolation process. Then we use the continuous mapping theorem and the

convergence result 3.3.1 to extend the argument to the pruned dual process. Using the

Brownian motion paths’ normal distribution, we show that the BBM can fill up the first

block in a given amount of time, and then our lower bound follows from a percolation result

in [62].
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The following claims that a(w, β) is an upper bound on the speed of the BVM for all

β. We will suppress the w, β and use the notation a ≡ a(w, β). The proof of the upper

bound is currently unfinished but involves the analysis of a process that dominates the

dual process. In this dominating process, coalescence can only occur between a parent and

daughter shortly after birth, provided that the daughter particle has not already produced

any offspring.

Claim 3.4.2. Let {ξt : t ≥ 0} be a biased voter model on Z2 × Zw with fitness advantage

β > 0, and for ε > 0 and t > 0 define

Bε(t) = {z ∈ Z2 × Zw : |z1| > at(1 + ε)}.

Then

lim
t→∞

P (ξt ∩ Bε(t) 6= ∅) = 0.

Under the assumption that the upper bound holds, we combine upper and lower bounds

from Claim 3.4.2 and Lemma B.4.1 to prove Theorem 3.2.1 on the speed of propagation.

Proof. We first fix ε > 0. The shape theorem by Bramson and Griffeath ([39, 40])

shows that there exists cw(β) <∞ such that

[−cw(β)e1, cw(β)e1] = {x ∈ R : (x, 0, 0) ∈ D},

where D is the limiting shape of the biased voter model. This implies that for z(t) =

(z1(t), 0, 0)

if |z1(t)| ≤ cw(β)t(1− ε), then lim
t→∞

P(z(t) ∈ ξt|τ∅ =∞) = 1

if |z1(t)| ≥ cw(β)t(1 + ε), then lim
t→∞

P(z(t) ∈ ξt|τ∅ =∞) = 0. (3.9)

Assume there exists a positive sequence {βn}n≥1 converging to 0 such that

cw(βn)(1 + ε) ≤ a(w, βn)(1− ε)

for all n. Then by (3.9) we get that

lim
t→∞

P (xε(t;βn) ∈ ξt,βn |τ∅ =∞) = 0 for all n,
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which clearly contradicts Lemma B.4.1. We thus conclude that

lim inf
β→0

cw(β)

a(w, β)
≥ 1− ε

1 + ε
.

Since cw(β)(1− ε) ≥ a(w, β)(1 + ε) leads to a contradiction between Lemma 3.4.2 and (3.9)

we can conclude that for all β > 0

cw(β)

a(w, β)
≤ 1 + ε

1− ε
,

and since ε > 0 is arbitrary the result follows. �

3.5 Application to cancer initiation in epithelial tissue

Epithelial basal zone thickness. In this section we discuss the biological application of

the mutant clone propagation speed that we have analyzed in this paper. We use Z2 × Zw
to approximate the layers of progenitor cells in stratified epithelial tissue, which we refer to

as the “basal zone,” as designated in [63]. In general, stratified epithelium consists of two

or more layers of cells, and the layers provide protection for underlying tissue. The most

common type of stratified epithelial tissue is known as stratified squamous epithelium, in

which the cells toward the surface of the tissue are very flat. Stratified squamous epithelium

can be classified further into two types: keratinized and nonkeratinized. The outer layer

of keratinized stratified squamous epithelium is made up of dead cells that contain the

protein keratin, which makes the surface waterproof. On the other hand, the outer layer of

nonkeratinized stratified squamous epithelium contains moist, living cells. All outer layers

of human skin are keratinized, and nonkeratinized stratified squamous epithelium is found

in the esophagus, oral cavity, vagina, anus, cornea, and part of the pharynx.

The proliferating cells in epithelial tissue, composing the basal zone, typically express

keratins K5 and K14, so this keratin expression can be used to determine the types of

epithelial tissue whose basal zone is made up of multiple layers. Often K19 is also expressed

in nonkeratinized basal cells [64]. Many of the tissue types with multi-layered basal zones

fall within the branch of nonkeratinized stratified squamous epithelium. In [63], Geboes

describes the basal zone in esophageal tissue, consisting of the basal layer and a few layers

of cells above it, known as the suprabasal cell layers. The esophageal basal zone occupies at

most 15-20% of the total epithelial thickness. Cells in both the deepest basal layer and the

suprabasal cell layers express K14, K19, and an epidermal growth factor receptor (EGFR),
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and the cells above this zone do not express the receptor and express keratins K1 and K10,

rather than K14 and K19.

In addition to esophageal tissue, other thick epithelia like cheek and palate tissue have a

basal zone 2-3 layers thick, expressing the keratins K5 and K14. In contrast, thin epithelia,

such as the tissue on the floor of the mouth has one layer of proliferating cells [64]. The

outer root sheath around a hair follicle can also have two layers of cells that express K5 and

K14 and that proliferate to populate the rest of the epithelium around the hair follicle [65].

Typically the basal zone in keratinized epithelia, consists of a single layer of cells, but skin

tissue that has been affected by hyperproliferative skin diseases, including psoriasis, papil-

lomas, and benign epidermal tumors, have 2-3 layers of proliferating cells. With treatment,

the epithelia that has been affected by these diseases can return to its baseline state, with

one layer of progenitor cells [66].

Boundary condition comparison. Since the periodic boundary condition that we

apply in the third dimension of our model is not biologically realistic, we use simulation to

compare the speeds when using a periodic boundary condition versus a reflecting boundary

condition. When the third dimension is equipped with a reflecting boundary condition, the

cells on the top sheet can only place their progeny in one of the four neighboring sites on the

same sheet or on the sheet directly below. Analogously cells on the lowest sheet can only

place their progeny in the five nearest neighboring sites, resulting in a more biologically

realistic growth process. Let Iw = [0, w − 1] ∩ Z. In the reflecting case, Z2 × Iw forms the

domain for the biased voter model. We simulated the BVM on Z2×Zw, i.e. with a periodic

boundary condition in the third dimension, and on Z2 × Iw, i.e. with a reflecting boundary

condition in the third dimension. In order to compare the speeds in these cases, we simulated

the process for width values w = 2, 3, 4, 5 and with fitness advantage β = 0.01, 0.05, 0.1.

We ran at least 30 simulations for each set of parameters, and we recorded the propagation

speed when the process reached (100, 0, 0) or (−100, 0, 0). We used this data to determine

an average speed and 95% confidence interval for each set of parameters. Plots 3.1 and 3.2

display the mean speed and 95% CI under both boundary conditions, as functions of β and

w, respectively.

Note that the periodic and reflecting boundary conditions are equivalent when w = 2

because each cell has exactly five nearest neighbors in this case. Thus with either boundary

condition, a cell at site (x, y, z) can place its progeny at (x±1, y, z), (x, y±1, z), or (x, y, (z+

1) mod 2). We observe that when w > 2, equipping the model with a reflecting boundary

condition in the third dimension results in a slightly smaller propagation speed than in the

periodic case. Recall that we measure this speed using the time it takes to travel a certain
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distance in the x-dimension on the first sheet. In the reflecting case, there are fewer cells

placing their progeny on the outer sheets, since only one neighboring sheet can contribute

daughter cells to each outer sheet. Hence, we expect a slightly slower propagation speed

when measured on an outer sheet than on an inner sheet. Consequently, since we have

tracked the simulation speed on the first sheet, this provides an explanation for the slower

speed in the reflecting boundary case versus the periodic boundary case, in which two

neighboring sheets can contribute daughter cells to the first sheet.
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Figure 3.1: BVM propagation speed, as a function of the fitness advantage β.
The speed is obtained using Monte Carlo simulation on w sheets, for 2 ≤ w ≤ 5. This
figure shows the average speeds when simulated with both periodic boundary conditions
and reflecting boundary conditions, and the error bars indicate the 95% confidence interval
for each speed.

As mentioned, the reflecting boundary condition induces different cell behavior on the

inner and outer sheets, resulting in distinct propagation speeds on these two types of sheets.

Note this is not the case in the periodic case because all cells have six nearest neighbors

in that setting, whereas in the reflecting case, cells on the outer sheets have five nearest

neighbors. Our simulations of the speed with a reflecting boundary condition measured

on sheets 1,2, and 3, as shown in Figure 3.3, support the hypothesis that the propagation

speed is larger on inner sheets than on outer sheets. We observe that, excluding the case

when w = 2, the speed on sheet 2 is greater than the speed on sheet 1 for all β, since sheet

2 is an inner sheet. When w = 2, both sheet 1 and 2 are outer sheets, so the propagation

speeds are about the same. Analogously, the speed on sheet 3 is similar to the speed on
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Figure 3.2: BVM propagation speed, as a function of the number of sheets, w.
This figure shows the average speeds for the cases in which β = 0.01, 0.05, 0.1, with both
periodic boundary conditions and reflecting boundary conditions. The error bars indicate
the 95% confidence interval for each speed.

sheet 2 and larger than the speed on sheet 1, except when w = 3. In that case, sheet 3 is

an outer sheet, so the speed on sheet 3 is similar to the speed on sheet 1 and smaller than

the speed on sheet 2.

Notice that the speeds measured on all sheets in the reflecting case are slightly smaller

than the speed in the periodic case. An intuitive explanation for the overall difference in

simulation speed in the time frame that we have examined is that in the reflecting case, it

takes longer for the type-1 population to fill in the gaps and converge to the asymptotic

shape that propagates outward on each sheet. This behavior stems from the fact that the

type-1 population has reduced ability to spread to new sites in the reflecting case, since cells

on the lowest sheet cannot place cells on the highest sheet, and vice versa. In the periodic

case, the type-1 population can fill in the gaps occupied by type-0 cells on all of the sheets

more quickly, allowing fronts to emerge and spread outward slightly more quickly than in

the reflecting case.

In general, the propagation speeds in the periodic and reflecting cases are similar, partic-

ularly for small β. These simulations suggest that the speed that we have determined using

a periodic boundary condition provides a slight overestimate, but certainly a reasonable

approximation, of the speed at which a mutant clone would realistically spread outward in

epithelial tissue.
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Figure 3.3: BVM propagation speed comparison on various sheets. The propagation
speed is displayed as a function of w, in the periodic boundary case and on sheets 1,2, and
3 in the reflecting boundary case. The average speeds obtained from simulation are shown
when (a) β = 0.01, (b) β = 0.05, and (c) β = 0.1. The error bars indicate the 95%
confidence interval for each speed.
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Field cancerization application. Next we consider the mutant propagation speed

within the broader context of cancer initiation. In order to do this, we extend the biased

voter model on Z2 × Zw to a generalized spatial Moran process ηt, which allows cells to

acquire mutations and includes k cell types. In particular,

ηt : Z2 × Zw → {1, 2, . . . , k},

where ηt(x) = i indicates that site x is occupied by a type-i cell at time t.

This is known as a k-step model of cancer initiation, in which type-k cells represent

malignant cancer cells. In this model, cancer initiation is defined to be the time of the birth

of the first type-k cell that does not go extinct. In this work, we use a two-step model, in

which type-0 cells are considered normal cells, type-1 cells represent premalignant mutant

cells, and type-2 cells represent cancer cells [67]. In the model, type-i cells mutate to

type-(i+ 1) cells at rate ui+1, and type-i cells reproduce at rate (1 + β)i.

We can approximate the spatial Moran model with a mesoscopic model, as described

in [56], due to Bramson and Griffeath’s shape theorem on Zd and the extension of the

shape theorem to Z2 × Zw. In the mesoscopic approximation, mutant clones live on a

spatial continuum and grow deterministically with rate cw(β). Mutations arise according

to a Poisson process with rate u1N , where N is the total number of cells in the tissue. We

consider a mutation successful if it does not eventually die out. Maruyama showed that

mutations are successful with probability β
1+β [68]. In [56], they use this mesoscopic model

to analyze the field cancerization process. In this work, we use the speed derived in Section

3.4 within the context of this mesoscopic model. Hence, we approximate a successful mutant

clone with a ball whose radius grows linearly with rate

cw(β) ∼



√
πβ

log(1/β) w = 1

4
5

√
πwβ

log(1/β) w = 2

2
3

√
πwβ

log(1/β) w > 2

,

where the case w = 1 corresponds to clonal expansion on Z2 and was analyzed in [55]. Note

that the volume of w stacked discs of radius 1 in Z2 × Zw is wπ.

We use this mesoscopic model to characterize properties of the premalignant field during
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cancer initiation. These properties allow us to determine how the process of field cancer-

ization differs in single-layered basal zone from a basal zone that is w > 1 cells thick. An

important property is the size of the local field, which is the region of premalignant cells

that gives rise to the first malignant cell.

The values of parameters β, u1, u2, and N depend on the cancer and tissue type. Durrett,

Foo, and Leder show that the cancer initiation behavior can be classified using three different

regimes. See [55] if you are interested in the explicit definition of these regimes in terms of

the parameter values, but for the scope of this paper, we will simply provide a description

of the mutant behavior within each of the regimes.

In Regime 1 (R1), the first successful type-2 mutation occurs within the clone of the first

successful type-1 mutation. In Regime 2 (R2), there are several successful type-1 clones by

the time the first successful type-2 mutation occurs within one of these clones. Finally, in

Regime 3 (R3), many successful type-1 clones arise before the first cancer initiation, and

the first successful type-2 can emerge within one of these successful clones or within an

unsuccessful type-1 clone. Note that there may be borderline cases that do not fit into one

regime, so we denote these as R1/R2 or R2/R3.
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Figure 3.4: Cancer initiation time σ2. Cancer initiation occurs at the time when the
first successful type-2 cell arises, which we denote by σ2. The pdf of σ2 for various w in
parameter regime 2 is shown. The parameters used in this plot are u2 = 2 · 10−5, N =
2 · 105, u1 = 7.5 · 10−6, and β = 0.1.

Let σ2 denote the time when the first malignant cancer cell (type-2 cell) arises. Durrett,

Foo, and Leder calculated the distribution of σ2 in [55], and we modified this calculation

using the updated speed and shape of a unit ball on Z2×Zw. Figure 3.4 shows the updated

density of σ2 in parameter regime 2 for various w. For larger values of w, we expect cancer

initiation to occur earlier, due to the increased propagation speed of the premalignant clone.
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In Theorem 3.2 of [56], they derive the distribution of the area of the local field, Xl,

at time σ2, conditioned on the event {σ2 ∈ dt}. We compare the size-distribution on Z2

and on Z2×Zw for several different w by varying the type-2 mutation rate u2 in Figure 3.5

and varying the fitness advantage β in Figure 3.6. In both plots, we condition on cancer

initiation occurring at the expected time E[σ2]. In all cases, we see that the larger local

fields at the time of cancer initiation are associated with larger w. Due to the conditioning

on E[σ2], the early initiation time for larger w should contribute to a smaller local field, but

the density functions imply that the increased propagation speed has a stronger effect on

the field size than the faster initiation time, resulting in a larger local field.

In Figure 3.5, we also observe that for all w, the likelihood of a larger local field in-

creases as u2 decreases. As u2 decreases, the process moves toward regime 3, in which the

premalignant region is made up of many independent clones, increasing the likelihood that

a larger clone will give rise to the first type-2 cell. On the other hand, as β decreases, we see

in Figure 3.6 that the support of the distribution decreases for all w. A smaller β implies a

less aggressive mutation, so we expect the clone to expand more slowly, leading to a smaller

local field at the time of initiation. Notice that varying u2 seems to have a stronger effect

on the size-distribution than varying β and that the local field size distribution for smaller

w is more sensitive to variation of either parameter u2 or β than the distribution of a local

field with larger w.

Thus, the geometry of the basal zone affects the process of field cancerization during

tumorigenesis. The greater the thickness of the basal zone, the larger we expect the local

field to be at the time of cancer initiation, implying that there will be a larger region

surrounding the tumor with high risk for tumor recurrence. The information provided about

basal zone thickness at the beginning of this section suggests that if cancer is detected in

thicker nonkeratinized epithelial tissue, such as esophageal, cheek, or palate tissue; in the

epithelium surrounding a hair follicle; or in tissue affected by a hyperproliferative skin

disease, then a larger region of tissue should be monitored closely for tumor recurrence.

3.6 Conclusions

In this chapter, we have studied the biased voter model on Z2 × Zw and have shown how

the spread of the model in this setting differs from the spread of the biased voter model on

Zd. The biased voter model on Z2 × Zw approximates a basal zone that is w cells thick.

We used this model to determine an asymptotic formula for the propagation speed of a

premalignant clone in such a basal zone.
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Figure 3.5: Size-distribution of the local field (varying u2). The pdf of the local field
size on Z2 and Z2 ×Zw for various w is shown. Each plot corresponds to a different type-2
mutation rate and parameter regime. In (A) u2 = 2 · 10−3 (R1), in (B) u2 = 2 · 10−5

(R2), and in (C) u2 = 2 · 10−6 (R2/R3). The other parameters are held constant at
N = 2 · 105, u1 = 7.5 · 10−6, β = 0.1. For the purpose of comparing the scales in the first
three plots, in (D) we show the graph for all three u2 values in the case in which w = 3.
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Figure 3.6: Size-distribution of the local field (varying β). The pdf of the local field
size on Z2 and Z2 ×Zw for various w is shown. Each plot corresponds to a different fitness
advantage β and parameter regime. In (A) β = 0.025 (R1/R2), in (B) β = 0.1 (R2),
and in (C) β = 0.4 (R2/R3). The other parameters are held constant at N = 104, u1 =
7.5 · 10−6, u2 = 2 · 10−5. In (D) we show the graph for all three β values in the w = 3 case.
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In order to determine this speed, we began by proving a local central limit theorem on

Zd × Zw. We used this result when analyzing the dual process of the biased voter model.

This analysis allowed us to determine an upper and lower bound for the propagation speed.

Theorem 3.2.1 gives the asymptotic formula for the rate of spread of a premalignant clone

on such a basal layer, as a function of the selective advantage β. This result, in comparison

with the result in [55] on Zd shows that the geometry of the basal zone influences the

spread of mutant clones in epithelial tissue. We showed that for small β, premalignant

clones eventually spread out more quickly when the basal zone is more than one cell thick.

The rate of spread of premalignant clones has an important clinical implication during

the time period after a tumor has been detected. The local fields surrounding primary

tumors are composed of cells that have mutated and are dividing more quickly than normal

cells. Thus, they face a higher risk than normal cells of further mutation and eventually

the initation of another tumor. We utilized our speed result and the distributions of cancer

initiation time and local field size from [55] and [56], respectively, to investigate the process

of field cancerization in tissue with basal zones of varying width. We determined that cancer

initiation tends to occur sooner as the width of the basal zone increases. Additionally we

showed that the local field at the time of cancer initiation tends to be smallest in tissue

with a single basal layer and that the expected field size increases as w increases.

It is difficult for a clinician to detect the local field, since it appears phenotypically

normal, but it would be very useful to know the size of this region, so that it could inform

the location and frequency with which the clinician should monitor a cancer patient for

signs of recurrence. For example, if a tumor is discovered in esophageal tissue, known to

have multiple layers of proliferating cells, then a larger region surrounding the tumor should

be monitored than if the tumor had been discovered in skin tissue. Thus, our speed result,

combined with the local field size-distribution and knowledge about the structure of the

basal zone of the patient’s affected tissue, can provide important information for predicting

recurrence location and timing.

A limitation of our work is that we are confined to a uniform fitness advantage β con-

ferred by all mutations and to a specific sequence of genetic events. In reality, different

mutations could lead to various pathways with divergent mutation rates, fitness advan-

tages, and number of events required to initiate cancer. However, our approach provides a

useful construction for studying the general differences in field cancerization between tissues

with different basal layer thickness. It also equips us to differentiate between various genetic

pathways in molecular subtypes of carcinoma and to predict their impact on the spread of

local fields. Another limitation is the periodic boundary condition on the third dimension,
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which was used because the proof of the local central limit theorem and other parts of the

analysis become much more complicated if we remove this condition. However, we showed

via simulation that the propagation speed of a BVM with a periodic boundary condition

appears to be quite similar to the speed of a BVM with a more biologically realistic reflect-

ing boundary condition in the third dimension. Generalizing the proof of the propagation

speed to a BVM with a reflecting boundary condition is a topic of future work.

We also plan to analyze the mutant clone propagation speed on Z × Zw in the future.

Our motivation for studying the speed in this setting arises from epithelial tissue that is

structured in thin cylindrical tubes, e.g. mammary ducts of the breast and renal tubules of

the kidney. We plan to use our local central limit theorem on Z×Zw to aid in the analysis,

and we hope to determine how the propagation speed and the process of field cancerization

change in this geometric setting.



Chapter 4

Glioblastoma recurrence and the

role of MGMT promoter

methylation

Glioblastoma, also known as glioblastoma multiforme (GBM), is an extremely fast-growing

and lethal form of brain cancer. Despite aggressive treatment strategies, the clinical prog-

nosis for glioblastoma is grim. Typically, GBM patients are treated with surgical resection

followed by adjuvant radiation therapy and chemotherapy with the oral alkylating agent

temozolomide (TMZ). This standard regimen results in a median survival of only 15 months

and a two-year survival rate of 30% [2].

The effectiveness of TMZ is impacted by the methylation status of the promoter for

DNA repair protein O-6-Methylguanine-DNA Methyltransferase (MGMT). In particular,

the poor prognosis in GBM patients is largely due to the near-universal recurrence of tumors

after treatment, which is often driven by resistance to the chemotherapy component TMZ

[69, 70]. In responsive tumors, TMZ typically induces cellular apoptosis via DNA strand

breaks. Resistance to TMZ in GBM has been associated with increased expression levels

of MGMT [16, 17, 18]. Indeed, clinical studies have shown that epigenetic silencing of

the MGMT gene via promoter methylation is associated with greater sensitivity to TMZ

and improved patient prognosis [16, 71]. For example, in [16] it was shown that MGMT-

methylated GBM patients treated with TMZ and radiotherapy had a survival benefit, as

compared to those treated with only radiotherapy; this survival benefit disappeared in the

absence of MGMT promoter methylation.

It has been proposed that TMZ may actually impact the methylation status of the

51
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MGMT promoter during treatment [72]. However, the details and mechanism of this pro-

posed interaction are uncertain. There have been a small number of studies comparing the

MGMT promoter methylation in newly diagnosed tumors vs matched recurrence samples,

following treatment with TMZ [19, 20, 73, 74]. Many of these studies demonstrate that

a majority of patients with MGMT methylated tumors at diagnosis actually present with

unmethylated recurrent tumors following standard treatment; thus there is a downward

shift in the overall methylation percentage of these tumors during the course of treatment.

However, it is unclear whether this transition from methylated to unmethylated recurrent

tumors is due to TMZ actively influencing the methylation status of MGMT, simply a result

of evolutionary selection for a more drug-tolerant phenotype, or some combination of both

processes. In this work we aim to utilize evolutionary modeling to help shed light on this

question.

Our work adds to a large body of literature modeling the response of glioblastoma

to various treatment strategies. In [75] the authors model chemotherapeutic delivery to

brain tumors and the extent of the breakdown in the blood-brain barrier using a two-

compartment catenary model. In [76], a spatio-temporal model of glioblastoma response to

temozolomide that allows for patient-specific chemotherapeutic optimization is developed.

The model in [77] explores the interactions between rapidly proliferating cells and a dormant

cell population within GBM, as well as the effect of various treatment schedules on the

overall composition of the tumor. There are a number of existing papers studying the

effect of fractionated radiation dosing on malignant tumors using the linear-quadratic model

[78, 79]. In [80], the linear-quadratic model is used to describe the tumor control probability

under radiotherapy, and [81] investigates the optimal radiating dosing strategies specifically

in glioblastoma. Powathil and colleagues consider a spatio-temporal brain tumor model that

includes effects from both radiotherapy and chemotherapy in [82]. Patient-specific models

of glioblastoma are developed in [83] and [84] to predict patient response to radiotherapy

and to determine optimal radiation dosing strategies. Many mathematical modeling efforts

focusing on glioblastoma tumor growth and therapy response are reviewed in [85].

Mathematical models have also been developed to describe the process of DNA methy-

lation changes in cells. Yatabe and collaborators developed a methylation-based model to

trace stem cell dynamics in human colon crypts [86]. Otto and Walbot introduced the first

model that described methylation in terms of both maintenance and de novo methylation

[87]; a similar model in a continuous-time framework was developed in [88]. Genereux and

collaborators built upon this model by allowing for the possibility that de novo methylation

occurs on one daughter strand and not the other [89]. In [1], Sontag and colleagues present
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a discrete-time Markov chain version of the methylation model introduced by Otto and

Walbot.

Here, we develop and parameterize a stochastic model of the evolutionary dynamics

driving GBM response to standard treatment with surgery, radiation and TMZ. We focus

on investigating the role of MGMT promoter methylation on TMZ resistance and tumor

recurrence after treatment. Thus, our model combines a mechanistic description of DNA

methylation dynamics at a characteristic site within the MGMT promoter region with

an evolutionary model of GBM treatment response and resistance dynamics. We aim to

investigate potential mechanisms underlying observed methylation patterns at diagnosis and

recurrence, and also explore the impact of these epigenetic processes on tumor response to

therapy.

The outline of this chapter is as follows: in Section 4.1 we provide the biological back-

ground that motivates the model, and in Section 4.2 we describe the framework and com-

ponents of the mathematical model. Section 4.3 describes the clinical and experimental

data we collected, used to calibrate the parameters within the model. In Section 4.4 we

present our findings regarding methylation changes in tumors during therapy and optimal

adjuvant TMZ dosing strategies, contingent upon tumor methylation status at diagnosis.

We summarize these results and discuss future directions in Section 4.5.

4.1 Background

4.1.1 A review of DNA methylation

DNA methylation involves the addition of a methyl group to DNA, most often at the 5-

carbon of a cytosine ring. Typically, methylation in somatic cells of mammals occurs at

CpG dinucleotides in the DNA sequence. Gene promoter regions often contain clusters of

of CpG sites called CpG islands, and methylation of these CpG islands within promoter

regions effectively silences transcription of the the gene [90, 91].

The process of DNA methylation is carried out by three major DNA methyltransferases

(DNMT1, DNMT3a, and DNMT3b), during and immediately following cell replication.

DNMT1 is responsible for ‘maintenance methylation,’ in which patterns of methylation in

the original parental DNA are preserved in the replicated DNA. DNMT3a and DNMT3b

are responsible for de novo methylation, in which unmethylated sites in the parental DNA

become methylated in the replicated DNA [92, 93, 94]. Figure 4.1 shows an illustration of

the roles of the three methyltransferases during cell replication.
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Figure 4.1: The role of DNA methyltransferases DNMT1 and DNMT3a/b during
DNA replication. This figure illustrates a portion of a DNA molecule splitting during
replication. Notice that the DNMT1 methylate the sites in the new strand that were
methylated in the parental strand. As this process is not perfect, some sites can be missed.
Dnmt3a/b methylates new sites that were not previously methylated in the top strands of
the upper and lower molecules. Similar to a figure in [1].

Demethylation, which refers to the loss of methyl groups from DNA, can either be

passive, active, or some combination of both. Passive demethylation refers to the failure

of DNMT1 to preserve all of the methylated sites in the parental DNA during replication.

Active demethylation refers to the removal of methyl groups via the modification of cytosine

bases that have been converted by TET enzyme-mediated oxidation [95]. In this work we

will primarily be concerned with passive demethylation via DNMT1.

4.1.2 MGMT Methylation and TMZ resistance

TMZ is an alkylating agent that attaches a methyl group to purine bases of DNA (O6-

guanine; N7-guanine and N3-adenine); methylation of O6-guanine damages cellular DNA

and triggers cell death. The MGMT gene encodes for the DNA-repair protein O6-alkylguanine

DNA alkyltransferase (AGT) which removes alkylating groups from the O6-guanine in DNA,

thus repairing DNA damage caused by TMZ [17]. Hence, promoter methylation of MGMT

results in decreased DNA-repair ability and increased sensitivity to TMZ. On the other

hand, unmethylated MGMT promoter regions result in increased DNA-repair ability and

decreased sensitivity to TMZ. Indeed, MGMT is methylated in approximately 40-50% of

newly diagnosed glioblastomas, and studies have shown that the presence of MGMT pro-

moter methylation is a strong predictor of responsiveness to TMZ [96, 16, 97].

The typical binary stratification of tumors into ‘MGMT-methylated’ or ‘MGMT-unmethylated’

requires some clarification, since methylation status can vary between cells of a tumor as
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well as between various CpG sites in the same genic promoter region. Thus, the actual de-

scription of MGMT methylation within tumors is more nuanced and continuously varying

than the terminology suggests. There are 97 CpG sites in the MGMT promoter region,

of which 36 have been shown to correlate with MGMT expression in the study [98]. To

determine methylation status of a tumor, typically a small subset (< 5) of these sites is

examined for the presence of methylation in a sample of tumor cells. The methylation

percentage (i.e. percentage of cells methylated) is calculated at each site and then averaged

across the sites. Then a threshold mean methylation percentage, which may vary between

studies, is used to stratify tumors into a ‘methylated’ or ‘unmethylated’ status. Since there

is so much variation between studies in how tumors are placed into these categories, here

we opt to study quantitative changes in methylation percentage on a representative CpG

site, rather than setting a threshold mean methylation percentage for stratification.

There have been a limited number of clinical studies comparing the methylation status

of tumors before and after treatment with TMZ. In [19], 8 of 13 patients transitioned from

an MGMT methylated primary tumor to an unmethylated recurrent tumor after treatment,

and in [20], it was reported that 10 of the 13 patients switched from a methylated primary

tumor to an unmethylated recurrent tumor. In this study, two of the primary tumors

began unmethylated and remained unmethylated at recurrence, and the other primary

tumor’s methylation status was not detectable. Hence, all characterizable recurrent tumors

in the study were unmethylated. Additionally, in [74], authors observed that 39.1% of

pretreatment GB and 5.3% of recurrences were promoter methylated, in addition to an

observed increase of MGMT activity in recurrences. Lastly, in [73] 15 of 18 recurrence

samples displayed higher MGMT expression as compared to matched primary samples.

Note that one may find some studies that appear to show the opposite result, con-

cluding that the majority of recurrent tumors are methylated. However, these studies do

not compare the MGMT promoter methylation status of matched samples of individual

tumors at detection and recurrence; instead, they separately compare the total propor-

tion of methylated tumors at detection and recurrence. Due to the unresponsive nature

of MGMT-unmethylated tumors, many of these patients do not survive until the clinical

definition of tumor recurrence – thus introducing a selection bias. It is unclear from the

studies in [19, 20, 74] alone whether the transition to unmethylated recurrent tumors is a

result of selection or whether the TMZ treatment increases the rate of demethylation, as

some have hypothesized [18, 19].
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4.1.3 Standard treatment regimen for GBM

The standard treatment for GBM involves surgical resection of the tumor, followed by

concurrent radiotherapy and chemotherapy with TMZ (called CRT), and then adjuvant

chemotherapy until tumor recurrence. More specifically, after surgical resection the patient

first recovers for three weeks before starting the CRT phase of treatment. During the 6-

week CRT phase, radiotherapy is administered in daily fractions of 2 Gy, given five days

per week. In total, 60 Gy of radiotherapy is administered during the six-week period. In

addition, the tumor is treated every day during the six-week period with 75 mg of TMZ

per square meter of body-surface area.

Next, following a three-week recovery period, adjuvant chemotherapy is administered to

the patient. One 28-day cycle consists of five daily doses of 150-200 mg/m2 of body-surface

area, followed by a 23-day treatment break; this cycle repeats until the tumor recurs. A

schematic of this standard treatment schedule is depicted in Figure 4.2. Further details of

the standard regimen can be found in [2].

Surgery 

3 weeks 
recovery 

CRT (6 weeks): 
•  Daily fractions of 2 Gy  
  given 5 days per week 
•  Daily TMZ dose of 75 mg/m2 

  of body-surface area 7 days 
  per week  

3 weeks 
recovery 

Adjuvant TMZ 
(28-day cycle repeated until recurrence): 
• Daily TMZ dose 150-200 mg/m2 of body-
surface area for 5 days per cycle 

Standard Treatment Schedule 

Figure 4.2: The standard GBM treatment schedule. The schedule consists of surgery,
concurrent radiotherapy and TMZ, and adjuvant TMZ treatment [2].

4.2 Mathematical model

We develop a stochastic model describing the evolutionary dynamics of GBM response

to standard treatment. In particular, we utilize a multi-type, continuous-time branching

process model (see, e.g. [99]), in which each cell waits an exponential amount of time before

division or death, governed by its birth and death rates. The model consists of three cellular

subtypes: Type-1, referring to GBM cells with fully methylated MGMT promoters, Type-

2, GBM cells with hemimethylated MGMT promoters, i.e. promoters with methylation on

one strand and no methylation on the other, and Type-3, GBM cells with unmethylated

MGMT promoters. The type-1 cells are TMZ-sensitive, and type-2 and type-3 cells are

both considered TMZ-resistant, since they both can repair the lesion created by TMZ.
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Let X1(t), X2(t), and X3(t) denote the number of type-1, type-2, and type-3 cells, re-

spectively, at time t. All three populations are birth-death processes, and the TMZ-resistant

cells, X2(t) and X3(t), are assumed to have the same birth and death rates, while the TMZ-

sensitive cells have a distinct birth and death rate. The rates governing these birth-death

processes vary during treatment with TMZ and radiation. Conversions also occur between

these cell types, driven by methylation and demethylation events during and immediately

after cell division. Each of the three cell types has a distinct offspring distribution, driving

the immigration events between methylated, hemimethylated, and unmethylated cells.

The model describes three distinct phases of tumor development and treatment, struc-

tured to the standard regimen and parameterized using clinical and experimental data.

• Phase 1 (P1): Tumor growth before detection, surgery, and three-week recovery

• Phase 2 (P2): Concurrent radiotherapy and chemotherapy (referred to as CRT), and

three-week recovery

• Phase 3 (P3): Adjuvant chemotherapy (administered in 28-day cycles) until tumor

recurrence

A schematic of the three model phases is provided in Figure 4.3. Below we describe how

the dynamics of the branching process model are adapted to model each specific phase of

the treatment.
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Time 

Time between surgery and recurrence Δt1 

(1-ps)D1: population 
change due to surgery  

D1: initial detection size D2: recurrent 
detection size 

Phase 2 (P2) 
CRT: TMZ+ 
Radiation 

Phase 3 (P3) 
Adjuvant TMZ 

Surgery 

Phase 1 (P1) 

Figure 4.3: Schematic of the three model phases. P1 consists of the tumor growth
prior to detection and surgery, P2 denotes the concurrent radiation and chemotherapy
(CRT) phase of treatment, and P3 refers to the adjuvant chemotherapy following CRT.

Methylation and demethylation processes. We begin by considering in detail the
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processes of methylation and demethylation on the MGMT promoter; these processes are

ongoing throughout all treatment and pre-treatment phases of the model. We utilize a

variant of the model presented in [1], in which a discrete-time Markov chain is used to

describe maintenance methylation, and de novo methylation at a CpG site. This underlying

model of the detailed dynamics of methylation then feeds into the population-level branching

process model via the rates of conversion between the cellular subtypes.

Let ρ be the probability of maintaining methylation for any given CpG site after replica-

tion, i.e the probability that DNMT1 methylates a CpG dyad after replication, conditioned

on the event that the site was methylated before replication. Let ν be the probability of de

novo methylation, i.e. the probability that DNMT3a or DNMT3b methylates any CpG site

that is unmethylated immediately following DNA replication. Inspired by [1], we derive the

following offspring distributions for each of the three cell types, conditioned on cell division.

In these distributions, pi(x, y, z) refers to the probability that a type-i cell will produce x

type-1 cells, y type-2 cells, and z type-3 cells after replication. For ease of notation, let

A := (1− ρ)(1− ν).
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p1((2, 0, 0)) = (1−A)2 (4.1)

p1((1, 1, 0)) = 2A(1−A)

p1((0, 2, 0)) = A2

p2((2, 0, 0)) = ν2(1−A) (4.2)

p2((1, 1, 0)) = 2ν(1− ν)(1−A) + ν2A

p2((1, 0, 1)) = (1− ν)2(1−A)

p2((0, 2, 0)) = 2ν(1− ν)A

p2((0, 1, 1)) = A(1− ν)2

p3((2, 0, 0)) = ν4 (4.3)

p3((1, 1, 0)) = 4(ν3 − ν4)

p3((1, 0, 1)) = 2ν2(1− ν)2

p3((0, 2, 0)) = 4ν2(1− ν)2

p3((0, 1, 1)) = 4ν(1− ν)3

p3((0, 0, 2)) = (1− ν)4

To derive these offspring distributions, we made use of the fact that a methylated dyad

produces two hemimethylated dyads when the DNA strands split during replication, and

those sites remain hemimethylated if the site without methylation is not methylated by

DNMT1 or DNMT3a/b immediately following replication. Hence, the probability that each

dyad remains hemimethylated is A = (1 − ρ)(1 − ν), and consequently the probability of

producing two hemimethylated dyads, i.e. two type-2 cells, is A2. Conversely, the probability

that one of those hemimethylated sites becomes fully methylated is 1−A, so the probability

of producing two fully methylated cells, i.e. two type-1 cells, is (1−A)2, and the probability

of producing one type-2 cell and one type-1 cell is A(1−A).

The offspring distributions for type-2 and type-3 cell replication can be verified similarly

upon inspection, using the idea that an unmethylated dyad produces two unmethylated

dyads during replication, and each of the CpG sites making up these dyads can only be

methylated with DNMT3a/b, i.e via de novo methylation.
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Note that we will investigate the impact of TMZ on the development of resistance by

allowing the methylation probabilities to change in presence of TMZ. In this case νz, ρz will

be used to denote the de novo and maintenance probabilities, respectively, in the presence

of the drug.

Phase I: Pretreatment, surgery, recovery. In the absence of treatment, the in-

trinsic birth rates of untreated fully methylated (type-1) and hemi/unmethylated (type-2

and type-3) cells are b1 and b2 per day, respectively, and their death rates are c1 and c2,

respectively. The parameters of the model are determined using experimental and clini-

cal data (see appendix section C.1); however, note that the total tumor population size

X1(t) +X2(t) +X3(t) is a supercritical branching process during any untreated period.

Once the tumor population reaches a detection size threshold D1, we model surgical

resection of the tumor by removing ps percent of the total cells, chosen proportionally for

each subtype. After surgery, the patient recovers for three weeks before starting treatment,

so in the model, the initial birth and death rates drive the regrowth of the tumor.

Phase II: TMZ, radiation for six weeks and recovery. In P2, the tumor under-

goes concurrent radiotherapy and chemotherapy (called CRT) for 6 weeks. The standard

schedule for radiotherapy is a daily fraction of 2 Gy, given five days per week, on Monday

through Friday. In addition, the tumor is treated every day during the six-week period with

75 mg of TMZ per square meter of body-surface area.

Since TMZ is a cytotoxic treatment, we model its impact as primarily affecting the death

rates of the tumor cells, c1 and c2. Let g1(t), g2(t) be the additional death rate due to TMZ

treatment for type-1 and type-2/type-3 cells, respectively. Note that these components

vary with time because they depend on the current TMZ concentration level. See appendix

section C.1 for details on how g1(t), g2(t) are determined from experimental data.

The cytotoxic effect of radiotherapy is modeled using the standard linear-quadratic (L-

Q) model [80]. In this model, radiosensitivity parameters α, β are used to account for toxic

lesions to DNA and misrepair of repairable damage to DNA, respectively [100]. Under the

L-Q model, the probability of cell survival at time t under the L-Q model is dependent on

the radiation dose at time t, D(t), in the following manner:

S(t) = e−αD(t)−βD(t)2 .

In our model simulations, at the time t of each radiation dose, we instantaneously remove

(1 − S(t))X1(t) type-1 cells, (1 − S(t))X2(t) type-2 cells, and (1 − S(t))X3(t) type-3 cells.

During the three-week recovery period, the cellular birth and death rates revert to those
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used in the pretreatment growth phase. Given data constraints, we ignore differences in

radiosensitivity between Type-1 and Type-2/3 cells.

Phase III: Adjuvant TMZ. During P3, adjuvant chemotherapy is administered to

the tumor. In this phase, the additional death rates g1(t) and g2(t) due to chemotherapy

reflect five daily doses of 150-200 mg/m2 of body-surface area, followed by 23 days off.

This 28-day cycle repeats until the tumor recurs. Tumor recurrence occurs when the tumor

population size reaches the threshold D2, obtained from clinical data.

4.3 Experimental and clinical data

Experimental setup. We performed experiments on PDX cell lines to investigate the

differential impact of TMZ on the growth kinetics of MGMT-methylated and unmethylated

GBM cells. In these in vitro experiments, plates of GBM6 cells were treated at eight

concentrations of TMZ (including DMSO) in triplicate, and live and dead cell counts were

collected via MTT and trypan blue assays after 8 days of exposure. The average number of

live cells after 8 days for each TMZ concentration is displayed in Figure 4.5a. Figure 4.5b

plots the average proportion of live cells from the sum of live and dead cells after 8 days of

exposure, as a function of TMZ dose.

In addition, the frequency of cells expressing MGMT was assessed in each group after

eight days. The average MGMT+ frequency for each concentration of TMZ is displayed in

Figure 4.4.

Clinical data. Clinical data was also collected from a group of 20 adult patients that

received the standard protocol described in [2]. Information about tumor radius size was

collected from each patient at the time of initial detection and at the time of recurrence.

This data is summarized in Figure 4.6a.

The growth of the tumor in the absence of treatment was also tracked, resulting in

net growth estimates for each patient. Using the patient data and a reaction-diffusion

model described in [101], we obtained an average net growth rate estimate before treatment

of λ = 0.0897/cell/day. Individual patient growth rates are summarized in Figure 4.6b.

Patient data describing the tumor radius size after surgery is displayed in Figure 4.6c.

4.4 Results

Selection alone does not explain methylation shift in recurrent tumors. We first

used the parameter settings obtained from the processes described in Section C.1 to examine
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Figure 4.4: Percentage of cells expressing MGMT, as a function of TMZ dose.
Data was collected after 8 days of exposure to various concentrations of temozolomide (in
νM), assessed using PDX experiments. The red dots in the plot denote average percentages
of MGMT+ cells, and the error bars indicate the standard deviation.

0 200 400 600 800

TMZ dose ( M)

0

2

4

6

8

10

A
v
e
ra

g
e
 l
iv

e
 c

e
ll 

c
o
u
n
t

10
5

(a) Live cell counts

0 200 400 600 800

TMZ dose ( M)

60

70

80

90

100

A
v
e
ra

g
e
 p

ro
p
o
rt

io
n
 o

f 
liv

e
 c

e
lls

(b) Mean proportion of live cells

Figure 4.5: Cell count data, as a function of TMZ dose. Plots of (a) the average live
cell counts and (b) the mean proportion of live cells, out of the total cells (live and dead
cells), collected after 8 days of exposure to TMZ, as a function of the concentration of TMZ
exposure (in µM).
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(a) Tumor radius

(b) Net growth rate

Radius of tumor remaining after surgery
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Between 0 and 
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Between 2 and 

5 mm          
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10 mm         

>10 mm

(c) Tumor radius after surgery

Figure 4.6: Clinical data from GBM patients undergoing standard regimen (n =
21). Histograms of (a) tumor radius at detection and recurrent tumor radius (mm), (b) the
overall net growth rate (1/day) before treatment, and (c) a pie chart depicting the radius
of tumor remaining after surgery (mm).
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the relative methylation percentages at diagnosis and recurrence, i.e. times at which the

tumor population hits D1 and D2 as described in the Model section. Figure 4.7a shows

the type-1 (methylated proportion) and total population sizes in the tumor during single

sample path simulation of the model. We observe that the tumor recurs approximately

214 days after surgery is performed. Figure 4.7b shows the distribution of recurrence times

from a computational experiment with 100 Monte Carlo simulations; the median recurrence

time is 213.8 days. This is roughly consistent with clinical data reported in [102], where

the median recurrence time is 191 days.

Figures 4.7c and 4.7d, show the distribution of methylation percentages found at these

times. We observe that the average proportion of methylated (type-1) cells to total cells

at the time of recurrence is roughly the same as at the time of diagnosis. The distribution

of the change in methylation percentage between detection and recurrence is depicted in

Figure 4.7e. The slight reduction in overall methylation percentage suggests that selection

alone cannot account for the significant reduction in methylation observed in clinical studies,

described in section 4.1.2.

TMZ inhibition of maintenance methylation causes downward methylation

shift. We next investigated the hypothesis that an active role of TMZ on the cellular

methylation processes may be able to explain the methylation downshift in recurrent tu-

mors. In particular, we investigated the possibility that TMZ may decrease the amount

of time spent in the type-1 (methylated) state and increase time spent in type-2/3 states.

This may result from a decrease in either the de novo methylation probability ν or the

maintenance methylation probability ρ. Note that for this investigation, the parameters

ν, ρ will deviate from their baseline values only during TMZ treatment periods; thus we

denote the parameters during TMZ treatment as νz, ρz.

To investigate the effects of changing the de novo methylation probability, νz, in the

presence of TMZ, we first note that the lowest possible value of νz is 0, representing no

de novo methylation events. If we let νz = 0, then we observe a modest decrease in the

expected methylation percentage between detection and recurrence, changing by less than

7%. Figures 4.8a and 4.8b show the distribution of methylation percentages at the time of

recurrence and the distribution of change in methylation percentage between detection and

recurrence, respectively, when νz = 0. Thus, a significant drop in methylation percentage

after TMZ treatment cannot be attributed to an inhibitory impact on de novo methylation.

We next investigated the impact of decreasing the probability of maintenance methy-

lation, ρz, during chemotherapy. Figure 4.8c displays the type-1 frequency at the time of

recurrence when ρz = 0.5, reduced from the baseline value of ρ = 0.95, and figure 4.8d shows



65

0 100 200 300 400

Time (days)

10
1

10
3

10
5

10
7

N
u
m

b
e
r 

o
f 
c
e
lls

Total (
z
=0.95)

Type-1 (
z
=0.95)
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Figure 4.7: Simulation results – no TMZ impact on methylation rates. Plots of
(a) one sample path simulation of the model, (b) the distribution of recurrence times in a
computational experiment with 100 samples, (c) the distribution of methylation percentage
at the time of detection, (d) the distribution of methylation percentage at the time of
recurrence, and (e) the distribution of change in methylation percentage between detection
and recurrence. All parameters are set as described in section C.1.
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the change in methylation percentage between detection and recurrence. We observe there

is a much more significant decrease in methylation in this case, as we see in clinical obser-

vations, than in the case when TMZ has no impact on methylation rates (compare Figures

4.8d and 4.7e). Figure 4.8e displays the expected proportion of type-1 cells at recurrence,

as a function of ρz. For smaller values of ρz, the proportion of type-1 cells after treatment

decreases substantially from a mean methylation percentage of 0.762 at detection. Thus,

a role of TMZ in inhibiting maintenance methylation, but not de novo methylation, can

explain the downward shift in methylation that has been observed clinically. In Section C.2

we show that this claim is robust to variability in the model parameters.

Optimization of adjuvant TMZ schedule to minimize expected tumor size.

We next used the model to investigate the optimal number of TMZ doses during Phase

III, the adjuvant chemotherapy phase, to minimize the expected tumor size after 4 cycles

of treatment. In the standard treatment schedule, five TMZ doses of 150-200 mg/m2 are

administered daily at the beginning of each 28-day cycle. Let n denote the number of TMZ

doses in a single 28-day cycle. We vary n in order to determine the number of doses and dose

level that minimizes the number of total cells remaining after 4 adjuvant cycles. Let Z(n)

denote the TMZ concentration level per dose, in mg/m2, when n doses are administered

per cycle. Each dose concentration is set at Z(n) = 1000/n for varying values of n, where

0 < n ≤ 28, so that the cumulative TMZ dosage during one cycle does not exceed 1000

mg/m2. Based on our previous investigations, the maintenance methylation probability in

the presence of TMZ, ρz, is assumed to be 0.5.

Mean calculations for each cell-type, provided in Section C.3, are used to determine the

n that minimizes the expected tumor size after 4 cycles. Figures 4.9a and 4.9b show the

mean tumor size, number of fully methylated cells (type-1), and cells that are not fully

methylated (type-2 and type-3) when ρz = 0.5. In this case, the optimal number of doses

per cycle, i.e. the number that results in the smallest mean tumor population after 4 cycles,

is n = 6, with Z(6) = 166.67 mg/m2. This is close to the standard administered dose during

adjuvant chemotherapy, and we see a small difference in the expected tumor size when 5 vs

6 doses are administered. Hence, our model suggests that the standard dosing schedule is

a reasonable, though not optimal, protocol for highly methylated tumors at diagnosis.

We also used the model to investigate the optimal adjuvant TMZ schedule for tumors

with lower methylation percentages at diagnosis. To this end, we first identified the combi-

nation of birth rates (b1 = .0569 day−1 and b2 = 0.1276 day−1) that satisfied the net growth

rate constraint and led to 30% methylation at detection. Figures 4.9c and 4.9d display plots

of the mean number of total, fully methylated (type-1), and non-methylated (type-2 and
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(a) Type-1 frequency at recurrence. (b) Change in Type-1 frequency.

(c) Type-1 frequency at recurrence. (d) Change in Type-1 frequency.
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Figure 4.8: Simulation results – TMZ impacts methylation rates. Plots of (a) the
distribution of methylation percentage at the time of recurrence when νz = 0, (b) the
distribution of change in methylation percentage between detection and recurrence when
νz = 0, (c) the distribution of methylation percentage at the time of recurrence when
ρz = 0.5, (d) the distribution of change in methylation percentage between detection and
recurrence when ρz = 0.5, and (e) expected proportion of type-1 cells at recurrence under
the standard treatment schedule, as a function of the maintenance methylation probability,
ρz. Non-varying parameters are set to the baseline values described in Section C.1.
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(b) Cell type sizes (ρz = 0.5).
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Figure 4.9: Adjuvant TMZ optimization results. Plots of (a) the mean tumor popu-
lation size and (b) the mean total, type-1, and type-2/3 cell population size when ρz = 0.5,
and (c) the mean tumor population size and (b) the mean total, type-1, and type-2/3 cell
population size, when the expected methylation proportion at diagnosis is 0.3. The mean
cell populations are calculated after 4 adjuvant chemotherapy cycles, as a function of the
number n of doses in one cycle during P3. We use the standard set of parameters. In (a)
and (c), we also plot the optimal number of TMZ doses (n = 6 and n = 3, respectively)
and the corresponding tumor size in red.
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type-3) cells, as functions of the number of doses per cycle. We observe that the tumor

is dominated by non-methylated cells for all n, and the large population of TMZ-resistant

cells makes a large number of TMZ doses less effective. Additionally while n = 3 is the

optimal dose number in this case, it is not significantly more beneficial than no adjuvant

TMZ treatment. Such behavior is consistent with clinical observations; the study in [16]

found that unmethylated tumors treated with radiotherapy and the standard TMZ regi-

men had a median overall survival of 12.7 months, versus a median overall survival of 11.8

months for those receiving only radiotherapy. Thus, our model suggests that tumors with

low levels of methylation at diagnosis may be better served by alternative therapies, such as

O6-benzylguanine discussed in [103], that can be used in combination with TMZ, to counter

TMZ’s impact on the methylation process.

Note that a few studies have suggested that there may be a phenomenon of MGMT

depletion after cells are exposed to TMZ for an extended period of time, in an attempt to

explain observed differences in dose-dense TMZ treatment and the standard TMZ regimen

[104, 105]. If this phenomenon occurs, it could increase the benefit of a larger number of

small doses of TMZ or generally make TMZ more effective in tumors with low methylation

levels. However, other studies have not found any conclusive differences in dose-dense TMZ

regimens and the standard TMZ regimen for either MGMT methylated or unmethylated

tumors [106, 107]. Thus, due to inconclusive evidence of MGMT depletion after prolonged

exposure to TMZ, we have not incorporated such a mechanism in our model.

4.5 Discussion

In this chapter we investigated the interplay between MGMT promoter methylation and

TMZ during the treatment of glioblastoma. We developed a mathematical model inte-

grating a mechanistic description of MGMT promoter methylation/demethylation with the

evolutionary dynamics of GBM treatment response, contributing a unique perspective to

the existing body of literature modeling GBM treatment. In particular, we considered a

stochastic branching process model, consisting of distinct cellular subtypes with a methy-

lated, hemimethylated, and unmethylated characteristic CpG site within the MGMT pro-

moter. The model, parameterized using clinical and experimental data, incorporates stan-

dard GBM treatment methods. DNA methylation dynamics, inspired by the model in [1],

drive the conversion rates between cellular subtypes.

Several clinical studies tracking the methylation status of GBM at initial detection and

at recurrence, following standard treatment, have found that the majority of patients with
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methylated primary tumors present unmethylated recurrent tumors. Our model results in-

dicate that this clinically observed drop in methylation between diagnosis and recurrence

cannot be explained simply by evolutionary selection. Decreasing the rate of maintenance

methylation in the presence of TMZ results in a sizable reduction in expected methyla-

tion percentage at recurrence, consistent with clinical results. This suggests a hypothesis

that TMZ may actively inhibit maintenance methylation, driving the downward shift in

methylation between tumor diagnosis and recurrence.

The precise mechanism by which TMZ may contribute to MGMT demethylation is un-

clear, but experimental studies suggest this may involve the activation of the protein kinase

C (PKC) signaling pathway. In [108] it was demonstrated that alkylating drugs similar to

TMZ led to an increase in MGMT expression and in PKC activity. In [109], the authors

discovered that a number of PKC isoforms induce the attachment of a phosphoryl group

to DNMT1. Further testing on the specific isoform PKCζ showed that cells with a high

expression of both PKCζ and DNMT1 exhibited a significant reduction in methylation;

this was not the case in cells with a high expression of PKCζ or DNMT1 alone. This sug-

gested that the methylation reduction results from the phosphorylation of DNMT1, driven

by PKCζ; another study in [110] confirms that the phosphorylation of DNMT1 is associ-

ated with hypomethylation of gene promoters. Hence, experimental studies suggest that

TMZ may contribute to MGMT demethylation by activating the PKC signaling pathway

in GBM cells, leading to the phosphorylation of DNMT1, thereby inhibiting maintenance

methylation within the affected cells, as our model suggests.

After incorporating a TMZ-mediated inhibition in maintenance methylation, we also

used the model to find the optimal number of TMZ doses administered during adjuvant

chemotherapy. We varied the number of daily TMZ doses administered during each 28-

day cycle while maintaining the same cumulative dosage per cycle, to determine the dose

number that minimizes the mean tumor population after 4 adjuvant cycles. Using our

baseline parameter set, we determined an optimal TMZ dosing schedule of 6 daily doses

of 166.67 mg/m2, followed by 22 days off. The standard schedule of 5 daily doses/cycle is

nearly optimal, resulting in a slightly larger mean tumor size after 4 cycles.

Due to inter-patient variability in methylation percentage at diagnosis, we also inves-

tigated the optimal adjuvant chemotherapy schedule for a tumor with a low methylation

percentage at diagnosis. Receiving three larger doses of TMZ is optimal in this case, but it

does not provide a significant benefit over the absence of any adjuvant TMZ treatment. This

observation is consistent with clinical results comparing the benefit of both radiotherapy

and chemotherapy versus radiotherapy alone for unmethylated primary tumors. Therefore,
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when such tumors are detected, our model suggests that it may be more beneficial to ad-

minister, in combination with TMZ, a therapy that can counteract TMZ’s inhibition of

maintenance methylation, by stimulating MGMT methylation within the tumor.

A limitation of our model is that we do not incorporate the distant spread of GBM

cells or the diffuse nature of GBM tumors. We also assume that all hemimethylated and

unmethylated GBM cells behave with the same intrinsic growth rates and that MGMT

methylation status does not affect radiosensitivity. Despite these assumptions, the model

still provides useful insight regarding the relationship between MGMT methylation, TMZ,

and sensitivity to chemotherapy. In the future, we are interested in exploring the role

of the IDH1 mutation, an oncogenic mutation that changes the function of enzymes used

in a cell’s mitochondria, and investigating the hypothesis that the IDH1 mutation drives

increased methylation in gliomas, leading to TMZ sensitivity [111]. Additionally, we hope

to investigate the role of the stem cell marker CD133+ and its impact on the evolution of

TMZ resistance in GBM.
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Appendix A

Chapter 2 Appendix

A.1 Details for non-spatial Simpson’s Index

A.1.1 Preliminary definitions and results

To characterize the distributions of the Simpson’s Index, we introduce two definitions. Let

L1, L2, . . . , Ln be independent, identically distributed random variables with distribution

F . Recall the definition of a sized-biased pick from Definition 1 in Section 2.3.2. Then we

define a size-biased permutation as follows.

Definition 2. We call
(
L[1], . . . L[n]

)
a size-biased permutation (s.b.p) of the sequence (Li)

if L[1] is a size-biased pick of the sequence, and for 2 ≤ k ≤ n,

P
(
L[k] = Lj

∣∣ L[1], . . . , L[k−1];L1, . . . Ln
)

=
Lj 1(Lj 6=L[i],∀1≤i<k)

L1 + . . .+ Ln −
(
L[1] + . . .+ L[k−1]

) .
The following results will be useful.

Proposition A.1.1. (Proposition 2 in [112]) For 1 ≤ k ≤ n, let νk be the density of Sk,

the sum of k i.i.d random variables with distribution F . Then

P
(
X[1] ∈ dx1, . . . , X[k] ∈ dxk

)
=

n!

(n− k)!

 k∏
j=1

xjν1(xj)dxj

 . . .

. . .

∫ ∞
0

νn−k(s)

k∏
j=1

(xj + . . .+ xk + s)−1 ds. (A.1)
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Corollary A.1.2. (Corollary 3 in [112]) Let Tn−k = X[k+1] + . . .+X[n] denote the sum of

the last n− k terms in an i.i.d s.b.p of length n. Then for k = 1, . . . , n− 1,

P (Tn−k ∈ ds | Tn−k+1 = t) = (n− k + 1)
t− s
t

ν1(t− s) νn−k(s)

νn−k+1(t)
ds. (A.2)

A.1.2 Conditional expectation

Recalling that type 1 clones have a linear radial growth rate, Simpson’s index (2.4) can be

rewritten explicitly

R(t) =

Nt∑
i=1

[
(1− ti/t)d∑Nt
j=1 (1− tj/t)d

]2

, (A.3)

where {ti}Nti=1 are the points of a Poisson process with constant intensity Nu1st. In partic-

ular, we note that conditioned on Nt, the ti are i.i.d and

(t1/t|Nt) ∼ U(0, 1).

We now define Xi := (1− ti/t)d+1 and let

T :=

Nt∑
i=1

Xi, (A.4)

which allows us to rewrite (A.3) as

R(t) =

Nt∑
i=1

(
Xi

T

)2

. (A.5)

Note that conditioned on Nt, the Xi are i.i.d with

(X1|Nt) ∼ Beta
(

1

d
, 1

)
.

To see this, note first that by symmetry Xi ∼ (ti/t)
d; using characteristic functions, it is

then easy to verify that for X ∼ Beta (α, 1) and Y ∼ U(0, 1), we have X ∼ Y n if and

only if α = 1/n. Using the above notation and recalling the notion of a size-biased pick in
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Definition 1, we condition (A.5) on Nt to find

(R(t) | Nt = n) =
n∑
i=1

Xi

T
P
(
X[1] = Xi|X1, . . . , Xn

)
=E

(
X[1]

T

∣∣∣∣ X1, . . . , Xn

)
. (A.6)

To compute the conditional expectation of Simpson’s IndexR(t), we take the expectation

of (A.6) to find

E (R(t) | Nt = n) = E
(
X[1]

T

)
=

∫ ∞
0

∫ ∞
0

( r
x

)
P
(
X[1] ∈ dr, T ∈ dx

)
. (A.7)

Setting k = 1, it follows now from Corollary A.1.2

E (R(t) | Nt = n) =

∫ ∞
0

∫ ∞
0

( r
x

)
P (Tn−1 ∈ d(x− r), T ∈ dx)

=

∫ ∞
0

∫ ∞
0

( r
x

)
P(T ∈ dx)P (Tn−1 ∈ d(x− r) | T = x)

=n

∫ ∞
0

∫ ∞
0

( r
x

)2
ν1(r) νn−1(x− r) dxdr. (A.8)

Note that the support of ν1 is over [0, 1], and the support of νn−1 is over [0, n]. Now, by

definition, ν1 is the pdf of Beta
(

1
d , 1
)
, i.e.

ν1(x) =
1

d
x

1
d
−1.

On the other hand, νn−1 is the density of the sum of n−1 i.i.d. Beta(1
d , 1) random variables,

i.e.

νn−1(x) =
(
ν
∗(n−1)
1

)
(x).

For positive integer n let Sn = B1 + . . . + Bn where Bi are independent Beta(1
d , 1)

random variables. Finally, from (A.8) we find

E[R(t)|Nt = n] = nE

[(
S1

Sn

)2
]
, (A.9)

where Sn := B1 + . . .+Bn, and Bi are independent Beta(1
d , 1) random variables.
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A.1.3 Upper bound for variance

We derive an upper bound for the variance of the conditional Simpson’s Index as follows:

[E (R(t) | Nt = n)]2 ≤E
(
R2(t)

∣∣ Nt = n
)

= E

([
E
(
X[1]

T

∣∣∣∣ X1, . . . , Xn

)]2
∣∣∣∣∣ Nt = n

)

≤E

(
E

([
X[1]

T

]2
∣∣∣∣∣ X1, . . . , Xn

) ∣∣∣∣∣ Nt = n

)

=E

([
X[1]

T

]2
∣∣∣∣∣ Nt = n

)

=n

∫ ∞
0

∫ ∞
0

( r
x

)3
ν1(r) νn−1(x− r) dx dr, (A.10)

where the second to last equality follows from the fact that the sub-sigma algebra σ(Nt = n)

is coarser than σ(X1, . . . , Xn).

A.1.4 Proof of Proposition 2.2.3

Proof. Let Yn = (R(t)|N(t) = n), and note that by definition Yn ≥ 0. Thus it suffices to

show that E[Yn]→ 0 as n→∞. Note that

E[Yn] =
1

n
E

[(
S1

Sn/n

)2
]
,

and by the law of large numbers S1/(Sn/n) → S1/E[B1] as n → ∞. Thus if we establish

that

sup
n<∞

E

[(
S1

Sn/n

)3
]
<∞, (A.11)

then by uniform integrability we will have E[(S1/(Sn/n))2]→ 1, and thus E[Yn]→ 0.

In order to establish (A.11), we define S2,n = B2 + . . .+Bn and for ε > 0 the event

An = {S2,n > (1− ε)(n− 1)E[B1]}.
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We then have that

E

[(
S1

Sn/n

)3
]

= n3E

[(
S1

S1 + S2,n

)3
]

= n3E

[(
S1

S1 + S2,n

)3

;An

]
+ n3E

[(
S1

S1 + S2,n

)3

;Acn

]
≤ O(1) + n3P(Acn).

From Azuma-Hoeffding inequality we know that there exists a k independent of n such that

P(Acn) ≤ e−kn, thus establishing (A.11). �

A.1.5 Monte Carlo Simulations

We evaluate the conditional expectation of Simpson’s Index for fixed time t using Monte

Carlo simulations. Based on the representation in (2.5), we first generate M independent

copies of the vector (S1, Sn) denoted by {(S(i)
1 , S

(i)
n )}Mi=1, and form the estimator

µ̂(n,M) =
n

M

M∑
i=1

(
S

(i)
1

S
(i)
n

)2

,

which satisfies E[µ̂(n,M)] = E[R(t)|Nt = n] and V ar[µ̂(n,M)] = O(1/M). If we simulate

M1 copies of Nt, denoted by {N (i)
t }

M1
i=1 and for each realization Nt = n we form the estimator

µ̂(n,M2), then we have an unbiased estimator of E[R(t)] via

R̂(M1,M2) =
1

M1

M1∑
j=1

∞∑
n=0

1{N(j)
t =n}µ̂(n,M2),

since N
(j)
t is independent of µ̂(n,M2). Note that simulating the mesoscopic model M times

and averaging R(t) over those simulations is equivalent to using the estimator R̂(M, 1).

A.2 I1 Calculations

Recall from Section 2.3.1 that I(r, t) is approximated by (2.8). It is therefore necessary

to calculate P(Dab ∩ E1) and P(Dab ∩ E2). Also recall that Vx(t0) is the space-time cone

centered at x with radius cdt0 at time 0 and radius 0 at time t0. For two points a and b in



90

our spatial domain we will be interested in the sets

D(r, t0) = Va(t0)∆Vb(t0)

M(r, t0) = Va(t0) ∩ Vb(t0),

where r = ‖a − b‖. We suppress the dependence on a and b in D and M to emphasize

that the volume of these sets depends only on the distance ‖a − b‖. Denote the Lebesgue

measure of a set A ∈ Rd × [0,∞) by |A|. In order to calculate I(r, t) it will be necessary to

compute |D(r, t0)| and |M(r, t0)|. Note that

|D(r, t0)| = 2 (|Va(t0)| − |M(r, t0)|) . (A.12)

In the next two subsections we compute I1 in one and two dimensions. For ease of notation

we define µ = u1s. For real number a, define a+ = max{a, 0}.

A.2.1 I1 in 1 dimension

We will first calculate the volumes |Va(t0)|, |M(r, t0)|, and from (A.12), |D(r, t0)|. In one

dimension these calculations are simple: |Vx(t0)| = t20cd and |M(r, t0)| = [(2t0cd−r)+]2

4cd
, so we

have that:

D(r, t0) = 2t20cd −
2[(2t0cd − r)+]2

4cd
.

Note that if t0 < r/(2cd) then the only way sites a and b are the same at time t0 is if there

are zero mutations in Va(t0) ∪ Vb(t0), i.e.,

I(r, t0) = exp (−µ|Va(t0) ∪ Vb(t0)|) = exp
(
−2µt20cd

)
.

Thus assume for the remainder of the subsection that t0 > r/(2cd), in which case

|Va(t0) ∪ Vb(t0)| = 2t20cd −
(2t0cd − r)2

4cd
.

And since the mutations arise according to a Poisson process with parameter µ,

P(Ek) =
(µ|Va(t0) ∪ Vb(t0)|)ke−µ|Va(t0)∪Vb(t0)|

k!
.

From (2.8) it remains to compute P (Dab|E1) and P (Dab|E2). Note that if event E1
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occurs, then Dab can only occur if the single mutation occurs in the set D(r, t0), and

therefore

P(Dab|E1) =
|D(r, t0)|

|Va(t0) ∪ Vb(t0)|
= 1− (2t0cd − r)2

8t20c
2
d − (2t0cd − r)2

.

position 

tim
e 

a b 
t0 

 R4 

 R2 

 R1 

 R3 

 R5 

R6 R7 

Figure A.1: Division of Va(t0) ∪ Vb(t0) into seven regions. This division is used when
calculating P(Dab|E2).

In order to calculate P(Dab|E2), we must split Va(t0) ∪ Vb(t0) into 7 different regions

because the probabilities will differ, depending on the location of the first mutation (as

shown in Figure A.1). By conditioning on E2 we assume that two mutations occur in the

space-time region Va(t0) ∪ Vb(t0). Denote the space-time coordinates of the first mutation

by (x1, t1).

If (x1, t1) occurs outside of M(r, t0) but between a and b (i.e. in regions R6 or R7),

then the cells will definitely be different, regardless of where the second mutation occurs.

However, if the first mutation occurs in Ri, 1 ≤ i ≤ 5, then the location of the second

mutation will determine whether the sampled cells are different. Thus each region Ri,

1 ≤ i ≤ 5, will have an associated region Zi that will be used to calculate P(Dab|E2). If

the first mutation occurs at the point (x1, t1) ∈ Ri, then the shape and size of Zi(x1, t1)

depends on i and (x1, t1).

First, we will consider the regions inside M(r, t0), which are R1, R2, and R3. For i =
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1, 2, 3, Zi(x1, t1) represents the region in which the occurrence of a second mutation would

make the sampled cells different at time t0, i.e. the two clones will meet between a and b

and then each will spread to one of the cells.

b

t1

a

1Z

x1

a b 

t1 

x1 

Z1 

Figure A.2: Associated region Z1(x1, t1). The region in which the occurrence of a second
mutation would make the cells located at a and b different, given that the first mutation
occurred in R1.

If (x1, t1) ∈ R1, then (x1, t1) is in M(r, t0) and between a and b. In this case, Z1(x1, t1)

consists of two triangles, whose upper vertices occur at positions a and b (see Figure A.2).

The base of the triangle on the left is 2(x1 − a), and the base of the triangle on the right is

2(b− x1), so the total area of Z1(x1, t1) is c−1
d [(x1 − a)2 + (b− x1)2].

If (x1, t1) ∈ R2, then (x1, t1) is in M(r, t0) but to the left of a. In this case, Z2(x1, t1)

is a trapezoidal region. This trapezoidal region can be constructed by taking the triangle

whose upper vertex is at position b and subtracting the smaller triangle with upper vertex

at position a (see Figure A.3). The base of the larger triangle is 2(b− x1), and the base of

the smaller triangle is 2(a− x1). Hence, the area of Z2(x1, t1) is c−1
d [(b− x1)2 − (a− x1)2].

Z3(x1, t1) is constructed analogously to Z2(x1, t1).

Z4(x1, t1) and Z5(x1, t1) have a slightly different meaning. Given that the first mutation

occurs in region 4 or 5, respectively, Z4(x1, t1) and Z5(x1, t1) each represent the region

in which the occurrence of a second mutation would make the sampled cells genetically
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t1

a b

1x

2Z

a b 

t1 

x1 

Z2 

Figure A.3: Associated region Z2(x1, t1). The region in which the occurrence of a second
mutation would make the cells located at a and b different, given that the first mutation
occurred in R2.

1

a b

x1

t

4Z

a b 

t1 

Z4 

x1 

Figure A.4: Associated region Z4(x1, t1). The region in which the occurrence of a second
mutation would make the cells located at a and b the same, given that the first mutation
occurred in R4.
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identical.

If (x1, t1) ∈ R4, then (x1, t1) is outside of M(r, t0) and to the left of a. In order for a and

b to be the same in this case, the second clone must meet the first clone before it reaches

a, and the second clone must spread to b before t0. Hence, Z4(x1, t1) is a triangle inside

M(r, t0) (see Figure A.4). In the next paragraph we will explain how the area of Z4(x1, t1)

is calculated.

The distance between the right vertex of Z4(x1, t1) and a is equal to the distance between

a and x1, so the position of that vertex is a+ (a− x1) = 2a− x1. Let V ′b be the portion of

Vb that falls between the t-values t1 and t0. Then we can find the position of the left vertex

of Z4(x1, t1) by considering it as the left corner of V ′b . The height of V ′b is t0− t1, so its base

is 2cd(t0 − t1). Then the left vertex of V ′b , and consequently the left vertex of Z4(x1, t1) is

b− cd(t0− t1). Hence, the base of Z4(x1, t1) has length 2a− x1− b+ cd(t0− t1). Therefore,

the area of Z4(x1, t1) is:
(2a− x1 − b+ cd(t0 − t1))2

4cd
.

Analogously, the area of Z5(x1, t1) is:

(a− 2b+ x1 + cd(t0 − t1))2

4cd
.

In summary, we have the following areas:

If (x1, t1) ∈ R1, then |Z1(x1, t1)| = c−1
d [(x1 − a)2 + (b− x1)2].

If (x1, t1) ∈ R2, then |Z2(x1, t1)| = c−1
d [(b− x1)2 − (a− x1)2].

If (x1, t1) ∈ R3, then |Z3(x1, t1)| = c−1
d [(x1 − a)2 − (x1 − b)2].

If (x1, t1) ∈ R4, then |Z4(x1, t1)| = (2a− x1 − b+ cd(t0 − t1))2

4cd
.

If (x1, t1) ∈ R5, then |Z5(x1, t1)| = (a+ cd(t0 − t1)− 2b+ x1)2

4cd
.
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Let Xn be the position of the nth mutation. Then:

P(Dab|E2) =

3∑
i=1

P(X2 ∈ Zi|X1 ∈ Ri)P(X1 ∈ Ri)

+
5∑
i=4

P(X2 /∈ Zi|X1 ∈ Ri)P(X1 ∈ Ri) +
7∑
i=6

P(X1 ∈ Ri).

Thus to calculate P(Dab) it remains to calculate P(X2 ∈ Zi|X1 ∈ Ri) and P(X1 ∈ Ri) for

i ∈ {1, . . . , 5}.

t

a b

A

x1

1

1

a b 

t1 

x1 

A1 

Figure A.5: Affected region A1(x1, t1). The region inside Va ∪ Vb that is affected by a
mutation at (x, t) ∈ R1, and thus is not susceptible to subsequent mutation.

Let Ai(x, t) be the region inside Va ∪ Vb that is affected by a mutation at (x, t) ∈ Ri.
Since type-1 mutations must occur in cells that have not yet mutated, the second type-1

mutation cannot occur inside Ai(x, t).

The area of Ai(x, t) depends on whether (x,t) is in M(r, t0), Va \ Vb, or Vb \ Va. The

following are the areas |Ai(x, t)|, which will be used to calculate P(X2 ∈ Zi|X1 ∈ Ri):
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b

x1

t

a

1

A4

a b 

t1 

x1 

A4 

Figure A.6: Affected region A4(x1, t1). The region inside Va ∪ Vb that is affected by a
mutation at (x, t) ∈ R4, and thus is not susceptible to subsequent mutation.

|A1(x, t)| = |A2(x, t)| = |A3(x, t)| =

cd(t0 − t+
r

2cd
)2 − 2r2 + (b− x+ cd(t0 − t))2 + (x− a+ cd(t0 − t))2

4cd

|A4(x, t)| = |A6(x, t)| = cd(t0 − t)2 − (x− a+ cd(t0 − t))2 + (a− x+ cd(t0 − t))2

4cd

|A5(x, t)| = |A7(x, t)| = cd(t0 − t)2 − (x− b+ cd(t0 − t))2 + (b− x+ cd(t0 − t))2

4cd
.

We will explain how |A4(x, t)| is calculated and leave out the calculations for |A1(x, t)|
and |A5(x, t)|, which can be done similarly.

|A4(x, t)| is calculated by taking the area of the truncated triangle V ′a (the portion of

Va that lies between times t and t0) and then subtracting the area of two smaller triangles

that are not in A4 (see Figure A.6). The bases of these triangles lie along line t, between x

and the two lower vertices of V ′a. The height of V ′a is t0− t, so its base is 2cd(t0− t). Hence

the lower left vertex of V ′a is at position a− cd(t0− t), and the lower right vertex of V ′a is at

position a+ cd(t0 − t). Therefore the base of the left small triangle is x− a+ cd(t0 − t), so

its area is
(x− a+ cd(t0 − t))2

4cd
. The base of the right small triangle is a + cd(t0 − t) − x,
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so its area is
(a− x+ cd(t0 − t))2

4cd
. Since |V ′a| = cd(t0− t)2, we get the area listed above for

A4 and A6.

If X1 = (x, t) ∈ Ri, then P(X2 ∈ Zi) =
|Zi(x, t)|

|Va ∪ Vb \Ai(x, t)|
. We can integrate this

quantity over the places where the first mutation could have occurred, which is all of Ri,

and then divide by |Ri| to get:

P(X2 ∈ Zi|X1 ∈ Ri) =
1

|Ri|

∫
Ri

|Zi(x, t)|
|Va ∪ Vb \Ai(x, t)|

dxdt.

Now it remains to calculate P(X1 ∈ Ri). Since mutations arrive according to a Poisson

process, we have P(X1 ∈ Ri) = µ(|Ri|)e−µ(|Ri|), and it suffices to know the following areas:

|R1| =
(2t0cd − r)2

4cd
− (a− b+ cdt0)2

2cd

|R2| = |R3| =
(a− b+ cdt0)2

4cd

|R4| = |R5| =
cdt

2
0

2
− (a− b+ cdt0)2

4cd

|R6| = |R7| =
r2

4cd
.

The expression for |R2| listed above is calculated by considering R2 as a triangle inside

Vb. The height of Vb is t0, so the left vertex is at position b− cdt0. Then the base of R2 is

a− b+ cdt0, which means its area is
(a− b+ cdt0)2

4cd
.

Then we can use |R2| to calculate |R1| and |R6|:

|R1| = |M(r, t0)| − 2|R2|, and |R4| = 1
2 |Va| − |R2|. And the height of R6 is t0 minus the

height of R2, so |R6| simplifies to
r2

4cd
.

All of the equations above can be used to calculate P(Dab):

P(Dab) ≈P(Dab|E1)P(E1) + P(E2)
( 3∑
i=1

P(X2 ∈ Zi|X1 ∈ Ri)P(X1 ∈ Ri)

+

5∑
i=4

P(X2 /∈ Zi|X1 ∈ Ri)P(X1 ∈ Ri) +

7∑
i=6

P(X1 ∈ Ri)
)
.
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A.2.2 I1 in 2 dimensions

Similary to the one dimensional case, we will first calculate |Va(t0)| and |M(r, t0)|. In the

two dimensional setting this is slightly more difficult. First we know that |Va(t0)| = πt30c
2
d/3,

so it remains to find |M(r, t0)|.

θ 
x!

r/2!

cd(t-s)!

Figure A.7: 2D cross-sectional diagram. This depicts the overlap of space-time cones,
Va and Vb, at time s.

Observe that if r > 2cdt0 then M(r, t0) = ∅, so we only need to calculate |M(r, t0)|
in the case r < 2cdt0. If we consider the overlap of space-time cones at the fixed time

s ∈ [0, t0 − r/(2cd)] then looking at Figure A.7 it can be seen that half the area of the

overlap of their cones at this specific time is given by taking the difference between the area

of the circular section with radius cd(t − s) and angle θ and twice the area of the triangle

with side lengths x, r/2, cd(t0 − s). The area of the circular section is given by

c2
d(t0 − s)2 cos−1

(
r

2cd(t0 − s)

)
,

and twice the area of the triangle is given by

r

2

√
c2
d(t0 − s)2 − r2/4.

Thus the area of overlap between the two cones at time s is given by

a(s) = 2

(
c2
d(t0 − s)2 cos−1

(
r

2cd(t0 − s)

)
− r

2

√
c2
d(t0 − s)2 − r2/4

)
.
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The space-time volume of M(r, t) is therefore given by

|M(r, t0)| =
∫ t0−r/2cd

0
a(s)ds

=2

∫ t0−r/2cd

0

(
c2
d(t0 − s)2 cos−1

(
r

2cd(t0 − s)

)
− r

2

√
c2
d(t0 − s)2 − r2/4

)
ds

=
2

cd

∫ cdt0

r/2
y2 cos−1

(
r

2y

)
dy − r

cd

∫ cdt0

r/2

√
y2 − r2/4 dy.

Applying integration by parts to the first integral we see that

2

cd

∫ cdt

r/2
y2 cos−1

(
r

2y

)
dy =

2c2
dt

3
0

3
cos−1

(
r

2cdt0

)
− r

3cd

∫ cdt0

r/2

y2√
y2 − r2/4

dy.

Thus we have that

|M(r, t0)| =
2c2
dt

3
0

3
cos−1

(
r

2cdt0

)
− r

6cd

∫ cdt0

r/2

16y2 − 3r2√
4y2 − r2

dy

=
2c2
dt

3
0

3
cos−1

(
r

2cdt0

)
− rt0

3

√
4c2
dt

2
0 − r2 − r3

12cd
log

 r

2cdt0 +
√

4c2
dt

2
0 − r2

 ,

which we can combine with (A.12) to see that for r < 2cdt0

|D(r, t)| =
2c2
dt

3
0

3

(
π − 2 cos−1

(
r

2cdt0

))
+

2rt0
3

√
4c2
dt

2
0 − r2

+
r3

6cd
log

 r

2cdt0 +
√

4c2
dt

2
0 − r2

 .

With these calculations we see that

|Va(t0) ∪ Vb(t0)| =
2c2
dt

3
0

3

(
π − cos−1

(
r

2cdt0

))
+
rt0
3

√
4c2
dt

2
0 − r2

+
r3

12cd
log

 r

2cdt0 +
√

4c2
dt

2
0 − r2

 .

We can now explicitly calculate P(Dab|E1) = |D(r,t0)|
|Va(t0)∪Vb(t0)| . The remainder of this section

will deal with the calculation of P(Dab|E2).

The approach here will be slightly different from the one-dimensional case because it
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is easier to look at the two-dimensional cross sections of |Va(t0) ∪ Vb(t0)|, rather than the

entire three-dimensional space-time cones. Therefore, we will split the cross sections into

just two regions, and then when calculating the relevant volumes involved in I2, we will

split the regions into multiple cases. In the end, the process is similar, but the setup will be

simpler, and then the volume calculations will be more complicated in the two-dimensional

setting.

a

 

b

 

2

m
1

m

Figure A.8: 2D clone interaction. When two mutation circles collide, they will continue
to expand along the line perpendicular to the line segment joining the two mutation origins.

If two events occur in Va(t0) ∪ Vb(t0), then the probabilities will differ, depending on

whether the first event occurs in M(r, t0) or in D(r, t0). We will assume that if two mutation

circles collide, then we can draw a line through that point, perpendicular to the line segment

connecting the two mutations (as show in Figure A.8). The circles will not extend beyond

that line but will continue to expand in all other directions.

If the first event occurs in M(r, t0) at position (x1, y1) at time t1, then let ra be the

distance between (x1, y1) and a, and let rb be the distance between (x1, y1) and b. Then let

Ca(t1) be the cone centered at a that extends to the edge of the expanding clone, so Ca(t1)

will have radius ra at time t1 and radius 0 at time (t1 + ra
cd

). Similarly, Cb(t1) will be the

cone centered at b with radius rb at time t1 and radius 0 at time (t1 + rb
cd

). Cross-sections

of these cones are shown in Figure A.9.

If the second mutation occurs outside of Ca(t1) ∪ Cb(t1), then the first clone will reach

both a and b before interacting with the second clone. If the second mutation occurs in

Ca(t1) \ Cb(t1), then the line dividing the two clones will separate a from b, so the second
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ra rb

a ba b 

rb ra 

Figure A.9: Associated region, given an initial mutation in M(r, t0). Displayed is the
cross-section of the cones Va(t0), Vb(t0), Ca(t1), and Cb(t1) at the moment when a mutation
occurs in the intersection, M(r, t0). If a second mutation occurs in the shaded mutation,
then the cells located at a and b will be different.

clone will affect a, and the first will affect b, making the two cells different. Similarly, if the

second mutation occurs in Cb(t1) \ Ca(t1), then the first clone will affect a, and the second

will affect b.

However if the second mutation occurs in Cb(t1) ∩ Ca(t1), then both a and b will be on

the same side of the line dividing the mutation circles, so the second clone will affect both

a and b. Therefore, the two cells will only be different if the second mutation occurs in

Cb(t1)4Ca(t1).

a b

  ra

ba 

ra 

Figure A.10: Associated region, given an initial mutation in D(r, t0). Displayed is
the cross-section of the cones Va(t0), Vb(t0), and Ca(t1) at the moment when a mutation
occurs in D(r, t0). If a second mutation occurs in the shaded mutation, then the cells located
at a and b will be the same.
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If the first mutation occurs in D(r, t0), then its position (x1, y1) is closer to either a or

b. Without loss of generality, say that (x1, y1) is closer to a. Again let ra be the distance

between (x1, y1) and a, and let Ca(t1) be the cone centered at a with radius ra at time t1

and radius 0 at time (t1 + ra
cd

). A cross-section of this cone is shown in Figure A.10.

If the second mutation occurs outside of Ca(t1), then the first mutation will reach a

before interacting with the second mutation. Since the first mutation is outside Vb(t0), it

cannot reach b by time t0, so the sampled cells will be different.

If the second mutation occurs inside Ca(t) but outside M(r, t), then the two mutations

will interact before the first mutation reaches a, meaning that the second mutation will

affect a. However, the second mutation will not spread to b, since it does not start in Vb(t0).

Hence, the cells located at a and b will only be the same if the second mutation occurs in

Ca(t1) ∩M(r, t0).

In summary, we have:

P(Dab|E2) =P(X2 ∈ Cb(t1)4Ca(t1)|X1 ∈M(r, t0))P(X1 ∈M(r, t0)) (A.13)

+ P(X2 /∈ Ca(t1) ∩M(r, t0)|X1 ∈ Va(t1) \ Vb(t1))P(X1 ∈ Va(t1) \ Vb(t1))

+ P(X2 /∈ Cb(t1) ∩M(r, t0)|X1 ∈ Vb(t1) \ Va(t1))P(X1 ∈ Vb(t1) \ Va(t1)).

Since the mutations arise according to a Poisson process, we can use the volume calcu-

lations for M(r, t0) and Va(t1) \ Vb(t1) to calculate the following probabilities:

P(X1 ∈M(r, t0)) = µ(|M(r, t0)|)e−µ(|M(r,t0)|)

P(X1 ∈ Va(t1) \ Vb(t1)) = P(X1 ∈ Vb(t1) \ Va(t1)) = µ(|Va(t1) \ Vb(t1)|)e−µ(|Va(t1)\Vb(t1)|)

Similarly to the 1-D case:

P(X2 ∈ Cb(t)4Ca(t)|X1 ∈M(r, t0)) (A.14)

=
1

|M(r, t0)|

∫
M(r,t0)

|Cb(t)4Ca(t)|
|Va(t0) ∪ Vb(t0) \A(x, y, t)|

dxdydt,

where A(x, y, t) is the cone-shaped region inside Va(t0)∪Vb(t0) that is affected by a mutation

at (x, y, t).
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In addition:

P(X2 ∈ Ca(t1) ∩M(r, t0)|X1 ∈ Va(t0) \ Vb(t0)) (A.15)

=
1

|Va(t0) \ Vb(t0)|

∫
Va(t0)\Vb(t0)

|Ca(t) ∩M(r, t0)|
|Va(t0) ∪ Vb(t0) \A(x, y, t)|

dxdydt.

We next develop formulas to compute the volumes in the previous two displays. Note

that

|Cb(t1)4Ca(t1)| = |Cb(t1)|+ |Ca(t1)| − 2|Cb(t1) ∩ Ca(t1)|,

and that |Ca(t1)| = π

3
r2
a

(
t1 +

ra
cd

)
, since Ca(t1) is a cone with radius ra and height t1 + ra

cd
.

Similarly, |Cb(t1)| = π

3
r2
b

(
t1 +

rb
cd

)
.

We next compute |Ca(t1) ∩ Ca(t1)|. A cross-section of Ca(t1) has radius ra − (s− t1)cd

at time s, and a cross-section of Cb(t1) has radius rb − (s − t1)cd at time s. Ca(t1) and

Cb(t1) will have a nonempty intersection until ra− (s− t1)cd + rb− (s− t1)cd = r, i.e. when

s =
ra + rb − r

2cd
+ t1.

If we denote the area of intersection of the cross-sections of Ca(t1) and Cb(t1) at time s

by I(s), then

|Cb(t1) ∩ Ca(t1)| =
∫ ra+rb−r

2cd
+t1

t1

I(s)ds. (A.16)

I(s) is calculated by summing the areas of the two circular segments, each of which can

be calculated by subtracting the area of a triangle from the area of a wedge of the circle,

I(s) = R2
a(s) cos−1

(
da(s)

Ra(s)

)
− da(s)

√
R2
a(s)− d2

a(s)

+ R2
b(s) cos−1

(
db(s)

Rb(s)

)
− db(s)

√
R2
b(s)− d2

b(s),

where Ra(s) = ra − (s − t1)cd, Rb(s) = rb − (s − t1)cd, da(s) =
r2 −R2

b(s) +R2
a(s)

2r
, and

db =
r2 +R2

b −R2
a

2r
.

In order to compute the quantity |Ca(t) ∩M(r, t)| used in equation (A.15), we need to
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first determine when the cross sections of Ca(t) and Vb(t) have nonempty intersection. This

occurs when ra − (s− t1)cd + cd(t0 − s) > r, i.e. when s <
1

2

(
ra − r
cd

+ t0 + t1

)
. Hence:

|Ca(t) ∩M(r, t)| =
∫ 1

2
( ra−r
cd

+t0+t1)

t1

Î(s)ds, (A.17)

where

Î(s) = R2
a(s) cos−1

(
d̂a(s)

Ra(s)

)
− d̂a(s)

√
R2
a(s)− d̂a

2
(s)

+ R̂b
2
(s) cos−1

(
d̂b(s)

R̂b(s)

)
− d̂b(s)

√
R̂b

2
(s)− d̂b

2
(s).

Ra is defined above, R̂b(s) = cd(t0 − s), d̂a(s) =
r2 − R̂b(s)2 +R2

a(s)

2r
,

and d̂b(s) =
r2 + R̂b

2
(s)−R2

a(s)

2r
.

We finally compute |(Va(t0)∪ Vb(t0)) \A(x, y, t)|. In pursuit of this, we define U1 as the

region that is affected by the mutation at (x1, y1, t1), i.e.,

U1 = {(x, y, s) : |(x, y)− (x1, y1)| ≤ cd(s− t1), t1 ≤ s ≤ t0}.

Let u1(s) be the cross-section of U1 at time s, i.e.,

u1(s) = {(x, y) : |(x, y)− (x1, y1)| ≤ cd(s− t1)}.

Observe that A(x1, y1, t1) is the region inside Va(t0) ∪ Vb(t0) that is affected by a mutation

at (x1, y1, t1), so A(x1, y1, t1) = U1 ∩ (Va(t0) ∪ Vb(t0)). This implies that

|(Va(t0) ∪ Vb(t0)) \A(x1, y1, t1)| = |Va(t0) ∪ Vb(t0)| − |A(x1, y1, t1)|.

Then it remains to find |A(x1, y1, t1)|. This will be accomplished by looking at the

cross-sections of this set for each fixed time s. Define va(s) and vb(s) as the cross sections
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of Va and Vb, respectively, at time s, i.e.,

va(s) = {(x, y) : |(x, y)− a| ≤ cd(t0 − s)}

vb(s) = {(x, y) : |(x, y)− b| ≤ cd(t0 − s)}.

If (x1, y1, t1) ∈ Va(t0)\Vb(t0), then U1 will not intersect Vb(t0), so in this case A(x1, y1, t1)

= U1 ∩ Va(t0). In order to compute the volume of this set we look at the area of the cross-

section for each fixed time point. We can divide the interval [0, t0] intp three distinct

intervals, which determine the shape of the area of this cross-section. In the first time

interval, the cross-section of U1 is contained in the cross-section of Va, so we determine the

time interval as shown below,

u1(s) ∩ va(s) = u1(s)

⇐⇒ u1(s) ⊂ va(s)

⇐⇒ ra + cd(s− t1) < cd(t0 − s)

⇐⇒ s <
t1 + t0

2
− ra

2cd
.

In the final interval, the cross-section of Va is contained in the cross-section of U1, so we

have

u1(s) ∩ va(s) = va(s)

⇐⇒ va(s) ⊂ u1(s)

⇐⇒ ra + cd(t0 − s) < cd(s− t1)

⇐⇒ s >
t1 + t0

2
+

ra
2cd

.

When
t1 + t0

2
− ra

2cd
< s <

t1 + t0
2

+
ra
2cd

, we have

|u1(s) ∩ va(s)| = Ru2(s) cos−1

(
du(s)

Ru(s)

)
− du(s)

√
R2
u(s)− d2

u(s) + R̂2
a(s) cos−1

(
d̂a(s)

R̂a(s)

)

− d̂a(s)
√
R̂2
a(s)− d̂2

a(s),
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where Ru(s) = cd(s− t1), R̂a(s) = cd(t0 − s), du(s) =
r2
a − R̂2

a(s) +R2
u(s)

2ra
,

and d̂a(s) =
r2
a + R̂2

a(s)−R2
u(s)

2ra
.

Thus for (x1, y1, t1) ∈ Va(t0) \ Vb(t0),

|A(x1, y1, t1)| (A.18)

=

∫ t1+t0
2
− ra

2cd

t1

|u1(s)|ds+

∫ t1+t0
2

+ ra
2cd

t1+t0
2
− ra

2cd

|u1(s) ∩ va(s)|ds+

∫ t0

t1+t0
2

+ ra
2cd

|va(s)|ds.

|A(x1, y1, t1)| is computed analogously when (x1, y1, t1) ∈ Vb(t0) \ Va(t0).

It remains to compute |A(x1, y1, t1)| when (x1, y1, t1) ∈ Vb(t0) ∩ Va(t0). First note that

if (x1, y1, t1) ∈ Vb(t0) ∩ Va(t0), then

u1(s) ∩ (va(s) ∪ vb(s)) = u1(s)

⇐⇒ u1(s) ⊂ (va(s) ∪ vb(s))

⇐⇒ s <
t1 + t0

2
− min{ra, rb}

2cd

.
= s1.

Once the cross-sections va(s) and vb(s) are no longer intersecting i.e., when s > t0− r
2cd

,

then

|u1(s) ∩ (va(s) ∪ vb(s))| = |u1(s) ∩ va(s)|+ |u1(s) ∩ vb(s)|.

The two quantities |u1(s) ∩ va(s)| and |u1(s) ∩ vb(s)| can be calculated as shown above.

Then for
t1 + t0

2
− min{ra, rb}

2cd
< s < t0 −

r

2cd
, we have

|u1(s) ∩ (va(s) ∪ vb(s))| = |u1(s) ∩ va(s)|+ |u1(s) ∩ vb(s)| − |u1(s) ∩ va(s) ∩ vb(s)|.

The quantities |u1(s)∩ va(s)| and |u1(s)∩ vb(s)| can be calculated as shown above, and

|u1(s) ∩ va(s) ∩ vb(s)| can be calculated as shown in [113].
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Thus if (x1, y1, t1) ∈ Va(t0) ∩ Vb(t0), then

|A(x1, y1, t1)| (A.19)

=

∫ s1

t1

|u1(s)|ds+

∫ t0−r/(2cd)

s1

|u1(s) ∩ (va(s) ∪ vb(s))|ds.

With (A.18) and (A.19) we can compute |A(x1, y1, t1)| for arbitrary (x1, y1, t1). We can

then use |A(x1, y1, t1)| with (A.17) and (A.16) to compute (A.14) and (A.15). Finally we

use (A.14) and (A.15) to compute P (Dab|E2) based on (A.13).

A.3 I2 Calculations

In this section we describe how to compute I2(r, t) and I2(r, τ). First recall from Section

2.3.2 that R is the radius of the clone, Y is chosen according to a size-biased pick, and X

is the distance of p (a point selected at random from Y ) from the center of Y .

We first describe how to estimate I2(r, t) based on (2.11). In particular, we can generate

K i.i.d copies of the vector (X,R), denoted by {(Xi, Ri)}Ki=1. Our method for generating

(X1, R1) based on the time interval [0, t] is as follows. First generate the arrival times of

mutations based on a Poisson process with rate Nu1s, denote this set of times by t1, . . . , tn..

Then for each mutation calculate the size of its family at time t using the formula (2.7),

and this gives us the collection of family sizes Y1,1, . . . , Y1,n of clones C1,1, . . . , C1,n . Choose

a clone C = C[1] via a size biased pick from the collection C1,1, . . . , C1,n, and set R to be

the radius of C. Let U be a uniform random variable on [0, 1] independent of R and set

X = R
√
U . With these samples, form the estimator

Î2(r, t) =
1

K

K∑
i=1

P (p2 ∈ C|Ri, Xi).

We can also derive an alternative representation for P (p2 ∈ C) that is more suitable for

mathematical analysis. Denote the conditional density of X, given R = y, by fX(x|R = y)

and the density of R by fR. It’s easy to see that fX(x|R = y) = 2x
y2

for x ∈ (0, y) and 0
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otherwise, and therefore

P (p2 ∈ C) =

∫ ∞
r

∫ y−r

0

2x

y2
fR(y)dxdy +

∫ r

r/2

∫ y

r−y
φ(x, y)

2x

y2
fR(y)dxdy

+

∫ ∞
r

∫ y

y−r
φ(x, y)

2x

y2
fR(y)dxdy

=

∫ ∞
r

(y − r)2

y2
fR(y)dy +

∫ r

r/2

∫ y

r−y
φ(x, y)

2x

y2
fR(y)dxdy

+

∫ ∞
r

∫ y

y−r
φ(x, y)

2x

y2
fR(y)dxdy. (A.20)

Define

ψr(R) =
2

R2

∫ R

|R−r|
xφ(x,R)dx

and

Φr(R) =


(R−r)2
R2 + ψr(R), R ≥ r

ψr(R), R ∈ (r/2, r)

0, R ≤ r/2.

Therefore we see from (A.20) that we have P(p2 ∈ C) = E[Φr(R)].

The formula P(p2 ∈ C) = E[Φr(R)] is difficult to work with, due to the complex dis-

tribution of R. However, an interesting observation is that the distribution of R becomes

much simpler if we assume that the sampling occurs at the random detection time τ . In

this case define R(τ) to be the radius of the clone that we choose at time τ . Then we can

use equation (9) in [6] to see that conditional on τ = t, R(τ) has density

f(x|t) =
µγdx

d

cd(1− e−θtd+1)
exp

[
− µγdr

d+1

cd(d+ 1)

]

for x ≤ cdt and zero otherwise. In the conditional density above θ = µγcdd/(d+ 1). In order

to describe the distribution of R(τ) we then need the distribution of τ , which we can get

from (4) of [6]. In particular define

φ(t) =
1

t

∫ t

0
exp

(
−θrd+1

)
dr,

and λ = Nu1s. Then τ has density

fτ (t) = λetλ(φ(t)−1)
(

1− e−θtd+1
)
.
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Therefore we can calculate that

P (R(τ) > z) =
µγdλ

cd

∫ ∞
z/cd

∫ cdt

z
rd exp

[
− µγdr

d+1

cd(d+ 1)

]
dretλ(φ(t)−1)dt

= λ

∫ ∞
z/cd

(
exp

(
−θ(z/cd)d+1

)
− exp

(
−θtd+1

))
etλ(φ(t)−1)dt

= exp [λ(z/cd)(φ(z/cd)− 1)]− λ
[
1− exp

(
−θ(z/cd)d+1

)] ∫ ∞
z/cd

eλt(φ(t)−1)dt.

Furthermore we can take derivatives to find that R(τ) has density given by

f̂R(z) =
λθ(d+ 1)

cd+1
d

zd exp

[
−θ
(
z

cd

)d+1
]∫ ∞

z/cd

etλ(φ(t)−1)dt.

Note that the density f̂ is very similar to the Weibull density, and thus we can generate

samples from f̂ by using the acceptance rejection algorithm with a proposal distribution

based on the Weibull distribution. With these samples from the density f̂ , we can use the

function Φr to estimate I2(r, τ).

Note that when approximating I2(r, τ) it is not necessary to simulate the mesoscopic

model. We simply generate random variables according to the density f̂R and then evaluate

the function Φr(R). However, approximating I2(r, t) is a greater computational burden

because it requires simulating the mesoscopic model.

A.4 Characteristic length scale based on I2

In practice, I2 can help to reduce the number of subsequent biopsy samples that should be

taken after a premalignant sample has been found. For example, if a clinician wanted to

take samples so that the probability that they come from the original premalignant clone

is at most p, then we can define a length r̂p ≡ {argminr>0I2(r, t) < p}; samples taken a

distance of at least r̂p away from the original sample should satisfy this requirement. Figure

A.11 shows plots of r̂.5 as a function of s and as a function of t. We can see in these plots

that as the selection strength increases, r̂.5 increases. As s increases, mutant clones expand

more quickly, so samples must be taken farther away from the premalignant sample in order

to guarantee I2 < 0.5. Similarly as the sampling time t increases, we expect the clones to

be larger by the time the cells are sampled, so r̂.5 increases as well.



110

0.05 0.1 0.15 0.2 0.2510

20

30

40

50

60

70

s

r̂
.5

50 100 150 200 250

20

40

60

80

100

t

r̂ .
5

A B

Figure A.11: 2D length-scale r̂.5 in 2D for varying parameters. r̂.5 is displayed as a
function of (A) selection strength, s, and (B) time of sampling, t. In all panels N = 2e5,
and 1e4 Monte Carlo simulations are performed. Unless varied, s = 0.1, u1 = 7.5e− 7, and
t is the median of the detection time τ with µ = 2e− 6.



Appendix B

Chapter 3 Appendix

B.1 Local central limit theorem on Zd × Zw

Let (Yt)t≥0 be a simple symmetric random walk on Zd × Zw, starting at the origin with

jump rate α. Let N(t) be the number of jumps Yt has taken by time t. Let e1 =

(1, 0, . . . , 0), . . . , ed+1 = (0, . . . , 0, 1) be the standard basis of unit vectors in Zd+1. Then

Yt =

N(t)∑
j=1

X(j),

where the independentX(j) = (X1(j), X2(j), . . . , Xd+1(j)) can be ei or−ei for 1 ≤ i ≤ d+1,

each with probability 1/(2d+ 2). The sum is taken mod w in the d+ 1 dimension.

Our approach will be to first establish the LCLT for the embedded discrete time random

walk {Sn : n ≥ 0} with S0 = 0 and for n ≥ 1

Sn =

n∑
j=1

X(j).

Thus for x ∈ Zd × Zw we are interested in limn→∞ n
d/2P(Sn = x). Of course if w is even

the random walk {Sn : n ≥ 0} has period 2 and the aforementioned limit does not exist.

This problem is easily dealt with, but requires some extra notation. In particular we say x

and n have the same parity if P(Sn = x) > 0.

In order to evaluate the discrete time LCLT, we condition on the number of steps that

the discrete time random walk {Sn : n ≥ 0} takes in each dimension. Let N̂(n) be the

111
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number of steps {Sn : n ≥ 0} has taken in the first d dimensions in the first n steps, i.e.,

N̂(n) = |{1 ≤ j ≤ n : Xd+1(j) = 0}|.

We define the following notation to denote the probability of taking a step on Zd

µw,d =


2d

2d+1 w = 2

d
d+1 w > 2.

Then we have N̂(n) ∼ Bin(n, µw,d), which implies that for ε > 0,

lim
n→∞

P

(∣∣∣∣∣N̂(n)

n
− µw,d

∣∣∣∣∣ > ε

)
→ 0.

Next we define small neighborhoods of the mean of N̂(n), in order to break up P(Sn = x)

into conditional probabilities. For ν ∈ (0, 1/2) define

An(ν) =
{

1 ≤ j ≤ n : |j − nµw,d| < n1/2+ν
}
.

Define {Ŝn : n ≥ 0} as the simple symmetric random walk on Zd and {Ŝn,w : n ≥ 0}
as the simple symmetric random walk on Zw. Therefore, we have the representation Sn =(
ŜN̂(n), Ŝ(n−N̂(n)),w

)
and by the conditional independence of ŜN̂(n) and Ŝn−N̂(n),w,

P(Sn = x|N̂(n) = k) = P(Ŝk = x̂)P(Ŝn−k,w = xd+1),

where x = (x1, x2, . . . , xd, xd+1) ∈ Zd × Zw, and x̂ = (x1, x2, . . . , xd) ∈ Zd.
We will provide explicit bounds for P(Ŝn−N̂(n),w = xd+1) below.

Proposition B.1.1. For positive integer n and ν ∈ (0, 1/2) such that An(ν) 6= ∅ and

µw,d + n−1/2+ν < 1 choose k ∈ An(ν) and define εn = n−1/2+ν . If w is odd, then

1

w
−
√
w|λ2|n(1−µw,d−εn) ≤ P(Ŝn−k,w = xd+1) ≤ 1

w
+
√
w|λ2|n(1−µw,d−εn).

If w is even and xd+1 and n− k have the same parity then

2

w
−
√
w

2
|λ̂2|n(1−µw,d−εn) ≤ P(Ŝn−k,w = xd+1) ≤ 2

w
+

√
w

2
|λ̂2|n(1−µw,d−εn).
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Proof. Let P be the transition matrix for Ŝn−N̂(n),w. Notice that its stationary distri-

bution is

π∗ =

(
1

w
,

1

w
, . . . ,

1

w

)
, (B.1)

which follows from the fact that P (x, x+ 1) = P (x, x− 1) = 1/2 for all x when w > 2, and

P (x, x+ 1) = 1 when w = 2; where addition is carried out modulo w.

Next, we must determine the convergence rate of Ŝn,w. We look at two separate cases,

for odd w and even w, due to the difference in periodicity. Ŝn,w is aperiodic when w is odd,

and Ŝn,w has period 2 when w is even.

If w is odd, it follows from Proposition 15 in [114] that

||Pn(x, ·)− π∗|| ≤
√
w|λ2|n, (B.2)

where || · || denotes the total variation norm, and λ1 = 1 and λ2, λ3, . . . , λw are the other

eigenvalues of the transition matrix P , written in decreasing order of absolute value, with

|λi| < 1 for i > 1.

In the case where w is even if n and xd+1 have the same parity, then P(Ŝn,w = xd+1)

converges to 2 · 1
w = 2

w [115]. Furthermore by modifying the proof of Proposition 15 in [114],

we obtain

||P 2n(0, ·)− π1|| ≤
√
w

2
|λ̂2|n, (B.3)

where π1 =
(

2
w 0 2

w 0 2
w 0 . . . 2

w 0
)

and λ̂2 is the second largest eigenvalue of

P 2, which satisfies |λ̂2| < 1. In addition,

||P 2n+1(0, ·)− π2|| ≤
√
w

2
|λ̂2|n, (B.4)

where π2 =
(

0 2
w 0 2

w 0 2
w . . . 0 2

w

)
.

If w is odd, then (B.2) implies that

1

w
−
√
w|λ2|n−k ≤ P(Ŝn−k,w = xd+1) ≤ 1

w
+
√
w|λ2|n−k.

If w is even, then P(Ŝn−k,w = xd+1|N̂(n) = k) = 0 if n − k and xd+1 have different

parity. If n− k and xd+1 have the same parity then inequalities (B.3) and (B.4) show that
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for even w,
2

w
−
√
w

2
|λ̂2|n−k ≤ P(Ŝn−k,w = xd+1) ≤ 2

w
+

√
w

2
|λ̂2|n−k.

Since k ∈ An(ν) we know that k ≤ n(µw,d + εn) and the result follows. �

Next, we obtain bounds for P(Ŝk = x̂) when k ∈ An(ν) by using a local central limit

theorem on Zd. For positive integer n define the multivariate normal pdf

pn(x̂) =

(
d

2πn

)d/2
exp

[
−|x̂|2/(2nd)

]
,

where | · | is the d-dimensional Euclidean norm. Then Theorem 2.1.3 of [116] states that if

P(Ŝn = x̂) 6= 0 there exists a constant c such that

|P
(
Ŝn = x̂

)
− 2pn(x̂)| ≤ c

n(d+2)/2

[(
|x̂|4

n2
+ 1

)
e−|x̂|

2/(2nd) + o(1)

]
. (B.5)

This of course implies that if n and x̂ have the same parity then

nd/2P(Ŝn = x̂) = 2

(
d

2π

)d/2
+ o(1). (B.6)

We are now ready to state our discrete time LCLT.

Proposition B.1.2. If w is odd then

nd/2P(Sn = x) =
1

w

(
d

2πµw,d

)d/2
+ o(1),

as n→∞.

If w is even and P(Sn = x) > 0 then

nd/2P(Sn = x) =
2

w

(
d

2πµw,d

)d/2
+ o(1),

as n→∞.

Proof.

Start with the following decomposition,

nd/2P(Sn = x) = nd/2P(Sn = x|N̂(n) ∈ An(ν))P(N̂(n) ∈ An(ν))

+ nd/2P(Sn = x|N̂(n) /∈ An(ν))P(N̂(n) /∈ An(ν)).
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Define

B1(n) = nd/2 P(Sn = x|N̂(n) ∈ An(ν))P(N̂(n) ∈ An(ν)),

and note that

B1(n) ≤ nd/2P(Sn = x) ≤ B1(n) + nd/2P(N̂(n) /∈ An(ν)). (B.7)

Hoeffding’s Inequality [117] gives a bound on the tail of the binomial distribution, to

conclude that

P(N̂(n) /∈ An(ν)) ≤ 2 exp
(
−2n2ν

)
.

and we conclude that it suffices to study the large n asymptotics of

nd/2P(Sn = x|N̂(n) ∈ An(ν)).

Using the law of total probability, we obtain

nd/2P(Sn =x|N̂(n) ∈ An(ν)) = nd/2P(ŜN̂(n) = x̂, Ŝn−N̂(n),w = xd+1|N̂(n) ∈ An(ν))

= nd/2
∑

k∈An(ν)

P(Ŝk = x̂, Ŝn−k,w = xd+1|N̂(n) = k)P(N̂(n) = k|N̂(n) ∈ An(ν))

= nd/2
∑

k∈An(ν)

P(Ŝk = x̂)P(Ŝn−k,w = xd+1)P(N̂(n) = k|N̂(n) ∈ An(ν)).

Without loss of generality assume that P(Ŝk = x) > 0 for k even, and define

An(ε, E) = {k ∈ An(ν) : k is even}.

Then we can apply (B.6)

nd/2P(Sn = x|N̂(n) ∈ An(ν))

=
∑

k∈An(ε,E)

(n
k

)d/2
kd/2P(Ŝk = x̂)P(Ŝn−k,w = xd+1)P(N̂(n) = k|N̂(n) ∈ An(ν))

=
∑

k∈An(ε,E)

(n
k

)d/2
(2

(
d

2π

)d/2
+ o(1))P(Ŝn−k,w = xd+1)P(N̂(n) = k|N̂(n) ∈ An(ν)).
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Since k ∈ An(ε, E) implies that nµw,d − n1/2+ν ≤ k ≤ nµw,d + n1/2+ν we obtain

n

k
=

1

µw,d
+ o(1).

Therefore

nd/2P(Sn = x|N̂(n) ∈ An(ν))

= 2

(
d

2πµw,d

)d/2 ∑
k∈An(ε,E)

P(Ŝn−k,w = xd+1)P(N̂(n) = k|N̂(n) ∈ An(ν)) + o(1).

If w is odd, then Proposition B.1.1 gives

nd/2P(Sn = x|N̂(n) ∈ An(ν))

=
2

w

(
d

2πµw,d

)d/2 ∑
k∈An(ε,E)

P(N̂(n) = k|N̂(n) ∈ An(ν)) + o(1).

Similarly, if w is even and P(Sn = x) > 0 then

nd/2P(Sn = x|N̂(n) ∈ An(ν))

=
4

w

(
d

2πµw,d

)d/2 ∑
k∈An(ε,E)

P(N̂(n) = k|N̂(n) ∈ An(ν)) + o(1).

Recall that if X ∼ Bin(n, p) then P(X is even) = 1
2 + 1

2(1− 2p)n, therefore

∑
k∈An(ε,E)

P(N̂(n) = k|N̂(n) ∈ An(ν)) =
1

2
+ o(1),

and the result follows. �

With the discrete time result established we prove the continuous time result.

Proof.[Proof of Theorem 3.2.2]

For ν ∈ (0, 1/2) define the set

Bt(ν) = {n ≥ 1 : |n− αt| ≤ t1/2+ν}.

Using standard large deviation bounds for the Poisson distribution (see e.g.,Theorem 1 of
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[118]) we conclude that

P (N(t) /∈ Bt(ν)) ≤ 2 exp

[
−t2ν

2(α+ tν−1/2)

]
.

Therefore there exists a constant c such that

∑
n∈Bt(ν)

P(Sn = x)P (N(t) = n) ≤ P(Yt = x) ≤
∑

n∈Bt(ν)

P(Sn = x)P (N(t) = n) + e−ct
2ν
.

It suffices to find the asymptotics of

(αt)d/2
∑

n∈Bt(ν)

P(Sn = x)P(N(t) = n)

= αd/2
∑

n∈Bt(ν)

(
t

n

)d/2
nd/2P(Sn = x)P(N(t) = n);

since n ∈ Bt(ν) we know that t/n = 1/α+ o(1) and can rewrite above as

=
∑

n∈Bt(ν)

nd/2P(Sn = x)P(N(t) = n) + o(1).

If w is odd, the result then follows by using the result from Proposition B.1.2.

If w is even, then assume without loss of generality that P (Sn = x) > 0 for n even and

is 0 otherwise. Define the set

Bt(ν,E) = {n ∈ Bt(ν) : n even integer},

and then using Proposition B.1.2

∑
n∈Bt(ν)

nd/2P(Sn = x)P(N(t) = n) + o(1)

=
∑

n∈Bt(ν,E)

nd/2P(Sn = x)P(N(t) = n) + o(1)

=
2

w

(
d

2πµw,d

)d/2 ∑
n∈Bt(ν,E)

P(N(t) = n) + o(1).

Recall that if X ∼ Pois(λ) then P (X = even) = 1/2 + e−2λ/2 and therefore as t→∞

P (N(t) ∈ Bt(ν,E)) = 1/2 + o(1),
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and the result follows. �

B.2 Return time to the origin

Below we prove the return time result, stated in Theorem 3.2.3. As defined in section B.1,

let Yt be a simple random walk on Zd×Zw with jump rate α. In this case, we assume d = 2.

N(t) is the number of jumps Yt has taken by time t, and recall N(t) ∼ Pois(αt).

Proof.[Proof of Theorem 3.2.3]

We start by looking at the return time on Sn, the embedded discrete time walk on

Z2 × Zw. Let τ0 be the first discrete time step that Sn returns to 0. That is,

τ0 = min{n > 0 : Sn = 0}.

We can use Proposition B.1.2 and a classic result of Dvoretzky and Erdos ([119]) on the

return time for a discrete time walk on Z2 to see that

P(τ0 > n) ∼


4πw

5 logn w = 2

2πw
3 logn w > 2.

as n→∞. (B.8)

Next, we translate this result to the return time asymptotics for the continuous time

random walk Yt. To do this, we start by fixing ε > 0. Recall that T0 = inf{t > 0 : Yt = 0}
and that N(t) is the number of jumps Yt has taken by time t. We condition P(T0 > t) as

follows

P(T0 > t) = P(τ0 > N(t))

= P (τ0 > N(t), N(t) ≥ αt(1− ε)) + P (τ0 > N(t), N(t) < αt(1− ε))

≤ P (τ0 > αt(1− ε)) + P (N(t) < αt(1− ε)) . (B.9)

In addition we have,

P (τ0 > αt(1 + ε)) = P (τ0 > αt(1 + ε), N(t) ≤ αt(1 + ε)) + P (τ0 > αt(1 + ε), N(t) > αt(1 + ε))

≤ P (τ0 > N(t)) + P (N(t) > αt(1 + ε)) ,
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and therefore

P (τ0 > N(t)) ≥ P (τ0 > αt(1 + ε))− P (N(t) > αt(1 + ε)) . (B.10)

We combine bounds (B.9) and (B.10) to obtain the following,

P (τ0 > αt(1 + ε))− P (N(t) > αt(1 + ε)) ≤ P (τ0 > N(t))

≤ P (τ0 > αt(1− ε)) + P (N(t) < αt(1− ε)) .

Since {N(t) : t ≥ 0} is a Poisson process with rate α by the law of large numbers,
N(t)
t → α almost surely as t→∞. It follows that

lim
t→∞

P (N(t) > αt(1 + ε)) = lim
t→∞

P (N(t) < αt(1− ε)) = 0

By definition, we know P (τ0 > N(t)) = P(T0 > t), so it follows that

lim
t→∞

P (τ0 > αt(1 + ε)) ≤ lim
t→∞

P(T0 > t) ≤ lim
t→∞

P (τ0 > αt(1− ε)) .

By (B.8), if w = 2, we have as t→∞

P (τ0 > αt(1 + ε)) ∼ 4πw

5 log(αt)
, lim

t→∞
P (τ0 > αt(1− ε)) ∼ 4πw

5 log(αt)
,

and a similar result in the case w > 2. Thus, we can conclude that as t→∞

P(T0 > t) ∼


4πw

5 log(αt) w = 2

2πw
3 log(αt) w > 2.

�
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B.3 Error between dual process and BRW

In this section, we show that the error when approximating the pruned dual process ζ̂βt with

the branching random walk ζβt approaches 0 as β → 0.

First we determine a lower bound for the displacement between a parent particle and

newborn daughter particle, who paths are independent random walks X1 and X2, at the

time of successful branching in ζt. Let X1
0 = 0, and let X2

0 be uniformly distributed on the

set {±ei : i ∈ 1, 2, 3}. Let

L =
1√

β log(1/β)
.

Note that Px(·) := P
(
·
∣∣ |X̄0| = x

)
, where X̄t = X1

t −X2
t . Recall that

T0 = inf{t > 0 : X̄t = 0}.

By (3.4), which was obtained using Theorem 3.2.3, we have

P1

(
|X1

τ(β) −X
2
τ(β)| ≤ L

∣∣∣ T0 > τ(β)
)
≤ 1

P1(T0 > τ(β))
· P1

(
|X1

τ(β) −X
2
τ(β)| ≤ L

)
≤ 3 log(1/β)

2πw

∑
|x|≤L

P1

(
|X1

τ(β) −X
2
τ(β)| = x

)
≤ 3 log(1/β)

2πw
· w
(

1√
β log(1/β)

)2 3

4πw τ(β)

=
9

8π2wβ log(1/β)
· β
√

log(1/β)

= O

(
1√

log(1/β)

)
, (B.11)

where the third inequality follows from the local central limit theorem 3.2.2 on Z2×Zw and

from the fact that L > w as β → 0.

Similarly, for any two particles with independent random walk paths X1 and X2, such
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that |X̄0| = x,

Px
(
|X1

τ(β) −X
2
τ(β)| ≤ L

)
≤
∑
|y|≤L

Px
(
|X1

τ(β) −X
2
τ(β)| = y

)
≤ w

(
1√

β log(1/β)

)2 3

4πw τ(β)

= O

(
1

(log(1/β))3/2

)
. (B.12)

Error components.

Possible error between ζ̂βt and ζβt arises from the following groups:

1. Any particle that coalesces with a particle other than its parent by time τ(β) after its

birth (and descendants of such an ancestor in ζβt )

2. Any particle that coalesces with another particle after surviving until τ(β) (and its

descendants in ζβt )

Recall that pi is the index of the parent of the particle with path Ẑi, and that

(b̂j)j∈Z+ ,(bj)j∈Z+ are the branching times in ζ̂t and ζt, respectively. Also recall that D̂t(i),

Dt(i) are the sets of all descendants of Ẑi, Zi, respectively, by time t.

Each ancestor i (with path Zi) in group 1 or group 2 has an associated te,i < h(β)T

and j(i) ≤ i such that:

(A1) Zit = Ẑ
j(i)
t =∞ ∀t ∈ [0, bi]

(A2) Ẑ
j(i)
t =∞ ∀t ∈ [te,i , h(β)T ]

(A3) Zit ∈ ζ
β
t ∀t ∈ [bi , h(β)T ]

The following property also holds for particles i in group 1:

(A4) Ẑ
j(i)
t =∞ ∀t ∈ [0, h(β)T ].

Let

E1(β) =
{
Dβ
T (i), Zi,β ∈ Zβ : Zi satisfy (A1)-(A4)

}
.

Ancestor particles i in group 2 also satisfy the following properties:

(B4) te,i ∈ [bi, h(β)T ]

(B5) Zit = Ẑ
j(i)
t ∀t ∈ [bi , te,i].
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Let

E2(β) =
{
Dβ
T (i), Zi,β ∈ Zβ : Zi satisfy (A1)-(A3), (B4)-(B5)

}
.

Note that for ease of notation, we will suppress the β notation in E1(β), E2(β) for the

remainder of the section.

Inductive argument.

We will use (B.11) and (B.12) in an inductive proof showing the error between Ẑβ and

Zβ is small as β approaches 0.

First, in order to make this error precise, recall that

dp,T (Zβ, Ẑβ) = sup
i

{
dT (Zi,β, Ẑi,β)

}
,

where dT and dp,T are the metrics for the Skorokhod topology D̂ and the product Skorokhod

topology D, as defined in section 3.3.6.

Then given δ > 0, we have

P
(
dp,T (Zβ, Ẑβ) > δ

)
= P(|E1 ∪ E2| > 0).

In order to show that this probability converges to 0 as β → 0, we will first prove a

lemma about the hitting time for two random walks.

Recall that X̄t = X1
t − X2

t for X1, X2 independent simple random walks, and that

L = 1√
β log(1/β)

. We define

γ(β) = P
(
X̄t = 0 for some t ≤ h(β)T

∣∣ X̄0 = x0, |x0| > L− 1
)
. (B.13)

Let X̃t be the projection of X̄t onto Z2. That is,

X1
t = (x1

t , y
1
t , z

1
t ), X2

t = (x2
t , y

2
t , z

2
t ) =⇒ X̃t =

(
x1
t − x2

t , y
1
t − y2

t

)
,

and let

γ̃(β) = P
(
X̃t = 0 for some t ≤ h(β)T

∣∣ X̃0 = x0, |x0| > L− w − 1
)
.

Note that |X̄t| ≥ | ˆ̄Xt|, so γ ≤ γ̂.

Lemma B.3.1. Let h(β) =
1

β
log

(
1

β

)
, and let X̃t be a random walk on Z2 with jump
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distribution p. Then

lim
β→0

γ̂(β) = 0.

Proof.

Adapted from the paper by Durrett and Zahle [120].

Let a(x) =

∞∑
k=0

[pk(0)− pk(x)] be the potential kernel for X̃t. Then we have

∑
y∈Z2

p(y − x)a(y) − a(x) =
∑
y∈Z2

∞∑
k=0

p(y − x)[pk(0)− pk(y)]−
∞∑
k=0

[pk(0)− pk(x)]

= lim
N→∞

∑
y∈Z2

N∑
k=0

p(y − x)[pk(0)− pk(y)]− lim
N→∞

N∑
k=0

[pk(0)− pk(x)]

= lim
N→∞

∑
y

p(y − x)
N∑
k=0

pk(0)− lim
N→∞

∑
y

N∑
k=0

p(y − x)pk(y)−

lim
N→∞

N∑
k=0

[pk(0)− pk(x)]

= lim
N→∞

N∑
k=0

pk(0)− lim
N→∞

N∑
k=0

pk+1(x)− lim
N→∞

N∑
k=0

[pk(0)− pk(x)]

= lim
N→∞

[
N∑
k=0

pk(x)−
N∑
k=0

pk+1(x)

]
= p0(x)

= δ(0, x) (B.14)

Then for a random walk Sn with jump distribution p, where t̂ = min{n > 0 : Sn = 0},
we have

E[a(Sn+1)|S1, . . . , Sn] =
∑
x∈Z2

a(Sn + x)p(x)

=
∑
y∈Z2

a(y)p(y − Sn)

= a(Sn) + δ(0, Sn), (B.15)

where the last equality follows from (B.14). Thus, a(Sn∧t̂) is a martingale.
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In Theorem 2 of [121], Fukai and Uchiyama show that

a(x) = C log |x|+O(1). (B.16)

Let

R =
1√
β

log(1/β),

and let B(R) = {x ∈ R2 : |x| ≤ R}, B(1) = {x ∈ R2 : |x| ≤ 1}. Then define

λ(β) = P(T1 < TR|X̃0 = x0, |x0| = L− w − 1),

where

T1 = min{t > 0 : |X̃t| ≤ 1}, TR = min{t > 0 : |X̃t| ≥ R}.

Let S = min{T1, TR}. a(X̃t∧T0) is a martingale by (B.15), and S is a stopping time, so

by the optional sampling theorem and (B.16), we obtain

a(x0) = E[a(X̃S)] =⇒

log(L− w − 1) +O(1) = λ(log 1 +O(1)) + (1− λ)(logR+O(1)) =⇒
1

2
log(1/β)− log log(1/β) +O(1) = (1− λ)

(
1

2
log(1/β) + log log(1/β) +O(1)

)
=⇒

1

2
log(1/β)− 1− λ

2
log(1/β) = (2− λ) log log(1/β) +O(1) =⇒

λ

2
log(1/β) = (2− λ) log log(1/β) +O(1)

≤ 2 log log(1/β) +O(1)

Therefore,

lim
β→0

λ(β) ≤ lim
β→0

4 log log(1/β) +O(1)

log(1/β)
= 0. (B.17)

We use this to prove that γ̃ → 0 as β → 0. Note that

γ̃ ≤ λ+ P
(

inf
t≤h(β)T

|X̃t| ≤ 1

∣∣∣∣|X̃0| ≤ R
)
. (B.18)
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Let Ỹt := X̃t − X̃0. Then Ỹ0 = 0 and

P
(

inf
t≤h(β)T

|X̃t| ≤ 1

∣∣∣∣|X̃0| ≤ R
)

= P

(
sup

t≤h(β)T
|Ỹt| ≥ R− 1

∣∣∣∣Ỹ0 = 0

)
.

Since Ỹt is a symmetric random walk, |Ỹt| is a submartingale. Then by Doob’s martingale

inequality,

P

(
sup

t≤h(β)T
|Ỹt| ≥ R− 1

∣∣∣∣Ỹ0 = 0

)
≤ 1

R− 1
E[|Ỹh(β)T |]

≤ 1

R− 1

(
E
[(
Ỹ

(1)
h(β)T

)2
+
(
Ỹ

(2)
h(β)T

)2
])1/2

=

√
2

R− 1

(
E
[(
Ỹ

(1)
h(β)T

)2
])1/2

=
C
√

2h(β)T

R− 1

= O

(
1

log(1/β)

)1/2

Then by (B.18), we have

γ̃(β) ≤ λ(β) +O

(
1

log(1/β)

)1/2

,

and by (B.17) we can conclude that

lim
β→0

γ̃(β) = 0.

�

Since γ ≤ γ̂, we also have

lim
β→0

γ(β) = 0. (B.19)

We use (B.19) in the following theorem to show that P(|E1 ∪ E2| > 0)→ 0 as β → 0.

Lemma B.3.2. Let h(β) = 1
β log(1/β), with β > 0, and let δ > 0. Let ζ̂βt be a branching

coalescing random walk with branching rate βh(β), and let ζβt be a branching random walk

with branching rate µβ, as described by (3.3). Then
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lim
β→0

P
(
dp,T (Zβ, Ẑβ) > δ

)
= 0.

Proof.

Recall that P
(
dp,T (Zβ, Ẑβ) > δ

)
= P(|E1 ∪E2| > 0). Therefore it suffices to show that

lim
β→0

P(|E1 ∪ E2| > 0) = 0.

Let ε > 0, and let N̂T = |ζ̂βT |, NT = |ζβT |. Recall ζβt has branching rate µβ ≤ 2πw
3 by

(3.3), so

E[N̂T ] ≤ E[NT ] ≤ K exp

(
2πw

3
T

)
.

Hence, ∃Mε such that P(NT > Mε) < ε. We will assume from now on that N̂T ≤Mε.

We will show by induction that lim
β→0

P(|E1 ∪ E2| > 0) = 0. Recall L =
1√

β log(1/β)
.

Suppose |ζ̂β0 | = K with |Ẑi0 − Ẑ
j
0 | ≥ L for all pairs Ẑi0, Ẑ

j
0 ∈ ζ̂0. Note that ζ̂0 = ζ0. The

probability of coalescence between each pair i, j ≤ K of initial particles is

P(∃t ∈ [0, h(β)T ] s.t. Ẑit = Ẑjt ) ≤ γ,

as defined in (B.13).

There are at most M2
ε

2 pairs of particles, so

∑
i,j≤K

P
(
∃t ∈ [0, h(β)T ] s.t. Ẑit = Ẑjt

)
≤ K2γ

2
≤ M2

ε γ

2
. (B.20)

Let ẐK+1 be the path of the first particle that is born that does not coalesce with its

parent before surviving for time τ(β).

|ẐK+1
b(K+1)

− Ẑp(K+1)

b(K+1)
| = 1 =⇒ |ẐK+1

b(K+1)
− Ẑjb(K+1)

| > L− 1 ∀
(
j : j < K, j 6= p(K+1)

)
.

Then we have

∑
j≤K,j 6=p(K+1)

P
(
∃t ∈ [b(K+1), h(β)T ] s.t. ẐK+1

t = Ẑjt

)
≤ Kγ ≤Mεγ. (B.21)
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Hence, we have

P(∃Zi,β ∈ Zβ with i ≤ K + 1 : Zi,β satisfy (A1)-(A4)) +

P(∃Zi,β ∈ Zβ with i ≤ (K + 1) : Zi,β satisfy (A1)-(A3), (B4)-(B5)) ≤ M2
ε γ

2
+Mεγ.

Result (B.11) implies that

P
(∣∣∣ẐK+1

b(K+1)+τ(β) − Ẑ
p(K+l)

b(K+1)+τ(β)

∣∣∣ ≤ L) = O

(
1√

log(1/β)

)
.

Additionally, by (B.12), ∀
(
j : j ≤ K, j 6= p(K+1)

)
,

P
(∣∣∣ẐK+1

b(K+1)+τ(β) − Ẑ
j
b(K+1)+τ(β)

∣∣∣ ≤ L) = O

(
1

(log(1/β))3/2

)
.

Thus for sufficiently small β, we have K+ 1 particles separated by a distance of at least

L at time b(K+1) + τ(β), with high probability. We repeat this argument at most Mε times,

so it follows that

P(|E1(β) ∪ E2(β)| > 0) ≤Mε

(
M2
ε γ(β)

2
+Mεγ(β) +O

(
1√

log(1/β)

))
.

Therefore, by (B.19),

lim
β→0

P(|E1(β) ∪ E2(β)| > 0) = 0, (B.22)

completing the proof. �

B.4 Lower bound proof

In this section, we prove Lemma B.4.1, which provides a lower bound for the propagation

speed. We restate the lemma here.

Lemma B.4.1. Let {ξt,β : t ≥ 0} be a biased voter model on Z2×Zw with fitness advantage

β > 0 and define τ∅ = min{t : ξ0
t = ∅}, Then for any ε > 0

lim
β→0

lim
t→∞

P (ξt,β ∩ {xε(t;β)} 6= ∅|τ∅ =∞) = 1,

where xε(t;β) = ba(w, β)te1(1− ε)c.
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Proof.

First we will approximate the branching Brownian motion χt with branching rate

µ =


4πw

5 w = 2

2πw
3 w > 2.

using a block construction. This is a modified version of the construction in [120]. Let

ρ =


√

4µ
5 w = 2√

2µ
3 w > 2.

(B.23)

Then let

L0 = [−ρL, ρL]2 × Rw, Lm = 2mρLe1 + L0 for m ∈ Z,

where L is a large constant. Let χ̄t be the modified version of χt, in which particles are

killed when they land outside of [−4ρL, 4ρL]2 × Rw. We modify the process in this way so

that we can compare it to a 1-dependent percolation.

The notation χ̄xt indicates that χ̄0 = {x}. For any A ∈ R2 × Rw, let

χ̄xt (A) := |χ̄xt ∩A|.

Let M̄x
t be a Brownian motion starting at x that is killed when it lands outside [−4ρL, 4ρL]2

×Rw. The particles in χ̄t move as independent Brownian motion, so it follows that

E[χ̄xt (A)] = exp (µt)P(M̄x
t ∈ A). (B.24)

Due to the scaling invariance of Brownian motion, we have

P(M̄x
L2 ∈ L0) = Px/L

(
Ms ∈ Dρ for s ≤ 1,M1 ∈ [−ρ, ρ]2 × Rw

)
,

where Ms is a Brownian motion with σ2 = 1
3 , and Dρ = [−4ρ, 4ρ]2 × Rw.

Thus, we have

lim inf
L→∞

inf
x∈L0

P(M̄x
L2 ∈ L1) ≥ inf

y∈[−ρ,ρ]2×Rw
Py
(
Ms ∈ Dρ for s ≤ 1,M1 ∈ [ρ, 3ρ]2 × Rw

)
> 0,
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and analogously, lim inf
L→∞

inf
x∈L0

P(M̄x
L2 ∈ L−1) > 0.

Then by (B.24), we can find L large enough so that

inf
x∈L0

E[χ̄xL2(Li)] ≥ 2 for i = −1, 1 (B.25)

E[χxL2(R2×Rw)2] is a finite number that depends on L, as shown in [99], so we will say

E[χxL2(R2 × Rw)2] = CL <∞.

For ε > 0, let A be a set of sites, such that |A| ≥ CL
ε

and A ⊂ [−ρL, ρL]2 × Rw.

If χ̄t starts with one particle at each site in A, then we have

µ := E[χ̄AL2(Li)] ≥ 2|A| for i = −1, 1. (B.26)

Note that E[χ̄xL2(Li)2] ≤ E[χxL2(R2 × Rw)2] = CL. Due to the independence of each

particle in χ̄, we obtain the following:

Var[χ̄AL2(Li)] =
∑
x∈A

Var[χ̄xL2(Li)]

≤
∑
x∈A

(CL − 22)

≤ |A|CL for i = −1, 1. (B.27)

Let K ≤ |A| for A ⊂ L0. It follows from (B.26) and (B.27) that

P
(
χ̄AL2(Li) < K

)
≤ P

((
µ− χ̄AL2(Li)

)
> 2|A| −K

)
≤ |A|CL

(2|A| −K)2

≤ |A|CL
|A|2

=
CL
|A|

≤ CL
K

for i = −1, 1, (B.28)

where the second inequality follows from Chebyshev’s Inequality.

Let ε1 > 0, with ε1 chosen small enough so that it satisfies the assumption in (2) on
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page 1030 of [62] using 1 − p = ε1 and q < 1 − ε. Since |A| ≥ CL
ε

, we can choose K ≤ |A|
large enough so that

P(χ̄AL2(Li) < K) ≤ ε1/2 for i = −1, 1. (B.29)

In other words, by considering Li “open” if it contains at least K particles, we have shown

χ̄t dominates 1-dependent oriented percolation that has open sites with probability 1− ε1/2
[122].

Extension to Dual Process.

We have shown via Theorems 3.3.1 and B.3.2 that Ẑβ =⇒ Y , where Ẑβ is the rescaled

pruned dual process on R2 × Rw, and YT is a branching Brownian motion with branching

rate µ.

We show previously that

χ̄0(L0) ≥ K =⇒ P
(
χ̄AL2(Li) < K

)
< ε for i = −1, 1.

Now we will show that the same holds true for ζ̄β, a modified version of the pruned dual

process, in which particles are killed outside of [−4ρL, 4ρL]2 × Rw.

Recall that D̂ is the space of Cadlag paths, modified to account for path values of ∞,

and

D = {(x1, x2, . . .) : ∃k0 s.t. ∀k ≤ k0, xk ∈ D̂, ∀k > k0, xk =∞}.

Let Fm be a function on D that counts the paths that stay in [−4ρL, 4ρL]2 × Rw and

end up in Lm at time L2. More precisely,

Fm : D −→ N, Fm((x1, x2, . . .)) =
∑
i

1Gi∩{xi(L2)∈Lm}, (B.30)

where Gi = {xi(t) ∈ [−4ρL, 4ρL]2 × Rw ∪ {∞} for 0 ≤ t ≤ L2}.
Since Ẑβ =⇒ Y and Fm is continuous with respect to the limit distribution, the contin-

uous mapping theorem implies

Fm(Ẑβ) =⇒ Fm(Y ) as β → 0.
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Therefore, ∃β > 0 such that

P(ζ̄β,A
L2 (Li) < K) ≤ P(χ̄AL2(Li) < K) + ε1/2, (B.31)

Then since we showed in (B.29) that P(χ̄AL2(Li) < K) ≤ ε1/2, we can conclude that

P(ζ̄β,A
L2 (Li) < K) ≤ ε1. Hence, ζ̄t dominates 1-dependent oriented percolation with density

1− ε1.

K particles in L0.

We assume that the BBM χ starts with one particle at the origin. Since the displacement

of Brownian motion is normally distributed, the probability density function for the position

of a single particle at time t is

ft(x) =
1

2πσ2t
exp

(
− |x|

2

2σ2t

)
, (B.32)

where |x| > w.

Recall the branching rate for χ is

µ =


4πw

5 w = 2

2πw
3 w > 2,

and that the infinitesimal variance for χ is

σ2 =


2
5 w = 2

1
3 w > 2.

.

By (B.24), we have

E [χ̄t(L0)] = exp(µt)P
(
M̄0
t ∈ L0

)
= exp(µt)P

(
M0
t ∈ L0,M

0
s ∈ [−4ρL, 4ρL]2 × Rw ∀s ≤ t

)
≥ exp(µt)

(
1−

(
P
(
M0
t ∈ LC0

)
+ P

(
∃s ≤ t : M0

s /∈ [−4ρL, 4ρL]2 × Rw
)))

≥ exp(µt)
(
1−

(
2 · P (|Mt,1| > ρL) + 2 · P

(
∃s ≤ t : |M0

s,1| > 4ρL
)))

,

where M0
t is a Brownian motion with components M0

t = (Mt,1,Mt,2,Mt,3).
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Using (B.32) and the definition of ρ in (B.23), for w > 2, we have

E [χ̄t(L0)] ≥ exp(µt)

(
1− 2

∫ ∞
ρL

3

2πt
exp

(
−3x2

2s

)
dx− 2

∫ t

0

∫ ∞
4ρL

3

2πs
exp

(
−3x2

2s

)
dxds

)
≥ exp(µt)

(
1− 3

πt

∫ ∞
ρL

x

ρL
exp

(
−3x2

2t

)
dx−

∫ t

0

3

πs

∫ ∞
4ρL

x

4ρL
exp

(
−3x2

2s

)
dxds

)
= exp(µt)

(
1− 1

πρL
exp

(
−3 (ρL)2

2t

)
−
∫ t

0

1

4πρL
exp

(
−3 (4ρL)2

2s

)
ds

)

= exp(µt)

(
1− 1

πLρ
exp

(
−µL

2

t

)
−
∫ t

0

1

4πLρ
exp

(
−16µL2

s

)
ds

)
≥ exp(µt)

(
1− 1

πLρ
exp

(
−µL

2

t

)
− t

πLρ
exp

(
−16µL2

t

))
The inequality is analogous for w = 2.

Thus, using the same argument shown in (B.28), for any ε2 > 0, we can choose L and

K such that, for all w,

P(χ̄L(L0) ≥ K) ≥ 1− ε2/2.

Then by using the function Fm defined by (B.30) and the continuous mapping theorem

again, we can conclude that there exists β > 0 such that

P(ζ̄β,0L (L0) ≥ K) ≥ P(χ̄L(L0) ≥ K)− ε2/2

≥ 1− ε2. (B.33)

In [40], they define the following quantity:

σR = min
{
t : ξ0

t ⊃ Bx,R for some x ∈ Z2 × Zw
}

(=∞ if no such x, t exist),

where BR = {(x1, x2, x3) ∈ Z2×Zw : |x1|, |x2| ≤ R}, and Bx,R = BR +x for x = (x1, x2, 0).

Lemma 1 in [40] states that P(σR <∞|τ∅ =∞) = 1 for all R > 0, and the proof holds

on Z2 × Zw, so we have

P(σρL2 <∞|τ∅ =∞) = 1. (B.34)

Speed using block construction.

Recall L0 = [−ρL, ρL]2 × Rw and Lm = 2mρLe1 + L0 for m ∈ Z. Due to the scaling in
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our construction, let L =
√
h(β). We will use S to denote the time σρL2 .

Recall that B.31 shows that ζ̄βt dominates a 1-dependent oriented percolation. To make

our relation to this percolation precise, for A ⊂ L0, and for m,n ≥ 0, and m + n even, we

let

ζ̄β,A
nL2(Lm) ≥ K =⇒ θ(m,n) = 1, (B.35)

and

Wn = {m : θ(m,n) = 1}.

Let

rn = sup{m : θ(m,n) = 1},

so Lrn is the farthest block from the origin containing at least K particles by time nL2. Wn

is known as 1-dependent oriented percolation, and it has open sites with probability 1− ε1.

Result (2) on page 1030 of [62] says that for q < 1 and λ > 0, P( rnn ≤ q) ≤ Ce−λn on

the set where the oriented percolation does not die out. In our case, with q < 1 − ε, this

result implies that

lim
n→∞

P
(rn
n
≥ 1− ε

)
= 1. (B.36)

Recall that

a(w, β) =


√

16πwβ
25 log(1/β) w = 2√

4πwβ
9 log(1/β) w > 2

=
ρ√
h(β)

.

For xε(t;β) = ba(w, β)te1(1− ε)c, S = σρL2 , and τA∅ = min{t : ξAt = ∅}, we see that

P(ξ0
t ∩ {xε(t;β)} 6= ∅|τ∅ =∞) = P(ξ0

t ∩ {xε(t;β)} 6= ∅, S <∞|τ∅ =∞)

+ P(ξ0
t ∩ {xε(t;β)} 6= ∅, S =∞|τ∅ =∞)

= P(ξ0
t ∩ {xε(t;β)} 6= ∅|τ∅ =∞, S <∞)P(S <∞|τ∅ =∞)

+ P(ξ0
t ∩ {xε(t;β)} 6= ∅|τ∅ =∞, S =∞)P(S =∞|τ∅ =∞)
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Then by (B.34), we have

lim
β→0

lim
t→∞

P(ξ0
t ∩ {xε(t;β)} 6= ∅|τ∅ =∞) = lim

β→0
lim
t→∞

P(ξ0
t ∩ {xε(t;β)} 6= ∅|τ∅ =∞, S <∞)

≥ lim
β→0

lim
t→∞

P
(
ξ
BρL2

t ∩ {xε(t+ S;β)} 6= ∅|τ
BρL2

∅ =∞
)

= lim
β→0

lim
t→∞

P
(
EρL2(ε, β)

)
− P

(
EρL2(ε, β)|τ

BρL2

∅ <∞
)
P
(
τ
BρL2

∅ <∞
)

P
(
τ
BρL2

∅ =∞
) ,

where EρL2(ε, β) =
{
ξ
BρL2

t ∩ {xε(t+ S;β)} 6= ∅
}

. If we set L =
√
h(β), then by the

gambler’s ruin formula, if w > 2,

P
(
τ
BρL2

∅ <∞
)

= (1 + β)−|BρL2 |

= (1 + β)
− 16πw log(1/β)

9β .

Similarly, if w = 2, P
(
τ
BρL2

∅ <∞
)

= (1 + β)
− 43πw log(1/β)

25β .

Note that lim
β→0

(1 + β)
− 16πw log(1/β)

9β = lim
β→0

(1 + β)
− 43πw log(1/β)

25β = 0, so we have

lim
β→0

lim
t→∞

P
(
τ
BρL2

∅ <∞
)

= lim
β→0

P
(
τ
BρL2

∅ <∞
)

= 0,

and

lim
β→0

lim
t→∞

P
(
τ
BρL2

∅ =∞
)

= 1 for all w.
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This implies that

lim
β→0

lim
t→∞

P(ξ0
t (β) ∩ {xε(t;β)} 6= ∅|τ∅ =∞) ≥ lim

β→0
lim
t→∞

P
(
ξ
BρL2

t ∩ {xε(t+ S;β)} 6= ∅
)

= lim
β→0

lim
t→∞

P(ζ̃
xε(t+S;β)
t ∩BρL2 6= ∅)

≥ lim
β→0

lim
t→∞

P(ζ̄0
t ∩ (BρL2 + xε(t+ S;β)) 6= ∅)

= lim
β→0

lim
n→∞

P(ζ̄β,0
nL2 ∩ (BρL + xε(nL

2 + S;β)) 6= ∅)

= lim
β→0

lim
n→∞

(
P(ζ̄β,0

nL2 ∩ (BρL + xε(nL
2 + S;β)) 6= ∅, ζ̄β,0L (L0) ≥ K)

+ P(ζ̄β,0
nL2 ∩ (BρL + xε(nL

2 + S;β)) 6= ∅, ζ̄β,0L (L0) < K)
)

≥ lim
β→0

lim
n→∞

P(ζ̄β,0
nL2 ∩ (BρL + xε(nL

2 + S;β)) 6= ∅|ζ̄β,0L (L0) ≥ K)P(ζ̄β,0L (L0) ≥ K)

≥ lim
β→0

lim
n→∞

P(ζ̄β,A
nL2 ∩ (BρL + xε(nL

2 + L+ S;β)) 6= ∅)(1− ε2)

≥ lim
β→0

lim
n→∞

P
(
ζ̄β,A
nL2(Lm̄) ≥ K

)
(1− ε2),

by (B.33), where A ⊂ L0, K = |A|, and m̄ =

⌈
a(w, β)(nL2 + L+ S)(1− ε)

2ρL

⌉
.

Then we use (B.35) and (B.36) to show that for n > 0,

lim
β→0

lim
t→∞

P(ξ0
t (β) ∩ {xε(t;β)} 6= ∅|τ∅ =∞) ≥ lim

β→0
lim
n→∞

P(θ(m̄, n) = 1)(1− ε2)

≥ lim
β→0

lim
n→∞

P(rn ≥ m̄)(1− ε2)

= lim
β→0

lim
n→∞

P
(
rn ≥

a(w, β)(nL2 + L+ S)

ρL

)
(1− ε2)

= lim
β→0

lim
n→∞

P
(
rn ≥

(nL2 + L+ S)(1− ε)
L2

)
(1− ε2)

= lim
β→0

lim
n→∞

P
(
rn
n
≥
(

1 +
1

nL
+

S

nL2

)
(1− ε)

)
(1− ε2)

= lim
β→0

lim
n→∞

P
(rn
n
≥ 1− ε

)
(1− ε2)

= 1− ε2,

�
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B.5 Shape theorem extension to Z2 × Zw

In this section, we describe the necessary modifications to extend the shape theorem of a

biased voter model on Zd, proven by Bramson and Griffeath in [39, 40], to a biased voter

model on Z2 × Zw.

First, we adjust the definition of a box, BR, and a ball, DR, of radius R, which are used

repeatedly within the proofs in [39, 40], to hold in the setting Z2 × Zw. For R ≥ w, let

BR := {(x1, x2, x3) ∈ Z2 × Zw : |x1| ≤ R, |x2| ≤ R},

and let

DR := {(x1, x2, x3) ∈ Z2 × Zw : x2
1 + x2

2 ≤ R2}.

Note that a box translated by x is defined as Bx,R = BR + x for x ∈ Z2. We mention

later the reason for which DR is defined as w stacked two-dimensional balls, rather than as

a cut-out of a three-dimensional ball.

The primary modification occurs in the proof of Proposition 2, which is used within the

proof of Proposition 1 in [40]. They define a Markov chain (Xx
t ), embedded in the dual

process (ζ̃xt ), which has uniformly positive drift toward the origin. We modify the jump

rates for (Xx
t ) on Z2 × Zw for any y = (y1, y2, y3), z = (z1, z2, z3) ∈ Z2 × Zw, as indicated

below.

First let w > 2. If y3 <
w
2 :

y → z at rate



(1 + β)/6 if ||z − y|| = 1 and either ||z|| < ||y||

or yi = 0, zi = 1 for 1 ≤ i ≤ 2

1/6 if ||z − y|| = 1 and the other above condition does not hold.

If y3 ≥ w
2 :

y → z at rate



(1 + β)/6 if ||z − y|| = 1 and either z3 = y3 + 1,

or z3 = y3, ||z|| < ||y||,

or yi = 0, zi = 1 for 1 ≤ i ≤ 2

1/6 if ||z − y|| = 1 and the other above condition does not hold.
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Next let w = 2. Then the jump rates are defined as follows.

y → z at rate



(1 + β)/5 if ||z − y|| = 1 and either z3 = 1, y3 = 0,

or z3 = y3, ||z|| < ||y||,

or yi = 0, zi = 1 for 1 ≤ i ≤ 2

1/5 if ||z − y|| = 1 and the other above condition does not hold.

For all w, no transitions take place, outside of those listed above. With these modifica-

tions, (Xx
t ) has uniformly positive drift toward the origin off of some ball Dγ ⊂ Z2 × Zw,

where γ is a positive constant, as is the case in Z2. In this case, for large λ, the drift of

||Xx
t || toward 0 is minimized over states in Z2 ×Zw −Dγ at sites located on the axes of Z2

(i.e. sites (y1, y2, y3) in which y1 = 0 or y2 = 0), and this minimal drift is asymptotically β
4

as λ→∞, in contrast to β
2d in the Zd case.

For w > 2, exactly half of the nearest neighbors z for any site y satisfy the condition

indicating a transition rate of (1 + β)/6, so as was the case in [40], the rate at which (Xx
t )

leaves any site is (2 + β)/2. Hence, for states in Z2 × Zw − Dγ , the minimal expected

displacement toward 0 resulting from each jump, is asymptotically

β

4
· 2

2 + β
=

β

2(2 + β)
,

in contrast to
β

d(2 + β)
in the Zd case.

For w = 2, the rate at which (Xx
t ) leaves a site on sheet 0 is

(
2
5(1 + β) + 3

5

)
, and the rate

at which (Xx
t ) leaves a site on sheet 1 is

(
3
5(1 + β) + 2

5

)
. Therefore, the minimal expected

displacement toward 0, for states in Z2 × Zw −Dλ, is asymptotically

β

4
/

(
1

2
· 3(1 + β) + 2

5
+

1

2
· 2(1 + β) + 3

5

)
=

β

2(2 + β)
.

Thus, for all w, as is done in [40], we define a family of continuous time processes on

[−γ,∞) ⊂ R1,

Z
(x,α)
t = ||Xx

2t/(2+β)|| − γ,

where α = ||x|| − γ. In our case, for large γ,(Z
(x,α)
t ) has minimal drift toward 0 of µ + ε,
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where µ > 0, ε > 0 are chosen so that

0 < µ < µ+ ε <
β

2(2 + β)
.

Note that we have 1
2 in place of 1

d in the µ estimate from the Zd case. The constant

µ is used within the proof of Proposition 1 in [40], in which they estimate the probability

that the BVM, initially covering box BR, eventually contains a box growing approximately

linearly in t. The µ is used to define a sequence of time intervals sk, and the proof considers

the probability that ξBRt covers BR(k) for t ∈ [tk, tk+1] (where tk =
∑k

j=1 sj).

The family of processes Z
(x,α)
t is defined so that it can be used to obtain the following

inequality for x ∈ BR′ ,

P(x /∈ ξBRt ) ≤ max
α≤
√
dR′

P(Z
(x,α)
t ≥ R− γ), (B.37)

where d = 2 in our case, consistent with the use of 2 for d in the estimate for µ. The use of

d = 2 is required so that it can be shown that the right-hand side of the inequality above,

with R′ = R(k), is on the order of exp(−γR(k)). This is used to prove Proposition 2 in

[40]. Note that in Lemma 2 and Proposition 2, the (2R(k))d should be w(2R(k))2, due to

the shape of a box in Z2 × Zw, dictating the need for d = 2 within the proofs of Lemma 2

and Proposition 2. Thus, it was imperative that DR be defined as a set of stacked discs, so

that with d = 2, the following inclusions hold:

DR′ ⊂ BR′ ⊂ D√dR′ ,

giving rise to (B.37).

In part II of the shape-theorem [39], Bramson and Griffeath show that satisfying a

given set of regularity assumptions is sufficient to apply Richardson’s proof technique for

the Williams-Bjerknes model in [123]. Thus, they are able to conclude that the rate of

expansion of the biased voter model is indeed linear. Durrett and Griffeath generalize this

proof to other contact processes in [124].

The BVM on Z2×Zw satisfies the necessary properties, outlined in [124], to be considered

a growth model. The proof that these properties are sufficient to guarantee linear asymptotic

growth holds in this case, using our definition forDR. This can be verified using the following

observation. If we let D̂d
R denote an R-ball in Zd, then |DR| = w|D̂2

R|, and |δDR| = w|δD̂2
R|,

where δDR is used to denote the boundary of DR. Thus, such quantities, particularly
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relevant within the proof of Proposition 1 in [124], can be expressed in terms of d = 2,

consistent with the relationship between our defined DR and BR in Z2 × Zw.



Appendix C

Chapter 4 Appendix

Figure C.1 depicts the set of all possible birth events that occur throughout the evolution

of the tumor, as described in Section 4.2. Each row in the figure corresponds to division

of each type of cell, and the rate with which each birth event occurs is provided below the

image.
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Figure C.1: The set of possible birth events when a type-1, type-2, or type-3 cell
divides. Each birth event is displayed with the corresponding rate at which it occurs. Note
that we let A = (1−ρ)(1−ν), where ρ, ν denote the probability of maintenance methylation
and de novo methylation, respectively, at each CpG site during cell replication.
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C.1 Parameterization

Detection thresholds and surgical removal proportion

The clinical data described in section 4.3 is used determine the tumor size detection thresh-

olds D1 and D2, at diagnosis and recurrence, respectively. To convert this to approximate

cell population numbers for calibrating D1 in the model, we use a standard approxima-

tion for the number of cells in a spherical tumor of radius 0.5 cm (volume π
6 cm3) is 109

cells [125]. After removing outliers, the average tumor radius at the time of detection was

r1 = 0.142 cm (volume 0.012 cm3 assuming a tumor spheroid). Thus, applying the conver-

sion factor above we obtain D1 = 2.298× 107 cells. Similarly, the average tumor radius at

the time of recurrence is r2 = 0.1286 cm, resulting in the estimate D2 = 1.702 × 107 cells.

The observed effect D2 < D1 may reflect the fact that patients previously diagnosed and

treated for GBM are under closer scrutiny for recurrence than for the initial diagnosis.

After detection, surgery is performed on the tumor. The patient data describing the

tumor radius size after surgery is displayed in a pie chart in Figure 4.6c. Since a large

number of patients were reported with 0 mm of tumor remaining after surgery, and there

are a few large outliers, we felt the median would provide a better representation of the data

than the average. Thus we found a median of 0.1 mm of tumor remaining after surgery

and then calculated the number of tumor cells, using the same techniques shown when

calculating D1, D2. After dividing this number by D1, we determined that the proportion

of cells remaining after surgery is ps = 2.237× 10−7.

C.1.1 Methylation parameters

Literature estimates of DNA methylation and demethylation rates are conflicting, and they

can vary over several orders of magnitude. For example, in [86], an estimate of 2×10−5 per

CpG site per cell division is used for both the methylation and demethylation rates in their

model. In [126], the authors use demethylation and methylation rates for each CpG site on

the order of 10−4 and 10−3, respectively, and in [127] the authors estimate demethylation

and methylation rates on the order of 10−3 and 10−2, respectively. These estimates are

derived from observed methylation patterns obtained through genomic sequencing. Due to

the discrepancy in these reported estimates of methylation rates, we chose instead to model

the more specific mechanisms of de novo and maintenance methylation and then use these

processes to calculate the rates of conversion between cell types.
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In [1] the authors used a steady state solution for their Markov chain model in con-

junction with observed methylation data from the promoter region in human lymphocytes

to estimate the de novo and maintenance methylation probabilities, ν and ρ, respectively

[128]. In our model, we use these estimates of

ν = 0.09 (C.1)

ρ = 0.95,

which will serve as the baseline methylation parameter values.

C.1.2 Intrinsic birth and death rates

Here we describe the parametrization of the birth and death rates in the pretreatment phase

and recovery periods, when no treatment is administered.

We use the PDX cell line experiments described in Section 4.3 to determine the cell via-

bility of MGMT+ and MGMT− cells when exposed to TMZ, and also to calibrate untreated

birth and death rates for both types of cells. In particular, live cell counts from three DMSO

groups are used to determine the net growth rate for each group as shown below. Since

the cell population grows exponentially, for each live cell count L̃, the corresponding net

growth rate λ̃ is determined by λ̃ = ln(L̃/48000)/8 day−1.

The in vitro net growth rates and dead cell counts are combined to determine a death

rate for each DMSO group, using the following relationship between the death rate c̃ and

the dead cell count D̃ after 8 days,

D̃ =

∫ 8

0
c̃ ∗ 48000esλ̃ds cells.

In the equation above, 48000esλ̃ is the expected number of total cells in one DMSO group

at time s. We assume that the death rate is equal for all cell types in the absence of drug,

so we multiply the expected number of cells at time s by the death rate, and then integrate

that product as s varies between 0 and 8 days, to obtain the number of dead cells after 8

days have passed.

In vitro birth and death rates differ from the those in vivo, but we assume that there

is scaling factor that we can multiply in vitro birth and death rates by to determine the

corresponding in vivo rates. Given this assumption, the ratio of death rate to net growth

rate in vitro should be equal to the ratio in vivo. Thus, after averaging the ratios for each

of the three groups, we obtained a mean ratio of 0.0356. We assume that the death rates
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for all cell types are equal in the absence of TMZ and that the birth rates differ. Using

the in vivo net growth rate λ = 0.0897 day−1, obtained from the patient data depicted in

Figure 4.6b, we determined that the death rates in the absence of therapy are

c1 = c2 = λ ∗ 0.0356 = 0.0032 day−1. (C.2)

Then it remains to determine the birth rates, b1 and b2, for type-1 and type-2/3 cells,

respectively. We use the multitype branching process mean to calculate these initial birth

rates. In Section C.3, we show that

E
([
X1(t) X2(t) X3(t)

] ∣∣ [X1(0) X2(0) X3(0)
]

=
[
1 0 0

])
=
[
1 0 0

]
M(t).

where, in the absence of therapy,

M(t) = exp(Gt),

and G is the infinitesimal generator of the multitype branching process, defined in Section

C.3. All of the entries in G are expressions of ν, ρ, d1, d2, b1, and b2.

We use the overall net growth rate rate λ = 0.0897/cell/day and the quantity D1 to

determine the following estimation of the time ∆t1 between the emergence of the first cancer

cell and tumor detection.

∆t1 =
ln(2.298× 107)

0.0897
= 188.96 days. (C.3)

Using ∆t1, the methylation probabilities ν, ρ in (C.1), and the death rates in (C.2), we can

solve for b1 and b2 given the following constraints,

m1,1(∆t1) +m1,2(∆t1) +m1,3(∆t1) = D1

(m1,2(∆t1) +m1,3(∆t1)) = 0.2387 (m1,1(∆t1) +m1,2(∆t1) +m1,3(∆t1)) ,

where mi,j(∆t1) is the entry in the i-th row and j-th column of M(t) when t = ∆t1. The

first constraint follows from the fact that D1 is the expected tumor size at the time of

detection, ∆t1. The second constraint follows from our experimental measurements of the

frequency of cells expressing MGMT within each of the groups that were not exposed to

TMZ. We averaged the frequency of MGMT+ cells in the three DMSO groups to determine

that the proportion of hemimethylated and unmethylated cells in the absence of TMZ
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should be 0.2387, implying the second constraint. We solved the system of equations above

to determine the initial birth rates,

b1 = 0.0927 day−1 (C.4)

b2 = 0.0938 day−1.

C.1.3 Birth and death rates during TMZ treatment

Recall that α, β are the radiosensitivity parameters used in linear-quadratic model. The

parameter ratio α/β indicates the fractionation sensitivity of the tumor cells, and a standard

estimate for α/β in most tumors is 10 [129, 130]. Thus we use typical estimates of α = 0.1

Gy−1 and β = 0.01 Gy−2 as baseline values in our model.

In order to determine the contribution of chemotherapy to type-1 and type-2/3 death

rates, we first describe the concentration of TMZ as a function of time. We model the

plasma concentration of TMZ using an exponential decay function C(t) = C0e
−kt, where

t is the time since the last TMZ dose. The parameter k =
ln 2

t1/2
, where t1/2 is the half-life

of TMZ. We used linear regression of pharmacokinetic data to approximate the parameter

C0(Z) in µM, as shown in Figure C.2, which is the maximum plasma concentration of TMZ

in µM, as a function of the administered dose Z of TMZ in mg/m2 of body-surface area.

We obtained the following linear relationship:

C0(Z) = 0.28Z µM.

We also used this pharmacokinetic data to approximate t1/2 = 0.074 days [131, 132, 133,

134, 135].

Due to the toxicity of TMZ, the cell death rates fluctuate during treatment, but the

birth rates remain fixed. In order to determine the death rates as a function of the plasma

concentration of TMZ, we need the cell viability functions for cells expressing MGMT and

cells with no MGMT expression.

We determined the cell viability functions using data obtained from the MTT assays,

described in Section subsec:data. in which one group of GBM6 cells was not exposed to

TMZ, and seven other groups of GBM6 cells were exposed to varying concentrations of TMZ.

After 8 days the number of MGMT− (type-1) cells and number of MGMT+ (type-2+type-3)

cells were counted for each group. We used the MGMT− and MGMT+ cell counts obtained

in the experiments to calculate the cell viability for methylated and hemi/unmethylated

cells when exposed to each of the TMZ concentrations tested in the assay.
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Figure C.2: Maximum plasma concentration C0 of TMZ, in µM, as a function of
admistered dose. The plot depicts C0 for various administered doses Z of TMZ in mg/m2

of body-surface area, obtained from pharmacokinetic data, and the linear fit of these data
points.

Using these data points for each concentration of TMZ, we fit the cell viability func-

tions for type-1 and type-2 cells to two Hill equations. The Hill equations are of the form
1

1+(CE )
H , where E is the EC50 value and H is known as the Hill coefficient. We denote

these cell viability functions v1(C) and v2(C) for type-1 and type-2/3 cells, respectively, at

concentration C. The best fit equations, displayed in Figure C.3, are

v1(C) =
1

1 +
(

C
20.301

)1.476 ,

v2(C) =
1

1 +
(

C
57.305

)2.096 .

In the cell viability experiment, the number of type-1 cells exposed to concentration C

after 8 days is

v1(C)(P0e
8λ1),

where P0 is the initial number of cells tested in the experiment, and λ1 = b1−c1 is the type-1

net growth rate in the absence of treatment. Note that P0e
8λ1 is the expected number of

type-1 cells after 8 days, in the absence of treatment. Thus, the net growth rate for type-1

cells exposed to concentration C is

ln(v1(C)e8λ1)

8
day−1,
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Figure C.3: Cell-viability functions. The plot depicts experimental cell viability data
points for type-1 and type-2/3 cells exposed to TMZ, and the cell viability curves to which
we fit the data.

which implies that the type-1 death rate component due to TMZ is

g1(C(t)) =
1

8
ln

(
1 +

(
C(t)

20.301

)1.476
)

day−1, (C.5)

where t is the time since the most recent dose of TMZ. Analogously the type-2/3 death rate

component due to TMZ is

g2(C(t)) =
1

8
ln

(
1 +

(
C(t)

57.305

)2.096
)

day−1. (C.6)

C.2 Robustness to variation in parameters

In Section 4.4, we claim that a reduction in methylation percentage between tumor diagnosis

and recurrence may result from TMZ’s inhibition of maintenance methylation. We varied

each of the model parameters independently to test the robustness of the claim to variability

in the parameters.

As each parameter varies, we investigate the change in methylation percentage between

tumor diagnosis and recurrence in the case in which TMZ does not impact methylation

(ρz = 0.95) and in the case in which TMZ causes a reduction in maintenance methylation

(ρz = 0.5). Figure C.4 shows this comparison as b1, b2, d1, and d2 vary, and Figure C.5 shows

the comparison as ρ and ν vary. Note that as ρ varies, we let ρz = ρ. We observe that

there is minimal change in methylation between detection and recurrence when ρz = 0.95,
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except in the case with no de novo methylation (ν = 0). However it is highly unlikely

that the DNMT3a/b methyltransferases will be completely inactive throughout the entire

evolution of the tumor. Thus our claim that selection alone does not explain the observed

methylation shift is robust to variation of the model parameters within a reasonable range.

Additionally in the case in which TMZ inhibits maintenance methylation (ρz = 0.5),

we observe a significant decrease in methylation percentage between tumor diagnosis and

recurrence as each parameter varies, except when ρ is near 0.5. This is expected, since

ρz = 0.5, so TMZ does not significantly impact the maintenance methylation when ρ is

near 0.5 in the absence of drug. Hence, whenever TMZ has a sizable impact on the main-

tenance methylation rate, we observe a downward shift in methylation between detection

and recurrence, consistent with clinical studies. Thus, our conjecture that the clinically ob-

served methylation shift results from TMZ’s impact on maintenance methylation is robust

to parameter variability.

C.3 Population Means

We can calculate the expected number of type-1 and type-2 cells at time t in terms of the

birth and death rates. We will use this calculation and experimental data to determine the

values for b1 and b2 in our model. For ease of notation, we use the following notation for

the components of each offspring distribution p1, p2, p3.

µ1,1
1 = p1((2, 0, 0)) µ1,1

2 = p2((2, 0, 0)) µ1,1
3 = p3((2, 0, 0))

µ1,2
1 = p1((1, 1, 0)) µ1,2

2 = p2((1, 1, 0)) µ1,2
3 = p3((1, 1, 0))

µ2,2
1 = p1((0, 2, 0)) µ1,3

2 = p2((1, 0, 1)) µ1,3
3 = p3((1, 0, 1))

µ2,2
2 = p2((0, 2, 0)) µ2,2

3 = p3((0, 2, 0))

µ2,3
2 = p2((0, 1, 1)) µ2,3

3 = p3((0, 1, 1))

µ3,3
3 = p3((0, 0, 2))

The offspring distributions p1, p2, p3 are defined in terms of ρ, ν in (4.1), (4.2), and (4.3),

respectively. For each component listed above, we use the following notation to denote the

rate at which a type-i cell gives rise to a type-j and type-k cell:

uj,ki (t) := biµ
j,k
i (t),

where 1 ≤ i, j, k ≤ 3. Note that in our case, b3 = b2. Additionally, if µj,ki is not listed above,

then we let µj,ki = 0. We let Ti denote the sum of the event rates for cell type-i, as defined
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(b) Vary b1 (ρz = 0.5).

0.08 0.09 0.1 0.11 0.12
b

2
 (per day)

-0.3

-0.2

-0.1

0

C
h
a
n
g
e
 i
n
 T

y
p
e
-1

 p
ro

p
o
rt

io
n

(c) Vary b2.
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(d) Vary b2 (ρz = 0.5).
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(f) Vary d1 (ρz = 0.5).
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(g) Vary d2.
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(h) Vary d2 (ρz = 0.5).

Figure C.4: Change in methylation percentage as birth and death rates vary. The
plots show the change in proportion of type-1 cells between tumor detection and recurrence.
In the baseline case, in which TMZ does not impact maintenance methylation (ρz = 0.95),
the change in proportion is shown as (a) b1, (c) b2, (e) d1, and (g) d2 vary. In the case in
which ρz = 0.5, we plot the change in proportion as (b) b1, (d) b2, (f) d1, and (h) d2 vary.
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(b) Vary ρ (ρz = 0.5).
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(c) Vary ν.
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(d) Vary ν (ρz = 0.5).

Figure C.5: Change in methylation percentage as methylation probabilities vary.
The plots depict the change in proportion of type-1 cells between tumor detection and
recurrence. In the baseline case, in which TMZ does not impact maintenance methylation
(ρz = 0.95), the change in proportion is shown as (a) ρ and (c) ν vary. In the case in which
ρz = 0.5, we plot the change in proportion as (b) ρ and (d) ν vary.
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below,

Ti(t) := di(t) +
∑

1≤j,k≤3

uj,ki (t), 1 ≤ i ≤ 3.

In our case, d3 = d2. We write the rates as functions time, since ν, ρ, d1, d2 may vary

in the absence and presence of therapy. Let s = (s1, s2, s3), where 0 ≤ s1, s2, s3 ≤ 1.

The following are the probability generating functions for type-1, type-2, and type-3 cells,

respectively:

• F1(s, t) = E(sX1(t)|X1(0) = 1) =
∞∑
j=0

P (X1(t) = j|X1(0) = 1)sj ,

• F2(s, t) = E(sX2(t)|X2(0) = 0) =
∞∑
j=0

P (X2(t) = j|X2(0) = 0)sj ,

• F3(s, t) = E(sX3(t)|X3(0) = 0) =
∞∑
j=0

P (X3(t) = j|X3(0) = 0)sj .

The following are the probability generating functions of the offspring distributions:

f1(s, t) = (T1(t))−1(d1(t) + u1,1
1 (t)s2

1 + u1,2
1 (t)s1s2 + u2,2

1 (t)s2
2),

f2(s, t) = (T2(t))−1(d2(t) + u1,1
2 (t)s2

1 + u1,2
2 (t)s1s2 + u1,3

2 (t)s1s3 + u2,2
2 (t)s2

2) + u2,3
2 (t)s2s3),

f3(s, t) = (T3(t))−1·

(d3(t) + u1,1
3 (t)s2

1 + u1,2
3 (t)s1s2 + u1,3

3 (t)s1s3 + u2,2
3 (t)s2

2) + u2,3
3 (t)s2s3 + u3,3

3 (t)s2
3).

The associated infinitesimal generating functions are

g1(s, t) = T1(t)(f1(s, t)− s1),

g2(s, t) = T2(t)(f2(s, t)− s2),

g3(s, t) = T3(t)(f3(s, t)− s3).

Let M(t) = {mij(t); 1 ≤ i, j ≤ 3} be the mean matrix of this two-type branching process.

Using the backward Kolmogorov equation, we obtain the infinitesimal generator for the

branching process:

Gt =

[
Ti(t)

(
∂fi(s, t)

∂sj

∣∣∣∣
s=(1,1,1)

− δij

)]
1≤i,j≤3

=
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2u1,11 (t) + u1,21 (t)− T1(t) u1,21 (t) + 2u2,21 (t) 0

2u1,12 (t) + u1,22 (t) + u1,32 (t) u1,22 (t) + 2u2,22 (t) + u2,32 (t)− T2(t) u1,32 (t) + u2,32 (t)

2u1,13 (t) + u1,23 (t) + u1,33 (t) u1,23 (t) + 2u2,23 (t) + u2,33 (t) u1,33 (t) + u2,33 (t) + 2u3,32 (t)− T3(t)



Then M(t) must satisfy the equation:

dM(t)

dt
= GtM(t).

Therefore we have

M(t) = exp

(∫ t

0
Gs ds

)
,

and

E
([
X1(t) X2(t) X3(t)

] ∣∣ [X1(0) X2(0) X3(0)
]

=
[
1 0 0

])
=
[
1 0 0

]
M(t).
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Table C.1: Baseline parameters. These are calibrated using experimental and clinical
data in Section C.1.

Parameter Description Value

D1 Initial tumor detection size 2.298 ∗ 107 cells

D2
Recurrent tumor detection
size

1.702 ∗ 107 cells

ps
Proportion of cells remaining
after surgery

2.237 ∗ 10−7

∆t1
Time between first cancer cell
and initial detection

188.96 days

λ
Overall net growth, in the ab-
sence of treatment

0.0897 day−1

ν
Probability of de novo methy-
lation of a previously un-
methylated site

0.09 /cell division

ρ
Probability of maintenance
methylation of a previously
methylated site

0.95 /cell division

b1, b2 Type-1, type-2 birth rates b1 = 0.0927, b2 = 0.0938 day−1

c1, c2
Type-1, type-2 death rates, in
the absence of treatment

c1 = c2 = 0.0032 day−1

α, β Radiosensitivity parameters α = 0.1 Gy−1, β = 0.01 Gy−2

C(t)
Concentration of TMZ, at
time t after administered dose
Z mg/m2

C(t) = 0.28Z exp
(
−t ln 2

0.074

)
µM

v1(C)
Type-1 cell viability (as a
function of TMZ concentra-
tion)

(
1 +

(
C(t)

20.301

)1.476
)−1

v2(C)
Type-2 cell viability (as a
function of TMZ concentra-
tion)

(
1 +

(
C(t)

57.305

)2.096
)−1

g1(C(t))
Type-1 death rate component
due to TMZ

1
8 ln

(
1 +

(
C(t)

20.301

)1.476
)

day−1

g2(C(t))
Type-2 death rate component
due to TMZ

1
8 ln

(
1 +

(
C(t)

57.305

)2.096
)

day−1

h(D(t))
Death rate component due to
radiation (as a function of the
total Gray delivered in [0, t])

(α+ 2βD(t)) ddtD(t) day−1

p1, p2, p3
Type-1, type-2, type-3 off-
spring distributions

See (4.1), (4.2), (4.3)
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