
















































































































































































Figure 2.9.3.

Efficiency

Minimum efficiency of modified estimator, 0 <p < 1, p = 2(1)24, with corresponding

efficiency of sample estimator.
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Study of Table 2.9.2 and Figure 2.9.1 shows that the improvement
can be much larger for positive p. The best improvement is at p
closg to 1 where the difference is 1 - % , which tends to 1 as
p becomes infinite., For negative p there is very little difference
(cf£. Figure 2.9.2).
The computer programs written to generate the above tables are

given in Appendix B.

2.9.4 Testing Homogeneity of Variances.

We now consider the results of sections 2.7 and 2.8 in the special

case of all correlations equal (and known). From Corollary 2.7.1 we

obtain

COROLLARY 2.9.5. A large sample test of size ¢ for homogeneity of

variances has critical region

» ’: 2 - [} 4
~ PZy(8)'g S(8) 5 e
~~§ (2.9.62) N(2 + —§7)g¥ CO% & 2 xp_l(l-e),
55 where é* is as given in Theorem 2.9.1 and c, is the centering matrix,

Proof, It suffices to show (2.7.13) and (2.9.62) equal. From (2.9.49)

we have that

2 2
(2.9.63) T =R *B+L=(2+E ) -2 ee,
Substituting (2.9.63) in (2.7.13) yields
2 '
(2.9.64) (2 + Poyolt)

where ge is the centering matrix introduced in (2.7.12). The result then
follows directly from Theorem 2.9.1 since g, and 2} have the same

limiting distribution. (qed)
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We may express the quadratic form in (2.9.62) as a "centered,"

or "corrected for the mean" sum of squares. For from (2.9.11) we may

write

(2.9.65) g, = [0 "(uyr + '*2&)1('1)’

where Hy and Hy are expressions in r, p and p as given by
2.9.11), and r = {r,} 1is the column vector of off-diagonal row
-~ i

sums of R. Thus we may write

E () _ (rop (L1t
(2.9.66) g, ’ = {log (“1"1 — “2)},
where Csy is the i-th sample variance. Thus we obtain
hat ' P c . P c,
o (2.9.67 ool = B ftos (I _ypz | (3§ 10g (At e

i=1 K1ty * Ho i=1 HiFg * Mo
From Corollary 2.7.3 we obtain the corresponding result for

testing equality of two variances:

(2.9.68) 0% = o2 .

COROLLARY 2.9.6. A large sample test of size ¢ for (2,9.68) has

critical region

2
(2.6.69)  N(1 + BE)[10g (a}/0}) 1% 2 %(1-e),

*
where = {oi}, as given in Theorem 2.9.1.

T

Proof, It suffices to show (2.7.17) and (2.9.69) equal. From (2.9.51)

we have

(2.9.70) eSS N R (1 + Peé); el ] (EE).
2+pp2 opp2 2%




. = & -
® - i1 _jj i ii° ij po2
i Hence t ~ + t°- - 2t™7 =2(t7" -t ") =1+ 5o~ + The result follows
from Theorem 2.9.1. (qed)
From Theorem 2.8.2 we obtain an alternate to Corollary 2.9.5.
g COROLLARY 2.9.7. A large sample test of size ¢ for homogeneity of
variances based on the generalized likelihood ratio criterion has
’:‘g critical region
A (2.9.71) N[p{log (—-1—- tr ¢ - £ e'ce)/p} - 2e'c(l’)] 2 %2 (1-¢)
‘,",‘.1. ¢ 1-p ~ o o . Xp—l ’

where C 1is the sample covariance matrix,

Proof., It suffices to prove (2.8.10) and (2.9.71) equal. From (2.9.2)

we recall that

"1 - 1 R (]
(2.9.72) R = - I-5kee
so that tr 5-19 = —1%3- tr C - % e'Ce. Hence the result. (qed)

We now consider the forms of the above tests when based on the

modified estimator §(2) rather than 25(_2).

COROLLARY 2.9.8. A large sample test of size ¢ for homogeneity of

variances based on the modified estimator 3(2) has critical region

2N ' 2
2.9. L'C L 2 1-
(2.9.73) e Ll xp_l( €)s
“% where C_  is the centering matrix and ¢ = {log dii'}’ is the column

vector of logarithms of sample variances,

Proof. We proceed as in Corollary 2.9.5 but instead of T, use g_m,

say, where from (2.9.44),

(2.9.74) 23_;1 = (1-p2)_5 + %f_gf._'.
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2 .
1-p2

2
Hence T = [T - e ee'], and so
~m ~ p ~

(2.9.75) "1 3" - ergtye - 2 5 50,

'
?md ~ ~pr-—
1-p2

From (2.9.43), E‘e) = kg?g, where A\ is a function of p, r and p.
Thus QE‘L) = (log Ae + (Qﬁg)(c) = (log \)e + 2¢. Substituting in
(2.9.75) yields zifgéfj(l-pe), since C2= 0. The result follows. (qed)

COROLLARY 2.9.9. A large sample test of size ¢ for (2.9.68) based

on the modified estimator ‘3(2) has critical region

X

(2.9.76) L= [log (cy,/e, )1 = xE(1-0).

1-p
‘Proof. Using (2.9.74), 2(tii - tif) = 1-p2, Substitution in (2.7.17)
gives (2.9.76) immediately since Ega) - Egz) =4, - Lj. (qed)
In conclusion, we note that the test in Corollary 2.9.9 remains
unchanged if we use the sample variances DZ®e instead of E{Q). To

e P

see this, let (cf. (2.9.36))
(2.9.77) 22;1 = R*¥R = (l-p2)£+ ngg_'.

Then 2(t;'i - t:j) = 1-p2 = 2(t:;i - t;j) and the proof of Corollary
2.9.9 proceeds unchanged.
On the other hand, the test in Corollary 2.9.8 changes. From

(2.9.77)

(2.9.78) T, = 2 [I - —E— ee'],

1-2 7 1+ p3(p-1) T

and so
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(2.9.19) Wz 'rg") - Ee'g*2 -
an L FO'E - @7V 3 -
1-p% P (1-p2)(1 + p3(p-1))

2N[-—1— E(L)ééé(l’) _ —p3(p-1) (e'é(&))a]
1-p® p(1 + pZ(p-1))

which is the left-hand side of (2.9.73) minus

242 (p-1) ('3 )2/p(1 + p2(p-1)).
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APPENDIX A: ALGEBRA AND BIBLIOGRAPHY OF HADAMARD PRODUCTS - 66 -

1., Preliminaries.,

We will assume throughout this appendix, unless stated to the
contrary, that A = {aij} and B = {bij} are square matrices of
order p. Then following (2.2.1) we define the Hadamard product of

A and B as the square matrix of order p,

(A.1.1) A% = {a b .}

Halmos (1948), p. 144 appears to be the first to give the name
-;E Hadamard product to (A.l.1). It is not clear why this product was

so named, The French mathematician Jacques Hadamard (1865-1963) wrote

about 400 scientific papers (cf. Hadamard (1935), Cartwright (1965),
”$§ ﬁandelbrojt & Schwartz (1965)) as well as several books. The two
references to Hadamard most frequently citéd by later writers in this
area date to 1893 and 1903. 1In the first,Hadamard obtained an upper

bound for an arbitrary determinant, the special case of which, for a

parent positive (semi-) definite matrix, we give below as Lemma A.2.3.

7%% This result is used in §2.6 above and in establishing lower bounds for
|A¥B| below (Corollary A.2.6 and Theorem A.2.6). In the 1903 book,

iﬁ% Hadamard considers quadratic forms of the type §:(éf§)§3 but as

W?% far as this writer can determine only for the special case x = e,

Unaware of any previous work concerning the .product :(A.1.1), the
German mathematician Issai Schur (1875-1941) proved that whenever
A and B are positive (semi-) definite, then so is A*B. Schur (1911)
also proved a remarkable inequality (Theorem A.2.3) concerning the
characteristic roots of _A¥B  which appears to have been overlooked

by subsequent writers., Both results are presented in the next section,
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Thus the product (A.l.l) deserves the name Schur product, but

apparently only Majindar (1963) has used this term. Bellman (1960),

s

P. 107 presentes the first of Schur's two results but does not name

Nig the product. Following Halmos (1948), (1958), later writers including
_ Marcus & Khan (1959), Fiedler (1961), Marcus & Thompson (1963), and
=§@ Marcus & Minc (1964) call (A.1l.1) the Hadamard product. Other writers
using the product fail to give it a name, .

The notation used in (A.1.1) follows that of Marcus & Minc (1964),
p. 120. All the other literature on this topic that we have found uses
a different notation., Fiedler (1957), (1961), Marcus & Khan (1959),
and Marcus & Thompson (1963) use A o B, while Mirsky (1955), p. 421

uses A X B, Other writers use only scalar notation.

The Hadamard product differs from the usual product in many ways.
'mjﬁ To begin with, conformability of the orders of the component matrices

is quite different, When U and V are two matrices of orders

t Xu and v Xw, respectively, then we can define U*V whenever

t=v and u=w (if v =u in addition, we have (A.1.1), but this

et

is not, of course, necessary), while UV is defined only if u =v,

with no further restrictions.

Y

The role of identity matrix in Hadamard products is taken by ee',

 § the matrix with each component unity. That is

(A.1.2)  A¥ee' = A = ee'¥aA,

Hadamard multiplication is commutative unlike regular matrix multi-

plication, i.e.,

(A.1.3)  A¥B = B*A = {aijbij}'




The distributive property is retained, for

(a.1.4) (A +B)*C = AXC + BXC = {a e, # byye ],

where 9_ is also square of order p.
Diagonal matrices are easy to handle in Hadamard products. The

diagonal matrix formed from A is written

= A¥
(A.1.5) A, = A*L.

The row sums of A¥B are the diagonal elements of 1}3’ or BA'., Hence

we may write

(4.1.6)  (A%B)e = (aB')yee = (AB'*D)e
- ' - '
(BA') o2 = (BA'*D)e,

which becomes (AB) g = (AB¥I)e, when B 1is symmetric, and
(Ba) g = (BA¥*I)e, when A ié symmetric,
The trace of AB is the sum of all the elements of 1_&~*B~' , Or A*B

P e

when §' is symmetric. Thus
(A.1.7)  tr AB = e'(a*B')e,

which also follows directly from (A.1.6).
Multiplication of a Hadamard product by diagonal matrices enjoys

a useful associative property, When D. and D, are diagonal matrices

~1 ~2
of order p, we may write
= = *
(8.1.8)  y(a®)D, = (D,4%8)D, = DjAD*B
= (ax;B)D, = 4%D,BD,
- * = * -
= DAMED, = ADp*DE.
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-y

s We have studied the literature concerning Hadamard products and
-z present the main results in the next section. We also consider
i

3 applications to correlation matrices and conclude this appendix with
5 a bibliography.

2. Theorems,

;;g . The most widely used and possibly most important result concerning

Hadamard prbducts was proved, probably for the first time, by Issai

Schur in 1911.

% THEOREM A.2.1 [Schur (1911)]. When é_ and ‘B._ are positive semi-

| definite, then so is their Hadamard product A¥B. When either A

or B is positive definite then so also is AXB.

Proof. Consider the quadratic form:

i (A.2.1)  x'(A¥B)x,

R

where x is p X 1. There exists a matrix T, p X p, such that
B = I'T. Substituting in (A.2.1) gives

P
|}
(a.2.2) i§1 (x*Te, ) 'A(x*Te, ),

which is nonnegative when A and B are positive semi-definite,

When either A or B is nonsingular, (A.2.2) is positive. Hence
the result., (qed)

The above proof shortens the original version given by Schur (1911),

which is also given by Fej&r (1918), PSlya & Szego (1925) & (1954),

pp. 106-107, 307, Oppenheim (1930), Halmos (1948), pp. 143-1Lh, and

(1958), pp. 173-174, Mirsky (1955), p. 421, and Bellman (1960), p. 9k.
An interesting shorter proof follows directly from the following

lemma given by Marcus & Khan (1959) and Marcus & Minc (1964), pp. 120-121.




- 70 -
LEMMA A.2.1 [Marcus & Khan (1959)]. The Hadamard product is a principal

submatrix of the Kronecker product.

Theorem A.2.1 was extended in 1963 by Majindar, who showed that
any positive (semi-) definite matrix may be expressed as a Hadamard
product of two positive (semi-) definite matrices, though not necessarily
uniquely, We omit the proof of this result., Together with Theorem

A.2.1 we now have:

THEOREM A.2.2 [Schur (1911), Majindar (1963)]. A symmetric matrix is

‘E positive (semi-) definite if and only if it can be written as the
Hadamard product of two positive (semi-) definite matrices.
% A further result proved by Issai Schur in 1911 appears to have
ey " been overlooked by later writers., It is
’g THEOREM A.2.3 [Schur (1911)]. When A and B are positive (semi-)
definite, |
. ig (A.2.3) Chp(é-).bmin < chs(é;*lé_) < chl(é_)'bmax, 8 =1l,4445 Ps

where b . and b are the smallest and largest diagonal elements
——— ‘min — Tmax =

of B
@ Proof, Using (A.2.1) and (A.2.2) we may write
) ' P ' P '
1 (a.2.4)  xi(amhe= 2 (07e,)'Alwde,) < chy(8) 2 (00e,)" (xe,)
¥ - =

°h1(§)’i'(]}.*.1.)’f_s chl(z}._)bmax;g_':i.

This proves the right-hand side of (A.2.3). The.left-hand side follows
similarly. (qed)

COROLLARY A,2.1. When R is a correlation matrix and A 1is positive

,i'u.;‘».-::

| (semi-) definite,

wiet g

izniid



—
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(a.2.5) chp(A_;) < ch_(A%R) < ch, (), s = 1,..., p.

] ] < 1] !
Since Chp(g.)ii < x'Bx Chl@_)’f_ X, we obtain chp(l}_) $b S

b o S chl(g_) by putting x = e Thus we have

25
COROLLARY A.2.2. When A and B are positive (semi-) definite,

(A.2.6) chp(ﬁ)chp(g_) < chs(é‘*g_) < chl(é)chl(g_), s =1,..., P.

Theorem A.2.3 and Corollary A.2.2 give the following result
when A = B:

COROLLARY A.2.3. When A is positive (semi-) definite,

(a.2.7)  ch2(a) € ay; ch (&) < ch (alP)) < a ok (a) < B2, 8 = L.l b

In 1959, Marcus and Khan considered the connection between the
characteristic roots of a Hadamard product and those of the corresponding
Kronecker product.

if ¥gseees cvp and Bl,..., Bp are the characteristic roots of
A and B respectively, then the characteristic roots of A®B are

i, j=1,.e.5 p (Marcus (1960) & (196h)’ pP. 5)'

the p® quantities o,B

j;
THEOREM A.2.4 [Marcus & Khan (1959)]. When A and B are positive

(semi-) definite,

(a.2.8)  ch (A)eh (B) < ch o (ADB) < ch (A*B) < ch (A®B) < ch,(A)ch, (B),

8 = 1,..., p-

"Prooi, The result follows directly from Cauchy's Inequalities (Marcus &
Minc (1964), p. 119) and Lemma A.2.1. (qed)
The s-th largest characteristic root of A¥B is thus seen to

lie between the s-th and (s + p2 - p)-th largest of the pairs



.
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aiﬁj; i, 3 =1,..4, p. Extending Theorem A,.2.4 we obtain:
COROLLARY A.2.4. When A and B are positive (semi-) definite,

p-1 P

(a.2.9) ;;];[o ch 2 (a@B) s |a%B| < 81;[ ch_(AsB).

Thus we see that |A¥B| 1lies between the products of the p
largest and p smallest characteristic roots of 5992, A sharper
lower bound is obtained below, but first we introduce the following
additional notation. We will let éi denote the lower principal
submatrix of A of order p-i, with éo = A. We will use the
following lemma:

LEMMA A.2.2 [Mirsky .(19%5),p,k21].When é_ is positive (semi-) definite,

(o] A [

is positive semi-definite.

Proof, When A is singular, (A.2.10) is A and so positive semi-

definite by definition. When A 1is nonsingular,

-1 -1 11
(A.2.11)  ATAY =1 - ATejei/an

1 _,,-1 -1
where a’’= ejA""e, = lélllléJ’ the leading element of A ~. Now

(A.2.11) is symmetric idempotent, so é? is positive semi-definite. (qed)

From this lemma we obtain immediately

(A.2.12) auallz 1,

and so aiiaii 21, i=1,..., p (Fiedler (1961)). Also (A.2.12) may

be written [A] < a . |A,|. Similarly la, | = a22|§e| and so

4] < 258,514,

result of 1893.

. Proceeding inductively we obtain Hadamard's classic
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LEMMA A,2.3 [Hadamard (1893)]. When A is positive (semi-) definite,

(A.2.13) |A] = 8180 ee 8

1R Marcus (1960) & (1964), p. 14 calls Lemma A.2.3 the Hadamard

determinant theorem. An alternate proof of (A.2.13) is due to

Hardy, Littlewood, énd PSlya (1934) & (196&), PP. 3%, 35 writing A
in terms of a correlation matrix. We give this as the following
corollary:

COROLLARY A,2.5. When R 1is a correlation matrix, the diagonal

elements of 3_1,

(A.Q.lh) rii P 1, i = 1’000’ p’

and

(a.2.15) |R| s 1.

b

Proof, (A.2.14) follows directly from (A.2.12)., To show (A.2.15) we

ff% use the arithmetic mean/geometric mean inequality:

- |4 z chs(R) P
3 (A.2.16) |R| = [ en (R) s [ — | - (EERyP o,
X s=1 ° P P

and (A.2.15) is proved. (qed)

k ...,‘.'.1’3. .

Pre- and post-multiplication of R by D yields DRD, where D

is a diagonal matrix. We may express any positive (semi-) definite

-5
ﬂ
R

matrix A in the form DRD (unless A has zero row(s)/colum(s)),
as in (2.1.4). Hence (A.2.13) and (A.2.15) are equivalent.
We now establish a lower bound for Iéfgj, first proved in 1930
by the British mathematician (later Sir) Alexander Oppenheim (1903- ).

THEOREM A.2.5 [Oppenheim (1930)]. When A and B are positive (semi-)

definite,

————F
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A% ’ (A.2.17)  |a*B] = [A]b ... b

PP’

Proof, When A 1is singular or B has a zero diagonal element,(A.2.17)

is trivially satisfied. When A 1is nonsingular and B has no zero
5 1
j : - diagonal elements we may write B = BZ R32 and (A.2.17) is equivalent

adgwd

(a.2.18)  |axr] = |a].

Using Theorem A.2.1 and Lemma A.2.2, we have

| (A - /an)*l_’:J

(A.2.19) 0 < |A%]

|aA%R - e ﬂ/aul

Pn

k. = [A*R](1 - e;(A*R) e, /a").
»ig{ .
B Thus [AXR] 2 [A; %R, |*|a]/|a;|. Similarly [A,*R,[| = [A %R, [ |8, 171451,
so that |A*R] R, |+|4]/]A,|. Proceeding inductively we obtain
i | _ N
(A.2.18) since |A Pk ,.p- |/|A | = app/app 1. (qed)

Applying Lemma A,2.3 to Theorem A.2.5 yields the following

additional lower bound for Iﬁx_.B_i

é COROLLARY A.2.6 [Oppenheim (1930)]. When A and B are positive

(semi-) definite,

(a.2.20) |a*B] = |a)-[B].

We use Theorem A.2.5 to obtain a tighter lower bound than that

in (A.2.17). The only proof we have found in the literature (§3 below)
is in the same 1930 paper of Oppenheim, who credits it to Schur (1911),

x:,g |
- p. 14, which, however, presents only Theorems A.2.l1 and A.2.3. Mirsky
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g (1955), p. 421 mentions. the 8harpening . of (A.2.17) but gives no
proof., Mirsky credits Schur, but clearly is following Oppenheim (1930).

Marcus (1960) & (1964), p. 14 calls (A.2.21) the Schur Inequality.

THEOREM A.2.6 [Oppenheim (1930)]. When A and B are positive (semi-)

definite,

(a.2.21) |axs| + [a]-]B] =2 |4§.J‘-b11... bpp +ayp0.e app|§J.

-
e Proof. If either A or B is singular,(A.2.21) reduces to (A.2.17).

Thus let A and B be positive definite, Then we may write A

and B in terms of correlation matrices Q and R, so that using

(A.1.8), we may write (A.2.21) as

]
"g (a.2.22) o] + [QJ-|R] = [Q] + |R].

o _ v, 11 n_ o, -1 )
E From Lemma A,2.2, R =R - e e /xr™, where r = 2.1?; ey is positive
semi-definite. Hence by Theorem A.2.1, Q¥R° 1is positive definite.
g Thus by (A.2.17),
11 0 11
% (a.2.23) |QJ(1 - 1/r7) < || = |Q*R - e, /t |
|Q,*R, |
. 1"
, = o) (1 - ——=p)-
|QR ]

That is,

(4.2.24)  |Q*] - g, |/=M = [g) - lgJ /2

Let &, . = |Q*R. | + |Q[R]| - lo;| - |R;[i=0,1,..i,p-1. Then ¢, 20 1is

equivalent to (A.2.22). We may write (A.2.24), after some rearrangement,

as

(a.2.25) o -t /rtte (et (R))(g ] - 1g))-




4

.

M ! Pf:‘a"; =
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The first factor is (1 - Igll)lfllwhich is nonnegative by (A.2.15).
The second factor is nonnegative from (A.2.12), and hence so is each

side of (A.2.25). Thus &, = L |R|/|R|. sSimilarly ¢, = z3|§4|/|§2|,

1

so that ¢, 2 £2|§J/|§2|. Proceeding inductively we obtain ¢, 20

(i.e., (A.2.22)), since

(A.2.26) ¢ . =1-q%?+ (1-4®)(1-r®) - (1-¢®) - (1-r?) = O,

p!-].

where q = q_ and r=r

p,p-1 pop-1w  (98d)

Fiedler (1957), (1961) studied the characteristic roots of éféjl,
where A is positive definite. From (A.1.6) it follows that all the
row sums are unity, and so éféjl has a characteristic root of
unity with e the corresponding characteristic vector. This result

is strengthened when tied in with the reducibility of A. We will

say that A has reducibility index s-1, when by roﬁ and column

permutations we can write A as

r— + —

épll o e 9 0. o
A A LN ] o
(A.2.27) 2l =2 . >
A1 A e Ay
where éii’ i=1,..., 8, are square and cannot be reduced further.

We may call the A, irreducible, or with reducibility index O.

Hence (we omit the proof)

THEOREM A.2.7 [Fiedler (1957)]. When A is positive definite with

reducibility index s-1, then A*gfl has minimum characteristic root

unity, with multiplicity s, characteristic vector e, and reducibilty

index s-1,

Marcus & Khan (1959) considered the Hadamard product of elementwise

nonnegative matrices é_ and B. They proved that in such a case
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(A.2.28) chl(g_*;;) < chl(g)chl(B_).

In 1963, Marcus and Thompson considered the Hadamard product of

% normal matrices, and proved (we omit the proof)
&

THEOREM A.2.8 [Marcus & Thompson (1963)]. Let A and B be normal

matrices with characteristic roots Uyseees dp and Bl,..., B ’

respectively. Then the characteristic roots of A¥B 1lie in a

subset of the convex Eolzgon in the plane supported by o, Bj [2(diBj+ ajBi)

when A and B commute].
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APPENDIX B: COMPUTER PROGRAMS

1.

100

103

101

We present listings of the computer programs used on the CDC 6600 at the University of Minnesota
to generate Tables 2.9.2 and 2.9.3.

TABLE 2.9.2,

PROGRAM EFCY (OUTPUT+PUNCH)

DIMENSION ROW]1 (13)+ROW2(13)+ROW3(13)+NP(13)+sIMAT(14)¢IMAU(14)
DO 1 I=1.9

NP (1)=1+1

DO 2 1=10,13

NP (1)=10%(1-8)

PRINT 100.NP

FORMAT (1H1 +16X+2HP=+1316/710X410H REL+EFFe/)
RHO=099

DO 3 I1=1+13

P=NP (1)

T=1e0+(P—2¢0)%#RHO—= (P—14¢0)*¥RHO*RHO
RESV=RESM (RHO +P+T)

ROW1 (I)=(1 ¢0+ (P—1 0 )#RHO#*RHO) #RESV
ROW2(1)=BDRE (RHO P+ T)

ROW3(1)=RESV

CONT INUE

PUNCH 103+ RHOs ROW1s ROW3

FORMAT(FS5¢2+10H MODIFIED ¢13F562/5Xe10H SAMPLE +13FS5e2/)
PRINT 101 +RHO+ROW] yROW3sROW2

FORMAT (1H +4HRHO=4FS5e2+10H MODIFIED+13F6¢3/

1/10Xs 10H SAMPLE +13F643/10Xs10H4 BOUND 113F6e3//)

IF(RHOeEQe0e99) RHO=140
IF (RHOEQeOe0O1Y GO TO 6
RHO=RHO~Oe1

IF (RHO el,LEe¢0e0) RHO=0,01
GO TO 4

CONTINUE

PRINT 100s,NP

DO 22 J=1.13

K=14=J

- 6 -



TABLE 2.9.2 (ctd.)

104

102

21

22

ENCODE (10041044 IMAU) KoK

FORMAT (#(4H —1/+12+9H MODIFIED*I3%¥F5.2/5X+10H SAMPLE

1F5e2/)%)
ENCODE (10041024 IMAT) (Kel=143)

1

FORMAT (# (1 HO 4 7HRHO==1/+13+9H MODIF JED*I3%#F5¢3//710X+10H
*¥I3XF6e3)%)

I3%F663/10Xs10H BOUND
NQ=NP (K
Q=NP (K)
RHO=~10/Q
DO 21 I=1sK
P=NP (1)

T=1e04+(P-2¢0)%¥RHO=(P~160)*RHO*RHO

RESV=RESM(RHO+PsT)

ROW1(1)=(1e0+4+(P~1+0)%RHO*¥RHO ) *RESV

ROW3 (1 )=BORE (RHO+P4T)
ROW2 (1 )=RESV
PRINT IMATs NQo

SToP

END

FUNCTION RESM(RHO+P+T)
NP=pP

A=1 40+ (P=1 ¢0 ) ¥RHO#*#RHO
B=1 ¢ 0—~RHO*RHO

C=1 ¢ O+P¥RHO*¥RHO/ (T+T)
RESM= (B#C ) *¥ (1=NP) /A
RETURN

END

FUNCT1ON BDRE (RHOsP+T)
NP =p

A=1 o0+ (P=] ¢ O ) ¥RHO#RHO/ ( T+T )
BORE=A%% (-NP §

RETURN

END

(ROW3(L)sL=1¢K)

' HI 3%

SAMPLE

(ROWL (L)ol=1¢K) o (ROWI(LL)sL=1+K) e (ROW2 (L) slL=1+K)
PUNCH IMAUs NQs (ROWI(L)sL=14¢K)>

*
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