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Abstract 

Examining lack-of-fit of a regression model is one of the fundamental 

problems in using regression methodology. Cook and Weisberg (1997) 

proposed a graphical method for this problem called model checking plots. 

The basic idea is to compare a nonparametric estimate of a mean function 

in the 2D scatterplot of the response versus a projection of the predictors 

to another estimate that is valid only if the model fit is correct. Repeating 

this process for many projections provides evidence concerning the lack­

of-fit of the model. In this article, we provide statistics that can be used 

to calibrate these plots, including reference bands (Bowman and Young, 

1996), and test statistics that are valid conditionally given the projection 

based on an approximating distribution (Bowman and Azzalini, 1997) or 

on the bootstrap (Efron and Tibshirani, 1993). 

KEYWORDS: Lack-of-fit, graphical methods, regression, bootstrap, Chi­

squared approximations 

1 Introduction 

One of the fundamental problems of regression analysis is judging the goodness 

of fit of a model to the data at hand. A very large literature on this problem ex­

ists. For example, in a fitted linear model with repeated observations at several 
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values of the predictors, a standard F-test is available (e.g., Weisberg, 1985, 

Sec. 4.2-4.3). For binomial regression, Landwehr, Pregibon and Shoemaker 

(1984) proposed using cluster analysis to obtain near-replicates as the basis for 

lack of fit testing. Atkinson (1970) proposed tests for discriminating between 

separate families of models. Less formal methods of model comparison based 

on graphical examination of residuals (see, e.g., Cook and Weisberg, 1982, or 

Atkinson, 1985) are also a standard part of data analysis. 

More recently, nonparametric function estimation has been used to compare 

models, as discussed in books by Bowman and Azzalini (1997) and Hart (1997). 

Other important references include Hastie and Tibshirani (1990) for generalized 

additive models, and Azzalini, Bowman and Hardie (1989) and Azzalini and 

Bowman (1993) primarily for problems with one predictor, and Young and 

Bowman (1995) for covariance analysis. 

A new graphical approach to this old problem was presented by Cook and 

Weisberg (1997} using model checking plots. Model checking plots permit graph­

ical assessment of a model by looking at many 2D or possibly 3D plots. In each 

plot, the user compares a fitted function suggested by the data to a fitted func­

tion computed from the model. If these are the same for many plots, then the 

model is effectively reproducing the data; otherwise, the model is inadequate. 

In this article1 we drive methods for calibrating model checking plots. Ap­

plying the methodology of Bowman and Young (1996), we obtain pointwise 

reference bands that can be interpreted as an acceptance region on the differ­

ence between the curves. Following Azzalini and Bowman (1993) an overall test 

of significance between the two fitted functions is given. 

Section 2 contains a brief summary of model checking plots. Section 3 

presents methodology for a reference band for equality, and contains several 

examples. In Section 4 the overall test is proposed and related aspects are 

investigated, while the last section contains further remarks. 

2 Model Checking Plots 

Suppose we have a regression problem in which we have observed n independent 

copies (xi, Yi) of the random variable (x, y), where xis of dimension p and y is 

a scalar. The regression problem is the study of the conditional distributions 

F(ylx}; if F were known, then the regression problem would be completely 

solved. Suppose that we have a model for the regression problem, and under 
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the model the conditional distribution of ylx is given by .N/(ylx, 8), for some 

unknown vector of parameters 0. We assume we can obtain a consistent estimate 

iJ of 8, given that M = F, and the estimated conditional cdf is .NI(ylx, 8). The 

goal is to decide if F(ylx) = M(ylx, 0). 

Since both F(yjx) and M(ylx, fJ) are objects in (p + !)-dimensional space, 

direct graphical comparison of these functions is possible only if p = l or possi­

bly p = 2. When p > 2, one- and two-dimensional graphs display projections of 

the full conditional distributions to lower dimensions, and these projections can 

miss relevant information. Model checking plots are derived from the followi~g 

result: two conditional distributions F(ylx) and M(ylx) are the same if and 

only if F(yja'x) = M(yla'x) for all a, II a II = 1. In words, two cdfs are identical 

if and only if they agree on all 2D margins. This suggests that we have evidence 

concerning the fit of a model by examining margins. We have therefore traded 

the comparison of two (p + !)-dimensional surfaces for a potentially infinite 

number of comparisons of two-dimensional surfaces. 

Regression problems are often summarized by the conditional mean func­

tion. Assuming the mean and the variance function are sufficiently smooth, a 

smoother fit to the scatterplot of y versus a'x provides a nonparametric esti­

mate of Ep(yla'x), the conditional mean function under the true distribution F, 

whether or not Mis appropriate for the data. To get an estimate of EM(yla'x), 

we write 

EM(yla'x) = E (EM(ylx)la'x] ~ E(yla'x) 

where the equality follows from the formula for iterated conditional expecta­

tions, and the approximate equality follows if we assume that EM(ylx) ~ y, the 

fitted values under the model M. This is equivalent to assuming that 8 ~ 0, or 

M(ylx, 8) ~ M(ylx, 8) (Cook and Weisbecg, 1997). The effects of substituting 

estimates for parameters are well known in general, and are generally of lower 

order than the dominant terms of interest here. Consequently, we will write 

M(ylx) in place of M(ylx, 0). 
Collect the data (xi, Yi), i = 1, ... , n into the n x l vector y and the n x 

p matrix X, excluding a constant column for the intercept. A direction a 

in p-dimensional space is now equivalent to the vector Xa in n-dimensional 

space. Let A be a set consisting of "interesting" directions Xa1, • .. Xad, where 

II aJ II = 1. Cook and Weisberg (1997) discuss how one might choose A in 
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practice. For a fixed value of a, the model checking plot is computed as follows: 

1. Draw the scatterplot of y versus Xa and compute a nonparametric esti­

mate of Ep(y!Xa). For the results of this paper to apply, the smoother 

must be linear, which means that the smoothed values can be written as 

Ya = W aY for some n x n matrix W a that depends on Xa, the type 

of smoother, and on one or more bandwidth parameters. We have used 

smoothing splines (Green and Silverman, 1994), but other smoothers such 

as local polynomials (Bowman and Azzalini, 1997) can be used. For now, 

we assume that the bandwidth is fixed. 

2. For fixed a, draw a scatterplot of y versus Xa, where we have collected 

the fitted values Yi into y. The smoothed values Ya = W aY provides an 

estimate ofEM(YIXa). Ifwe use the same smoothing matrix Wa for both 

curves, then the pointwise bias in the estimates will cancel when the two 

curves are compared, thus making the choice of the bandwid'th somewhat 

less important that it is in most smoothing problems. 

3. Plot the two smooths on the same graph, perhaps on the plot of y versus 

Xa. If the model is the same as F, then the two smooths estimate the 

same function; if F -=f: M, then the two smooths will be different for some 

choices of a. 

Model checking plots must be repeated for all a E A. If the two curves on 

all model checking plots agree, then we have no evidence that the model is 

unacceptable. 

3 Pointwise Reference Bands 

To help use model checking plots, we propose adding a reference band for 

equality to the plot. The reference band is interpreted as a pointwise acceptance 

region for the hypothesis F(yjXa) = M(yjXa). It was used by Bowman and 

Young (1996) and by Bowman and Azzalini (1997) to compare nonparametric 

estimates. 

Although model checking plots can be used more generally, for this article 

we limit ourselves to the linear regression model given by 

y = .Bol + X,B + ae (1) 
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where 0 = (/3o,/3, a)T and c is a random vector with zero mean and Var(c) = I. 

Let y be then x 1 vector of the ols fitted values under M, and let H then x n 

projection matrix such that y = Hy. The smoothed values are given by: 

Ya = EF(YIXa) = Way 

Ya = EM(yJXa) =Way= WaHY 

(2) 

(3) 

We assume that the smoothing parameter h that determines W a is fixed; we 

will address this point later. 

The difference between the smoothers is 

Ya-§ a= Wa(I- H)y = War, 

with r = (I - H)y the ols residual vector. The variance of this difference is 

(4) 

To estimate (4) we need an estimate of Varp(rlXa). The simplest estimate is 

obtained under the assumption that M = F, for in this case the residuals r are 

independent of X, and consequently 

Varp(rJXa) = Var(r) = a 2 (1 ~ H) 

We can estimate a2 from the fit of M using the residual mean square, &2 = 
r'r/(n - p - 1), or a2 could be estimated nonparametrically. 

Without assuming M = F, write 

Varp(r!Xa) = (I - H)Varp(y!Xa)(I - H) 

where Varp(y!Xa) is a diagonal matrix. If Varp(yjXa) = r 2I, as might be 

a reasonable assumption if F ~ M and the predictors are approximately nor­

mally distributed, then r 2 can be estimated from the regression of y on Xa 

using a nonparametric method such as the one proposed by Rice (1984). If 

the assumption of constant variance is not reasonable, then VarF(yjXa) can 

be estimated using a variance smooth, as suggested by Ruppert, Wand, Holst, 

and Hossjer (1997). This last approach adds considerably to the computational 

complexity. Estimating variance by smoothing adds another bandwidth to the 

problem. In the examples discussed below, we have estimated r 2 using Rice's 
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method. 

The reference band for equality is obtained by superimposing a shaded band 

centered at the average of the two smoothers and with width given by twice 

the standard error of the difference between the curves at each point, in our 

case the square root of an estimate of the corresponding diagonal element of 

Va given by (4) with an estimate substituted for Varp{rlXa). Under normality 

of the errors this band corresponds to an asymptotic 95% pointwise confidence 

interval. If the fitted curves lie substantially outside the reference band, we 

have evidence against the hypothesis that M and F are the same. 

3.1 Computations 

The bounds depend on the matrix W a· First, suppose that the i-th row Wi of 

W a were available. Let QR be the QR-factorization of (1, X), so H = QQ'. 

Using the second approximation for Varp(rlXa), the i-th diagonal element of 

the matrix Wa(I - H)Wa' = Wa Wa' - WaQQ'Wa' can be computed as 

II wi 11
2 

- II Q'wi 11
2

, and the estimated pointwise variance can then be computed 

as 

To obtain the pointwise reference band, we need the rows of the n x n smoother 

matrix Wa. For graphical presentation, computing the pointwise variance is 

required for only a few nearly equally spaced points. Assuming that Ep(ylXa) 

is smooth, as few as ten to twenty evaluations of the pointwise variance give a 

fair representation of the bands. 

Most computer programs for linear smoothers including smooth. spline in 

Splus do not provide the rows of W a, although providing the diagonal elements 

of W a is common. Bowman and Azzalini (1997) provide code for local linear 

smoothers that returns the matrix W a in full in their sm library. If the rows of 

W a are not available but W a is symmetric, as is the case for smoothing splines, 

the rows of W a can be computed by repeated calls to the routine for smoothing. 

Let Ui be then x l vector with 1 in i-th position and zeroes elsewhere. Then the 

smooth of Ui on Xa will return W a ui, the i-th column of W a, equal to the i-th 

row by symmetry. For each evaluation of the pointwise variance, one evaluation 

of the smoother is required, so this method can be computationally intensive. 

The Bowman and Azzalini procedure substitutes computer time for computer 

storage, since they require an n x n array be kept. This can be prohibitive for 
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n of 1000 or more, but even here storage can be minimized by using binning 

(see, e.g., Fan and Marron, 1994). 

3.2 Examples 

Box and Cox {1964) presented an example that models y = number of cycles 

to failure for wool yarn samples in a 33 factorial design with factors length of 

test specimen, amplitude of loading cycle, and the load. We fit a first-order 

model to these data, and Figure 1 shows the model checking plot with Xa = y, 
the fitted values. The solid line is the smoother estimated under F, while the 

dashed line is the smoother estimated from lvl. Smoothing splines were used 

with bandwidth chosen via cross-validation of the estimate for F, although the 

value of the smoothing parameter has little effect on the appearance of the plot, 

in agreement with results given by Bowman and Young {1996). 

The reference band is the shaded area in the plot. As previously pointed 

out, where the smoothers lie out of the shaded area it can be inferred that the 

model does not describe completely the data. In Figure 1 the two fitted curves 

appear to disagree, and the reference band verifies this impression, since the 

curves are generally outside the reference band. We conclude ( as did Box and 

Cox) that a first-order mean function does not adequately match these data. 

Figure 2 shows model checking plots for the cherry tree data (Ryan, Joiner 

and Ryan, 1985) that were used by Bowman and Azzalini {1997, page 96) to 

illustrate a lack-of-fit test based on comparing two-dimensional nonparametric 

and parametric estimates. They used a linear model with response tree volume 

and two predictors tree diameter and tree height. Figure 2a shows the model 

checking plot for fitted values and Figure 2b for diameter. In both cases the 

curves are generally outside the reference bands, suggesting this model is inap­

propriate ( dimensional considerations wou!d of course suggest using logarithms 

in this problem). 

As a final example, we used the fuel consumption data ( Cook and Weisberg, 

1994, page 207), which has response per capita motor fuel consumption and 

predictors per capita income, the number of vehicles per person, the tax rate, 

and the average miles per vehicle. The data are for the fifty U. S. states and the 

District of Columbia. We used a first-order linear model. In Figure 3 we show 

the model checking plot in the directions of the linear model fitted values and 

of the predictor vehicles per person. The curves appear to deviate most from 

the reference bands at the extreme right of the plots, where one point seems 
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-3000 -2500 

Figure 1: Model checking plots for wool data. Fitted values direction. 

to be influential for the fit. When this case (Wyoming) is deleted, we get the 

model checking plots shown in Figure 4; in these two views, and any others we 

tried, the two curves are generally within the reference bands. In particular we 

note that in the direction of the fitted values the two smoothers are practically 

coincident and their reference band is not visible. 

4 Tests 

The information in a model checking plot·can also be summarized with a test 

statistic. Comparing a nonparametric and a parametric fit with a single pre­

dictor has been described by Hart (1997) and by Bowman and Azzalini (1997), 

and the references they provide. We generally follow the suggestions of Bowman 

and Azzalini. 

We consider an hypothesis test for a fixed direction a 

Ho : Ep(ylXa) = EM(YIXa). (5) 
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Figure 2: Model checking plots for cherry trees data. Top (a): fitted values 
direction. Bottom (b): diameter predictor direction. 
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Figure 3: Model checking plots for fuel data. Top (a) : fit ted val ues direction. 
Bottom (b ): vehicles per person predictor direction. 
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Figure 4: Model checking plots for fuel data with Wyoming deleted. Top (a): 
fitted values direction. Bottom (b): vehicles per person predictor direction. 
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t: 

against a general alternative. For a test, we use estimators (2) and (3) and 

evaluate their difference by 

Ep(ylXa) - EM(YIXa) = Ya - ya 

= Way- WaHY = Wa(Y -y) 

Taking the norm of this difference and dividing by &2 = r' r / ( n - p - 1) for scale 

invariance, we have the test statistic 

Ta = 

= 

4.1 Test Distribution 

IIWa(I- H)yll2 

(6) 

(7) 

Both the numerator and denominator of (7) are quadratic forms. The numer­

ator can be written as 

II War 11
2 = c' cr(I - H)Wa'W a(I - H)at: = a 2t:1 At: 

with A= (I- H)Wa'Wa(I- H), or A= (I- H)Wa2(1- H) if Wais sym­

metric. If t: has a normal distribution, then using standard results on quadratic 

forms (e.g. Box, 1954), 

n 

t:'At: r,J LAiXi· (8) 
i=l 

which is a a weighted sum of Xi random variables with the Ai equal to the eigen­

values of A. Although the denominator is distributed as a2x[n-p-l)' the nu­

merator and the denominator are not independent. Following Eagleson (1989) 

and Azzalini and Bowman {1993), we consider the p-value Pr(Ta > t) where t 

is the observed value of the test statistic. We can write 

Pr(Ta > t) = Pr(r'Wa'War > tr'r/(n - p - 1)) 

= Pr(r'[(n - p - l)Wa'W a - tI]r > 0) 

= Pr(r' A *r > 0). 
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with 

A* = ( n - p - 1) W a'W a - ti 

The p-value for fixed a can be evaluated as the probability that a quadratic form 

in normal variables is greater than zero. Since the quadratic form is distributed 

as a linear combination of x2 random variables, as in (8), the p-value could be 

computed exactly (see e.g. Khatri, 1980) but its evaluation requires computing 

the eigenvalues of the n x n matrix A*. An accurate approximation is available 

by matching moments. 

4.2 Chi-squared Approximation 

Using the method described by Buckley and Eagleson (1988) and by Azzalini 

and Bowman {1993), the p-value (9) can be approximated to second order by 

matching moments. The j-th cumulant of the quadratic form is given by 

(10) 

Replacing a2 with the usual estimate u2 and matching the moments of an axf +c 

distribution with the moments of the quadratic form, we have 

a= jk31/{4k2), b = (Bk~)/kl, c = k1 - ab, 

the required p-value can be approximated accurately as 1 - q, where q is 

the probability of lying below the point -cf a in a x2 distribution with b de­

gree of freedom. This procedure requires computing the diagonal elements of 

{u2 (1 - H)A *)i, j = 1, 2, 3, still a fairly expensive calculation. 

4.3 Bootstrap 

When normality of errors is questionable, the bootstrap can be used to get 

a p-value. Using the bootstrapping residuals method {Efron and Tibshirani, 

1993), resampled responses are given by y* = /3ol + X'/3 + r*, with r* sampled 

with replacement from r, and the '/3's ols estimate under the model (1). The 

resampled data (X, y*) are then used to compute the resampled test statistic 

T* = (n _ - l) IIWa(I-H)y* 112 
a P II (I - H)y* 11 2 
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This process is repeated B times and the bootstrap p-value is the fraction of 

times T; exceeds the observed value of the test t. 

To compare the Chi-squared approximation with the bootstrap, we gener­

ated 500 samples in a simple linear regression model and computed the test 

and the p-values using both approximations. The samples were generated in 

the following way. First, a predictor x r>w N{O, I) was generated, then the re­

sponse was generated as y = 1 + x + c, with c r>w N{O, I). Each sample has 

100 observations and the number of bootstrap resampling for each sample was 

fixed at B = 99. In each case, the projection direction was a = 1; in simple 

regression, there is only one possible choice. The weight matrix W a depends on 

x and on the bandwidth. We selected the bandwidth from the first generated 

sample via cross-validation, and then kept it fixed throughout the remaining 

simulations. Since the null hypothesis is true, the distribution of the p-values 

should be uniform on ( 0, 1). 

Uniform qq-plots for the p-values using the Chi-squared approximation are 

shown in Figure 5a, and for the bootstrap in Figure 5b. Figure 5c is a plot of 

the Chi-squared p-values versus the bootstrap with the 45° line superimposed. 

Under normality both the Chi-squared approximation and the bootstrap p­

values have the expected uniform distribution. Also, the p-values computed in 

the two ways substantially agree; their correlation is greater than 0.988. A few 

trial runs have shown that if B is increased, the two p-values tends to be even 

closer. 

4.4 Random Smoothing Matrix 

When the smoothing parameter h is a function of the data, then W a is random 

and the Chi-square and bootstrap approximations are not appropriate. We 

suggest using a modified version of the b_ootstrap procedure. Let w: denote 

the smoothing matrix recomputed at each bootstrap resampling, using the same 

criterion for the choice of h used once for the test evaluation. For example, if 

we have used cross-validation to compute the value of the test statistic we will 

use cross-validation on the bootstrapped sample, and then a different h for each 

sample. The bootstrapped test will be given now by 

T** = (n _ p- l) IIW;(I- H)y* 11
2 

a II {I - H)y* 112 ' 
{11) 
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Figure 5: The p-values under fixed smoothing matrix. Uniform Q-Q plots of the 
x2 approximation (a), and using bootstrap (b), comparison of x2 approximation 
and bootstrap (c). 
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c. Bootstrap p-values with smoothing matrix recomputed. 

Figure 6: Uniform Q-Q plots of the p-values under random smoothing matrix. 
x2 approximation (a), bootstrap without smoothing matrix recomputed (b), 
bootstrap with smoothing matrix recomputed (c). 

and, as before, the bootstrap p-value will be the fraction of times T;* exceeds 

the observed value of the test. 

Figure 6 reports a simulation of this bootstrapping procedure for the setup 

discussed in Section 4.3 except that now we allow for random smoothing matrix 

computing via cross-validation a new matrix for each sample. With a random 

smoothing matrix, the modified bootstrap procedure reproduces the exact dis­

tribution of the test. The other two approaches yield a test p-value that is 

somewhat conservative, but probably sufficiently accurate for most purposes. 

4.5 Power Evaluation 

Additional simulations were performed to study the power of the test. The null 

hypothesis is given by (5) in a linear regression setting, while the alternative 
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hypothesis we used is 

H1 : E(yjX) = /3ol + (1 - c)X/3 + cg(X) (12) 

with O < c :5 1. The model under the alternative hypothesis is composed of a 

linear part and a nonlinear part g. The parameter c controls the nonlinearity 

in the model. 

The simulations were performed as follows: 

1. Fix c, f3o, {3 and the function g. For fixed nonlinear g, c = 0 corresponds 

to the null hypothesis, and increasing c moves us away from the null 

hypothesis. 

2. Generate an n x p predictors matrix X, with rows independently drawn 

from N(O, Ip). 

3. Generate a normal response variable y with mean given by- (12) ~and co­

variance matrix In. 

4. Fix a and use the values of (y, X) to compute the weights matrix W a• The 

smoothing parameter h was computed via cross-validation, as discussed 

below. 

5. Generate a sample as in step 3. 

6. Compute the test statistic Ta for this sample using the weight matrix W a 

computed in Step 4. 

7. Compute the p-value of the test for each generated sample via the Chi­

square approximation. 

8. Repeat 5-7 N times. 

The smoothing parameter h was selected in Step 4 via cross-validation either 

from the residual regression of r on Xa or from the response regression of y 

on Xa. We have ignored the extra variability due to estimating h from data, 

resulting in conservative estimates of power. We considered two choices for the 

function g. First we considered the quadratic function of the linear combination 

/3 of the predictors, g(X) = (X/3)2, where the operation is done elementwise. 

According to Cook and Weisberg (in press), this is a model with one-dimensional 

structure because the mean function depends on the predictors only through 
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Figure 7: Estimated power curves for p = 10, a = 0.05. g(X) = (X,8)2 left, 
g(X) = (Xui)2 right. Projection directions: /3 = *, .B = f:j., and u1 = •. 

a single linear combination. The second choice of g was quadratk in the first 

predictor, g(X) = (Xu1)2, where u1 is a vector of all zeroes except for the first 

element which is a one. For this model, the structural dimension is two. This 

second model is intrinsically more complicated than the first. 

Although we studied a range of values for p, we only report on p = 10. In 

addition, we set n = 100, N = 500, .Bo = 1 and .B = 1. Common random seeds 

were used to decrease variance of comparisons between runs. 

We report only the case of p = 10, since results are similar for other num­

bers of predictors. The power depends somewhat on the way the bandwidth is 

estimated, with cross-validation on the response variable somewhat more pow­

erful. Results from the simulations using cross-validation on the response are 

shown in Figures 7 and 8. 

For both a = 0.05 and a = 0.01 the test is effective even for low levels 

of contamination (note that when g(X) ~ (Xui)2 the contamination level of 

the data is actually 0.lc, since only one predictor out of ten is contaminated). 

Power is much higher when the plotting direction a corresponds to the true 

direction of contamination than it is if a is incorrectly specified. This reinforces 

the need to generally consider many plotting directions. 

4.6 Examples Revisited 

The tests proposed here confirms the visual results obtained for the examples 

in Section 3.2. For the wool data set, the p-value is 0.005 when a is the fitted 
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Figure 8: Estimated power curves for p = 10, a = 0.01. g(X) = (X,B)2 left, 
g(X) = (Xui)2 right. Projection directions: /3 = *, ,B = D., and u 1 = •. 

value direction, confirming the graphical impression that the model with the 

untransformed response is not adequate. For the cherry trees data, we have had 

a p-value of 0.002 for both the direction of the linear model fitted values and 

the diameter predictor direction. For the fuel data, when Wyoming is present, 

the approximate p-value is 0.001 when the test is performed in the fitted values 

direction, and it is 0.006 in the vehicles per person predictor direction. When 

Wyoming is omitted l,from the analysis, the p-values in these directions are 

both non significant, being respectively 0.304 and 0.321. 

5 Discussion 

The reference bands and the overall test are complementary and potentially 

useful in examining the fit or lack of fit of a regression model. As an additional 

point, we have found that even if the usual x2 approximation does not reproduce 

the exact distribution of quadratic forms based on linear smoothers, it yields 

an useful conservative bound. 

Both the tests and the reference bands are conditional on the choice of the 

direction a, and so a related problem is finding a that will maximize, at least ap­

proximately, the test Ta, and then finding the distribution for the statistic found 

in this way. This is very similar to projection pursuit regression (Friedman and 

Stuetzle, 1981), and we hope to report on this related problem elsewhere. 
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