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Summary 

The existence of dynamic allocation indices is shown for multi-armed delayed 

response bandits in specified states with geometric discounting. When the 

information banks for all arms are zero, the arm indicated by the dynamic 

allocation procedure or Gittins procedure is optimal. A method of calculating 

dy~amic allocation indices is presented and applied to the beta distribution. 

Optimal strategies for the two-armed delayed response bandit and are completely 

described when the discount factor< 1/2. 

1. Introduction and Summary 

1.1. The Multi-armed Bandit with Delayed Responses 

Imagtne a clinical trial in which patients arrive sequentially at times 

0,1,2,••• for treatment of a particular fatal disease. There are k irreversible 

treatments of unknown efficacy available. The objective is to maximize the 

expected discounted total patient lifetime. Treatment assignment is sequential 

and can depend on previous assignments and the censored lifetimes of any 

surviving patients. When the current patient is to be treated, the treatments 

used previously are known; it is also known which of the previous patients have 

died and how long they survived after treatment, and which have survived to the 

current time. This problem is an example of a multi-armed bandit problem with 

delayed responses. 

Bandit problems have been studied extensively in the statistical literature. 

Examples include Bradt, Johnson, and Karlin (1956), Bellman (1956), Feldman 



(1962), Rodman (1978), Gittins (1979), Whittle (1980), Bather (1981), and Berry 

and Fristedt (1985). These are all unrealistic when applied to clinical trials 

because they assume that the results from all previous patients treated are 

known when the current patient is treated. In a clinical trial it is infeasible 

to wait for all previous patients to respond before treating the current 

patient. According to Armitage (1985) and Simon (1977) the response delay in 

the classical approach is one of several reasons why sequential methods are not 

widely used. 

The two-armed bandit with delayed responses is introduced by Eick (1985a). 

In the current paper I assume there are k independent stochastic processes 

{Xijlj = 1 ,2,•••}, i = 1 ,•••, k, representing the k treatments or arms. 

Conditional on an unknown parameter e., X •. le., j _1,2,•••, are iid geometric 
1 lJ 1 

with probability mass function (1-e.)e~, t = 0,1 ,2,••• • This assumption is 
1 1 

consistent with the patients on arm i being exchangeable and each having 

constant probability ai of surviving to the next time period. This is a 

discrete-time version of treatments with exponential lifetimes. 

I take a Bayesian approach and assume the parameters 0 1 ,•••, Ak are 

themselves random with priors µ1,•••, µk. I assume e1 ,•••, Bk are independent 

and restrict consideration to priorsµ which have a finite life expectancy: 

E[Xjµ] = E[0/(1-S)lµJ < m. The sufficient statistics for 8. are S., the number 
1 1 

of arm i patient time period successes, and F., the number of arm i patient 
1 

failures. I denote the distribution of a. conditioned by S. = s and F. 
1 1 i 1 

At time o, si = f. = O and (0,0)µ. = µ .• 
1 1 1 

The bandit state summarizes all relevant information about the allocation 
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process. The state consists of the tuple ((s1,f1)µ,p 1;•••;(sk,fk)µk,Pk;a), 

where ((si,f.)µ.,p.) is the state of process i, (s.,f.)µ. is the current 
1 1 1 1 1 1 

distribution of e., and p. is the number of patients who have been treated with 
1 1 

arm i and are currently alive. These patients' lifetimes are censored when the 

current patient is treated. They form an "information bank": information 

accrues as they respond in the next time period, either positively or 

negatively. 

The geometric lifetime assumption implies that the arm i bank size is random 

with a conditional (given ei) binomial distribution. Suppose p
1 

patients are 

currently in the information bank of arm i. The number of patients in the bank 

at the next time period, (PilPi,e), is either bin(pi+1 ,a) or bin(pi,e) depending 

on whether or not the current patient receives treatment i. There is a simple 

relationship between the sufficient statistics and the information bank; S. is 
1 

the sum of the bank size over all previous time periods including the current 

period and F. is the total number of patients treated with i minus the current 
1 

bank size. I denote the bandit in state (µ 1 ,p1;•••;µK,pK;a) by the 

(µ 1 ,p1;•••;µK,pK;a)-bandit. 

It is natural to assume that p. = O, i = 1 ,•••,k. But since the possibility 
1 

of positive p. will have to be reckqned with in future stages, nothing is gained 
1 

by this assumption. So I allow p1 ~ O. Then any previously treated patients 

who are still surviving can be included in the information bank. With this 

convention the treatment assignment at each stage in the trial can be viewed as 

the initial treatment for the bandit presenting itself at that time. I will 

characterize the optimal treatment assignment scheme by specifying the initial 
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treatment for an arbitrary bandit. 

In this paper I consider a clinical trial in which n patients are treated 

where n is random and has a geometric distribution. A new treatment which is 

clearly better than any currently being considered may be discovered at any 

time. I assume that the probability of discovery in each time period is 

constant and equals 1 - a. When a is near O this discovery is regarded as 

imminent and when a is near 1 discovery in the near future is unlikely. The 

probability that the trial consists of exactly n patients is proportional to 

n-1 a The appropriate discount sequence to model this trial is the geometric 

with factor a: 2 
(1,Cl,Cl ,•••). 

At time 1 the discount sequence for the bandit presenting itself is 

2 (e1,a ,•••). This latter discount sequence is a multiple of the original; so the 

allocation process is unchanged. 

A strategy or rule t for the (µ 1,p1;•••;µk,pk;a)-bandit is a function 

defined on the states which indicates the arm to use at each stage in the trial. 

The worth oft is the expected discounted total patient lifetime when tis 

followed: 

W( t) 

a, 

[ j-1 ] 
E L a zj , 

T 1 
( 1 • 1 ) 

where Z. is the lifetime of the patient treated at stage j (i.e. time j-1) when 
J 

following t. The objective is the find a ·strategy that maximizes (1 .1). 

The value of the (µ 1 ,p1;•••;µk,pk;e1)-bandit is the supremum over all 

strategies of their worths: 
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V = V(µ
1

,p
1

;•••;µk,pk;a) = sup W(1). ( 1 • 2) 
T 

A strategy is optimal if it achieves the supremum in (1.2). An arm is optimal 

if it is the first selection of an optimal strategy. The value of selecting arm 

i initially and then continuing optimally depending on the result is 

V(i} = sup{W(1)!1 indicates arm i initially}. 

The value V satisfies a dynamic programming equation: 

where 

( 1 • 3) 

The expectation in the second term on the right-hand side of (1.3) is over the 

distribution of states at time 1. Arm i is optimal if and only if V(i) = V. 

1.2. Summary of Results 

The results in this paper describe the nature of the optimal strategies. In 

Section 2.1, I consider the two-armed bandit which is a special case of the k

armed bandit discussed above. When k = 2, the optimal arm is determined by the 

sign of 6 = v< 1 > - v< 2 >. Theorem 2.1 says that 6((s
1
,f

1
)µ

1
,p

1
;(s

2
,f

2
}µ

1
,p

2
;a) 

is monotone in s
1

, f
1

, s 2, f 2 for a< 1/2. This leads to an explicit 

characterization of the optimal strategies in terms of a manifold in 
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(s1,r1;s2 ,f2 )-space. In Section 2.2, I specialize further and assume that µ
2 

= 

c\ is known. When either (i) a< 1/2 or (ii) p1 = 0, I show in Theorems 2.3 

and 2.5 that the arm indicated by the dynamic allocation procedure or Gittins 

procedure is optimal. There exists a value A such that arm 1 is optimal if and 

only if A~ K, where K = Al(1-A). 

Theorem 3.1 says that for the (lJ 1 ,p1
;•••;µk,pk;a)-bandit, the arm indicated 

by the Gittins procedure is optimal when p1 =•••=pk= o. Chapter 4 presents 

a class of strategies whose worths closely approximate V(i) but are easy to 

calculate. This leads to a computational method for evaluating dynamic 

allocation indices which I apply to the beta family. 

2. The Two-armed Bandit 

Assume k = 2 throughout Chapter 2. Define 

Arm 1 is optimal if and only if 6 ~ 0, is nonnegative and arm 2 is optimal if 

and only if 6 ~ 0. 

2.1. The 6-function for a< 1/2 

Consider either arm and let X, a, s, f, andµ without subscripts stand for 

the corresponding subscripted quantities. For integral nonnegative sand f the 

conditional distribution of (elS=s,F=f) is defined by 

d(s,f)µ s f e (1-e) dµ/b(s,f), 
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where 

b(s,f) 

The mean lifetime is then 

E[Xj(s,f)µ)] 
e 

= E[
1

_
8

j(s,f)µ] = b(s+1,f-1) 
b(s,f) 

(2.1) 

(2.2) 

In this sections and fare not restricted to the nonnegative integers but are 

allowed to be arbitrary provided that (2.2) is finite. This defines a family of 

distributions (s,f)µ which generalizes the beta distributions. For the beta 

s-1 f-1 family, d(s,f)µ a e (1-8) d8 and b(s,f) = be(s,f). In this case E[Xf (s,f)µ] 

< m if and only ifs> 0 and f > 1. 

It is convenient to think of (s,f) as the prior successes and failures; 

(s,f)µ would be the conditional distribution of e ifs successes and f failures 

were observed when e - µ. 

The next theorem says that when a< 1/2, 6((s1,f1)µ 1,p
1
;u

2
,p2;a) is 

increasing in s 1 and decreasing in f 1 when µ1 is supported by more than one 

point. I conjecture that a similar monotonicity result holds for all 

0 ~a< 1. 

Theorem 2.1. Assume a< 1/2, µ 1 is not a one-point distribution, and 

µ({0,1}) = o. Then for all µ1,p1,µ 2 ,p2 , and a, 6((s1,f1)µ
1

,p
1

;µ
2

,p
2

;a) is 

increasing in s 1 and decreasing in f 1• Furthermore 
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(2.2) 

Remark. Because of the symmetry between arm 1 and arm 2, for a< 1/2 

6(µ
1
,p

1
;(s2,f2)µ 2,p2;a) is increasing in f

2 
and decreasing in s 2 and 

(2.3) 

when µ2 is not a one-point distribution and µ2({0,1}) = O. 

Proof of Theorem 2.1. The proof of this result is a direct extension of 

Theorem 3.1 in Eick (1985b). o 

Theorem 2.1 provides an explicit characterization of optimal strategies for 

the ((s1,f1)µ 1,p1; (s2,r2 )µ 2,p2;a)-bandit. For fixed p1 and p2 there is a 

manifold in (s1,r
1
;s2,f2)-space where 6((s1,r1 )µ 1,p1;(s2,f2 )µ 2,p

2
;a) = O. On 

one side of the manifold arm 1 is optimal, on the other arm 2 is optimal, and 

both arms are optimal on the manifold. When arm 1 is optimal and s 1 is 

increased or f 1 decreased, arm 1 remains optimal; similarly for arm 2. 

Equations (2.2) and (2.3) relate the manifolds on which 6 vanishes as p1 and p2 

vary. 

In the next section I prove the existence of dynamic allocation indices for 

particular states in the delayed response bandit state space. 

2.2. Dynamic Allocation 

Continue to assume k = 2, and now assume that µ2 = oA, so e2 is known to 

equal A. The state simplifies to (µ 1,p1;K;a) where K = E[X2jfµ 2] = A/(1-A). 

This is because successes and failures on arm 2 cannot change µ2• Throughout 
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this section I suppress tbe subscript 1, writingµ= µ1, p = p1, and Xj = x1j. 

The function A(µ,p;K;a) is continuous in K_(see Theorem 4.2, Eick, 1985a). 

When K -> 0, A-> E[X.luJ/(1-a) and when K -> m, ~ -> - 00 • Thus, the equation 
J 

A(µ,p;K;a) = O has at.least one nonzero solution in K. When it has a unique 

solution A, I define A as the dynamic allocation index or DAI (Gittins and 

Jones, 1974). My notation follows Berry and Fristedt (1985). 

Definition 2.2. Suppose for fixedµ and p the equation A(µ,p;K;a) = O has a 

* single solution K in K. Then the dynamic allocation index for arm 1 is 

* A(µ,p;a) = K. 

The DAI is the value of K fqr which both arm 1 and arm 2 are optimal. For K 

~ A arm 1 is optimal and for K ~ A arm 2 is optimal. The next theorem says that 

the DAI exists when a< 1/2. 

Theorem 2.3. The DAI exists for allµ and p when a< 1/2. 

Proof. For a< 1/2 the geometric discount sequence satisfies the regularity 

conditions of Theorem 3.1 of Eick (1985b). Then A(µ,p;K;a) is decreasing in K 

and therefore the equation A(µ,p;K;a) = 0 has a unique solution in K. a 

I now show that DAI's exist for all a< 1 when p = o. This result depends 

on the following lemma which extends Theorem 2.1. The lemma s~ys that when p = 

O, A((s,f)µ,O;K;a) is increasing ins and decreasing inf and K. 

Lemma 2.4. Supposeµ is supported by more than one point, µ({0,1}) = O, and 

p = o. Then for all a, A((s,f)µ,O;K;a) is increasing ins and decreasing inf 

9 



and K. 

Proof. If arm 2 is optimal initially then an optimal strategy indicates arm 

2 at all stages. This is so since the state at time 1 after treating the first 

patient with arm 2 is the same as the original state. 
(2) 

So V = K/(1-a). If 

arm 1 is optimal initially then arm 1 is also optimal at time 1 if the first 

patient received arm 2: v< 2 > = K + av< 1>. Combining both cases, 

6( (s,f)µ,O;K;a) l 
(1-a)V( 1)((s,f)µ,0;K;a) - K 

( 1 ) V ((s,f)µ,O;K;a) - K/(1-a) 

if arm 1 is optimal, 

if arm 2 is optimal. 

(2.3) 

Eick (1985a, Corollary 6.8) show that v< 1)((s,f)µ,0;K;a) is increasing ins 

and decreasing inf. Therefore 6 is increasing ins and decreasing inf. 

Although v< 1)((s,f)µ,O;K;a) is nondecreasing in K, v< 1>ccs,f)µ,O;K;a) - K/(1-a) 

is decreasing in K since av< 1>ccs,f)µ,O;K;a)/0K < a/(1-a). 0 

The following theorem says that DAI's exist when p = O. 

Theorem 2.5. For allµ and a, the DAI exists for the (µ,O;K;a)-bandit. 

Proof. From Lemma 2.4, 6(µ,0;K;a) is decreasing in K. The hypothesis onµ 

in Lemma 2.4 are not required to show that 6 is monotone in K. So the equation 

6(µ,0;K;a) = 0 has a unique solution in K. o 
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3. Gittins Procedures 

For classical bandits with k independent arms, Gittins and Jones (1974) show 

that the following procedure gives rise to an optimal strategy. Evaluate the 

DAI for each of the k arms. The optimal arm is always one with the largest 

index. So the arm with the largest index is optimal initially. It remains 

optimal until its index is no longer largest. At this point an arm whose index 

was second-best originally becomes optimal. I refer to this as a Gittins 

procedure. The optimality of Gittins procedures is particularly interesting 

because it reduces a k-dimensional problem into k one-dimensional problems. 

Berry and Fristedt (1985), Theorem 6.2.1, show that for classical bandits, 

Gittins procedures are optimal only if the discounting is geometric. 

3.1. Gittins Procedures for Delayed Response Bandits 

For delayed response bandits with k independent arms the upcoming Theorem 

3.1 shows that when p1 =•••=pk= O the arm indicated by the Gittins procedure 

is optimal. In this case the DAI's exist and so the Gittins procedure is 

defined from Theorem 2.5. 

The statement and proof of this theorem is a modification of that of Whittle 

(1980). 

Theorem 3.1. Suppose p1 =•••=pk= O. Then the optimal initial 

selections for the (µ 1,0;•••;µk,O;a)-bandit are those i for which 

/\(µ
1 

,O;a) = 
k 
V /\(µj ,O;a). 

j=1 
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Furthermore 

f
. P k a 

lim {p-(1-a)k IT~ V(µ.,O;K;a)dK}. 
0 

. 
1 

oK J 
p-)oo J= 

(3.2) 

I will temporarily delay the proof of Theorem 3.1. Assume initially that 

for all (s
1

, f i), 

(3.3) 

for i = 1,•••, k. A necessary and sufficient condition for (3.3) is that the 

support of µi is bounded away from 1. 

Let a! be the right derivative operator. The following lemma says that 

a (1-a) 0K V(µi,pi;K;a) exists and is the cumulative distribution function 

of a probability measure. 

Lemma 3.2. Assume E[Xijj(si,fi)µi] ~ M < 00 for i = 1,···, k. Then for all 

P1,•••, pk the functions 

(3.4) 

i = 1,•••, k, are the cumulative distribution functions of probability measures 

with support contained in [O,M]. 

Proof. Since V(µ.,p.;K;a) is convex in K (Eick, 1985a, Theorem 4.1), ~ 
1 1 

right-continuous nondecreasing version of .aV(µi,pi;K;a)laK exists. For K ~ o, 

V(µ.,p.;K;a) = E[X. 1 jµ.]/(1-a) and for K ~ M, V(µ.,p.;K;a) = K/(1-a). o 
1 1 1 1 1 1 
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Proof of Theorem 3.1. Under assumption (3.3) the theorem is proved by an 

argument similar to that in Whittl~ (1980). The general case for arbitrary µi 

* (restricted such that E[Xijjµi] < m) follows by truncation: dµi = l[o,t]dµi + 

µi(t,1]6t, 1 = 1,•••, k, and approximation. o 

Tne proof fails if pi> O for some i. In this case A(µi,p 1;a) may not exist 

if a~ 1/2. However even if A(µ 1 ,pi;a) does exist, Whittle's argument fails on 

a more fundamental level. The two-armed cla~sical bandit with immediate 

responses, arm 2 known with life expectancy K, and geometric discounting is a 

stopping problem (Berry and Fristedt, 1979, Theorem 2.1). There exists an 

optimal strategy which indicates arm 1 at stages 1 through N and arm 2 at all 

subsequent stages. The stopping time N is random and can be O or~ with 

positive probability. A consequence of this is that when arm 2 is optimal ao 

optimal strategy is to indicate arm 2 at all subsequent stages. So K ~ A(µ;a) 

if and only if V(µ;K;a) = K/(1-a). This characterization is used at a critical 

step in the proof of Theorem 3.1 to conclude the form of the optimal strategy. 

The delayed response (µ,p;K;a)-bandit is a not stopping problem (see Eick, 

1985a, Section 3.2) when p > O. The optimal strategy may indicate arm K while 

waiting for patients on arm 1 to respond. For delayed response bandits 

V(µ,p;K;a) ~ K/(1-a) (3.5) 

with strict inequality when p > 0 for all K. But when p = O, equality holds in 

(3.5) if and only if K ~ A(µ,O;a). Only in this setting does Whittle's argument 

provide a proof of the optimality of the Gittins procedure for delayed response 
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bandits. 

I conjecture that DAI's exist for all states for the delayed response bandit 

and that the Gittins procedures are optimal. In the following Chapter I discuss 

numerical techniques to calculate DAI's and apply them to the beta family. 

4. Computations of Gittins Indices 

For delayed response bandits it is difficult to compute A(µ,p;a) since it is 

defined as the zero of ~(µ,p;K;a) = v< 1)(µ,p;K;a) - v< 2 )(µ,p;K;a). In this 

section I present a class of strategies whose worths closely approximate V(i) 

but are still relatively easy to calculate. I then use them to approximate 

6(µ,p;K;a) and calculate A(µ,p;a) for the beta distribution. Throughout this 

section I consider calculations for the (µ,p;K;a)-bandit. 

For 1/2 ~ B ~ 1, let TiB be the strategy which indicates arm i initially and 

then does as well as possible under the following restrictions: 

(1) TiB indicates arm 1 when the conditional probability that arm 1 is 

better than arm 2 exceeds Band arm 2 when the converse holds. 

(2) When either case above occurs, TiB indicates that arm at all subsequent 

stages ignoring any forthcoming information from the information bank. 

(3) At time n, Ti$ selects one arm to indicate at all subsequent stages. 

For S = 1 and n = m, Til is optimal among those strategies which indicate 

arm i initially. For B = 1/2 and n = 1, Ti,l/ 2 is the best one step strategy 

that indicates arm i initially and subsequently indicates the arm which has the 

longer expected lifetime at time 1. 

The strategy TiB is truncated when either of (1) or (3) applies. Time n is 



the maximum the truncation time. When n <~the worth of TiB can be calculated 

recursively in at most n+1 steps. The restrictions in (1) and (2) reduce the 

number of states which must be considered in the recursion which decreases the 

memory requirements. For B = 1 and n = 30 an evaluation of both W(t11 ) and 

W(t21 ) required 30 minutes of CPU time on a VAX 11/750 and a 126325 word array, 

but for a= .95 the same calculation required only a 2600 word array. For 

4 general n storage requirements are of order n /6 when S = 1. 

Table 4.1 shows W(t
18

), W(t28 ), and memory requirements for a= .8 and n = 

30 as B varies from .5 to 1.0 by .05 for the beta distribution. As B increases 

the memory requirements increase sharply; but even for small B, W(t
18

) is a very 

good approximation to V(i). 

Table lt.1. 

Worths of t 18 , T2S with n = 30 for the (µ,0;1;.8)-bandit 

dµ(e) ~ e311tc1-e) 2cte 

Approx 
B W( t 1 8) W(t2B) Memory Bound 

0.500 4.7500 5.0000 1 3.7568 
0.550 4.7500 5.0000 211 3.7568 
0.600 5.7269 5.0000 402 3.7999 
0.650 5.7269 5.0000 615 3.3798 
0.100 5.7270 5.0000 831 3.3787 
0.750 5.7284 5.0000 1071 3.3376 
0.800 5.7320 5.0000 1332 3.1515 
0.850 5.7325 5.5860 1648 2.8671 
0.900 5.3725 5.5860 2052 2.8490 
0.950 5.7325 5.5860 2662 0.5324 
1.000 5.7325 5.5860 126325 0.0058 
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dµ ( e) ex e 1 c1-e>2de 

Approx 
s W( -r

18
) W(t28) Memory Bound 

--
0.500 5.0000 5.0000 1 4.0000 
0.550 6.4736 5.0000 138 3.4892 
0.600 6.4736 5.0000 379 3.4892 
o.650 6.4736 5.0000 598 3.4892 
0.100 6.4737 5.0000 819 3.4884 
0.750 6.47111 6.1793 1057 3.452lt 
0.800 6.4752 6.1801 1331 3.3528 
o.850 6.4787 6.1830 16lt2 2.8954 
0.900 6.4791 6. 1833 2045 0.8268 
0.950 6.4791 6. 1833 2631 0.7915 
1.000 6.4791 6. 1833 126325 0.0062 

dµ(8} ex e514 c1-e/de 

Approx 
s W(t

18
) W( t2S) Memory Bound 

0.500 7. 1731 5.0000 1 4.3636 
0.550 7 .1731 5.0000 203 4.3636 
0.600 1.2832 5.0000 391 3.7119 
0.650 1.2832 5.0000 594 3.7119 
0.100 1.2836 6.8269 814 3.7087 
0.750 7.2862 6.8290 1047 3.6761 
0.800 7.2920 6.8336 1316 3.5278 
0.850 7.2954 6.8363 1630 1.3380 
0.900 7.2957 6.8366 2029 1 • 1 403 
0.950 7.2957 6.8366 2620 1.1097 
1.000 7.2957 6.8366 126325 0.0067 

The next theorem bounds the error when W(tiS) is used to approximate v(i). 

The bound, approximated in the last column of Table 4.1, is crude since it comes 

from comparison to an omniscient strategy which indicates the better arm. 

Let Yi be optimal among those stra~egies indicating i initially. Then Yi= 

til when n ==and W(Yi) = V(i). Let~ be the class of states for which 
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condition (1) of the definition of TiB applys. Then ((s,f)µ,p;K;a) £!if and 

only if P{e/(1-e) > Kl (s,f)µ} ~Sor~ 1-s. Let~ be the class of all 

accessible states at time n. For state ((s,f)µ,p;K;a), define 

P.{(s,f)µ,p;K;a)IY.} as the probability that this is the current state at time j 
J 1 

when following Y .. 
1 

Theorem 4.1. For allµ, p, K, and a, 

n 
+ ~ 

1-a 

Remark. When B = 1, (4.1) simplifies: 

Equation (4.2) is due to Berry and Fristedt (1985) equation (2.6.3). 

( 4 .1) 

(4.2) 

Proof of Theorem 4.1. Let o.
8 

mimic Y. by indicating the same arm until 
1 1 

condition (1), (2), or (3) of the definition of 1
18 

applies. Since 1
18 

is the 

best among the class of strategies satisfying these conditions, 
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I complete the proof of Theorem 4.1 by showing that (4.1) holds with oiB 

replacing -ri6• 

Suppose the current time is j S n-1. Let zY. and Z be the lifetimes of 
1 °1B 

of the current patient when following Yi and oi
8

• Except for states in A, 

zY. = z . Suppose the current state ((s,f)JJ,p;K;a) e: ~. With conditional 
1 

0 iB 
probability exceeding 6, 018 indicates the better arm and with conditional 

probability at most 1-B, 0 1s indicates the inferior arm. If Yi always indicates 

the better arm, or in other words if y. 
1 

is omniscient, 

E[Z - z l<s,f)JJ] ~ E[1~8 V Kj(s,f)JJ] 
y i 0 iB 

- BE[ 1~8 v. Kj(s,f)µ] - (1-S)E[ 1~
8

" Kj(s,f)µ] 

(1-8)E[l1~e - Kl j(s,f)µ]. (4.3) 

A similar calculation for an arbitrary state at time n shows: 

E[Z - z f (s,f)JJ] ~ E[,~e V Kf{s,f)JJ] - E[,~e A Kl{s,f)µ]. 
Yi 0 iB (4.4) 

= E(l 1~8 - Kl l<s,f)JJ] 

Equation {4.1) follows from (4.3) and {4.4) by summing over the appropriate 

states weighted by the remaining discount sequence. o 

For calculations, the bound in Theorem 4.1 is unusable since 

P.{{(s,f)JJ,p;K;a)jY.} depends on Yi which is unknown. A convenient 
J 1 

approximation replaces P.{((s,f)µ,p;K;n)jY.} with Pj{{{s,f)µ,p;K;a)l-r. 8} which 
J 1 1 
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can be determined recursively when n is finite. This approximation is used in 

Table 4.1. 

For the (µ,p;K;a)-bandit the solution in K to the equation W(1
18

) - W(1
28

) 

provides an estimate of A of A(µ,p;a). The following proposition bounds of the 

estimation error. 

Proposition 4.2. 
"(i) (i) 

Suppose IV - V . I . ~ e:, i = 1 , 2, and assume A satisfies 
A(1) A "(2) " 

IV (µ,O;A;a) - V (µ,O,A;a)I < o. 
A A 

If A~ A then IA(µ,O;a) - A(µ,O;a)I ~ o + 

2 e:. 

Proof. The value V(i)(µ,p;K;a) is convex nondecreasing in K. Therefore 

(") (1) A A 

V 1 (µ,p;A;a) - V (µ,p;A;a) = di(A-A), (4.5) 

where 

a c1) · aK V (µ,O;K;a)I ~ di 
K=A 

a co 
~ aic V ( µ, 0; iq a) f A, 

K=A 

and a! is the right derivative operator. However, for all K 

a c 1 ) 
dK V (µ,O;K;a) ~ a/(1-a) (4.6) 

and 

a (2) · a <2> 
dK V ( µ, u, K; a) I ... ~ aic V ( µ, 0; iq a) I = 1 / ( 1-a). 

K=A K=A 
(4.7) 

The first inequality in both (4.6) and (4.7) follows since v(i) is convex 
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nondecreasing in Kand the equality in (4.7) follows since the right-derivative 

is maximized when arm 2 is indicated at every possible stage. Subtracting (4.5) 

with i = 2 from (4.5) with i = 1 gives 

(1) A (2) A 

V (µ,O;A;a) - V (µ,O;A;a) = (d1-ct2)(A-A). 

The ~-3sult follows from the triangle inequality and the bounds (4.6), and (4.7) 
"(1) A 

and the hypothesis on V and A. o 

Figure 4.1 shows A((s,f)µ,O;a) for the beta family with density d(s,f)µ « 

es-1c1-e)f-1cte for (s,f) = (3/4,2), (1,2), and (5/4,2) as a vafies. 

Computational resource restrictions limited computations to a S .95. 

As a increases A((s,f)µ,O;a) increases. This is intuitive since for a 

larger a there is a greater fraction of the discount sequence at future times 

and so there is more opportunity to take advantage of a good unknown arm. In 

the limit as a-> 1, A(s,f)µ,O;a) -> m. So for sufficiently large a arm 1 is 

optimal. For a= O (not shown on and Figure 4.1), A((s,f)µ,O;O) = E[Xj(s,f)µ] = 

s/(f-1). In this case there is no opportunity to take advantage of anything 

learned when the initial patient is treated with 1. 

Figure 4.1 shows that A((s,f)µ,O;a) is an increasing functions of s. This 

is true in general since 6((s,f)µ,0;K;a) is increasing ins. Similarly, 

A((s,f)µ,O;a) is decreasing inf. 
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5. Discussion 

In this paper I describe the optimal strategies for the two-armed delayed 

response bandit with geometric discounting. When both arms are unknown and a< 

1/2, Theorem 2.1 says that there exists a manifold in (s1,f1;s2,f2 )-space which 

determines the optimal treatment. The class of strategies introduced in Section 

4 can be easily modified to approximate this manifold in applications. 

When the expected lifetime of arm 2 is known to be K, I show in Theorem 2.3 

and 2.5 that the optimal arm is determined by a DAI when either a< 1/2 or p 

O. For the k-armed bandit with delayed responses Theorem 3.1 says that the 

Gittins procedure determines an optimal selection when p1 =···=pk= 0. 

The strategies presented in Section 4 provide a method estimating the DAI's 

and Thereby implementing the Gittins procedure. Theorem 4.1 and Proposition 4.2 

show that the estimates converge as B -> 1. The numerical results in Table 4.1 

indicate that the convergence is very fast leading to significant computational 

savings. 
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