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ABSTRACT 

Two lists are given. The first is a list of properties of 

ancillary statistics; the second is a list of examples of ancillary 

statistics. It is then indicated which of the properties are satis­

fied by each example. Many of the models have the property that the 
A 

parameter 8 is a location parameter for the MLE 0 in every 

conditional distribution determined by a fixed value of the ancillary 

statistic. In certain other models the same state of affairs is 

achieved by parameter transformation. In these cases it is reasonable 

to say that the value of the ancillary statistic determines the pre­

cision of the MLE. There exist irregular models, however, for which 

this is not the case. 



1. Introduction 

According to conventional definition, an ancillary statistic is 

one whose distribution is the same for all values of an unknown 

parameter 0. According to conventional wisdom: There are diffi­

culties with existence and uniqueness of ancillary statistics; the 

principle of conditionality requires us to make inferences conditional 

on an ancillary statistic when one exists; and an ancillary statistic 

by itself carries no information about 0 but when used together with 

the maximum likelihood estimator 9, the ancillary tells us the 

precision of 8. In the present paper we study this conventional 

wisdom through examples. 

The conditionality principle as stated for example by Cox and 

Hinkley (1974) says (paraphrasing slightly): When there is an 

ancillary statistic, the conclusion about the parameter of interest is 

to be drawn as if the ancillary statistic were fixed at its observed 

value. Presumably a confidence interval would be an example of a 

conclusion. In the present paper we restrict our attention to confi­

dence intervals for a single parameter and in particular to what might 

be called natural confidence intervals. These are solutions which 

arise from the distribution of the maximum likelihood estimator in 

models satisfying the regularity conditions in Definition 2 below. 

The general plan of the paper is first to give a list of proper­

ties of ancillary statistics followed by a list of examples of 

ancillary statistics. We then indicate which examples satisfy which 

properties. In this way the examples are classified into main 
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c~tegories. Some implications for statistical inference are discussed 

in the conclusions. 
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1. 

2. Definitions 

The assumed probability law will be represented by a density 

function f(x,9) where x may be a vector but 8 is a scaler 

with range Q = {9j8L < 8 < 0U}. 

Dl: We will say the model {f(x,8), e € O} (or more briefly 

{f(x,9)}) is B-regular if a unique maximum likelihood estimate 
A ~ 

8(x) exists for each x and if the distribution of 6 satisfies 
A 

Lindley's (1958) "Condition B": The CDF F(8!8) has a derivative 
A 

3F/a8 which is always negative, and lim F(8}8) = 0 (or 1) as 

8 tends to 8U (or SL). 

Except for examples EM2 and EM4 in Section 7, the present 

paper considers only B-regular models. 

D2: If A= a(X) is any conditioning statistics (typically 

an ancillary) we will say that the pair {f(x,8), a} is B-regular 
A 

if the CDF's F(Sla,8) satisfy Lindley's Condition B for all values 

of a. 

D3: The model {f(x,8), a} is called AB-regular if it is 

B-regular and satisfies property P2T (transformed translation 

invariance) defined in Section 3 below (see also discussion in 

Section 4). 

D4: The Fisher information is X is 2 i(8) = E[u(X,8)] = 

Var u(X,0) where u(x,9) is the score function a log f(x,S)jae. 

D5: When a is ancillary, the conditional Fisher information 

is i(0,a) = Var [u(X,0)la]. 

We will want to consider distributions on the parameter space 
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which may or may not be legitimate fiducial distributions. For these 

we will use the neutral term "induced distribution." 

D6: For the unconditional B-regular model {f(x,8)} the 
A 

induced distribution of 8 has density g(8lx) = -aF(8j6)/a6. For 

the conditional B-regular model {f(x,8), a} the induced distribution 
A 

of 8 has density of g (Six)= -aF(8la,8)/ae. Equivalently the CDF's 
a 

A A 

are G(S!x) = 1 - F(8l8) and G (8lx) = 1 - F(Sla,9). a 

D7: The Y percentiles of the induced distributions of D6 will 
A A A A 

be denoted by 8y(8) (F(8l8y(8)) = 1 - y) and 8 (6,a) (F(Sla,8 (8,a)) = y y 

1 - y). 
A A 

Thus e ce) y and 8y(8,a) are respectively unconditional and 

conditional upper confidence limits for 8. 
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3. Properties of Ancillary Statistics 

In this section we list properties which may or may not be 

satisfied by B-regular models {f(x,8), a(x)} • 

Pl: (8,a) is minimal sufficient. 

P2: Translation invariance~ (81 ,8U) - (-00 , 00), and for all 
"' "' 

a and all - 00 < c < 00 , F(8 + cla,e+c) = F(8la,8). 
"' 

P3: Var(SJa,8) depends on a but not on e. 

P4: For two values a
1

, a 2 - and any two values 81 , 82• 
"' ,.. "' " 

Var(0la1 ,e
1

) > Var(Sla2,e1) implies Var(0la1 ,e2) > Var(0!a2,e2). 

PS: i(8,a) depends on a but not on 8. 

P6: For any fixed y, and fixed a, the sign of 

" 
0y(0,a) - 8y(8) is the same for al 8. 

P7: 
"' 

P{8 < 8 (8)la,8} 
- y 

depends on a but not on 8. 

PS: There exists an improper prior ~(8) such that for all a, 

the induced density g (Six) equals the posterior density. 
a 

PkT (k = 2,3, ••• ,8): There exists a transformation T(0) 

(the same for all a) such that Pk holds with T substituted for 

e . 
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4. Discussion of Properties 

Pl is Fisher's requirement for obtaining the fiducial distribu­

tion of 6 by a conditional pivotal argument. 
A. A. 

P2 could also. be expressed as F(6la,6) = F (8 - ala) for 
0 

A. 

some F (· I·). P2T states that the distribtuion F(6la,0) 
0 

satisfies Lindley's (1958) Condition A for all a with the transforma-

tion T(8) the same for all a. 

P3 and P4 attempt to formalize the statement that the ancillary 

statistic determines the precision of e. 

P6 and P7, when they hold, show us how to determine relevant 

reference sets for the natural unconditional confidence limits, in 

the sense of Buehler (1959). 
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5. Implications among the Properties 

Proposition 1: The following implications hold: 

(i) Pk s$ Pkt (all k). 

(ii) PlT ==> Pl, P6T ==> P6, P7T ~ P7, PST~ PS. 

(iii) P2 ~ Pk and P2T ~ PkT fork= 3,4,5,6,7,8. 

(iv) P3-=> P4 

(v) P2T • PST 

(vi) PS~ P2T 

(i) is trivial. 

(ii) holds because Pl,6,7,S are invariant under parameter 

transformation. 

(iii), which is straightforward to prove, states that the invariance 

condition P2 implies all the following ones. 

(iv) and (v) are evident. 

(vi) can be proved by Lindley's (1958) argument. 

- 7 -



6. Notation for Distributions 

N(µ,cr2
) denotes normal with mean µ, variance o2

• 

G(a,p) denotes a gamma distribution with density p -ax p-1 
a e x /f(p). 

Exp(8)· den~tes an expontential distribution with density 
-ex ee 

-ex 8e (x > 0, 8 > 0). Exp (6). = G(.8, l}. 

Lind(8) denotes what we will call a Lindley (1958) distribu­

tion with density f(x,8) = e2(6+1)-1 (x+l)e-Sx (x > 0, 8 > 0) (see 

Appendix E). 
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7. Examples of Ancillary Statistics 

The following notation is convenient. E = example, L = location 

parameter model, S = scale parameter model, I= irregular model, 

M = miscellaneous model, g = generalized, n = sample of size n. Thus 

ESlgn denotes scale parameter example number one, generalized, with 

sample size n. 

ELl: Two measuring instruments (Cox, 1958). P(A = o) = 

2 "' 
P(A = 1) = ½; x1~ - N(9,a ), 8 = x. 

a 

ELln: Sample 

(E cr -z)-l, (Efron and Hinkley, 1978). 
a. 

J 

ELlg: In ELl replace normal densities by two arbitrary loca-

tion models f(xlA = o,8) = f
0

(x - 8), f(xlA = 1,9) = f 1 (x - 8). 

ELlgn: n observations from ELlg. 
n 

EL2: Fisher-Pitman location model. f(~;8) = i ~ 1 f(x
1
-0). 

a= (x(l) - x(Z)' x(l) - x( 3), ••• , x(l) - x(n)), the spacings of the 

ordered observations x(i). 

EL2g: Location model assuming neither independence nor identical 

distributions. f(:i0) = f(x1 - 8, ••• , xn - 9). a= (x1 - x2 , ... , 

xn-l - xn)' spacings of unordered observations. 

EL3: One-parameter normal regression. A - N(o,1), xla - N(0a, 1). 

Observe (a
1 

x
1
), ... , (a x ), 

, n, n 

2 -1 
N(0,(E a. ) ). 

l. 

"' 2 "' 
0 = r a.x./E a. , {9!(a1 •.• a)} -

1. l. 1. ' , n 

EL4: Sprott's (1961) ancillary. k0 x
1 

- N(n6,n), x
2 

_ G(m, ce ), 
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ESl: Two-valued ancillary with reciprocal expoentials. 

P(A = 0) = P(A = 1) = ½. xlo - Exp (0), xii - Exp (8-1). 

ESln: n observations from ESl. 

ESlg: f(xlA = O, 6) = 8f(0x), f(xlA = 1, 8) = 6-l f(x/6). 

ES2: Fisher-Pitman scale model. f (x; 0) -n 
= 0 

n 
TI 

i = 1 

f(xi/6), 0 > O, xi > o, a= quotients of ordered observations. 

-n / ES2g: f(x,0) = 6 f(x1 6, ••• , xn/8), a= quotients of xi's 

(unordered). 

ES3: Fisher's gamma hyperbola (Fisher, 1973, p. 169; Efron and 

Hinkley, 1978, example 3.2). 

n pairs x1, x2. If s. = 
J i 

(s/S
2

) and A= s
1 

s
2

. 

-1 X1 - Exp (0), x2 - Exp (6 ). 

n A 

Observe 

I: x .. , j = 1, 2, then e =½log 
J l. = 1 

ES3g: Sample of size n from f(x
1

, x2; 8) = f(8x
1

, x2/0), 

6 > 0, where f(z1 , z2) is a density on O < z
1 

< 00 , 0 < z2· < 00 • The 

ancillary statistic can b.e represented by the n 

together with n - 1 quotients of the ordered 

product x11 x2i 

x
1
's: x /x 

(1) (2), ••• , 

ES4: Normal with known coefficient of variatlon (Hinkley, 1977). 

2 2 ½ -1 k X - N(S, c 6) (6 > o, c known). a= s2 /Sl, sk = n I: xj , 

A 2 ½ 
6 = ½S {(1 + 4a) - l}. 

1 

ES4g: Arbitrary shape with known coefficient of variation. 

x = Sy where y has density g(y) for - 00 < y < 00 • Then 

f(x) = e-1g(x/8). The ancillary statistic gives the number of negative 
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observations and the quotients of ordered positive and negative 

observations separately. 

Eil: P(A = 0) = P(A = 1) = ½. xlo - N(9,l) xii - N(93 ,1). 

EI2: P(A = 0) = P(A = 1) = ½ xlo - Exp (8), xii - Lind (8). 

EMl; Fisher's normal circle (Fisher, 1973, p. 138, Efron and 

Hinkley, 1978, p. 464). x1 - P cos 0, x2 - P sin 0 are independent 

N(0,1), where P is known. The ancillary is 

EM2: One observation (x1 , x
2

) from a bivariate normal dis­

tribution with zero means, unit variances and correlation 0. a= x1 • 

EM2n: Sample of size n from EM2. 

EM3: (Basu, 1959) Two observations (x1 , x2) from N(0,1). 

a= x1 - x2 if x
1 

+ x2 < c and a= x2 - x1 if x1 + x2 _::. c. 

EM4: (Basu, 1964, Cox 1971). Multinomial distribution with 

four cells whose frequencies are x
1

, ... , x4 and whose probabilities 

are p1 = (1 - 0)/6, p2 = (1 + 0)/6, p3 = (2 - 9)/6, p4 = (2 + 0)/6, 

where - 1,::: 8,::: 1. a= x1 + x2 and b = x1 + x4 are separately but 

not jointly ancillary. 
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8. Properties of the Examples 

We give two general results before discussing the models indi­

vidually. 

Proposition 2: Subject to B-regularity (see Dl, Section 2), all 

of the EL models satisfy property Pk for k = 2, 3, ••• , 8. 

Proof. Verfication of P2 is reasonably straightforward in 

each case, and the rest follows from Proposition l(iii). 

Proposition 3: Subject to B-regularity, all of the ES models 

satisfy PkT for k = 2, 3, ••• , 8. 

Proof. The transformation T = log 9 reduces each ES model 

to a location model. 
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8.1. Location Models 

ELl is occasionally put forward in support of the principle of 

conditionality -- if we know which of two measuring instruments was 

used, our inference about 8 should be conditional on this informa­

tion. 

ELln has been discussed by Efron and Hinkley as an example of 

combining information and determination of the relevant conditional 

variability of the combined estimator. 

In ELlg the induced density (see D6, Section 2) is 

f (x - 9). 
a 

g (8jx) = 
a 

In ELlgn suppose a= (a1 , •.• , an) contains r zeros and 

s = n - r ones. For fixed r we have r observations from 

location model £
0 

and s from model £1 • This falls within the 

generalized Fisher-Pitman model (Appendix A). The induced dis­

tribution is a posterior distribution for a uniform prior con­

ditionally for each fixed r and hence also unconditionally. 

EL2 and EL2g are discussed in Appendix A. 

In EL3 the distribution of A need not be normal. The con­

ditional aspects of the more usual two-parameter model have been dis­

cussed by Fisher (1973), pp. 86-89. 

Sprott's example, EL4, falls within the general location model 

theory as indicated in Appendix D. 
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8.2. Scale Models 

ESl is clearly a variant of Cox's example ELl. Unconditionally 

X 
-0x -1 -x/8 has the mixture distribution f(x;0) = ½ (0e + 0 e ),. but 

this distribution should not be used, even by disbelievers in the 

conditionally principle, as it is not the most natural procedure. 

One reason is that f(x;0) is not B-regular. But more basically 

we want the analog of the procedure used in more subtle models where 

the ancillary may be hard to recognize. In such cases the natural 

procedure is to find first the MLE 6 and then its distribution. 

Thus we have e -1 
= X if A= 0 and 6 = x if A= 1, and the 

A A 

MLE has unconditional CDF F(0l0) = ½ (1 - e-9/ 9 -0/0 + e ), which 

is seen to be a scale model. An alternative analysis leading to 

the same result, would consist in transfoming first to a location 

model, as in the following paragraph. The situation here differs from 

that in Cox's example, ELl, in an interesting way. In ELl the 

induced distributions for 0 for a= 0, 1 (0 fixed) differ in 

variance but not in mean. In EL2 the induced distributions for 

log 0 for a= 0, 1 (0 fixed) are stochastically ordered (because 

£
0 

· and £
1 

defined in the next paragraph are). Thus lower and 

upper confidence limits shift in the same direction as a varies 

(and the unconditional limits of course take intermediate values). 

To analyze ESln first tranform by T = log 0, u = - log x if 

A= o and u = log x if A= 1. This reduces the problem to a 

location model already considered in ELlgn, 

- 14 -
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r 

Similarly ES2 and ES2g are transformed into EL2 and EL2g 

by taking logs. 

ES3 and ES3g are discussed in Appendix B. 

ES4 and ES4g are discussed in Appendix C. 
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8.3. Irregular Models 

Ell and EI2 are deliberately pathological counterexamples. In 

Ell, different functions of 0 serve as location parameter depending 

on the value of a (compare the definition of property PkT in 

Section 3. This suffices to violate all the properties in Section 3 

except Pl. In EI2 we mix a scale model, Exp (0), with the 

Lindley model Lind(0) which is known not to transform to a location 

or scale model. Some details of the analysis are given in Appendix E. 
A 

On a log-log plot the contours of F(0IA = O, 0) (A= 0 gives Exp (0)) 
A 

are parellel lines having unit slope. For F(0IA = 1, 0) (Lind (0) 

case) the countours are curvilinear, concave upward. The crossing of 

the straight and curvilinear contours violates properties like P6. 
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0 
I 

8.4. Miscellaneous Models 

EMl fails to fall in the EL (location) category only because 

e defines points on a circle rather than on (-m, 00). EMl does 

exhibit all the desirable properties of the EL models suitably 

restated for the circle. 

EM2 is a standard example in which x1 , x2 are separately but 

not jointly ancillary. The ancillary x1 (or x2) is of little help 

for inference for two reasons: (i) (8, x1) is not sufficient, so 

that Pl is violated, and (ii) {f(x,0), x1} is not B-regular. 

EM2n has been considered by Efron and Hinkley (1978), Section 6. 

It is not known whether there exists an ancillary a such that 

" 
(9,a) is sufficient. 

EM3 is of interest in exhibiting nonuniqueness of ancillaries, 

but in fact it has little implication for inference. The MLE 8 alone 

is sufficient so that the conditional induced distribution would not 

differ from the unconditional one for any ancillary a (any value of 

c). 

EM4 falls outside the primary framework of this paper because the 

distribution of x1 , ••• , x
4 

is discrete, so that we cannot obtain an 

induced distribution by a pivotal argument, except perhaps in some 

" large-sample approximation. A second difficulty however is that (.6,A) 

is not sufficient for general n = I: X., 
l. 

so that Pl is violated. 

(Cox (1971) points out that A is a component of a minimal sufficient 

statistic, but does not consider the sufficiency of (8,A)). To see 

this take n = 4. Then (X1 , .•. , x4) = (0,0,3,1) and (0,0,4,0) both 
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give {9,A) = {-1,0) but have different likelihoods. For n = 1, .. 
~ 

(0,A) is minimal sufficient, as Basu (1964) pointed out. 
'J' 

~ 

.,. 

0 

~ 
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9. Discussion and conclusions 

In estimating 9 by 9 (the MLE, or for that matter any other 

estimator) it is almost universally considered desirable to give not 

only the value of 9 but also some indication of its precision. 

Fiducial theory and the theory of confidence intervals are two attempts 

to accomplish this. Should the estimated precision be conditional or 

unconditional? If conditional, on what should one condition? No 

satisfactory general definition has been given the relevant reference 

set, the set on which one ought to condition. 

The principle of conditionality tells us to condition on an 

ancillary statistic when one is available. It has long been recognized 

that the principle is less than satisfactory because of problems of 

existence and uniqueness. It is not known how to determine whether 

ancillary statistics exist (the "problem of the Nile"), and when an 

ancillary exists it may not be unique. Thus the principle of condi­

tionality fails to determine a unique reference set. 

The defining property of an ancillary statistic is that its 

distribution be free of 8. But in conditional inference it is 

really our hope that the ancillary statistic determines in some sense 

" the precision of the MLE 9 (or other estimator). In the present 

paper we have attempted to study through examples the sense in which 

this is the case. The examples are found to fall in two broad cate­

gories which might be called regular and irregular. In the regular 
A 

models either 8 is a location parameter for 8 in every conditional 

distribution (location, or EL, models), or there is a transformation 
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A 

T(0) such that the same relationship holds for T and T (primarily 

scale, or ES, models). These regular models are ones for which fiducial 

theory is considered to apply, and for which the induced (fiducial) 

distributions are posterior distributions for an appropriate improper 

prior. For these regular models there is a clear sense in which the 

ancillary statistic determines the precision of estimation -- namely 

translation invariance of the conditional distribution: 

f(;la, T) = f (; - T). 
a 

The second category contains artificially constructed ancillaries 

which are intended· to show that not every ancillary need relate in a 

simple way to the precision of 0. The conditionality principle is 

perhaps less compelling in the irregular cases than in the regular 

ones. 

Many questions remain unanswered. If new ancillaries are dis­

covered, will they be regular or irregular? How should approximate 

ancillarity be defined? Can we have an approximate ancillary which is 

approximately regular? If so, what is a suitable principle of 

approximate conditionality? It is hoped that the properties studied 

in this paper may eventually be brought to bear on these questions. 
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Appendix A 

Generalized Fisher-Pitman Fiducial Distributions 

The Fisher-Pitman theory of location and scale models applies to 

random samples from location models, scale models, and joi~t location-

scale models having respectively the densities f(x-9), -1 a f(x/a) 

and cr-1f((x-0)/a). There is no difficulty in generalizing the main 

results· of this theory to the case of nonidentically distributed 

observations (as with likelihood IT f.(x.-0) 
1 1 

replacing IT f(x -0)) 
i 

and moreover to dependent observation, as with likelihood 

f(x1-e, ... , xn-0). Indeed these cases f~ll within the scope of the 

invariant models considered by Fraser (1961 a,b) and Hora and Buehler 

(1966). The principal results needed for our present purposes are 

that the fiducial distribution is a posterior distribution corresponding 

to prior measure equal to right Haar measure (d9, da/a and d0da/a in 

the three cases cited) and the fiducial limits are confidence limits 

obtained from a pivotal quantity conditional on an appropriate ancillary 

x -x) is an appropriate ancillary. For the model 
1 n 

IT f(x.-8) the 
1 

order statistic (x(l)'··· x(n)) is sufficient and it is possible to 

make a sufficiency reduction of a to a*= (x(l)-x(2), ••• , x(l)-x(n)), 

but this is not essential since we get the same induced distribution 

either way. Similar considerations apply to intermediate models such. as 

r n 
(A.l) IT f

0
(xi-9) IT f 1(xi-0). 

i=l i=r+l 
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Appendix B 

Fisher's Gamma Hyperbola and Generalizations 

Fisher (1973) considers the joint density f(x,y;0) = exp(-0x - y/0). 

Efron and Hinkley (1978) call this "Fisher's Gamma Hyperbola." Under 

the transformation T = log 0, u = -log x, v =logy we find 

(B.l) 

where -y exp{-y-e } and exp{y-eY}. This falls 

within the scope of generalized Fisher-Pitman models (Appendix A). 

For one bivariate observation (u,v) the ancillary is u-v = -log (xy), 

or equivalently xy. For n observations the statistic 

(u1-u2,···, un-1-un, un-vl, vl-vz,•••, vn-1-vn) 

minimal sufficient reduction brings this down to 

is ancillary, but a 

(1: X. ) (L Y. ) • 
l. l. 

The generalization ES3g assumes f(x,y;8) = f(6x,y/8) where 

f(•,•) is any suitably regular bivariate density on the first quad­

rant. Then with the same transformation the joint density of (u,v) 

is 

(b.2) 

with the previously mentioned ancillary, which would not in general be 

reducible. 

A second generalization, mentioned by Fisher (1973), p. 175, (but 

omitted in Section 7 above) takes f(x,y;8) = 8$e-ex-$y with$ = es. 

This reduces to a location model under the transformation T = log 8, 

u = -log x and v = -(1/s) logy. Evidently this model itself 

--22 -
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s+l s generalizes as above to a f(8x,8 y). 
0 

G 

.. 

• 

• 
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Appendix C 

Inference With Known Coefficient of Variation 

Hinkley (1977) has considered inference about µ when the parent 

population is 2 2 N(µ,c µ) where the coefficient of variation C 

known. If we assume with Hinkley that µ>O then the density and 

c.d.f. are 

(C.1) f(x;µ) = (1/cµ) <I> [Cx-µ)/cµ] 

and 

(C.2) F(x;µ) = q> [Cx-µ)/cJJ] = G(x/µ) 

is 

where $ and q> are the standard normal density and c.d.f. and 

where 

(C. 3) G(A) 

Let us consider a generalization in which ~, ~, G are replaced 

by $, l, H,. where $ is an arbitrary density with support(-~,~). 

If X has density (1) ~ith w substituted for $ then 

P(X ~ 0) = ~(-1/c) = H(O) = q, say. 

Thus the indicator function I(x) which equals 1 for x~O, 0 for 

x>O is an ancillary statistic. For n observations the corresponding 

indicators r
1

, ••. , In are jointly ancillary. 

Returning to one observation, given that x>O the c.d.f. of x is 

- 24 -
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• 

i 
e 

1 . 
F+(x;µ) 0 p(F(x;µ) - q) 

where p - 1-q, from which we get the fiducial density 

(C.5) X X 1 
= - 2 w<c:µ - c:) 

pcµ 

X = - f(x;µ): pµ 

Similarly, given that x < O,' the fiducial density is 

(C.6) cp(µlx) X 
= - -pµ 

f(x;µ). 

The last two expressions agree with a posterior corresponding to the 

prior dµ/µ. 

Next consider two observations, x
1 

x2 • If both are positive we 

have two independent observations from F+' that is two observations 

from a scale family, and it is known from the Fisher-Pitman theory 

that the fiducial distribution obtained by conditioning on the ancil­

lary x
1
/x2 equals the posterior for prior dµ/µ. A similar argument 

applies if both are negative. If> x1 0 and x2<0 then x/x2 is 

again ancillary and we again get a posterior corresponding to the 

same prior. 

Finally suppose that of n observations, r are negative and 

s = n-r are positive. Without loss of generality we may suppose the 

first r are negative. If y1 = loglxil' T =logµ, the joint 

density of the y's has the form 

r n 
(C. 7) n h1 (yi-T) n h2(y.-T) 

i = l i=r+l 1 

a generalized location model which falls within the generalized 

- 25 -



Fisher-Pitman theory described in Appendix A. The spacings 

(y1-y2, Y2-y3, ••• , yr-yr+1 , ••• , Yn-l -yn) are ancillary, and the 

fiducial distribution of T is a posterior corresponding to a uniform 

prior, the separate cases need not be distinguished in stating that 

the fiducial distribution of µ in simply the posterior distribution 

corresponding to prior dµ/µ. 
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Appendix D 

Sprott's Ancillary 

In Sprott's (1961) example, x1• - N(n0,n) 

X1/n - N(6,l) and Y2 = cekS x2 - r(m,1). 

and k0 
x2 - r(m,ce ). 

We get 

log Y2 = log c + k(0 + (1/k) log X2). Since the distribution of Y2 

is free of 8 we see that 8 is a location parameter for 

z2 = (1/k) log x2• But 0 is also a location parameter for 

z1 = x1/n. Therefore by the location parameter theory of Appendix A, 

an ancillary statistic is z1 - z2 = x1/n-(1/k) log x2 (as Sprott 

showed by a different argument). 
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Appendix E 

The Lindley Distribution 

The Lindley distribution was originally presented (Lindley, 195~) 

as an example satisfying Condition B (B-regularity; see Dl in Sectioti 2) 

but not Condition A (see remark at the end of Section 3). 

We write X - Lind(S) if X has density 

(E.1) 2 -1 -ex f(x;S) = 6 (6+ 1) (x + l)e x > 0, 0 > o. 

The Lindley distribution is incidentally a mixture of two gamma dis­

tribtuions with weights depending on 8: 

(E.2) e 1 
Lind(0) = 8+l G(8,1) + e+l G(8,2). 

The CDF is 

(E.3) F(x,6) = 1 - e-ex [1 +9x/(0+1)]. 

Given one observation x, the MLE 8 is the value of e satisfying 

(E.4) 2 1 e + 2 
X = $(9) = 0 - 0+1 = 8(6+1) 

Thus the MLE has CDF 

A. A 

(E.5) P{S < u} = P{${8) ~ ~(u)} 

= P{X ~ $(u)} 

= 1 - P{X ~ $(u)} 

= {exp(-S~(u))}{l + 0$(u)/(8 + 1)}. 

With 8 as abscissa and u as ordinate, vertical sections 
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of this last function give values of the CDF of 6, horizontal 

sections (u fixed) give one minus the induced CDF of 6, and 

thus conditional confidence limits for model Ell of Section 7 when 

A= 1. 
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