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s 
This paper presen~ a new 

Abstract 

methodo l ogL f or study ing a s ocia l 

netv,10rk of interpersonal rela t ionships. The methods a re based on a 

stochastic modelling framework that allows for the investigation of 

the changes that occur in a netw::>rk over t ime . Specifica l ly, we 

postulate that these changes can be modelled as a continuou s time 

Markov chain. The transition rates for the chain a re depend ent 

upon a small set of parameters that measur e the importance of various 

aspects of social structure on the probabi lity of change. 

We discuss the assumptions of the fr amework and descr ibe tv,10 

simple models t hat are applications of it. Several examples are 

presented and analyzed, and methods of paramet er estimation are 

outlined. The models prove t o be quite effective and a llow us to better 

understand the evolution of a netv,10rk . 
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I. Introduction: Modelling Change in Social Networks 

Many new methodological tools have been proposed during the present 

decade for the analysis of social networks. These techniques either. 

concentrate on the local or "micro" structure of a social group by 

examining subgraphs, particularly dyads and triads (see Holland and 

Leinhardt, 1970, 1975; Wasserman, 1977a) or attempt to represent a set 

of sociograms for a particular group by a substantively interesting 

collection of "blockmodels," a more global or "macro" paradigm (see 

White, Boorman, and Breiger, 1976; Arabie, Boorman, and Levitt, 1978). 

Unfortunately, none of these techniques allow for the direct 

modelling of structural change in a social group. Holland and Leinhardt's 

methods utilize only one observation on a group, a single snapshot taken 

at a fixed time point in the evolution of the group, and thus completely 

ignore the issue of changing structure. White, et al., recognize the 

importance of studying structural change, and do discuss how a researcher 

can construct an array of blockmodels for a social group using observations 

on the group from several points in time. One can then study how the block­

models for a group change over time, as the group approaches equilibrium. 

But they propose no model for this structural change, either stochastic 

or deterministic. Evolution is described simply in qualitative terms with 

no quantified statements concerning either the rates of movement of 

a group toward an equilibrium state or the internal or external forces 

governing how the present structure and environment of a group influence 

future structure. Indeed, they recognize that the primary analytic 

question still unanswered is how their hypothesized role structures evolve 

over time (Boorman and White, 1976, page 1442). 
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The basic premise of this paper is that a social group is a dynamic 

entity, with a gradually evolving structure that emerges over time. We 

shall tacitly assume that a group eventually reaches a statistical 

equilibrium, i.e. transitions between states continue to occur, but the 

probability that a group is in a specific state approaches a constant, 

limiting value. All of the models that are proposed in this paper are 

attempts to quantify how the present structure of a group "pushes" the 

group toward equilibrium. The existing methodologies are quite good for 

describing either local or global structure of a group already in 

equilibrium. This research hopefully will fill the existing methodological 

void and generate methods for studying the approach of a group toward its 

assumed equilibrium. 

As an example of a small social group evolving over time, consider a 

sociometric study of a group, e.g. the college fraternity studied by 

Newcomb (1961) for fifteen weeks, during the second year of his two year 

investigation of how individuals become acquainted and the kinds of 

relationships between persons which emerge. During its existence, such 

a group undoubtedly passes through several stages of development at 

various rates. Some stages may be achieved quite rapidly, others 

rather slowly, and the duration of time spent in a given stage may 

be long or short. Sociomatrices collected longitudinally at different 

time points in the history of a group will reflect this structural 

development. As a simple example of change in structure, we E?Xamine Newcomb's 

seventeen member fraternity. Each member was asked to rank ench of his 

fellow members on the basis of positive feeling. Consider the number of 

intransitive triads in the constructed binary digraph, for each of the 

fifteen weekly rankings made by the members (no rankings were done on week 9). 

;;. . 
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We compute Ti' Holland and Leinhardt's standardized measure of group 

intransitivity for week i, i c 0,1, ••• , 15, i ~ 9 (see Holland and 

Leinhardt, 1975, pages 35-37). Figure 1 shows how Ti' a widely accepted 

measure of the social structure of a group, varies over time. 

(Figure 1 about here) 

Obviously, this fraternity is undergoing change. In the first two 

weeks of its development, intransitive triads do exist, but not as many 

as predicted by chance. After the second week, the group appears to 

exhibit a rather erratic equilibrium, except for the strange dip at 

week 8, with many fewer intransitivities than expected by change. A single 

observation taken on this group at week 8 would not at all be indicative 

of its average structure. Such conclusions can only be drawn from 

longitudinal data. We shall return to the analysis of this data set in a 

later section. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
In this paper several stochastic models of structural change are 

proposed which will constitute the foundation of a new methodology 

for the analysis of sociometric longitudinal data. We shall define social 

structure in terms of how various graph-theoretic properties of a group 

such as indegrees, outdegrees, and presence/absence of reciprocated arcs 

change over time. The stochastic models developed here have transition 

rates that are dependent upon the quantified social structure of a 

group. Holland and Leinhardt (1977b) elaborate further on this unique idea, 

characterizing how social structure can act as a generator of a network. The 

use of the proposed modelling frameworks to make precise sociological 
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Figure 1. Intransitivity Measure for Newcomb's Second Fraternity. 
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statements on group structure is perhaps the most important feature of 

these models. 

In Section 2 of this paper we discuss two stochastic modelling 

framewrks for social networks, including a new paradigm based on a model 

for genetic nets of Kauffman (1969). We present tw simple stochastic 

models, the reciprocity and popularity models, in Section 3, and fit these 

models to several data sets in Section 4. To conclude, we give some 

suggestions for future network modellers in Section 5. Other suggestions 

for network modelling are given in.Wasserman (1978). Much of the 

material presented here is based on the author's unpublished doctoral 

dissertation (Wasserman, 1977b) and briefly discussed in Wasserman (1977c). 

• 
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II. Postulating Modelling Frameworks for Networks 

In this section we discuss two systems for modelling sociometric 

data, originating with Kauffman (1969) and Holland and Leinhardt (1977a). -We use Kauffman's paradigm to explain with simple mathematical definitions 

and functions how a social network of interpersonal relationships can be 

viewed as a stochastic process. In this system, whenever a change occurs 

in a bond or link connecting tw individual nodes, the probability that 

the change causes an arc to form or disappear depends on the current state 

of the process, the entire network, in a rather simple functional 

relationship. 

We then present the framework of Holland and Leinhardt, discussing 

the mathematical assumptions for the infinitesimal transition rates and 

the characteristics of the state space of the process. The reciprocity 

and popularity models described in the later sections of this paper utilize 

this framework. First, we give a few necessary mathematical definitions 

and explanations. 

We use continuous t:lme stochastic proaesses to model change in social 

networks. A group's structural development obvious~y progresses continuously 

through time, and a discretization of this progression may force unnecessary 

and unrealistic assumptions upon the process of change. In addition, we 

choose to model this structural development of a group as a finite state 

Markov chain. One can always argue that in the social sciences, Markov 

models are gross oversimplifications of reality. It is very unlikely that past 

individual group ·behavior has no direct influence on future structure. 

However, our goal is not the construction of elaborate, perhaps non-Markovian, 

models incorporating parmQeters for all the factors of social structure that . 
modify interpersonal relationships; rather, we shall postulate simple models 

i 

• 

p<:; 

~ 
~ 
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so that we can make use of the wealth of information on the analysis of 

continuous time Markov chains. By doing so, we can concentrate on the 

interpretation and evaluation of the models, and will not be bogged down 

by the ma.thematics that usually accompany non-Markovian models in 

continuous time with complex state spaces. 

We deal with the simplest type of interpersonal relation, the 

existence or nonexistence of a choice between two individuals. Our models 

place probability functions on these binary arcs that specify how likely 

it is that a specific arc appears or disappears in the next interval of 

time. Moreover, the length of time that an arc remains unchanged is a 

random variable, exponentially distributed by the Markov assumption (this 

rather stringent assumption is easily relaxed by working with semi­

Markov models, in which waiting times have arbitrary distributions). 

We let ~(t) be a binary matrix valued stochastic process, with 

elements (Xij(t)), where 

{

1, if i chooses j 
x1j Ct) -

O, otherwise. 

at time t 
(1) 

Occasionally we will write i + j if i chooses j. We assume that the 

group under investigation has g members, so that !Ct) is a (gxg) 

binary matrix, with main diagonal fixed at zero by convention. As 

mentioned previously, t is a continuous parameter. The matrices 

~· !• l• ~· ••• are single states or realizations of the continuous time 

process. There are 2g(g-l) possible realizations of the process, so 

that· S, the state space of !Ct), is quite large, but still finite. 
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II.l Interpreting a Social Network as a Stochastic Process 

We have informally postulated that a network is an evolving entity, 

governed by a complex social structure that influences when, where, and 

how changes in individual arcs occur. How can we best view this process 

of structural change in the simplest possible manner? Can we construct a 

dynamic system that mimics the forces causing change and the changes 

themselves in a network? Kauffman's (1969) work on the modelling of 

random nets of binary genes provides a useful and simplistic framework 

for network evolution. We shall apply it to this situation not as a 

suggested method for predicting future structure but as a way of 

mathematically comprehending how changes in interpersonal relations could 

arise. 

Consider a specific arc in a social network. At some time t, 

this arc, Xij (t), which we shall write as x, is either "on", indicating 

that a relationship exists between individual i and individual j at 

this point in time, or "off", indicating no relationship. By our Markov 

assumption, this binary variable x will remain in its 1 or O state 

for an exponentially distributed length of time. Its average waiting time, 

the reciprocal of the parameter of this exponential distribution, is a 

complex function of the entire network. This implies that the length of 

time for a relationship to emerge in a newly formed group, devoid of any 

ties, may be much longer than in a group that has. been in existence for 

quite a while with many interpersonal relationships present. In addition, 

the average waiting times will, in general, not be constant across the 

set of binary arcs. 

. .. 
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Suppose that during every instant of time (t,t+h), the binary x 

evaluates the current structure of the network and decides whether to 

change or not. Thus, y • Xij (t+h) may or may not be equal to x • Xij (t). 

Presumably, an individual in a social group is constantly evaluating his 

or her position in the group, and continually making decisions on forming 

new ties or severing old ones. We can model this process of evaluation 

and decision as follows: 

1) x receives binary inputs from n other arcs, z1,z2, ••• , zn. 

These z's are merely elements of X(t) and are the set of ... 
relationships in the network that influence individual i's 

choice or non-choice of individual j. 

2) x also examines the length of time T since it last underwent 

change. 

3) x's decision to change or not is governed by the binary output 

function fij; in fact, y • fij (x,T ,zp • •• , zn). 

4) The model can allow at most one arc to change during the 

interval (t,t+h), following the Holland-Leinhardt (1977a) 

framework, or can relax this restriction as in Mayer's (1977) 

"party" framework. 

This representation of a relationship as a binary variable, whose 

value at the end of a very small interval of time is determined by a binary 

output function of binary inputs and time since last change, is the key 

conceptualization of this paradigm. It conveys a clear understanding 

of the process of structural change in a network of a group of individuals. 

Its primary utility is to give the user of the methodology proposed here 

new insights into the role of stochastic processes as modelling tools for 

social networks. 
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II.2 The Basic Modelling Framework 

The Holland-Leinbardt (1977a) modelling framework postulates two 

assumptions that define a very general family of models. The first is 

that X(t) is a Markov chain: 

Assumption 1. Markov 

X(t) is a standard Markov chain with finite state apace S, 

and probability transition function P (t,h) defined as ... xy 

!~Ct,h) • P {!Ct+h) • zl!Ct) • ~} • (2) 

A standard Markov chain has a probability transition matrix equal to the 

identity matrix when the interval (t,t+h) shrinks to a width of zero. 

By this first assumption, the future behavior of the group is completely 

determined by the present state of the process, !Ct); i.e. the past is 

irrelevant. 

The second assumption of the framework states that for a small 

interval of time, the changes in the relationships between individuals 

in the group are statistically independent; 

Assumption 2. Conditional Change Independence 

!~Ct,h) • i~j P {x1j(t+h) • y1jl!Ct) • ~} + o(h) •• h + o. (3) 

The probability transition matrix, for small h, can be factored into the 

probabilities of change for all arcs. Statistically, this means that the 

changes in arcs are independent, just as the factorization of a multivariate 

density function into a product of univariate densities implies that the 

random variables in question are independent. Consequently, the 

probability that any two arcs act in collusion and change simultaneously, 

is essentially zero. 
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Assumption 2 greatly s:implifies the mathematics needed to fit this 

framework to data. Mayer (1977) has objected to this assumption, and 

has developed a new framework that allows for many simultaneous arc 

changes, occurring as "party" events. Unfortunately, his models are 

difficult to analyze mathematically, and consequently, he has only 

studied very simple models generated by his frame-work. 

In the small interval of time (t,t+h), a relationship can change in 

only two ways: 1) if there is no bond from individual i to individual 

j at time t, such a bond may be present at time t+h; and 2) a bond 

linking individual i to individual j at time t, may not be present 

at time (t+h). In mathematical terms, a "O" may become a "l", and vice 

versa. Hence, we can further define the elements of the probability 

transition matrix, defined in (2) and (3). as 

P {xij Ct+h) • 1I !Ct) -~, xij Ct) • o} • hAOij(~,t) + o(h) 

p i1/t+h) 1} 
(4) 

• Ol!(t) -~- xiJ (t) • • hAlij(~,t) + o(h). 

These functions, AOij and Alij' are the infinitesimal transition rates 

for the continuous time, Markov chain !( t) • Note that they depend on 

both x, the current state of the process, and the time t. The unique ..... 

feature of this framework is that it allows these functions to depend 

on properties of the nodes and on various features of the group structure 

at time· t, modelled as graph-theoretic functions. Holland and Leinhardt 

(1977a, 1977b) and Wasserman (1977b) give examples of various AOij and 

Alij. 

A researcher may develop a stochastic model for a social network 

simply by specifying a functional form for these infinitesimal transition 
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rates (4). Two examples are given in the next section. This framework 

allows·him or her to define "social structure" by a set of graph-theoretic 

quantities, such as indegree of each node or the number of intransitive 

triads that node i is involved in at time t, and to combine these to 

form the transition rates of the process. Thus, we can model how various 

aspects of group structure, suitably quantified, affect the future 

relationships in a group evolving through time as a stochastic process. 

" ' 
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111. Two S :lmple Stochastic Models 

In this section we present two stochastic models for social networks, 

each incorporating assumptions 1 and 2 of the modelling framework. The 

f.irst model is ~or reciprocity of friendship, where the tendency over time 

for a choice of individual j by individual 1, i + j, depends only on 

whether or not j + i. Analytically, this model yields a state space with 

only 4 states and is quite easy to work with. The reciprocity model 

has been studied in detail by Wasserman (1977d). 

We also discuss a model for popularity in which the transition rates 

for a change in the relationship from individual i to individual j 

depends on how popular individual j is, as measured by the indegree of 

node j. Both of these models are defined simply by assuming the Holland­

Leinhardt assumptions are operating and by specifying the infinitesimal 

transition rates (4). In Section IV, we discuss the estimation of the 

unknown model parameters. 

111.l Reciprocity Model 

Suppose that 

(5) 

that is, the probability that a choice i + j is made, or that a choice 

i + j is withdrawn in the interval of time (t,t+h) depends only on the 

presence or absence of the reciprocated choice j + i. Note that we have 

made a further simplification by assuming that AOij and Alij do not 

depend on the time t; hence, the transition rates are time homogeneous, and 

the network stochastic process is stationary in time. 

• 
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The transition rates (S) depend on xji by a linear equation, with 

coefficients AO and µ0, or . Al. and µ1 • The parameters "o and Al 

are measures of the overall rate of change of the group. The parameters µ0 and µl: 

measure the "importance" of a reciprocated arc, but as we shall discuss in 

the next section, there are better measures of the importance of xji. It is 

likely that AO> A1, since the number of choices in a group increases 

rather than decreases over t:lme. In ad~ition, the presence of a choice 

j + i should increase the tendency for a choice i + j to form; hence, 

AO + µ
0 
~ A

0
, or µ0 ~ o. Similarly, the presence of a choice j + i should 

decrease the tendency for a choice i + j to disappear. Then Al+ u1 ~ A1, 

or µ1 ~ O, but the restriction Al+ µ1 ~ 0 (since Al+ µ1 is a 

probability) forces µ1 ~ -A1 • 

To summarize, we expect the four parameters in question to obey the 

following inequalities: 

AO~ Al 

JJo ~ o 

-Al~ µl ~ 0. 

(6) 

There are g(g-1) relationships in a social net'WOrk of g individuals, 

and g(g-1) pairs of transit~n rates (5) for the reciprocity model. But 

for all these pairs, the rates for the relationship between i and j depend only 

on the relationship between i and j. Hence, if we define 

Dij (t) • (Xij (t), Xj i (t)) (7) 

as the dyad for the pair of nodes (i,j), each dyad is independent of all 

other dyads. Dij(t) is, of course, a stochastic process, in fact a Markov 

chain, with a state space Ii containing 4 states: a mutual state Dij (t) • 

(1,1), two asymmetric states Dij(t) • (l,O) or (0,1), and a null state 
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Dij(t) • (0,0). By the parameterization of the reciprocity model, the 

entire ~(t) digraph pr~cess can be represented as a set of(~) independent 

dyad processes. Each is a continuous t:lme, 4 state.Markov chain with 

identical infinitesimal generator, Q, the matrix of infinitesimal transi--
tion rates between states, given in Table 1. 

(Table l about here) 

Because of the simplicity of the reciprocity model, we can use data 

on the transitions of pairs to estimate the parameters of the model, A
0

, 

Al, µ0, µ1• For a given group observed at one or more points in time, we 

have a "sample" of(~) independent observations on the dyad process. For 

example, Katz and Proctor (1959) study pair transitions for an 8th grade 

classroom of 25 boys and girls. Their original analysis is based on the 

assumption that each dyad follows a Markov model in discrete time. In 

the next section we use their data and estimate the reciprocity model 

parameters. 

The moments, E{X1j(t)} and E{Xij(t)Xj 1(t)}, and the probability tran­

sition matrix for the dyad p~ocess are very complicated expressions. These 

quantities depend on the eigenvalues and eigenvectors of the infinitesimal 

generator shown in Table 1. They are given, along with computational details, 

in Wasserman (1977b). Fortunately, the steady state, equilibrium probabi­

lities of the process, which are given below, are simple to compute, and 

easy to comprehend. 
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Table 1 

Infinitesimal generator for the dyad process 

(0,0) 

-2A 
0 

Al 

Al 

0 

Dij (t+h) 

ST ATE 

(1,0) 

Ao 

-<Ao+A1+µ0> 

0 

:\1+µ1 

(0,1) 

AO 

0 

-(Ao+:\l+µO) 

:\1+µ1 

(1,1) 

0 

Ao+µo 

:\o+µo 

- 2 <:\1+µ1) 

,· 
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ffM(t) • P{Dij(t) • (1,1)} 

nAl(t) • P{Dij(t) • (1,0)} 

nA2(t) • P{Dij(t) • (0,1)} 

nN(t) • P{Dij(t) • (0,0)} 

(Mutual) 

(Asymmetric) 

(Asymmetric) 

(Null) 

(8) 

be the elements of !Ct), the vector of probabilities of the 4 state dyad 

process. If we let t + m, n(m) is the vector of equilibrium probabilities, 
. -

which are 

Ao<>.o+µo> 

nM(m) • (AO+Al)().1+µ1) + AO(A0+µ0+).1+µ1) 

AO(Al+µl) 

nAl. (m)• ,rA2(m) • (>.O+).l) (>.1+ll1) + Ao(AO+µo+).1+µ1) (9) 

Al O,1+µ1) 

,rN(m) • (Ao+A1)(X1+P1,f + Ao(Ao+llo+X1+ll1) 

These probabilities can be found by first showing that the dyad process is 

reversible, that is the distribution of Dij(t-T) and Dij(t+T) are equal for 

all t and T < t. Equilibrium probabilities are then simply found from the 

set of reversibility equations (again, see Wasserman, 1977b, for more details). 
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111.2 Popularity Model 

The popularity model has transition rates 

AOij(~,t) •AO+ w0x+j 
(10) 

Alij (~, t) • Al + ,rlx+j • 

Individual i's choice or non-choice of individual j depends only on the 

number of individuals who choos~ j, ~j, the indegree of j • As with the 

reciprocity model, the transition rates are time homogeneous, making the 

network process stationary in time. There are also g(g-1) pairs of rates 

with the popularity model, but for a fixed j, the (g-1) pairs for various 

i are identical. That is, each individual in the group has a unique pair 

of transition rates that are constant for all choices to be made of him or 

her. Thus, there are only g distinct pairs of rates. Also note that the 

choices made of individual j do not depend on the number of choices 

received by the other group members. 

The parameters Ao and A1 are again measures of the overall rate of 

change for the group. The popularity parameters 1r0 and w1 measure the 

importance of the "popularity" of individual j on the relationships from 

group members to individual j • Since a large indegree should increase the 

tendency for individual j to ~e chosen by individual i, n0 is undoubtedly 

positive and unrestricted in magnitude. Now consider n1• A large indegree 

should decrease the chance of choices disappearing. Hence n1 < O. However, 

n1 is restricted in size. Since (A1 + n1x+j> must be positive, we can 

conclude that the condition 

must hold; consequently, 
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Let 

~.j (t) • cx1J (t), x2j Ct), •••• xgj (t) >, (11) 

th 
be the j column process of the digraph process !Ct). Each of the g 

column processes has 2g-l states, consisting of all possible zero-one 

vectors of length g, with one entry, Xjj(t), fixed at zero. By the para­

meterization (10) of the popularity model, the stochastic processes 

{!.j(t)} are independent and identically distributed. The entire digraph 

process can be represented as g independent column processes consisting 

of the columns of X(t), ~ach a continuous time, 2g-l state Markov chain. -
The infinitesimal generator for the column process, with g • 4, is given 

in Table 2. For simplicity, we have written ~.j(t) as a vector of length 

3, ignoring the single zero entry in the vector. 

(Table 2 about here) 

The solid lines in the generator shown in Table 2 group together 

those realizations of the column process with equal number of choices. 

Notice the block-diagonal appearance of the generator. This block­

diagonal feature of the generator is apparent for all g. One can 

easily imagine the structure of the generator for general g: AO+ (k-l)w0 

immediately above the diagonal, and A1 + (k*l)n1 immediately below the 

d~agonal, in blocks, where k is the number of ones in the vectors 

contained in the blocks. The remaining off-diagonal elements in the 

matrix are zero, demonstrating the "birth-and-death" nature of the column process. 

The popularity model is analytically identical to a model for expan­

siveness with parameterization 



(0,0,0) 

(0,0,0) -3A 
0 

(0,0,1) .Xl+nl 

(0,1,0) .Xl+trl 

u,o.o) .Xl+trl 

j (t+h) 

co.1,1) 0 

(l,O.l) 0 

(1.1,0) 0 

(1.1.1) 0 

!.j (t+h) 

(0,0,1) (0,1,0) (1,0,0) (0,1,1) (1,0,1) (1, 1, 0) 

Ao Ao "o 0 0 0 

-2(.Xo+no> 
0 0 .xo+no "0+1ro 0 

-(.Xl+nl) 

0 
-20

0
+n

0
) 

0 "o+,ro 0 .xo+1ro -(.Xl+trl) 

0 0 
-2<.xo+no> 

0 .xo+1ro .xo+1ro - 0 1+,rl) 

-O,0+21ro> 
.Xl+2-rrl .X1+21rl 0 0 0 

-2(.Xl+2-rrl) 

.Xl+2,rl 0 .Xl+2trl 0 
-<>-o +2,..0> 

0 
-2 ().1 +211'1) 

0 .X1+21r1 A1+21r1 0 0 
-<>-0+2no> 

-2 (.X
1
+2n

1
) 

0 0 0 .x
1
+3n

1 .Xl+31rl .x
1
+3n

1 

Table 2. Infinitesimal Generator for Popularity Model and Column 
Process, g=4. 

t-

(1,1,1) 

0 

0 

0 

0 I 

~ 

• 
>-0+21ro 

. .X
0

+211
0 

.Xo+21ro 

-J(Al+J,rl) 
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AOij(~,t) •AO+ £0xi+ 

Alij(~,t) •Al+ £1Xi+ • 
(12) 

The expansiveness model reduces !Ct) to a set of g independent and identi­

cally distributed row processes consisting of the rows of X(t). These row 

processes are mathematically equivalent to the column processes, with £
0 

and £
1

, the parameters measuring the importance of the willingne.ss to make 

many choices, replacing n0 and n1 in all formulas. 

As with the reciprocity model, computations of moments and probability 

transition matrix for the column (or row) process are quite difficult. 

However, by examining the indegree process, derived from the column process 

we can easily compute the equilibrium probabilities of !.j(t). 

Define 

Ij (t) • l: Xij (t) 
i 

(13) 

as the indegree process, the sum of the number of ones in the j th column 

process at t:lme t. Ij(t) is a continuous t:lme birth-and-death process, 

since by assumption an indegree can only increase by 1, decrease by 1, or 

remain the same in a small interval of time. Consequently, we know that 

the equilibrium probabilities of the indegree process are 

where 

yk 
P{Ij{~) • k} • t, k • 0, 1, ••• , (g-1), 

yk 

(see Karlin and Taylor, 1975, page 137). 

(14) 

Conditional on k, the number of ones in a column vector, every one of 

the (8~1) vectors with k ones and (g-1-k) zetoa are equally likely. The 
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probability mass function of the column process is just a multiple of the 

probability mass function of the indegree process; specifically, 

1 
P{!.J(t) • ~-J} • [s;l) P{Ij(t) • k} 

Letting t +min equation (15) yields 

yk 
P{X j(m) • x j} -~l ~- ~- - ty 

k k 

k-1 ().o + j ""o> 
• n 

j•O (Al+ (j+l)~l) 

• (15) 

(16) 

fork• 0,1, ••• ,(g-1), where ~.j has k ones and (g-1-k) zeros, as the equili- -~ 

brium probabilities of !.j· The column process can be analyzed by means of 

the simple indegree process lj(t). 
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IV. Fitting Stochastic Models to Social Networks 

It would be very misleading if the reader were left with the :Impression 

that the purpose of this research is s~ply to propose stochastic models 

for social networks. This is far from the truth. The worth of these models 

lies not in their theoretical elegance, but in how well they fit the data. 

Consequently, the data analysis problems that arise in the evaluation of 

these models is at least as important as their mathematical analysis. 

Wasserman (1977b) shows that complete evaluation of stochastic models 

for networks is verr difficult, primarily because one must estimate para­

meters from a continuous t:lme model with only discrete data. This problem 

arises because an investigator can only observe a social network at a few 

discrete points in time. To adequately analyze a continuous time model, 

one needs a continuous record of the history of the group. We comment 

first on data collection schemes in this section. 

An :Important aspect of this new methodology is to devise "good" 

estimation procedures for the parameters of the proposed models when one 

does not have a continuous record of the group. A start in this direction 

has been made by Wasserman (1977d). We will discuss parameter estimation 

for the reciprocity model and the popularity model in this section. 

IV.l Data Collection 

The primary assumption in this research is that a social network is an 

evolving entity. Consequently. if we are to study how a social network 

changes over time, we need to observe and gather data on t~e group at 

several points in time. Moreover, at the very least as shown by Singer 
• 

and Spilerman (1976), data should be collected long~tudinally with the 

time between repeats and the number of repeats systematically varied. 
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Suppose that we have observations on one of the processes derived from 

the X(t) digraph process mentioned in the previous section. Por example, 
~ 

if we consider the dyad process, one observation on the group gives us<!> 

independent observations on the dyad process, »12(t), D13(t), ••• , _D
18

(t), 

n23 (t), ••• , D 1 (t), each a 4-state continuous time Markov chain. Further g- ,g 

suppose that this set of observations on the derived process is observed at 

times t • t 0, t 1, ••• , tn' where the tj are distinct positive numbers. 

If n • O, we have a single set of observations on the derived process 

and are not able to form a transition matrix since, a calculation that requires 

observations taken at two points in time. Estimation ua~ng this single set 

of observations is based solely on the probability distribution of the 

derived ~rocess, or if the group is near steady-state, on the equilibrium 

probabilities, such as those given in equation (9) for the dyad process. 

If n + m, we essentially have a continuous record of the process, in 

the sense that tj+l - tj + O. Usually tm is a finite time, say T. A 

continuous record is the complete history of the process over the interval 

(t0,T), including all the transitions from state to state (the discrete 

skeleton) and all the waiting times in each state. Billingsley (1961) 

discusses estimation of the parameters of a Markov chain assuming a continuous 

record of the process. This is an ideal situation. Unfortunately, it 

is quite rare for an investigator to have such complete data on the 

evolution of a group. The estimation problems that arise when one does 

not have a continuous record are quite complex, and many are still 

unsolved. Perhaps future network investigators will make an effort to 

gather continuous records, thus easing the mathematical burdens for analysis. 

If n is finite and nonzero, we can define a set of empirical probability 
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transition matrices (see Anderson and Goodman, 1957, or Wasserman, 1977b). 

For moderate n, there is a substantial number of estimated transition 

n matrices, (2) to be exact, that can be used to determine whether the data 

adhere to the assumptions of a continuous time Markov chain. This is the 

most common longitudinal data collection scheme. The group is observed 

at several points in time, perhaps equally spaced, perhaps not. We first 

discuss how one "fits" the reciprocity model to data consisting of only 

one observation on the group, and second, to data consisting of two or 

more observations. 

IV.2 Estimation of Reciprocity Model Parameters 

Suppose that we have a single observation of some group, and we form 

a sociomatrix x. Throughout this section, we shall assume that the reci­

procity model is operating, with transition rates (5). By the assumptions 

of the model, the matrix~ consists of(~) independent dyads Dij(t), each 

a continuous time Markov chain. Since the labeling of the nodes in a 

directed graph is arbitrary, we cannot distinguish a (1,0) asymmetric dyad 

from a (0,1) asymmetric dyad -- we only know that the dyad in question is 

neither mutual or null. Consequently, the information in x can be sum-

marized by three sufficient statistics: 

1) M(t) • E xijxji • number of mutuals 
i>j 

..., 

2) A(t) • 1: [(1-xij)xji + x1j(l-xji)] • number of asymmetries (17) 
i>j 

3) N(t) • l: (1-xij) (1-xj 1) • number of nulls. 
i>j 

The three statistics obey the restriction 

M(t) + A(t) + N(t) • (~) 

We estimate the four unknown parameters of the reciprocity model 

(18) 
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(A
0

, A1, ·µ
0

,. lli,) by maximizing the likelihood function of the parameters 

given the single sociomatrix ~- Por computational ease we use the steady 

state values of "'M• ~A' '"N• the probabilities of the states of the dyad 

process, given in equation (9). Wasserman (1977b) gives a detailed exami­

nation of the likelihood function, and hence, we shall only briefly comment 

on some of its features. 

While the likelihood is a function of four parameters, it contains 

only 2 "pieces of information", M(t) and N(t), since A(t) is determined by 

knowledge of g ~ equation (18). Consequently, we can only estimate 2 

functions of the parameters. These two functions are the "change" ratios: 

The first ratio 

• Ao+Po 'Y P{Xij (t+h) • 1 Xi, (t) • o, xj i (t) • 1} 
81 >.1+µ1 M P{xiJ (t+h) • o I xiJ Ct) • 1, xj 1 Ct) • 1T 

(19) 

(20) 

is the ratio of the probabilities of change, in a small unit of t:lme, 

given the presence of a reciprocated choice. For example, if e1 • 6, 

then in the presence of j + i, a non-choice from i to j is 6 times more 

likely to change into a choice than a choice· to a non-choice, in a small 

interval of time. Similarly, 

AO P{Xi1 (t+h) • 1 
82 • Al =: P{Xij (t+h) • 0 

xi,1 (t) • o, xj i Ct) • o} 
Xij(t) .• 1, Xji(t) • O} 

has an equivalent interpretation, but in the absence of a reciprocated 

choice. We expect the ratio 81 to be larger than the ratio 82 since 

reciprocated arcs should increase the chance of i + j relative to the 

chance of 1 -/t,-j. 

(21) 
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The maximum. likelihood estimates of e1 and e2, found by Wasserman 

(1977b) are: 

A 2M(t) 
81 • A(t) 

A A(t) 
82 • 2N(t) 

A A 

(22) 

At the end of this section, we discuss an example, evaluating e
1 

and 8
2 

for the group under study. 

There are two other ratios that are more interesting than the change 

ratios e1 and 82 • These ratios are 

K
1 

• °'o +µo> / A
0 

K • 
2 

0\1+µ1) / A 
1 

(23) 

and directly measure the importance of reciprocated arcs. Por example, with 

_ P{Xi,1 (t+h) • 1 

"1 .... P{Xij (t+h) • 1 

xi;t Ct) - o, xji Ct) • 1} 

xijCt) - o, xji(t) - o} (24) 

the numerator and denominator differ only in the presence or absence of the 

choice j + i. A value for 3 for ic
1 

indicates that a change in a small 

interval of time from a non-choice to a choice is 3 times more likely in 

the presence of j + i than in the absence of j + 1. The ratio K2 in a 

similar way measures the effect of a reciprocated arc on the change from a 

choice to a non-choice. We suspect that K1 > 1 and K2 < 1, but unfortunately, 

these "reciprocity" ratios cannot be estimated via maximum likelihood with 

only one observation on the digraph. 

The ratio of e
1 

to e
2 

or K1 to K2 is also an interesting quantity and 

more informative than considering e1 and e2 separately. We have 
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P{Xi,1(t+h) • 1ID11(t) • (0,1)} _/P{Xij(t+h) • 1(D1.1(t) • (0,0)} 

P{xiJ (t+h) • olnij Ct) • (1,1) J/ P{xij (t+h) • ofnij (t) • c1,05 J • 
(25) 

P{Xij (t) .. 0, xij (t+h) - 11xj i (t) - 1}/P{Xij (t) - o, xij (t+h) - 11xj i (t) -· O} 
P{Xij(t) • 1, Xij(t+h) • olxji(t) • 1} P{Xij(t) • 1, Xij(t+h) • olxji(t) • O} 

an odds ratio. The ratio gives the increase in the odds of a new choice 

i + j coming into existence during the interval ,< t, t+h) due to the presence 

of j + i. With no reciprocity effect, log (81/82) • O; if log (81/82) > O, 

a positive reciprocity effect is present implying that reciprocated choices 

increase the odds of new choices. 

We now consider the data analyzed by Katz and Proctor (1959) mentioned 

in section 3. The dyad censuses, the statistics M(t), A(t), N(t), are 

given in Table 3. The data are remarkably constant, which may indicate 

that the group has reached an equilibrium •. Of course, data on the~­

sitions of pairs are necessary to completely verify this. We calculate 
,.. ,.. ,.. ,.. 
e1, e2, and log (81/82) for each of the four time points in Table 4. 

(Tables 3 and 4 about here) 

The four estimates of 81 differ from the four esUmatea of e2• The 

ratio of probabilities is about 6 or 7 times greater in the presence of 

j + i than in its absence. The log odds ratios also show a positive 

reciprocity effect. Also note that all the e1 and 82 estimates are less 

than unity. This implies that a change from a choice to a non-choice is 

more probable than a change from a non-choice to a choice. This rather 



- 29 -

tl t2 t3 
Dyad Census September November January 

M(t) 15 13 -14 

A(t) 45 46 47 

filil 240 241 239 

(g) 
2 300 300 300 

Table 3. Dyad Censuses for 8th Grade Classroom 
from Katz and Proctor (19S9). 

tl t2 t· 
3 

Estimate Se:etem.ber November Januarl 
,.. 
81 0.677 0.565 0.596 
,.. 
82,.. 0.094 0.095 0.098 ,.. 

log (81/82) 0.851 0.774 0.784 

t4 
May 

16 

43 

241 

300 

t4 
May 

o.744 

0.089 

0.922 

Table 4. Change and log odds ratios for Katz and 
Proctor Data 
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strange result is due to the large number of null relations in the group. 

A study of the change ratios, 81 and e2, and the log odds ratio, 

log (81/82), over many groups would be quite informative. Unfortunately, with 

only one observation on the group we cannot estimate the four parameters 

of the reciprocity model or even the reciprocity ratios K1 and K2• 

We now consider the situation in which we have more than a single 

observation on the group, again assuming that the reciprocity model is 

operating. We first assume that we have two observations on the group, 

taken at times t 1 and t 2 > t 1, and aociomatrices !(t1) and !(t2). We 

examine each of the(~) dyad pairs(Xij(t1), Xji(t1)) and (Xij(t2), Xji(t2)), 

and determine the state of Dij at times t 1 and t 2• ·These dyad transitions 

can be arranged in a 4 x 4 table, with rows corresponding to the dyad state 

at time t 1·, ~d columns to the t 2 state. As an example, consider Table 5, 

taken from Katz and Proctor (1959), giving the transitions from September 

to November of the dyadic relations in the eight grade classroom under 

investigation. The row and column margins of the table are identical to 

the dyad censuses for these two months, shown in Table 3. 

(Table S about here) 

We let T denote such a matrix of transitions, with entries ( tk ) , where 
~ t 

the subscripts k and Jl are defined as follows: 

k,Jl • 1 • Null (0,0) 

k,1 • 2 • Asymmetric (1,0) 

k,1 • 3 • Asymmetric (0,1) 

k,t • 4 • Mutual (1,1). 

(26) 

. , 
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NOVEMBER 

Null Asymmetric Mutual 

Null 217 22 1 

Same 17 direction 
Asymmetric 21 s 

Mutual 

Reversed 2 

3 5 7 

241 46 13 

Table 5. Dyad Transitions from September to 
November for Katz and Proctor data. 

240 

45 

15 
. 

300 
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The entry t 14 is the number of nulls that become mutuals, t 23 + t 32 , the 

number of asymmetric dyads that reverse direction, etc. The elements of! 

are sufficient statistics for the model parameters. 

The likelihood function of the four unknown parameters given! depends 

on the conditional probabilities of the dyad states at time t 2 given the 

states at t 1 , and the probabilities of each state at the first observation. 

The conditional probabilities are the elements of the probability transition 

matrix of the dyad process, and as mentioned 1n· section III, are very 

complicated, non-linear expressions, being sums of exponential functions. 

The probabilities of each state at the first observation are the ?(t1) 

probabilities, defined in equation (8). Because these probabilities are 

so complicated, we will not give the likelihood function here, referring 

the reader to Wasserman (1977b) for details. 

Now suppose we have more than 2 observations of the group. We denote 

the sociomatrices by !Ct1), !(t2), ••• , !Ctn), where n • number of obser­

vations. We initially form (n-1) matrices T, m • 1, 2, ••• , (n-1), where 
... m 

the elements of !m m (tk1m) give the transitions of the dyads at time tm to 

new states at time tm+1• The dyad process is stationary so that the 

probability transition matrix for the dyads depends only on tm+l - tm. The 

likelihood function is 

L(~l!Ctl) • ~1' !Ct2) • ~2••••, !Ctn)• ~n) • 

[11l(tl)M(tl)ffA(tl)A(tl)11i(tl)N(tl)], nnl IT pkl(tm+l - t) tkR.m 
m•l k, R, • 

(27) 

.. 
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Pk1(tmf-l - tm) • P{Dij(tm+1) in state tlDij(tm) in state k} (28) 

are elements of the probability transition matrix. When we sample at 

regular intervals, so that t 2-t1 • t 3-t2 • ••• • tn-tn-l • T, 

the likelihood (27) reduces to 

L(8fx1, x2, ••• , x) • 
- - - -n 

n (t )M(tl)tt (t )A(tl)w. (t )N(tl) 
M 1 ,.A). N 1 

. tt 
n 

kRm 
• p (T)m 

k, f, kl (29) 

With this equidistant sampling, we can pool all the dyad transitions across 

time points, to form a "super-matrix" of transitions T • IT , giving us a 
- -m m 

sample size of (n-1)(~) dyads. 

To estimate the four parameters of the reciprocity model, we can 

differentiate the likelihood function (27) to obtain a system of four 

equations in four unknowns. Unfortunately, because of the complexity of 

the derivatives, direct solution is virtually impossible. We must rely on 

either a graphical exploration of the likelihood function in five dimensions, 

or an approximate solution obtained via a Newton-Raphson-type iterative 

algorithm to find the maximum likelihood parameter estimates. We will 

illustrate the former. 
~ 

We first compute !(ti~tj), an empirical probability transition matrix 

for the dyad process. If we haven> 2 observations on the group, there 
~ n are (2) ! matrices, each of which can be studied further. We then utilize 

recent research of Singer and Spilerman (1974, 1976) on the embeddability 

of empirical probability transition matrices as transition matrices for 

continuous time Markov chains. We compute estimates of the infinites~l 
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generator for the process 

(30) 

,.. 
for as many of the P's as possible. Since the unknown parameter e is a -
one-to-one function of the elements of the infinitesimal generato~ g 

,.. 
given in Table 1, we can obtain a set of parameter estimates{~} that 

are hopefully near the true maximum of the likelihood. We evaluate Lat 
,.. ,.. 

each of the S's and explore the likelihood in the vicinity of the 8 that -"* gives the largest value of L, ~, by using finer and finer grids with 

"'* center at a. -
An example will help illustrate. Katz and Proctor sample their 

eighth grade classroom in September, November, January, and May. September, 

November, and January are roughly equidistant in time, as are September, 

January, and May. We shall use the September-November and September­

January transition matrices to estimate ~. These matrices are given in 

Table 6, where we have lumped together the asymmetric states for simplicity. 

(Table 6 about here) 

Estimates of the theoretical infinitesimal generator of the dyad 
,.. 

process, g, are given in Table 7, along with the theoretical generator 

g. We let t
0 

= September, t 1 = November, t 2 = January, and define 

t -t = 1 time unit, equivalent to 3 months. Because of the length of 
1 0 

the first half of the school year, September-January is a period of 4½ 

months, thus t
2
-t1 1:1 1.5~ time units. These tim<.! intervals, 1 and 1.5, were 

,.. 
used as divisors for the calculation of the g matrices in Table 7. Except 
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! (November - September) 

NOVEMBER 

Null Asymmetric 

0.467- 0.333 

0.111 0.422 

0.004 0.092 

P (January - September) 

JANUARY 

Mutual 

0.200 

0.467 

0.904 

Null Asymmetric Mutual 

0.400 0.200 0.400 

0.133 0.333 0.534 

0.008 0.121 0.871 
r--

Table 6. Empirical Transition ~atrices from 
Katz and Proctor data. 

• 
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,. 
for the first row of g, the two estimated generators are quite similar. 

The difference in the first rows is probably due to the large number of 

nulls that changed to mutuals from September to January, as seen in Table 

6. 

(Table 7 about here) 

,. 
Setting the calculated elements of g equal to their theoretical 

values yields the "rough" parameter estimates 

AO = 0.076 
,.. 
~\ = 0.773 
,.. (31) 
µ

0 
= 0.202 

µ1 =-0.353 

for September-November, and 
• 

Ao = 0.077 
,.. 

(32) 
µ0 = 0.203 

µ1 =-0.387 

for S~ptember-January, remarkably close. 

The change and reciprocity ratios for the group calculated from the 

September-November estimates (31) are: 
,.. 

e1 = 0.098 
,. 
82 = 0.662 

(33) 

and 
,.. 
K = 1 3.658 
,. 
K a 0.543 . 2 

(34) 

The estimates (33) ~re v~rtually identical to those given in Table 4 based 
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,.. 
Q September - November -

Null Asymmetric Mutual 

Null (-0.867 0.814 0.053) 
Asymmetric 0.278 -1.051 0.773 
Mutual -0.011 0.158 -0.147 

,.. 
Q September - January -

Null Asymmetric Mutual 
Null (-0.673 0.347 0.326) 
Asymmetric 0.280 -0.922 0.642 
Mutual -0.017 0.163 -0.146 

. 
g Infinitesimal Generator 

Null Asymmetric Mutual 

Null (-20,1+µ1) 2(~\+µ1) 0 ) Asymmetric G\.o+µo) -CAo+~\+µo) 11 
Mutual 0 210 -2A 0 

Table 7. Q matrices for Katz and Proctor Data 
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on single observations. Obviously, the group is near equilibrium since 

the estimates in Table 4, computed with the steady-state probabilities, 

are so similar to the estimates (33), computed with no steady-state 

assumptions. The reciprocity ratios (34) are quite important. A non­

choice is nearly 4 times more likely to change into a choice in the 

presence of a reciprocated arc, and a choice is only half as likely to 

disappear in the presence of a reciprocated arc, than in its absence. 

These two reciprocity ratios summarize the effect of a reciprocated 

choice very nicely. 
A 

We now use the point ~ = (0.076, 0.073, 0.202, -0.353)'· and 

explore the likelihood function (27) in the neighborhood of this point 

in 5-dimensional space. We shall try to determine whether L, or 

equivalently log L, has a true maximum in the vicinity of ~-

We first compute log L for a large grid to determine whether the 

function has a global maximum. We set up a grid using the values 

Ao= 0.10, 0.2s, a.so, 0.1s, 1.00 

µ0 = o, 0.2s, a.so, o.75, 1.00 

(A1,µ1) = (0.50,-0.25), (0.75,-0.25), (1.0,-0.25), 

(0.75,-0.50), (1.0,-0.50), (1.0,-0.75) • 

Remember that A1 + µ1 > O, so that these two parameters cannot vary 

freely. After our computations, we see that the function is monotonically 

decreasing in A0, and increases for small µ
0 

when AO is small and 

then monotonically declines for larger µ0• The function also appears to 

show a general increase for increasing Al and µ1 • We suspect that log L 

has a unique maximum for very small "'o < 0.10, µ0 near 0.25, Al near 
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Figure 2 
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IJJ=-.?5 

J.11= -.50 
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µ,=-.25 
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AO- .10 

10 

J.Jo 
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0.75, and µ
1 

near -0.25. This range of values corresponds very closely 

" to a. Figure 2 gives a detailed view of the surface, with AO fixed at 
,.. 

0.10. The likelihood appears to be rather flat in the vicinity of e. 

(Figure 2 about here) 

We make a further exploration of L with a much smaller grid 

centered at {0.0875, 0.30, 0.85, -0.45). The function has a maximum of 
,.. 

-164.4 at (0.075, 0.80, 0.15, -0.40), very near ~- Because of the 

flatness of log L near this maximum, a continuum of points are all 

possible maxima. If we examine the range of points with log L > -164.6, 

we see that the parameters may vary as: 

0.05 ~ AO ~0.10 

O. 7 o ~ Al ~ 1 .• 00 

0.15 ~ µ0 ~ 0.25 

-0.50 ~ µl ~-0.30 • 

We can consider the ranges (35) as a "pseudo-confidence" region. 

IV.3 Estimation of Popularity Model Parameters 

(35) 

Recall the popularity model, discussed previously, with transition 

rates dependent upon the indegree of the chosen individual. The model 

has four parameters, AO and A11 measures of the ove~all rate of change, 

and n
0 

and n1 , measures of the effect of popularity on choices made. 

With this set of transition rates, given in equation (10), the set of 

column processes {X,j(t)}, equation (11), are independent and identically 

distributed as continuous time, 2g-l state Markov chains. Moreover, the 

set of birth-and-death indegree processes {I.(t)}, equation (13), carry all 
J 
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of the analytic information in the column processes necessary to estimate 

the model parameters. 

As an example, again consider the fraternity studied by Newcomb (1961), 

and Nordlie (1958). The indegree process for each of the 17 fraternity 

members is observed for fifteen consecutive weeks, except for week 9. 

We form indegree censuses for each week, counting the number of fraternity 

members with indegree O, indegree 1, etc. The indegree censuses for the 

fraternity are given in Table 8. 

(Table 8 about here) 

The data are difficult to comprehend in this tabular form. Figure 3 

shows a graphical simplification of these data, box-and-whisker plots 

(Tukey· (1977) or Leinhardt and Wasserman (1978)) for the indegree processes 

at each week. The box demarcates the quarters of each batch of 17 numbers, 

while the line drawn through the box marks the median. Whiskers are 

drawn down to the minimum and up to the maximum. One can imagine dashed 

lines connecting the quarters and the medians to further simplify our 

study of the changes in {I.(t)} over time. 
J 

(Figure 3 about here) 

These data show good constancy through time. A change occurs in the 

{Ij(t)} at week 4, increasing the dispersion, but the {Ij(t)} settle back 

into the pattern of the earlier weeks at week 6, although with an increased 

range. This constancy probably insures that estimates of the popularity 

model parameters based on single observations of the group will be reasonably 

stable over time. 
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5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 

1 1 0 1 1 1 1 o· 
2 0 2 0 2 0 0 1 

0 1 0 1 0 2 1 1 

0 1 1 1 0 0 1 1 

1 0 1 1 0 1 0 1 

2 2 1 0 1 0 1 0 

1 2 1 2 1 2 3 1 

0 1 2 1 3 0 1 3 

1 1 1 1 2 4 2 2 

2 0 2 4 1 2 2 1 

0 4 1 1 1 1 0 3 

3 1 1 0 0 0 1 0 

2 1 2 2 2 1 1 0 

0 0 0 0 1 1 0 0 

0 0 0 1 1 0 2 2 

1 1 1 0 0 1 0 0 

Table 8. Indegree Censuses for Newcomb's (1961) fraternity. 
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Figure 3. Indegree Processes for Newcomb's Fraternity. 
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Suppose we observe the group at one point in time, say tk, recording 

data from one of the 16 weekly observations. The {Ij(tk), j = 1,2, ••• ,17} 

can be used to estimate _p = {)1.
0

,.Al' n
0

, 1T
1
)' via maximum lieklihood. As with 

estimation of the reciprocity model parameters, we assume that the group is 

near equilibrium, and use the steady-state probabilities, yk, defined in 

equation (14), in the likelihood function. If we define the indegree 

census as 

Ck(t) =#of the Ij(t) equal to k, k = 0,1, ••• , (g~l) 

then the likelihood function of ~ is simply 

(g-1) Ck(t) 
L(~l!(t) = x) = Il Yk 

k=O 

Unlike the likelihood L(!l~(t) =~),we can estimate ! directly, 

(36) 

(37) 

if (g-1) > 4, but unfortunately, differentiation of (37) and solution of 

the resulting system of _4 equations in 4 unlmowns is difficult, and must 

be done approximately using computer algorithms. 

If we observe the group at two (or more) points in time, we can 

record indegree transitions, i.e. the number of individuals with indegree 

i at time tk and indegree j at time t 1 , t 1 >· tk~ Probability 

transition matrices for the indegree process can be quite large, gxg in 

size, making their analysis rather difficult. We prefer to work directly 

with the indegree censuses; fortunately, we can estimate all four parameters 

even with a single observation on the group. 



.. 
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V. Considerations for Prospective Stochastic Networkers 

We social net-wrk researchers are entering the stochastic process 

game at a rather late date. Our colleagues interested in social mobility 

have been playing the game for nearly twenty-five years, since the classic 

wrk of Blum.en, Kogan, and McCarthy (1955) • Hopefully, we can learn from 

mobility studies and not duplicate the mistakes made by mobility researchers 

over the years. 

The framework discussed in this paper is unique to the social network 

discipline because of its allowances for parameterizations. One can 

define how the social structure of a group influences future structure in 

many ways. By ·defining this "operative" social structure using graph­

theoretic quantities, one can combine these quantities to form the tran­

sition rates of the process. Unfortunately, all but a few models, such 

as the reciprocity and popularity model discussed here, are quite diffi­

cult to manipulate mathematically. The specified transition rates may 

not allow a decomposition of the network into a set of independent and 

identical.- processes (see Mayer, 1977, section X). We can still learn 

about these models by Monte Carlo simulation of networks evolving as 

stochastic processes with specified transition rates. 

Perhaps the central issue in this research still to be addressed is 

model evaluation -- how do we determine which model, chosen from some 

set of models, provides the best fit for the data. Since all of our 

models are time-homogeneous Markov, we must first verify that the observed 

realization of the process has fixed transition rates, and that the 

Markov assumption is valid. Here, some of the ideas of Singer and 

Spilerman (1976, 1977) can be applied. Once verified, we can ask which 
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of the models under consideration provides the best description of the 

data. 

In addition to these mathematical concerns, we need to answer some 

sociological questions such as why model parameters might differ across 

groups and how to theoretically determine functional forms for the AO •• l.J 

and The questions can only be answered through empirical socio-

logical research. Hopefully, the ideas and methods presented in this 

paper will motivate sociologists to consider networks as evolving entities 

and to ~tudy the implications of this assumption. 

... . 



. .. 

- 47 -

VI. Acknowledgements 

This paper is based on invited pr~sentations given at the Mathematical 

Social Science Board Advanced Research Symposium on Stochastic Process 

Models of Social Structure, December 1977, Carnegie-Mellon University, 

and the International Network for Social Network Analysis Colloquium on 

New Directions in Structural Analysis, March 1978, University of Toronto. 

I am indebted to Paul Holland and Samuel Leinhardt for their continued 

interest in my research and to Thomas Mayer for his diligent reading of 

my dissertation and for his comments that are reflected in this paper • 



- 48 -

VII. References 

Anderson, T.W. and L.A. Goodman (1957). "Statistical inference about 
Markov chains." Annals of Mathematical Statistics, 28, 89-110. 

Arabie, P., S .A. Boorman, and P.R. Levitt (1978). "Constructing block­
models: How and why." Journal of Mathematical Psychology, t~ appear. 

Billingsley, P. (1961). Statistical Inferences for Markov Processes. 
Chicago: The University of Chicago Press.· 

Blumen, I., M. Kogan, and P.J. McCarthy (1955). The Industrial Mobility 
of Labor as a Probability Process. Ithaca, N.Y.: Cornell University 
Press. 

Boorman, S.A. and H.C. White (1976). "Social· structure from mu.ltiple 
. networks. II. Role structures." American Journal of Sociology, 81, 
1384-1446. 

Holland, P.W. and S. Leinhardt (1970). "A method for detecting structure 
in sociometric data." American Journal of Sociology, 70, 492-513. 

Holland, P.W. and S. Leinhardt (1975). "Local structure in social 
networks" in Sociological Methodology 1976, edited by D.R. Heise, 
San Francisco: Jossey-Bass, Inc., 1-45. 

Holland, P.W. and S. Leinhardt (1977a). "A dynamic model for social 
networks." Journal of Mathematical Sociology, 1, 5-20. 

Holland, P.W. and S. Leinhardt (1977b). "Social structure as a network 
process." Zeitschrif t ftir Soziologie, ~ 386-402. 

Karlin, S. and H.M. Taylor (1975). A First Course in Stochastic Processes, 
Second Edition. New York: Academic ·Press. 

Katz, L. and C.H. Proctor (1959). "The concept of configuration of 
interpersonal relations in a group as a time-dependent stochastic 
process." Psychometrika, 24, 317-327. 

Kauffman, S.A" (1969). "Metabolic stability and epigenesis in randomly 
contructed genetic nets." Journal of Theoretical Biology, 22, 437-467. 

Leinhardt, S. and S.S. Wasserman (1978). "Exploratory data analysis: An 
introduction to selected methods" i~ Sociological Methodology 1979, 
edited by K. Schuessler. San Francisco: Jossey-Bass, in press. 

Mayer, T.F. (1977): "Parties and networks: Stochastic models for 
relationship networks." Paper presented at the MSSB Advanced Research 
Symposium on Stochastic Process· Models for Social Structure, 1-2 December, 
1977, Carnegie-Mellon University, Pittsburgh, Pennsylvania. 

Newcomb, T.M. (1961). The Acquaintance Process. New York: Holt, Rinehart & 
Winston. 



- 49 -

Nordlie, P.G. (1958). "A longitudinal study of interpersonal attraction . 
in a natural group setting," Ph.D. dissertation, Department of Social 
Psychology, University of Michigan. 

· B d s Sp1.·1enna.n (1974) "Social mobility models for heterogeneous Sing er, • an • • . c 
populations." Sociological Methodology 1973-1974, edited by H.L. ostner. 
San Francisco: Jossey-Bass. 

Singer, B. ands. Spilerman (1976). "Representation of social processes 
by Markov models." American Journal of Sociology, 82, 1-54. 

Singer, B. and S. Spilerman (1977). "The representation of multi-wave 
panel data by non-stationary continuous-time Markov chains." Paper 
presented at the MSSB Advanced Research Symposium on Stochastic 
Process Models for Social Structure, 1~2 December, 1977, Carnegie­
Mellon University~ Pittsburgh, Pennsylvania. 

Tukey, J.W. (1977). Exploratory Data Analysis. Reading, Mass.: Addison­
Wesley. 

Wasserman, S.S. (1977a). "Random directed graph distributions and the triad 
census in social networks." Journal of Mathematical Sociology,~, 61-86. 

Wasserman, S.S. (1977b). "Stochastic models for directed graphs." Ph.D. 
dissertation, Department of Statistics, Harvard University. 

Wasserman, S.S. (1977c). "A survey of mathematical models for graphs." 
Proceedings of the American Statistical Association Social Statistics 
Section, 860-864. 

Wasserman, S.S. (1977d). "A stochastic model for directed graphs with 
transition rates determined by reciprocity." Technical Report No. 305, 
University of Minnesota, School of Statistics. 

Wasserman, S.S. (1978). ''Models for binary directed graphs and their 
applications." Advances in Applied Probability, 10, to appear. 

White, H.C., S.A. Boorman, and R.L. Breiger (1976). "Social structure from 
multiple networks. I. Bloclanodels of roles and positions." American 
Journal of Sociology, 81, 730-780. 


