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SUMMARY 

We consider the analysis of k x k upper triangular contingency 

tables in which both margins have the same polytomy. Such a table 

will arise when k subjects form pairs (dyads) in which the pair 

(i,j) cannot be distinguished from (j,i) and individuals cannot form 

dyads with themselves. We develop appropriate multiplicative models 

for the data and give two examples • 
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1. INI' RODUCTION 

In this article we consider the analysis of a k x k upper 

triangular contingency table with the main diagonal deleted in which 

the same polytomy occurs on each margin. Such a table can arise, 

for example, when frequencies of dyads formed by subjects i and j 

are observed and (i,j) cannot be distinguished from (j,i). Our 

notation for this problem is shown in Table 1. 

For the triangular table, we first fit a "random pairing" model 

which corresponds to the usual independence hypothesis in an r x c 

contingency table. Under this model, differences in dyad frequencies 

can be attributed solely to individual differences. We next consider 

some multiplicative models [7] in which factors that are common to 

some dyads but not others may influence the frequency of dyad 

formations. 

Table 1 goes about here 

Table 2 goes about here 

For example, we shall consider data given in Sykes, Larntz, and 

Fox [11]. Several sets of k = 6 u. So Navy recrui·ts were observed 

during their first few days in training camp. The recruits made up 

three pairs of bunlonates housed in adjacent two tier bunks. An 

observer made periodic visits to the bunkhouse and recorded each 

instance in which two of the recruits were talking to each other. 

One data set is given here as Table 2. The investigators were 

interested in assessment of the effects of proximity and race on 

frequency of dyad formation. They hypothesized that, beyond individual 

differences in propensity to interact, recruits would tend to interact 
C, 
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most often with bunkmates and least often with other recruits bunked 

relatively far away. They also hypothesized that intra-racial 

interaction would be more frequent than inter-racial interaction. 

In Section 2, we consider the random pairing model. A probability 

mechanism for generating the table is discussed; we then derive 

maximum likelihood estimators for the expected dyad counts and give 

a simple iterative procedure for calculating them. After a brief 

discussion of goodness-of-fit tests, we give two examples. In 

Section 3, the random pairing model is generalized to include one 

additional multiplicative factor. In Section 4, a general model, 

permitting any number of multiplicative factors is then presented. 

Section 5 discusses extensions to multi-dimensional tables and some 

computational considerations. 

2. A RANDOM PAIRING MODEL 

The random pairing situation can be seen to arise from a single 

urn with a large number of balls such that a proportion rri, are 

marked i, i = 1, ... , k, Err. = 1. 
1. 

Two balls are drawn at random 

with replacement with the result giv,en by ( i., j), i S j. This 

corresponds to formation of a dyad by individuals i and j. If i < j, 

the count in the (i,j} cell, nij is incre~se~ by one. If i = j, no 

changes are recorded. A model similar to this, except allowing for 

diagonal cells, was given by Mantel and Crittenden [10). 

From the urn model, we see that the probability that a randomly 

chosen dyad is (i,j) is given by 

Pr( ( i, j} ) = 
{

o if 

TT iTT j 

E E TT .TT. 
i<j 1. J 

i ~ j 

i < j • 

(2.1) 
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Hence in a data set with N =EE n .. observed dyads, the expected 
i<j 1J 

frequency of the (i,j) dyad, say m .. , is given by 
l.J 

TT. TT. 
m = N 1 J i · =Np J ~ E ipj TT.TT. 

i<j l. J 

where p.=TTi/JE E TT.TT.• If we take logarithms of (2.2) we get 
1 "<. l. J ~ J 

log m .. = log N + log pi+ log p. 
l.J J 

= u + ul(i) + ul(j) 

with each u-term identified with the term directly above it. The 

subscript "l" occurs on both main effect u-terms in (2.3) because the 

~ polytomy exists on both margins. In equation (2.3), we recognize 

a log-linear model for the expected dyad counts. 

2.1 Maximum Likelihood Estimation 

(2.2) 

(2.3) 

The likelihood function for p1 , ••• , Pk given n12 , n13 , ••. , I\c-1,k 

is given by 

n12 n13 
Lik(pl, •••,pk) a: (pl P2) (P1P3) (pk p )~-1 k -1 k ' 

k ( E n .. + E n ) 
J 

1.· •• 
= rr p . .Ki Pi iJ 

i=l 1 (2.4) 

Writing Ni= E n .. + E n1 . (i.e., N. is the total number of 
j<i Ji j>i J 1 k 

observed dyads including subject i, i = 1,2, ••• ,k; note that E N.=2N), 
i=l 1 

we can write 

k 
log Lik(p1 , ••• ,pk) <:(. E N. log p .• 

. 1 1 1 1.= 
(2.5) 
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Note that the N. are sufficient statistics for the p .• 
1 1 

We shall maximize (2.5) subject to the constraint EE pl..pJ. = 1. 
i<j 

Using Lagrange multipliers, we seek to maximize 

k 
L = E N. log p. + A (E £ pi P. - 1) 

i=l 1. 1. i<j J 

Differentiating, 

= 0 ( i = 1, 2, ••. , k) 

oL = ~ " l 
°'.::I.'\ /..J /..J pl.. pJ. -
Of\ i<j 

= 0 

Solution of the above equations will give maximum likelihood 

estimates of p 1, ... pk and hence of the mij. 

2.2 Interative Proportional Fitting 

An alternative and equivalent method of cQmputing 
,. 

the maximum likelihood estimates of them .. , say m .. , uses iterative l.J . l.J 

(2.6) 

(2.7) 

proportional fitting. A general method for iterative fitting of log-linear 

models is given by Goodman ([7], Section 3). {Goodman uses different 

notation). " In the iterative procedure, mij are chosen to satisfy a set 

of linear constraints. If we let M. = E ~i- + E ~-- (i.e., M. is l. .>. . J .;,, . J l. l. J l. J-l. 
the total number of dyads fit for the i-th subject), the iterative 

proportional fit for the random pairing model chooses~-. subject to 
. l.J 

the constraints that Mi= N1, so that we constrain the fitted number of 

dyads for the i-th subject to equal the observed number of dyads, 

i = 1,2, ••• ,k. 

Let~- .(v) be the estimates of m .. at the v-th step in an l.J l.J 

iteration. The number of steps required to complete a single cycle 

i, I 
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of the iterative process, say t, is equal to the number of linear 

restrictions imposed, which, for the random pairing model is equal to 

k, the number of subjects. We first define 

and let 

M. <v) = 
l. 

~-. (0) 
1.J 

={lifi<j 

0 if i ~ j 

,.. 
E m .. (v) + r; m .. (v). 

j>i l.J j<i J l. 

Then, for v = 1,2, ••• ,t, we find recursively 

A _ f llli/v-1) (N/Mi (v-1)) i=v or j=v 
m .. (v) - l 

l.J i .. (v-1) otherwise 
l.J 

At the end of the t-th step we set;_ .(0) = m .. (t) and repeat the 
l.J l.J 

( 2. 8) 

(2.9) 

(2.10) 

iterative process until the M.(t) converge to N.; we use the convergence 
1. 1. 

criterion 

maxj M. ( t) - N. \ < e:. 
i ]. l. 

e: = .01 is a good practical value. lhe maximum likelihood estimates, 

m •• , 
l.J 

are the ; __ (t) from the last cycle in the iteration. 
l.J 

(2.11) 

Convergence of the iterative fit, and the equivalence of the resulting 

m .. to the maximum likelihood estimates follows from Haberman [8]. Similar l.J 

iterative fitting schemes are discussed by Fienberg [4], Bishop and Fienberg 

[1], and Goodman (6]. A complete discussion of this and other aspects of 

counted data problems can be found in Bishop, Fienberg, and Holland [2]. 

2.3 Test Statistics 

lhe usual chi-square goodness-of-fit statistics can be computed to 

test the adequacy of the random pairing (or a more complicated) 
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model. These statistics are defined by the following equations: 

Pearson: 

Likelihood Ratio: 

Freeman-Tukey: 

2 ~ 2 ~ 
X = E E (m .. -n .. ) /m .. 

·-· 1J 1J 1J l.,J 

G
2 

= 2E E 
i<j 

T2 =EE 
i<j 

,.. 
n . . log ( n . ./m .. ) 1.J 1.J 1.J 

( fn:-: + Jn .. +l - J4ii .. +l) 2 
1.J 1.J 1J 

In each case, we compare the statistic to the central chi-square 

distribution with degrees of freedom equal to the number of cells 

(k(k-1)/2) minus the number of linearly ~ndependent restrictions 

imposed in the iterative proportional fit, which, for random pairing, 

is equal to k. Hence for the random pairing model, we have 

k(k-1)/2 - k = k(k-3)/2 degrees of freedom. 

The usefulness of each of the above statistics, and the accuracy 

of their chi-square approximations depends on the N. and is discussed 
1 

in detail in Larntz [9]. 

2.4 Example 1: Recruit Interaction 

For the data given in Table 2, them .. and the Freeman-Tukey l.J 
deviates (defined by f .. = ~ + Jn .. +l - J-4-m-.-.+-i) are given in 1.J 1.J 1.J . 1.J 
Table 3 for the random pairing model. Nine cycles of the iterative 

process were required to achieve convergence. Not unexpectedly, the 

large values of the three goodness-of-fit statistics indicate that 

random pairing is inadequate to describe this data. Further analysis 

is presented in Sections 3 and 4. 

Table 3 goes about here 

2o5 Example 2: Genetic Code 

Good [5] gives an example due to Dr. R. V. Eck [3]. The data, 

given here as Table 4, consists of the observed frequencies of amino 

(2.12) 

(2.13) 

(2.14) 
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acid allele pairs in a protein. This data was originally analyzed 

before the genetic or RNA code table was completely known; if the 

random pairing model could be fit to the data, evidence would be given 

in favor of a non-overlapping code {which is now known to be the case); 

if random pairing failed, evidence against a non-overlapping code 

(in favor, perhaps,of an overlapping code) would be given. Eck 

originally presented the data to support the case for an overlapping 

code. 

The data is taken on twenty connnonly occurring alleles; in this 

protein, however, only 17 alleles actually occur. Eliminating the 

three alleles with observed totals of zero, we are left with k = 17 

alleles. After fitting the maximum likelihood estimates, the goodness­

of-fit statistics, each with 119 degrees of freedom are given by 

x2 
= 137.0 

G2 
= 103.4 

2 
T = 66.4. 

Table 4 goes about here 

Although the three statistics are highly discrepant, due 

to the small counts, we have no evidence for lack of fit of the random 

pairing model, i.e. no evidence against the non-overlapping genetic 

code. 

Good's procedure for analyzing this data was to test the largest 

observed value in the table, the 8 in the first row, to see if this 

was an extreme value. Our procedure allows analysis of the entire 

table simultaneously without ignoring any information. 
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3. A SINGLE MULTIPLICATIVE.FACTOR 

Suppose that Sql indexes a subset of dyads such that all (i,j) e Sql 

have some characteristic in connnon that may influence the frequency of 

dyad formation (for q fixed}. Letting sq2 = [(i,j}\ (i,j} J sq1}, the 

characteristic common to all dyads in Sql occurs in none of the dyads 

in Sqz· For example, in the data in Table 2, subjects 1 and 2 were 

black, while subjects numbered 3, 4, 5, and 6 were white. Thus, Sql 

may be taken to be the set of all intra-raci_al dyads: s
11 

= [ (1,2), 

(3,4),(3,5),(3,6),(4,5),(4,6),(5~g)}, and s12 is the set of all inter­

racial dyads: s12 = [(1,3),(1,4),(1,5},(l,6),(2,3),(2,4),(2,5),(2,6)}. 

We consider for now only one dichotomous factor of this form. 

The effect of this factor can be visualized through the mechanism 

of the urn model. As before, two balls are chosen at random with 

replacement with result (i,j}, i< j (if i=j, we return the balls and 

draw again). For (i,j) e Sqr r = 1,2 and q fixed, we flip a coin with 

probability of heads proportional to some fixed constant, say 6 , 
qr 

i.e. Prob[Heads for (i,j) e Sqr} = 8qr/; 8qr for fixed q. If heads 

occurs, we increase n .. by one; otherwise no change is noted. Hence, 
l.J 

the probability of a randomly chosen and recorded dyad being (i,j} is 

for fixed q given by 

Pr( (i,j}) 8 ~TT.TT. 
qr S l. J 

qr 

(i,j} e S 
qr 

r = 1,2 

(3.1) 

Where~ TT.TT. means summation over (i,j} such that (i,j} es. In analogy s ]. J 

to Section 2, we can now proceed to write down and then solve the 

likelihood equations. However, we see that this model is of the 

nrultiplicative form discussed in [7] and hence maximum likelihood 

estimates of the mij can be obtained by iterative proportional fitting. 

\ I 

\ i _, 

... 

, i. I 

---
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A Now suppose we define N(S ) = E n1 . and M(S ) = I: m ..• . qr S J qr S l.J 
A ~ ~ For this model, them .. will be chosen to satisfy the linear constraints l.J 

for the random pairing model (i.e. M. = N., i = 1, ••. ,k), plus the l. l. 

additional constraints N(S ) = M(S ), r = 1,2 for fixed q. Each cycle qr qr 
of the iterative procedure now hast= k + 2 steps, the first k 

identical to those given in Section 2, and the (k+r)-th, for r = 1,2, 

q fixed, given by 

where 

i .. (k+r) = 
1J 

N(S ) 
A ( gr f ( •) m .. k+r-1) ---- i i,J e S 

l.J M.(k+r-1) qr 

i .. (k+r-1) 
l.J 

if (i,j) ts 
qr 

" M(k+r) = I: ~. . ( k+r) , r = 1, 2 • s l.J 
qr 

A A The final estimates m .. will be given by m .. (t) after the procedure 1J 1J 

has converged. 

3.1 Goodness-of-fit Statistics 

As in Section 2, the usual goodness-of-fit statistics can be 

computed, with degrees of freedom equal to the number of possible 

dyads minus the number of linearly independent constraints, which 

(3.2) 

(3.3) 

will usually, though not always, be k+l for fitting a single,dichotomous 

multiplicative factor. Hence, the statistics will usually have k(k-3)/2 - 1 

degrees of freedom. 

3.2 Example 1 (continued) 

We now fit the racial effect (e.g., fit the random pairing model 

plus the constraints M(S1r) = N(s1r), r = 1,2) described in the first 

paragraph of this section to the data in Table 2; 12 complete cycles 
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of the iterative procedure were required for convergence. The results 

(~ .. and Freeman-Tukey deviates) are given in Table 5. The three 1] 

goodness-of-fit statistics (on 8 degrees of freedom) arc x2 = 22.5; 

G2 = 20.8, and T2 
= 19.7 with significance probabilities of about .005, 

.01, and .02 respectively indicating probable lack of fit of this model 

to the data. 

Table 5 goes about here 

Because we have only two blacks in the data we are analyzing, 
,.. 

fitting the racial effect results in m12 = n12 ; that is, we fit the 

only intra-black dyad exactly. This is due to the linear constraints 

put on the table. We can write out the linear constraints corresponding 

to Subject 1, Subject 2, and the set s12 as 

Subtracting the last equation from the sum of the first two in (3.4) 

leaves 

,,.. 
= 2~2 

or 

n ,.. 
12 = ~2· 

(3.4) 

When a fairly large number of linearly independent constraints are 

imposed on only a few cells, as is the case here, some cells will be 

fit exactly due to the constraints, and the effects of that cell cannot 

• \ i 

. -
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be adequately analyzed under those constraints. Whenever possible, 

experiments should be designed to avoid this problem; here, a third 

black subject would eliminate constrained exact fits. 

A second factor of interest in this data is the effect of proximity 

of the subjects in the bunkhouse. As explained previously, the subjects 

occupied three adjacent two tier bunks. Hence, we can define s21 to 

be the set of dyads formed by bunlanates or near neighbors: s21 = 

((1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(3,5)_,(3,6),(4,5),(4,6),(5,6)}, while 

s22 is the set of non-adjacent dyads: s22 = ((1,5),(1,6),(2,5),(2,6)}. 

If we fit this factor (which we will call "one degree of freedom 

proximity"), we get the expected values,_ Freeman-Tukey deviates, and 

goodness-of-fit statistics given in Table 6. Clearly, the one degree 

of freedom proximity factor provides an inadequate model. 

Table 6 goes about here 

4. SEVERAL MULTIPLICATIVE FACTORS 

The generalization of the results of the last section to several 

multiplicative factors is straightforward. Suppose we have a doubly 

indexed sequence of subsets of the possible dyads S , q = 1,2, ••• ,Q; qr 

r = 1,2, ... ,R such that, for fixed q, the S are a disJ"oint collection q -- qr 

of subsets whose union is the set of all possible dyads. We now turn 

to the urn model in which two balls are chosen at random with replacement 

with result (i,j) i < j. (If i = j, we draw again). We then flip Q 

coins each with probability proportional to 6 of heads, for (i,j) qr 

€ S , r = l, .•• ,R. If all coins are heads, we increase n .. by one; qr q J.J 

otherwise no change is recorded. Thus, the probability of drawing and 

observing the (i,j) dyad is proportional to n.n. times the appropriate 
]. J 

-product of the <\r 
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The iterative procedure is as in Sections 2 and 3 except we now 
Q 

have t = k + ~ R linear constraints, the first k given by M. = N., 
q l l. 

q=l 
i = l,2, .• o,k9 and the remainder given by N(S ) = M(S ), with qr qr 

N(S ) = En .. and M(S ) = E ~- .• For the iteration, the first k 
qr Sqr J.J qr Sqr l.J Q 

steps in each cycle are as given in Section 2, and the last t-k = E R 
q=l q 

are given recursively by 

where M(S ) qr 
A 

estimates m .. 
l.J 

q-1 
m •• (k+ E Rn+r) = 

l.J i,=l J(I 

A q-1 
m .. (k+ E Rn+r-1) 

l.J L=l J(I 

q-1 
~-. (k+ E Rn+r-1) 

l.J L=l J(I 

A q-1 0 

= E m •• (k+ E R..e,+r-1), and E R..e, = O. 
Sr l.J L=l L=l 

wi11 be given by the ~ .. (t) after the 
l.J 

4.1 Example 1 (conclusion) 

N(S ) gr 
M(S ) qr 

(i,j) € s 
qr 

( i ,j) ' s qr 

The maximum likelihood 

procedure has converged. 

Fitting the racial and one degree of freedom factors described by 

s
11

, s
12

, s
21

, and s
22 

in Section 3 gives the values given in Table 7. 

All three goodness-of-fit statistics are beyond the .01 level suggesting 

that this model is also inadequateo If, however, we examine the Freeman­

Tukey deviates, we see that two of the four largest deviates (in cells (3,4) 

and (5,6)) occur in cells that represent dyads between bunkmates (the third 

bunkmate dyad, (1,2), is fit exactly because of the racial effect constraint 

as previously noted). This suggests that the proximity effect should be 

divided into three sets: bunkmates (s
3
{ = {(l,2),(3,4),(5,6)}), near 

neighbors (s32 = [(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)}) and 

far dyads (s
33 

= [(1,5),(1,6),(2,5),(2,6)}). We will call this set of 

restrictions "two degrees of freedom proximity." The fit of two degree 

• I I 

•.J 

I _I 
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of freedom proximity alone (eug., s
31

, s
32

, s
33

) is given in Table 8; 

the fit of two degree of freedom proximity and the racial effect is given 

in Table 9o 

Tables 7, 8, and 9 go about here 

Note first in Table 8 that the (3,4) dyad is fit exactly due, again, 

to the constraints on the~- .o '!he values of the goodness-of-fit statistics l.J 

are all near the seventy-fifth percentile of the chi-square distribution 

with 7 degrees of freedom, suggesting that this model is adequate for the 

data. 

In Table 9, in which both race and two degree of freedom proximity are 

fit, all three bunkmate dyads are constrained to have fitted values equal 

to observed values. '!he goodness-of-fit statistics are all near the fifteenth 

percentile of the chi-square distribution with 6 degrees of freedom suggesting, 

perhaps, that inclusion of the racial effect "overfits" the datao However, 

the difference between the G2 statistics in Table 8 and 9, 9.3 - 2.6 = 6.7 

provides a one. degree of freedom likelihood-ratio test for the effect of 

race after fitting two degrees of freedom for proximity. lhis test yields 

significance probability less than 0.01, suggesting the importance of racial 

effectso Differences between other G2 statistics provide tests of other 

factors; for example, the second degree of freedom for proximity after the 

first, or proximity after race. 

It is possible that different sets of constraints could lead to fitting 

the same expected values (e.g., several different sets of constraints can 

lead to the same set of linearly independent constraints). For example, 

suppose that we decide to delete the (5,6) dyad in Table 7, perhaps because 

of its large Freeman-Tukey deviate 1n Table 7. lhis can be accomplished 

by letting s41 = ((5,6)} and s42 = (all other cells}. 
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Fitting the racial effect (s11 , s12 ) and the (5,6) dyad (s
41

, s
42

) will 

lead to a new set of expected values, but fitting the racial effect, one 

degree of freedom proximity and the (5,6) dyad leads to the same 

linearly independent constraints as fitting racial effects and two 

degrees of freedom for proximity, and hence gives the same expected values 

as in Table 9. 

Similarly, we could not divide the racial effect into three subsets for 

this data because the three linear constraints for fitting black-black, 

white-white and black-white would add only ·one linearly independent 

constraint after the six constraints for random pairingo 

5. COMMENTS 

While this article has been concerned with models for dyad formation, 

there are obvious extensions for other group sizes. Also, interactions 

between the various multiplicative factors can easily be incorporated into 

a general log-linear model. In this case the iterative proportional fit 

would be taken over two- or higher-way margins. 

In the iteration schemes we have used in this paper, we have allowed 

one step in the iteration for each linear constraint imposedo Of course, 

we need only have as many steps as we have linearly independent constraints. 

However, there is no harm in the extra steps. Also, we have found that the 

extra steps can decrease the total number of cycles sufficiently to more than 

make up for the extra few steps per cycle. 
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Table 1 Notation for observed dyad formations 
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Note that N. = ~ n .. + ~ n .. is the total number of dyads involving 
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subject i, and that~ N. = 2N, where N is the sum of all counts in the table. 
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Table 2 Data from Sykes, Larntz, and Fox [11] 

Subject no. 1 2 3 4 5 6 N. 
l. 

1 I 41 10 5 6 3 I 65 

2 9 6 6 3 I 65 

3 42 13 5 79 

4 15 7 75 

5 14 54 

6 32 

N = 185 



Table 3 Expected values (upper entry) and Freeman-Tukey 
deviates (lower entry) for the data in Table 2, 
fitting random pairing model. 

1 2 3 4 5 6 

1 13.7 17.8 16.5 10.9 6.0 
5.4 -2.0 -3.5 -1.6 -1.3 

2 17.8 16.5 10.9 6.0 
-2.3 -3.1 -1.6 -1.3 

3 21.4 14.2 7.8 
3.7 - • 25 -1.0 

4 13.2 7.3 
.54 -.02 

5 4.8 
3.1 

6 

2 
X = 122.9 

2 G = 102.1 d.f. = 9 

2 
T = 94.0 
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Table 4 Data for Example 2 

Ni 
1 o 3 o 5 1 3 1 o 3 o o o 1 s 1 o 1 o I 28 

0 0 0 0 0 0 0 0 1 3 0 0 0 2 0 0·1 0 8 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 10 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 0 0 1 3 0 0 0 2 0 0 1 0 20 

0 1 0 1 0 0 0 0 0 0 0 0 0 6 

0 0 0 0 1 1 0 1 0 0 1 0 10 

0 0 0 0 0 0 0 0 0 0 0 3 

0 0 0 1 0 0 1 0 3 0 5 

1 0 0 0 2 0 0 0 0 9 

0 0 0 2 0 0 1 0 10 

0 0 0 0 0 1 0 2 

0 0 0 0 0 0 0 

1 0 0 0 0 2 

1 0 1 0 20 

0 1 0 4 

0 0 0 

1 12 

1 

N = 76 



Table 5 Expected values (upper entry) and Freeman-Tukey 
deviates (lower entry) for data in Table 2 with 
racial effect fit. 

1 2 3 4 5 6 

1 41 8.6 7.8 4.9 2.7 
.039 .54 -1.00 .54 .32 

2 8.6 7.8 4.9 2.7 
.23 -.59 .54 .32 

3 31.4 19.8 10.7 
1.79 -1.61 -1.93 

4 18.1 9.8 
-.70 -.864 

5 6.2 
2.54 

6 

2 
X = 22.5 

2 G = 20.8 d. f. = 8 

2 
T = 19.7 
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Table 6 Expected values (upper entry) and Freeman-Tukey 
deviates (lower entry) for data in Table 2 fitting 
one degree of freedom for proximity. 

1 2 3 4 5 6 

1 20.1 18.5 17.4 5.9 3.1 
3.9 -2.2 -3.7 .12 .10 

2 18.5 17.4 5.9 3.1 
-2.5 -3.3 .12 .10 

3 16.0 17.2 8.8 
5.0 -1.0 -1.3 

4 16. 1 8.2 
-.21 -.35 

5 . 8. 9 
1.6 

6 

x2 = 95.0 

G2 = 84.6 d. f. = 8 

T2 = 80.8 



Table 7 Expected values (upper entry) and Freeman-Tukey 
deviates (lower entry) for fitting racial effect 
and one degree of freedom proximity. 

1 2 3 4 5 6 

1 41.0 7.8 7.2 5.8 3.2 
.038 .79 -.76 .17 .028 

2 7.8 7.2 5.8 3.2 
.47 -.35 .17 .028 

3 33.5 19.3 10.5 
1.4 -1.5 -1.9 

4 17.6 9.6 
-.57 -.80 

5 5.5 
2.8 

6 

x2 = 22.8 

G2 = 19.8 d. £. = 7 

T2 = 18.2 
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Table 8 Expected values (upper entry) and Freeman-Tukey 
deviates (lower entry) for two degree of freedom 
proximity. 

1 2 3 4 5 6 

1 36.5 10.3 9.2 6.5 2.5 
.76 -.017 -1.5 -.11 .43 

2 10.3 9.2 6.5 2.5 
-.33 -1.0 -.11 .43 

3 42.0 11.9 4.5 
.038 .38 .32 

4 10.6 4.0 
1.3 1.3 

5 18.5 
-1.0 

6 

x2 = 9.3 

2 = 9.3 d.f. = 7 G 

T2 
= 9.1 



Table 9 Expected values (upper entry) and Freeman-Tukey 
deviates (lower entry) for two degree of freedom 
proximity and racial effects. 

1 

1 

2 

3 

4 

5 

6 

x2 = 2.6 

G2 
= 2.6 

2 T = 2.6 

2 3 

41.0 7.9 
.038 .76 

7.9 
.44 

d.f. = 6 

4 5 6 

7.1 6.2 2.8 
-.73 .013 .24 

7.1 6.2 2.8 
-.32 .013 .24 

42.;.0 14.6 6.6 
.038 -.36 -.53 

13.0 5.9 
.• 59 .53 

14,0 
.064 
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