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Abstract

Biopolymers have many unique properties which play an essential and pervasive role in

everyday life, thus making them attractive for engineering applications. Understand-

ing how the particular properties of biopolymers give rise to important applications in

technology remains a long-standing challenge. Although biopolymers can have differ-

ent chemistries, they share some common physical properties: high molecular weights,

stiff backbones, and complex internal structures. Computer simulation, therefore, plays

quite an important role since it provides a way to study a generic model that, by

changing the parameters appearing in the model, permits studying a wide variety of

biopolymers. Specifically, we focus on two such biopolymers: DNA and methylcellu-

lose. This thesis focuses on studying the universal properties of the two aforementioned

biopolymers using novel molecular simulation techniques.

DNA attracts particularly strong interest not only because of its fascinating double-

helix structure but also because DNA carries biological information. Genomic mapping

is emerging as a new technology to provide information about large-scale genomic struc-

tural variations. In this context, the conformation and properties of the linearized DNA

are only beginning to be understood. With a Monte Carlo chain growth method known

as pruned-enriched Rosenbluth method, we explore the force-extension relationship of

stretched DNA. In this scenario, external forces and confinement are two fundamental

and complementary aspects. We begin by stretching a single DNA in free solution. This

allows separation of restrictions imposed by forces from that by walls. This work shows

that the thickness of DNA plays an important role in the force-extension behavior. The

key outcome is a new expression that approximates the force-extension behavior with

about 5% relative error for all range of forces. We then analyze slit-confined DNA

stretched by an external force. This work predicted a new regime in the force-extension

behavior that features a mixed effect of both sensible DNA volume and sensible wall

effects. We anticipate such a complete description of the force-extension of DNA will

prove useful for the design of new genomic mapping technologies.

The dissertation also involves another biopolymer, methylcellulose, which has an

extremely wide range of commercial uses. Methylcellulose is thermoresponsive polymer

that undergoes a morphological transition at elevated temperature, forming uniform
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diameter fibrils. However, mechanisms behind the solution-gel transition are poorly un-

derstood. Following the computational studies by Huang et al. [1], we apply Langevin

dynamics simulations to a coarse-grained model that produces collapsed ring-like struc-

tures in dilute solution with a radius close to the fibrils observed in experiments. We

show that the competition between the dihedral potential and self-attraction causes

these collapsed states to undergo a rapid conformational change, which helps the chain

to avoid kinetic traps by permitting a transition between collapsed states.

We expect our findings from computational studies of biopolymers will not only

provide a deep understanding of semiflexible polymer physics but also inspire novel

engineering applications relying on the properties of biopolymers.
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Chapter 1

Introduction and Motivation

1.1 Genome Mapping

Deoxyribonucleic acid (DNA) carries the genetic instructions that are crucial in the

growth, development, functioning, and reproduction of living organisms [4,5], and thus

attracts extraordinary interests in sequencing and deciphering the code embedded in

DNA. Dating back to the early 1970s, the first DNA sequences were obtained by aca-

demic researchers using two-dimensional chromatography [6–9]. From then on, knowl-

edge of DNA sequences has become indispensable in all fields of biological research.

The first generation of sequencing technology is Sanger chain termination method [10]

developed in 1977. With this achievement, researchers were able to sequence DNA in

a reliable and reproducible manner, although it was expensive and inefficient at that

time.

In 2005, an innovative approach, which is called “next-generation sequencing” (NGS)

technique, has revolutionized the genomic science. This method reads an enormous

amount of short segments (∼500 base pairs, or bp) through automation and massive

parallelization, which lead to the ability to sequence the entire genome of an organism

in a much quicker and cheaper way [12–15]. As shown in Fig. 1.1, the NGS steps consist

of library preparation, amplification, sequencing, and alignment [11]. The final result

is a consensus sequence from the ensemble of short reads [16]. The initial sequencing

and mapping of the human genome were estimated to have cost about 3 billion US

dollars [12,17], but the platforms are improving at the rate of Moore’s law since 2008.

1
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Figure 3: Next-Generation Sequencing Chemistry Overview—Illumina NGS includes four steps: (A) library preparation, (B) cluster generation,(C) sequencing, and (D)
alignment and data analysis.

c. Advances in Sequencing Technology

Paired-EndSequencing

Amajoradvance inNGStechnologyoccurredwith thedevelopment ofpaired-end (PE) sequencing (Figure 4). PE
sequencing involvessequencingbothendsof theDNAfragments ina libraryand aligning the forward and reverse readsas
read pairs. Inaddition toproducing twice the numberof reads for the same timeand effort in librarypreparation, sequences
aligned asread pairsenablemore accurate read alignment and the ability todetect indels, which isnot possiblewith single-
read data.8 Analysisofdifferential read-pair spacingalsoallowsremovalofPCRduplicates, a commonartifact resulting from
PCRamplificationduring librarypreparation. Furthermore, PE sequencingproducesahighernumberofSNVcalls following
read-pair alignment.8,9While somemethodsare best served bysingle-read sequencing, suchassmallRNAsequencing,
most researcherscurrently use thepaired-end approach.

For Research Use Only. Not for use in diagnostic procedures.

Figure 1.1: Schematic of a next-generation sequencing technique. This method includes
four steps: (A) library preparation, (B) cluster amplification, (C) sequencing, and (D)
alignment and data analysis. Reproduced from [11].

However, since NGS technologies were originally designed to analyze genes instead of

genomes, there are many inherent limitations. First of all, current sequencing technolo-

gies rely on short read lengths, which prevent them from extracting the full spectrum

of information associated with the genome [19–21]. Such short read lengths are orders

of magnitude smaller compared to the size of a human genome, which contains about 3
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Figure 1.2: Various structural variations can happen on the genome. Different colors
represent different segments of genome. Reproduced from [18].

billion base pairs. Nevertheless, there are a lot of studies suggesting that the structural

variations in a large genomic distance are crucial to the genomic functions of living or-

ganisms [19,22,23]. Such structural variations include but are not limited to inversion,

translocation, copy number variation and deletion of sequences as shown in Fig. 1.2.

Moreover, these short segments come from ensembles of DNA molecules originating

from many different cells, thus are not capable of detecting the structural variation in a

large genomic distance of individuals within a species, or even the structural variation of

cells within the same organism (e.g. cancer cells). Amplification adds another layer of

the limitation of NGS in that it duplicates different segments with a different amount,

thus put a bias on the “statistical consensus” of the final merged sequence. Beyond the

issues described above, it is not at all obvious that we need to read every base pair to

make a useful diagnosis on the genomic level [24]. As a result, we seek for a de novo

method that is able to detect structural variation in a large genomic distance without

reading every single base pair.

Meanwhile, there is a growing interest in platforms that can readout genomic infor-

mation directly from single long DNA molecules, with the ultimate goal of single-cell,

single-genome analysis. The rewards are tempting: we will be able to improve read

length, detect structural variation directly, and circumvent amplification bias [20,21,25].

A promising class of approach is the genome mapping technique, which measure the ge-

nomic distances of large pieces of DNA molecules ranging from several kilobase pairs
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Image courtesy of K. D. Dorfman

Figure 1.3: Schematic of a typical genomic mapping process. Image from Kevin D.
Dorfman.

up to one megabase pairs without sequence details.

Figure 1.3 shows a schematic of the genomic mapping process. The first step is to

insert fluorescent probes on the sequence-specific spots on DNA. Then we dye the whole

backbone evenly with a second fluorescent color, stretch the DNA molecule into a linear

configuration, and image the elongated molecule with a fluorescent microscope [21,26–

29]. The genomic distances between the red sequence-specific markers are determined

by the green fluorescent intensity. Repeating the measurement with lots of overlapping
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long DNA fragments and assembling them together eventually gives a genome map.

This genome map can act as a template for assessing structural variation. For example,

consider a species that has 1% of individuals that have two copies of gene X of a typical

length of 5 kbp, while the remainder has only one copy of gene X. By performing genomic

mapping measurement many times, one can obtain a genome map suggesting 99% of

the genomes measured contain one copy of gene X and 1% of the genomes contain two

copies. On the contrary, NGS is not able to detect easily the copy number variation

because of the short read length.

A key step in the genomic mapping is to linearize a long piece of DNA. Through

linearization, DNA reveals ordered information and reduced fluctuation, which then

permits high-resolution imaging and fluorescent intensity analysis. In fact, through

linearization, the resolution of mapping can be reduced from ∼10 Mbp for DNA in

metaphase chromosomes to ∼1 kbp, leaving the domain of individual genes within reach

[30].

Linearization technically challenging in terms of DNA manipulation at the single

molecule level. However, thanks to the development of nanofabrication technology,

nanomaterials, and super-resolution optical imaging, there are several ways to accom-

plish this task. The first class of methods is to stretch DNA with external forces.

Fluid flow, for example, can be applied to stretch DNA molecule either on a specially

treated surface [31,32] or through extensional flow [33]. The former, known as “molec-

ular combing”, exploits surface forces to simultaneously stretch and assemble millions

of DNA molecules on the surface of a vinyl silane treated glass carrier. In the origi-

nal version of this process, a glass slide is dipped into the purified DNA solution and

the DNA molecules attach to the glass surface by one end. As the slide withdrawn, the

DNA molecules are stretched over the surface. This technology has been commercialized

in company Genomic Vision and company OpGen. Another approach stretches DNA

molecules through elongational flow [33,34]. The DNA molecules were first labeled and

stretched in a microfluidic device, and then driven through fluorescence detectors. This

kind of method is known as “Direct Linear Analysis” (DLA).

An alternative way to linearize DNA is to impose confinement. The nanoconfinement

is defined as a hollow geometry with the confining dimension typically in dozens to hun-

dreds of nanometers, which is much smaller than the size of genomic DNA molecules
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Figure 1.4: A long genomic DNA in free solution can be linearized in confinement.
Reproduced from [35].

in free solution. The geometry could be, but not restricted to nanoslit, rectangle or

square nanochannel, nanotube, triangular nanochannel, or even spatial gradient struc-

tures. Several studies have been devoted to investigating those confinement effects

on DNA [36–39]. The various techniques and evolution are comprehensively reviewed

in [24]. Cao et al. are pioneers in experimenting confined DNA [40]. They put sin-

gle DNA molecules in a continuous spatial gradient nanoconfinement which smoothly

narrows the cross section from the micron to nanometer length scale, thus traps and

elongates DNA. This technology has later been commercialized by the company Bio-

Nano Genomics, although a different rectangle channel is used. The difficulty of genomic

mapping with nanoconfinement lies in (i) manufacturing a small geometry with long

length and (ii) the compromise of DNA loading efficiency into very small nanofeatures.

Both of the methods, i.e., the external force and the nanoconfinement, alter the DNA

configuration profoundly in nanoscale, thus requires deep understanding in the physics

of DNA and how it interacts with the environment.

1.2 Methylcellulose Gelation

My thesis also involves another biopolymer, methylcellulose. Methylcellulose is partic-

ularly important with an extremely wide range of commercial uses, such as a thickener

in pharmaceuticals, cosmetics and food products [41,42]. Methylcellulose is a cellulose-

based polymer with hydroxyl groups (-OH) partially replaced by methoxy moieties

(-CH3) at the C-2, C-3 and/or C-6 positions. The cellulose backbone, together with

the intramolecular hydrogen bonds, gives methylcellulose a linear and rigid structure.
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Since there is an irregular distribution of substituents along the cellulosic backbone,

methylcellulose always appears as a heterogeneous polymer and the degree of substitu-

tion (DS) defines the average number of methyl groups per anhydroglucose unit. The

DS ranges from zero for unsubstituted cellulose to 3 for the fully substituted polymer

and characterizes aqueous solubility of the polymer. For example, a DS of 1.64 to 1.92

yields maximum water solubility, while a lower DS leads to methylcelluloses that are

only soluble in caustic solution due to intramolecular hydrogen bonding, and a higher

DS produces methylcelluloses that are soluble only in organic solvents because of the

hydrophobic methyl groups [43].

Methylcellulose is also of considerable scientific interest that has been studied both

experimentally and theoretically, especially for its gelation mechanism. As shown in

Fig. 1.5, unlike other water-soluble materials such as inorganic salts, most methylcel-

lulose is readily soluble in water at low temperature, while thermoreversible gelation

occurs at elevated temperature accompanied by an increase in optical turbidity [45–47].

Owing to its gelation properties, methylcellulose is investigated extensively to de-

velop materials with innovative physico-chemical properties. Over the past decades, this

lower critical solution temperature (LCST) phase behavior in aqueous systems [48–56]

has been studied extensively [44–46,48–55,57–61]. However, there is no consensus on the

relationship between the LCST phase behavior and the gelation process. Many have at-

tributed this behavior to viscoelastic liquid-liquid phase separation [45,46,48–55,57–60],

where the polymer-rich and polymer-deficient phases are kinetically trapped. In an ef-

fort to address this phase-separation hypothesis, some studies have attempted to build

a temperature-composition phase diagram [44, 48, 50]. However, unfortunately, there is

no conclusive evidence to clearly show the coexistence and stability curves for the phase

diagram, which are crucial for the liquid-liquid phase separation behavior.

Recently, several experimental studies on the structure and physical properties of

aqueous methylcellulose solutions provided compelling evidence for a heterogeneous fib-

rillar morphology [45–48,52,62,63], a structural motif common to semiflexible polymers

found in living organisms [64–66]. This fibrillar morphology and the associated vis-

coelastic response of these solutions are fundamentally different from what would be

expected from a morphology based solely on liquid-liquid phase separation. Under-

standing the structure of the fibrils as well as their mechanical properties could guide
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the microcrystallization of trimethyl glucose units
upon the gelation of MC aqueous solutions by
using X-ray diffraction. The structure of the mi-
cellar gel was considered by Rees;28 the substi-
tuted glucose units of MC associated by hydropho-

bic interaction with increasing temperature to
grow into fringed micelles. We think that the
change of RG can be explained with this gelation
model. Therefore, we here identify the character-
istic length RG as the average radius of gyration

Figure 6. Photographs of 0.08, 0.30, and 2.00 wt % solutions of MC-4 kept at 30, 60,
and 85 °C for about 30 min.

96 TAKAHASHI, SHIMAZAKI, AND YAMAMOTO

Figure 1.5: Methylcellulose dissolved in water at various concentration 0.08, 0.30, and
2.00 wt% kept at 30 ○C, 60 ○C, and 85 ○C for about 30 min. Reproduced from [44].

efforts in the design of new and useful materials. Lott et al. [45, 46] quantified the

fibrillar structure of aqueous methylcellulose gels with a combination of (real space)

cryogenic transmission electron microscopy (cryo-TEM, Fig. 1.6) and (reciprocal space)

small-angle neutron scattering (SANS) techniques. Fibrillar dimensions of 14 ± 1 nm
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absolute units following standard procedures described in the
Supporting Information. Figure 3 contains SANS curves for
two MC solutions that were incrementally heated to the
temperatures of interest. The solutions had concentrations of
0.09 and 1.3 wt %, and based on our previous investigation of
the gelation temperature of MC solutions, the Tgel for these
solutions are 63 ± 1 °C and 50 ± 1 °C, respectively.4 For both

samples at 32 °C, the scattering is typical of polymer solutions,
with an upturn at low q following the power-law behavior as
reported by Chatterjee et al.18 The lack of pronounced features
in these SANS curves corroborates the cryo-TEM results and
the lack of turbidity in such samples, suggesting that MC is well
dissolved at and below 32 °C. At 50 °C, the two samples
behave quite differently. The low concentration sample retains

Figure 2. Cryo-TEM images of thin films supported on lacey carbon grids of 0.20 wt % solutions of 300 000 g/mol MC annealed for 30 min at (a)
50 °C, (b) 55 °C, (c) 60 °C, and (d) 65 °C, and then rapidly vitrified in liquid ethane. All scale bars are 200 nm.

Figure 3. Small angle neutron scattering (SANS) curves for (a) 0.09 wt % and (b) 1.3 wt % MC samples in D2O. The black lines are the best fits for
the scattering at 70 °C.

Biomacromolecules Communication

dx.doi.org/10.1021/bm400694r | Biomacromolecules 2013, 14, 2484−24882486

Figure 1.6: Cryo-TEM images of the fibrillar morphology of methylcellulose 0.20 wt %
aqueous solutions of 300,000 g/mol at (a) 50 ○C, (b) 55 ○C, (c) 60 ○C, and (d) 65 ○C.
All scale bars are 200 nm. Reproduced from [45].

were obtained by fitting the SANS data with a model based on the form factor for flex-

ible cylinders with a polydisperse radius. Surprisingly, this diameter is independent of

mass fraction and molecular weight Mw within the range of 0.01% to 3.79% and 49 to

530 kg/mol, respectively. McAllister et al. [62] further investigated the thermodynamics

of aqueous methylcellulose solutions. They found that the growth of the fibrils cannot

be explained solely using classical Flory-Huggins solution theory [67,68]. They proposed
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that methylcellulose fibrils reflect a kinetically trapped state that balances thermody-

namic equilibrium and local orientational order. While the gelation mechanism is still

an open question, these experimental studies provided an unambiguous picture of the

fibrillar morphology, although the detailed molecular arrangement within the fibrils has

not been established experimentally.

1.3 Research Outline

Biopolymers have many unique properties and play an essential and pervasive role in

everyday life, thus making them attractive for both scientific interest and engineering

applications. In the genomic mapping technology, it is important to understand how

to make a reliable prediction of the DNA extension and achieve the reduction of fluc-

tuation when applying external forces and nanoconfinement. Despite the advancement

of genomic mapping experiments, there is a lack of theoretical understanding and nu-

merical evidence in the physics of DNA and its interaction with the environment at the

nanoscale. In fact, the DNA configuration is affected by a lot of factors, such as electro-

statics, hydrodynamics, the confinement geometry and external forces. In addition, the

double-helix structure of DNA further complicates the physics. DNA is a stiff polymer

with persistence length (characteristic length of making a 180○ turn) of 50 nm, which

is of the same length scale of most nanofluidic devices. Due to the complexity of the

parameter space, it is impossible for theorists to propose a thorough analytic solution,

nor for experimentalists to fully explore the possible designs by trial-and-error.

The same situation applies towards understanding the gelation mechanism of methyl-

cellulose. Although recent experimental studies [46] on the gel structure revealed the

unambiguous fibrillar morphology, the detailed gelation mechanism remains poorly un-

derstood, in particular at higher polymer concentrations. There are several computa-

tional efforts [1,69] that provide plausible models for fibril formation in dilute solution.

However, they leave questions remained to be answered, especially how to remove the

mis-collapsed states and what are the important physical properties that determine the

configuration of the methylcellulose.

Although DNA and methylcellulose, and other biopolymers not mentioned can have

different chemistries, they share some common physical properties: high molecular
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weights, stiff backbones, and complex internal structure. Computer simulation, there-

fore, plays quite an important role since it provides a way to study a generic model that,

by changing the parameters appearing in the model, permits studying a huge variety

of biopolymers. In addition, simulation also provides opportunities to explore condi-

tions which can be challenging for experiments but crucial for understanding the basic

properties of biopolymers.

As such, our research focuses on applying computational tools to biopolymer problems

with direct applications. In particular, we are interested in stretched DNA for genomic

mapping, and the gelation mechanism of methylcellulose for consumer products. These

two projects involve the application of novel simulation techniques to biopolymer models

and allow building connections between theoretical predictions and experimental studies.

In an effort to address the genomic mapping, we are interested in understanding how

an external force and confinement alter the already complex DNA properties. This

allows us to simultaneously investigate the basic physical properties of biopolymers

while advancing this promising genomic technology. Such a general understanding of

biopolymer and the development of computational tools can also be applied to study

the mechanism of methylcellulose gelation, especially the spontaneous formation of high-

aspect-ratio fibrils, and the escaping from local energy traps due to the intramolecular

interactions. We anticipate that the knowledge gained from this study will provide

insights into the discrepancy between the high polymer concentrations, where fibrils

form in experiments, and the low polymer concentration required in simulations in

order to get ring structures. Moreover, the development of a generic biopolymer model,

along with advanced simulation techniques, would provide a powerful tool to explore

the physical properties of biopolymers in general.

In line with the above goal, Chapter 2 summarized the theories, experiments,

and simulations surrounding the physics of DNA and methylcellulose. We start with

describing the discrete wormlike chain model (DWLC), which is a good representation

for most of the biopolymers including DNA. We then review the physical properties of

DNA in various conditions, such as in confinement or in free solution, with or without

external stretching forces. We also discuss the simulation progresses surrounding the

gelation mechanism of methylcellulose.
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Chapter 3 reviews the simulation methodology we used to simulate DNA as a semi-

flexible chain in various conditions. Specifically, we motivate the introduction of pruned-

enriched Rosenbluth method (PERM), which is an advanced chain growth Monte Carlo

method of choice, by first introducing simple sampling and Rosenbluth sampling and

highlighting their inefficiency in simulating a long piece of DNA with excluded volume

effects. We then proceed to introduce an off-lattice version of PERM and how could

it be applied to study the DWLC of interest. The parameterization and simulation

methodology of methylcellulose is introduced in Chapter 6.

Stretching a polymer chain in the presence of an external force is a classic problem in

polymer physics. In general, entropic and enthalpic intramolecular interactions must be

considered for an accurate description of polymer elasticity. In Chapter 4, we propose

an interpolation formula (the EV-WLC relation) for the force-extension behavior of

wormlike chains in the presence of hard-core excluded volume interactions, analogous

to the classic interpolation formula from Marko and Siggia for ideal wormlike chains

[70]. Using PERM simulations of asymptotically long, discrete wormlike chains in an

external force, we show that the error in the EV-WLC interpolation formula to describe

discrete wormlike chains is systematically smaller than the error in the Marko-Siggia

interpolation formula, except for the saturation region in which both formulas have the

same limiting behavior. We anticipate that the EV-WLC interpolation formula will

prove useful in the coarse-graining of wormlike chain models for dynamic simulations.

Related results for the excess free energy due to excluded volume provide strong support

for the physical basis of the Pincus regime.

With the knowledge gained from stretching a real semiflexible chain in free solution,

Chapter 5 focused on stretching a real semiflexible chain in nanoslit confinement. We

again use PERM simulations to develop a quantitative phase diagram for the stretching

of a real wormlike chain confined in a slit. Our simulations confirm the existence of a

“confined Pincus” regime in slit confinement, analogous to the Pincus regime in free

solution, where excluded volume effects are sensible. The lower bound for the confined

Pincus regime in the force-molecular weight plane, as well as the scaling of the extension

with force and slit size, agree with an existing scaling theory for this regime. The upper

bound of the confined Pincus regime depends on the strength of the confinement. For

strong confinement, the confined Pincus regime ends when the contour length in the
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Pincus blob is too short to have intrablob excluded volume. As a result, the chain

statistics become ideal and the confined Pincus regime at low forces is connected directly

to ideal chain stretching at large forces. In contrast, for weak confinement, the confined

Pincus regime ends when the Pincus blobs no longer fit inside the slit, even though

there is sufficient contour length to have excluded volume inside the Pincus blob. As a

result, weak confinement leads to a free-solution Pincus regime intervening between the

confined Pincus regime for weak forces and ideal chain stretching at strong forces. Our

results highlight shortcomings in existing models for the stretching of wormlike chains

in slits. Excitingly, after publishing this result, our theoretical prediction was confirmed

by experimental evidence [71]. We anticipate that such a complete description of the

force-extension of real wormlike chains will prove useful for both the interpretation of

experimental data and the design of new technologies.

In light of an understanding of the generic semiflexible model, in Chapter 6, we

switch to studying methylcellulose gelation mechanism. We use Langevin dynamics

simulations to investigate a coarse-grained model for methylcellulose that produces col-

lapsed ring-like structures in the dilute solution with a radius close to the fibrils observed

in experiments. We show that the competition between the dihedral potential and self-

attraction causes these collapsed states to undergo a rapid conformational change, which

helps the chain to avoid kinetic traps by permitting a transition between collapsed states.

If the dihedral potential is removed, the chains do not escape from their collapsed con-

figuration, whereas at high dihedral potentials, the chains cannot stabilize the collapsed

state. We provide systematic data on the effect of the dihedral potential in a model of

methylcellulose and discuss the implication of these previously overlooked, rapid con-

formational fluctuations on the spontaneous formation of high-aspect-ratio fibrils.

Finally, Chapter 7 summarizes the important finding of this dissertation and pro-

posed possible future research directions.



Chapter 2

Background

This chapter provides a brief background and reviews recent literature concerning the

physics of DNA and methylcellulose as semiflexible chains, which are necessary to under-

stand the material presented in the following chapters. Section 2.1 begin with describing

the definition of wormlike chain (WLC), which is a coarse-grained representation of DNA

and other semiflexible polymers. In this section, we also introduce the discrete worm-

like chain (DWLC) model which facilitates the simulation process of DNA along with

the force field implementation. Section 2.2 and Section 2.3 review recent studies con-

cerning the physics of DNA and other semiflexible polymers in both free solutions and

nanoslit confinement. In particular, we will discuss the static properties of DNA in the

presence of an external force, for the entropic and enthalpic intramolecular interactions

must be considered for an accurate description of polymer elasticity. For the remainder

of this chapter, Section 2.4 reviews some important theoretical and simulation studies

for methylcellulose, especially the different configurations at low temperature and high

temperature, and its gelation mechanism. We begin by reviewing an atomistic methyl-

cellulose model and highlight some of its important properties in elevated temperature.

In particular, we are interested in obtaining the coarse-grained model parameters from

an all-atom simulation. We then review coarse-grained simulation studies with a focus

on the gelation mechanism that drives the once dissolved chains into fibril structure

under high temperature.

14
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Figure 2.1: Schematic of DNA as a wormlike chain with the end-to-end length (R), per-
sistence length (lp), effective width (w) and wall-DNA depletion width (δ). Reproduced
from [74].

2.1 Discrete Wormlike Chain Model for DNA Simulation

It has been shown that DNA behaves like a semi-flexible polymer [70, 72, 73] with a

local bending stiffness. This implies that shorter DNA molecules are rod-like, yet longer

segments behave as flexible coils and thus can be described with wormlike chain models.

Figure 2.1 shows a typical DNA conformation near a flat surface. In genomic map-

ping, the surface can be the confinement imposed by nanochannel or nanoslit. There are

several key physical parameters characterizing a single DNA chain. The contour length

L denotes the length of the chain when fully extended. The end-to-end distance R is the

length between the two ends of the chain. The persistence length lp characterizes the

length of the flexibility of the chain beyond which DNA begins to lose directional cor-

relation and forms random coil-like structure. In addition, DNA exhibits self-avoiding

features between distant segments of the chain characterized by an effective hard-core

width w. The depletion zone δ characterizes the exclusion region from the wall. δ

reflects the entropic contribution of flexibility and repulsive electrostatic interactions

between DNA and the surface.

In this section, our goal is to describe a statistical mechanical model that is capable
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of describing a large piece of DNA with the length matching genomic mapping scale,

meanwhile capturing the sub-persistence length behavior, in other words, the “worm-

like” chain behavior. On the one hand, an all-atom molecular model is able to capture

the chemical details and physical properties of DNA. However, from a computational

efficiency perspective, an all-atom model is only capable of simulating short DNA with

a few hundreds of base pairs because of the complicated chemical structure. This short

chain length is way below the typical 105 base pairs commonly appearing in genomic

mapping applications. On the other hand, a model of DNA with a stiff rod represent-

ing a Kuhn length b ≈ 2lp and rotating freely without resistance expedites calculation

and is able to simulate long DNA chains. Nonetheless, this over-coarse-grained model

sacrifices the local-bending stiffness which characterizes the “wormlike” behavior.

The popular wormlike chain (WLC) [75–77] model is a good balance for coarse-

grained DNA with atoms aggregated in some way, while still capturing the sub-persistence

length behavior. Commonly known as the Kratky-Porod model, this mode envisions an

isotropic rod that is continuously flexible. For a polymer of contour length L, we define

s to be the path along the polymer as s ∈ (0, L), r⃗(s) to be the position vector along

the chain, t̂(s) to be the unit tangent vector at s. We then have

t̂(s) ≡
∂r⃗(s)

∂s
(2.1)

and the end-to-end distance vector R⃗ is

R⃗ = ∫

L

0
t̂(s)ds. (2.2)

Orientation change of the unit tangent vector t̂(s) characterizes the local stiffness

of the wormlike chain, as the more reluctant the chain is to change the orientation, the

stiffer the chain. The orientation correlation function decays exponentially along s:

⟨t̂(s) ⋅ t̂(0)⟩ = ⟨cos θ(s)⟩ = e−s/lp . (2.3)

After we have defined the local curvature factor as ∂t̂(s)/∂s, the bending energy of



17

a

w ~ui+1
~ui

Figure 2.2: Schematic of the discrete wormlike chain (DWLC) model. This model
consists of a series touching beads with diameter a, which is also the bond length.
In addition, there is a bending potential between two nearest beads characterized by
the relative orientation between two neighboring unit bond vectors u⃗i and u⃗i+1. The
effective width w defines the region for the excluded volume repulsion, as shown in the
yellow-shaded area. The dashed line represents the rest of the chain.

a chain is

Ubend =
1

2
ε∫

L

0
(
∂t̂(s)

∂s
)

2

ds (2.4)

with ε being a bending constant that characterizes the local stiffness of the chain.

Although this WLC model captures the bending stiffness of the polymer chain in

a coarse-grained level, there are two more things that prevent this model to be di-

rectly applied to DNA simulation, and thus requires modification. First of all, Eq. 2.4

calculates bending energy in a continuum approach, while in mesoscopic simulations,

discretization is required to keep track of mass positions. Moreover, this model only

captures the ideal behavior of DNA and does not consider the thickness of the polymer

chain. However, DNA and other polymers are often long enough to exhibit excluded

volume behavior in good solvent through steric and electrostatic interactions. In such

a way, a discretized model that includes both bending stiffness and excluded volume is

necessary.

The discrete WLC model (DWLC) [78–80] we use here is a coarse-grained polymer

model that is able to zoom in a length scale under lp, and also exhibits repulsive inter-

actions between monomer units. As shown in Fig. 2.2, the DWLC model is constructed

with a series of N + 1 touching beads and inextensible bonds of length a. The bending
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energy in Eq. 2.4 can be discretized as

Ubend =
2ε

a

N

∑
i=1

(1 − u⃗i ⋅ u⃗i+1). (2.5)

u⃗i and u⃗i+1 are two consecutive unit bond vectors. We can further define θi as the angle

between u⃗i and u⃗i+1, and define a dimensionless bending constant κ = 2βε/a with β

being the inverse thermal energy (kBT )−1. Then Eq. 2.5 becomes

βUbend = κ
N

∑
i=1

(1 − cos θi). (2.6)

It is important to relate the persistence length lp, which is the length over which

correlations in the direction of the tangent are lost, to the dimensionless bending con-

stant κ. With the equilibrium probability density function for cos θi [81], one can obtain

a relationship between κ and lp as

lp

a
=

κ

κ + 1 − κ cothκ
. (2.7)

To add excluded volume, N + 1 spherical beads are placed at the bond joints, and

the hard-core repulsive potential for DNA is introduced between non-contiguous beads.

The range of the hard-core repulsion is defined by the effective width w. UEV is the

hard-core excluded volume energy defined as,

βUEV(rij) =

⎧⎪⎪
⎨
⎪⎪⎩

∞, ∣rij ∣ ≤ w

0, ∣rij ∣ > w,
(2.8)

where ∣rij ∣ is the positive distance between bead centers at i and j. Note that we

commonly have w ≥ a, since unphysical chain crossing can occur when w < a. The total

potential energy Utotal of a configuration can be expressed as

Utotal = Ubend +UEV. (2.9)

Note that other potentials could be added to Utotal to represent DNA under various

condition, such as an external force field which we will discuss later.

Finally, although we are able to study long DNA by developing a coarse-grained
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Figure 2.3: Ionic strength dependece of the persistence length (blue line), effective
width (green line), and monomer anistropy lp/w (red line) for DNA. The vertical gray
line represents the ionic strength of 165 mM (5 × TBE) [82]. The schematic shows two
DWLC models under different ionic strength. Modified from [83].

DWLC model with only two parameters lp and w, we omit electrostatic details which

could be rather important for shorter DNA chains less than 100 basepairs. It is note-

worthy that many of the DNA properties have an ionic strength dependence, thus

a neutral wormlike chain model for DNA oversimplifies the electrostatics and might

not be a good approximation to softer electrostatic potentials, especially at low ionic

strength. DNA is a polyelectrolyte with nominally 2.0 and effectively as low as 0.5 nega-

tive charges per basepair [84]. The electrostatic interactions between negatively charged

phosphate groups on the backbone are screened by ions in solution. By decreasing the

ionic strength, or the salt concentration in the buffer, the screening effect between nega-

tively charged phosphate groups reduces. As a result, the value of DNA properties such

as w and lp increase. Furthermore, the repulsive interaction between the polyelectrolyte

and the chagred bounding surfaces increases. Materials such as poly-dimethylsilozane
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(PDMS) and untreated SiO2 that are commonly used for creating nanostructured de-

vices, acquire a negative surface charge when immersed in an aqueous solution with

physiological pH [85, 86]. This repulsive electrostatic interaction renders the effective

confinement size a function of ionic strength. Figure 2.3 shows the dependence of lp

and w on the ionic strength plotted using the empirical relation from Dobrynin [82,87]

and Stigter’s theory [88]. Note that both relations fail at low ionic strength because of

the non-linearity of the Poisson-Boltman equation due to the reduced screening effects

of electrostatic interactions. However, to simplify the model and accelarate the simu-

lation process, we limit our scope to high ionic strength buffer where the electrostatic

interactions are screened by the excessive ions in the buffer. This assumption allows us

to use a neutral model with effective lp and w that lumps electrostatic details. For the

purpose of predicting configurations and thermodynamic properties in the length scales

comparable to genomic length DNA, a neutral model with electrostatics implemented

implicitly is sufficient, and would further facilitate the calculation process. Throughout

this thesis and for the case of DNA, unless otherwise specificied, we use an ionic strength

of 165 mM, which corresponds to 5 × TBE. This buffer condition gives lp = 53 nm and

w = 4.6 nm, as marked with a gray line in Fig. 2.3.

2.2 DNA as a Semiflexible Polymer in Free Solution

2.2.1 Static Properties

We first consider a wormlike chain in free solution without external stretching forces.

One equilibrium property of interest is the end-to-end distance that is commonly used

as a measure of the polymer size. Since the conformation of the unconfined molecule is

rotationally invariant, ⟨R⟩ is zero. Thus, the mean square end-to-end distance ⟨R2⟩ is

often used instead. For an ideal wormlike chain following Kratky-Porod model, ⟨R2⟩ is

given by [89,90],

⟨R2
⟩ = 2lpL − 2l2p [1 − exp(−

L

lp
)] . (2.10)

Eq. 2.10 is valid for ideal chain with all range of the chain length L. There are

two limiting cases: for short chains with L≪ lp, statistically it is difficult for the chain

to change orientation significantly, so the wormlike chain is essentially rod-like with
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R ≈ L; for long chains with L≫ lp, the second term in Eq. 2.10 becomes less important,

leading to ⟨R2⟩ ≈ 2Llp. Note that in the second case we have R ∼ L0.5, which is the

metric of a random walk in free solution. This is straightforward: in the long chain

limit, when measuring the size of the entire chain instead of zooming into the details

of local stiffness, each Kuhn length (≈ 2lp) can be viewed as an anisotropic rigid rod

rotating invariantly.

Another static property characterizing the size of the chain is the radius of gyration

Rg, which can be directly measured through experimental techniques such as X-ray and

neutron scattering experiments. By definition, Rg is the root mean square distance of

chain segments from their center of mass. After combining with ideal wormlike chain

model, the R2
g can be expressed as [89,91]

R2
g = Llp {

1

3
−
lp

L
+ 2

l2p

L2
− 2

l3p

L3
[1 − exp(−

L

lp
)]} . (2.11)

It is noteworthy that the derivations of Eq. 2.10 and Eq. 2.11 are based on Kratky-

Porod model, and thus are only valid for an ideal polymer chain. The ideal chain

model assumes that polymer segments can overlap with each other as if the chain were

a phantom chain. However, two segments cannot occupy the same space at the same

time. Flory proposed a theory, commonly known as Flory theory, to account for the

excluded volume repulsion by proposing the free energy of a chain as,

βF ∼
R2

Llp
+
N 2υex
R3

(2.12)

where N ≡ L/lp is the number of persistence length of a chain and υex ≡ l2p/w is the

excluded volume of each persistence length. Equation 2.12 shows that the free energy

of a wormlike chain in a good solvent consists of two competing terms: the first term

is the entropy contribution that resists the stretching of the chain, while the second

term favors separated segments. Minimizing the total free energy with respect to R at

equilibrium gives

R ∼ lp (
w

lp
)

2υ−1

(
L

lp
)

υ

. (2.13)

The exponent υ = 3/5 is famously known as Flory exponent. Although it has been
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Figure 2.4: Schematic of thermal blobs in free solution. The orange curve represents
a single wormlike chain, and the blue circles are the conceived thermal blobs. The
polymer chain can be thought of as being composed of blobs within which the chain
executes random walks.

proven [77, 92–94] that Eq. 2.12 is incorrect, Eq. 2.13 is still valid because of the can-

cellation of errors. For theories and numerical calculations of a more accurate Flory

exponent of υ = 0.5876, interested readers should refer to more sophisticated meth-

ods [95, 96]. Note that in the so-called θ solvent where polymer chain behaves as if it

were an ideal chain, υ is reduced to 1/2. Therefore, polymer with excluded volume

interactions has a larger size and behaves like a swelled object.

The influence of excluded volume interaction increases as the length of the chain L

increases, since the more segments the chain has, the more likely the segments would

interact with each other. We can thus propose a blob that is associated with the balance

between thermal energy and the excluded volume contribution. As shown in Fig. 2.4, a

blob contains certain contour length lth at which excluded volume free energy becomes

order of kBT . Equating the second term in Eq. 2.12 to kBT gives

lth ∼
l3p

w2
. (2.14)

On the length scale below lth, the polymer behaves like ideal chain whereas above

lth, excluded volume interaction prevails. Similarly, we can define blobs caused by

other forces or effects, such as external forces of tension (Section 2.2.2) and confinement

(Section 2.3.1) by equating the free energy contribution to kBT .
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2.2.2 Stretching Semiflexible Polymers in Free Solution

At the length scale relevant to genomic mapping applications, we are interested in the

overall mechanical properties of DNA and how it alters the conformations in various

conditions, rather than understanding specific chemical bonds and detailed interactions.

In this scope, the elastic properties of DNA play an important role in physical proper-

ties related to stretching, bending and twisting, and thus are essential in determining

the overall conformation. Moreover, understanding the elastic picture opens up oppor-

tunities in other applications such as DNA binding to drugs, genetic regulation, and

compact packaging of DNA in living cells.

A single wormlike chain adopts a random coil conformation which maximizes its

entropy. There is enormous number of ways to arrange a chain in a coiled structure,

but few possible ways for the chain to be near its full length. In other words, the

stretched state is entropically unfavorable. The associated entropic force results from

the reduction of the number of possible configurations and increases as a random coil

pulled from the ends. The entropic force is rather weak, typically of the order of pN.

In order to work against entropy, an external force has to be applied. In the situation

of force stretching, the DNA chain is subjected to a tensional uncoiling along the force

direction and reaches to an equilibrium extension at the balance between the entropic

force and the externally applied force. For simplicity, here we will discuss a uniform

force field with a constant external force vector f⃗ . In practice, this uniform field can

be approximated by hydrodynamic flows [97] or by the electric field acting on a DNA

molecule in an ionic solution [98,99]. The net external force relies on a small imbalance

between the field acting on the DNA and the hydrodynamic resistance acting on the

shear layer of the flow. In this section, we examine the consequences where the first

bead is anchored at origin, and each bead experiences the same amount of constant

external force. The total force potential of a chain with N + 1 beads can be expressed

as

Uforce =
N+1

∑
i=1

f⃗ ⋅ r⃗i. (2.15)

Figure 2.5 illustrates various regimes for a real wormlike chain under different

stretching forces. In this context, we define another type of blob, the tensile blob,

also known as Pincus blob [101], of the size ξ = kBT /f . Similar to the thermal blob
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Figure 2.5: Schematic illustration and log-log scaling curve of wormlike chain under
stretching force. ξ = kBT /f is the characteristic length of tensile blobs. Gray bars indi-
cate transition bounds. The red circles denotes the thermal blobs, where the excluded
volume interaction equals kBT , and the blue circles denote the tensile blobs. The four
regimes are separated by three characteristic lengths, ξc, ξ

∗
c , and ξ∗∗c corresponding to

the persistence length lp, the thermal blob size l2p/w, and the unperturbed size Rbulk.
Generated following in the format in [100].

that features excluded volume, backfolding or overlapping of a pair of tensile blobs is

at an energy cost of kBT . In regime I as shown in Fig. 2.5, the force is extremely small

so that the size of the tensile blob ξ is larger than the size of the polymer Rbulk. As

a result, the force would not induce larger conformational change, but rather acts as a

weak perturbation. In this regime, the ensemble average of extension ⟨X⟩ is along the

force direction and is dependent on contour length. ⟨X⟩ slightly deviates from Rbulk by

f in a Hookean way. The polymer chain escapes the weakly stretched regime by either

increase the strength of the force or increase the length of the chain until

ξ∗∗c = kBT /f = Rbulk. (2.16)

Outside the weakly stretched regime, we may assume blobs are more or less lined-

up along the direction of deformation, thus ⟨X⟩ is linear with L thus eliminates any

contour-length dependence properties. Pincus theory [101] shows the extension of the
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stretched polymer should be determined by the competition between the tensile blob

size with the Flory radius RF ∼ L3/5l
1/5
p w−1/3. By equating RF to kBT /f and having

⟨X⟩ = Nfξ with Nf being the number of tensile blobs, one has the force for real polymer

scales non-linearly with extension as

⟨X⟩/L ≈ l1/3p w1/3
(kBT /f)−2/3 (2.17)

and the fluctuation in extension σ as

σ2

Llp
≈ (

kBT

f

w

lp
)

1/3

(2.18)

More details on the derivation of Pincus scaling theory and the validating simulation

results are available in Chapter 4. The Pincus regime ends where the tensile blobs shrink

to be smaller than the thermal blob so that inside each of the tensile blob, there is not

enough segment of polymer to interact with each other to experience excluded volume

effects. The transition boundary between regime II and regime III can be determined

by equating tensile blob size to thermal blob size

ξc
∗
= l2p/w. (2.19)

For regime III and IV in Fig.2.5, the theories are based on Kratky-Porod model [102]

without any excluded-volume effects taken into account. In this case, the blobs are

separated purely by tensile forces and the size of a tensile blob is smaller than a thermal

blob. In the continuum wormlike chain model, by adding the force potential term to

Eq. 2.4, we have

Ubend-force =
1

2
ε∫

L

0
(
∂t̂(s)

∂s
)

2

ds − f ∫
L

0

∂x(s)

∂s
ds (2.20)

where x is the projection of t̂ in force direction along the polymer backbone. Although

we could rely on numerical methods to solve Eq. 2.20, we shall not dwell on the exact
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numerical methods to derive force-extension relationship, but simply quote the approx-

imate interpolation formulas [70]:

flp

kBT
=

⟨X⟩

L
+

1

4(1 − ⟨X⟩/L)2
−

1

4
, (2.21)

In regime III where the force is relatively weak but still strong enough to escape

Pincus regime, this interpolation reduces to:

⟨X⟩

L
≈

2

3

flp

kBT
, (2.22)

and in regime IV with strong force, we have

⟨X⟩/L ≈ 1 −
√

4flp/kBT . (2.23)

The Marko-Siggia interpolation is widely used in predicting wormlike chain extension

and fitting the experimental data to obtain the persistence length. It has a rather

undemanding formula while generating satisfying results that deviate only a few percent

from the exact numerical solution of Eq. 2.20 for ideal wormlike chain. However, it does

not come as a surprise that Marko-Siggia interpolation cannot be applied to Pincus

regime where the excluded volume region dominates because the derivation of the scaling

theory behind Eq. 2.21 is based on ideal wormlike chain model.

The huge advances in single-molecule manipulation techniques over the past three

decades make testing the elasticity of DNA feasible. The experimental studies reviewed

here measure force-extension relations, thus provide a quantitative test of wormlike

chain elasticity and its mechanical flexibility. To date, there are four classes of single-

molecule stretching experiments with different types of external applied force. The

first class of force is a magnetic field. Smith et al. [72] developed a microdevice in

which the free end of DNA was attached to a 3-µm-diameter magnetic bead. The

DNA experienced a uniform tension along the chain in a known magnetic field, thus

allowing measurement of force-extension relation. Because the magnetic bead can be

imaged, there was not fluorescent dye needed to stain the entire DNA molecule. The

second class of force is the electric field [98, 99]. With one end anchored, DNA as a

polyelectrolyte was stretched by the electrophoretic force acting directly on the DNA.
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light-blue shaded area corresponds to regime II. The pink shaded area shows idea chain
behavior corresponding to regime III and IV. The triangle shows the scaling law of
boundaries between weakly stretched regime and Pincus/ideal regime.

The third class of force is hydrodynamic flow drag [97], where the hydrodynamic force

past the coil. These three fields are closer to the kind of stretching that might occur

naturally during gel electrophoresis or in shear flows. Moreover, the devices stretch

DNA in a continuous process, and therefore are capable of high throughput analysis.

Last but not least, techniques of optical tweezers [103,104] with feedback control provide

reliable testing of DNA elasticity. In the experiments, one end of a DNA was bonded to

a coverglass surface or a bead held with a micropipette, with the other end tethered to

a microscopic bead. The coverglass or the bead moved with respect to the microscopic

bead. However, the other end, the microscopic bead was not entirely fixed, but rather

free to move within a certain range or the “trap”. The change of the light intensity,

along with the resulting electronic feedback circuit, prevented the bead from escaping
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the trap. This system is capable of measuring force-extension relationship with both low

(∼0.1 pN) and high (∼50 pN) forces, therefore provides a reliable experimental system

for studies of polymer mechanical flexibility. It is noteworthy that the experiments

reviewed above generally permit nonuniform tension instead of the homogenous force

field in the theoretical studies, and are closer to the DNA stretched in the real world

such as gel electrophoresis and nanopore stretching.

2.3 DNA as a Semiflexible Polymer in Nanoslit Confine-

ment

2.3.1 de Gennes’ Blob Theory in Nanoslit Confinement

As mentioned in the last section, DNA often acts as a model polymer for researchers

to explore polymer physics. A nanoslit offers one of the simplest confinement that con-

strains the orientation of polymer in only one dimension, which leads to the “free” span

of polymer in a pseudo-2D way. This compression would greatly alter the behavior of

confined polymer, thus allows us to study fundamental polymer physics ranging from

thermo dynamic properties to dynamic properties. In the scope of the current contri-

bution, we mainly focus on the former class of problems, in particular the equilibrium

extension of confined DNA with or without the external forces. The latter typically

concerns diffusive behavior and relaxation times, and interested readers should refer

to [2, 37, 38, 105]. With the advances in nanofabrication technologies together with

fluorescence microscopy imaging, it is possible to observe and measure the static and

dynamic behavior of DNA directly. Such devices can be used to not only test existing

understanding of polymer physics but also guide the design and optimization of the

genomic mapping technologies.

The slit confinement is often referred to as two infinite parallel plates immersed

in buffer solution. Note that in the real world, there is no truly unbounded slit that

completely eliminates the confinement in the other two dimensions, but rather the slit

would be approximated by a nanochannel with high aspect ratio, i.e., the size of the

plane is much wider than the height of the slit, and also much greater than the in-plane

radius of gyration Rg,∣∣ of the polymer chain so that the polymer would not feel the wall
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excluded volume interaction inside a discoid L2
*w/(HB2) equals 1

(in units of kbT). Then, L* and B are determined to be:

L* ! LpH/w (7)

B ! LpH
1/2/w1/2 (8)

The free energy in the extended de Gennes regime can be

obtained from blob theory by replacing the spherical blob by

a discoid. Accordingly, the free energy reads:

F

kBT e
R2

jj

ðL=L*ÞB2
þ ðL=L*Þ2B2

R2
jj

: (9)

Substituting eqn (7) and eqn (8) into eqn (9), the free energy is

expressed as:

F

kBT e
R2

jj

LLp

þ L2w

R2
jjH

(10)

Minimizing eqn (10), we obtain the same expression of the

DNA extension as eqn (3). This means that the scaling law

relating Rk to H is the same in the extended de Gennes regime

and the de Gennes regime, even though the free energy expres-

sions are different. A similar result was also derived by Wang

et al.40 for DNA in a nanotube.

2.2 Odijk regime

To analyse the relationship between Rk and H in the Odijk

regime, we consider a virtual in-plane chain corresponding to

the projection of the DNA chain onto a slit wall. Then, Rk is

the radius of gyration for this virtual in-plane chain. This

virtual in-plane chain has a projected contour length Lk, an

apparent persistence length Lp,k and a chain width w. Before

calculating Rk, we need to know how Lk and Lp,k are related

to H.

The scaling law for Lk was previously derived by Odijk:21

hLki ¼ L[1 & a(H/Lp)
2/3] (11)

The prefactor a has been determined to be 0.09137 ' 0.00007

by Burkhardt et al.38,39 Regarding the relationship between Lp,k
andH, we obtained an empirical expression by fitting simulation

results (details are given in the results section):

Lp,k/Lp z 1.29 ( 0.48H/Lp + 0.71 (12)

Next, we derive Rk from Lk, Lp,k and w using Flory theory by

considering a 2D self-avoiding walk. Free energy of DNA in the

Odijk regime also consists of elastic entropy and excluded

volume interactions. The excluded area between two DNA

segments in a plane is calculated based on the assumption of

random orientations (see supplementary materials for the

derivation):

Aev ! (Lp,k + 1.3w)2 (13)

As a result, the total free energy is written as:

F

kbT e
R2

jj

LjjLp;jj
þ
L2

jj
!
1þ 1:3w=Lp;jj

"2

R2
jj

: (14)

Minimizing the above equation with respect to Rk, we obtain:

hRki ! L3/4
k L1/4

p,k(1 + 1.3w/Lp,k)
1/2. (15)

To eliminate the unknown prefactor in eqn (15), we normalize

Rk by Rk,plane. Rk,plane corresponds to DNA confined to a plane.

In that case, Lk ¼ L and Lp,k ¼ 2Lp.
45

Fig. 1 Top and side views of representative simulation snapshots of DNA in four regimes. The red line curves represent 3D DNA conformation. The

width of the green sidewall in each scheme indicates the slit height. The light blue blobs in the de Gennes regime represent spheres with a diameter equal

to the slit height. The light blue blobs in the extended de Gennes regime represent discoids with an in-plane diameter larger than the slit height. In the first

two regimes, DNA conformation can be described by blob theory. In the last two regimes, DNA conformation in the direction perpendicular to the slit

wall can be described by deflection theory.

2974 | Soft Matter, 2012, 8, 2972–2982 This journal is ª The Royal Society of Chemistry 2012

Pu
bl

ish
ed

 o
n 

02
 F

eb
ru

ar
y 

20
12

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 - 
Tw

in
 C

iti
es

 o
n 

22
/0

2/
20

18
 2

2:
26

:5
5.

 
View Article Online

Figure 2.7: Top and side views of regimes of slit-confined wormlike chain proposed by
Dai et al. [2]. Decreasing slit height causes the transition from the weakly confined de
Gennes regime all the way to strong confined Odijk regime. Reproduced from [2].

effects.

The equilibrium conformation of a confined polymer is determined by the compe-

tition of three lengths: the 3D radius of gyration Rg, the distance between two plates

H, and the persistence length lp. As a results, multiple regimes of confinement versus

extension can be distinguished. In the following discussion of this chapter, we refer

the Rg in 3D as Rg,bulk to differentiate it from the in-plane radius of gyration Rg,∣∣.

In the weak confinement where H ≫ Rg,bulk, similar to the weakly stretched regime in

free solution in Section 2.2.2, the wormlike chain stays in a coiled structure with one

dimension slightly compressed. By decreasing slit height to H < Rg,bulk, the de Gennes

regime rises as shown in Fig. 2.7. The conformation of the wormlike chain consists of a

series of so-called de Gennes blobs of size H, with real chain statistics inside the blobs.

These blobs are isometric, and because the size of the de Gennes blob is greater that the

size of the thermal blob, the excluded volume interactions cause the polymer to swell

in all dimensions, and the free energy caused by the excluded volume interaction inside

a de Gennes blob is larger than kBT . For this regime, the blob size Rb scales as,

Rb ∼H ∼ L
3/5
b w1/5l1/5p (2.24)
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where Lb is the contour length inside a blob. The Flory free energy is [2, 106]

F

kBT
∼

X2

(L/Lblob)H2
+

(L/Lblob)
2H2

X2
(2.25)

Differentiating Eq. 2.25 with respect to X for minimum free energy and substituting

Eq. 2.24 gives

⟨X⟩ ∼ L3/4H−1/4w1/4l1/4p (2.26)

Note that we have ⟨X⟩ ∼ L3/4 instead of ⟨X⟩ ∼ L as in the case of stretching DNA with

external force.

Further decreasing H to be below the size of thermal blob l2p/w leads to insufficient

contour length inside a blob to experience excluded volume effect. In order to maintain

the swelled behavior as a real wormlike chain, the blob in the so-called extended de

Gennes regime (2lp < H < l2p/w) can be conceived in an ellipsoid shape with a shorter

axis of H and a longer axis defined as B. By assuming the ideal chain behavior inside

a blob and equating the excluded volume energy of a blob to kBT , we have

B ∼ L
1/2
b l1/2p ∼ Lbw

1/2H1/2 (2.27)

which gives

Lb ∼ lpH/w (2.28)

B ∼ lpH
1/2

/w1/2 (2.29)

By replacing the spherical blob with ellipsoid in Eq. 2.25, Dai et al. [2] obtained the

Flory free energy of the extended de Gennes regime as

F

kBT
∼

X2

(Llp)
+
L2w

X2H
(2.30)

and the extension ⟨X⟩ is the same as Eq. 2.26. A recently simulation study [107]

provided evidence of extended de Gennes regime in nanoslit. Highly anisotropic chains

(lp ≫ w) were studied so that a broad window exists between the lower bound and the

higher bound for the extended de Gennes regime lp <H < l2pw.
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As the H further decreases to H < lp, the blobs no longer exist because of the strong

confinement in the slit dimension. Odijk [108] proposed a deflection model that consists

of a series of segments that deflect between the slit planes. The absence of confinement

in the other two dimensions causes the segments to be isotropically aligned parallel to

the plane surface. Because the confinement is so strong, the slit-confined chain can be

effectively viewed as a 2D chain with a weak perturbation in the confining dimension

[109]. This theory has been developed further by Tree et al. [110] to incorporate effects

of real chains and tested through numerical calculation. In the “self-crossing” Odijk

regime, the H is large enough for the deflection segment to experience excluded volume

interactions, while in the “non-self-crossing” Odijk regime, as the name suggested, the

chain can no longer cross itself.

Much experimental progress has been made in understanding slit-confined poly-

mer conformation. In moderate confinement, the experimental evidence has been pro-

vided [111–113] to confirm the postulated blob theory by measuring the polymer equi-

librium size as a function of H and L. The experimental studies in the Odijk regimes

are rather controversial, especially the transition from moderate confinement to strong

confinement. Bonthuis et al. [112] measured the in-plane radius of gyration Rg,∣∣ and

found a sudden change at H ≈ 100 nm ≈ 2lp. For a smaller H, the Rg,∣∣ remains invariant

to H. By contrast, Tang et al. [113] observed a more gradual transition and suggested

that there is no Odijk regime. The problem of determining the size of polymer in the

slit has attracted a lot of research effor and is still an ongoing topic.

Finally, it is noteworthy that there are a lot of similarities between DNA in slit

confinement and DNA under external forces. In the case of confinement, the DNA

elongates through the geometry restriction imposed by the slit, which is similar to

external force f . The size of the de Gennes blob and tensile blob are H and kBT /f

respectively and are all in competition with the size of the thermal blob l2p/w. Applying

the two effects simultaneously by stretching a slit-confined real wormlike chain in an

external force would enhance the degree of extension. Due to the complicated physical

picture on the topic, we take a closer look at the stretched regime in slits in Chapter 5.
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Entropic forcethat the adoption of eq 31 simplifies this task. To complicate
the situation, there are no, to the knowledge of the authors,
sophisticated experimental apparatuses able to provide force−
extension data in either one of the statistical ensembles.
Numerical simulations, however, may supply the necessary

help in this sense. As a matter of fact, the only attempt to derive
a force−extension relation for any degree of stretching R, is
based on Brownian dynamics simulations. A modified worm
like chain (mWLC) expression of the form
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has been suggested in ref 54. The in-plane radius of gration R∥
may correspond to eq 14, eq 20, or eq 26, depending on the
confinement regime that the molecule undergoes, and the
quantity lc(h) is defined as the polymer segmental correlation
length in the unconfined directions.55 Albeit in principle eq 32
provides the required force−extension relation, it is of less
practical use, owing to the fact that the dependence of lc on h is
nontrivial and requires a numerical evaluation.
Because of the lack of a dedicated experimental tool,

stretching experiments in nanoslits are performed using
external hydrodynamic or electric field to pull the molecule
out. In ref 43, an electric field was used to stretch a DNA
molecule in slit confinement under de Gennes regime. The
authors could demonstrate the existence of two distinct regimes
during the relaxational dynamics once the field was off. These
regimes were well characterized by different time scales and
were attributed to distinct phases in the conformational
changes toward the equilibrium (eq 14). The smaller time
scale is that who drives the molecule rearrengement to an
anisotropic configuration, where blobs are still aligned to the
direction of the stretching electric field initially applied. The
second corresponds to the rearrangement of blobs as a 2D self-
avoiding chain. The existence of two distinct time scales ruling
the dynamics of confined DNA has been confirmed
subsequentely in cross-slot devices42 and in hydrodynamic
flows44 where a two-stage coil−stretch transition was clearly
observed.
Moreover, in a recent experiment,54 we designed a micro/

nanofluidic device which allowed us to probe the force−
extension curve (eq 32) and the ensuing scaling, for a specific
couple (R,fel,slit) in the strong stretching limit. In this
experiment, a DNA molecule straddles a nanoslit of length ls,
while both extremities are free to coil into two symmetric
microchannels (see Figure 1). The conformational entropy
difference at the micro-to-nano interfaces induces two opposite
and equal recoiling forces f rec, which pull the DNA portion in
the nanoslit as a rope during the tug-of-war. Eventually one of
the two ends wins, and the looser translocates to the winner
side. We are interested to the portion of DNA trapped into the
slit during the tug-of-war, i.e. the “rope”. It is clear that its
contour length fluctuates while its extension R is kept fixed,
being equal to the slit length ls in the x direction (see Figure 1).
The proper statistical ensemble for the rope conformation is
similar to a grand canonical ensemble for gases, with an average
number of blobs, deflection legths or extended blobs set by the
values of the chemical potential μ defined in eqs 67, 72, or 75,

respectively. The thermodynamical potential for this ensemble
is Hslit(P, h, R, f rec) and, in the thermodynamic limit (L/P ≫ 1)
and equilibrium conditions, its statistical description is
equivalent to that furnished by eqs 28 and 31. In particular,
the following Legendre transforms hold

= −H P h R f F P h R L f R( , , , ) ( , , , )slit rec slit rec channel (33)

= +
−

H P h R f G P h R f f R

f R

( , , , ) ( , , , )slit rec slit el slit el slit

rec channel

, ,

(34)

The latter equality has been achieved thanks to
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which immediately follow from eqs 1−2, 6−7, and 10-11
respectively. Now, from eq 34, the requirement that Hslit must
be independent of fel,slit gives

= −f fel slit rec, (36)

and

≃R Rchannel (37)

In view of eq 36, in ref 54 we aimed at determining the scaling
of f rec for different slit confinements h, plugging in the formula
(eq 32), the experimental measurables of the DNA trapped in
the slit, i.e., L, and the corresponding values of lc(h) extracted

Figure 1. Typical configuration of DNA during the tug-of-war
experiment.54 Both molecular free ends coil inside the microchannels,
exerting two opposite and equal entropic forces f rec to the portion of
DNA trapped inside the nanoslit (the “rope” of the tug-of-war).
Correspondingly the external forces are counterbalanced by the elastic
forces at the interfaces fel,slit. The confined DNA has an average contour
length L, and its extension R coincides with the length of the slit ls.
They are connected by the linear relation ls ≡ R = αchannel(h)L, see
Table 1. The typical configuration of the DNA confined portion
resembles the quasi-one dimension equilibrium condition of a polymer
in a nanochannel (ls ≡ R ≃ Rchannel): dashed circles represent the
pancakes in which the molecule can be subdivided at the onset of the
channellike behavior.
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Figure 2.8: (a) The configuration of DNA in the tug-of-war experiments with both
ends coiledin microchannels and the middle segment trapped in nanoslit. Reproduced
from [114]. (b) The cross-sectional schematic of DNA stretched by two symmetric
entropic forces. (c) The system can be modeled as a long DNA trapped in an infinite
large slit with two symmetric external forces stretching both ends.

2.3.2 Stretching Semiflexible Polymers in Nanoslit Confinement

Many studies have been focused on understanding the force-extension behaviors of semi-

flexible polymers in nanoslit [105, 114–126]. One motivation comes from exploring the

force-induced chain deformation in confinement and the backbone entropic elasticity. In

the experimental setups, a single DNA molecule spans in a nanoslit connecting either two

larger reservoirs [117, 119, 120] or a number of discrete nanopits [105, 123–126]. Yeh et

al. [114,117] studied the dependence of the entropy-driven polymer statics and dynamics

under the entropic force in the nanoslit. As shown in Fig. 2.8(a), a single molecule is in

the “tug-of-war” configuration with both ends coiling inside the microchannels with the

size of hundreds of microns, and the middle part of DNA is trapped in the nanoslit with

the size of dozens or hundreds of nanometers. The difference in configurational entropy

arising from the difference in mass of relaxed DNA to the slit-confined DNA, which

exerts a stretching force on the middle portion of the chain in the slit. Fig. 2.8(b) shows

the cross-sectional schematic of the trapped DNA. The confinement-induced entropic

forces exerted at micro-nano interfaces are symmetric, thus we can simplify the system

of interest as a long DNA trapped in an infinite large slit with two symmetric external

forces stretching both ends, and the external forces are balanced by the entropic elastic
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forces. These kind of experiments help the understanding of both static and dynamic

behavior of DNA in a confined system and shed lights on the single molecule device

design. Another motivation is that the external force and the slit confinement would

stretch the DNA simultaneously to a strong extensional deformation, thus enhances

imaging focus and resolution. Balducci et al. [127] induced hydrodynamic extensional

flows to stretch DNA in a cross-slot with a 300-nm nanoslit. They showed clear evi-

dence that both external forces and the confinement lead to an improved stretching and

a longer relaxation time of the chain when compared to the cases with just one effect

present.

The configuration of the wormlike chain is determined by balancing the thermal blob

size, de Gennes blob size, and tensile blob size. Taloni et al. [114] studied the transition

from weak confinement to strong confinement under various of forces. They proposed

the scaling arguments that merged the scaling laws in Section 2.3.1 for wormlike chain in

slits in the absence of force with the scaling laws in Section 2.2.2 for the stretching of a

real wormlike chain in the absence of confinement. When the stretching force is strong,

the excluded volume effects between different segments of the polymer chain inside the

slit are minimal, so that it is appropriate to model the problem as stretching a confined

ideal chain in an external force, with the blobs or deflection segments aligned in the

force direction. However, as the force decreases, excluded volume interactions become

crucial so that real chain statistics with Flory exponent must be taken into account.

Successful scaling laws should decide when theories developed for the stretching of ideal

chains can be safely applied, and when to modify the model to account for excluded

volume. In particular, the controversy lies in determining the force required to escape

the Pincus regime in strong confinement. Because of the confusion on the topic, we

briefly reviewed the scaling arguments originally set forth by Taloni et al. [114] and

proposed a modification to their theory for strong confinement in Chapter 6.

2.4 Recent Computational Studies on Methylcellulose Gela-

tion Mechanism

In order to study the gelation mechanism, several computational studies have been con-

ducted to explore how methylcellulose chains [1,69,129–133] collapse in various solution
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distribution function (RDF) onto the corresponding atomistic single chain intramolecular 

monomer COM-monomer COM RDF, referred to hereafter as the “intramolecular atomistic 

monomer RDF.” A typical fit of the CG RDF to the intramolecular atomistic monomer RDF is 

shown in Figure 2.4. The equilibrium bond length (l0) and angle (θ0) were determined by 

matching the peak position (r value) of the first (~0.5nm) and the second peak (~1.0 nm) of the 

intramolecular atomistic RDF. The bond, angle, and dihedral constants (Kb, Kθ, and Kφ) were 

determined by matching the height (g(r) value) of the first, second, and third peak of the same 

atomistic RDF. We found that the intramolecular atomistic RDFs are similar among all 10-mer 

homo-MC chains with different monomer substitution types, which is expected because the 

contour length of 10-mer chains (~5nm) is well below the persistence length of MC (~11nm)69 

and therefore these stiff chains do not show the effect of substitution. Based on the information 

from the intramolecular atomistic monomer RDF, we decided to average the RDFs obtained for 

all eight homo-MC chains and to use a single set of bonded parameters for all MCs. Note that 

when methylcellulose monomer is substituted at 3-position (i.e. 3-MC), the intra-chain hydrogen 

bonding network is disrupted and therefore the chain is more flexible46. Yet this effect is not 

predominant in a MC chain that is shorter than 40 monomers long. Therefore, we choose to 

capture this effect by tuning the non-bonded interaction, rather than bonded interaction. A 

summary of all bonded parameters is tabulated in Table 2.1.  

 

Figure 2.3: Schematics of the methylcellulose coarse grained model. Each methylcellulose monomer (DS ranging 
from 0 to 3) is represented by one bead centered at the monomer center-of-mass (COM). The beads are connected 
via hard harmonic springs. 

 

Figure 2.9: Schematic of the coarse-grained model of methylcellulose. Each bead rep-
resents one monomer. The beads are connected via harmonic or FENE springs. The
bonded interactions include bond potential, bending potential and dihedral potential
that apply to any two, three and four consecutive beads respectively. The intermolec-
ular non-bonded interaction is modeled with Lennard-Jones potential. Reproduced
from [128].

conditions. In a particularly relevant work, Kong et al. [129] systematically studied

the collapse transition of a generic semiflexible polymer model with variable backbone

stiffness and self-attraction strength. They constructed a phase diagram of the resulting

collapsed states including toruses, globules, and bundles. In a subsequent study, Huang

et al. [1, 130] developed a multi-scale simulation specifically targeting methylcellulose

chemistry. With respect to understanding the connection between fibril formation and

gelation, it is important to have a chemically realistic model since the sol-gel transition

is closely related to the strength of methylcellulose self-attractive interactions.

To this end, Huang et al. first conducted atomistic simulations for 10-mer methyl-

cellulose oligomers [130]. In this work, they constructed methylcellulose monomers

with all possible combinations of methyl substituents. Homo-oligomers and random

oligomers were constructed then to evaluate different atomistic force fields through the

conformational preference model dimer cellobiose. The results from the atomistic simu-

lation were then used to parameterize the force fields appearing in their coarse-grained

methylcellulose model. As shown in Fig. 2.9, the coarse-grained methylcellulose was
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represented with a bead-spring model, with each bead located in the center-of-mass of

each monomer. With isolated chain simulations, Huang et al. [1] found that at 50 ○C,

methylcellulose chains with 600 monomers or more can adopt a ring-like structure in a

dilute aqueous system. Importantly, while this ring structure is not a high-aspect ratio

fibril, it is plausible that they are precursors to forming methylcellulose fibrils. Based

on this coarse-grained model [1], Ginzburg et al. [69] developed a statistical mechanical

model for the behavior of multiple methylcellulose chains and proposed that the fibril

is a one-dimensional stack formed by methylcellulose rings.

Although these computational studies [1,69,129] provide a plausible model for fibril

formation in dilute solution, they leave open questions remained to be answered, es-

pecially how to remove the mis-collapsed states and what are the important physical

properties that determine the configuration of the methylcellulose model. We address

these questions in Chapter 6.



Chapter 3

Simulation Method

Although biopolymers can have different chemistries, they share some common physical

properties: high molecular weights, stiff backbones, and complex internal structure.

Computer simulation, therefore, plays quite an important role since it provides a way

to study a generic model (Fig. 3.1). By changing the parameters appearing, this model

permits studying a huge variety of biopolymers including both DNA and methylcellulose.

In addition, simulation provides opportunities to explore conditions that are crucial

for understanding the basic properties of biopolymers. Such conditions can be challeng-

ing for experiments due to the cost and the limited capabilities of fabricating devices

and also for analytical treatment due to the complexity of the parameter space and the

limitation of applying over-simplified theoretical models. Simulation has its own advan-

tages in that it can generate information relatively quickly to evaluate a large part of the

parameter space numerically, thus providing a thorough understanding of biopolymers

in various conditions. In this work, we have focused largely on studying physical prop-

erties of biopolymers through simulation, which allows building connections between

theoretical predictions and experimental studies.

In this dissertation, we are mainly interested in the force-extension relationship of

stretched DNA as a wormlike chain, and the gelation mechanism of methylcellulose. To-

wards the DNA simulation, our focus will be on describing the pruned-enriched Rosen-

bluth method (PERM). In particular, we will explain our implementation of off-lattice

PERM with external force potentials. We will also explain Langevin dynamics with a

focus on exploring methylcellulose gelation mechanisms in Chapter 6.

36
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Figure 3.1: A generic model (right) for a biopolymer chain (left). Each bead represents
a segment of the biopolymer chain, and the beads interact with each other by bonded
forces and non-bonded forces.

3.1 Monte Carlo Chain Growth Simulation

Monte Carlo methods have been used extensively to calculate thermodynamic prop-

erties of polymer [134]. The essential idea is to use importance sampling to sample

configurations or states with a probability proportional to Boltzmann factor, which al-

lows sampling of the energy favorable parts of the phase space that contribute most

to the thermodynamic average. The conventional Monte Carlo method, known as the

Metropolis Monte Carlo method [135] first proposes an initial state, then permits moves

in the phase space and accepts or rejects the moves with a certain probability associated

with the free energy. Although this method can accelerate the process of predicting con-

figurations compared to brute-force search, it is insufficient to reach the experimentally

relevant molecular weights of the DNA. The maximum number of beads that can be

afforded by Metropolis Monte Carlo simulation is of O(103), while as least one magni-

tude more is required to reach the long chain limit where the theories of polymer physics

are valid and still capture the sub-persistence length behavior [83]. Moreover, in the

conventional Monte Carlo simulation, one has to perform independent simulations for

different molecular weights. As a result, multiple conventional Monte Carlo simulations

at various lengths are required to draw any relationship for scaling laws as a function

of molecular weights.

Monte Carlo chain growth simulation, however, is capable of simulating longer poly-

mer chains and estimating thermodynamic properties as a function of the molecular

weight. In Monte Carlo chain growth simulation, polymer chains are built as self-

avoiding walks (SAW) by adding one bead at each step. Self-avoidance means that
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no overlapping configuration is allowed in which the same space is occupied by two or

more beads. To illustrate the concept of Monte Carlo chain growth method, especially

PERM, I will use a self-avoiding walk (SAW) with 201 beads (200 steps) linear chain on

a 2D lattice as an example. To start the process, the first bead is placed at a random

site on the 2D lattice, and each of the successive bead is placed at a neighboring free

site of the previous bead (as a linear polymer chain), until there is no more free site to

grow, or the chain reaches it maximum length (200 steps). Here, we intend to calculate

thermodynamic averages of the chain configuration, such as the mean radius of gyration

⟨Rg⟩ and the mean end-to-end distance ⟨X⟩ of the 2D SAW chain. In order to get an

accurate estimation of the thermodynamic average, the goal here is to generate enough

samples that reach the maximum contour length.

In this section, our focus will be to describe the methodology of PERM simula-

tion and in particular, our implementation of off-lattice PERM with discrete wormlike

chain model under external stretching forces. We will motivate the use of PERM by

introducing two rather elementary chain growth methods, which are Simple sampling

(Section 3.1.1) and Rosenbluth-Rosenbluth method (Section 3.1.2) and showing their

limitations in simulating long polymer chains of interest. We then introduce the on-

lattice PERM (Section 3.1.3) to simulate long chains that can reach molecular weights

suitable for comparison with experiments and polymer physics theories. We will com-

pare the performance of the three on-lattice method in the context of a SAW of a linear

chain on a 2D lattice with 201 beads. Finally, we move beyond 2D lattice simulation

to 3D off-lattice SAW simulation and explain how to implement the external forces and

confinement simultaneously into the discrete wormlike chain model (DWLC) along with

PERM (Section 3.1.4). Our discussion in this section is mainly inspired by notes on

PERM by Prellberg [136] and Muralidhar [137].

3.1.1 Simple Sampling

A straightforward way of sampling SAW is by Simple Sampling, which directly imple-

ments the probabilistic growth. In this process, each walk has an equal weight. We

will show in this section that while this sampling method is easy to implement and

statistically correct, a more sophisticated sampling method is required to sample SAW

with more steps.
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Figure 3.2: Simple sampling of a self-avoiding walk (SAW) on a 2D lattice. A trap
means the next step from the growing end overlaps with the existing beads. Because
simple sampling samples all the neighboring sites with equal probabilities, the chain
often goes into traps. Reproduced from [137].

We start the process by placing the first bead at an arbitrary lattice node at the

0th step and fix it as the origin of the coordinate system. The first bead is now the

“growing” end of the polymer chain. For the ith step, we scan the neighborhood of the

growing end and pick one neighboring node with equal probability, which is 1/4 on the

2D lattice because each node has four neighbors. We then add the (i + 1)th bead at

the chosen lattice node up until the chain reaches the prescribed maximum number of

beads, which is 201 in this context, or the chosen lattice node at current step is occupied

by the existing beads that have already been grown in the current linear chain, shown

as a “trap” in Fig. 3.2. If the process is not terminated by either of the two conditions,

the growing process proceeds by making the (i + 1)th bead the new growing end and

picking among new neighbors with equal probability. One such realization from placing
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Figure 3.3: Comparison of the performance of different Monte Carlo chain growth
method for 2D SAW with 200 steps (201 beads). The red curve is from simple sampling,
the blue from Rosenbluth-Rosenbluth Method, and the yellow curve is from PERM. The
number of tours performed for each method is 105.

the first bead towards terminating the growth is called a tour. We then start over again

to develop another tour until we have enough tours to estimate the ensemble average of

thermodynamic properties. For example, the ensemble average of the radius of gyration

of a chain with n steps ⟨Rg,n⟩, can be obtained by averaging the radius of gyration

obtained from different tours,

⟨Rg,n⟩ =

t=Nt

∑
t=1

Rtg,n

Nt
, (3.1)

where Rtg,n is the radius of gyration of a chain with n steps in the tth tour and Nt is the

total number of tours in the simulation. Note that this is an arithmetic average over

Nt because every configuration is developed unbiased with an equal probability.



41

Although Simple Sampling is straightforward, it is inefficient for sampling self-

avoiding chains with N ≥ 10. This is easy to explain: for the best scenario of a straight

chain, there is still a probability of 1/4 that the current growing end will choose the lat-

tice site occupied by the proceeding bead, thus terminating the process. In general, as

the number of steps N increase, the probability of sampling a SAW with simple sampling

decreases exponentially with N , because there are 2.638N SAWs [136] for 4N random

walks on a 2D lattice. For a chain with 10 steps (11 beads), the probability of sampling

a SAW without any termination before reaching to the end is (2.638/4)10 = 0.0157,

and for the chain of N = 201, the probability decreases to 6.96×10−37. Figure 3.3 shows

the number of samples as a function of the length of the chain. We observe that simple

sampling is extremely inefficient to sample SAW for large N , which is often required in

the Monte Carlo chain growth simulation.

3.1.2 Rosenbluth-Rosenbluth Method

An improved sampling algorithm was proposed in 1956 by Rosenbluth and Rosenbluth

[138]. The basic idea to grow self-avoiding configurations by only sampling the next step

from empty lattice sites instead of sampling from all the neighboring site with equal

probability. In this way, the process terminates only if the polymer chain reaches the

maximum length, or the chain was “trapped” in a dead end with no space to grow, as in

Fig. 3.4. We will show in this section that comparing to simple sampling, this method

is able to sample SAW with more steps before termination, However, the occurrence of

traps, or the attrition problem, still increases exponentially with the contour length of

the polymer chain.

As shown in Fig. 3.5, in the original Rosenbluth-Rosenbluth method [138], at the

0th step, the first bead is place at the origin, and the weight of the current step, ω0 is

trivially equal to 1. We use ωi to denote the weight or the number of free sites of the

ith step. For a new tour, there are four possibilities with no intersections, giving ω1 = 4.

When a subsequent bead is added, one has to scan the neighborhood to find the free

sites to grow instead of selecting from all the neighboring nodes without bias. If there

is more than one free site, one needs to choose among them uniformly. If there is no

free site, the chain is killed. The weight of a configuration after N steps, WN , is the
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Figure 3.4: Rosenbluth-Rosenbluth method of SAW on a 2D lattice. Traps often oc-
cur even if Rosenbluth-Rosenbluth method only sample from neighboring free sites.
Reproduced from [137].

W0 = 1 W1 = 1 ⇥ 4 W4 = 1 ⇥ 4 ⇥ 3 ⇥ 3 ⇥ 2

Figure 3.5: Schematic of SAW from the 0th step to the 4th step. Weights from each step
are shown at the bottom. The Rosenbluth bias is used such that free sites are picked
uniformly. Reproduced from [139].
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product of ωi of the chain,

WN =
N

∏
i=0

ωi (3.2)

WN simply represents the number of possible self-avoilding configurations of a polymer

chain with N steps.

Similar to the simple sampling, the ensemble average of the thermodynamic prop-

erties can be estimated by the statistics from each tour. For example, the ensemble

average of the radius of the gyration ⟨Rg,N ⟩ can be obtained by averaging the Rg,N

together with the weight WN ,

⟨Rg,N ⟩ =

t=Nt

∑
t=1

W t
NR

t
g,N

t=Nt

∑
t=1

W t
N

, (3.3)

where W t
N is the weight of the configuration with N steps in the tth tour. Note that this

is a weighted average over the number of tours Nt because each configuration is biased

towards self-avoiding configurations by only choosing among the free sites on the lattice.

As a result, each configuration is associated with an appropriate weight to account for

the bias.

Nevertheless, this scheme is not without deficiency in that when the chain length N

becomes very large, only an exponentially small fraction of chains survive. Figure 3.3

shows the improvement gained by Rosenbluth-Rosenbluth method over simple sampling

and its limitation. The number of chains that reach over 100 steps without termination

decreases exponentially, leading to a poor sampling for large chain length. Moreover, as

stated in [140], the ensemble average can be dominated by several “powerful” configu-

rations with enormous weight, given the large variation of the weights and the limited

number of the tours that can be afforded by the computational capability.

3.1.3 Pruned-enriched Rosenbluth Method (PERM)

PERM was invented as an improvement of the Rosenbluth-Rosenbluth method that

is excellent for long polymer chains [141]. This method corrects “bad” configurations

that easily go into traps, thus circumvents the attrition problems. At some point along

the growth process, it becomes clear that the chain is in a “healthy” condition or has
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no free space to grow. PERM is able to grow more configurations and prevent chains

from going into traps through population control: when the weight of the chain is large,

in other words, the chain has more free space to grow, PERM introduces branches or

enrichment to the chain growth; when the weight is relatively low, PERM prunes the

chain to prevent the chain from being trapped in a dead end. In contrast to growing

a linear structure, chains with tree-like structures are grown in order to search in a

depth-first fashion [142].

There are two main types of PERM in terms of deciding when to perform the prune

and enrichment [140, 141]: non-blind PERM and blind PERM. A non-blind PERM

means that a target weight distribution Wtarget is already known a priori and can be

used to decide whether the calculated weight at the current ith step Wi is too large or

too small [141]. If Wi is too large, we tend to make more copies and divide Wi by the

number of copies. If Wi is too small, we tend to terminate the growth of this branch. A

blind PERM is when the sampling distribution is not known a priori [140]. Instead of a

given target weight distribution, one estimates and updates the target weight from the

weighted average of the previous tours. This is the variant of PERM that we used in

our work because in general, we do not know the sample distribution, especially when

the system is complicated. In this section, we will show how non-blind PERM works

through a 1D random walk with the target weight known a priori, then we will discuss

how to perform a blind PERM with both 1D random walk and 2D SAW as examples.

Let us first consider a 1D random walk, as shown in Fig. 3.6(a). We introduce the 1D

random walk as an example because the target weight, or the probability distribution,

is known as a priori : it is simply a binomial distribution with pn,kn = 1
2n

(
n
kn

). pn,kn

denotes the probability of the nth step having k step(s) choosing to go to the right

direction. At the 0th step, a bead starts from the origin. Steps to the right are assigned

with positive coordinates. A simple sampling would suggest that a new step should be

either left or right with equal probability so that each step would be independent of all

the previous steps. However, it is not a surprise that this walk can “never” reach the

positions that are far away from the origin, in other words very large kn or very small

kn, because of the nature of the binomial distribution.

PERM can overcome this sampling limitation by generating configurations with dif-

ferent kn with a uniform probability, and assigning the appropriate weight accordingly.
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(b) (c)

(a)

kn kn

Figure 3.6: PERM of 1D random walk for n = 50 steps and 1,000,000 tours. (a) A 1D
random walk with the probability distribution equivalent to a binomial distribution. (b)
The total number of samples for each value of k are shown for simple sampling (blue-
dash line), PERM with predetermined weight (red-dash line) and blind PERM (green
line). Red-shaded area is denotes as rare configurations with k ≤ 10 and k ≥ 40. (c)
Comparison of priori binomial probability (green-dash line) and estimated probability
from blind PERM (black squares) on a logarithmic scale.

For example, in the 1D random walk, an analytical target weight

Wtarget,n,kn =
n + 1

2n
(
n

kn
) (3.4)

is assigned so that the rule of importance sampling is satisfied with the uniform sampling

distribution pn,kn,uni = 1/(n + 1),

pn,kn,uniWtarget,n,kn = pn,kn =
1

2n
(
n

kn
). (3.5)

This target weight Wtarget,n,kn is used to decide if the weight of the current walk is
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too large or too small. Now suppose that there is a walk with weight Wn,kn . In the

ideal scenario, we want Wn,kn to be close to Wtarget,n,kn with minimal fluctuations. If the

ratio Rn,kn =Wn,kn/Wtarget,n,kn < 1, PERM decides the current weight is too small and

this walk will stop growing (get pruned) with probability pn,kn = 1−Rn,kn or continue to

grow with probability pn,kn = Rn,kn . If Rn,kn > 1, ⌊Rn,kn⌋+1 copies of the walk will grow

(enrichment) with probability pn,kn = Rn,kn −⌊Rn,kn⌋, or ⌊Rn,kn⌋ copies with probability

pn,kn = 1 − Rn,kn + ⌊Rn,kn⌋. After determining how many copies to grow, the Wn,kn is

divided by the number of copies of the current step. As a result, PERM generates a col-

lection of configurations with weights Wn,kn around the target weight Wtarget,n,kn , thus

each of the configurations is of an equal chance of being generated. In each tour or the

fulfillment of the walk, PERM leads to a large tree-like structure with correlated walks

grown from one original point at length zero. For other more complicated distributions

without Wtarget,n,kn known a priori, Wtarget,n,kn can be estimated by a weighed average

of all the previously sampled configuration,

Wtarget,n,kn ← (n + 1)Wn,kn/∑
n

l=0
Wn,l (3.6)

Figure 3.6(b) shows the simulation results of a 50-step 1D random walk with Simple

Sampling, blind PERM, and non-blind PERM. As we can see, PERM is more or less

a uniform sampling method which is able to generate “rare” configurations. This at-

tribute makes PERM excellent for exploring various configurations of a polymer chain.

Figure 3.6(c) shows the probability sampled from a “blind” PERM, and the comparison

with the target probability distribution pn,kn = 1
2n

(
n
kn

).

Similar concepts can be extended to 2D SAW with pruning and enrichment, as

shown in Figure 3.7. The weight of the ith steps is still the Rosenbluth weight ωi. The

target weight is the average weight of all the previous SAWs, and the prune/enrichment

decision is made based on the ratio between the weight of the current tour and the target

weight, as discussed in the 1D random walk. The statistics can be calculated similarly

to Eq. 3.3. Figure 3.8 shows the square end-to-end distance R2 calculated from 2D SAW

PERM. As we can see, it successfully reproduces the Flory scaling ν ≃ 0.75 in 2D [143].

Grassberger reported that PERM is capable of simulating chains up to N = 1,000,000

with high statistics in Θ condition [141].
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Figure 3.7: Illustration of PERM of a SAW on a 2D lattice. The low weight branches
tend to be pruned, and the high weight branches tend to make more copies. Reproduced
from [137].

Figure 3.3 shows that compared to simple sampling and Rosenbluth-Rosenbluth

method, more samples can be generated with PERM simulation for the full range of the

molecular weights, thus overcoming the attrition problem. However, comparing with

the 1D case, it is not quite a uniform sampling, with the number of samples fluctuating

around the total number of tours. This is due to the fact that in the blind PERM, the

target weight is calculated and updated on the fly, reflecting the information gained in

previous tours. As a result, the tours performed earlier with a “poor” estimation of the

target weight as a reference will result in fluctuations. Nevertheless, these problems can

be addressed by increasing the number of tours and getting a good guess of the target
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Figure 3.8: Squared end-to-end distance R2 calculated from 2D SAW PERM simulation.
Orange triangles show simulation results. Green-dashed line shows the Flory scaling.

weight before entering the productive simulation, as we will discuss in the next section.

3.1.4 PERM with Discrete Wormlike Chain Model

Thus far, our focus has been on lattice simulations using a variety of sampling methods.

The 2D and 3D lattice PERM have been successfully applied to study polymers in

various conditions [118, 144, 145]. However, the lattice model also introduces artifacts

because only 90○ bending are permitted, thus making it (i) inadequate to reproduce the

sub-persistence length features which are crucial to study wormlike chains and (ii) less

versatile to include a force field, such as external forces. In order to get a more accurate

description of the discrete wormlike chain model under external forces, we sacrifice the

computational efficiency of an on-lattice model and move on to discuss how we can

perform off-lattice simulations using PERM. In what follows, we explain a 3D off-lattice

PERM with SAW that we use to simulate semiflexible polymers with external forces,

along with some computational tricks to accelerate the simulation process.
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In statistical mechanics, the probability of observing a configuration is proportional

to its Boltzmann factor, which is a function of the state energy. Along with the basic idea

of Monte Carlo simulation, the ith growth step should be accepted with a probability

associated with its state energy Ui. In the lattice PERM and Rosenbluth-Rosenbluth

method with SAW, the weight ωi, or the number of neighboring free sites, can be

reinterpreted as

ωi =
k

∑
j=1

a
(j)
i . (3.7)

a
(j)
i is the atmosphere of the jth site on the ith step

a
(j)
i = exp (−βU

(j)
i ) , j = 1 to k. (3.8)

k is the total number of neighboring sites, with k = 4 on a 2D lattice and k = 8 on a 3D

lattice. U
(j)
i is the potential energy for the jth lattice site. In the SAW, the U

(j)
i is a

hard-core excluded-volume free energy (Eq. 2.8), so that a
(j)
i is either 0 or 1 indicating

the availability of the trial site, and ωi is the total number of free sites on the lattice.

We made two major changes in the off-lattice PERM: (i) picking the next step with

a bending angle ranging from 0○ to 180○ without binning, and (ii) expanding the state

energy U
(j)
i beyond just having hard-core excluded volume free energy. To illustrate the

off-lattice PERM simulation, we show here how to grow one more step of a 3D off-lattice

chain with consideration of the following free energy of a discrete wormlike chain model

under external forces,

Utotal = Ubend +UEV +Uforce. (3.9)

Ubend, UEV and Uforce are the same as Eq. 2.6, Eq. 2.8 and Eq. 2.15, respectively.

The chain grows in a similar fashion as discussed in Section 3.1.3. In order to propose

the next step with an appropriate weight, we need to take all the of three energy terms

into consideration. At some point of the simulation, the chain is in a configuration as

shown in Fig. 3.9(a) with i beads. The center of the (i + 1)th bead can be anywhere on

the surface of a sphere with the origin being the center of the ith bead and the radius

being the bond length a. The atmosphere of the jth trial position is

a
(j)
i = a

(j)
bend,i × a

(j)
EV,i × a

(j)
force,i, j = 1 to k (3.10)
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Figure 3.9: Schematics of 3D off-lattice PERM with discrete wormlike chain model
under external forces.

and the weight of the ith step is Eq. 3.7.

As shown in Fig. 3.9(b), in the current version of PERM, we generate k = 5 trial

sites on the surface of the sphere with the probability proportional to exp(−βUbend).

Choosing an appropriate k is important to this algorithm. On the one hand, a small k

can often lead to the risk that all the trial sites overlap with the existing beads, just like

the “traps” in the Rosenbluth-Rosenbluth method, thus ωi = 0 and the whole branch

gets pruned. On the other hand, a high value of k is at the expense of computational

time, which is linear in k. The choice k = 5 is a satisfactory value that was developed

in our group empirically. To incorporate Ubend, there are three ways to propose a

trial position: picking uniformly and balance with weight; picking with a numerical

probability proportional to Boltzmann weight and picking with an analytical probability
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proportional to Boltzmann weight. Although all of the methods are statistically correct

and follow the rule of importance sampling (p1w1 = p2w2 ∝ exp(−βU) with 1 and 2

being two different sampling methods and p being the probability distribution function)

the computational efficiency differs a lot due to the pointed shape of the bending energy

distribution.

The first method is to sample a trial position uniformly on the surface of the sphere,

and put Boltzmann factor associated with bending energy, exp(−βUbend), on the weight

side. We could propose the jth (j ∈ [1, k]) trial position randomly and uniformly on

the surface of the sphere, and assign the weight of the bending step to be a
(j)
bend,i =

exp(−βU
(j)
bend,i) to ensure consistency with importance sampling. The potential problem

of this method lies in the large variation of the weight. For a typical bending constant

κ = 10, the distribution of a
(j)
bend,i can range over 5 orders of magnitude from θ = 0○ to

θ = 180○. This large variation will lead to a wide fluctuation of the final weights, thus

fails to provide a balanced ratio between prune and enrichment.

The second approach is to put Boltzmann factor associated with bending energy

on the probability side and sample the trial positions numerically. To propose the jth

(j ∈ [1, k]) trial position, we first propose m positions randomly and uniformly on the

surface of the sphere, and pick one trial position with a probability

p
(j)
bend,i,q = exp (−U

(j)
bend,i,q/kBT) /∑

m

q=1
exp (−U

(j)
bend,i,q/kBT) . (3.11)

The a
(j)
bend,i of the jth (j ∈ [1, k]) trial position is ∑mq=1exp(−U

(j)
bend,i,q/kBT ). This process

repeats k times to propose k trial positions. Although this method reduces the variation

in weights, the challenging part is the numerical sampling. As the value of κ increases,

the sharpness of the Boltzmann factor increases, so that a very large m is required to

get a reasonable collection of samples to describe the distribution, and a total number

of m × k calculations are required, thus making the simulation inefficient.

The third approach is still to put Boltzmann factor associated with bending energy

on the probability side, but now the samples are generated inherently satisfying the

probability distribution p
(j)
bend,i ∝ exp(−U

(j)
bend,i/kBT ). In other words, the k trial samples

are now generated according to an analytical probability distribution function (PDF)

directly. The atmosphere of the bending energy of the jth trial position is simply
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a
(j)
bend,i = 1. This method requires the existence of an analytical invertible PDF to locate

the trial positions on the surface of the sphere with a series of the proposed probability.

Fortunately, this can be achieved because the bending potential we are using, exp[−κ(1−

cos θ)], is analytically invertible. This method circumvents the fluctuation of the weight

as in the first method, and the numerical inefficiency in the second method due to

the limited number of samples available to describe the distribution, thereby improves

the computational efficiency and allows growing very long chains with O(105) beads.

Therefore, we use this method to propose k trial positions on the surface of the sphere

with the probability proportional to bending energy Boltzmann factor. As shown in

Fig. 3.9(b), the k = 5 trial moves are generated directly from the bending energy inverted

PDF. The trial positions favor the orientation along the direction of the previous bond

vector.

To account for the self-avoiding nature of the polymer chain, we need to check

if each of the trial positions overlaps with the existing beads. According to Eq. 2.8,

the Boltzmann factor associated with UEV, or the atmosphere of the excluded volume

energy of the jth trial position a
(j)
EV,i, is either 0 or 1, indicating the overlapping and non-

overlapping configurations, respectively. As shown in Fig. 3.9(c), among the k = 5 trial

positions, the 4th and 5th trail positions overlap with the existing beads that have been

previously grown in this tour, thus a
(4)
EV,i and a

(5)
EV,i are 0, so that there is no possibility

to continue to grow the next step in these two trial positions.

Checking self-avoidance can be time-consuming in an off-lattice simulation. For on-

lattice simulation, one only needs to check the neighboring sites, which is 4 in the 2D case

and 8 in the 3D case. However, in the off-lattice simulation, there is no limitation on the

orientation, so that the step of checking the collision need to loop over all the previously

grown beads. This leads to O(N) in each step and a total processing time of O(N2).

To address this challenge, we introduce neighboring list based on the Verlet neighbor

list [146]. The details are available in [137]. The idea is to maintain a list of all beads

within a given cutoff distance of the current growing end. Whenever calculating the self-

avoidance, one only check with the beads within the neighbor list instead of checking

with all the existing beads, and thus accelerate the simulation process. The neighbor list

is constructed and updated along with the growth of the chain and reconstructed when a

newly added bead is out of the cutoff zone. In our simulation, we fix the cutoff distance
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to be 22w. The neighboring list makes our algorithm much more efficient compared to

the PERM code without the neighbor list.

The final step is to pick among the non-overlapping trial position with the probability

p
(j)
force,i = exp (−U

(j)
force,i/kBT) /∑

k

j=1
exp (−U

(j)
force,i/kBT) , j in 1 to k, U

(j)
EV,i not 0. (3.12)

The atmosphere of the external force of the jth trial position is

a
(j)
force,i = exp [−β (−f⃗ ⋅ r⃗

(j)
i )] . (3.13)

Thus, according to Eq. 3.10, the total atmosphere a
(j)
i can also be expressed as

a
(j)
i = exp [−β (UEV − f⃗ ⋅ r⃗

(j)
i )] (3.14)

We then select one of the k trial moves with probability

pi
(j)

=
a
(j)
i

ωi
(3.15)

where ωi is calculated from Eq. 3.7. During a tour, we track the cumulative weight for

a configuration Wn with Eq. 3.2. The prune and enrichment methodology is the same

as in Section 3.1.3.

Finally, Algorithm 1 summarizes our PERM implementation with hard-core repul-

sion and external forces. Part of the pseudocode was adopted from [136] and [137].

We performed PERM simulations with a Message Passing Interface (MPI)-based

parallel Fortran code using a master-slave algorithm (Fig. 3.10). The feasibility of

parallelization lies in that each tour is relatively independent, however requires some

information from all the completed tours as a reference (e.g., the target weight). Once

initialized, the master processor assigns jobs (tours) to slave processors along with

the necessary statistics. Each slave processor then runs jobs, gets back to the master

processor by sending weight of the current tour and other thermodynamic statistics,

and asks for new jobs until the maximum number of tours is reached.
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Algorithm 1 Implementation of off-lattice SAW PERM with external forces

1: s. ← 0; w. ← 0; Tours ← 0; n ← 1; w1 ← 1; a ← 0; Copy1 ← 1; s1 ← s1 + 1
2: r1 ← Set first bead position; Start neighbor list; Sum. Z1 ← Sum. Z1 + w1

3: while Tours <MaxTours do
4: if n =MaxBeads or a = 0 then Copyn ← 0
5: else Ratio← wn/Wn; p← Ratio mod 1; Generate random number ρ ∈ [0; 1]
6: if ρ < p then Copyn ← ⌊Ratio⌋ + 1
7: else Copyn ← ⌊Ratio⌋
8: end if
9: if (Blind) then Wn = Sum. Zn/(Tours + 1); wn =Wn

10: else wn =Wn

11: end if
12: end if
13: if Copyn = 0 then
14: while n > 1 and Copyn = 0 do n← n − 1
15: end while
16: if n > 1 then Construct new neighbor list
17: end if
18: end if
19: if n = 1 and Copyn = 0 then
20: Tours← Tours+1; a← 0; Copy1 ← 1; s1 ← s1+1; Sum. Z1 ← Sum. Z1+w1

21: else
22: Update/Construct new neighbor list
23: if a > 0 then
24: Copyn ← Copyn − 1
25: Draw 5 trial positions on the surface of a sphere from the DWLC bending

energy distribution
26: Check self-avoidance of the 5 trial positions

27: Calculate atmosphere of the force energy a
(j)
n with j in non-overlapping

trial site(s).
28: Calculate weight of the force energy ωn with Eq. 3.7 with j in non-

overlapping trial site(s)

29: Pick one of the non-overlapping sites randomly with pn = a
(j)
n /ωn

30: n← n + 1; wn ← wn × a; rn ← Picked site; sn ← sn + 1; Sum. Zn +wn
31: if (Production run) then #Statistics for thermodynamic averaging
32: Sum. Rn ← Sum. Rn +wn ×Rn
33: end if
34: end if
35: end if
36: end while
37: Zn ← Sum. Zn/Tours
38: if (Production run) then Rn ← Sum.Rn/Sum. Zn
39: end if
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Figure 3.10: Schematic of master-slave parallel algorithm implementation in PERM.
Master processor assigns jobs to slave processors and keeps track of all the statistics.
Slave processors run PERM simulations tour by tour and send statistics back to master
processor.



Chapter 4

Modeling the Stretching of

Wormlike Chains in the Presence

of Excluded Volume

This chapter is based on the publication

X. Li, C. M. Schroeder, and K. D. Dorfman, “Modeling the stretching of wormlike

chains in the presence of excluded volume”

Soft Matter, vol. 11, pp. 5947-5954, 2015 [147]

4.1 Introduction

Stretching a polymer chain in the presence of an external force is a classic problem

in polymer physics [92]. In general, entropic and enthalpic intramolecular interactions

must be considered for an accurate description of polymer elasticity [89]. An ideal

flexible polymer chain with no enthalpic interactions (which, for our purposes, means

no excluded volume) can be modeled as a simple random walk with a Gaussian dis-

tribution function for the end-to-end extension. In the limit of low forces, equilibrium

thermodynamics suggests that the force f required to stretch a chain is linear in the

extension. For an ideal freely-jointed chain, the (dimensionless) entropic force is given

56
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by the Hookean expression (similar to Eq. 2.22)

FH
=

3

2
z (4.1)

where F = flp/kBT is the dimensionless force for a chain of persistence length lp with

kBT being the Boltzmann factor, and z = X/L is the fractional extension for a chain

of contour length L with X being the extension along the force direction. For most

practical situations, the elasticity needs to be modified to consider the effects of high

forces (i.e. finite extensibility) and excluded volume interactions. In the limit of high

forces, a partition function approach can be used to describe the elasticity of an ideal

freely-jointed chain,

FFJC
=

1

2
L
−1

(z) (4.2)

where L(x) = coth(x) − x−1 is the Langevin function, which has no analytical inverse.

Wormlike chains represent a different class of macromolecules with a uniform distri-

bution of bending stiffness along the polymer backbone. Over 20 years ago, Marko and

Siggia [70] proposed the interpolation formula (similar to Eq. 2.21)

FWLC
= z +

1

4(1 − z)2
−

1

4
(4.3)

to describe the extension of a wormlike chain under tension. The Marko-Siggia formula

correctly limits to Eq. 4.1 in the low-force limit and the saturation value FWLC ≅

[2(1−z)]−2 in the high-force limit. Equation 4.3 only deviates by a few percent from the

force-extension result computed numerically from the Hamiltonian of an ideal wormlike

chain [70]. As a result, the Marko-Siggia force relation has found widespread use, most

notably in the description of the force-extension behavior of DNA [148] below the B-to-S

transition at 70 pN [103,149]. It is used ubiquitously as the spring-force in bead-spring

models of wormlike chains such as DNA [150,151].

For real polymer chains, incorporation of excluded volume interactions is challenging

and has been considered using renormalization approaches [92]. In a classic paper,

Pincus used scaling theory to show that the restoring force for real polymers scales
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non-linearly with extension in the limit of low forces [101],

F real
∝ z3/2, z ≪ 1 (4.4)

Clearly, the elastic behavior for real polymer chains is strikingly different than the

Hookean response for ideal chains.

A key limitation of the Marko-Siggia and Langevin force relations is that these

relations were obtained for ideal chains, and thus cannot account for the excluded volume

interactions and the concomitant nonlinear-low force elasticity of a real chain. For very

stiff chains, where the persistence length lp is much larger than the backbone width w,

the excluded volume is weak [83, 152]. However, for single-stranded DNA and many

synthetic polymers, the monomer anisotropy ratio lp/w is modest and excluded volume

effects can be important [83]. It would be highly desirable to have an interpolation

formula similar to Eq. 4.3 to interpret force-extension experiments with such molecules

[153, 154]. Such a formula is even more important for modeling the behavior of these

polymers in flow using coarse-grained, bead-spring models. For efficient modeling, each

spring must represent a large number of persistence lengths. When bead-spring models

are used to study polymer dynamics at the relatively low flow strengths encountered in

many experimental systems, excluded volume within a spring can become important.

In the present chapter, we propose an interpolation formula for wormlike chains that

connects the Pincus regime [101] in the presence of strong excluded volume interactions

to the Marko-Siggia result [70] for ideal wormlike chains. Using simulations of a dis-

crete wormlike chain model, we show that this interpolation formula provides a good

description of the force-extension behavior for all values of the monomer anisotropy ratio

lp/w we studied over experimentally relevant values of the fractional extension. A key

challenge in our work is simulating chains with high resolution of the chain backbone

up to a sufficiently high molecular weight to observe the Pincus regime [155]. While

it is possible to reach such high molecular weights by reducing the number of degrees

of freedom with a lattice model [121] or by reducing the resolution of the chain back-

bone with a bead-rod model [100], the off-lattice pruned-enriched Rosenbluth method

(PERM) used previously to study discrete wormlike chains in free solution [83] and

in confinement [81, 110, 156–158] is readily adapted to the force-extension proble [121].
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Using this approach, we are able to simulate asymptotically long chains down to small

values of the fractional extension (z ≈ 0.1) over a wide range of lp/w values, thereby

accessing all of the relevant regimes. The results of these simulations not only allow us

to assess the accuracy of our interpolation formula relative to the Marko-Siggia force

relation, but also provide strong support for the existence of the Pincus regime.

4.2 Interpolation Formula for the Stretching of Real Worm-

like Chains

We propose that Eq. 4.3 should be replaced by an excluded volume-wormlike chain

(EV-WLC) interpolation formula consisting of two parts,

F = Flow + Fhigh (4.5)

The quantity

Flow =
z1.5

0.21(w/lp)1/2 + (2/3)z1/2
(4.6)

is the dominant contribution for small z, with the constant 0.21 determined from a fit

to our simulation data. Conversely, the term

Fhigh =
1

4(1 − z)2
− (

1

4
+
z

2
) (4.7)

is the dominant contribution at high z. Note that the leading-order term in Fhigh is

O(z2) for small z. Since the constant 0.21 in Eq. 4.6 was determined by fitting to

simulation data for a discrete wormlike chain model, this parameter may differ for an

interpolation formula describing a continuous wormlike chain model. However, it is

worth keeping in mind that the overall form of the EV-WLC interpolation formula (i.e.,

the limiting behavior and the crossovers between different regimes) does not assume a

discrete wormlike chain model.

The rationale for this formula is threefold:

First, when the chain is strongly stretched (z ≈ 1), excluded volume should not be

important and the Marko-Siggia result for ideal chains applies. It is readily confirmed

that Eq. 4.5 reduces to Eq. 4.3 in this limit. Note that this saturation value is correct



60

for a continuous wormlike chain. For a discrete wormlike chain, which we will use

for our simulations here, the saturation value shifts from the wormlike chain behavior

F ∼ (1 − z)−2 to the freely-jointed chain result F ∼ (1 − z)−1 for sufficiently high forces

[159].

Second, for small values of the extension, the leading-order behavior of Eq. 4.5

should reduce to Pincus’s scaling result for weak stretching in the presence of excluded

volume [101]. Pincus’s theory is based on the existence of a tensile screening length

ξt = kBT /f that competes with the Flory radius RF = L3/5l
1/5
p w1/5 for a wormlike chain

of contour length L [89]. The force-extension behavior can be obtained by a scaling

argument where tensile blobs of size ξt contain a contour length

Lblob = ξ
5/3
t l−1/3p w−1/3 (4.8)

The fractional extension is then given by z = ξt/Lblob, leading to [101]

F ∼ z3/2(lp/w)
1/2 (4.9)

This is indeed the leading-order behavior of Flow. Since Fhigh ∼ O(z2) for small z, and

it is also the leading-order behavior of Eq. 4.5 for small z.

Third, Flow should exhibit a crossover from Pincus behavior to ideal wormlike chain

behavior. The Pincus regime crosses over to the ideal scaling regime when the tensile

blob size is commensurate with the thermal blob size, ξt ≅ l
2
p/w [100]. The crossover

point is

F ∗
≅ w/lp (4.10)

with a corresponding fractional extension

z∗ ≅ w/lp (4.11)

This is indeed the fractional extension where the two quantities in the denominator of

Flow are balanced.

Before moving on, we should note that Eq. 4.5 is not intended to be a model for

freely-jointed chains. The force-extension interpolation behavior of freely-jointed chains

has been addressed previously in a similar interpolation approach by Rahadkrishnan
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and Underhill [160]. Equation 4.5 should not reduce to a freely-jointed chain model

in the limit lp = w because the saturation behavior of the wormlike chain model is

qualitatively different than a freely-jointed chain model [159]. For this reason, we only

consider cases lp > w to test the EV-WLC formula.

4.3 Simulation Method

We obtained force-extension data for a discrete wormlike chain model [79, 83] using

pruned-enriched Rosenbluth method (PERM) simulations [141]. Our simulations are

the off-lattice analog of previous lattice simulations by Hsu and Binder [121]. The

discrete wormlike chain model consists of a series of N inextensible bonds of length a.

We use touching beads such that a = w, where w is the width of the chain. The contour

length of the chain is thus L = Nw = (Nb − 1)w, where Nb is the number of beads. A

bending energy (Eq. 2.6) is imposed between contiguous trios of beads. The bending

energy κ is related to the persistence length by Eq. 2.7. Excluded volume interactions

are treated by a hard core potential between non-contiguous beads (Eq. 2.8).

In each tour of the PERM simulations, the first bead is placed at the origin. Due

to the translational invariance of the imposed force, this initial condition leads to no

loss of generality. For the nth chain growth step, we make k = 5 trial moves by selecting

points on the unit sphere from the discrete wormlike chain distribution in the absence

of excluded volume or the external force [81]. As a result, the reference state for our

simulations is an ideal discrete wormlike chain at zero force. The jth trial move to place

the nth bead at position r
(j)
n is assigned an atmosphere similar to Eq. 3.14,

a(j)n = exp [−β (UEV − f ⋅ r(j)n )] (4.12)

where UEV is the excluded volume caused by placing this bead and f is the force. We

then select one of the k trial moves with probability

p(j)n =
a
(j)
n

ωn
(4.13)
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where

ωn =
k

∑
j=1

a(j)n (4.14)

is the Rosenbluth weight for step n.

During a given tour, we track the cumulative weight of a configuration,

Wn =
n

∏
i=0

ωn. (4.15)

and enforce pruning and enriching steps via Grassberger’s algorithm [141]. If at some

step n a chain’s cumulative weight is too high relative to the target weight, we “enrich”

by generating a copy of the configuration and splitting the weight Wn between the two

copies. Conversely, if at some step n the chain’s cumulative weight is too low relative to

the target weight, it is “pruned” and growth terminates at that step. In Grassberger’s

algorithm, the target weight is adjusted on-the-fly based on the current status of the

simulation to improve sampling efficiency [141]. For each value of lp/w, we conducted

at least 105 tours so that the standard error of the mean, assumed to be the sampling

error, is small compared to the symbol size in the plots. The details of the algorithm

are elaborated in Chapter 3.

As a chain growth method, PERM naturally produces equilibrium data as a function

of molecular weight. For a chain consisting of n steps, the average fractional extension

is

zn =

∑
t

W (t)
n z(t)n

∑
t

W (t)
n

(4.16)

where W
(t)
n is the cumulative weight of configuration t in the ensemble and z

(t)
n is the

corresponding extension of the configuration in that tour

z(t)n =
r
(t)
n ⋅ f

(n − 1)w
(4.17)

with r
(t)
n the vector position of the nth bead of configuration t and (n − 1)w is the

contour length at step n. We run our simulations to sufficiently high molecular weights

such that z becomes independent of n. The number of beads used for the data in this
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chapter appear in Appendix A. As a result, we simply report the asymptotic value of z

in what follows. Evidence in support of this claim is provided (see Appendix A).

In the course of our discussion, it will also prove useful to compute the excess

free energy ∆FEV caused by excluded volume. For this calculation, we repeat our

simulations at a force f setting UEV = 0. In PERM, the free energy for growth out to

step n relative to the reference state is

βFn = − ln⟨Wn⟩ (4.18)

where the angle brackets indicate an average value. The excess free energy for chains

grown out to step n is then given by [157]

β∆FEV
n = − ln

⟨Wn⟩

⟨W ideal
n ⟩

(4.19)

where W ideal
n is the cumulative weight from PERM simulations in the absence of ex-

cluded volume.

4.4 Results

We begin by comparing the simulation data we obtained for real discrete wormlike

chains to the response of ideal continuous wormlike chains given by the Marko-Siggia

interpolation formula in Eq. 4.3. As shown in Fig. 4.1, the force-extension behavior at

high stretch is insensitive to the monomer anisotropy ratio lp/w. However, the elastic

behavior depends on the monomer anisotropy ratio at low forces. For a stiff chain, the

deviation between the Marko-Siggia interpolation formula and the simulation data is

small, even at rather small values of the fractional extension. For the more flexible

chain, the deviation from the Marko-Siggia interpolation formulation is substantial and

persists over a wide range of fractional extensions. In both cases, the EV-WLC inter-

polation formula reasonably captures both the saturation behavior at high forces and

the deviation from the Marko-Siggia interpolation formula at low forces.

We included the Pincus scaling in Eq. 4.4 beside the low-force data in Fig. 4.1. The

data do appear to follow Pincus scaling for sufficiently low forces, and we will address

this issue in a quantitative manner shortly. For the moment, it suffices to note that the
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Figure 4.1: Comparison between discrete wormlike chain simulation data and the Marko-
Siggia interpolation formula (solid line) in Eq. 4.3 and the EV-WLC interpolation for-
mula (dashed lines) in Eq. 4.5 for a relatively flexible chain (lp/w = 1.5) and a stiff
chain (lp/w = 10.5). The triangle indicates the Pincus scaling in Eq. 4.4. Similar plots
for other values of lp/w are provided (see Appendix A).

Pincus scaling is not a good description of the chain for all forces, which follows directly

from its derivation [101]. As a result, we defer the error in the Pincus scaling to a later

point, and focus for the moment exclusively on the Marko-Siggia interpolation formula

and the EV-WLC interpolation formula.

The most important question to resolve, from a practical standpoint, is when the

stretching of semiflexible chains should be modeled by the Marko-Siggia interpolation

formula in Eq. 4.3 and when the EV-WLC interpolation formula in Eq. 4.5 provides a

better description. To answer this question in a quantitative manner, we evaluated the

error in these formulas for discrete wormlike chains as

ε =
∣z̃ − z∣

z
(4.20)
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with z being the value obtained from the simulation and z̃ being the value from the

interpolation formulas in Eqs. 4.3 or 4.5. Naturally, the error is a function of the force.

Figure 4.2 shows the error for the data in Fig. 4.1. As expected, the error in the

Marko-Siggia formula increases as the force decreases due to excluded volume effects.

Moreover, for the stiff chain with lp/w = 10.5, we see that the Marko-Siggia interpolation

formula indeed only exhibits errors of a few percent once the excluded volume effects

are suppressed at high forces. The error also increases for the EV-WLC formula as

the force decreases, since the interpolation formula only approximately captures the

crossover between Pincus scaling and the Hookean response.

The data in Fig. 4.2 also provide insight into modeling the stretching of double-

stranded DNA, which is a very common model polymer whose monomer anisotropy in

a high ionic strength buffer is similar to lp/w = 10.5 [83]. Our data for discrete wormlike

chains support the use of the Marko-Siggia interpolation formula in models of double-

stranded DNA in flow [150, 151]. However, it is worth noting that lp/w decreases as

the ionic strength decreases because the electrostatic interactions affect the persistence

length and the width differently [83]. For very low ionic strengths, the EV-WLC in-

terpolation formula may prove to be more accurate for double-stranded DNA than the

Marko-Siggia formula.

We have obtained data at many different monomer anisotropies, and plots similar

to Fig. 4.1 and Fig. 4.2 for these other values of lp/w are provided (see Appendix A).

Figure 4.3 summarizes the overall result, reporting the average error over all forces

where we have obtained data. The average error for the EV-WLC interpolation is always

smaller than the average error in the Marko-Siggia interpolation formula, independent of

lp/w. A closer inspection of the error as a function of force in Fig. 4.2 and the additional

data provided (see Appendix A) shows that this trend persists for all values of the force

except the saturation regime, where the two interpolation formulas are essentially the

same. Thus, we expect that the EV-WLC interpolation formula in Eq. 4.5 will prove

quite useful for modeling relatively flexible wormlike chains.

The error in both the Marko-Siggia and EV-WLC formulas both increase as the chain

becomes more flexible. For the Marko-Siggia interpolation formula, we suspect that

much of this error is due to a failure capture the low-force behavior, as Fig. 4.3 reports

the average value of the error over all forces. For the EV-WLC formula, we previously
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Figure 4.2: Plot of the error ε (Eq. 4.20) between simulation data and the Marko-Siggia
interpolation formula (red circles) and the EV-WLC interpolation (blue triangles) as
a function of dimensionless force F for (a) a relatively flexible chain (lp/w = 1.5) and
(b) a stiff chain (lp/w = 10.5). Similar plots for other values of lp/w are provided (see
Appendix A).

proposed that the error arises primarily due to the approximate way that Eq. 4.5 treats

the cross-over between the Pincus scaling and Hookean behavior. However, for both the
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Figure 4.3: Average error, εavg, for the Marko-Siggia and EV-WLC interpolation for-
mulas as a function of lp/w.

Marko-Siggia and EV-WLC formulas, some of the error may also arise from the use of

theories for continuous chains to describe data obtained from simulations of a discrete

wormlike chains. Indeed, as lp/w decreases, the discreteness of the model becomes

increasingly important. For both interpolation formulas, the error in the interpolation

formula increases as the discreteness of the model increases.

In the course of obtaining the force-extension data required to produce Fig. 4.3, we

obtained a large amount of data that should correspond to the Pincus regime. Thus,

it is worthwhile to take a moment to see whether our data are consistent with Eqs. 4.9

and 4.11 and to assess quantitatively the error between the Pincus force law and the

simulation data. For this purpose, we also included data for a freely-jointed chain

(lp = w) in Fig. 4.4. While the freely-jointed chain does not give the same limiting

behavior as a wormlike chain at high extensions, it produces a Pincus regime. Figure

4.4a provides a rescaled force-extension plot demonstrating the collapse in the Pincus

regime with a crossover corresponding to Eq. 4.11. To test the scaling in Eq. 4.9,
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Figure 4.4: Plot of (a) the rescaled extension zlp/w versus the rescaled force Flp/w
and (b) excess free energy per unit length, β∆FEV/L, for different values of lp/w. The
vertical dot-dashed line denotes the boundary of the (shaded) Pincus regime. The
dashed line in panel (a) is the regression result to the Pincus regime. The symbols for
different values of lp/w are the same in panel (a) and (b).
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we extracted the data corresponding to the Pincus regime and used linear regression

to determine the prefactor and exponent for the scaling law. This analysis led to an

exponent F 0.71. This exponent is consistent with Pincus’s analysis using the Flory

radius [89] RF = Lν(lpw)(1−ν)/2, which leads to [100]

F ∼ zν/(1−ν)(lp/w)
(2ν−1)/(1−ν) (4.21)

The change in the exponent from z ∼ F 2/3 in Eq. 4.9 to z ∼ F 0.71 in Eq. 4.21 using

ν = 0.587597 as the Flory exponent [96] is identical to the case of the scaling law for the

extension of semiflexible polymers confined in channels in the de Gennes regime [80].

For the data in Fig. 4.4 corresponding to the Pincus regime, the force-extension

F = 1.5z1.42 (
lp

w
)

0.42

(4.22)

where the prefactor is obtained from the linear regression in Fig. 4.4, leads to an average

error of 0.036. Figure 4.4b provides the corresponding values of the excess free energy

due to excluded volume, demonstrating that the onset of excluded volume interactions

is coincident with the Pincus scaling for the chain extension.

4.5 Discussion

The key result of this chapter is the development and evaluation of the EV-WLC in-

terpolation formula in Eq. 4.5. Based on the error analysis in Fig. 4.3 it appears that

the EV-WLC interpolation formula provides a good description of the force-extension

behavior of wormlike chains. However, we need to be careful about extending the EV-

WLC interpolation formula in Eq. 4.5 to polymers with isotropic monomers where lp

becomes very close to the chain width w. As pointed out by Dobrynin et al. [159], at

very high forces, the saturation behavior switches from the wormlike chain result to

the flexible chain result (i.e. the Langevin function) as the bending energy decreases.

In principle, it should be possible incorporate this crossover for the saturation behav-

ior for arbitrary stiffness κ into our EV-WLC interpolation formula, since Dobrynin et

al. [159] have already determined how to interpolate between the flexible and wormlike

stretching for ideal chains.



70

The EV-WLC interpolation formula is most useful for modest ratios of lp/w, and

these values characterize a number of important polymer systems. Single-stranded

DNA is a polymer with enormous biological relevance that exhibits nearly isotropic

monomers. There is a growing experimental interest in using single-stranded DNA as a

model polymer [152, 161]. Using biochemical synthesis methods, single-stranded DNA

molecules with ≈104 bases containing designer sequences with minimal base paring can

readily be synthesized and uniformly labeled with fluorescent dyes, thereby enabling the

direct visualization of single chain dynamics using fluorescence microscopy [161]. Due

to the very small persistence length of single-stranded DNA (lp ≈ 1-2 nm under modest

salt concentrations) [153], single-stranded DNA chains with contour lengths L ≈ 15-20

µm correspond to NK ≈ 7,500-10,000 Kuhn segments compared to only NK ≈ 150-190

for double-stranded DNA of similar contour length. The ability to study single chain

dynamics of long chain, highly flexible polymers opens a new window into observing non-

linear phenomena and chain dynamics in flow, which are heavily influenced by dominant

EV and intramolecular hydrodynamic interactions [162]. From this perspective, the

non-equilibrium flow dynamics of highly flexible polymers such as single-stranded DNA

is expected to differ qualitatively compared to linear λ-DNA of similar contour length

L. Our enthusiasm towards using the EV-WLC model for single-stranded DNA is

tempered by the possibility that the results could be affected by torsional constraints,

which are included in some coarse-grained models, such as the 3-SPN model [163], but

not in others, such as OX-DNA [164]. Ultimately, the importance (or lack thereof)

of torsion on the force-extension behavior of ssDNA is a question that needs to be

resolved experimentally. Our EV-WLC formula provides a framework for addressing

this question, since it assumes no torsional potential.

On the chemistry side, a broad class of synthetic polymers would also be described

by the EV-WLC interpolation formula. In particular, we anticipate that the EV-WLC

formula will describe the elastic behavior of synthetic polymers that have bulky side

groups but do not form helical structures, thereby maintaining modest values of lp/w.

In many ways, we do not yet know which polymers will be described by the EV-WLC

formula because the low-force elasticity has not yet been rigorously investigated for

most synthetic polymers using single molecule force spectroscopy. Whereas AFM can

faithfully measure the high-force elasticity of single polymers, magnetic tweezers are
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one method capable of interrogating the low-force regime; however, this approach has

only been applied to a handful of polymers such as single-stranded DNA [153] and

poly(ethylene glycol) [154].

Poly(ethylene glycol) or PEG presents an interesting case in the context of devel-

oping interpolation formulas for chain elasticity. Gaub and coworkers [165] performed

AFM measurements on PEG and observed that the polymer forms water-mediated su-

perstructures in aqueous solutions. As a result, and perhaps unexpectedly, PEG is well

described by the Marko-Siggia force relation (Eq. 4.3) in the limit of high forces in

water. On the other hand, stretching PEG in an aprotic solvent (hexadecane) resulted

in force-extension curves that were well fit by the inverse Langevin function (Eq. 4.2),

which is characteristic of stretching a flexible polymer in a theta solvent in the absence

of EV interactions. Recently, magnetic tweezers were used to probe the force-extension

behavior of PEG in the low force regime [154], which revealed that PEG exhibits both

the Pincus and Hookean regimes in aqueous solutions. However, the Pincus regime

only survives up to very small extensions z ≈ 0.06, perhaps due to local rigidification

of the polymer backbone due to the formation of superstructures in aqueous solution.

From this view, it is clear that the existence of solvent-polymer interactions for PEG

results in an increase in monomer rigidity and somewhat unexpected behavior. Over-

all, the lessons from these results clearly illustrate that the details of the chemistry,

solvent interactions, and local molecular structure are key to determining the emergent

force-extension behavior for any macromolecule.

The availability of the EV-WLC interpolation formula opens up a new avenue for

coarse-grained modeling of such polymers in flow. In typical bead-spring models, a

polymer chain is described by a series of beads (friction points) connected by massless

springs. The entropic penalty for stretching the chain is captured by a spring force,

while enthalpic effects arising from intramolecular excluded volume interactions are

imposed by a pairwise potential between beads. An alternate approach is to use Eq. 4.5

to simultaneously capture the effects of stretching and the internal excluded volume

interactions due to the subchain represented by the spring. We envision that such a

model could prove very useful for modeling the dynamics of such polymers in flow.

While our primary emphasis in this chapter is the development and testing of the
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EV-WLC interpolation formula, the results we have obtained for stretching in the Pin-

cus regime should also be viewed in light of the existing simulation and experimental

literature. From the simulation side, our data are part of a growing body of litera-

ture [100,121,155] demonstrating the existence of the Pincus regime, that is, a low-force

non-linear elasticity for polymers in a good solvent. Our key contributions in this respect

are methodological, showing that off-lattice PERM simulations of a discrete wormlike

chain model can reach sufficiently high molecular weights to observe Pincus scaling even

for rather stiff chains, and in the thermodynamics of the Pincus regime, with Fig. 4.4b

clearly demonstrating that the Pincus regime exists due to excluded volume interac-

tions. From the experimental side, moving forward, it will be worthwhile to see how

our data relate to the force-extension properties of single-stranded DNA [153] and new

classes of synthetic polymers that can be studied using magnetic tweezers [154].

4.6 Concluding Remarks

In this chapter, we have shown that an interpolation formula that incorporates excluded

volume interactions leads to more accurate predictions of the force-extension behavior of

discrete wormlike chains than the classic Marko-Siggia interpolation formula, which was

developed for ideal continuous wormlike chains. The EV-WLC interpolation formula

will prove particularly important for polymers with relatively small range of monomer

anisotropies lp/w, as these values characterize many important experimental systems

such as single-stranded DNA and synthetic polymers that contain bulky side groups but

do not form helices. We anticipate that the EV-WLC interpolation formula will prove

useful as a model for the force-extension behavior of such polymers as such experimental

data become available [153,154]. Even more importantly, we expect that the EV-WLC

interpolation formula will provide a quantitatively accurate force law for coarse-grained

simulations of these polymers in flow.



Chapter 5

Effect of Excluded Volume on the

Force-extension of Wormlike

Chains in Slit Confinement

This chapter is based on the publication

X. Li and K. D. Dorfman, “Effect of excluded volume on the force-extension of wormlike

chains in slit confinement”

J. Chem. Phys., vol. 144, p. 104902, 2016 [166]

5.1 Introduction

Recent interest in the theory [114,121] and simulation [115,121,122] of the stretching of

wormlike chains in slit-like confinement has been motivated in part by experiments where

a DNA molecule spans a nanoslit connecting either two large reservoirs [117,119,120] or

a number of discrete nanopits [105, 123–126]. The difference in configurational entropy

arising from the difference in mass of relaxed DNA in each of the reservoirs (or nanopits)

exerts a stretching force on the intervening portion of the chain in the slit. If this

stretching force is strong, then excluded volume interactions between different segments

of the DNA chain inside the slit are minimal. In this case, it is appropriate to treat

the problem as the stretching of a confined, ideal chain in an external force [115, 122].

73
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Figure 5.1: Schematic illustration of stretching in slit confinement. In the absence of a
force, in weak confinement (the de Gennes regime) the chain is organized into a series
of blobs (a) while for strong confinement (the Odijk regime), the chain is organized into
a series of deflection segments (b). In the presence of a weak force and confinement,
the blobs (c) or the deflection segments (d) are organized in the plane into a series of
Pincus blobs.

However, as the stretching force decreases, excluded volume interactions between parts

of the chain in the slit become important. Efficient modeling of these experiments

requires knowing when theories developed for the stretching of ideal chains [115, 122]

can be safely applied and, if necessary, how to modify the model to account for excluded

volume [114,121].

In the present chapter, we use pruned-enriched Rosenbluth Method (PERM) simula-

tions [141] to test the scaling arguments originally set forth by Taloni et al. [114] for the

role of excluded volume during the force-extension of real wormlike chains. Explicitly,

we consider chains of contour length L, persistence length lp, and width w confined in

a slit of height H that are stretched by an external force f . Figure 5.1 summarizes the

key idea behind their scaling theory [114], which merges the ideas underlying Odijk’s

theory [167] for confinement in slits in the absence of a force with Pincus’s theory [101]

for the stretching of real wormlike chains in the absence of confinement. In the ab-

sence of a force, weak confinement leads to the formation of a “chain of blobs” (the de

Gennes regime, Fig. 5.1(a)) while strong confinement leads to the formation of a “chain
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of deflection” segments (the Odijk regime, Fig. 5.1(b)). In the presence of a weak force,

the chain of blobs (Fig. 5.1(c)) or chain of deflection segments (Fig. 5.1(d)) is arranged

in the plane into a series of Pincus (tensile) blobs of size ξT = kBT /f , where kBT is

the Boltzmann factor. The latter idea is analogous to Pincus’s theory [101] for the

force-extension of real wormlike chains in free solution — the key difference is that the

appropriate coarse-graining of the chain in confinement is blobs or deflection segments,

depending on the strength of confinement, while the equivalent coarse-graining in free

solution is in terms of Kuhn lengths.

We refer to the chain configurations in Fig. 5.1(c) and Fig. 5.1(d) as the “confined

Pincus regime.” Our main goal here is to test the proposed scaling laws [114] for the

force-extension in the confined Pincus regime, as well as the proposed scaling laws for

upper and lower boundaries for this regime in the force-molecular weight phase plane.

In the course of this analysis, we further show that the force-extension behavior of

the chain for forces exceeding the upper bound of the confined Pincus regime is well

described by models developed for unconfined wormlike chains [70, 101, 168]. Taken

together, our analysis provides a quantitatively accurate model for the force-extension

behavior of long (L ≫ lp) wormlike chains in strong and weak confinement and phase

diagrams for understanding the different regimes of stretching in slit confinement. We

also consider briefly the effects of finite molecular weight and moderate confinement, as

these are experimentally relevant scenarios.

5.2 Scaling Theory

We begin by recalling briefly the key results from the scaling theory by Taloni et al.

[114] and a modification to their theory for strong confinement. The details of the

derivation are provided (see Appendix B). The key idea is balancing the tension blob

size ξT = kBT /f with the size R = L3/4(lpw/H)1/4 of a slit-confined chain in the absence

of a force. This analysis (see Appendix B) yields

z ≅ (
flp,∥

kBT
)

1/3

(
w

H
)
1/3

, (5.1)
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where z ≡ Z/L is the fractional extension of the chain in the direction of the force. In the

latter, lp,∥ is the effective persistence length, which is obtained from the characteristic

decay of the bond vector autocorrelation function in confinement. While there are a

number of quantitative reports [2, 110, 122, 169] of the effective persistence length as a

function of slit height and chain stiffness, we focus here primarily on weak confinement,

H > lp
2/w, and strong confinement, H < lp. As a result, we simply use the three-

dimensional result lp,∥ = lp in weak confinement and the two-dimensional result lp,∥ = 2lp

in strong confinement [169]. We also provide data on the role of lp,∥ as part of the

Appendix B.

The lower bound for the confined Pincus regime corresponds to short chains that

cannot form many Pincus blobs [114]. At the scaling level, the minimum contour length

is the molecular weight of a Pincus blob (see Appendix B),

Lmin ∼ lp,∥ (
kBT

flp,∥
)

4/3

(
H

w
)

1/3

. (5.2)

The upper bound of the confined Pincus regime is a more subtle point, depending on

the degree of confinement but not the contour length. Taloni et al. [114] proposed that

the confined Pincus regime ends when the Pincus blob size is equal to the slit height,

leading to (see Appendix B)

fweakmax ≅
kBT

H
(5.3)

and, with Eq. 5.1, a maximum fractional extension (see Appendix B)

zweakmax ≅ (
lp,∥w

H2
)

1/3

. (5.4)

We posit that this result only applies in weak forces. For strong forces, the appropriate

upper bound is when the contour length in a Pincus blob is shorter than the mini-

mum contour length for real chain behavior in Odijk’s theory for confined chains (see

Appendix B),

f strongmax ≅
kBT

lp,∥
(
w

H
)
1/2

. (5.5)
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The corresponding fractional extension is (see Appendix B)

zstrongmax ≅ (
w

H
)
1/2

. (5.6)

The detailed rationale for our conjecture is provided in Appendix B.

Inasmuch as Eq. 5.1 arises from balancing the size of a confined subchain with the

tension blob size (see Appendix B), it is valid for all regimes of slit-like confinement

provided that the appropriate value of lp,∥ is used. For example, in the extended de

Gennes regime [2, 80] corresponding to 2lp < H < l2p/w, we would expect that Eq. 5.1

will apply with lp,∥ ≈ lp [2]. The key challenge in addressing this regime of intermediate

confinement is the location of the crossover. The characteristic channel in the extended

de Gennes regime of confinement is O(l2p/w), whereupon Eqs. 5.3 and 5.5 are identical

at the accuracy available for a scaling law. However, since this channel size represents

the upper bound for the extended de Gennes regime, we expect that the crossover for

strong confinement in Eq. 5.5 will be the more accurate model.

5.3 Simulation Method

To test the predictions of this scaling theory, we model the confined chain with the dis-

crete, off-lattice wormlike chain model used in our simulations that has been elaborated

in Chapter 2 and Chapter 3. The chain consists of a series of N inextensible bonds of

length equal to the backbone width w of the chain, corresponding to touching beads.

The contour length of the chain is thus L = Nw = (Nb−1)w, where Nb is the number of

beads and N is the number of bonds. Such a fine-grained model is required to capture

the sub-persistence length behavior, which is crucial for strong confinement.

A bending energy is introduced between consecutive bonds as Eq. 2.6. The bending

parameter κ is related to the persistence length in free solution by Eq. 2.7. Excluded

volume interactions are treated by a hard core potential for real chains (Eq. 2.8). Similar

to the excluded volume, chains can also interact with slit via a hard core potential

βUEV =

⎧⎪⎪
⎨
⎪⎪⎩

∞, ∣ri,wall∣ >H/2,

0, ∣ri,wall∣ ≤H/2.
(5.7)
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Note that the parameter H is the effective slit height Hwall−w, using w as the excluded

volume distance for chain-wall interactions for two walls separated by a distance Hwall.

Similar to our prior work [168], the force is implemented as an external potential in

the model. In the simulation, we fix one end of the chain while applying a force on

the growing end. We have described how to implement the force in our simulation

elsewhere [168].

We obtained the force-extension data in a slit using pruned-enriched Rosenbluth

method (PERM) simulations [141]. We run our simulations to sufficiently high molecular

weights such that the extension becomes independent of N . The number of beads for

the long chain data in this chapter appear in the Appendix B.

We focus primarily on the two qualitatively different regimes of confinement illus-

trated in Fig. 5.1: weak confinement (lp
2/w < H), corresponding to the de Gennes

regime, and strong confinement (lp > H), corresponding to the Odijk regime, with a

brief diversion to demonstrate the confined Pincus regime for the extended de Gennes

regime (2lp < H < l2p/w). The latter analysis focuses on asymptotically long chains,

where the scaling theory is expected to be valid. At the conclusion of our analysis, we

consider typical experimental molecular weights for DNA (λ-phage and T4 DNA) in a

25 nm slit, where finite-size effects may be more pronounced.

5.4 Results

5.4.1 Confined Pincus Regime

We begin our analysis by testing the prediction for the scaling of the extension with

force in the confined Pincus regime (Eq. 5.1). As seen in Fig. 5.2(a) and 5.2(d), which

correspond to strong confinement (a) and weak confinement (d) with their expected

crossover points, the scaling law in Eq. 5.1 collapses the data for both weak and strong

confinement inside the confined Pincus regime (shaded area). Moreover, using an ap-

propriate value of lp,∥, the data for weak and strong confinement also collapse onto a

single master curve in the confined Pincus regime. The data at weak forces is noisy, due

to strong thermal fluctuations, and thus difficult to converge with our computational

resources.

To be more quantitative in this conclusion, we extracted the data corresponding
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Figure 5.2: Plot of the rescaled extension versus the rescaled force for different values
of lp/w and H. The rescaled axes are chosen to test the maximum force and extension
for strong confinement (Eqs. 5.5 and 5.6) and weak confinement (Eqs. 5.3 and 5.4). The
panels correspond to (a) data for strong confinement using the crossovers for strong
confinement, (b) data for weak confinement using the crossovers for strong confinement,
(c) data for strong confinement using crossovers for weak confinement, and (d) data for
weak confinement using crossovers for weak confinement. In each case, the shaded area
or dashed line shows the confined Pincus regime predicted by these scaling arguments.
Blue symbols are simulation results for strong confinement with triangle: lp/w = 5.5,
H/w = 4; diamond: lp/w = 10.5, H/w = 4; pentagon: lp/w = 15.5, H/w = 4. Red
symbols are simulation results for weak confinement with triangle: lp/w = 5.5, H/w = 49;
inverted triangle: lp/w = 5.5, H/w = 99; diamond: lp/w = 10.5, H/w = 149; pentagon:
lp/w = 15.5, H/w = 299. The black triangle shows the scaling law in Eq. 5.1.

to the scaling z ∼ f1/3 in the confined Pincus regime and used linear regression to

determine the prefactor and exponent for the scaling law. Not only are the exponents

similar (0.3916 ± 0.0167 for the Odijk regime and 0.3861 ± 0.0998 for the de Gennes

regime), but the prefactors are almost identical (0.8246 for the Odijk regime and 0.8385
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for the de Gennes regime) provided we use the effective persistence length in strong

confinement. As a result, Eq. 5.1 appears to be an excellent description of the data

in the confined Pincus regime independent of the degree of confinement. Repeating

the derivation of the confined Pincus regime scaling laws using ν = 0.588 as the Flory

exponent in 3D and ν = 0.75 as Flory exponent in 2D [95] furnishes

z ∼ (
flp,∥

kBT
)

1/3

H−0.367w0.299l0.068p,∥ . (5.8)

Repeating the linear regression of the data in Figs. 5.2(a) and 5.2(d) using Eq. 5.8

yields exponents of 0.3430± 0.0592 for strong confinement and 0.3557± 0.0134 for weak

confinement, which are closer to the expected value of 1/3.

The particular rescaled axes in Fig. 5.2 were selected to test the upper bound for the

confined Pincus regime, with the shading in Fig. 5.2 assuming a prefactor of unity for

the cross-over points. Inasmuch as the scaling laws appear to extend beyond the shading

region, this suggests a different, but still O(1), prefactor. Moreover, the prefactors for

the crossover appear to be different for weak and strong confinement. We also see that

the proposed criteria for the crossovers in strong confinement (Eqs. 5.5 and 5.6) in

Fig. 5.2(a) indeed capture the crossover in the data strong confinement, where as the

crossovers in weak confinement (Eqs. 5.3 and 5.4, Fig. 5.2(c)) are not a good description.

In contrast, the data in Figs. 5.2(b) and (d) do not allow us to make a similar conclusion

about the data for weak confinement, as both the cutoffs for weak confinement (Eqs. 5.3

and 5.4, Fig. 5.2(d)) and strong confinement (Eqs. 5.5 and 5.6, Fig. 5.2(c)) appear to

provide similar results. The reason for this ambiguity is that our particular slit sizes

satisfy the inequality H > l2p/w but do not satisfy the strong inequality H ≫ l2p/w. As a

result, the maximum forces given by Eqs. 5.3 and 5.5 are similar.

It is quite challenging to simulate the stretching of long chains in the de Gennes

regime using sub-persistence length resolution, since the number of beads required to

reach the long-chain limit becomes prohibitive. However, such long chains in wide

slits are required to test the crossover points for fweakmax and zweakmax in Eqs. 5.3 and 5.4.

Fortunately, the de Gennes regime is valid for both semiflexible chains and freely-jointed

chains, as the only restriction on the theory is that the subchain within a blob be a



81

Figure 5.3: Plot of the rescaled extension versus the rescaled force for a freely-jointed
chain (lp/w = 0.5) in weak confinement (H/w = 19). The rescaled axes are chosen to
test the maximum force and extension given by (a) Eqs. 5.5 and 5.6 and (b) Eqs. 5.3 and
5.4. The triangle indicates the scaling for the confined Pincus regime. The dashed line
in (a) shows the crossover given by Eq. 5.5. The shaded area in (b) shows the confined
Pincus regime given by Eq. 5.3.
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Figure 5.4: Plot of the rescaled extension versus the rescaled force for different values of
lp/w and H. The rescaled axes are chosen to test the strong confinement crossovers given
by Eqs. 5.5 and 5.6. The symbols are simulation results for intermediate confinement
with triangle: lp/w = 10.5, H/w = 99; inverted triangle: lp/w = 10.5, H/w = 49 and
diamond: lp/w = 14.5, H/w = 49. The black triangle shows the scaling law in Eq. 5.1.
The shaded area shows the confined Pincus regime.

self-avoiding random walk [109]. We thus simulated force-extension behavior for a freely-

jointed chain (i.e., Ubend = 0 in Eq. 2.6) in a wide slit H/w = 19, corresponding to weak

confinement, and we were able to reach the long-chain limit for most forces. This channel

has a wider separation between the two possible upper boundaries for the force, with

fweakmax almost an order of magnitude smaller than f strongmax . Figure 5.3(b) suggests that

the scaling z ∼ f1/3 ends at the predicted crossover given by Eqs. 5.3 and 5.4 for very

weak confinement — there is an uptick in the exponent for f > kBT /H. In contrast, the

scaling of the extension with the force in Fig. 5.3(a) changes well before the cutoff given

by Eq. 5.5. In both panels of Fig. 5.3, note that at very small forces the force-extension

behavior deviates from the confined Pincus regime because the chains are too short.



83

Figure 5.5: Rescaled contour length for the lower bound of the confined Pincus regime
as a function of the rescaled force for three chains with different stiffness in different
confinement. The contour length L0.9 is the contour length at which the fractional
extension reaches 90% of its saturation value for a given value of the force. The triangle
shows the scaling in Eq. 5.2.

We have also considered the case of intermediate confinement for slit heights 2lp <

H < l2p/w, which correspond to the extended de Gennes regime [2, 80]. Figure 5.4

confirms the existence of a confined Pincus regime in the extended de Gennes regime,

with the crossover being captured by the strong confinement criteria (Eqs. 5.5 and 5.6).

The corresponding plot for the weak confinement criteria (Eqs. 5.3 and 5.4), which also

work reasonable well, is provided in Appendix B. The ambiguity in the selection of the

crossover point is consistent with our previous discussion; for these channel sizes, both

the strong confinement and weak confinement results are essentially the same since the

chain only has modest monomer anisotropy.

We next turn our attention to the lower bound for the Pincus regime given by Eq. 5.2,

i.e. the chain length sufficient to begin to form Pincus blobs. The onset of the confined

Pincus scaling is a gradual one, so the transition point is not well defined. However,

we know that the fractional extension along the direction of the force vanishes at zero
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force because the chain configuration is isotropic in the plane in the absence of a force

and eventually saturates to some value of z for large forces. We arbitrarily selected the

contour length L0.9 at which the fractional extension reached 90% of its saturation value

at a given force as the onset of the confined Pincus regime. A detailed explanation of

the data analysis protocol is provided in Appendix B.

Figure 5.5 shows that Eq. 5.2 is an accurate description for the scaling law for the

lower bound of the confined Pincus regime, collapsing data in both strong confinement

and weak confinement. While it is possible to make a quantitative analysis similar to

what we did for Fig. 5.2, the arbitrariness of using 90% of the fractional extension given

by Eq. 5.1 to define the onset of the Pincus regime makes any further quantitative

analysis less insightful.

5.4.2 Stronger Forces

While our primary goal is to test the scaling theory for the confined Pincus regime [114],

establishing the upper boundaries for this regime requires simulating chains at higher

forces. As such, our simulations also provide insights into chain stretching beyond the

confined Pincus regime. In particular, we already see in Fig. 5.2 that the data for strong

and weak confinement differ qualitatively after exiting the confined Pincus regime. As

a result, we consider these two cases separately.

Figure 5.6 shows the strong confinement behavior for an asymptotically long chain

with properties similar to DNA. After exiting the confined Pincus regime, the force-

extension data for the real chain is almost identical to simulation data obtained from

companion simulations of a confined ideal chain, where the intra-chain excluded volume

was turned off. After the end of the confined Pincus regime, the fractional extension

of the real chain and ideal chain are indistinguishable. Moreover, we found that the

two-dimensional Marko-Siggia interpolation formula,

flp,∥

kBT
=

3

4
z +

1

8(1 − z)2
−

1

8
, (5.9)

is a reasonably good approximation for the extension at high forces.

The behavior at strong forces in weak confinement is qualitatively different than

that in strong confinement. Figure 5.7 illustrates this point using a relatively flexible
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Figure 5.6: Plot of the fractional extension versus the rescaled force for strong confine-
ment for lp/w = 10.5 and H/w = 4. The solid black line is Eq. 5.9. The shaded area
shows the confined Pincus regime.

chain in a very wide slit. For weak forces, we see the confined Pincus scaling law in

Eq. 5.1. At very small forces there is a deviation from the confined Pincus scaling

towards an apparently larger exponent. This is not a deviation from confined Pincus

behavior, but rather a finite length effect. For such small forces and large slits, extremely

long chains of O(105) beads are needed in order to enter the confined Pincus regime,

exceeding our computational resources. At the highest forces, we see that (i) the real

chain and ideal chain data are again indistinguishable but (ii) now the extension data

in weak confinement agree well with the Marko-Siggia interpolation formula in three

dimensions,
flp,∥

kBT
= z +

1

4(1 − z)2
−

1

4
. (5.10)

Comparing the high-force data in Fig. 5.6 to those in Fig. 5.7, it appears that the

three-dimensional Marko-Siggia formula in Eq. 5.10 does a better job modeling the data
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Figure 5.7: Plot of the fractional extension versus rescaled force for weak confinement
for lp/w = 5.5 and H/w = 99. The solid black line is Eq. 5.10 and the dashed black
line is Eq. 5.11. The shaded area shows the confined Pincus regime. A similar plot for
lp/w = 5.5 and H/w = 49 is included (see Appendix B) to further support the confined
Pincus regime scaling.

for weak confinement than the two-dimensional Marko-Siggia formula in Eq. 5.9 does

for strong confinement. The reason lies in the nature of the confinement when the chain

is almost completely stretched in the direction of the force. In weak confinement, the

highly stretched chain is effectively unconfined. While those configurations that are

near the wall may experience some residual effects of confinement, most configurations

are not near the wall and thus deflect about the axis of the force in exactly the same

way as in the absence of confinement. In contrast, the chain in strong confinement is

not literally confined to a plane. Rather, long-wavelength deflections are cut-off by the

walls [122]. As a result, the Marko-Siggia formula for 2D confinement overestimates the

stretching since it assumes no deflections out of the plane. If we relax our approximation

lp,∥ = 2lp for strong confinement and use a more realistic value, the agreement between
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the Marko-Siggia formula for 2D and the simulation data is improved. A plot showing

how the result is affected by using a lp,∥ as a function of H is provided (see Appendix B).

In contrast to the strong confinement case, there appears to be a second power law

with scaling z ∼ f2/3, which is consistent with the Pincus regime in free solution [101].

However, the range of forces over which z ∼ f2/3 is rather narrow. To demonstrate that

the region z ∼ f2/3 in Fig. 5.7 is indeed the same as the free-solution Pincus behavior,

we developed two additional pieces of evidence. The first supporting data are already

in Fig. 5.7. In Chapter 4 [168], we developed an interpolation formula

flp,∥

kBT
=

z1.5

0.21(w/lp,∥)
1/2

+ (2/3)z1/2
+

1

4(1 − z)2
−

1

4
−
z

2
(5.11)

for the force-extension of wormlike chains in free solution. This “EV-WLC” interpola-

tion formula captures both the free-solution Pincus regime, which arises from excluded

volume, as well as the ideal wormlike chain behavior described by the Marko-Siggia

interpolation formula in Eq. 5.10. As we can see in Fig. 5.7, the EV-WLC interpolation

formula provides a very good description of the force-extension behavior once the Pincus

blobs are smaller than the slit height.

Figure 5.8 provides the second piece of evidence. Recall that the Pincus theory in

free solution [101,168] has the force-extension behavior

z ≅ (
flp

kBT
)

2/3

(
w

lp
)

1/3

(5.12)

and ends at a maximum force

fPincusmax ≅ kBT (
w

lp
2
) , (5.13)

corresponding to the point where the chain inside a free-solution Pincus blob no longer

makes a self-avoiding random walk. The rescaled axes in Fig. 5.8(a) show an approxi-

mate collapse of the data using the scaling in Eq. 5.12. We would not expect a perfect

collapse of the data to Eq. 5.12 since there is still a residual effect due to the walls that

gradually decreases as the force increases. Nevertheless, the overall collapse of the data

supports our claim that the dominant contribution to the force-extension is the physics
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of the Pincus regime in the absence of confinement. For clarity, we have also replotted

data from Fig. 5.2(d) in Fig. 5.8(b) using the same rescaling of the force as Fig. 5.8(a).

We see that the collapse of the data to the confined Pincus regime in Fig. 5.8(b) starts

to fail at the same forces that the collapse of the data to the free solution Pincus theory

in Fig. 5.8(a) begins to succeed.

The narrowness of the region where z ∼ f2/3 reflects the challenge in simulating this

regime, rather than a failure of the scaling theory. For an unconfined chain, we were

able simulate a decade of forces where z ∼ f2/3 [168]. For a confined chain, the range of

forces where z ∼ f2/3 is bounded by

kBT

H
< f < kBT (

w

lp
2
) . (5.14)

In principle, we could extend the range of forces where z ∼ f2/3 to lower forces by

increasing the slit height H. However, reaching the long chain limit becomes increasingly

more difficult as H increases.

Overall, Fig. 5.7 and Fig. 5.8 support a model of the force-extension in weak con-

finement with a transition between a confined Pincus regime to a free-solution Pincus

regime. In other words, the chain remains in a Pincus regime all the way until it

reaches ideal chain behavior, but when H is smaller than the tension blob size the two-

dimensional Pincus blobs no longer exist. However, inside each of the blobs, there is

still enough contour length to form a self-avoiding random walk [89]. As a result, once

the force exceeds fweakmax , the effect of confinement is minimal and the chain now forms

three-dimensional Pincus blobs.

5.4.3 Phase Diagrams for Stretching in Slit Confinement

The overall results of our simulations and analysis of the scaling laws are summarized

by the phase diagrams in Fig. 5.9. For short chains, L < lp, there should be a rather

uninteresting rod-like regime that we have not explored here. The physics of strong

confinement of these short, rod-like chains is already relatively complicated [110] without

considering the additional complexity of the applied force. In weak confinement, the

rod-like regime is trivial since it is essentially unconfined. In either case, at a qualitative

level, we would expect the main effect of the applied force is to rotate the rod into the



89

direction of the force, with the stretching becoming a smaller effect than is the case for

long chains.

Outside of the rod-like regime, both strong and weak confinement have a regime

of weak stretching for short chains and weak forces [114]. This is effectively a linear-

response (Hookean) regime in confinement, analogous with the same regime for stretch-

ing of wormlike chains in free solution [92]. We have not provided any data to support the

existence of this regime because it is very challenging to obtain accurate measurements

of z due to its small value and large fluctuations. Figure 5.5 shows that, independent

of the type of confinement, there is a transition into a confined Pincus regime with

increasing molecular weight that is given by the scaling result in Eq. 5.2. For weak

confinement, the confined Pincus regime is connected to a free-solution Pincus regime

once the force exceeds fweakmax . Further increasing the force beyond fPincusmax produces ideal

chain behavior. Since the free-solution Pincus regime is rather narrow for our simula-

tions, we simply denote this region of the phase diagram as a “free-solution” regime to

emphasize the ability to model the stretching of the confined chain with the EV-WLC

interpolation formula [168]. We do not observe a free-solution Pincus regime in strong

confinement because the Pincus blobs in the plane are removed by the force before they

no longer fit inside the slit. At the largest forces, independent of the regime of confine-

ment, there is an ideal chain regime where the force-extension behavior is very similar

to that in free solution. The value of the slit height determines the boundary between a

free-solution or ideal regime and the confined Pincus regime. When the chain is weakly

confined, i.e., when lp
2/w <H, the boundary is determined by Eq. 5.3. When the chain

is strongly confined, i.e., when lp
2/w >H, the boundary is determined by Eq. 5.5.

While we have not provided any supporting data, it is reasonable to assume that the

weak stretching regime is directly connected to ideal chain behavior for short (but not

yet rod-like) chains. Such chains are effectively ideal over the entire range of force and

their force-extension is presumably well described by existing models for the stretching

of ideal chains in slits [115,122].
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Figure 5.8: Rescaled force-extension data for weak confinement to demonstrate collapse
of the data to the theory for the Pincus regime in (a) free solution and (b) confinement.
Yellow symbols are simulation data in confined-Pincus regime with kBT /f > H; pink
symbols are simulation data in free-Pincus regime with kBT /f <H and kBT /f > lp

2/w;
green symbols are in ideal chain regime with kBT /f < lp

2/w. Triangle: lp/w = 5.5,
H/w = 49; inverted triangle: lp/w = 5.5, H/w = 99; diamond: lp/w = 10.5, H/w = 149;
pentagon: lp/w = 15.5, H/w = 299.
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Figure 5.9: Phase diagrams for force-extension of wormlike chains in slit confinement.
(a) Weak confinement for a slit height H/w = 99 and lp/w = 5.5. The boundary between
the weakly stretched regime and other regimes is given by Eq. 5.2. The boundary
between the confined Pincus regime and the free-solution regime is given by Eq. 5.3.
The stretching in the free solution regime is approximated by Eq. 5.11, which includes
both free-solution Pincus behavior and ideal-chain behavior. (b) Strong confinement
for a slit height H/w = 4 and lp/w = 10.5. The boundary between the weakly stretched
regime and other regimes is given by Eq. 5.2. The boundary between the confined
Pincus regime and the ideal regime is given by Eq. 5.5. The stretching in the ideal
regime is approximated by Eq. 5.9.
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5.4.4 Applications to DNA

Thus far we have focused on asymptotically long chains, with the aim of testing the

existence and scaling theory for the confined Pincus regime. While these situations are

of most interest from the standpoint of polymer theory, many experimental scenarios

using DNA involve shorter chains. We thus simulated λ DNA (48.5 kilobase pairs)

and T4 DNA (169 kilobase pairs) as model systems for DNA experiments. Note that

these particular sequences of DNA are commonly used in the literature due to their

ready commercial availability in purified forms, but there is no intrinsic reason why

longer DNA cannot be used for experiments. Indeed, the pioneering experiments on

nanochannel confinement [170] used λ-DNA concatemers up to 12-λ (582 kilobase pairs),

and entire chromosomes were used in subsequent channel confinement experiments [171,

172]. For our DNA model, we use an effective width w = 5 nm [80] based on Stigter’s

theory [173] for a high ionic strength buffer, with λ-DNA corresponding to a chain of

N = 3361 beads (16.8 µm length) and T4 DNA corresponding to a chain of N = 11971

beads (59.85 µm length). We set the persistence length to lp = 52.5 nm, which is a

reasonable value at high ionic strength [82, 148]. The actual channel width is Hwall =

25 nm, slightly larger than the lower bound using standard fabrication methods [174],

which leads to an accessible width of H = 20 nm.

Figure 5.10 shows the simulated fractional extension for both DNA molecules as

a function of the force. As anticipated from our previous results, a confined Pincus

regime exists in both cases for weak forces. However, the span of this regime is narrow

for λ DNA (Fig. 5.10(a)), with much of the low force data corresponding to the weak

stretching regime arising from its finite molecular weight. As the molecular weight

increases (Fig. 5.10(b)), the range of forces corresponding to the confined Pincus regime

increases.

5.5 Discussion

The key objective of this chapter was to test the scaling theory by Taloni et al. [114]

for the confined Pincus regime. Our data support their theory for the scaling of the

force-extension in Eq. 5.1, the lower bound in molecular weight in Eq. 5.2, and the

upper bound for weak confinement in Eq. 5.3. The key difference between our results
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and their scaling theory [114] emerges for strong confinement, where the data support

the crossover given by Eq. 5.5 rather than the result in Eq. 5.3 proposed by Taloni et

al. [114]. The reason for this discrepancy is that the Pincus regime can end when the

Pincus blobs no longer fit inside the slit (which is the case for weak confinement) or

when the subchain within the Pincus blob is no longer a self-avoiding walk (which is

the case for strong confinement).

Taloni et al. [114] also proposed a scaling theory to describe the force-extension

behavior for stronger forces in slit confinement. The key idea in their theory for stronger

forces is an analogy between stretching imposed by the external force and stretching

imposed by compression in a nanochannel. Once the confined Pincus regime ends,

their theory proposes that the extension of the chain in a force becomes the same as

the extension of the chain in an effective channel set by the size of the tension blobs.

Our simulation data do not support this theory for higher forces, consistent with prior

work identifying the differences between stretching in free solution and compression in a

nanochannel when the force exceeds the Pincus regime in free solution [100]. Rather, the

data in Fig. 5.6 and Fig. 5.7 support a model where the force-extension is essentially the

same as that in the absence of confinement. Importantly, we identified a free-solution

Pincus regime over small range of forces (Fig. 5.7) that cannot emerge from an analogy

between stretching and nanochannel confinement.

Our force-extension simulation results for stretching in strong confinement extends

the previous work by Hsu and Binder [121], who used PERM simulations to study self-

avoiding, semiflexible chains on a square lattice. Similar to our results for the confined

Pincus regime, they found sensible excluded volume interactions under a weak stretching

force when the chain is restricted to the plane. Indeed, they found that the resulting

two-dimensional Pincus blobs have a force-extension behavior

z ∼ (
flp,∥

kBT
)

1/3

, (5.15)

which has the same scaling with the applied force as Eq. 5.2. The difference between

their two-dimensional study and our results for strong confinement is that we allow the

fluctuations in the direction perpendicular to the slit walls, which requires accounting

for the slit height H relative to the size of the excluded volume interactions, w.
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Our results have important implications for previous work on modeling the stretch-

ing of wormlike chains in slit confinement. In a recent publication, de Haan and Schen-

druk [122] proposed several interpolation formulas for the stretching of ideal wormlike

chains in confinement. Our results indicate that their model is not applicable to real

polymers under weak forces, as their interpolation in this regime is based on Kraky-

Porod model [102], which describes the polymer as an entropic spring with no interac-

tions between non-neighboring monomers. As illustrated in Fig. 5.6 and Fig. 5.7, the

correct description at weak forces for real chains is the confined Pincus theory [114].

Moreover, as the force increases, the correct description for stretching of real chains

in weak confinement is a free-solution Pincus behavior that also cannot arise from an

ideal chain theory. A qualitative difference between our model for real chains and their

model for ideal chains is that the stretching of ideal chains can be described by a sin-

gle interpolation formula that spans all slit heights, from strong confinement to weak

confinement [122]. In contrast, our phase diagrams for real chains in Fig. 5.9 show

that an additional free-solution Pincus regime arises in weak confinement, rendering it

qualitatively different than strong confinement.

Our model also differs qualitatively from that proposed by Chen et al. [115], who

addressed this problem using Brownian dynamics simulations of a bead-spring polymer

model with repulsive interactions between the beads. The latter confined polymer model

is most appropriate for weak confinement, where the presence of the walls does not

substantially alter the conformational entropy of the subchain that gives rise to the the

spring force. Their model for the force-extension behavior in weak confinement is a

modification of the three-dimensional Marko-Siggia interpolation formula in Eq. 5.10 to

account for a finite extension z0 at zero force caused by the excluded volume interactions,

flp,∥

kBT
=

1

4
[

1

(1 − z)2
−

1

(1 − z0)2
] + (z − z0). (5.16)

Although they include the excluded volume interactions qualitatively in the model, they

found that this interpolation works better for larger force (flp,∥/kBT > 1). Our results

explain the discrepancy between Eq. 5.16 and their simulation data, as well as the good

agreement between their simulation data and Eq. 5.16 at higher forces [115]. For weak

forces, Eq. 5.16 does not reduce to the confined Pincus scaling in Eq. 5.1, which we
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now know is the correct description for real wormlike chains under a weak stretching

force. Thus, it is unsurprising that Eq. 5.16 is not accurate for weak forces. For strong

forces, we found that the original three-dimensional Marko-Siggia interpolation formula

given by Eq. 5.10 is a good model for the stretching. Since z0 is small, it is readily

apparent that Eq. 5.16 approaches the three-dimensional Marko-Siggia formula in the

high force limit. Thus, it is reasonable that Eq. 5.16 is a good approximation to the

force-extension behavior in weak confinement under strong forces.

While we have achieved good agreement between simulation and scaling theory, it

is challenging to verify the scaling theory for weak extension experimentally. To date,

most experiments have focused on the strong stretching regime. For example, Yeh

et al. [117] have probed the force-extension relation of a single molecule confined in

a nanoslit. In their experimental system, two symmetric micro-nano interfaces were

connected by a nanoslit. The conformational entropy difference between the portion

of polymer chain confined in the nanoslit and the portion in the reserviors induces an

entropic force, which stretches the DNA segment inside the nanoslit. However, their

experimental setup is only capable of studying strong forces with strong confinement,

since the chain is sensitive to elastic retraction and thus recoils from the nanoslit into

the reserviors. Another experimental possibility is the system of Lin et al. [175], where

one end of λ-DNA is tethered and the other is attached to a magnetic bead. They

measured the elastic response of the portion of stretched DNA that is confined through

a slit between two reservoirs.

While these experiments dealt with strong stretching (z > 0.5), after we published our

result, Yeh et al. [71] further studied the force-extension relation for a wide range of the

extension by applying external electric fields to stretch DNA tethered to microspheres

anchored at a nanoslit entrance. Excitingly, this experiment validates our theoretical

prediction, particularly the “confined Pincus” regime in slit confinement.

5.6 Concluding Remarks

Through a combination of scaling theory [114] and simulations, we have constructed a

phase diagram for the stretching of semiflexible polymers confined in nanoslits with a

slit height H. Most notably, our results demonstrate strong evidence in support of a
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confined Pincus regime in all ranges of confinement, as well as a free-solution Pincus

regime in weak confinement. The latter additional regime points towards a qualitative

difference between stretching in the Odijk and de Gennes regimes of confinement. To

a large extent, the results confirm the scaling theory by Taloni et al. [114] for the

confined Pincus regime, with the exception of the maximum force for the confined

Pincus regime under strong confinement. Our results have also clarified shortcomings

in existing models for the stretching of wormlike chains in slits [114,115,122], including

(i) showing that the inapplicability of the compression-stretching analogy under strong

forces in free solution [100] is also valid in confinement [114]; (ii) demonstrating the

inability of ideal chain models to capture the force-extension behavior of real polymers

under weak forces [122], similar to the case in free solution; and (iii) showing that

existing interpolation formulas [115, 122], which do not account for any of the Pincus

regimes in Fig. 5.9, cannot capture the force-extension behavior in slit confinement.

While we focused on the confined Pincus regime for long chains (corresponding to DNA

with contour lengths from 45 µm to 360 µm), we still see the evidence of confined

Pincus regime at relatively low forces for λ DNA and T4 DNA. However, when the

force decreases further, the force-extension behavior quickly goes to the weakly stretched

regime, due to the finite chain length. Although it may be challenging to experimentally

test the phase diagrams in Fig. 5.9, we anticipate that such a complete description of

the force-extension of real wormlike chains will prove useful for both the interpretation

of experimental data and the design of new technologies.



97

Figure 5.10: Plot of the fractional extension versus rescaled force for lp/w = 10.5 and
H/w = 4 where (a) corresponds to λ DNA (N = 3361 beads) and (b) corresponds to T4
DNA (N = 11971 beads). The solid black line is Eq. 5.9. The shaded area shows the
confined Pincus regime.



Chapter 6

Rapid Conformational

Fluctuations in a Model of

Methylcellulose

This chapter is based on the publication

X. Li, F. S. Bates, and K. D. Dorfman, “Rapid conformational fluctuations in a model

of methylcellulose”

Phys. Rev. Mat., vol. 1, no. 2, p. 025604, 2017 [176]

6.1 Introduction

As mentioned in Section 1.2, methylcellulose (MC) is an important class of biopolymers

investigated extensively to develop materials with innovative physico-chemical prop-

erties. Depending on the degree of substitution, MC in water can form a hydrogel

upon heating. Recent experimental studies [45,46] on the gel structure reveal a fibrillar

morphology with a uniform diameter. Fibril formation cannot be explained solely by

established equilibrium concepts such as Flory-Huggins solution theory [67, 68], thus

requiring a new model. From a computational standpoint, this is not an easy problem

since the fibrils have a relatively large axial extent (∼ µm), but the chemical details

of the polysaccharide units must be included in order to capture the intramolecular

98
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interactions leading to fibril formation.

Several computational studies have been conducted to study the gelation mechanism

and have been reviewed in Section 2.4. Although these computational studies [1,

69] provide a plausible model for fibril formation in dilute solution, they leave open

two important questions that we address here. First, other collapsed states, such as

hairpins and folded bundles, could appear as long-lived intermediate states, or even

final (metastable) states [1]. How these “misfolded” collapsed states are removed and

how to prevent these misfolded states from propagating through fibril formation are

unanswered questions. Second, although atomistic simulations suggest [1, 130] that

the hydrophobic interaction, i.e., the non-bonded self-attraction, is the major driving

force for MC gelation, the coarse-grained MC model was parameterized from atomistic

simulations of 10-mer oligomers. The dihedral potential obtained from this mapping

involves four successive monomers, and it is not obvious that the potential obtained from

mapping 10-mers will translate to longer chains. Thus, it is important to investigate the

sensitivity of the dihedral potential before drawing conclusions regarding MC gelation,

as it competes with the non-bonded interactions that drive the formation of collapsed

structure.

We show here that significant insights into the gelation mechanism can be obtained

through long-time simulations of single MC chains and a model problem of ring as-

sociation, taking advantage of the model proposed by Huang et al. [1]. In particular,

we identify a previously overlooked, rapid conformational fluctuation produced by the

dihedral potential that we posit is important for both escaping misfolded states and

guiding fibril formation for multiple chain simulation. We also study the effects on the

dihedral potential on the frequency of this rapid conformational change and shape of the

collapsed states, demonstrating that the fluctuations in the collapsed state are governed

by the balance between the dihedral potential and non-bonded interactions. While this

coarse-grained model appears to capture many of the features of the collapse of a sin-

gle methylcellulose chain, we show that several important features for methylcellulose

gelation remain unanswered and suggest directions for further model improvements.
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6.2 Model and Simulation Method

6.2.1 Coarse-grained Model of Methylcellulose

The model and the simulation method are described in detail by Huang et al. [1]. For

completeness, we outline the key details here and recapitulate the various model param-

eters in Appendix C. In the simulations described throughout this work, MC is modeled

as a heterogenous polymer with all eight types of monomers, i.e., cellulose monomer, 2-

MC, 3-MC, 6-MC, 2,3-MC, 2,6-MC, 3,6-MC and 2,3,6-MC. The order of the monomers

was generated randomly and the composition profile was chosen to match the mole

fraction of the commercial polymer METHOCEL A [43], as tabulated in Appendix C.

Each bead in the coarse-grained (CG) model represents one monomer. The bead-bead

interaction potential,

U = Ubond +Uangle +Udihedral +Unonbonded (6.1)

contains four parts: harmonic bond, angle, dihedral interactions, and nonbonded po-

tentials. The first three potentials are of bonded types and expressed as

Ubond =
1

2
Kb(l − l0)

2 (6.2)

Uangle =
1

2
Kθ(θ − θ0)

2 (6.3)

and

Udihedral =Kd[1 + d cos(nφ)] (6.4)

Here Kb, Kθ and Kd are the bond, angle and dihedral force constants, respectively, l0

is the equilibrium bond length, and θ0 is the equilibrium bending angle. In Eq. 6.4,

d and n are the phase constants. Huang et al. [1] performed atomistic simulations of

10-mer homogenous MC oligomers and determined the bonded parameters for the CG

model by mapping the radial distribution functions (RDF) from the atomistic model to

their CG counterparts. Although there are 8 different homopolymers, the intramolec-

ular atomistic RDFs are similar among all monomer types. We thus use the same set

of the bonded parameters for all monomers, and the parameters are summarized in
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Appendix C. In what follows, we will be particularly interested in Kd, which controls

the dihedral strength for four consecutive beads on a chain.

The nonbonded interactions have the form of a truncated and shifted Lennard-Jones

(LJ) 9-6 potential,

Unonbonded =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

εij

⎡
⎢
⎢
⎢
⎢
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(
σij

r
)
9

− (
σij

r
)
6

− (
σij

rcij
)

9

+ (
σij

rcij
)

6⎤
⎥
⎥
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⎥
⎦

r < rcij

0 r ≥ rcij

(6.5)

where i and j denote two types of MC monomers. The intermolecular nonbonded inter-

action parameters among the same type of monomers, i.e., σii, rcii and εii, were obtained

again by Huang et al. [1] by matching the atomistic simulation of short homogenous

oligomers to the CG models. The bead size and cut-off radius, σ and rc, depend on the

type of monomers and the ambient temperature, while ε is also an explicit function of

contour length. Note that the “effective temperature” is captured by the nonbonded

parameters rather than being an explicit function of temperature in the CG simulation.

We have tabulated the nonbonded parameters in Appendix C for a representitive low

temperature (25 ○C) and a representitive high temperature (50 ○C). At 25 ○C, MC is

soluble in water, while gelation can occur at 50 ○C [177]. For the nonbonded interactions

between different types of monomers, we used a geometric mixing rule to calculate the

σij , εij and rcij in the heterogenous MC chains. The mixing rules are also included for

completeness in Appendix C.

6.2.2 Simulation Method

Following prior work [1], we simulated this coarse-grained model using Langevin dy-

namics with the velocity-Verlet intergrator in the LAMMPS package [3] (ver. Jun 2014)

in the NVE ensemble. Simulations were set up using LJ units with three fundamental

scales: m for unit mass, σ for unit distance, and ε for unit energy. We chose the unit

mass to be the average molecular weight of all 8 different types of MC monomers, 188

Da. Although different types of monomers have different mass depending on how many

hydroxy groups are substituted, the additional complications introduced by account-

ing for small changes in mass are not consequential within a coarse-grained, Langevin



102

dynamics simulation. We set the unit length to be 0.515 nm, which is the simulated av-

eraged center-of-mass separation of monomers from previous atomistic simulations [1].

The unit energy, ε is set to be kBT with kB being the Boltzmann factor and T = 298

K. We ran our simulations using a Langevin thermostat at the unit temperature, and

the “effective temperature” is captured by the self-attraction force field between MC

monomers as described above. A summary of all the dimensionless parameters and their

corresponding dimensional parameters are tabulated in Appendix C.

In addition to these three fundamental quantities, the damping parameter in the

Langevin dynamics algorithm plays an important role in determining the relationship

between simulation time scale and real time scale. Although the unit time is not a

fundamental unit and can be expressed as τ = (mσ2/ε)1/2, its dimensional counterpart

can not be calculated directly from the dimensional value of m, σ and ε because they

contain no information about the solvent. Thus, the damping parameter is specified in

time units and is regarded as inversely related to solvent viscosity. We set the damping

parameter to be 10τ , leading to the estimate τ = 0.028 ns. This value was reported by

Huang et al. [1] and we confirmed it by measuring diffusion coefficients in our simulations

at T = 25 ○C.

Unless otherwise specified, we initiated our simulations with random sequences for

heterogeneous MC. We simulated 1000-mer MC chains with periodic boundary condi-

tions and a box size length of 600σ. The simulation results reported for each value of

Kd include at least three independent trajectories. To study the collapse of the chain

above the gelation temperature, the MC chain is first equilibrated at low temperature

(25 ○C) for 107 steps at a time step of 5 × 10−4τ , and an instantaneous temperature

jump is introduced by switching the nonbonded parameters from 25 ○C to 50 ○C. Then

the simulation proceeds for at least 5 × 107 steps with time step of 5 × 10−4τ .

6.2.3 Data Analysis

We study the rapid conformational fluctuations by monitoring the shape of the MC

chain, and we will call this rapid change a “flipping event,” which we discuss later in

more detail. Specifically, three quantities are used for structural characterization: the

eigenvalues of the gyration tensor λ, the radius of gyration Rg, and the relative shape

anisotropy κ2.
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The gyration tensor quantifies the second moments of monomer positions on a poly-

mer chain,

Smn ≡
1

N

N

∑
i=1

r(i)m r(i)n (6.6)

where r
(i)
m is the mth Cartesian coordinate of the position of the ith monomer. The

coordinate system has been chosen so that the center of mass lies at the origin. Since

the gyration tensor is a symmetric 3×3 matrix, diagonalization produces the principal

moments of the gyration tensor, i.e., the squared eigenvalues. The eigenvalues are

ordered such that λx
2 ≤ λy

2 ≤ λz
2. The eigenvalues of the gyration tensor measure the

extensions in the principle axis system, thus give the dimensions of an object.

The principal moments can be combined to give two scalar quantities that describe

the shape of the polymer conformation, thereby enabling us to locate the flipping events

without the need to consider the detailed configurations of the chain. The squared radius

of gyration is the sum of the principle moments of the gyration tensor,

Rg
2
= λx

2
+ λy

2
+ λz

2. (6.7)

We found that ∆Rg/Rg, i.e., the relative difference of radius of gyration between two

time frames, is a useful proxy for capturing the conformational change. We chose the

time difference for computing ∆Rg to be 105 steps, or 50τ . A peak of ∆Rg/Rg signals a

sudden conformational change in the polymer size, and thus a potential flipping event.

We set the threshold of a flipping event to be ∆Rg/Rg ≥ 0.1 to screen out typical changes

in Rg due to thermal fluctuations, and we also cluster peaks within 50τ to be a single

flipping event in order to avoid overcounting large conformational changes immediately

following a flipping event that result from the instability of the relatively open chain

configuration.

Finally, the relative shape anisotropy [178,179] is defined as

κ2 = 1 − 3
λ2xλ

2
y + λ

2
xλ

2
z + λ

2
yλ

2
z

(λx
2 + λy

2 + λz
2)

2
. (6.8)

This shape descriptor reflects both the symmetry and dimensionality of a polymer con-

formation; the minimal value κ2 = 0 indicates a highly symmetric conformation while
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Figure 6.1: Snapshots of a flipping event of a 1000-mer MC chain at 50 ○C. The time
lag between each snapshot is 7 ns, corresponding to 250 τ .

the maximal value κ2 = 1 indicates all beads lying on a line. For a planar symmetric

structure, for example a ring conformation, κ2 is around 1/4 [180].

6.3 Single Chain Results

6.3.1 Flipping Events in an Isolated MC Chain

We first simulated an isolated MC chain with N = 1000 at 50 ○C, where the self-

interactions between MC monomers are strong enough to form collapsed structures in

the model of Huang et al. [1] It has been shown by simulation [1, 69] that, at elevated

temperatures, a single MC chain with 600 monomers or more can form a ring structure.

We confirmed this result in our simulations.

Interestingly, we observed that after the chain forms a collapsed structure, large

conformation changes can happen within a short period of time that do not correspond

to the expected breathing modes of a ring. Figure 6.1 shows a typical flipping event in

a single 1000-mer MC chain. The total simulation time is 3.4×104τ , which corresponds

to 952 ns. We started the high temperature simulation with an initial configuration

generated from a room temperature simulation, as described in the Methods. Because

at low temperature the self-attraction is insufficient to collapse the chain, the MC chain

is initially a random coil. At t = 0, we elevated the temperature and found that the
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conformation of the MC chain first becomes a collapsed structure at t = 280 ns, consistent

with previous work [1,69], and undergoes the small shape fluctuations one would expect

for a collapsed ring. However, at t = 592 ns, as shown in the first snapshot of Fig. 6.1,

the chain adopts a bifocal structure. Within the next 7 ns, the chain goes through

a huge conformational change with the whole collapsed structured disturbed. Owing

to the self-attraction forces, this loose structure is not stable. After another 7 ns, the

chain collapsed back into another relatively tight structure, thus converting from one

collapsed conformation to another. We have included the rotating views of the three

representative snapshots in Appendix C. The dynamics in this particular example are

not a special case; flipping happens quite often throughout the course of simulation.

We posit that flipping events are of great importance because they impart an ability to

alter rapidly the collapsed structures, which are regarded as local energy minima and

represent metastable states.

If we assume that a sudden change of the conformation indicates a flipping event,

we can identify the flipping events by monitoring the changes of radius of gyration.

Figure 6.2 shows how Rg and ∆Rg/Rg evolve with respect to simulation time for three

independent trajectories with N = 1000 at 50 ○C. Although different trajectories differ

in their details, as expected from a stochastic simulation, the overall trends indicate

that the chain size and flipping frequencies are robust to the initial conditions and the

thermal noise. At the start of the simulation, Rg is relatively high because the MC

chain begins in a coiled state. As simulation proceeds, Rg decreases due to the collapse

of the MC chain, and reaches a plateau at t ∼ 1×104τ . The average value of the plateau

for Rg is around 6 nm. After this time, Rg stays in a small range with typical thermal

fluctuations. At a few time points, Rg goes through a sudden change, indicating the

flipping events. These fluctuations are challenging to identify from Rg alone, so the

lower plot of Fig. 6.2 shows ∆Rg/Rg with respect to time. This plot clearly shows the

location of sudden change of the chain conformation, readily distinguishing the flipping

events from more subtle thermal fluctuations. To automate the identification of flipping

events, we set the threshold of a flipping event to be above ∆Rg/Rg = 0.1.

Of particular interest are the kinetics of the flipping events. We calculated the time

interval between two flipping events by subtracting the time of a flipping event from its
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Figure 6.2: Radius of gyration and the relative difference of Rg for a 1000-mer MC
chain as a function of simulation time. Upper: Rg versus time for three independent
trajectories with 1000 monomers. The three trajectories are of total duration 3.16×104τ ,
3.475× 104τ and 5× 104τ . Before t = 0 the chain was equilibrated at room temperature.
At t = 0 the temperature was elevated to 50 ○C. Bottom: ∆Rg/Rg versus time for the
same three trajectories. An offset of 0.5 on y-axis for each trajectory has been made
for clarity. A total of 14, 18 and 25 flipping events are identified for top to bottom
trajectories, respectively.

successor,

∆tn = tn+1 − tn. (6.9)

Figure 6.3 shows a histogram of the resulting time interval distribution. Along with the

three trajectories in Fig. 6.2, we added two more trajectories to improve the sampling.

The median of the time interval distribution is 950τ . Compared to a typical flipping

time duration of 250τ , as shown in Fig. 6.1, the flipping event happens quite often and

thus is able to alter the chain conformation within a short period of time.
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Figure 6.3: Histogram of the time between two flipping events for 1000-mer MC chain
at 50 ○C. The data correspond to a total 65 flipping events obtained from 5 independent
trajectories.
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Figure 6.4: (a) Two-panel plot of the shape anisotropy κ2 and the individual eigenvalues
of the gyration tensor λi versus time for a 1000-mer MC chain. The temperature jumps
from 25 ○C to 50 ○C at the time t = 0 (not indicated in the figure). The (red) dots
indicate flipping events. (b) Snapshots at (i) 731 ns, (ii) 889 ns and (iii) 1054 ns, which
correspond to 2.61 × 104τ , 3.18 × 104τ and 3.77 × 104τ , respectively. The corresponding
time points in panel (a) are indicated by the dashed vertical lines.
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We found that the eigenvalues of the gyration tensor (λx, λy, λz) and the relative

shape anisotropy (κ2) are particularly insightful for characterizing the chain configu-

rations before and after flipping events. In Fig. 6.4(a), we plot part of one trajectory

with N = 1000 for an isolated MC chain at 50 ○C. Similar plots for other trajectories are

included in Appendix C. We also show three representative conformation snapshots in

Fig. 6.4(b). During much of the simulation, the shape anisotropy is around 0.25, which

indicates a planar symmetric structure. However, we see fluctuations throughout much

of the range of κ2, ranging from 0.1 and 0.85, indicating other shapes. In the three

representative conformations in Fig. 6.4(b), the first is of a misfolded bifocal structure

with some loose “arms.” Because this structure is not stable, and in the process of

re-orientating itself, the corresponding value of κ2 is part of a large fluctuation at the

time indicated by (i) in Fig. 6.4(a). After several flipping events, the chain conformation

adopts a highly anisotropic bundled structure with a relatively high value of κ2 ≈ 0.8.

The last structure shows a return to a ring shape with κ2 close to 0.25, indicating a

planar symmetric structure. Thus κ2 is very helpful in discriminating shapes between

bundled and planar configurations, the two most common collapsed structures observed

in our simulations.

However, κ2 does not discriminate between cases (i) and (iii) in Fig. 6.4, i.e., between

planar symmetric structures with different shapes. Thus, it is useful to consider also

the eigenvalues of the associated gyration tensor, which measure the extension in the

principle axis system. Some small fluctuations, as well as large jumps, are also observed

Fig. 6.4(a) for the individual eigenvalues. We observed that for the third structure,

corresponding to the desired ring structure, λy and λz are almost identical. These two

eigenvalues indicate the outer diameter of the axisymmetric ring conformation, while

the smaller eigenvalue λx indicates the thickness of the ring. The eigenvalues around

(i) are fluctuating substantially, consistent with our discussion of the shape anisotropy.

The eigenvalues for (i) are also very different from those for (iii), and this difference

allows us to identify the two structures. For (ii), we just have one large eigenvalue (λz)

and two smaller eigenvalues (λx and λy), indicating a bundled structure. Thus, κ2 and

eigenvalues of the gyration tensor are complementary indicators that together describe

the highly structured conformations of the MC chain.

To further explore the effects of the flipping event on the shape of the collapsed
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Figure 6.5: Ternary plot of the rescaled eigenvalues (λ/Rg)
2 for 1000-mer MC chains

at 50 ○C. The eigenvalues are ordered as λx ≤ λy ≤ λz and satisfy λ2x+λ
2
y+λ

2
z = R

2
g. Data

points are sampled every 50τ . The data correspond to the second half of 5 independent
trajectories to remove the effects of the initial configuration and make sure the MC
chain has already reached or visited a collapsed state. The 2006 data points are binned
with bin size of ∆(λx/Rg)

2 = 0.01 and ∆(λy/Rg)
2 = 0.01. The colormap shows the

probability of observing the combination of eigenvalues in a given bin. A representative
MC conformation within the highest probability bin is included.

states for an isolated MC chain, Fig. 6.5 presents a ternary plot for the eigenvalues

of the gyration tensor using the five trajectories from Fig. 6.3. The idea is to learn

how the dimensions of the conformation are distributed throughout the course of a

simulation, as well as to evaluate the likelihood of different collapsed shapes. We plot

three rescaled eigenvalues (λ/Rg)
2 in the order of λx

2 ≤ λy
2 ≤ λz

2. A striking feature

is that the most probable conformation corresponds to λx < λy ≈ λz; this indicates that

most of the simulation time is spent in a ring configuration. Also, the eigenvalues are

distributed due to the combined effects of regular thermal fluctuations, flipping events,

and the unstable conformation following the flipping events. Overall, Fig. 6.5 provides

a detailed picture of how different shapes are distributed in the course of simulation for

isolated 1000-mer MC chains at elevated temperature.
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Figure 6.6: Box plot of the time between two flipping events with respect to the strength
of the dihedral potential, Kd, at 50 ○C. The box represents the interquartile range, which
contains 50% of the values. The whiskers extend to cover 99.3% of the values. The line
across the box is the median value. Each circle shows one data point, with the ones
above the whiskers denoting outliers.

6.3.2 Effect of Dihedral Potential

The results discussed thus far were obtained using the coarse-grained MC model param-

eters proposed by Huang et al. [1] We also investigated how these results change as a

function of the parameters, and identified the dihedral potential as the most important

contributor to the flipping events. Thus, it is illuminating to understand, in a systematic

way, the role of the dihedral potential. While arbitrary choices of the dihedral potential

will no longer correspond to a coarse-grained MC chain, they allow us to understand

the sensitivity of the results to the particular value of Kd appearing in the model by

Huang et al. [1]

We first quantify the frequency of the flipping events as a function of the strength of

the dihedral potential, Kd. We chose Kd to be in the range of 0 to 3.0, with a spacing
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of 0.5. We also attempted to increase Kd further, but found that the calculations were

infeasible due to the very small simulation time step required to prevent the simulation

from crashing. For each Kd, we obtained at least three independent trajectories for at

least 2.5 × 104τ . Figure 6.6 shows a box plot of the distribution of the time interval

between flipping events as a function of Kd. Separate histograms (similar to Fig. 6.3)

for the time interval distribution for each Kd are included in Appendix C. Note that

Kd = 0 is not included here because no flipping events were detected. Figure 6.6 shows

that the median of the time between flipping decreases as Kd increases. Furthermore,

beyond Kd = 2.0, the time between flipping events reaches a plateau of around 1.0×103τ .

Overall, Fig. 6.6 clearly shows the likelihood of flipping events strongly depends on Kd.

Since flipping helps the MC chain explore different free energy minima and different

collapsed states, we can conclude that Kd is a key factor in any MC model.

To more deeply understand the effects of Kd and the flipping on the shape of the

collapsed states, we created box plots for the eigenvalues for different Kd in Fig. 6.7.

Separate histograms for the eigenvalues for each Kd are available in Appendix C. The

first thing to notice is that, similar to Fig. 6.5, the median values of the eigenvalues

follow the pattern λx < λy ≈ λz for all Kd. Thus, the polymers are dominantly in a

ring conformation, independent of Kd. There also seems to be two distinct regimes

for λx. For Kd ≤ 1.0, the median of λx decreases to slightly below 1 nm. We suspect

this is because i) the polymer stays mainly in a ring structure in this regime with few

flipping events, and ii) the outer diameter of the ring increases with Kd in this regime,

which can be observed from the increase in λy and λz. Thus the thickness of the

ring, embodied in λx, decreases. Furthermore, in this regime, the number of outliers

increases as Kd increases due to the increase of the frequency of flipping events. In

contrast, for Kd > 1.0, the aforementioned increase in the frequency of flipping events

leads to both the median and the box size of λx increasing, corresponding to an increase

in the probability of observing unstable loose conformations. Because the flipping events

happen more often, λx values that indicate loose conformations and appear as outliers

in box plots for Kd ≤ 1.0, start to blend into the middle quartiles of the distribution for

larger values of Kd. As a result, we observe a concomitant decrease of the number of

outliers for λx in the range of Kd > 1.0 in Fig. 6.7. For λy and λz, both the median and

the number of outliers increase as Kd goes up, which is also the result of the increase
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Figure 6.7: Box plots showing the eigenvalues of the gyration tensor (λx ≤ λy ≤ λz) as
a function of the dihedral potential Kd. The description of the box plots are similar to
Fig. 6.6, except here the outliers are plotted with the (red) cross symbols.

in the flipping frequency.

6.4 Implications for Fibril Assembly

Thus far, we have looked into isolated MC chains and shown how flipping events alter

the conformation of a single MC chain. However, MC forms high aspect ratio fibrils in

experiments, which involves multiple polymers. Although it is challenging to simulate

such a large system, we can launch smaller simulations and still gain insights into the

fibril formation mechanism.

We thus want to examine, in a simple system, how a flipping event can aid the
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assembly of a series of smaller rings into a larger tubular structure, even if the initial

condition is unlikely to be observed in practice. We return again to the model of Huang

et al. where Kd = 2.0. We first generate the initial ring conformation by simulating a

single 1000-mer MC chain at Kd = 2.0. Afterwards, we make four replicas and place the

resulting five rings face-to-face in series with the center-to-center distance along the axis

being 5.4 nm, as seen in the first snapshot of Fig. 6.8. We then launch the simulation

for 3 × 107 steps with a time step of 1 × 10−4τ under the same elevated temperature, 50
○C.

As the simulation proceeds, the three rings on the top form one tube, while the two

rings on the bottom form a second tube. The blue chain, which is on the top of the

first tube, then undergoes a flipping event, which allows this chain to stick out several

“arms”. Then one of the arms extended out to pass through the hollow space inside the

first tube and reached the top face of the second tube. Because the loose conformation

of the blue chain is not stable due to the self-attraction, it collapses back into the ring

structure. In the meantime it drags the second tube to attach to its tube. After this,

the unified proto-fibril relaxes into a more symmetric structure, and then the blue ring

goes through another flipping event. The final structure is a single fibril-like structure

that has grown in the longitude direction.

The dynamics in Fig. 6.8 imply that the flipping events induced by the dihedral

potential can facilitate the assembly of distinct rings, which then aid in the formation

of the longer fibril structure, in particular to facilitate alignment of the proto-fibrils.

We also noticed in Fig. 6.8 that there are two flipping events in the course of the

simulation, and the time interval between these two flipping events is 1430τ . This lies

within the time interval distribution in Fig. 6.3 for Kd = 2.0, albeit larger than the

median. Furthermore, the two flipping events in Fig. 6.8 all occur for the blue chain,

which has one face not attached to other chains. We thus suspect that the energy barrier

imposed by neighboring chains plays an important role in the frequency of flipping. If a

chain is trapped in the middle of the proto-fibril, it has a lower mobility that prevents

escape from its neighbors and flipping into a loose structure. As such, the interior of

the tube is stabilized by excluded volume and attractive interactions, while the faces of

the tube can flip. The net result is a preference towards axial growth of the fibrils.

While Fig. 6.8 makes a promising connection between flipping of an individual chain
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Figure 6.8: Snapshots of initial, intermediate, and final structures in the five-chain
simulation at 50 ○C. The ring is formed from a single chain simulation with N = 1000.
The initial configuration was constructed by placing five replicas of a ring with the
spacing of 5.4 nm. Each color represents one MC chain.

and the dynamics of fibril assembly, there are some limitations of the model and sim-

ulation method that attenuate our enthusiasm. First, in the course of simulation, we

initiate the simulation by equilibrating the MC chain at 25 ○C, and then make an in-

stantaneous temperature jump to 50 ○C to form the ring structure. This method ignores

the time required for heat transfer, which is a potential but not critical problem. Heat

transfer limitations certainly make the estimation of the time for chain to collapse inac-

curate, but the presence of flipping events occurs at the higher temperature. Inasmuch

as fibril formation takes longer than the time to heat the sample, flipping events could

still play a role in the sol-gel transition.

Another important point to consider is the effect of MC concentration. Our single-

chain simulations are always in the dilute limit based on the simulation box size. We
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observed that as we increase the polymer concentration in our simulation and start

from a relaxed solution at 25 ○C, making a sudden temperature jump to 50 ○C leads to

the MC chains becoming entangled and trapped in a network, instead of forming rings.

Moreover, the branches of these networks do not necessarily have a uniform diameter,

contrary to what has been observed in experiments. The issue with polymer density is

consistent with what we see in Fig. 6.8: the frequency of the flipping is reduced due to

the more “crowded” environment, thus making it less likely to cross an energy barrier

into another collapsed state. It is definitely of great interest to study a larger system

with multiple MC chains at a higher concentration. Unfortunately, the system size and

simulation time required to directly simulate gelation are well beyond the computational

limits, and suggest the need for a simpler (or softer) model to study gelation.

A way to circumvent this situation and still get an estimate of fibril formation

within the present model is to use biased initial configurations. Instead of a completely

relaxed-coil structure, the initial configuration can be set as a partially relaxed and

a partially ring-like structure. In reality, this initial configuration could correspond

to a fast nucleation where part of an MC chain collapses while the rest remains as

relaxed intermediate segments or dangling ends. In this way, it might be possible to

study the interaction of MC chains at a higher concentration while also preventing

the entangled structure. This biased initial configuration could also help to explain

the “bridge” or “ghost” structure that connects two successive fibrils along the axial

direction, as observed in experiments [45–47]. In these experiments, MC fibrils consist

of collapsed rings that are interlinked by either stacking or wrapping onto the end of

an existing fibril or another ring. It is further proposed that the MC gelation is a two-

step process [47] beginning with a single or proto-tube nucleus as a precursor, and a

secondary nucleation and growth process. This biased partial-coil/partial-relaxed initial

configuration could act as an intermediate state in this two-step process to promote our

understanding of the secondary nucleation while saving computational effort in the

primary nucleation process. Alongside the flipping events, as we described above, this

biased initial configuration could also contribute MC free ends that connect between

different groups of proto-tubes. These free ends could also rationalize the “bridge” or

“ghost” structure, as observed in experiments.

Finally, there is a potential problem using an implicit solvent. Although the gelation
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in the coarse-grained model is driven by the self-attractive interactions of the MC chain

at elevated temperature, in reality, the hydrogen bonding between hydroxy groups on

MC and solvent molecules may play an important role in the gelation mechanism. The

nature of the interactions between water and MC in the fibril state remains an open

question. Moreover, the detailed structure of water in the vicinity of the polymer chains

also may be important. While small angle neutron scattering data [46] indicate that the

fibrils contain approximately 60% water, neither the latter experiments nor cryo-TEM

measurements [45–47] provide definitive evidence that the water is located within the

core of a fibril. It is possible that the water and the hydrophilic groups of MC are

coordinated, rather than being locally segregated as predicted by the present model

[1]. Addressing the details of water-MC coordination in the gel state by simulation is

exceedingly difficult, requiring sufficient contour length to form a fibril while maintaining

atomistic resolution. The requisite simulation is at least an order of magnitude larger

than the atomistic simulations [130] used to determine the coarse-grained parameters

used here [1], and likely infeasible. As a result, it is possible that while the coarse-

grained, non-bonded interaction potentials could provide an accurate representation

of that between a pair of very short MC chains, they may not capture the nature of

the interactions in the relatively polymer-dense environment of the fibrils. Elucidating

the detailed interactions between water and MC within a fibril may unlock a key step

towards understanding fibril formation.

6.5 Concluding Remarks

Recent experimental studies [45, 46] on the structure of methylcellulose gels revealed

a fibrillar morphology, overturning the prevailing model of physical gelation for these

materials. While the experimental evidence for fibril formation is clear, the detailed

gelation mechanism remains poorly understood. In this chapter, building on the sim-

ulation method in Huang et al. [1], we showed that the previously overlooked flipping

events, characterized by a sudden chain conformational change, can help a methycelly-

lose chain to re-orient itself from one collapsed state to another, as well as facilitating

assembly of multiple rings into stacks. We further studied the methylcellulose chain

with a range of dihedral potential strengths, and found that relatively small changes in
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the strength of dihedral potential could have strong effects on the flipping statistics.



Chapter 7

Conclusion and Discussion

As stated, we aimed at applying computational tools to study biopolymers numerically

with engineering applications. A large part of this dissertation focuses on stretching

DNA in free solution and confinement, which is important for advancing genomic map-

ping technology. In this scenario, external forces and confinement are two fundamental

and complementary aspects. We modified the pruned-enriched Rosenbluth method

(PERM) that has been previously developed in our group to explore the force-extension

behavior of DNA molecules. The most important finding of this work is that we showed

the thickness of a DNA chain plays an important role in the force-extension behavior

in various conditions, which has been overlooked in previous studies. Practically, our

work provides handy tools for interpreting experiment results and developing efficient

simulation models. We anticipate such a complete description of the force-extension of

DNA will prove useful for the design of new genomic mapping technologies.

Methylcellulose is another biopolymer of interest. We applied Langevin Dynamics

simulations to the computational study on the methylcellulose gelation mechanism. We

found a “flipping” event, introduced purely by physical properties, that facilitates the

assembly of the separated methylcellulose chains into a long fibril. This finding might

be a key step in solving the mysterious gelation mechanism of methylcellulose.

Although the chemical details of these two biopolymers are different, they share

common physical properties. Therefore, computer simulation is able to study various

biopolymers with a generic model by changing the parameters and specifications. In

119
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addition, our comprehensive simulation also provides opportunities to explore condi-

tions which are rather challenging for experiments but crucial for understanding the

basic properties of biopolymers, which allows building connections between theoretical

predictions and experimental studies.

In Chapter 4, a single DNA chain is stretched in free solution. This allows separation

of restriction imposed by forces from that by nanoconfinement. The key outcome of this

part is a new formula that approximates the force-extension behavior with about 5%

relative error for any value of the force. This is a great improvement comparing to the

classic widely-used (more than 2,000 citations) Marko-Siggia interpolation formula [70].

The latter formula was developed for “phantom” polymers without thickness and usually

has around 10% relative error for high forces, but is not even qualitatively correct

for weak forces. The new formula developed in my dissertation is by far the best

interpolation valid over the whole range of external forces.

Going beyond the case of an unconfined biopolymer, in Chapter 5 we applied this

DNA model and simulation technique to explore the effect of slit confinement together

with an external force. Most notably, this work predicted a new regime (phase) in the

force-extension behavior under confinement with numerical evidence. This new regime

features a mixed effect of both sensible DNA volume and sensible wall effects, thereby

demonstrating conclusively that several previous works on modeling the stretching of

confined DNA miss the key physics. Excitingly, after publishing this result, my the-

oretical prediction was confirmed by experimental evidence [71]. Moreover, we have

constructed a phase diagram for the stretched DNA in nanoslits, which is straightfor-

ward to use in experiments.

In Chapter 6, we expect that in methycellulose simulations, the flipping events will

prove particularly important for semiflexible self-attractive polymer models, as they help

the chain to escape from local energy traps due to the intramolecular interactions. Fur-

thermore, our study suggests that the flipping event facilitates the assembly of separated

methylcellulose chains into forming a long fibril. We anticipate that this rapid confor-

mational change will provide insights into the discrepancy between the high polymer

concentrations, where fibrils form in experiments, and the low polymer concentration

required in simulations in order to get ring-like structures.
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Finally, we conclude by discussing the limitations of our work and future opportu-

nities. In the discrete wormlike chain (DWLC) model, we consider DNA as a neutral

polymer and use the hard-core potential to represent the real chain behavior. How-

ever, DNA is a polyelectrolyte that has negtive charges on the backbone. This leads

to electrostatic interactions with ions in the buffer, charged surface, and the external

electric field. Thus, lumping electrostatic effects into effective neutral parameters such

as effective width w and persistence length lp could potentially introduce errors, espe-

cially in the cases of low ionic strength and tight confinement where the overlapping of

double layers becomes important. The challenge of including electrostatic interactions

explicitly lies in solving the highly nonlinear Poisson-Boltzmann equation, as finding the

numerical solution of a second-order partial differential equation for each step repeat-

edly could be extremely demanding in computational resources. Although substantial

challenges exist, the future opportunity lies in moving forward to introducing compu-

tational practical electrostatic interactions, such as DNA-wall repulsion described by

the linear Debye-Huckel potential. Other generic potentials, interpolations, or even a

pre-computed table of solutions could also be introduced to give a better description of

electrostatic interactions. In the simulation of methylcellulose, we are unable to directly

simulate gelation at a higher concentration due to computational limits. Questions also

remain regarding the dynamics of gelation as a function of heating rate, since we had an

unrealistic sudden temperature jump throughout the simulation. Elucidating the con-

nections between heat transfer, concentration and gelation is an interesting avenue for

future studies and will provide new insights into the methylcellulose gelation mechanism.
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[93] L. Schäfer, Excluded volume effects in polymer solutions: as explained by the renor-

malization group. Springer Science & Business Media, 2012.

[94] J. Des Cloizeaux, “On the absence of flory terms in the energy and in the entropy

of a polymer chain,” J. Phys. Paris, vol. 37, no. 5, pp. 431–434, 1976.

[95] B. Li, N. Madras, and A. D. Sokal, “Critical exponents, hyperscaling, and univer-

sal amplitude ratios for two-and three-dimensional self-avoiding walks,” J. Stat.

Phys., vol. 80, no. 3-4, pp. 661–754, 1995.

[96] N. Clisby, “Accurate estimate of the critical exponent ν for self-avoiding walks via

a fast implementation of the pivot algorithm,” Phys. Rev. Lett., vol. 104, no. 5,

p. 055702, 2010.

[97] T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, “Stretching of a single

tethered polymer in a uniform flow,” Science, vol. 268, no. 5207, pp. 83–87, 1995.

[98] J. M. Schurr and S. B. Smith, “Theory for the extension of a linear polyelectrolyte

attached at one end in an electric field,” Biopolymers, vol. 29, no. 8-9, pp. 1161–

1165, 1990.

[99] S. B. Smith and A. J. Bendich, “Electrophoretic charge density and persistence

length of DNA as measured by fluorescence microscopy,” Biopolymers, vol. 29,

no. 8-9, pp. 1167–1173, 1990.

[100] L. Dai and P. S. Doyle, “Comparisons of a polymer in confinement versus applied

force,” Macromolecules, vol. 46, no. 15, pp. 6336–6344, 2013.



132

[101] P. Pincus, “Excluded volume effects and stretched polymer chains,” Macro-

molecules, vol. 9, no. 3, pp. 386–388, 1976.
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Appendix A

Supporting Infomation to

Chapter 4

A.1 Fractional Extension vs. Contour Length

Figure A.1 provides representative data showing that the fractional extension z becomes

independent of contour length L for sufficiently long chains.
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Figure A.1: Fractional extension z as a function of contour length L = (Nb−1)w for Nb

beads of size w for different values of the force Fw/lp: 0.0105 (purple ♢), 0.0373 (green
△), 0.0833 (cyan ▽), 0.2152 (orange ◻), 1.7100 (yellow ○), 18.0000 (blue +). Each panel
corresponds to a different value of lp/w.
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Tables A.1 and A.2 provide the number of beads Nb used for each data point in

Chapter 4.

Table A.1: Number of beads used for the data in Figs. 4.1, 4.3, 4.4. The values in the
first row are different lp/w. The simulation data for the freely-jointed chain (lp/w = 1.0)
are only used for Fig. 4.4.

Fw/lp 1.0 1.5 2.5 3.5 4.5 5.5 6.5 7.5

0.0000 40001 40001 40001 40001 40001 40001 40001 40001
0.0105 40001 20001 20001 20001 40001 40001 20001 20001
0.0164 40001 20001 20001 20001 40001 80001 20001 20001
0.0227 40001 10001 20001 20001 20001 10001 20001 20001
0.0296 40001 10001 20001 20001 20001 10001 20001 20001
0.0373 20001 10001 20001 20001 10001 10001 10001 10001
0.0461 20001 10001 10001 20001 10001 10001 20001 10001
0.0563 20001 10001 10001 10001 10001 10001 10001 10001
0.0684 20001 10001 10001 10001 10001 5001 10001 10001
0.0833 20001 5001 10001 10001 10001 10001 10001 10001
0.1023 20001 5001 10001 5001 10001 10001 5001 10001
0.1275 10001 5001 5001 20001 10001 5001 5001 10001
0.1627 10001 10001 5001 5001 10001 5001 5001 10001
0.2152 10001 5001 10001 5001 10001 5001 5001 10001
0.3000 10001 5001 5001 5001 5001 3201 5001 5001
0.453 10001 5001 5001 5001 5001 5001 5001 5001
0.7807 10001 5001 5001 5001 5001 5001 5001 5001
1.7100 5001 5001 5001 5001 5001 3201 5001 5001
6.7133 3201 5001 5001 5001 5001 3201 5001 3201
18.000 5001 5001 5001 5001 5001 3201 5001 3201
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Fw/lp 10.5 15.5

0.0000 40001 40001
0.0105 40001 80001
0.0164 40001 40001
0.0227 40001 40001
0.0296 20001 40001
0.0373 20001 40001
0.0461 10001 40001
0.0563 20001 40001
0.0684 20001 40001
0.0833 20001 10001
0.1023 10001 20001
0.1275 10001 20001
0.1627 20001 20001
0.2152 20001 10001
0.3000 20001 5001
0.453 10001 5001
0.7807 10001 10001
1.7100 10001 10001
6.7133 10001 10001
18.000 5001 5001
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Table A.2: Number of beads used for Fig. 4.2
lp/w = 1.5 lp/w = 2.5 lp/w = 3.5 lp/w = 4.5

Fw/lp L Fw/lp L Fw/lp L Fw/lp L

0.0189 40001 0.0144 20001 0.0121 40001 0.0106 40001
0.0529 20001 0.0400 10001 0.0610 20001 0.0291 40001
0.0980 20001 0.0735 10001 0.0794 20001 0.0532 20001
0.1536 20001 0.1143 10001 0.0944 10001 0.0821 20001
0.2202 10001 0.1625 10001 0.1337 20001 0.1158 5001
0.2989 10001 0.2187 10001 0.1791 5001 0.1547 10001
0.3920 10001 0.2842 5001 0.2315 5001 0.1992 5001
0.5027 5001 0.3609 5001 0.2922 5001 0.2504 5001
0.6361 5001 0.4518 5001 0.3634 5001 0.3101 5001
0.8002 5001 0.5616 5001 0.4485 5001 0.3806 5001
1.0078 5001 0.6980 5001 0.5528 3201 0.4664 5001
1.2803 5001 0.8739 5001 0.6856 3201 0.5745 5001
1.6557 5001 1.1118 5001 0.8630 3201 0.7174 5001
2.2059 5001 1.4552 5001 1.1158 3201 0.9193 5001
3.0819 5001 1.9944 5001 1.5089 3201 1.2303 5001
4.6453 5001 2.9464 5001 2.1971 5001 1.7710 5001
7.9517 5001 4.9446 5001 3.6327 5001 2.8932 3201
17.2787 5001 10.5555 5001 7.6490 5001 6.0228 3201
67.3484 5001 40.6124 5001 29.1270 5001 22.7337 3201
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lp/w = 5.5 lp/w = 6.5 lp/w = 7.5 lp/w = 10.5

Fw/lp L Fw/lp L Fw/lp L Fw/lp L

0.0095 40001 0.0087 40001 0.0081 40001 0.0068 40001
0.0262 40001 0.0240 20001 0.0222 20001 0.0186 40001
0.0477 10001 0.0436 20001 0.0404 20001 0.0337 20001
0.0735 10001 0.0670 20001 0.0620 10001 0.0517 40001
0.1034 10001 0.0942 20001 0.0870 10001 0.0723 20001
0.1378 10001 0.1253 10001 0.1135 5001 0.0957 10001
0.1770 5001 0.1606 10001 0.1478 5001 0.1220 10001
0.2218 5001 0.2008 10001 0.1845 5001 0.1517 10001
0.2737 5001 0.2471 10001 0.2265 5001 0.1853 10001
0.3347 5001 0.3012 10001 0.2754 5001 0.2241 5001
0.4083 5001 0.3660 5001 0.3338 3201 0.2697 5001
0.5002 5001 0.4466 5001 0.4057 3201 0.3252 5001
0.6208 5001 0.5514 5001 0.4989 3201 0.3960 5001
0.7897 5001 0.6973 5001 0.6276 3201 0.4924 5001
1.0481 5001 0.9189 3201 0.8220 3201 0.6359 3201
1.4945 5001 1.2997 3201 1.1545 3201 0.8780 3201
2.4167 5001 2.0832 3201 1.8361 3201 1.3697 3201
4.9815 5001 4.2560 3201 3.7224 3201 2.7220 3201
18.6584 5001 15.8327 3201 13.7577 3201 9.8951 3201
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lp/w = 15.5

Fw/lp L

0.0056 10001
0.0152 10001
0.0275 10001
0.0420 5001
0.0586 5001
0.0772 10001
0.0981 5001
0.1214 5001
0.1477 5001
0.1775 5001
0.2121 5001
0.2536 5001
0.3056 5001
0.3751 5001
0.4765 3201
0.6450 3201
0.9826 3201
1.9033 3201
6.7673 5001



147

10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 2.5 10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 3.5

10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 4.5 10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 5.5 10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 6.5

10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 7.5 10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 10.5 10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 15.5

10�1

100

10�1 100 101

z

F

Marko-Siggia
EV-WLC
lp/w = 1.5

Figure A.2: Figure 4.1 of the main text for all values of lp/w.

A.2 Comparison between Simulation Data and Interpola-

tions with Various Monomer Anisotropies

Figure A.2 is the equivalent of Fig. 4.1 in the main text for all values of lp/w and Fig. A.3

is the equivalent of Fig. 4.2 in the main text for all values of lp/w.
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Figure A.3: Figure 4.2 of the main text for all values of lp/w for the Marko-Siggia
interpolation formula (red ○) and the EV-WLC interpolation formula (blue △). Each
panel corresponds to a different value of lp/w.

A.3 Interpolation Error with Various lp/w



Appendix B

Supporting Infomation to

Chapter 5

B.1 Scaling Theory

B.1.1 Details of the Derivation in Chapter 5.2

For sufficiently long chains, Odijk [167] showed that excluded volume is important for

all slit heights in the absence of a force. His scaling theory predicts that the root-mean-

squared end-to-end distance of a chain confined to a slit is

R ≅ L3/4
(
wlp

H
)

1/4

. (B.1)

Odijk’s theory is valid for any slit height H, but the prefactor depends on whether the

chain consists of blobs (H ≳ lp) or deflection segments (H ≲ lp) [167]. This discrepancy is

removed by replacing the persistence length of the chain, lp, with the effective persistence

length, lp,∥ ,

R ≅ L3/4
(
wlp,∥

H
)

1/4

. (B.2)

The effective persistence length is obtained from the characteristic decay of the bond

vector autocorrelation function in confinement, as described in the main text. Note that

Eq. B.2 also has an additional correction for strong confinement due to the orientation
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of the deflection segments [110]. This additional correction is small, so we ignore it at

the level of approximation here.

In the presence of a weak force, Taloni et al. [114] suggest that the confined chain

can be considered as a series of Pincus (tensile) blobs of size [101]

ξT =
kBT

f
. (B.3)

The idea in Pincus’s theory [101] applied to confined chains [114] is that the contour

length Lb inside a Pincus blob of size ξT is the same as the contour length inside a

subchain of size R. Setting Eq. B.2 equal to Eq. B.3 and solving for the contour length,

we find that the section of the chain inside each Pincus blob is of length

Lb ≅ lp,∥ (
kBT

flp,∥
)

4/3

(
H

w
)

1/3

. (B.4)

The number of such blobs in a chain of total contour length L is N = L/Lb and each

blob is extended a distance ξT in the direction of the force. In this confined Pincus

regime, the total extension of the chain in the direction of the force is Z = NξT, leading

to [114]

z ≅ (
flp,∥

kBT
)

1/3

(
w

H
)
1/3

, (B.5)

where z ≡ Z/L is the fractional extension of the chain in the direction of the force. As

Eq. B.5 combines the results for confined chains and Pincus theory, it seems reasonable

to refer to it as the confined Pincus regime.

The lower bound for the confined Pincus regime corresponds to short chains that

cannot form many Pincus blobs [114]. In other words, the contour length of the chain

needs to exceed the contour length inside the Pincus blob. At the scaling level, the

minimum contour length is simply the molecular weight of a Pincus blob given by

Eq. B.4,

Lmin ∼ lp,∥ (
kBT

flp,∥
)

4/3

(
H

w
)

1/3

. (B.6)

The upper bound of the confined Pincus regime is a more subtle point, depending on

the degree of confinement but not the contour length. Taloni et al. [114] proposed that
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the confined Pincus regime ends when the Pincus blob size is equal to the slit height,

leading to

fweakmax ≅
kBT

H
(B.7)

and, with Eq. B.5, a maximum fractional extension

zweakmax ≅ (
lp,∥w

H2
)

1/3

. (B.8)

However, if we recall the theory for the Pincus regime in free solution [101], we note that

a Pincus regime can also end if the contour length inside the Pincus blob is too short

to make a self-avoiding random walk. For the case of confinement, this alternate upper

bound corresponds to the case where the contour length Lb given by Eq. B.4 is shorter

than the minimum contour length for real chain behavior in Odijk’s theory for confined

chains. The latter restriction on the contour length is Hlp,∥/w, which corresponds to

the crossover between the excluded volume scaling in Eq. B.2 and the ideal chain scaling

R ∼ (Llp,∥)
1/2. Setting Lb =Hlp,∥/w leads to

f strongmax ≅
kBT

lp,∥
(
w

H
)
1/2

(B.9)

and corresponding fractional extension

zstrongmax ≅ (
w

H
)
1/2

. (B.10)

Our choice of superscript labels in Eqs. B.7-B.10 suggests when these different upper

bounds are applicable. Explicitly, the ratio of the maximum forces is

fweakmax

f strongmax

=
⎛

⎝

l2p,∥

Hw

⎞

⎠

1/2

. (B.11)

Weak confinement corresponds to the case H ≫ l2p/w, in which case we expect fweakmax in

Eq. B.7 to be the correct maximum force. In strong confinement, it proves useful to

rewrite Eq. B.11 as

fweakmax

f strongmax

= (
lp,∥/w

H/lp,∥
)

1/2

. (B.12)
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By definition, wormlike chains correspond to the case lp/w > 1. Since strong confinement

further requires that H ≪ lp, we expect that Eq. B.9 is the correct description for the

maximum force in small slits.

B.1.2 Derivation of the Confined Pincus Regime Using ν ≠ 3/5

Here we derive a somewhat more sophisticated version of the confined Pincus regime

where we use a 3D Flory exponent ν = 0.588 and the 2D Flory exponent ν = 3/4. In

this case, the 3D blob has the Flory radius

RF = Lνw2ν−1l2−3νp (B.13)

The contour length L∗ inside a blob of size RF =H is then

L∗ ∼ (Hw1−2ν l3ν−2p )
1/ν

(B.14)

The size of the confined chain is then

R ∼ (
L

L∗
)

3/4

H (B.15)

whereupon the Odijk result for the size of a confined chain in Eq. B.1 becomes

R ∼ [
L

(Hw1−2ν l3ν−2p )1/ν
]

3/4

H (B.16)

Equation B.16 reduces to Eq. B.1 for ν = 3/5.

If we set R in Eq. B.16 equal to the tensile blob size kBT /f , we find that each Pincus

blob now contains a contour length

Lb ∼ (
kBT

fH
)

4/3

(Hw1−2ν l3ν−2p )
1/ν

(B.17)

The latter result reduces to Eq. B.4 for ν = 3/5.

The extension of the chain follows from the derivation for ν = 3/5, giving

z ∼
kBT

fLb
(B.18)
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which gives

z ∼ (
f

kBT
)

1/3

H(4/3)−1/νw2−(1/ν)l(2/ν)−3p (B.19)

The latter equation reduces to Eq. B.5 for ν = 3/5. If we use ν = 0.588, we have

z ∼ (
f

kBT
)

1/3

H−0.367w0.299l0.401p (B.20)

B.2 List of Simulation Parameters

Tables B.1, B.2, B.3 and B.4 provide the number of beads Nb used for each data point

in Chapter 5.
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Table B.1: Number of beads used for Figs. 5.2, 5.5, 5.6, 5.7, 5.8.
lp/w = 5.5 lp/w = 5.5 lp/w = 5.5 lp/w = 10.5 lp/w = 10.5

H/w = 4 H/w = 49 H/w = 99 H/w = 4 H/w = 149

fw/kBT Nb Nb Nb Nb Nb

0.0005 - 40001 40001 - 40001
0.001 40001 40001 40001 40001 40001
0.002 40001 40001 40001 40001 40001
0.003 40001 40001 40001 40001 40001
0.004 40001 40001 40001 40001 40001
0.005 40001 40001 40001 40001 40001
0.006 40001 40001 40001 40001 40001
0.007 40001 40001 40000 40001 40001
0.008 40001 40001 40001 40001 40001
0.009 40001 40001 40001 40001 40001
0.0105 20001 20001 20001 20001 20001
0.0164 20001 20001 20001 20001 20001
0.0227 20001 20001 20001 20001 20001
0.0296 20001 20001 20001 20001 20001
0.0373 20001 20001 20001 20001 20001
0.0461 20001 20001 20001 20001 20001
0.0563 20001 20001 20001 20001 20001
0.0684 20001 20001 20001 20001 20001
0.0833 20001 5001 10001 20001 20001
0.1023 10001 5001 10001 5001 20001
0.1275 10001 5001 10001 5001 -
0.1627 10001 5001 10001 5001 -
0.2152 10001 5001 10001 5001 -

0.3 10001 5001 10001 5001 -
0.453 10001 5001 10001 5001 -
0.7807 10001 5001 10001 5001 -
1.71 10001 5001 10001 5001 -

6.7133 10001 5001 10001 5001 -
18 3201 5001 10001 5001 -
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lp/w = 15.5 lp/w = 15.5

H/w = 4 H/w = 299

fw/kBT Nb Nb

0.0005 - -
0.001 - 40001
0.002 - 40001
0.003 - 40001
0.004 - 40001
0.005 - 40001
0.006 - 40001
0.007 - 40001
0.008 - 40001
0.009 - 40001
0.0105 10001 -
0.0164 10001 20001
0.0227 5001 20001
0.0296 20001 20001
0.0373 5001 20001
0.0461 5001 20001
0.0563 5001 20001
0.0684 5001 20001
0.0833 5001 20001
0.1023 5001 20001
0.1275 5001 -
0.1627 5001 -
0.2152 5001 -

0.3 5001 -
0.453 5001 -
0.7807 5001 -
1.71 5001 -

6.7133 5001 -
18 5001 -
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Table B.2: Number of beads used for the data in Fig. 5.3. The simulations are for the
freely-jointed chain (lp/w = 1.0) with H/w = 19.

fw/kBT Nb

0.0027 20001
0.0040 20001
0.0059 20001
0.0087 10001
0.0129 10001
0.0190 10001
0.0279 10001
0.0412 10001
0.0607 10001
0.0895 5001
0.1318 5001
0.1943 5001
0.2863 5001
0.4220 5001
0.6219 5001
0.9165 5001
1.3507 5001
1.9905 5001
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Table B.3: Number of beads used for the data of ideal chains in Figs. 5.6, 5.7.
lp/w = 5.5,H/w = 99 lp/w = 10.5,H/w = 4

fw/kBT Nb Nb

0 20001 20001
0.0005 20001 20001
0.001 20001 20001
0.002 20001 20001
0.003 20001 20001
0.004 20001 20001
0.005 20001 20001
0.006 20001 20001
0.007 20001 20001
0.008 20001 20001
0.009 20001 20001
0.0105 20001 20001
0.0164 10001 10001
0.0227 10001 10001
0.0296 10001 10001
0.0373 10001 10001
0.0461 10001 10001
0.0563 10001 10001
0.0684 10001 10001
0.0833 10001 10001
0.1023 5001 5001
0.1275 5001 5001
0.1627 5001 5001
0.2152 5001 5001

0.3 5001 5001
0.453 5001 5001
0.7807 5001 5001
1.71 5001 5001

6.7133 5001 5001
18 5001 5001
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Table B.4: Number of beads used for the data of ideal chains in Fig. 5.10.
lp/w = 10.5,H/w = 49 lp/w = 10.5,H/w = 99 lp/w = 15.5,H/w = 49

fw/kBT Nb Nb Nb

0.0005 40001 40001 40001
0.001 40001 40001 40001
0.002 40001 40001 40001
0.003 40001 40001 40001
0.004 40001 40001 40001
0.005 40001 40001 40001
0.006 40001 40001 40001
0.007 40001 40001 40001
0.008 40001 40001 40001
0.009 40001 - 40001
0.0105 20001 - 20001
0.0164 20001 - 20001
0.0227 20001 - 20001
0.0296 20001 - 20001
0.0373 20001 - 20001
0.0461 20001 - 20001
0.0563 20001 - 20001
0.0684 20001 - 20001
0.0833 20001 - 20001
0.1023 5001 - 10001
0.1275 5001 - 10001
0.1627 5001 - 10001
0.2152 5001 - 10001

0.3 5001 - 10001
0.453 5001 - 10001
0.7807 5001 - 10001
1.71 5001 - 10001

6.7133 5001 - 10001
18 5001 - 10001



159

Figure B.1: Plot of the rescaled extension versus the rescaled force for different values of
lp/w and H. The rescaled axes are chosen to test the strong confinement crossovers given
by Eqs. B.7 and B.8. The symbols are simulation results for intermediate confinement
with triangle: lp/w = 10.5, H/w = 99; inverted triangle: lp/w = 10.5, H/w = 49 and
diamond: lp/w = 14.5, H/w = 49. The black triangle shows the scaling law in Eq. B.5.
The dashed line shows the crossover given by Eq. B.7.

B.3 Additional Figures

Figure B.1 replots the data in Fig. 5.4 of the main text using the crossovers for weak

confinement.
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Figure B.2: Plot of the fractional extension versus contour length for lp/w = 10.5 and
H/w = 4 under force f = 0.0296 in confined Pincus regime. The dashed line shows
the saturated extension zmax, i.e., where z reaches its maximum and is independent of
contour length. Inset: Plot of the fractional extension rescaled by zmax versus contour
length. Dashed lines show the contour length L0.9 where the relative extension reaches
90% of its maximum.

Figure B.2 shows how the result in Fig. 5.5 of the main text is generated. The

saturation value of the extension is only gradually reached as a function of contour

length. For this value of the force, short lengths correspond to the weak stretching

(Hookean) regime while the long lengths correspond to the confined Pincus regime.

To identify the onset of the confined Pincus regime, we need to determine when the

fractional extension z(L) is close enough to its saturation value zmax = z(L→∞).

We chose to use the point at which the fractional extension reaches 90% of the

saturation value. The main panel of Fig. B.2 shows the fractional extension as a function

of molecular weight. We then divide by the value of z at the largest molecular weight,

taking this value to be the saturation value zmax. The inset then shows z/zmax. The

point at which this ratio is 0.9 is defined as the length L0.9.
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Figure B.3: Plot of the fractional extension versus the rescaled force for strong confine-
ment for lp/w = 10.5 and H/w = 4 for real chains. Green triangles show the simulation
data with lp,∥ as a function of bothH and lp. For the latter data, we assign lp,∥ = 17.696w
or, equivalently, lp,∥ = 1.6853lp, following [2]

Figure B.3 shows how the result in Fig. 5.6 of the main text is affected by using a

more accurate value of lp,∥ for the particular value of H/w.
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Figure B.4: Plot of the fractional extension versus rescaled force for weak confinement
for lp/w = 5.5 and H/w = 49. The solid black line is the 3D Marko-Siggia formula and
the solid purple line is the EV-WLC interpolation formula. The shaded area shows the
confined Pincus regime.

Figure B.4 shows a relatively flexible WLC confined in a wide slit. This figure

reinforces the conclusions reached in Fig. 5.7 of the main text.
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Supporting Infomation to

Chapter 6

C.1 List of Simulation Parameters

We summarize the mole fractions of methylcellulose monomer substitution type in Table

C.1, the bonded coarse-grained model parameters in Table C.2 and the nonbonded

parameters in Table C.3.

Table C.1: Average Mole Fraction of Methylcellulose
Monomers in METHOCEL A Chemistry [1] a

monomer type mol %

cellulose 0.05
2-MC 0.13
3-MC 0.02
6-MC 0.10

2,3-MC 0.10
2,6-MC 0.26
3,6-MC 0.05

2,3,6-MC 0.29

a The degree of substitution (DS) is 1.83.
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Table C.2: Summary of the bonded parameters [1]
Dimensional Units Dimensionless Units

l0 0.515 nm 1 σ
Kb 2478.28 kJ/(mol nm2) 1000 ε/σ2

θ0 2.88 rad 165 deg

Kθ 74.35 kJ/(mol rad2) 30 ε/rad2

n, d 1
Kd 4.96 kJ/mol 2 ε

Table C.3: Summary of the intermolecular parameters of the LJ 9-6
potential a

Low Temperatures (25 ○C)

A B εii,1000 σii rc,ii
cellulose (C) 4.1324 0.2913 0.5525 1.2383 2.0250
2-MC 3.6765 0.1801 1.0596 1.0687 1.7476
3-MC 3.4880 0.2310 0.7073 1.2722 2.0804
6-MC 5.2975 0.2969 0.6814 1.0517 1.7198
2,3-MC 3.9416 0.2456 0.7226 1.3062 2.1359
2,6-MC 3.8093 0.2072 0.9104 1.1196 1.8308
3,6-MC 2.9452 0.2055 0.7122 1.3401 2.1914
2,3,6-MC 1.9479 0.0400 1.4776 1.4079 2.3024

High Temperatures (50 ○C)

A B εii,1000 σii rc,ii
cellulose (C) 2.8070 0.1139 1.2780 1.1988 1.9695
2-MC 2.4410 0.0222 2.0940 1.0687 1.7476
3-MC 2.5033 0.0840 1.4012 1.2892 2.1082
6-MC 2.4760 0.0140 2.2478 1.1144 1.8308
2,3-MC 2.4819 0.0362 1.9328 1.3001 2.1359
2,6-MC 2.9161 0.0483 2.0888 1.0975 1.8031
3,6-MC 2.2424 0.0489 1.5996 1.3170 2.1637
2,3,6-MC 1.9172 0.0292 1.5670 1.4521 2.3856

a εii,N = AN−B with N being the number of beads.

In the heterogenous methylcellulose chains, we use a geometric mixing rule to cal-

culate the σij , εij and rcij values between different types of the monomers:

σij =
√
σiiσjj (C.1)
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εij =
√
εiiεjj (C.2)

rcij =
√
rciircjj (C.3)

C.2 Supplementary Plots for Various Kd
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Figure C.1: Plots of κ2 and eigenvalues versus time for three independent 1000-mer
methylcellulose simulations with Kd = 2.0 at 50 ○C. λx, λy and λz are denoted in blue,
red and yellow, respectively.
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Figure C.2: Histograms showing the time interval distribution between two flipping
events with respect to Kd. Each histogram contains at least 3 independent trajectories
of 1000-mer methylcellulose simulations at 50 ○C
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Figure C.3: Histogram of eigenvalues (λx < λy < λz) for 1000-mer methylcellulose chains
at 50 ○C. Data points are sampled every 50τ from the second half of at least 3 indepen-
dent trajectories.
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