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Abstract

An enhanced determination of the internal dynamic processes that take place in

our planet’s interior could be achieved if its composition and thermal structure are well

resolved. However, its extreme pressure and temperature conditions make this task a

grand challenge in the geophysical sciences. Alternate methods of study are required to

overcome such physical constraints. In this work, we use the thermoelastic properties

of various minerals, computed from ab initio calculations, to study the composition

and thermal structure of the Earth’s lower mantle. The mineral phases of this re-

gion of the Earth are: (Fe, Al)-bearing MgSiO3 bridgmanite, (Fe, Al)-bearing MgSiO3

post-perovskite, (Mg, Fe)O ferropericlase, and CaSiO3 perovskite. The thermoelastic

properties of different lower mantle aggregates are computed by varying the molar con-

centration of these mineral phases, whose seismic velocities and densities are compared

to one-dimensional seismic models, for validation, along their self-consistent tempera-

ture gradient. We particularly focus on the effect of a pressure-induced reordering of

the electronic structure of Fe in ferropericlase, known as spin-crossover, on the temper-

ature profile of the lower mantle. The anomalous behavior caused by spin-crossover has

not been observed in one-dimensional seismic studies. Thus, we present a novel way to

achieve this by using a common seismic observable known as the Bullen’s parameter.

Finally, we study the seismic and thermodynamic signatures of a major phase transi-

tion, bridgmanite to post-perovskite, which are of vital importance to shed light on the

enigmatic behavior of the deep lower mantle, otherwise known as the D” region.
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Chapter 1

Introduction

Astronomical observations allows us to understand and unravel planetary bodies’ fea-

tures such as their mass, size, and moment of inertia. For instance, from a planet’s

gravitational field, we can infer its mass distribution, while from its magnetic field, in-

formation about the metallic core. Furthermore, spectroscopic observations can be used

to determine the abundances of the different chemical elements as well as the chemical

differentiation, during the accretion processes, to which a particular planet undergoes

from the nebula [3]. The latter is important because knowledge about a planet’s com-

position broadens our understanding of its internal dynamics and evolution. However,

finding the composition of a planet poses significant challenges in most of the studies in

geological sciences, because of the demand of evaluating materials properties in extreme

conditions: Temperatures that can be hotter than the surface of the sun, and pressures

that can go over two million times the ambient pressure.

The schematic shown in Figure 1.1 depicts how the Earth is compositionally divided

into different layers. The most accessible layer is the Earth’s outer solid shell (not shown

in Figure 1.1) known as the crust, which can be continental or oceanic. The continental

crust has a thickness of ∼ 100 km and can be compositionally heterogeneous, while the

oceanic is more uniform with a lower thickness of ∼ 10 km. Then comes the upper

mantle. This layer spans up to a depth of ∼ 410 km and various minerals such as

olivine (Ol), garnet (Gt), and pyroxenes (Px) can be found here. At 410 km in depth,

we reach the so-called transition zone. Here, an isochemical phase change dominated

by (Mg, Fe)2SiO4 olivine occurs: Olivine (α spinel) becomes wadsleyite (β spinel) and

1



2

wadsleyite, at 520 km depth, transforms into ringwoodite (γ spinel). Lastly, at 660

km, Mg2SiO4 ringwoodite becomes unstable and dissociates into MgSiO3 + MgO. This

phenomenon is reflected in seismic discontinuities that will be discussed later.

Depth

(km)

410

660



Pressure

(GPa)

135

364

125

14

24

2600

2900

6371

3295100

Bridgmanite

Ferropericlase

Ca-Perovskite

Post-Perovskite

Figure 1.1: Schematic of the compositionally divided Earth.

We now move into the lower mantle, which spans from 660 km to 2900 km. Three

major mineral phases are believed to be found in here: (Al, Fe)- MgSiO3 bridgmanite

(bdg), CaSiO3 perovskite (CaPv), and (Mg, Fe)O ferropericlase (fp) [47,49,71]. Further-

more, at a depth of ∼ 2600 km, bdg becomes unstable and goes from its perovskite phase

to a lamellar phase known as post-perovskite. This is a characteristic feature of the D”

region, which is located 300 km above the core mantle boundary (CMB). Consequences

on seismic observables and thermodynamic properties due to the post-perovskite phase

transition are discussed in better detail in chapter 5. Moreover, information on the

mineral phases and lower mantle rocks are discussed in chapters 2 and 3. After the
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lower mantle, we reach the core (outer and inner core). The liquid outer core is be-

lieved to be a mixture of Fe and Ni along with one or more light elements (Si, O, H,

K, C, S), while the inner core is a solid sphere, mainly made of pure Fe. After this

brief compositional review of the planet, the question that follows is: How do we study

the thermoelastic properties of our planet’s interior? Because of the extreme conditions

of the Earths interior, direct sampling of mantle rocks with our current technology is

nearly impossible and demands alternative methods of study. The first method in our

list is seismological observations, where images of the mantle are constructed from the

velocities of the waves recorded from earthquakes and controlled explosions. Disconti-

nuities in the recorded velocities indicate at which depths the rocks and minerals are

changing their morphology. The second method is to recreate the lower mantle tem-

perature and pressure conditions in the lab, and examine the crystal structure of the

rocks and minerals. This is achieved by laser heating the samples and compressing

them using diamond-anvil cells. The sample can be then probed using techniques such

as transmission electron microscopy TEM, Mössbauer spectroscopy, Brillouin scatter-

ing, X-ray diffraction, ultrasonic spectroscopy, or neutron scattering. However, these

sophisticated experimental techniques are difficult to perform, tend to be expensive, and

data recollection from them at such extreme conditions is usually scarce. This brings us

to the third method, where high-performance computing and quantum mechanics come

into play. First principle calculations, also known as ab-initio calculations, are quantum

mechanical computations that allow us to obtain highly reliable data of mantle minerals

at extreme pressure and temperature conditions. This work is dedicated to the use of

quantum-mechanical, elastic, and thermodynamic calculations, to improve our current

knowledge of the interior of our planet, more specifically, the Earth’s lower mantle.

As previously discussed, an exceptional way to probe the Earth’s interior is via seis-

mic models and tomographic maps. Perhaps, the most commonly used one dimensional

seismic model is the Preliminary Reference Earth Model (PREM) [29]. Proposed by

Dziewonski in 1982, this model is still considered robust and is used to estimate dif-

ferent physical properties of the Earth, e.g., elastic moduli and density, as a function

of its radius. A comprehensive diagram displaying the seismic velocities, compressional

(VP ) and shear (VS), and density (ρ) are shown in Figure 1.2. The discontinuities on

the aforementioned properties mark the presence of phase transitions and consequently,
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Figure 1.2: Preliminary Reference Earth Model (PREM) [29]. Earth’s layers are shown
in different intensities of red.

the location of the different layers. For instance, VS is zero throughout the outer core,

which indicates that this region is liquid. PREM is used as a reference model for our

calculations and is revisited in some of the subsequent chapters of this manuscript.

The pressure at depth can be computed from the density profiles of one-dimensional

seismic models, e.g., PREM. However, is it possible to calculate the temperature? Many

different approximations have been performed from various sources. Figure 1.3 shows

some of the different lower mantle temperature profiles, also known as geotherms. These

were calculated from various sources such as seismic input, experimental mineral physics,

and geodynamic simulations. While there is some agreement about the temperature at

the base of the lower mantle, at deep lower mantle conditions, differences among these

profiles can be up to 650 K. In this work, we use Brown and Shankland geotherm [15]

as a reference temperature for our calculations. Details about these geotherms and

calculations of temperature profiles are discussed in chapter 3.

Temperature gradients are of great importance as they drive the convection processes

responsible for tectonics. Cold pieces of land, or slabs, sink into the mantle, while the hot

material that sits atop the CMB becomes buoyant and rises to the surface in the form



5

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20  40  60  80  100  120

T
e

m
p

e
ra

tu
re

 (
K

)

Pressure (GPa)

▼ Boheler, 2000

● Bunge et al., 2001

▼ Anderson, 1982

▲ Brown−Shankland, 1981

Solidus (Fiquet et al., 2010)

▲(Seismic input) ▼(Exp. mineral physics) ●Geodynamic simulation

Figure 1.3: Lower mantle geotherms. The solidus is indicated by the dotted line.



6

of plumes (See Figure 1.4). This convection process occurs at a geological timescale

(∼ 106 years). Therefore, it’s considered to be isentropic and adiabatic. Deviations

from adiabaticity have relevant implications on geodynamic processes, e.g., how the

mantle can conduct or dissipate heat. Hence, it’s important to test for adiabaticity. An

observable that allow us to achieve the latter is the Bullen’s parameter. In this work, we

use the Bullen’s parameter to evaluate such adiabaticity deviations for different possible

mantle compositions (See chapter 4). From Figure 1.4 it can also be observed that the

seismic velocities are affected by lateral temperature heterogeneities. However, there is

no consensus on how the temperature varies laterally since these variations are not yet

well-constrained in the deep mantle [41]. Deviations from adiabaticity are also tested,

via Bullen’s parameter, for a laterally thermal heterogeneous mantle (See chapter 4).

Figure 1.4: Equatorial cross section (right) viewed from the south, along with an
enlarged panel (left) depicting shear velocity variations in Earth’s mantle. High and
low VS variations are in blue and red, respectively. Cold subducting slabs (blue) and a
hot plumes (red) carry the mantle convection. STZ is the spin transition zone. LLSVP
depicts the large low-shear-velocity provinces and the ultralow-velocity zone (ULVZ,
yellow) material sits atop the CMB. Taken from [31]

The effects of another important phenomenon on the lower mantle temperature,

known as spin-crossover, are studied in detail in chapter 3. The ferric iron (Fe3+) in bdg’s

B site, and ferrous iron (Fe2+) in fp, change their spin state with increasing pressure.

This is known as spin-crossover. Hence, spin-crossover is a pressure induced reordering

of the electronic structure of the iron. If Fe is in an octahedral arrangement (Figure 1.5)
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surrounded by O atoms, the Fe 3d-orbitals that overlap with oxygen orbitals have higher

energy (eg) than those that point away from the O-orbtials (t2g). This energy difference

is known as crystal field energy ECF . On the other hand, the energy difference between

parallel and anti-parallel spins is called exchange energy EX . At lower pressures, EX

is typically larger than ECF . However, as pressure increases, ECF overcomes EX . As a

consequence of the latter, the magnetic moment varies from a high spin (HS) to a low

spin (LS) state. An schematic showing the net magnetic moment of Fe in HS and LS

is shown in Figure 1.5a). This was first seen experimentally by Badro et al. [9], using

X-ray emission spectroscopy. Figure 1.5c) shows how the kβ’ line, the first satellite,

characteristic of the 3-d magnetic moment of Fe, disappears with increasing pressure.

This pressure induced spin state change will lead to a volume collapse of the crystal

structure and also affect the thermoelastic properties of the minerals. A discussion

about this anomalous behavior is presented in chapter 2. Spin crossover has not yet

been resolved in global seismic models. Thus, in an attempt to reconcile mineral physics

with seismic observations, we used the Bullen’s parameter as a seismic observable to

detect spin-crossovers in the lower mantle (See chapter 4).

a)

b) c)

Figure 1.5: a) Octahedral site in ferropericlase. b) 3d-orbitals configurations in a octa-
hedral site. a) and b) are taken from [59]. c) X-ray emission spectra of ferropericlase
Mg0.83Fe0.17O at different pressures. Taken from [9]
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This thesis is divided as follows: Chapter 2 shows the theoretical aspects involved in

the calculations presented in this work. Chapter 3 discusses the details involved in the

calculations of temperature profiles, from the thermodynamic properties of lower mantle

minerals, and the effects of spin-crossovers on the lower mantle temperature gradient.

Chapter 4 discusses the importance of computing deviations from adiabaticity and how

these can be used to resolve spin-crossovers in the lower mantle. Chapter 5 depicts

the effects, due to the post-perovskite phase transition, on the seismic observables of

the deep mantle, and the influence of bearing atoms such as Fe and Al across this

important phase transformation. Chapter 6 presents a summary of the results shown

in this manuscript.



Chapter 2

Theoretical Outline

This chapter briefly discusses some of the theoretical aspects involved in the calcula-

tion of thermodynamic properties of the lower mantle minerals, aggregates, temperature

profiles, and phase boundaries. We start by reviewing some of the quantum mechanical

details involved in ab initio calculations, followed by the elasticity principles and con-

stitutive relations needed to compute the thermoelastic properties. Finally, we review

some of the structural parameters of lower mantle minerals and the thermodynamics

behind phase transitions of binary systems.

2.1 Many-body systems and density functional theory

2.1.1 The Born-Oppenheimer approximation

Our starting point to solve the many body system is to write down its Hamiltonian

explicitly

Ĥ = − ~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2/(|ri − rj |) +
∑
i,α

Zαe
2/(|ri −Rα|)− ...

...−
∑
α

~2

2Mα
∇2
α +

1

2

∑
α 6=β

ZαZβe
2/(|Rα −Rβ|)

(2.1)

In equation (2.1), the electron and ion (Nuclei) positions are indicated by r,R, with

charges e and Z, and are represented by the indices i,j, and α, β, respectively. The

9
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first term of equation (2.1) corresponds to the electron kinetic energy (T̂r), the second

is the electron-electron interaction (V̂ee), the third term is the ion Coulomb potential

acting on the electrons (V̂ext), the fourth depicts the ion kinetic energy (T̂R), and the

fifth term the ion-ion interaction (V̂II). Since the proton to electron mass ratio is

M/me ∼ 1836, T̂R can be regarded to be negligible compared to T̂r. This known as

the Born-Oppenheimer (B-O) approximation [62]. This approximation has proven to

work sufficiently well when used to perform structural relaxations to find optimized

(stable) crystal structures under pressure. After applying the B-O approximation, the

Hamiltonian can then be rewritten as

Ĥ = T̂r + V̂ee + V̂ext + V̂II (2.2)

and its solution could be found by solving the eigenvalue problem given by the

Schrödinger equation

ĤΨ(r,R) = EΨ(r,R) (2.3)

where Ψ(r,R) represents the coupled ionic-electronic many-body wave function.

Due the complexity of (2.3), its exact solution is not achievable in real life. Hence, to

simplify this problem, Ψ(r,R) is decoupled thanks to the B-O approximation

Ψ(r,R) = φ(R)ψR(r) (2.4)

with φ(R) and ψR(r) as the ionic and electronic wave functions, respectively. This

decoupling allows us to write the Schrödinger equation for the electrons under a external

potential due ions as

− ~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

(|ri − rj |)
+
∑
i,α

Zα
e2

(|ri −Rα|)
+

1

2

∑
α 6=β

ZαZβe
2

(|Rα −Rβ|)

ψR(r) =

= E(R)ψR(r)

(2.5)
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and for the ions (
−
∑
α

~2

2Mα
∇2
α + E(R)

)
φ(R) = E φ(R) (2.6)

where E(R) is known as the Born-Oppenheimer potential energy surface, i.e., E(R)

is the ground state energy of the electrons for a given fixed ionic configuration. While the

B-O approximation simplifies the problem significantly, equation (2.5) is still extremely

complicated to solve exactly due to the electron-electron interactions. It is here where

density functional theory comes into play, in order to find a solution for a real system.

2.1.2 Density functional theory

The fundamental advantage of the density functional theory (DFT) is that it allows

determining any property of a many body system as a functional of its ground state

electron density no(r). In other words, a scalar function no(r) can, in principle, resolve

all the properties within the many body wave functions of the ground and excited states.

The latter is thanks to Hohenberg and Kohn, who demonstrated that for any system

with interacting particles inside an external potential Vext(r), such potential is uniquely

determined (except by a constant) by no(r). This implies that the hamiltonian of (2.5)

is fully determined and therefore all the many body wavefunctions (ground and excited)

are determined. This one to one correspondence between Vext and no(r) also implies that

there exists a universal functional form of the energy E[n(r)], whose global minimum

will then provide the exact ground state energy. Moreover, the density that minimizes

such functional is the exact ground state density no(r) [62]. This functional form of the

energy can be defined as

E[n(r)] = F [n(r)] +

∫
Vext(r)n(r)dr + EII (2.7)

with F [n(r)] carrying the kinetic energy plus the electron-electron Coulomb interac-

tion, and EII the interaction between ions. If the total amount of electrons is preserved,

i.e.

∫
n(r)dr = N (2.8)
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then the minimization of E[n(r)] gives the ground state energy and the ground elec-

tron density of the many body system. Moreover, if the density n(r’) is not the ground

state, then E[n(r’)] > E[n(r)]. This is known as the variational principle. DFT became

a practical theory only after Kohn and Sham [57] provided an appropriate definition of

F [n(r)]. What Kohn and Sham did was to propose an auxiliary non-interacting form

of the many body interacting system, as in equation (2.5), that can be described with

the single particle Schrödinger equation in an effective local potential. The idea is to

let the ground state electron density of the auxiliary non-interacting system to be the

same as that of the original interacting one, and because the auxiliary system also obeys

Hohenberg and Kohn theorem, i.e. the global minimum of E[n(r)] provides the exact

ground state energy, the functional F [n(r)] of this new non-interacting system is the

kinetic energy of non-interacting electrons. The question now is: what is the form of

F [n(r)]?. First, one needs to recall that the electron density is given by

n(r) =

N∑
i=1

|ψi(r)|2 (2.9)

and thus, the functional F [n(r)] can be defined as

F [n(r)] = To[n(r)] + Ehart[n(r)] + Exc[n(r)] (2.10)

The first term of (2.10) is the kinetic energy of non-interacting electrons To[n(r)],

which is given by the expression

To[n(r)] =
~2

2me

N∑
i=1

〈ψi|∇2
i |ψi〉 (2.11)

The second term in (2.10), known as the Hartree functional Ehart[n(r)], contains the

classical Coulombic interaction of n(r) with itself, i.e.

Ehart[n(r)] =
e2

2

∫
n(r)n(r’)

|r− r’|
drdr’ (2.12)

and the third term of (2.10) is the so-called exchange-correlation energy Exc[n(r)],

which accounts for all the effects due the interacting electrons. This exchange-correlation
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energy is defined as the difference of the energies (kinetic and potential) between the

real interacting many body system and the fictitious non-interacting system

Exc[n(r)] = F [n(r)]− (To[n(r)] + Ehart[n(r)])

= (T̂r − To[n(r)]) + (V̂ee − Ehart[n(r)])
(2.13)

With the latter, we now can construct the total (Kohn-Sham) energy of the inter-

acting many body system as

EKS [n(r)] = To[n(r)] + Ehart[n(r)] + Exc[n(r)] +

∫
Vext(r)n(r)d(r) + EII (2.14)

and the auxiliary non-interacting system as

E0
KS [n(r)] = To[n(r)] +

∫
VKS(r)n(r)d(r) + EII (2.15)

Both, (2.14) and (2.15) are to be minimized under the constraint in (2.8) and with

the same electron density n(r). The Kohn-Sham potential energy VKS is defined as

VKS(r) = Vext(r) +

(
e2
∫

n(r’)

|r− r’|
dr’

)
+
δExc[n(r)]

δn(r)
(2.16)

If the exchange energy Exc[n(r)] is known, then the many body system could be

seen as a non-interacting electron gas under a Kohn-Sham potential VKS(r). Moreover,

E0
KS [n(r)] can be defined in terms of a single particle wave function ψi(r), once (2.9)

and (2.11) are implemented into (2.15). This implies that minimization of E0
KS [n(r)]

with (2.8), along with the orthonormality constraint

∫
ψ∗i (r)ψj(r)dr = δi,j (2.17)

is the same as minimizing the energy with respect to the wave function

δE0
KS

δψ∗i
= 0 (2.18)

Thus, one obtains a Kohn-Sham hamiltonian ĤKS , which can be solved with single

particle Schrödinger-like equations

ĤKSψi(r) =

(
− ~2

2me
∇2
i + VKS

)
ψi(r) = Eiψi(r) (2.19)
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where Ei are the eigenvalues of the Kohn-Sham hamiltonian and ψi(r) the wave

functions with no physical meaning. The reason of this is that ψi(r) are eigenfunctions

of the fictitious non-interacting system, where only the ground state electron density is

equivalent to that of the real system. Equations (2.9),(2.16), and (2.19) are known as

the Kohn-Sham equations.

We can see then that the advantage of the Kohn-Sham formulation is that one can

solve the interacting many body system with single particle Schrödinger-like equations.

Nevertheless, such equations are highly non linear because the potential VKS depends

on its own solutions. This is why VKS needs to be solved self-consistently, i.e., use the

resulting density to find the new potential. Furthermore, the calculation of the ground

state properties is achievable as far as Exc[n(r)] is known. However, the exchange-

correlation energy is unknown and one needs to rely on approximate definitions of that

functional, i.e.

Exc[n(r)] =

∫
n(r)εxc[n(r), r]dr (2.20)

where εxc[n(r), r] is known as the exchange-correlation energy per electron, at point

r, which depends on the density n(r) in the vicinity of r. One can approximate exchange-

correlation energy to depend only on the density, i.e., εxc[n(r)], since solids can often

be considered, according to Kohn and Sham, to be close to the limit of a homogeneous

electrons gas. This is known as the local density approximation (LDA). Therefore

ELDAxc =

∫
n(r)εxc[n(r)]dr (2.21)

The LDA formulation has proven to be a good approximation to determine structural

and vibrational properties of metals, semiconductors, and insulators. Cons about LDA

is that it tends to fail when used to compute, for instance, band gaps for insulators and

semiconductors, and the ground states of some transition metals. To overcome this, the

gradient of the density |∇n(r)| is included in the LDA approximation. This is known

as the generalized gradient approximation (GGA)

EGGAxc =

∫
n(r)εxc[n(r), |∇n(r)|]dr (2.22)
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This approximation does improve estimations of energy band gaps in insulators and

semiconductors, but works poorly to compute structural and elastic properties.

2.1.3 Fundamentals of Phonons and Lattice Vibrations

Phonons, or lattice vibrations, are described by Bose-Einstein statistics. They fall into

the category of Bosons since they carry spin zero [55]. For a 3D crystal, there are 3N

independent vibrational modes. For instance, a crystal with two atoms per unit cell

will have two different dispersion relations (Acoustic and optical), which at the same

time are divided into longitudinal (LA, LO) phonons and transverse (TA,TO) phonons.

For every N atoms in the primitive cell, there will be 3N acoustic branches and 3N - 3

optical. The corresponding dispersion relations in this case are

ω2 ≈ 2C

(
1

M1
+

1

M2

)
(optic) (2.23)

ω2 ≈
1
2C

M1 +M2
(acoustic) (2.24)

with M1 and M2 as the masses of the atoms and C as the elastic constant. The above

are, of course, very simple approximations. In practice, to compute the vibrational

modes from a real system using ab initio calculations, the energies found from solving

(2.19) are used to obtain the forces exerted on the ions, i.e.

Fα = −∂E(R)

∂Rα
(2.25)

with E(R) as the ground state Kohn-Sham energy for the ionic configuration. One

can also define the forces as

Fα = −
∑
i

〈
ψi

∣∣∣∣∣∂Ĥ(R)

∂Rα

∣∣∣∣∣ψi
〉

(2.26)

This is known as the Hellmann-Feynman theorem: The change of energy with respect

to a given parameter is equal to the expectation value of the change of the hamiltonian

with respect to the same parameter. The phonons ω can be found from the eigenvalues
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of the Hessian

det

∣∣∣∣∣ 1√
MαMβ

∂2E(R)

∂Rα∂Rβ
− ω2

∣∣∣∣∣ = 0 (2.27)

where

∂2E(R)

∂Rα∂Rβ
= − ∂Fα

∂Rβ
(2.28)

2.1.4 Quasi-Harmonic Approximation

With ω, it is now possible to access all the thermodynamic potentials. To do so, we used

the Quasi-Harmonic Approximation (QHA) to calculate the free energy of the system.

QHA is a corollary of the harmonic model approximation (HA), which assumes that the

interatomic forces of a crystal are harmonic only. However, HA fails to describe thermal

expansion of the crystalline system, since it considers the equilibrium distance between

atoms to be temperature independent. In contrast, the QHA phonon frequencies are

volume-dependent (ω(V )). QHA treats the system as a group of independent harmonic

oscillators, i.e. a phonon “gas”, each of those vibrating with a particular frequency

ω(V ), which determines the quantum mechanical energy levels of the system. These

energy levels are then used to find the partition function Z and the Helmholtz free

energy F [107].

The partition function of one oscillator is the summation of Boltzmann factors as

Zi =
∑
n

e−En/kBT (2.29)

where kB is the Boltzmann constant. Since the energy is En = (n + 1/2)~ω for a

quantum harmonic oscillator with n energy levels, we have

Zi =
∑
n

e−(n+1/2)~ωi/kBT

Zi = e(1/2)~ωi/kBT
∑
n

e−~ωin/kBT
(2.30)
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Using the approximation

∑
ex =

1

1− x
(2.31)

then

Zi =
e−(1/2)~ωi/kBT

1− e−~ωi/kBT
(2.32)

and from the statistical definition for the Helmholtz free energy

Fi = −kBT lnZi = −kBT ln

(
e−~ωi/2kBT

1− e−~ωi/kBT

)
=

~ωi
2

+ kBT ln
(

1− e−~ωi/kBT
)

(2.33)

Therefore, for a lattice with normal mode frequencies ωi, the total free energy is

F =
∑
i

Fi = U +
∑
i

~ωi
2

+
∑
i

kBT ln
(

1− e−~ωi/kBT
)

(2.34)

where U is the internal energy. From the Helmholtz free energy F , all other ther-

modynamic properties can be found using the thermodynamic potentials, i.e.

U = TS − PV H = U + PV G = F + PV (2.35)

QHA is known for being an effective approximation to calculate the thermodynamics

properties of solids. However, it has some limitations. For instance, QHA at low temper-

atures requires a more complete quantum treatment, whereas for the high temperature

limit is not appropriate due to the phonon-phonon interactions. The conventional up-

per temperature limit is the Debye temperature. Nonetheless, the validity of the QHA

can also be determined from the second derivative of the thermal expansion coefficient

α = 1
V

(
∂V
∂T

)
P

. Results that ∂2α(P,T )
∂T 2 ≥ 0 are not within the range of the validity of the

QHA [107].
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2.2 Linear Elasticity and Equations of State

2.2.1 The stress-strain relation, elastic moduli, and seismic velocities

The strain tensor in the linear elastic regime, is defined as

εij =
1

2
(
ui
xj

+
uj
xi

) (2.36)

where ui are the components of the displacement vector. The trace of the strain

tensor is known as the dilatation of a deformed body

εii =
∆V

V
(2.37)

The stress-strain relation is given by

σij = cijklεkl (2.38)

where cijkl is known as the stiffness tensor and it contains the elastic constants of

the system [78]. The hydrostatic pressure P can be found from the trace of the stress

tensor

P =
1

3
σkk (2.39)

Another important constitutive relation that invokes the stiffness tensor is the strain

energy density function

w(ε) =
1

2
cijklεijεkl (2.40)

We now notice that cijkl has 81 components, which can be reduced to 21 independent

constants after using the symmetries of the stress tensor cijkl = cjikl, strain tensor

cijkl = cijlk, and that the strain energy density is invariant under cijkl = cklij [78].

Moreover, Voigt notation allows us to express the elastic constants in a reduced form,

i.e. ij → α, 11→ 1, 22→ 2, 33→ 3, (23, 32)→ 4, (13, 31)→ 5, (12, 21)→ 6. Hence, the
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stiffness or elasticity tensor will be given by

Cαβ =


c11 c12 · · · c16

c21 c22 · · · c26
...

...
. . .

...

c61 c62 · · · c66

 (2.41)

Computing the elastic constants of a crystal is relevant to study its elastic behavior.

To calculate them, we need to consider the symmetry of the crystal. Minerals have

different symmetries such as cubic (MgO) and orthorhombic (MgSiO3), among others.

Due to the symmetry of these structures, the amount of elastic constants that need

to be found varies: Let a, b, c be the lattice parameters of a given crystal. In a cubic

structure, the lattice parameters a = b = c, and in this case we only need to find c11,

c12 and c44 since c11 = c22 = c33 (modulus of axial compression), c44 = c55 = c66 (shear

modulus) and c12 = c13 = c23 (modulus of dilation or compression), while the others

cij = 0 (This is due to rotation and reflection arguments not discussed here).

Cαβ =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


(2.42)

The lattice parameters for an orthorhombic structure are a 6= b 6= c. For this

symmetry we are required to find nine different elastic constants: c11, c22, c33, c44, c55,

c66, c12, c13 and c23. Hence

Cαβ =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


(2.43)
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By only applying the infinitesimal strains ε11 and ε12, is sufficient to compute the

3 elastic constants of the cubic crystal. However, the same cannot be done for the

orthorhombic system, and all the strains (normal and shear) must be applied to get the

9 elastic constants.

The stress-strain relation for an isotropic system can be written as

σij = λδijεkk + 2µεij (2.44)

where λ+ 2µ = c11 and µ = c44 are known as the Lamé coefficients [77].

To measure the compressibility of a given system, we need to compute another

important quantity known as the bulk modulus K, which is given by the ratio of the

change in pressure with respect to the fractional volume compression, or density ρ, as

K = −V dP
dV

= − dP

dlnV
=

dP

dlnρ
(2.45)

which in the linear elastic regime leads to

∆V

V
= −P

K
(2.46)

and therefore, we can define K in terms of the Lamé coefficients as

K =
3λ+ 2µ

3
(2.47)

The negative ratio between normal strains is known as the Poisson ratio ν

ν = −ε22
ε11

= −ε33
ε11

(2.48)

For instance, if only uniaxial stress σ11 is considered and σ22 = σ33 = 0, we get

ν =
λ

2(λ+ µ)
=

3(K/µ)− 2

2[3(K/µ) + 1]
(2.49)

According to Poirier [77], for most of the Earth’s crust λ = µ, and therefore ν = 0.25.

The velocities of a wave propagating through an isotropic solid, i.e., the longitudinal Vp

and transverse Vs velocities, are also a function of the Lamé coefficients

Vp =

(
λ+ 2µ

ρ

)1/2

Vs =

(
µ

ρ

)1/2

(2.50)
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with ρ as the specific mass. Also, one can notice that

Vp
VS

=

(
λ+ 2µ

µ

)1/2

(2.51)

The velocities are commonly written as

Vp =

√
K + 4

3G

ρ
, Vφ =

√
K

ρ
, Vs =

√
G

ρ
(2.52)

where Vφ is known as the bulk velocity. From equation (2.51) it is possible to write

ν in terms of the velocities

ν =

(
Vp
VS

)2
− 2

2

[(
Vp
VS

)2
− 1

] (2.53)

since ν = 0.25, we get Vp = Vs
√

3, which according to Poirier [77] is a common

relation for the Earth’s crust.

Other important elasticity relations are: The seismic parameter φ

φ =
dP

dρ
=
K

ρ
= V 2

p −
4

3
V 2
s (2.54)

The isothermal bulk modulus and adiabatic bulk modulus

KT =

(
−V ∂P

∂V

)
T

KS =

(
−V ∂P

∂V

)
S

(2.55)

KS −KT = αKTT

(
αKsV

Cp

)
(2.56)

where the fraction inside the brackets is known as the Grüneisen parameter

γ =
αKSV

Cp
=
αKTV

CV
(2.57)

and therefore

Ks

KT
= 1 + γαT =

Cp
CV

(2.58)

The isobaric and isochoric specific heat are represented by Cp and CV , respectively.
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2.2.2 The Voigt-Reuss-Hill Average

The elastic moduli (Bulk K and shear G) can be determined from the elastic constants

(Ci,j) and compliances (Si,j) of the crystal. A common approach is to estimate the upper

and lower bounds of the elastic moduli, namely, assuming uniform stress and uniform

strain states, and then obtain the arithmetic mean of these quantities. This is known

as the Voigt-Reuss-Hill (VRH) averaging scheme [105]. The Voigt average assumes that

strain is uniform throughout the system (upper bound). For a polycrystalline system is

defined as

KV =
1

9
[(C11 + C22 + C33) + 2(C12 + C23 + C13)] (2.59)

GV =
1

15
[(C11 + C22 + C33)− (C12 + C23 + C13) + 3(C44 + C55 + C66)] (2.60)

The Reuss bound assumes uniform stress and can be computed as

1

KR
= [(S11 + S22 + S33) + 2(S12 + S23 + S13)] (2.61)

15

GR
= [4(S11 + S22 + S33)− 4(S12 + S23 + S13) + 3(S44 + S55 + S66)] (2.62)

with the compliances Sij coming from inverting the elastic constant matrix Cij from

equation (2.43). Furthermore, for a given aggregate or ’rock’, the Voigt and Reuss

bounds depend on the molar fraction ζ of each mineral and can be calculated as

KV =
∑
i

ζiKi

GV =
∑
i

ζiKi

1

KR
=
∑
i

ζi
1

Ki

1

GR
=
∑
i

ζi
1

Gi

(2.63)
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where the subscript i indicates the number of different species in the sample. The

arithmetic average of the Voigt and Reuss bounds is known as the Hill average. Thus,

the VRH average of the elastic moduli are

KV RH =
KV +KR

2
GV RH =

GV +GR
2

(2.64)

The VRH average method is known to provide a very good estimate of the Earth’s

lower mantle aggregate moduli.

2.2.3 Birch-Murnahgan Equation of State

In thermodynamics, the state of matter is determined by equations relating properties

such as volume V , density ρ, pressure P , and temperature T . These equations are known

as equations of state (EoS). According to Poirier [77], the simplest isothermal EoS is

given by the bulk modulus relation of equation (2.45). Although, this relation is not

valid at high temperatures as it doesn’t take into account the strong dependence of K

with respect to temperature. Integrating the differential equation and letting K = K0,

we get

V = V0e
−P/K0 (2.65)

which describes the volume dependence with respect to pressure. However, a better

approximation for the effective local bulk modulus was proposed by Murnahgan

K =
1

3
(3λ+ 2µ+ P0) (2.66)

Assuming that λ and µ are linear functions of P0, we get

K =
1

3
(3λ0 + 2µ0) + kP0 (2.67)

Using equation (2.45), we get

dlnρ =
dP

K0 + kP0
(2.68)
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Integrating and letting P0 = P and K ′0 = (dK/dP )P=0,

ρ = ρ0

(
1 +

K ′0
K0

)1/K′0
(2.69)

which is known as the Murnahgan’s linear EoS [77]. Other EoS that can be obtained

in the linear elastic regime, is the Birch-Murnahgan EoS. For infinitesimal strains it can

be shown that

ρ0
ρ

=
V

V0
= (1 + 2f)−3/2 ≈ 1− 3f (2.70)

with f = −ε (compression). Therefore f → 0 for infinitesimal strains, and thus, the

differential volume of equation (2.70) would be dV ≈ −3V0df . The latter implies

9K0TV0 = lim
P→0

(
1

f

∂F

∂f

)
T

(2.71)

where K0T is the isothermal bulk modulus and F the Helmholtz free energy.

We now expand F in powers of f . Considering the unstrained energy to be zero and

recalling that the elastic energy is quadratic for infinitesimal strains, we get

F = a(T )f2 + b(T )f3 + c(T )f4 + ... (2.72)

For the second order BM equation we have F ≈ af2, with a = (9/2)K0TV0. Since

the pressure is

P = −
(
∂F

∂V

)
T

= −
(
∂F

∂f

)
T

df

dV
(2.73)

Also, differentiating (2.70), we get

dF

dV
= − 1

3V0
(1 + 2f)5/2 (2.74)

thus

P = 3K0T f(1 + 2f)5/2 (2.75)
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From (2.70), the compression in terms of the density ratio is

f =
1

2

[(
ρ

ρ0

)2/3

− 1

]
(2.76)

and replacing into (2.75), we get the second order Birch-Murnaghan (BM) EoS

PBM2 =
3K0T

2

[(
ρ

ρ0

)7/3

−
(
ρ

ρ0

)5/3
]

(2.77)

For the third order BM equation one simply includes the third order term of the

Helmholtz free energy as

F = a(T )f2 + b(T )f3 (2.78)

and following a similar derivation process as for the second BM EoS we obtain

PBM3 =
3K0T

2

[(
ρ

ρ0

)7/3

−
(
ρ

ρ0

)5/3
]

[
1 +

3

4
(K ′0 − 4)

[(
ρ

ρ0

)2/3

− 1

]] (2.79)

which is the third BM EoS.

2.2.4 The Mie-Debye-Grüneisen Model

An alternative approach to calculate the thermoelastic properties of minerals at high

P-T conditions, is to use the Mie-Debye-Grüneisen (MDG) model. This formulation is

based on the idea of the thermal pressure, which is the thermal contribution to PBM3

(2.79) and can be written as

P = PBM3 + ∆Pth (2.80)

with ∆Pth as the change in thermal pressure. This thermal pressure depends on the

Grüneisen parameter and the change in thermal energy Eth as

∆Pth =
γ(V )

V
(Eth(V, T )− Eth(V, T0)) (2.81)
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where the subscript zero designates the thermodynamic variable at ambient or initial

condition. The Grüneisen coefficient, in this case, depends on the volume via

γ(V ) = γ0

(
V

V0

)q
(2.82)

with q as a material constant. Furthermore, the thermal energy Eth is given by the

well known Debye energy expression [55]

Eth =
9kBT

4

θ3

∫ xD

0

x3

ex − 1
dx (2.83)

with θ as the Debye temperature

θ = θ0exp

(
γ0 − γ
q

)
(2.84)

and xD = θ/T . Hence, from (2.80), it can be shown that the bulk and shear moduli

are [90,91]

K = (1+2f)
5
2

[
K0 + (3K0K

′
0 − 5K0)f +

27

2
(K0K

′
0 − 4K0)f

2

]
+(γ+1−q)γ∆Eth−γ2ρ∆(CvT )

(2.85)

G = (1+2f)
5
2

[
G0 + (3K0G

′
0 − 5G0)f + (6K0G

′
0 − 24K0 − 14K0 +

9

2
K0K

′
0)f

2

]
−nsρ∆Eth

(2.86)

where

ns = −γ +
1

2

θ0
θ

(2f + 1)2(2γ0 + nso) (2.87)

and nso as a material constant. Also, recalling that the isochoric Debye specific heat

is given by

CV =
9kBT

3

θ3

∫ xD

0

x4ex

(ex − 1)2
dx (2.88)

and

∆(CV T ) = TCV (V, T )− T0CV (V, T0) (2.89)
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Other thermodynamic properties such as the thermal expansion coefficient α and

isobaric specific heat CP can be computed as

α =
γCV
KV

(2.90)

and

CP = CV (1 + αγT ) (2.91)

The MDG parameters for lower mantle minerals can be found in Table 2.1

Table 2.1: MDG parameters listed in Stixrude et al. [91] (*) and Kawai-Tsuchiya [52]
(**) for lower mantle minerals

Mineral V0(cc mol−1) KT0 (GPa) K’T0 θ0 (K) γ0 q0 G0 (GPa) G’0 ns0

*MgSiO3 24.45 251(3) 4.1 (1) 905(5) 1.57 (5) 1.1(3) 173(2) 1.7(0) 2.6(3)
*MgO 11.24 161(3) 3.8(2) 767(9) 1.36(5) 1.7(2) 131(1) 2.1(1) 2.8(2)
*CaSiO3 27.45 236(4) 3.9(2) 796(44) 1.89(7) 0.9(16) 157(12) 2.2(5) 1.3(10)
**CaSiO3 27.832 206.6 4.41 1100 1.567 0.84

2.2.5 Spin crossover softening

Understanding the fundamentals of how spin crossover of iron in fp induces the anoma-

lous behavior in the elastic moduli is important. Here we show the source of such

anomalies following the formulation proposed by Wu et al. [112]. The mixed spin (MS)

state can be defined as an ideal solid solution of the system in high spin HS and low

spin LS states. Therefore, the Gibbs free energy can be defined as

G = nGLS + (1− n)GHS + Gmix (2.92)

with n = n(P, T ) is the low spin fraction, i.e., the fraction of irons in LS state. Also,

GLS and GHS are the Gibbs free energies of LS and HS states, and Gmix is the free

energy of mixing. On the other hand, the elastic compliances Sij are given by

Sij = − 1

V

(
∂2G

∂σi∂σj

)
P,T

(2.93)
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Implementing equation (2.92) into (2.93) one gets

SijV = nSijLSVLS + (1− n)SijHSVHS −
(
∂GLS
∂σj

− ∂GHS
∂σj

)
∂n

∂σi
(2.94)

The first two terms of (2.94) give the weighted average of the compliances of HS

and LS states, and the last term only appears when the system is in mixed spin (MS)

state, i.e. ∂n
∂σi

causes the anomalies in the bulk modulus K (See for example Figure 2.5).

The reason is that the elastic constants C11 and C12 are the only ones that are affected

by the change of n due to an applied stress, while C44 is unaffected. Thus, the shear

modulus G do not display anomalous behavior. The compliances for fp (cubic crystal)

are

S11 = nS11
LSVLS + (1− n)S11

HSVHS −
1

9
(VLS − VHS)

∂n

∂P
,

S12 = nS12
LSVLS + (1− n)S12

HSVHS −
1

9
(VLS − VHS)

∂n

∂P
,

S44 = nS44
LSVLS + (1− n)S44

HSVHS

(2.95)

S11 and S12 display the anomalies since ∂n
∂σ1
6= 0. However, for S44, ∂n

∂σ4
= 0 since

n(σ4) is an even function of σ4.

2.2.6 The isentropic temperature gradient

Infinitesimal changes in entropy S(T, P ) are given by

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP (2.96)

Moreover, in an isentropic system, state changes at constant dS = 0 give(
∂S

∂T

)
P

dT = −
(
∂S

∂P

)
T

dP (2.97)

therefore (
∂S

∂T

)
P

(
∂T

∂P

)
S

= −
(
∂S

∂P

)
T

(2.98)
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and thus (
∂S

∂T

)
P

(
∂T

∂P

)
S

(
∂P

∂S

)
T

= −1 (2.99)

From Maxwell’s relations we know(
∂S

∂P

)
T

=

(
∂V

∂T

)
P

(2.100)

Also, the thermal expansion coefficient coefficient is formally defined as

α =
1

V

(
∂V

∂T

)
P

(2.101)

and the isobaric specific heat

CP = T

(
S

T

)
P

(2.102)

Replacing (2.100,2.101,2.102) into (2.99), we obtain the adiabatic gradient(
∂T

∂P

)
S

=
αV T

CP
(2.103)

Equation (2.103) shows how temperature changes adiabatically with respect to pres-

sure. This gradient is typically assumed to calculate the temperature gradient of the

Earth’s interior.

2.2.7 The Adams-Williamson equation and the Bullen’s parameter

The Bullen’s parameter and its relevance is discussed in chapter 4. Here we derive some

details about this parameter. As previously shown, the bulk modulus of a mineral under

adiabatic self compression is given by

KS = ρ

(
∂P

∂ρ

)
S

(2.104)

Hence

KS

ρ
=

(
∂P

∂ρ

)
S

= φ (2.105)
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where φ is the seismic parameter φ = V 2
P −

(
4
3

)
V 2
S . Furthermore, assuming a homo-

geneous media under hydrostatic changes in pressures with respect to depth

dP

dr
= −ρg (2.106)

where g and r are the acceleration due to gravity and depth, respectively. Thus

dP

dρ

dρ

dr
= −ρg (2.107)

and using equation (2.105)

1 = −φρ−1g−1dρ
dr

(2.108)

Equation (2.108) is known as the Adams-Williamson equation.

If the system is not adiabatic, i.e., equation (2.108) differs from the unity, we have,

η = −φρ−1g−1dρ
dr

= φ
dρ

dP
(2.109)

where η is the Bullen’s parameter [18].

2.3 Lower mantle minerals

As discussed in chapter 1, the main lower mantle phases are bdg (Al- Fe- bearing MgSiO3

pervoskite), CaSiO3 perovskite (CaPv), and fp (Mg,Fe)O [47,49,71]. We now look into

some detail, some of the structural and thermoelastic properties of these minerals.

2.3.1 Bridgmanite

This is the most abundant mineral phase making up approximately 70% of the lower

mantle’s volume. Hence, accurate knowledge about this phase is essential to understand

and model the lower mantle. Bdg is a perovskite (Pv) orthorhombic Pbnm structure

of the form ABO3, metastable below 23 GPa, where the Si atoms are located inside

the octahedra (B sites) and Mg atoms at the interstitial ‘A’ sites (Figure 2.1). The

ferrous Fe2+ iron always goes into the B site, while the ferric Fe3+ and Al can go to

either site. For Mg1−xFe2+x SiO3 no spin crossover occurs at lower mantle conditions
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Figure 2.1: MgSiO3 Pv Pbnm structure. Red/Blue/Orange/Purple spheres represent
Oxygen/Silicon/Magnesium/Iron-Aluminum. Figure produced using [69].

[11, 43, 44, 58, 83, 86], while for (Mg1−yFe3+y )(Si1−yFe3+y )O3, the ferric iron in the B site

can undergo spin crossover at lower mantle conditions [82].

For all the calculations shown in this manuscript, we used the thermoelastic prop-

erties from Shukla et al. [82, 86]. Figure 2.2 shows how well the ab-initio calculations

compare with experimental data, even at high pressures and temperatures [71]. Thus,

we believe that the results that we present here are quite robust.

2.3.2 Post-Perovskite phase

The Post-Perovskite (PPv) phase is presumably the most abundant mineral in the D”

region of the mantle, i.e., ∼ 300 km above the core mantle boundary. The conditions

at which the bdg Pv to PPv transition occurs are expected to be above ∼ 125 GPa

and 2500 K. The consequences on the thermoelastic properties and seismic observables

due this phase transition are studied in detail in chapter 5. The PPv phase is a highly

anisotropic layered structure, with a space group Cmcm, where the Mg and Fe atoms can

be located in the interlayer region (See Figure 2.3). Since its discovery in 2004 [70,99],

significant progress has been made to understand the thermoelastic properties of this
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compressive behavior of pristine, Al, Fe3+, Fe3+-Al, and Fe2+-bearing post-perovskite,
respectively (To be submitted [84]). Symbols in all figures correspond to experimental
values.
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mineral. However, there is still a limited amount of experimental data because of the

extreme conditions at which this phase exists. The PPv thermoelastic properties used

in our calculations are to be submitted in Shukla et al. [84] and the compression curves

with different bearing minerals can be seen in Figure 2.2.

Figure 2.3: Post-perovskite lamellar structure with space group Cmcm.
Red/Blue/Orange/Purple spheres represent Oxygen/Silicon/Magnesium/Iron-
Aluminum. Figure produced using [69].
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2.3.3 Ferropericlase

The MgO crystal has a cubic (rock-salt) structure with space group symmetry Fm3m,

where the magnesium atoms are located at corners and faces of the cube (See Figure

2.4). MgO is the primary end-member of ferropericlase (fp) Mg1−xFexO and the second

most abundant mineral in the lower mantle, which makes it a relevant phase to study.

Furthermore, the iron in fp undergoes through a spin crossover from high spin (HS) to

low spin (LS), which affects the thermoelastic properties of this mineral (Figure 2.5)

and thus, the elastic properties of the lower mantle as a whole. In this work we use fp

data from [112].

Figure 2.4: Ferropericlase structure. Red/Orange spheres represent oxy-
gen/(magnesium or iron) atoms. Figure produced using [69].

In chapters 3 and 4 we study in detail what are the consequences of this spin crossover

in the Earth’s lower mantle temperature and adiabaticity.
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Figure 2.5: Elastic moduli and velocities for Mg1−xFexO compared with experimental
data. Taken from [112].

.

2.3.4 CaSiO3 perovskite

The CaSiO3 perovskite (CaPv) phase makes up about 5% of the volume of the lower

mantle, which makes it an important phase to study. However, this phase is difficult to

study experimentally since it’s unquenchable to ambient pressure [107]. Moreover, it is

known to be a strongly anharmonic crystal, which makes QHA inadequate to determine

its thermoelastic properties. Therefore, the thermoelastic properties of this mineral are

typically computed via molecular dynamics simulations. At lower mantle conditions,

CaPv is a cubic structure with symmetry Pm3m, with the Ca atom located in the middle

of the unit cell surrounded by Si octahedra (See Figure 2.6). We reproduced the CaPv

properties using the MDG method, from the calculations by Kawai and Tsuchiya [52,53].

The compressive behavior of CaPv by Kawai and Tsuchiya [52,53] is not in agreement

with measurements done by Stixrude [91] and recent experimental results by Sun et

al. [92]. However, Kawai and Tsuchiya [52,53] do report, consistently, the temperature

dependence for the shear modulus of this mineral.
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Figure 2.6: CaSiO3 structure. Light/Dark blue and red sheres represent calcium/silicon
and oxygen atoms. Figure produced using [69]
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Figure 2.7: (a) CaSiO3 compression curves and (b) moduli for different temperatures.
Solid lines represent data obtained using the Mie-Debye-Grüneisen (MDG) model with
EoS parameters from [91] (SLB, see also Table 2.1). Dashed lines are results calculated
using parameters from Kawai and Tsuchiya [52, 53] (KT). Dots correspond to direct
results reported by [52, 53]. (c) CaSiO3 compression curves and (d) bulk modulus
for different temperatures. Solid lines represent data obtained using the Mie-Debye-
Grüneisen (MDG) model with EoS parameters from [92]. Dashed lines are results
calculated using parameters from [52]. Dots and error bars correspond to experimental
results reported by [92].
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2.4 Phase boundary of binary systems: The Pv to PPv

transition

The stable state of a system is that at which the minimum possible value of Gibbs free

energy G is achieved. Thus, to compute the phase boundary of bridgmanite going from

its Pv to the PPv configuration, we used the Gibbs free energy of these systems along

with the standard state approach. The standard state of a component, or mineral in our

case, is merely a reference state to which the component in any other state is compared.

Therefore, any state can be chosen to be the standard state and its choice is usually

made on a convenience basis [32].
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Figure 2.8: Schematic of Gibbs free energy curves for a binary system A-B for Pv and
PPv solid solutions.

Figure 2.8 shows a schematic of the two Gibbs free energy curves of the Pv and

PPv states in a A-B binary system, at a given fixed pressure and temperature. More

explicitly, let the end members be A: MgSiO3, B: Fe2+SiO3, Fe3+2 O3, Al2O3, or

Fe3+AlO3, and x denotes the bearing element concentration. The Gibbs free energies

of the Pv and PPv are
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G Pv(T, P, x) = x(G Pv
B − G PPv

B ) + kBT (xln[x] + (1− x)ln[1− x]) (2.110)

G PPv(T, P, x) = (1− x)(G PPv
A − G Pv

A ) + kBT (xln[x] + (1− x)ln[1− x]) (2.111)

In Figure 2.8, the stable states of pure A and B are located at G = 0. Also, notice

that at point a xA=1 and at point b xB=1. Point c represents the Gibbs free energy of

solid A in a PPv state, relative to A in a Pv configuration. Similarly, point d represents

the Gibbs free energy of solid B in Pv relative to B in PPv. At composition e, the

tangent to the curve for the Pv solution is also tangent to the PPv composition at point

f. This means that both compositions are in equilibrium and that the Pv and PPv

phases coexist in the e - f region. The loci of e and f, as temperature varies, will trace

out the Pv and PPv boundaries. Moreover, the molar concentrations of the bearing

elements indicated by the symbol (*); e.g. Fe2+, Fe3+, Al3+, or (Fe3+, Al3+), in each

phase are given by

xPPv∗ =
1− e

GPPvA −GPvA
kBT

e
GPPv
B

−GPv
B

kBT − e
GPPv
A

−GPv
A

kBT

(2.112)

xPv∗ = xPPv∗ (e
GPPvB −GPvB

kBT ) (2.113)

which allows us to compute PPv fraction nPPv using the lever rule

nPPv =
x− xPv∗

xPPv∗ − xPv∗
(2.114)

In chapter 5 we make use of the above formulation to determine the Pv-PPv phase

boundaries.



Chapter 3

Influence of the iron spin

crossover in ferropericlase on the

lower mantle geotherm

The iron spin crossover in ferropericlase introduces anomalies in its thermodynamics

and thermoelastic properties. In this chapter we investigate how these anomalies can

affect the lower mantle geotherm using thermodynamics properties from ab initio calcu-

lations. The anomalous effect is examined in mantle aggregates consisting of mixtures

of bridgmanite, ferropericlase, and CaSiO3 perovskite, with different Mg/Si ratios vary-

ing from harzburgitic to perovskitic (Mg/Si∼1.5 to 0.8). We find that the anomalies

introduced by the spin crossover increase the isentropic gradient and thus the geotherm

proportionally to the amount of ferropericlase. The geotherms can be as much as ∼ 200

K hotter than the conventional adiabatic geotherm at deep lower mantle conditions.

Aggregate elastic moduli and seismic velocities are also sensitive to the spin crossover

and the geotherm, which impacts analyses of lower mantle velocities and composition.

39
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3.1 Introduction

One of the grand challenges in geophysics is to resolve the thermal structure of the

Earth’s interior. This is clearly not an isolated problem but a fundamental one to

clarify the dynamics, evolution, and chemical stratification of the planet [67, 71, 109].

Besides, a one dimensional (1D) temperature profile is an abstract construct – a spheri-

cally averaged reference temperature model consistent with spherically averaged velocity

and composition profiles. To date, numerous one dimensional temperature profiles, or

geotherms, have been suggested and calculated by various means and using different as-

sumptions. For example, these include: seismological observations [15], mineral physics

input [4, 7, 12] computations [25, 50, 104] or measurements [91], geodynamic simula-

tions [13,66,103], or a combination of them [27,38]. Differences between them arise not

only from the technique or input data, but from the constraints to which they are sub-

jected to, i.e., the melting temperature of iron, phase transitions, seismic discontinuities,

convection processes, and lower mantle composition. In addition, lateral velocity het-

erogeneities point to lateral temperature and/or composition variations, a very difficult

problem that still awaits, e.g., advances in geodynamic simulations. Thus, construction

of one dimensional temperature profiles must be seen as an insufficient but a necessary

exercise to advance this topic.

An essential aspect in constructing a geotherm, is to define a suitable potential

temperature, i.e., the boundary condition for integration of the adiabatic gradient. Most

geotherms are anchored to depths associated with seismic discontinuities (e.g. the ∼ 660

km discontinuity), where phase transitions occur [77]. For the top of the lower mantle,

we assumed a temperature of 1873 K at 23 GPa as in Brown and Shankland [15] (B&S)

(See also [1]). The latter is an adiabatic temperature profile constructed from the Debye

entropy formulation [14] and the acoustic velocities from the preliminary reference Earth

model (PREM) [29]. This geotherm is considered by many to be the standard adiabatic

geotherm for the lower mantle. It’s important to point out that the conditions at

which ringwoodite dissociates into bridgmanite (bdg) and ferropericlase (fp) are still

somewhat controversial [23, 48, 51, 115]. Thus, the appropriate potential temperature

for the lower mantle geotherm is debatable. Several other geotherms, e.g., [4], [12]

and [7] were obtained by extrapolating the temperature from the inner and outer core
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geotherm using the phase diagram of iron. Additionally, geotherms constructed from ab

initio calculations include different approaches; for instance, [25] and [50] calculated the

temperatures needed to fit the bulk modulus of pyrolite to PREM. Others such as [98],

constructed the geotherm from the set of temperatures of different isobars at which the

vibrational entropy of bridgmanite was constant.

In this chapter, we integrated the isentropic gradient formula using thermodynamics

properties of minerals obtained by ab initio calculations, starting from the standard

boundary condition at 660 km depth, i.e., the experimentally determined post-spinel

transition conditions [1], also used by Brown and Shankland [15]. The relevant lower

mantle phases are bdg (Al- Fe- bearing MgSiO3 pervoskite), CaSiO3 perovskite (CaPv),

and fp (Mg,Fe)O [47, 49, 71]. These minerals form a variety of aggregates commonly

characterized by their Mg/Si molar ratio. However, the relative abundances of these

aggregates in the lower mantle is still debatable [47, 49, 71, 104, 110, 113]. Here we

derived isentropes for likely mantle aggregates such as harzburgite (Mg/Si ∼ 1.56) [10],

chondrite (Mg/Si ∼ 1.07) [33], pyrolite (Mg/Si ∼ 1.24) [67], peridotite (Mg/Si ∼ 1.30)

[39], and perovskite only (Mg/Si ∼ 0.82) [109] to asses the effect of Mg/Si ratio on

the isentrope. The presence of FeO in these aggregates needs special consideration. It

is well known that ferrous iron (Fe+2) in fp exhibits a spin crossover at lower mantle

conditions [9,89,100], which introduces anomalies in its thermodynamics [106,111] and

thermoelastic properties [6, 24, 61, 71, 112, 113]. Here we investigated in details how

these anomalies affect the isentropes of these aggregates in the lower mantle. While

some geodynamic simulations have shown the potential effect of spin crossover on the

lower mantle adiabat [13, 103], clarification of this effect in the isentropes of several

aggregates is a first order question in advancing the problem of mantle temperatures.

Finally, we examined the effect such spin crossover induced thermal anomalies have on

aggregate velocities.

3.2 Method and Calculation Details

The thermoelastic properties of bdg Mg1−xFe2+x SiO3, (Mg1−xAlx)(Si1−xAlx)O3, (Mg1−x

Fe3+x )(Si1−xAlx)O3, (Mg1−xFe3+x )(Si1−xFe3+x )O3 (x = 0 and 0.125), and fp Mg1−yFeyO

(y = 0 and 0.1875) were obtained from [82,86] and [112] respectively. Results for other
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x and y concentrations shown in this work were linearly interpolated and only high spin

(HS) Fe2+ -bdg was used since no spin crossover in Fe2+ occurs in bdg at lower mantle

conditions [11, 30, 42–45, 58, 83, 86]. For CaPv, thermoelastic properties from [52, 53]

were reproduced within the Mie-Debye-Grüneisen [90] formalism (see chapter 2). We

considered mixtures of SiO2 - MgO - CaO - FeO - Al2O3 for relevant mantle aggregates;

namely, harzburgite [10], chondrite [33], pyrolite [67], peridotite [39], and perovskitic

only [109].

Although the Fe-Mg partitioning coefficient KD = x/(1−x−z)
y/(1−y) between bdg and fp,

is expected to vary throughout the lower mante because of spin crossover [49, 76], we

have examined compositions with a uniform KD with values of 0.5 and 0.25. For the

aggregates shown in this manuscript, a KD of 0.5 was used as it’s more consistent with

those reported by [49] and [76]. Aggregate adiabats with KD of 0.25 are shown in the

appendix chapter - Figure A.9. Also, we show in Tables 3.1 and 3.2 the weight, molar,

and volume percentages of oxides and minerals in the aggregates considered, and in

Tables 3.3 and 3.4 their corresponding adiabats.

The isentropes of different minerals and aggregates were found from their isentropic

gradients computed as, (
∂T

∂P

)
S

=
αaggVaggT

Cpagg
(3.1)

where the aggregate quantities Vagg =
∑

i ζiVi, αagg =
∑

i αiζiVi/Vagg, and Cpagg =∑
i ζiCpi are the aggregate volume, thermal expansion coefficient, and isobaric specific

heat, respectively. Here, ζi, Vi, αi, and Cpi represent respectively the molar fraction,

molar volume, thermal expansion coefficient, and isobaric specific heat of the ith mineral

in the mixture. All the isentropes, here loosely referred as geotherms, were compared

with the adiabatic [15] and superadiabatic [4] geotherms. Once these geotherms were

obtained, we computed aggregate velocities along aggregate specific geotherms using the

Voigt-Reuss-Hill (VRH) average of elastic moduli and compared with PREM values [29].

Uncertainties resulting from our ab initio calculations due to k-point sampling, en-

ergy cutoff, and exchange correlations, are systemic in nature. Therefore, if such uncer-

tainties induced further uncertainties in the calculated temperature profiles, these were

consistently introduced in each of the minerals of a given aggregate. Thus, the overall

conclusion of this study is unlikely to change irrespective of such uncertainties.
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3.3 Results and Discussion

3.3.1 Lower mantle mineral isentropes

To unravel the possible consequences of the iron spin crossover in fp (and

bdg) on the lower mantle geotherm, first we calculated using equation

(3.1), the isentropes of (Mg0.875Fe0.125)SiO3, (Mg0.875Al0.125)(Si0.875Al0.125)O3,

(Mg0.875Fe3+0.125)(Si0.875Al0.125)O3, (Mg0.875Fe3+0.125)(Si0.875Fe3+0.125)O3, CaSiO3, and

(Mg0.8125Fe0.1875)O, with iron in high spin (HS) state and in a mixed spin (MS) state

of HS and low spin (LS) states (See Figure 3.1 and table 3.3). Here, temperature dif-

ferences among all the different bdgs in HS are only about ∼ 2 K at 125 GPa, while

differences with bdg in MS state (∼ 50 K) and CaSiO3 (∼ 20 K) were more significant

(See Figure 3.1a). For fp however, the isentropes in MS and HS states differ by ∼ 260

K at deep lower mantle pressures (Figure 3.1a). Hence, spin crossover in fp induces the

most dramatic effect on the lower mantle temperature profile. The anomalies caused by

the spin crossover on V ,α, and Cp (See Figures 3.1b to 3.1d) on the adiabatic gradient of

fp (Figure 3.1e) are responsible for such temperature increase. Note that for α and Cp,

the spin crossover anomalies correspond to broad peaks at similar pressure ranges, but

do not cancel during the adiabatic gradient integration owing to significant differences

in their magnitudes (Figures 3.1c and 3.1d).

3.3.2 Effect of Mg/Si ratio and fp spin crossover on the geotherm

We now investigate the isentropes of aggregates likely to be present in the lower mantle.

Their compositions are shown in Figure 3.2. The horizontal charts in Figure 3.2a)

represent the oxides mol% of SiO2 - MgO - CaO - FeO - Al2O3 in the aggregate, while

the pie charts in Figure 3.2b) show the mol% of each mineral (bdg, fp, CaPv) in the

aggregate (See also tables 3.1 and 3.2 ). Each composition is characterized by its Mg/Si

molar ratio, and it is clear that as Mg/Si decreases, so does the amount of fp.
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In what follows, we did not include Fe2O3 in any of the aggregates since the oxygen

fugacity of the deep mantle, and thus the amount of ferric iron (Fe3+), is still an open

question beyond the scope of this manuscript. However, we investigated the possible

effect of spin crossover in bdg on a pyrolitic composition (See Figure A.10). Here, we

assumed that all iron in bdg is ferric and equally distributed into its A and B sites.

Spin crossover in bdg increases the temperature by ∼ 13 K in this case. Furthermore,

in the presence of Al2O3, ferric iron is expected to enter into the A site of bdg and spin

crossover gets suppressed in this case [42,45,82,85]. Moreover, as it was shown in Figure

3.1a), the isentropes of (Mg1−xFe3+x )(Si1−xAlx)O3 and (Mg1−xFe2+x )SiO3 only differ by

∼ 6 K at 125 GPa, and therefore, the aggregate adiabats between these cases will not

vary significantly.

We used the CaPv thermoelastic properties from [52,53], which are not in the best

agreement with recent experimental results conducted by [92] (Figure 2.7). This choice

of CaPv was made for consistency since [52, 53] reported a shear modulus, which not

only is significantly smaller than that reported by [91] (Figure 2.7), but also helped to

reduce discrepancies with PREM values for all aggregates containing CaPv. Besides,

the CaPV parameters reported by [92] did not introduce any major difference (less than

∼ 2 K at 125 GPa) when implemented to calculate the aggregate adiabat (Figure A.5).

We first examined the temperature increments caused by the spin crossover in all

aggregates in which fp does (MS) and does not (HS) undergo spin crossover (Figure

3.3). Adiabatic geotherms and gradients (insets) are shown in Figures 3.3a to 3.3d.

The temperature differences between HS and MS at high pressures (P ∼ 125 GPa) for

harzburguite (∼ 50 K) were greater than those for peridotite (∼ 40 K), pyrolite (∼ 30

K), and chondrite (∼ 20 K) owing to harzburgite’s higher Mg/Si. We also notice that

MS gradients (insets) for all aggregates deviate from HS at pressures of ∼ 60 GPa, as

a consequence of the spin crossover, and the gradient decreases in proportion to the

Mg/Si ratio.

The isentropes of all aggregates were compared with reference geotherms by Brown

and Shankland [15] and Anderson [4] in Figure 3.4 (See also Table 3.4). All calculated

adiabats were anchored to 1873 K at 23 GPa (See [1, 15]). At deep lower mantle con-

ditions, harzburgite achieves the highest temperature, which is about ∼ 200 K higher

than that of B&S. Temperatures then decrease with Mg/Si ratio, i.e., the aggregate’s
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fp fraction. Such temperature variations are also expected when KD is reduced, i.e., fp

containing a higher iron content. For this scenario, the crossover anomaly in the adiabat

variables (α, Cp, and V ) will be more pronounced and consequently leading to hotter

temperatures (See Figure A.10).
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The relative temperature differences ∆T/T between fp in MS and HS states from

geodynamic simulations as in [13,103], are in overall agreement with our predictions de-

spite the differences in the details of the aggregate’s KD and calculations. For instance,

simulations by Bower et al. [13] using Mg83Fe17O, indicated a maximum relative tem-

perature difference ∆T/T of ∼ 10% at 113 GPa (∼ 2500 km depth). As shown in Figure

3.1a), the temperature difference at 113 GPa between fp in MS and HS states is about

∼ 200 K, which corresponds to a ∆T/T ∼ 8%. Given the different nature and details of

these calculations the agreement is outstanding. Furthermore, at the same pressure of

113 GPa, geodynamic simulations by Vilella et al. [103] inferred a MS - HS temperature

difference of ∼ 20 K (∆T/T ∼ 0.6%) and 50 K (∆T/T ∼ 1.6%) for Al-bearing and

Al-free pyrolite aggregates, respectively. Our results showed a temperature increment

of ∼ 27 K, which corresponds to ∆T/T ∼ 1.1%, for both Al-bearing (Figure 3.3c) and

Al-free pyrolite. However, the MS - HS comparisons by Vilella et al. [103] were done for

the same aggregate with different KD, i.e., their Al-free pyrolite in HS had a KD of 0.4

and in MS of 0.02, while for Al-bearing pyrolite, KD was 0.5 and 0.4 for HS and MS,

respectively. Despite the differences in details there is also a good overall agreement in

this case.

3.4 Geophysical Significance

The elastic moduli (KS ,G), acoustic velocities (VP ,Vφ,VS), and densities (ρ) of all the

aggregates along their own isentropes are shown in Figure 3.5. In aggregates containing

fp, KS softening due fp spin crossover (See [112, 113]) is observed and varies propor-

tionally to the Mg/Si ratio (Figure 3.5a). Moreover, G does not exhibit any anomalous

behavior and its value for different compositions converges to similar values at deep

lower mantle pressures. For aggregates with higher Mg/Si ratio, calculated G revealed

a better agreement with PREM values, while the KS values for chondrite and pyrolite

were closer to PREM values (Figure 3.5a). The signature of KS anomalies were also

obvious in the compressional (Vp =
√

(KS + 4
3G)/ρ) and bulk (Vφ =

√
KS/ρ) veloci-

ties, while shear velocities VS =
√
G/ρ were unaffected (See Figure 3.5b). The relative

velocity deviations (∆VP%, ∆Vφ%, and ∆VS%) from PREM values are shown in Figure

3.5c). ∆VP% and ∆Vφ% decreased with increasing Mg/Si ratio, and reached negative
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values mainly due fp spin crossover. However, ∆VS% for all the aggregates was positive

and the deviations from PREM values for pyrolite, perditotite, and harzburgite were

the lowest (Less than 1%). The relative density deviations (∆ρ) reduced with increasing

pressure (Figure 3.5c). For compositions with fp, the volume collapse caused by fp spin

crossover [106], seemed to reduce such deviations further.

Moreover, as discussed in section 3.3.2, the iron spin crossover in fp raises the ag-

gregate’s geotherm in proportion to its fp content (or to the iron content in fp). This

temperature boost can affect analyses of the lower mantle composition. Figures 3.6a)

and 3.6a’) show peridotite and pyrolite’s elastic moduli along their own geotherms and

the B&S geotherm. Although not substantial, relative deviations from PREM varied

depending on the geotherm used. For the bulk modulus ∆KS% in Figures 3.6b) and

3.6b’), the relative deviations from PREM were the same along both geotherms until

pressures lower than 80 GPa, while for the shear modulus relative deviations ∆G%,

results along the self-consistent geotherm (Figures 3.6c and 3.6c’) exhibited lower devi-

ations from PREM throughout the whole lower mantle. Such details suggest that the

aggregate thermoelastic properties along the self-consistent geotherm should sharpen

uncertainties in analyses of lower mantle composition.

3.5 Conclusions

We presented a set of adiabatic geotherms for individual minerals and likely lower man-

tle aggregates under realistic pressure and temperature conditions. We showed that

the spin crossover in ferropericlase introduces an anomaly in its isentrope similar to

“superadiabaticity”. This effect increased the adiabatic temperature gradient in differ-

ent aggregates in proportion to their ferropericlase content or Mg/Si ratio. Velocities

of aggregates with compositions varying from perovskitic to harzburgitic along their

self-consistent geotherms exhibited deviations from PREM velocities within ± ∼ 2%.

However, pyrolitic and peridotitic compositions displayed the best fit with respect to

PREM values. The elastic moduli, velocities, and densities of these aggregates along

their own self-consistent geotherms tend to display smaller deviations from PREM (up

to ∼ 1% less), than those along standard geotherms such as Brown and Shankland [15].

Results from this chapter can also be found in [101].
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Chapter 4

Bullen’s parameter as a seismic

observable for spin crossovers in

the lower mantle

Elastic anomalies produced by the spin crossover in ferropericlase have been documented

by both first principles calculations and high pressure-temperature experiments. The

predicted signature of this spin crossover in the lower mantle is, however, subtle and

difficult to geophysically observe within the mantle. Indeed, global seismic anomalies

associated with spin transitions have not yet been recognized in seismologic studies of

the deep mantle. A sensitive seismic parameter is needed to determine the presence

and amplitude of such a spin crossover signature. In this chapter, the effects of spin

crossovers on the Bullen’s parameter, η, are assessed for a range of compositions, ther-

mal profiles, and lateral variations in temperature within the lower mantle. Velocity

anomalies associated with the spin crossover in ferropericlase span a depth range near

1,000 km for typical mantle temperatures. Positive excursions of Bullen’s parameter

with a maximum amplitude of ∼ 0.03 are calculated to be present over a broad depth

range within the mid-to-deep lower mantle: these are largest for peridotitic and harzbur-

gitic compositions. These excursions are highest in amplitude for model lower mantles

with large lateral thermal variations, and with cold downwellings having longer lat-

eral length-scales relative to hot upwellings. We conclude that predicted deviations in

55
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Bullen’s parameter due to the spin crossover in ferropericlase for geophysically relevant

compositions may be sufficiently large to resolve in accurate seismic inversions of this

parameter, and could shed light on both the lateral variations in temperature at depth

within the lower mantle, and the amount of ferropericlase at depth.

4.1 Introduction

The adiabatic nature of the convecting mantle is a frequently used concept in the geo-

physical sciences. For instance, equation of state parameters, which are used to calculate

the elastic and thermodynamic properties of minerals at mantle conditions, are com-

monly assumed to be adiabatic within the convecting mantle, e.g., the adiabatic bulk

modulus and its derivative. However, various geodynamic simulations and seismological

models [19,29,54,64–66] suggest that the mantle is regionally nonadiabatic, particularly

in the shallow and deep mantle regions, and in some cases, at mid lower mantle pres-

sures. The latter is important because deviations from adiabaticity within the mantle

provide insights into temperature gradients, heat flux, thermal history, thermal bound-

ary layers, phase transitions, chemical stratification, and compositional heterogeneities.

Therefore, knowledge about the degree of adiabaticity of the mantle helps us to constrain

its composition and thermal structures related to mantle convection [65].

A common observable that quantifies the adiabaticity level of the mantle is Bullen’s

parameter, η. Introduced and developed by Bullen [17, 18], η is a measure of the ratio

between the actual density increase with pressure within the Earth (as constrained by a

combination of seismology, the Earth’s moment of inertia, and mass) with respect to the

profile derived from adiabatic self-compression. As such, it is expected to be unity where

the mantle is homogeneous, adiabatic, and free of phase transitions. Thus, deviations

of η from unity (generally ∼ ± 0.1 or less), indicate super(sub)adiabatic regions, and

consequently, the presence of thermal boundary layers, compositional variations, or

phase transitions. Moreover, there is also the possibility that due to internal heating

within the mantle, the mantle may be systematically subadiabatic [19].

Evaluations of η in geodynamic simulations are generally done by probing the pa-

rameter space associated with plausible convection models. This includes examining
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the effects of possible variations of the thermal conductivity, thermal expansion coef-

ficient, viscosity, internal heating, and heat flux from the core, each of which directly

impact the inferred geotherms [19, 65, 66]. For instance, if internal heating is relatively

significant, subadiabaticity is expected. Additionally, differences in elastic properties

between individual phases within an aggregate can also produce variations in Bullen’s

parameter, and hence apparent deviations from adiabaticity. This is a bulk attenua-

tion effect. Specifically, bulk attenuation phenomena are attributed to internal shear

stresses generated from the local mismatch of the elastic moduli of neighboring grains

in a given aggregate. One formulation of bulk attenuation by Heinz et al. [34] charac-

terizes it through the ratio of the adiabatic bulk modulus KS and an effective modulus

(Reuss bound) KE , since the mantle can be assumed to be under hydrostatic pressure.

Attenuation is a complicated problem to tackle, because it involves calculating complex

moduli with an associated time dependency [16, 34, 35]. Such bulk attenuation effects

are beyond the scope of this study, since the calculations we conduct are not time-

dependent, but certainly needs to be addressed to understand systematic deviations of

Bullen’s parameter from 1. Here, we study how anomalies in bulk modulus induced

by spin crossovers affect the Bullen’s parameter, and hence inferred adiabaticity of the

lower mantle.

Elastic anomalies produced by the spin crossover in ferropericlase (fp) and bridg-

manite (bdg), have been documented by both first principles calculations and high

pressure-temperature experiments [6,9,24,42,45,61,71,82,85,89,100,106,111–113]. The

predicted signatures of this spin crossover in the lower mantle are subtle. Despite the

fact that thermally induced velocity heterogeneities associated with this spin crossover

appear to correlate statistically with seismic tomographic patterns observed in deeply

rooted plumes [113], spherically averaged anomalies have not yet been recognized in

seismologic studies of the deep mantle. This may be due to difficulties associated with

resolving gradual changes in the slopes of seismic velocities as a function of depth, and

the trade-offs involved in seismic inversions of depth-dependent velocity and density

structures. In particular, velocity anomalies associated with the spin crossover in fp are

anticipated to span a depth range greater than 1000 km at mantle temperatures. Thus,

a sensitive seismic parameter is needed to determine the presence or absence of this

spin crossover signature, which would in turn shed light on the amount of ferropericlase
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in the lower mantle. Bullen’s parameter η is an ideal candidate as it relates seismic

wave speeds with density variations, and sensitively records deviations from adiabatic-

ity. Moreover, deviations from Bullen’s parameter can be readily identified because it

has a clear reference value (unity) in an adiabatic mantle that is heated from below. We

calculated one dimensional perturbations of η due to changes in composition, tempera-

ture, and spin crossover. We achieved this by computing η of different relevant mantle

aggregates along their own adiabats. We also approximate lateral variations in tem-

perature by modeling differing areas and temperature differences between upwellings

and downwellings. The mantle phases of the aggregates considered are bridgmanite

(bdg: Al- Fe- bearing MgSiO3 perovskite), CaSiO3 perovskite (CaPv), and ferroperi-

clase (fp: (Mg,Fe)O). The aggregates have Mg/Si ratios that range from 0.82 to 1.56

and are harzburgite (Mg/Si ∼ 1.56) [10], chondrite (Mg/Si ∼ 1.07) [33], pyrolite (Mg/Si

∼ 1.24) [67], peridotite (Mg/Si ∼ 1.30) [39], and perovskite only (Mg/Si ∼ 0.82) [109].

The predicted deviations in η due to the spin crossover are comparable to previously

reported variations [19, 64–66], and may be sufficiently large to turn up in accurate

seismic inversions of this parameter.

4.2 Method and Calculation Details

We used bdg Mg1−xFe2+x SiO3, (Mg1−xAlx)(Si1−xAlx)O3, (Mg1−xFe3+x )(Si1−xAlx)O3,

(Mg1−xFe3+x )(Si1−xFe3+x )O3 (x = 0 and 0.125) and fp Mg1−yFeyO (y = 0 and 0.1875)

thermoelastic properties from [82, 86] and [112]. Results for other x and y values were

obtained by linear interpolation. All compositions account for the spin crossover in

fp unless otherwise noted, i.e., bdg’s iron (ferrous and/or ferric) is in the high spin

(HS) state and fp is in a mixed spin (MS) state of HS and low spin (LS) states. For

CaPv, we used thermoelastic properties from [52, 53], which were reproduced within

the Mie-Debye-Grüneisen [90] formalism. The mantle aggregates in this study, namely,

harzburgite [10], chondrite [33], pyrolite [67], peridotite [39], and perovskititic only [109],

are mixtures within the SiO2 - MgO - CaO - FeO - Al2O3 system (ignoring alkalis and

TiO2 is not anticipated to resolvably affect the results). In addition, the Fe-Mg partition

coefficient KD = x/(1−x−z)
y/(1−y) between bdg and fp, which is known to be affected by the

spin crossover [49, 76], was assumed to be uniform throughout the mantle with a value
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of 0.5. Further details about these compositions can be found in chapter 3.

The adiabats of the different minerals and aggregates were integrated from their

adiabatic gradient, (
∂T

∂P

)
S

=
αV T

Cp
(4.1)

We denote the molar fraction, molar volume, molar mass, thermal expansion coef-

ficient, and isobaric specific heat of the ith mineral in the mixture as ζi, Vi, Mi, αi,

and Cpi respectively. The aggregate properties such as volume, thermal expansion

coefficient, and isobaric specific heat are then V =
∑

i ζiVi, α =
∑

i αiζiVi/V , and

Cp =
∑

i ζiCpi . The adiabatic aggregate bulk moduli KS were obtained from the Voigt-

Reuss-Hill (VRH) average. Moreover, the aggregate density ρ =
∑

i ζiMi/V and seismic

parameter φ = KS/ρ were calculated along the aggregate adiabat, in order to compute

adiabatic changes of density with respect to pressure as,

η = φ
dρ

dP
(4.2)

where η is the Bullen’s parameter. If η = 1 the mantle is homogeneous and adiabatic,

whereas values of η > 1 can indicate a phase change as ρ varies more rapidly with depth

than predicted by the adiabat. Furthermore, values of η < 1 may signify the presence

of a thermal boundary layer or substantial internal heat production. Details about

equation (4.2) can be found in chapter 2.

4.3 Results and Discussion

4.3.1 Observations of η in the lower mantle

Figure 4.1 shows different η calculations from previous geodynamic [19, 65, 66], seismic

[28,29,54], and seismic plus mineral physics models with a priori starting conditions [64].

Overall, η oscillates between values of ∼ 1.04 to 0.96 for most of these models, except for

the AK135F model [54], which displays the largest fluctuations. AK135F exhibited an

average value of η ∼ 0.92 from 1000 km to 2700 km in depth, and variations in η above

and below those depths were at least of the order of ∼ 0.1, which is substantially larger

than the other inversions and calculations. For other seismic models such as PEM [28]
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and PREM [29] such large fluctuations are not observed, but they could be suppressed by

the continuity requirements of the polynomial formulations of these models. However,

the Bullen’s parameters of these seismic models do suggest the presence of a thermal

boundary layer at the bottom of the lower mantle, as shown by the negative slope of

all models in the bottommost hundred to few hundred km of the mantle. Notably, for

the mineral physics plus inverse model calculation by Mattern et al. [64], η values less

than one from 800 km to 1300 km were attributed to iron depletion from their initially

pyrolitic compositional model.

Two and three dimensional geodynamic calculations of η were first done by Matyska

and Yuen [65,66], where the effect of varying parameter space properties, such as thermal

conductivity, thermal expansion coefficient, and viscosity, lead to different perturbations

in η, but with an average value of ∼ 1.01. This average value is in general agreement with

other geodynamic calculations by Bunge et al. [19], which also showed that the presence

of internal heat sources lead to subadiabatic regions. Other thermal contributions, like

core heating, cause superadiabatic temperature gradients at the bottom of the mantle

and thus the presence of a thermal boundary layer, as manifested by the negative slopes

of η near the base of the mantle.

4.3.2 Spin-crossover effect on the adiabaticity of the lower mantle

We studied the effect of spin crossovers on lower mantle adiabaticity by examining η

excursions for different lower mantle aggregates along their self consistent adiabats. All

of the adiabats of the different aggregates are listed in Table 3.4 (See also [101]). Figure

4.2 and Table 4.1 shows the variations of η only due to the spin crossover in fp: only

a portion of trivalent iron in bdg is anticipated to undergo a spin transition within the

mantle (e.g., [22] and [42,45]). For compositions with fp, fluctuations in η were ∼ 0.02

max, which are well within the variations in seismological observations and geodynam-

ical calulations shown in Figure 4.1. Furthermore, larger deviations from adiabaticity

occur as the aggregate’s Mg/Si ratio, i.e., fp content, is increased. The sensitivity to

Mg/Si content of the Bullen’s parameter maximum near 1900 km depth, induced by the

spin crossover, is relatively large: peridotitic and harzburgitic compositions have an η

anomaly which is nearly twice that of the chondritic composition. The η excursions for

the perovskitic composition, Pv only, depict the profile of a composition without fp in
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Dziewonski-Anderson, 1981 *(PREM)

Dziewonski et al., 1975 * (PEM)

Kennett et al., 1995 + Montagner-Kennett, 1996 * (AK135F)

Mattern et al., 2005 ** 

Bunge et al., 2001 *** (no core heating)

Bunge et al., 2001 *** (core heating)

Matyska-Yuen, 2002 ***

** Mineral physics + Inverse model
* Seismic model

*** Geodynamic simulation

Figure 4.1: Bullen’s parameter η calculations for seismic, geodynamic, and mineral
physics models.
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the lower mantle.

Table 4.1: Bullen’s parameter η for aggregates with fp in MS state.

Perovskite Only Chondritic Pyrolite Peridotite Harzburgite
Pressure (GPa) η η η η η

23 0.9983 0.9989 1.0008 0.9990 0.9996
30 0.9983 0.9981 0.9996 0.9978 0.9981
40 0.9984 0.9974 0.9985 0.9967 0.9967
50 0.9985 0.9976 0.9985 0.9968 0.9968
60 0.9986 0.9987 0.9998 0.9986 0.9987
70 0.9987 1.0020 1.0041 1.0038 1.0046
80 0.9987 1.0073 1.0116 1.0125 1.0148
90 0.9990 1.0091 1.0145 1.0157 1.0187
100 0.9990 1.0054 1.0092 1.0097 1.0117
110 0.9991 1.0016 1.0036 1.0032 1.0038
120 0.9992 1.0002 1.0016 1.0007 1.0009
125 0.9992 1.0003 1.0016 1.0006 1.0007

4.3.3 Lateral temperature variations

We have characterized what Bullen parameter anomalies, due to spin crossovers, might

generate for one-dimensional seismic models of an isochemical adiabatic mantle. How-

ever, the lack of maxima in most Bullen parameter observations (Figure 4.1) that are

at the appropriate depth and have the right breadth to correspond to the spin crossover

of fp, led us to probe the effect of lateral temperature variations on deviations of η.

Since lateral temperature variations and their areal distribution at a given depth of

hot/upwelling and cold/downwelling material are not well-constrained in the deep man-

tle (e.g., [41]), we conducted a sensitivity analysis for the effect of thermal variations

on η in a pyrolitic mantle. Here, material at each depth is distributed along adiabats

with potential temperatures above (hot) and below (cold) a reference adiabat pinned at

1873 K at 23 GPa as in [15] (B&S) (See also [1]). The lateral temperature variations

between hot and cold regions that we probed were ± 250 K, ± 500 K, and ± 750 K

in a sequence of 25%:75%, 50%:50% and 75%:25% ratio of the mantle at a given depth

being hot:cold (See Figure 4.3).

For all the temperature-average distributions (Figures 4.3a, 4.3b, and 4.3c), we

observed that the spin crossover anomalies, i.e. deviations from adiabaticity, became

more prominent at lower temperatures: this is a natural consequence of the broadening

of the spin transition that occurs at high temperatures. Conversely, greater amounts
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Figure 4.2: Perturbations of η due spin crossover in fp in lower mantle aggregates.
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Figure 4.3: Lateral temperature variations of a) ± 250 K, b) ± 500 K, and c) ± 750 K
for sequences of 25%:75%, 50%:50% and 75%:25% of the mantle being hot:cold.

In accord with the two-state model for temperature that we have assumed, two
isosbestic points are generated near 1250 km and 2000 km depth, respectively.

of hot material tend to make spin crossovers more difficult to resolve. Furthermore,

we also observed that for large temperature variations, ± 750 K, two peaks in η can

also be generated at different depths in an isochemical thermally heterogeneous mantle

(Figure 4.3c). This phenomenon is attributed to the volume increase with temperature,

which increases the pressures that are required for the spin crossover to occur. Since the

amplitude of the perturbations in η increases also with higher fp content, it is expected

that regions with larger cold harzburgitic chemistry present within the lower mantle,

such as subducting slabs, should have substantially greater local fluctuations in the

Bullen’s parameter if a local vertical sampling of η over such regions is performed.

Beyond lateral temperature variations, we examined the case of coupled composi-

tional and thermal lateral heterogeneities. The rationale here is that cold, downwelling

subducted material is likely to have a larger concentration of harzburgite than ambient

mantle. We utilized a similar temperature averaging scheme, but with cold η values

being harzburgitic. Figure 4.4 shows different η profiles with the mantle being 75%

hot(pyrolite) and 25% cold(harzburgite). For this scenario, perturbations in η due to
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the spin crossover vary their magnitude and reach a maxima at different depths, de-

pending on the temperature difference between the cold downwellings of harzburgitic

chemistry and ambient pyrolitic mantle. If the temperature difference is sufficiently

large, e.g. ± 750 K, multiple peaks can be observed. Thus, the relative amplitudes and

locations of multiple peaks could, if observed/observable, provide strong constraints on

lateral variations in the geotherm and/or composition of the deep mantle. In particu-

lar, the depth at which the spin transition-induced peak occurs in Bullen’s parameter

is highly sensitive to temperature (Figure 4.3), while the amplitude of its variation is

sensitive to composition (Figure 4.2).

4.4 Geophysical Significance

We have utilized η as an observable for spin crossovers in the lower mantle for the first

time, in an attempt to reconcile mineral physics with seismic observations and to under-

stand how such spin crossovers may affect observations of deviations from adiabaticity

within the mantle. Our results suggest that the spin crossover signatures in η should be

sufficiently large to turn up in accurate (ca. 1%) seismic inversions for this parameter.

Whether such accuracies are achievable is unclear: several decades ago, Masters [63]

concluded that η variations from seismic observations could be resolved with a precision

no better than 2%. Recent results from an inverse Bayesian method, deployed via a

neural network technique by de Wit and Trampert [26], showed that ρ, Vp, and Vs

may each be resolvable to somewhat better than 1% in the ∼ 2000 km depth range,

based on their observed probability density functions. A linear combination of these

uncertainties will certainly lead to values of order 1-2.5% for the net uncertainty in 1-D

inversions for Bullen’s parameter. Nevertheless, given markedly improved and more ac-

curate seismic inversions coupled with substantially larger data sets, it is possible that

better constraints on η might be developed.

We also highlight the importance of the chosen temperature profile, as it has a

direct impact on η. Elastic moduli, seismic velocities, and aggregate densities strongly

depend on temperature. Hence, super(sub)adiabatic geotherms will lead to different

interpretations of η. As showed in chapter 3 (See also [101]), the spin crossover in fp

and bdg induces an increment in the adiabat’s temperature of a given aggregate and such
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Figure 4.4: Lateral temperature and composition variations of a) ± 250 K, b) ± 500 K,
and c) ± 750 K for a mantle being 25% cold(harzburgite): 75 % hot(pyrolite).
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a temperature increment will impact η’s sensitivity. Because of the potentially complex

coupling of lateral temperature differences with compositional variations, further work

on the effect of spin crossovers on η would likely benefit from an assessment within a

three dimensional convective scheme, such as the formulation proposed in [66].

4.5 Conclusions

Apparent deviations from adiabaticity due to spin crossover, as recorded by the Bullen’s

parameter, increased in proportion to the aggregate’s ferropericlase content. The mag-

nitude of these perturbations is generally consistent with the magnitude of variations

in η present in previous seismological and geodynamic inversions of η in the lower man-

tle. Our results provide a sense of how much of a perturbation in η, given the spin

crossover and lateral temperature variations, might be expected in one dimensional

seismic models, with the net result being of order 1-2%. Accurate characterization of

η either globally or locally could provide constraints on both the lateral temperature

distribution and the fp content at depth, although such determinations hinge critically

on achieving sufficient seismic resolution to resolve spin transitions. Also, the pertur-

bations found in η for different mantle temperature averages highlight the importance

of doing vertical seismic velocity profiles with sufficient precision to allow η to be char-

acterized on a regional basis. Our results provide a guide for possible a priori models of

η in regionalized inversions of velocity as a function of depth: inversions without spin

crossover induced perturbations in η implicitly assume that spin transitions are absent

at depth, and hence that no ferropericlase is present in the deep mantle. Results from

this chapter can also be found in [102].



Chapter 5

The post-perovskite phase

tranistion: Phase equilibria and

effects of Fe and Al substitutions

The major mineral phase of the Earth’s lower mantle, (Al, Fe)-bearing bridgmanite,

transitions to a seemingly layered structure known as post-perovskite, at Earth’s deep

lower mantle pressure and temperature conditions. Despite extensive investigations by

experiments and ab initio calculations, there are still some important aspects of this

transformation that need clarification. Here, we systematically address this question

in (Al, Fe3+)-, (Fe2+)- and (Fe3+)-bearing bridgmanite using ab initio calculations.

We particularly address the phase boundary dependence on the chemistry and acoustic

velocity changes across this transformation. Since the topography of and seismic velocity

jumps at the D” discontinuity depend on the local composition and temperature, our

results allowed us to further constrain the nature of the D” region. While our results

are consistent with previous seismic studies of the deep mantle, such seismic features

varied distinctly depending on the bearing element, in contrast to temperature gradients

due to adiabatic self-compression. This suggests that the high temperatures of the D”

region might be due to other heat transport mechanism such as heat exchange with the

outer core.

68
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5.1 Introduction

The extraordinary complexity of the region ∼ 300 km above the core mantle bound-

ary (CMB), otherwise known as the D” region, comes from its enigmatic compositional

nature and thermal structure. This makes it a compelling subject matter of intensive

research in the geophysical sciences. One of its most relevant features is its thermal

boundary layer, partially responsible of driving the mantle convection, and also of great

importance to understand the thermal evolution of the core and heat flux necessary to

power the dynamo. Fluctuations of the thermal boundary layer directly affect the heat

flux rate from the core [73]. Such fluctuations can be caused by phase transitions, which

are usually determined from discontinuities, or triplications, in the seismic observables

of one-dimensional seismic models. For the D” region, the discontinuities in the com-

pressional and shear velocities were found to be ∼ 2.5% to 3% in over 40 different studies

summarized in Wysession et al. [114]. The magnitude of such relative differences was

also consistent with synthetic waveforms computed from geodynamic simulations [87].

For the latter, the geodynamic model that best correlated with seismic observations

was that of a thermal slab interacting with a phase transition. However, no mineral

physics evidence revealed a phase transition at the time, likely due to limitations in

the instrumentation and required laboratory conditions. It was only until 2004 when it

was found that the major mineral phase of the lower mantle, bridgmanite MgSiO3 per-

ovskite (Pv), transitions to a seemingly lamellar phase, named post-perovskite (PPv),

at approximately 125 GPa and 2500 K [70, 74, 99]. Followed this, extensive experimen-

tal [5, 21, 40, 60, 72, 80, 81, 88, 93–95] and computational [2, 20, 46, 68, 75, 97, 108] studies

were performed. Despite all these efforts, there are still important aspects of this trans-

formation that need clarification, particularly on the effect of bearing elements such

as Fe and Al. The presence or absence of these bearing elements directly affects how

the transition occurs, i.e., the Clapeyron slope and the coexistence between phases.

For instance, various studies have argued that Al2O3 tend to stabilize the Pv phase to

higher pressures [2, 20, 93], while others, like Tsuchiya et al. [97], observed a moder-

ate decrease of the transition pressure. Similar disparities were also found for ferrous

iron Fe2+: It has been proposed that Fe2+ should stabilize the PPv phase at lower pres-

sures [20,60,75,80], as opposed to findings in other studies [40,94]. Furthermore, Catalli
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et al. [21] showed that the effect of ferric iron Fe3+ was to narrow the phase coexistence

region, while (Fe3+, Al3+) had a similar Pv-PPv coexistence to that displayed by Fe2+-

bearing systems. However, both of these cases, Fe3+- and (Fe3+, Al3+)-, increased

the transition pressure. We used ab-initio thermodynamic data to compute the phase

boundaries and validate them by comparing with all the aforementioned cases. Also, we

examined the phase boundaries of various lower mantle aggregates, in which the ferrous

iron concentration in PPv is constrained by the amount of ferropericlase (fp) present in

the deep mantle, i.e., the partitioning coefficient K
PPv/Fp
D . Experiments suggest that

the PPv phase is likely to be iron depleted, with K
PPv/Fp
D values of ∼ 0.12 [5, 79, 88]

and ∼ 0.3 [56, 79]. This might be due to fp’s higher affinity for iron [5]. Nevertheless,

some studies suggest otherwise, e.g., K
PPv/Fp
D ∼ 0.6 [8]. Here we study the effect of the

Pv-PPv transition on various lower mantle aggregates with Mg/Si ratios ranging from

0.82 to 1.56 (Chondrite to harzburgite) and a fixed K
Pv/Fp
D and K

PPv/Fp
D of 0.5.

Evidence of seismic velocities decreasing at the bottom of the D” region have also

been detected [96, 114]. This was interpreted by Hernlund et al. [36–38] as a “double-

crossing” phenomena, where Pv transitions to PPv and back-transforms to the Pv phase.

Indeed, this phenomena strongly depends on the geotherm: Cold temperatures tend to

stabilize the PPv phase, steep temperature gradients enhance the chances of double-

crossing, and very steep temperature gradients may even prevent the occurrence of the

Pv-PPv transition [38]. This is another important aspect for addressing the temperature

of the D” region. We approach this by analyzing the changes in the acoustic velocities

along different geotherms, and by computing the temperature profiles of different types

of bearing systems, in order to study the effect on the adiabatic temperature gradients

across the phase transition.

5.2 Method and Calculation Details

The Pv and PPv thermoelastic properties of Mg1−xFe2+x SiO3, (Mg1−xAlx)(Si1−xAlx)O3,

(Mg1−xFe3+x )(Si1−xAlx)O3, (Mg1−xFe3+x )(Si1−xFe3+x )O3 (x = 0 and 0.125) are from [82,

84, 86]. For fp Mg1−yFeyO (y = 0 and 0.1875), thermoelastic properties were taken

from [112]. Other x and y concentrations were computed by linear interpolation. We

only considered spin crossover in fp, i.e., fp’s iron is in a mixed spin (MS) state of high
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spin (HS) and low spin (LS) states. Pv and PPv bearing Fe2+ and (Fe3+,Al) are in

HS state, while Fe3+ in LS state. Spin crossover in Fe3+ bearing Pv and PPv was

not considered as it should not affect the phase boundary calculation, since this occurs

at pressures lower than the Pv to PPv transition [43, 82, 83, 85]. The CaSiO3 (CaPv)

properties were reproduced from [52,53] using the Mie-Debye-Grüneisen formalism [90].

The lower mantle aggregates considered: Harzburgite [10], chondrite [33], pyrolite [67],

peridotite [39], and perovskititic only [109], are mixtures of SiO2 - MgO - CaO - FeO -

Al2O3, with a uniform Fe-Mg partitioning coefficient K
Pv/Fp
D and K

PPv/Fp
D = x/(1−x−z)

y/(1−y)

of 0.5. The temperature profiles of the minerals and rocks were computed from the from

their adiabatic gradient (
∂T

∂P

)
S

=
αV T

Cp
(5.1)

We denote the molar fraction, molar volume, molar mass, thermal expansion coef-

ficient, and isobaric specific heat of the ith mineral in the mixture as µi, Vi, Mi, αi,

and Cpi respectively. The aggregate properties such as volume, thermal expansion

coefficient, and isobaric specific heat are then V =
∑

i µiVi, α =
∑

i αiµiVi/V , and

Cp =
∑

i µiCpi . Aggregate moduli and velocities were computed using the Voigt-Reuss-

Hill (VRH) averaging scheme.

The phase boundaries were calculated using the standard state model for binary

systems (See chapter 2), where the Gibbs free energies G Pv/PPv of a binary system with

phases Pv and PPv and end-members ‘A’ and ‘B’ can be computed as

G Pv(T, P, x) = x(G Pv
B − G PPv

B ) + kBT (xln[x] + (1− x)ln[1− x]) (5.2)

G PPv(T, P, x) = (1− x)(G PPv
A − G Pv

A ) + kBT (xln[x] + (1− x)ln[1− x]) (5.3)

with kB as the Boltzmann constant and x as bearing element concentration. End-

member ‘A’ corresponds to MgSiO3, while end-member ‘B’ is either: Fe2+SiO3, Fe3+2 O3,

Al2O3, or Fe3+AlO3. The bearing element concentration of each phase, xPv∗ and xPPv∗ ,
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was computed as

xPPv∗ =
1− e

GPPvA −GPvA
kBT

e
GPPv
B

−GPv
B

kBT − e
GPPv
A

−GPv
A

kBT

xPv∗ = xPPv(e
GPPvB −GPvB

kBT ) (5.4)

with (*) denoting: Fe2+, Fe3+, Al3+, or (Fe3+, Al3+), depending on the end-member

‘B’. Moreover, the PPv fraction (nPPv) for a particular bearing element concentration

x, was calculated using the lever rule

nPPv =
x− xPv∗

xPPv∗ − xPv∗
(5.5)

5.3 Results and Discussion

5.3.1 Effects of Fe and Al bearing elements on the Pv-PPv phase

boundary

We studied the effects that bearing elements have on the Pv-PPv phase bound-

ary. Figures 5.1a) to 5.1d) show the phase boundaries for all the bearing sys-

tems: Mg1−xFe2+x SiO3, (Mg1−xFe3+x )(Si1−xFe3+x )O3, (Mg1−xAlx)(Si1−xAlx)O3, and

(Mg1−xFe3+x )(Si1−xAlx)O3, with x = 0.10. Solid lines are the boundaries calculated

from taking the arithmetic average of the leftmost and rightmost boundaries using

LDA and GGA functionals (See Table 5.1). Hence, the gray shaded areas represent

the uncertainties in our calculations, while the blue shaded areas are the regions where

the Pv and PPv phases are likely to coexist. The hazel and pink temperature profiles

correspond to that of Brown and Shankland [15] and Boehler [12], respectively. All

cases seemed to be in good agreement with experiments: Despite that the Pv-PPv co-

existence region for Fe2+- predicted by Catalli et al. [21] is shifted to higher pressures

compared to our calculation; the overall width of this region, including the uncertain-

ties, is almost the same. Moreover, the phase boundaries of Fe3+- and (Fe3+, Al3+)-

(Figures 5.1b) and 5.1d)) are in good agreement with Catalli et al. [21], while discrep-

ancies between calculations and experiments in Figure 5.1c) are probably due to the

high Al3+- concentration (x=0.25) in Tateno et al. [93] experiments. Furthermore, a
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common feature among all these cases is that the coexistence between phases increased

at lower temperatures, except for the Fe3+- bearing case (Figure 5.1b).

The phase boundary and coexistence between the Pv and PPv phases is also ex-

pected to vary depending on the bearing element concentration [2, 5, 21, 93]. This is

shown in Figure 5.2, for concentrations of x = 0.08, 0.10, and 0.12. In all cases, the

coexistence region increased with concentration. However, with the exception of Fe2+-,

the transition pressure PT always increased. In other words, Fe3+-, Al3+-, and (Fe3+,

Al3+)- tend to stabilize the Pv phase, while Fe2+ has the opposite effect. This can

also be observed in Figure 5.4, which shows the phase boundaries for all the bearing

cases, parametrized in terms of concentration vs. pressure, at different relevant lower

mantle temperatures. Each temperature is represented by a different color, while its

intensity indicates the locations of the Pv, Pv+PPv, and PPv phases. With increas-

ing concentration, a noteworthy feature is the negative slopes of Fe2+- bearing systems

(Figures 5.4a1) to 5.4b4)), compared to the positive ones for the other cases. This ob-

servable upholds what was previously discussed: As the concentration of Fe3+-, Al3+-,

and (Fe3+, Al3+)- increases, the Pv phase tends to be stabilized, while higher concen-

trations of Fe2+- stabilize the PPv phase. These trends are consistent with previous

studies [2,20,21,60,75,83,93]. We also explored how the post-perovskite fraction nPPv

varies and what is the effect of the different functionals, LDA and GGA, on the phase

boundary (See Figure 5.3). Compared to LDA, GGA displayed a thinner coexistence

between phases shifted to higher pressures. However, in all cases, nPPv shows a gradual

change across the transition, and is particularly broader for boundaries computed with

LDA thermodynamic data.
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Table 5.1: Left (L) and right (R) LDA and GGA phase boundaries for Mg1−xFe2+x SiO3,
(Mg1−xFe3+x )(Si1−xFe3+x )O3, (Mg1−xAlx)(Si1−xAlx)O3, and (Mg1−xFe3+x )(Si1−xAlx)O3

with x = 0.10.
Mg1−xFe2+x SiO3 (Mg1−xFe3+x )(Si1−xFe3+x )O3 (Mg1−xAlx)(Si1−xAlx)O3 (Mg1−xFe3+x )(Si1−xAlx)O3

Temperature (K) [LDA(L), LDA(R), GGA(L), GGA(R)] [LDA(L), LDA(R), GGA(L), GGA(R)] [LDA(L), LDA(R), GGA(L), GGA(R)] [LDA(L), LDA(R), GGA(L), GGA(R)]

1000 [67.000, 101.00, 99.00, 107.50] [105.50, 106.50, 110.00, 110.00] [107.50, 154.00, 113.00, 141.00] [107.00, 130.50, 113.00, 128.00]
1200 [75.500, 102.50, 102.00, 109.00] [107.50, 108.50, 112.00, 112.00] [109.50, 146.50, 115.00, 138.00] [109.50, 128.00, 115.00, 127.00]
1400 [81.500, 104.00, 105.00, 110.50] [110.00, 111.00, 114.00, 114.50] [112.00, 141.00, 117.50, 136.00] [111.50, 127.00, 117.00, 127.00]
1600 [86.500, 105.00, 107.00, 112.00] [112.00, 113.50, 116.50, 116.50] [114.00, 137.50, 119.50, 135.00] [114.00, 126.50, 119.00, 127.00]
1800 [90.000, 106.50, 109.00, 113.50] [114.00, 116.00, 118.50, 119.00] [116.50, 135.00, 121.50, 134.00] [116.00, 126.50, 121.00, 127.50]
2000 [93.500, 108.00, 111.50, 115.00] [116.00, 118.00, 120.50, 121.00] [118.50, 133.50, 123.50, 134.00] [117.50, 127.00, 123.00, 128.50]
2200 [96.500, 109.50, 113.00, 117.00] [118.00, 120.50, 122.50, 123.50] [120.00, 133.00, 125.50, 134.00] [119.50, 127.50, 124.50, 129.00]
2400 [99.000, 111.00, 115.00, 118.50] [120.50, 123.00, 124.50, 125.50] [122.00, 132.50, 127.00, 134.00] [121.50, 128.00, 126.50, 130.00]
2600 [101.50, 112.50, 117.00, 120.00] [122.50, 125.50, 127.00, 128.00] [124.00, 132.50, 129.00, 134.50] [123.50, 129.00, 128.00, 131.00]
2800 [104.00, 114.00, 119.00, 122.00] [124.50, 128.00, 129.00, 130.50] [125.50, 132.50, 130.50, 135.00] [125.00, 130.00, 129.50, 132.50]
3000 [106.50, 115.50, 120.50, 123.50] [126.50, 130.50, 131.00, 132.50] [127.50, 133.00, 132.00, 136.00] [127.00, 131.00, 131.50, 133.50]
3000 [106.50, 115.50, 120.50, 123.50] [126.50, 130.50, 131.00, 132.50] [127.50, 133.00, 132.00, 136.00] [127.00, 131.00, 131.50, 133.50]
3200 [108.50, 117.50, 122.50, 125.00] [129.00, 133.00, 133.00, 135.00] [129.00, 134.00, 133.50, 136.50] [128.50, 132.50, 133.00, 135.00]
3400 [110.50, 119.00, 124.50, 127.00] [131.00, 135.50, 135.00, 137.50] [130.50, 134.50, 135.00, 137.50] [130.50, 133.50, 134.50, 136.00]
3600 [112.50, 120.50, 126.00, 128.50] [133.00, 138.00, 137.00, 140.00] [132.00, 135.50, 136.50, 138.50] [132.00, 135.00, 136.00, 137.50]
3800 [114.50, 122.00, 128.00, 130.00] [135.00, 140.50, 139.50, 142.50] [133.50, 136.00, 138.00, 139.50] [133.50, 136.00, 137.50, 138.50]
4000 [116.50, 123.50, 129.50, 132.00] [137.50, 143.00, 141.50, 145.00] [135.00, 137.00, 139.50, 140.50] [135.00, 137.50, 139.00, 140.00]

5.3.2 Changes across the phase transition

The magnitude of the changes of the seismic observables, namely: Compressional VP ,

bulk Vφ, shear VS velocities, and density ρ; across the phase transition, depends on the

boundary thickness and temperature profile. Figure 5.5 shows the percentages of those

variations as a function of pressure, along a typical geotherm [15], for different bearing

elements. The different seismic changes are shown in each column and were computed

as ∆M(%) = 100 ∗ (Magg − MPV )/MPV , where M is either VP ,Vφ, VS , or ρ; and

Magg is the Pv and PPv aggregate. The last column shows nPPv values along Brown

and Shankland geotherm [15]. Each color depicts the changes for a different bearing

element. Shaded areas are the differences between the changes across LDA and GGA

boundaries. All these cases correspond to a concentration of x = 0.10. Overall, changes

in seismic observables are within the magnitude of previous seismic studies [87,114]. All

changes were positive with the exception of ∆Vφ(%), which shows values of ∆Vφ(%) ∼
-0.8% in most of the cases (Figures 5.5b), 5.5g), and 5.5q) with the exception of Al3+-

(Figure 5.5g), with ∆Vφ(%) ∼ -2.5%. These negative contrasts are due to a decrement

of the adiabatic bulk modulus (KS) across the transition, in accordance with previous

studies [114].

Changes in shear velocity were larger, with the highest contrast value of ∆VS(%)∼
3.7% for the Fe3+- case (Figure 5.5h). All other ∆VS(%) contrasts were within ∼ 2%

to ∼ 2.4%. This is of course due to an increment of the shear modulus (G), which

is consistent with seismic observations of the deep mantle [87]. The changes in the
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Figure 5.5: Calculated contrasts ∆VP (%), ∆Vφ(%), ∆VS(%), ∆ρ(%) and PPv frac-
tion (nPPv) in Mg1−xFe2+x SiO3, (Mg1−xFe3+x )(Si1−xFe3+x )O3, (Mg1−xAlx)(Si1−xAlx)O3,
and (Mg1−xFe3+x )(Si1−xAlx)O3, respectively, with x=0.10. The contrasts are calculated
along the Brown and Shankland temperature profile [15] as: ∆M = 100 ∗ (Magg −
MPV )/MPV , with M as: VP , Vφ, VS , and ρ.
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compressional velocities ∆VP (%) were positive in all cases, with values varying between

∼ 0.3% to ∼ 0.9%. However, ∆VP (%) for Fe2+ (Figure 5.5a) decreased from 95 GPa

to 110 GPa. This distinct feature is due to a ‘competition’ between KS and G, where

G dominates the overall behavior for the aforementioned pressure range. Additionally,

with a value of ∆ρ(%) ∼ 1.6%, density contrasts are nearly identical for all cases. This

observation is quite consistent with density discontinuities reported for the D” region [87,

114]. Positive and negative ‘jumps’, otherwise known as paired discontinuities, have also

been reported [96,114]. This phenomena depends strongly on the temperature gradient

and corresponds to a Pv-PPv-Pv transition, known as double-crossing [37, 38]. We

computed the contrasts along a superadiabatic temperature gradient [12] (See appendix

- Figure A.11). In this case, the PPv phase is not always stable, and thus, double-

crossing occurs.

5.3.3 Effects on the adiabatic temperature gradient

The origin and intensity of the thermal boundary layer that sits atop of the core mantle

boundary (CMB) are still debatable. With reported temperatures above 4000 K, some

of the most common reasons attributed to such extreme conditions are: Heat exchange

with the outer core, radiation, or heat released from the Pv-PPv exothermic phase

transition. To test the latter, we calculated the adiabatic temperature profiles of all the

various types of bearing Pv and PPv phases, across the transition, and examined the

effect on the temperature gradient (See Figure 5.6). All the adiabats followed a similar

temperature profile, with CMB temperatures only about 80 K hotter than Brown and

Shankland geotherm [15], but 2500 K cooler than Boehler geotherm [12]. Moreover,

none of the adiabats exhibited significant changes across the Pv-PPv transition, as can

be seen from the inset in Figure 5.6. This might suggest that, regardless of the bearing

element, the high temperatures believed to be found in the D” thermal boundary layer

are likely due to other transport mechanisms, e.g., heat exchange with the outer core.

We did not consider spin-crossover for the Fe3+- case. The effect of spin-crossover on the

lower mantle adiabat was already meticulously addressed in chapter 3 (See also [101]).
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5.3.4 Effects on Mantle Aggregates

The boundaries of (Fe2+, Al3+)-MgSiO3 Pv-PPv phase transition, in different lower

mantle aggregates, are shown in Figure 5.7a). Uncertainties for each aggregate boundary

are shown in the appendix (See Figure A.9). The molar concentration of each mineral

is shown in the pie charts. The corresponding x, y, and z values are shown in the

colored boxes. As the Mg/Si ratio increases so does the amount of fp in the aggregate,

and consequently, the Fe2+ concentration x in Pv and PPv diminishes. The latter also

causes a decrement of the Pv-PPv coexistence width. This observation seems to be

consistent as long as the Al3+ concentration y doesn’t vary dramatically: There is a

notable change in the coexistence width between peridotite and harzburgite. While the

lower Fe2+ concentration of harzburgite compared to peridotite partially explains this

phenomenon, the main reason seems to be the difference in Al3+. This suggests that

Al3+ induces a sharper change in the coexistence between phases, compared to Fe2+.

This behavior seems to be consistent with experiments [21], and might also explain why

pyrolite’s boundary is wider than chondrite’s: Pyrolite has less Fe2+, but more Al3+

than chondrite. This is also consistent with Andrault et al. [5], where it was found that

fp should reduce the Pv to PPv coexistence width in Al-bearing systems. Furthermore,

none of the geotherms used [12, 15] is hot or steep enough to induce double-crossing,

i.e., the PPv phase is likely to be stable for all aggregates studied at CMB pressures.

Figure 5.7b) shows the different aggregate velocities and densities, along Brown and

Shankland geotherm [15], compared to the preliminary reference Earth model PREM

[29]. Deviations from PREM throughout mid lower mantle pressures are due to iron

spin-crossover in fp. The latter has been previously discussed in chapter 3 (See also [101])

for the aggregates of interest in this study. Changes due Pv-PPv transition on the

velocities and densities can be observed from ∼ 107 GPa onwards. This is coherent

with the geotherm-boundary intersection shown in Figure 5.7 a). The changes due to

this transition can be clearly observed in Vφ, VS , and ρ, while in VP are more subtle.

Regardless of the phase boundary and aggregate composition, densities and VS showed

an overall agreement with PREM. However, the phase transition induced deviations

from PREM in VS at high pressures.
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5.4 Geophysical Significance

We presented a comprehensive study of the effect of Fe and Al bearing elements on the

Pv-PPv phase transition, and its consequences on seismic observables and temperature

gradients, in an attempt to further constrain the uncertainties in the temperature and

composition of the D” region. Despite the fact that it is still an open question whereas

the Pv-PPv phase transition alone can explain all the seismic features of the deep

mantle [2], it is believed that the exothermic nature of this phase transition should

destabilize the thermal boundary layer, and thus, favor the heat flow between core and

mantle, leading to an increment of the temperature gradient and the amount of small-

scale plumes in the D” region [73]. Our results suggest that under the assumption of

adiabatic self-compression, and regardless of the bearing element hosted in Pv or PPv,

there are no indications of a steep temperature gradient across the phase transition.

Nevertheless, this could also suggest that the existence of a thermal boundary layer is

likely due to heat exchange with the outer core.

We also determined that higher concentrations of Fe2+ tend to decrease the transi-

tion pressure. Hence, low pressure discontinuities in seismic observables might indicate

a greater presence of Fe2+ in the mantle. The magnitudes of these discontinuities were

found to be comparable to those from seismic studies [87,114]. Another distinct feature

we observed were the large velocity changes, ∆VP ∼ 0.9% and ∆VS ∼ 3.7% , displayed

by Fe3+ bearing systems, which if observed, could evince a higher concentration of Fe3+

in the deep mantle.

Furthermore, another relevant aspect we considered is the phase coexistence width

and what it can indicate as an observable. Width variations might induce important

geophysical consequences: The dominant effect of Al3+ over Fe2+, observed in the width

variation of the phase coexistence region in different mantle aggregates, suggests that

broad seismic discontinuities indicate higher Al3+ concentrations. Furthermore, we also

noticed a reduction of the coexistence region as the aggregate’s Mg/Si ratio increased,

which in other words imply that greater amounts of fp could be correlated with sharper

seismic discontinuities in Al depleted systems.
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5.5 Conclusions

The effects of Fe and Al on the Pv-PPv phase boundary and its consequences on the

thermal structure and seismic observables were studied. Overall, the phase boundaries

and seismic discontinuities were in agreement with mineral physics experiments and

seismic studies. We found that shallow discontinuities might suggest a higher presence

of Fe2+, while sharp and large velocity contrasts are likely to correspond to greater Fe3+

concentrations. For mantle aggregates, broad phase coexistence regions and seismic

discontinuities varied in proportion to the amount of Fe2+ and Al3+ in Pv and PPv.

Small alterations in Al3+ affected significantly the phase boundary. Furthermore, results

indicated that sharp discontinuities can be linked to high Mg/Si aggregate ratio, and

consequently, to larger Fp concentrations. Finally, adiabatic temperature gradients

across the transition did not display significant changes across the transition, suggesting

that the high temperatures of D” thermal boundary layer might be due to other heat

transport mechanism such as heat exchange with the outer core.



Chapter 6

Conclusions

Different aspects of the thermal structure and composition of the lower mantle were

discussed in this work. The lower mantle thermal structure was shown to be affected

by spin-crossovers in Fe-bearing minerals. Such phenomena lead to increments on the

temperature gradients of various lower mantle aggregates. We also found that using

a self-consistent temperature gradient, when comparing with one-dimensional seismic

models, should sharpen uncertainties in studies of the lower mantle composition. More-

over, the novel use of a common seismic observable, known as the Bullen’s parameter

η, helped us to determine the signatures that spin-crossovers might display in studies of

a lower mantle that is compositionally heterogeneous and varying its temperature lat-

erally. The deviations from adiabaticity measured by η might serve as bridge between

mineral physics and seismic observations, and also as a guide for the construction of

a priori models of η in regionalized inversions of velocities with respect to depth; i.e.,

seismic inversions that ignore spin crossover perturbations in η essentially assume that

ferropericlase is absent in the lower mantle. Finally, we showed a comprehensive study

of the effects of Al and Fe substitutions on the Pv to PPv phase transition. Our results

are in overall agreement with the discontinuities observed in seismic studies. Shal-

low/deeper discontinuities suggest a higher presence of Fe2+/(Fe3+ and/or Al3+). The

temperature gradient calculated across the phase transition did not vary significantly,

suggesting that the high temperatures of the D” thermal boundary layer are likely due

to other heat transport mechanisms such as heat exchange with the outer core. Future

work that would be beneficial to further develop the results shown here would be to

86
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consider a pressure or depth dependent Fe-partitioning coefficient and also to study the

effects of spin crossovers on the Bullen’s parameter within a three dimensional convec-

tive scheme. All the results presented in this work are a step forward in understanding

the nature of the deep mantle.
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physical Research Letters 32, 19 (2005).

[57] Kohn, W., and Sham, L. J. Self-consistent equations including exchange and

correlation effects. Physical review 140, 4A (1965), A1133.

[58] Lin, J.-F., Mao, Z., Yang, J., Liu, J., Xiao, Y., Chow, P., and Okuchi,

T. High-spin Fe2+ and Fe3+ in single-crystal aluminous bridgmanite in the lower

mantle. Geophysical Research Letters 43, 13 (2016), 6952–6959.

[59] Lin, J.-F., Speziale, S., Mao, Z., and Marquardt, H. Effects of the elec-

tronic spin transitions of iron in lower mantle minerals: Implications for deep

mantle geophysics and geochemistry. Reviews of Geophysics 51, 2 (2013), 244–

275.

[60] Mao, W. L., Shen, G., Prakapenka, V. B., Meng, Y., Campbell, A. J.,

Heinz, D. L., Shu, J., Hemley, R. J., and Mao, H.-k. Ferromagnesian

postperovskite silicates in the D” layer of the Earth. Proceedings of the National

Academy of Sciences of the United States of America 101, 45 (2004), 15867–15869.

[61] Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling,

F. R., and Garnero, E. J. Elastic shear anisotropy of ferropericlase in Earth’s

lower mantle. Science 324, 5924 (2009), 224–226.

[62] Martin, R. M. Electronic structure: Basic theory and practical methods. Cam-

bridge university press, 2004.

[63] Masters, G. Observational constraints on the chemical and thermal structure of

the Earth’s deep interior. Geophysical Journal International 57, 2 (1979), 507–534.



95

[64] Mattern, E., Matas, J., Ricard, Y., and Bass, J. Lower mantle composition

and temperature from mineral physics and thermodynamic modelling. Geophysical

Journal International 160, 3 (2005), 973–990.

[65] Matyska, C., and Yuen, D. A. Profiles of the Bullen’s parameter from mantle

convection modelling. Earth and Planetary Science Letters 178, 1 (2000), 39–46.

[66] Matyska, C., and Yuen, D. A. Bullen’s parameter η: A link between seis-

mology and geodynamical modelling. Earth and Planetary Science Letters 198, 3

(2002), 471–483.

[67] McDonough, W. F., and Sun, S.-S. The composition of the Earth. Chemical

geology 120, 3-4 (1995), 223–253.

[68] Metsue, A., and Tsuchiya, T. Thermodynamic properties of (Mg, Fe2+)

SiO3 perovskite at the lower-mantle pressures and temperatures: an internally

consistent LSDA+ U study. Geophysical Journal International 190, 1 (2012),

310–322.

[69] Momma, K., and Izumi, F. VESTA 3 for three-dimensional visualization of

crystal, volumetric and morphology data. Journal of Applied Crystallography 44,

6 (2011), 1272–1276.

[70] Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohishi, Y.

Post-perovskite phase transition in MgSiO3. Science 304, 5672 (2004), 855–858.

[71] Murakami, M., Ohishi, Y., Hirao, N., and Hirose, K. A perovskitic lower

mantle inferred from high-pressure, high-temperature sound velocity data. Nature

485, 7396 (2012), 90–94.

[72] Murakami, M., Sinogeikin, S. V., Bass, J. D., Sata, N., Ohishi, Y., and

Hirose, K. Sound velocity of MgSiO3 post-perovskite phase: A constraint on

the D” discontinuity. Earth and Planetary Science Letters 259, 1 (2007), 18–23.

[73] Nakagawa, T., and Tackley, P. J. Effects of a perovskite-post perovskite

phase change near core-mantle boundary in compressible mantle convection. Geo-

physical Research Letters 31, 16 (2004).



96

[74] Oganov, A. R., and Ono, S. Theoretical and experimental evidence for a

post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature 430, 6998 (2004),

445–448.

[75] Ono, S., and Oganov, A. R. In situ observations of phase transition between

perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition.

Earth and Planetary Science Letters 236, 3 (2005), 914–932.

[76] Piet, H., Badro, J., Nabiei, F., Dennenwaldt, T., Shim, S.-H., Cantoni,
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Appendix A

Appendix

A.1 Appendix Adiabats

Text 1. We compared the pyrolite’s adiabat properties when its fp (∼ 31 mol% in

pyrolite) did (MS) and did not (HS) undergo spin transition. Figure A.1 shows pyrolite’s

α, Cp and V calculated along its own geotherm. Compression curves differences are

subtle (Figure A.1a), while the anomalies introduced in α and Cp (Figures A.1b and A.1c

respectively) caused broad peaks throughout the spin crossover at equivalent pressure

ranges.

Text 2. Elastic moduli, velocities, and densities of the minerals in each aggregate,

calculated along the aggregate geotherm, can be found in Figures A.2, A.3, and A.4. It

can be observed that KS for bdg and CaPv behave similarly, but CaPv shear modulus

G is significantly smaller than that of bdg. In all aggregates, KS for both perovskites is

larger than PREM values. G for bdg displays values greater than PREM, while CaPv

G agrees well until mid lower mantle pressures, and then deviates to values smaller

than those of PREM. Finally, moduli for fp are always smaller than PREM values and

showed clear anomalies associated with spin crossover. The velocities followed a trend

consistent with that of the moduli, while for the densities we observed that CaPv is

denser than bdg. Also, fp increases its density at mid lower mantle pressures due the

volume collapse caused by the spin crossover.

Text 3. Isentropes for CaPv were calculated using [91] MDG parameters, which are

different from those obtained by [52] and by [92](See Figure A.5a). They differ by ∼
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100 K from each other in the deep lower mantle (125 GPa). Figure A.5b shows pyrolite

adiabats using different CaPv. The thermodynamic model adopted for CaPv had little

influence on the geotherm. We used CaPv properties reported by [52, 53] for all the

aggregates. Figure A.6 shows the elastic constants of CaPv for different isotherms

Text 4.

To address the change in partitioning KD, the adiabats for compositions containing

fp were calculated with a KD value of 0.25 (See Figure A.7). Temperature differences

between the latter and those with a KD of 0.5 were ∼ 9 K, 13 K, 14 K, and 16 K for

chondrite, harzburgite, peridotite, and pyrolite at 125 GPa, respectively . The hotter

values were a consequence of the higher iron content in fp due the reduced partitioning

from 0.5 to 0.25. Furthermore, pyrolite adiabats were calculated with different types of

bdg, namely: Fe2+,(Fe2+,Al)-,and (Fe3+,Al)- bearing bdg (See Figure A.8). The latter

corresponds to a limiting case, which assumes that all the iron in bdg is ferric and that

also that it enters in the B-site (Si site) where the spin crossover takes place. The spin

crossover in ferric iron will also impact the adiabat in this case. At 125 GPa, spin

crossover in bdg increases the temperature by ∼ 13 K.

A.2 Appendix PPv-Pv transition

Text 1

Figure A.10 depicts the boundaries for the MgSiO3 system compared with previous

calculations [99] and experiments [70]. Furthermore, Figure A.11 shows the changes in

the acoustic velocities and densities across the phase transition along the Boheler [12]

geotherm. Shaded areas represent the difference between LDA and GGA boundaries.

With the exception of Fe2+ case, paired discontinuities are observed. This double cross-

ing phenomena is caused by the superadiabatic temperature gradient of Boheler [12].
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Figure A.11: Calculated contrasts ∆VP (%), ∆Vφ(%), ∆VS(%), ∆ρ(%) and PPv frac-
tion (nPPv) in Mg1−xFe2+x SiO3, (Mg1−xFe3+x )(Si1−xFe3+x )O3, (Mg1−xAlx)(Si1−xAlx)O3,
and (Mg1−xFe3+x )(Si1−xAlx)O3, respectively, with x=0.10. The contrasts are calculated
along the Boehler Boehler temperature profile as: ∆M = 100 ∗ (Magg −MPV )/MPV ,
with M as: VP , Vφ, VS , and ρ.
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