

Optimization of Constrained Random Verification using

Machine Learning

A Thesis

SUBMITTED TO THE FACULTY OF

UNIVERSITY OF MINNESOTA

BY

Sarath Mohan Ambalakkat

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Prof. Gerald Sobelman

May 2018

© Sarath Mohan Ambalakkat 2018

ALL RIGHTS RESERVED

i

ACKNOWLEDGEMENT

Foremost, I would like to express my deepest gratitude to my advisor, Prof. Gerald Sobelman for

his continuous support, enthusiasm, and immense knowledge. I am deeply indebted to his

passionate encouragement. Without his guidance this thesis research would not have been possible.

It was an honor and a pleasure working with him.

I submit my heartiest gratitude to Mr. Eldon Nelson for allowing me to extend his work. I would

also like to thank Prof. Sachin Sapatnekar and Prof. Rui Kuang, for willing to be a part of my thesis

committee and review panel and providing insightful comments on my thesis. Last, but not the

least, my joys know no bound in expressing my cordial gratitude to my parents and friends, for

their continuous moral support and encouragement.

ii

DEDICATION

This thesis is dedicated to my family and friends.

iii

ABSTRACT

Constrained random simulations play a critical role in Design Verification today. But the effort and

time spent to manually update the input constraints, analyzing and prioritizing the unverified

features in the design, significantly affect the time taken to converge to the coverage goal. This

research work focuses on the optimization of constrained random verification using Machine

Learning algorithms, in a coverage-driven simulation using a Universal Verification Methodology

(UVM) framework. The optimization will greatly reduce the time a simulation takes to converge

to the coverage goal. This research work targets automating the update of the constraints during

runtime, abstracting the need for understanding the design to verify it, using Machine Learning.

The verification environment is further optimized using techniques including Objective Function,

Rewinding and Dynamic Seed Manipulation. The enhanced environment resolves the limitations

of the previous efforts at employing these techniques, optimizing the scalability of the environment

and enhancing its compatibility at verifying complex combinational designs and sequential designs

including Finite State Machines (FSMs).

The optimized verification environment comprises of a SystemVerilog testbench which interfaces

and interacts with a TCL environment. The methodology has been empirically demonstrated, with

remarkable results showing its superior quality in terms of faster automated coverage closure,

efficient final stimulus solution and proposed higher quality of coverage. Multiple Machine

Learning algorithms, including a Linear Regression Model and Artificial Neural Networks, have

been employed to scale the compatibility of the verification environment, making it capable of

autonomously verifying designs of varied behavior. Adequate simulation results to demonstrate the

same have been presented in the report.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

1. INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Design Verification .. 2

1.2.1 Code Coverage .. 2

1.2.2 Functional Coverage ... 3

1.3 Constrained Random Verification ... 4

1.4 Motivation .. 6

1.5 Machine Learning .. 8

1.6 Contribution of the Thesis ... 11

2. PRIOR WORK .. 13

3. DRAWBACKS OF THE PRIOR WORK ... 16

4. TEST ENVIRONMENT .. 23

5. OPTIMIZATION OF CONSTRAINED RANDOM VERIFICATION USING MACHINE

LEARNING ALGORITHM .. 29

6. OPTIMIZATION OF THE TEST ENVIRONMENT USING A LINEAR REGRESSION

MODEL ... 32

6.1 Generating Training Sets ... 32

v

6.2 Training the Model .. 34

6.3 Updating the Constraints .. 35

6.4 Simulation Results for Comparator Design ... 36

6.5 Simulation Results for Non-Linear Design .. 40

7. OPTIMIZATION OF THE TEST ENVIRONMENT USING AN ANN 43

7.1 Modeling the Artificial Neural Network .. 43

7.2 Simulation Results for Comparator Design ... 44

7.3 Simulation Results for Non-Linear Design .. 48

8. TEST ENVIRONMENT FOR VERIFYING AN FSM ... 52

8.1 Simulation Results for FSM Designs ... 54

9. CONCLUSION .. 57

10. FUTURE WORK ... 58

REFERENCES .. 59

vi

LIST OF TABLES

Table 1: Simulation Results (Original Environment) .. 19

Table 2: Simulation Results (Optimized Environment employing Linear Regression Model) 40

Table 3: Simulation Results (Optimized Environment employing ANN) 48

Table 4: Simulation Results (Optimized Environment employing ANN) 51

vii

LIST OF FIGURES

Figure 1: Constrained Random Simulation Flow Chart ... 6

Figure 2: Artificial Neural Network Structure ... 10

Figure 3: DUT used for testing the original environment (after [4]) ... 17

Figure 4: Binary tree structured FSM .. 20

Figure 5: FSM DUT used for testing the original environment ... 20

Figure 6: SystemVerilog testbench framework (after [4]) ... 23

Figure 7: Simulation Flow employing TCL commands to implement Objective Function,

Rewinding and Dynamic Seed-Manipulation (after [4]) ... 27

Figure 8: Optimized Constrained Random Simulations using Machine Learning 31

Figure 9: Non-Linear DUT used for testing Optimized Verification Environment 41

Figure 10: FSM Design used for Testing Optimized Verification Environment 54

1

1. INTRODUCTION

1.1 Overview

Design Verification is becoming increasingly challenging and time-consuming day by day. The

transistor sizes are shrinking at a remarkable rate, and hence, there is an exponential increase in the

total number of transistors in a chip over the years. This translates to more functionality in the same

die area, and in turn to increased design complexity. With such an increase in complexity of

designs, the time taken to verify the same is also increasing drastically. In this fast-evolving world,

time-consuming Design Verification is becoming a necessary evil, greatly affecting the speed of

evolution. The traditional methodology of using directed tests targeting the verification of specific

features in the design has become unrealistically time consuming in case of such increasingly

complex designs. Constrained random verification hence has become an immediate necessity. But,

finding the right combination of constraints to produce the most stressful tests with the widest

variety of random stimulus is again a challenge.

Machine Learning has numerous applications and has presented remarkable performance

optimizations in various domains [11]. The research work presented in this thesis targets

automating the update of constraints, abstracting the need for understanding the design, in

coverage-driven constrained random simulations, using Machine Learning algorithms. The main

objective is to converge to the coverage goal faster. Functional coverage provides essential

feedback for knowing what was tested, the device configuration used and, perhaps most

importantly, what still has not been tested. It is this design-independent indispensable information

that we are going to exploit to update our constraints autonomously. The optimized verification

environment is further enhanced using techniques including Objective Function, Rewinding and

Dynamic Seed Manipulation. The SystemVerilog testbench with UVM framework has been

configured with multiple machine learning algorithms, including a Linear Regression Model and

2

Artificial Neural Networks (ANN), to scale the environment, making it capable of autonomously

verifying complex designs with varied behavior. Simulation results testing the same using the fully

functional testbench is presented in this thesis.

1.2 Design Verification

In today’s world, most electronic devices are architected using an SoC design paradigm, integrating

predefined hardware and software blocks. As the complexity of designs on an SoC increases, the

challenge of verifying the design completely becomes harder [16]. This is the reason for the marked

increase in use of Constrained Random Verification as opposed to the traditional testbench

approach using Directed Tests. The completeness of the design verification may be defined using

multiple metrics; of which, the primary and most extensively used metric is “Coverage.” This

result-oriented approach to functional verification is hence termed coverage-driven verification.

Coverage can be broadly divided into Code Coverage and Functional Coverage.

1.2.1 Code Coverage

Traditionally, the quality of verification was measured using code coverage. Code coverage

specifies the extent to which the Design HDL has been exercised. The tools measuring code

coverage base their reports on and categorize the same into line coverage, block coverage,

conditional coverage, branch coverage, toggle coverage and finite state machine coverage.

However, a 100% code coverage does not necessarily mean that the design has been fully verified.

Code coverage does not fully define the completeness and quality of the verification. It has multiple

limitations, which includes:

• Inability to identify non-implemented features.

• Inability to measure sequential multi-cycle events.

• Inability to measure the interaction between multiple modules.

3

1.2.2 Functional Coverage

Unlike code coverage, functional coverage is a user-defined metric that defines the measure of the

design functionality that has been exercised by the verification environment. With proper

brainstorming, a functional coverage model covering all the features specified in the design

specification may be defined. The model may then be used to track whether the important values,

sets of values and sequences of values in the design, and interface features and boundary conditions,

have been exercised, thereby overcoming the limitations of code coverage.

The coverage model is defined using the SystemVerilog covergroup construct. A covergroup may

consist of multiple coverpoints synchronously sampled, either using a clocking event or using an

in-built sample() method, as presented below.

// Covergroup Definition (SAMPLED USING BUILT-IN “sample()”)

covergroup cov_grp;

 cov_p1: coverpoint a;

endgroup

 //Covergroup Instantiation

cov_grp cov_inst = new();

//Covergroup Sampling on "trigger"

@(trigger) cov_inst.sample();

// Covergroup Definition (SAMPLED USING CLOCKING EVENT)

covergroup cov_grp @(posedge clk);

 cov_p: coverpoint in;

endgroup

//Covergroup Instantiation

cov_grp cov_inst = new();

4

The coverpoints defined may be variables or expressions. We may also define cross-coverages

between coverpoints. Each coverpoint is associated with bins, which may either be auto-generated,

or user-defined. The bins defined may specify the extent to which the state space is expected to be

explored or the transitions expected on the coverpoints, or the ignored and illegal values, as

presented in the example given below. Bins that have not been hit at least once after the simulation

is complete reveal the coverage holes.

covergroup cg @(posedge clk);

 c1: coverpoint wr_addr {

 bins b1 = {0,2,7}; // User-defined Bins

 bins b2 = (10=>20=>30); // Transition Bins

 illegal_bins b2 = {41:50}; // Illegal Bins

 ignore_bins b3 = {[31:40],[51:60]}; // Ignore Bins

}

 c2: coverpoint rd_addr; // Auto-Generated Bins

endgroup : cg

With the ever-increasing complexity of designs, and therefore the exponential increase in the

number of directed tests required for verification, converging to the 100% coverage goal using the

traditional approach, even if possible, is unrealistically time-consuming. The increasing need for a

faster coverage closure, tackling the exploding state space of modern designs, demands the need

for constrained random verification using SystemVerilog testbenches.

1.3 Constrained Random Verification

Up to 60% of the overall design cycle time is estimated to be spent on design verification.

Constrained random verification [1] was introduced to enhance the time taken for coverage closure.

SystemVerilog testbenches employing constrained random simulations achieve this by addressing

the two main problems of the traditional testbench approach, which are procedural, as opposed to

5

declarative, and enumerative, as opposed to comprehensive. Constraints defined using

SystemVerilog constructs [12] are declarative and are closer to the design specification, as they

mimic the latter. Moreover, the only reasonable solution to the error-prone and time-consuming

enumerative approach of traditional directed testbenches are random simulations which generate

unanticipated scenarios which have greater chances of detecting bugs in the design.

To summarize the essential steps in the coverage-driven verification process:

1. Define the coverage model, using covergroups and coverpoints, from the verification plan

2. Debug the verification environment, checkers, and coverage model

3. Perform multiple tests using random seeds until the cumulative coverage converges

4. Update stimulus constraints to target coverage holes and run further tests

5. Analyze and prioritize any unverified features and run directed tests for particularly hard-

to-reach coverage holes

To plan and monitor the tested functionality, methodologies based on coverage, checks, and

assertions such as the Metric-Driven Design Verification (MDV) [6] were introduced. Advanced

methodologies like Universal Verification Methodology (UVM) provide in-built constructs to

support constrained random verification [2, 3]. The basic flow of coverage-driven constrained

random simulation has been summarized in the figure below.

6

Figure 1: Constrained Random Simulation Flow Chart

1.4 Motivation

Design verification plays a vital role in the design flow in ensuring the correctness of the design.

In many situations, the complete verification of a design takes a significant amount of time, perhaps

even more time than the design of the module itself. The increasing complexity of designs

drastically multiplies the effort necessary to verify the design and to achieve the 100% coverage

goal.

Though constrained random simulations have marked advantages over the traditional directed test

approach, several factors still limit its performance. The “classical” coverage-driven verification

employs design-dependent manual update of constraints. This makes handling the environment

challenging and error-prone. Hence, the optimization of the time taken to verify a design using

7

coverage-driven constrained random simulations is largely limited by the manual update of

constraints, in order to target the coverage holes and hit the corner cases.

Furthermore, the manual update of constraints is largely based on the understanding of the design

and extracting the design specification. This may adversely affect the efficiency of the stimulus

generated, time taken for coverage closure, and quality of coverage. Abstracting the need for

understanding the design in order to verify it requires the automation of constraint updates.

Recently, research has been carried out to automate the update of constraints in a coverage-driven

simulation. For example, graph-based stimulus generation targets automating the enumeration of

minimum number of tests needed to cover the paths through the state space and hence converge to

the coverage goal much faster than the “classical” approach [10]. But such a graph-based stimulus

generation will require a separate, dedicated tool (like Questa inFact from Mentor Graphics) before

its results are fed into a Universal Verification Methodology (UVM) testbench, which limits the

applicability of the framework. Similarly, in [14], the efforts at dynamically guiding random stimuli

generators rely on an external API, Unified Coverage Interoperability Standard (UCIS), defining

the C data structures and the API functions used to access the repository of coverage data.

UVM testbenches implementing constrained random verification are being widely used in practice.

The main motivation behind the research described in the thesis is automating the update of

constraints, eliminating the need to understand the design in order to verify it. Functional coverage

provides essential feedback for knowing what was tested, the device configuration used and,

perhaps most importantly, what still has not been tested. It is this design-independent indispensable

information that we are going to exploit to update the constraints autonomously. This optimization

greatly reduces the time consumed for coverage closure. The proposed method automates the

update of the constraints employing Machine Learning algorithms.

8

1.5 Machine Learning

Machine learning may be defined as the science of getting computers to act without being explicitly

programmed [5]. Machine learning is being widely exploited in various domains; for example, in

web searches, self-driving cars, image/speech recognition, etc.

The machine learning algorithms model the behavior of a design and generalizes it based on its

previous experience. The model is then used for making fairly accurate predictions about outputs

of unseen input samples. However, the correctness of predictions made by a good model can depend

on multiple factors, including quality of training sets, scalability of the model and most importantly,

the machine learning algorithm used to model it.

Machine learning algorithms can be broadly divided into two categories [5]:

1. Supervised Learning Algorithms: Labeled training sets, which ideally represent the state space,

train the algorithm to build a model of the state space and learn the behavior of the design. The

model approximates the function that best fits the training sets and converges to parameters

that best describes the design. The main types of supervised learning problems include

regression and classification problems, pertaining to prediction of continuous values and

discrete values, respectively.

2. Unsupervised Learning Algorithms: The algorithm is trained using unlabeled training data, i.e.

there are no output categories or labels based on which the algorithm models relationships. The

algorithm is used for pattern detection and descriptive modeling, i.e. the data points are

explored to identify patterns and identical data points are categorized into sets, with each

category representing a different set of characteristics.

In [13], the author has demonstrated the applicability of Unsupervised Machine Learning

algorithms at optimizing regression tests using the toggle pair coverage as the metric. For our

9

application we will be using Supervised Learning algorithms, providing necessary labeled training

sets to train the Machine Learning model in order to make accurate predictions. We will be using

functional coverage as the metric for measuring the performance. The scalability of the model will

largely depend on the algorithm employed. The verification environment has been configured with

multiple machine learning algorithms including:

1. Linear Regression Model: We may a use a Linear Regression Model to represent the

relationships if the inputs and outputs of a design have a linear dependency such as:

X0*β0 + X1* β1 = Y

where X0 and X1 are the inputs, β0 and β1 are the parameters defining the Linear Regression

Model, and Y is the output.

In the given example, the parameters β0 and β1, can be estimated using two labeled training

sets of the format [X0, X1, Y]. Once the parameters have been estimated, the model can be

used for predicting the output, Y, for unseen sets of inputs [X0, X1]. The model is simple

and requires a minimal number of training sets, to make accurate predictions. However, a

Linear Regression Model has the limitation that the inputs and outputs must have a linear

relation, limiting the scalability of the verification environment.

2. Artificial Neural Networks (ANN): Neural networks are one of the most efficient machine

learning algorithms, capable of modeling complex relations between the inputs and outputs

[15]. As the name suggests, Artificial Neural Networks are inspired from brain neurons.

The general structure of an ANN has been shown in figure below. A neural network

primarily consists of three types of layers:

a. Input Layer: Inputs are fed to this layer.

b. Hidden Layers: Intermediate layers that are used for defining the complex relations

between the inputs and the outputs.

c. Output Layer: Final output is extracted from these layers.

10

Figure 2: Artificial Neural Network Structure

Similar to the human nervous system, wherein a single neuron takes in inputs from multiple

dendrites, every neuron in an ANN collates numerous inputs, i1, i2, … in multiplied with

the weights, w1, w2, … wn and performs a function, called the activation function, on the

sum. The output from the neuron is sent to all the neurons in the next layer to which it is

connected. The output of each neuron may be summarized as:

y = 𝑓(∑𝑊𝑖 ∗ 𝐼𝑖)

𝑛

𝑖=0

Neural Networks are trained using an algorithm termed Back-Propagation [15]. On feeding

a training data, the ANN computes the actual outputs, using the weights and the activation

functions defining each neuron in the network. The actual outputs are then compared to the

expected outputs. The error at the output is propagated back through the network. The

weights in the network are adjusted to minimize the error.

11

Machine Learning has exhibited promising applications in varied domains. In this research, we are

trying to exploit its capability to learn a design without explicit programming, to make accurate

predictions of outputs for unseen inputs. Specifically, the objective is to predict constraints that can

generate unseen outputs targeting previously missed bins.

1.6 Contribution of the Thesis

This research optimizes constrained random simulations by automating the update of constraints

eliminating the need of understanding the design to verify it. The verification environment employs

machine learning algorithms to analyze and prioritize any unverified features autonomously and to

make accurate predictions of input combinations that can generate unseen outputs to exercise these

unverified features. This facilitates generating appropriate input stimulus targeting particularly

hard-to-reach coverage holes. The optimization overcomes the effort and time taken to manually

update constraints and converge to the coverage goal.

The verification environment has been equipped with multiple machine learning algorithms,

including a Linear Regression Model and Artificial Neural Networks, to model the predictor. This

enhances the scalability of the environment, enhancing its capability at verifying varied designs

with different behaviors.

The training sets, used for training the machine learning algorithms, are implicitly generated by the

verification environment during the simulation, removing the need for any design-dependent

information from the verification engineer.

Functional coverage provides information on the set of values of a variable that has been exercised

by the verification environment, and more importantly the values yet to be reached in a constrained

random simulation. Machine learning algorithms exploit this design-independent information to

make accurate predictions of input combinations used for autonomously updating the constraints

12

during runtime. The runtime update of constraints has been implemented using efficient techniques

that eliminates the need for re-compilation of the simulation environment after its update. Hence,

ideally the simulation should autonomously converge to the 100% coverage goal within a single

simulation run.

The simulation environment also sustains the capability of random simulations to uncover

unanticipated bugs in the design. To enable this, the simulation runs a configurable number of

unconstrained random iterations at the beginning.

The research further optimizes the verification environment employing techniques including

Objective Function, Rewinding, and Dynamic Seed-Manipulation. The enhanced environment

overcomes the limitations of the prior work [4] implementing the techniques, which was incapable

of handling complex designs. It was also incapable of verifying sequential designs involving Finite

State Machines. This research resolves all these drawbacks in the previous work.

Additionally, the techniques are compatible with advanced methodologies like the Universal

Verification Methodology (UVM), widely used in industries these days. Simulation results

demonstrating its superior quality, in terms of faster automated coverage closure, efficient final

stimulus solution and higher quality of coverage, are presented in this thesis.

13

2. PRIOR WORK

The basic method of Constrained Random Verification in a SystemVerilog testbench, uses a single

seed that is used in the randomization process, which is passed down the entire simulation in a

deterministic way. The coverage-driven environment will normally take a long time to converge to

the 100% coverage goal in such a scenario. In [4], the author suggests a novel method to optimize

the same, through Objective Functions, Rewinding and Dynamic Seed Manipulation. The author

shows that the optimization will result in faster automated coverage closure, an efficient final

stimulus solution and a higher quality of coverage. It targets automating the simulations and making

the verification environment design-independent.

The main ideas used in the method include Objective Function, Checkpointing, Rewinding and

Dynamic Seed Manipulation. An objective function may be defined as any function that increases

continuously over time as we approach our goal. In a coverage-driven simulation, we may consider

coverage, which is a continuously increasing function, to be the objective function. Checkpointing

is a vendor-specific but universal capability of saving a simulation point in time with all states

intact. The main ideas proposed in the prior work are the following:

1. Exploiting checkpointing to save checkpoints during runtime.

2. Run the simulation for a defined “Interval” from the saved checkpoint.

3. Check for an increase in coverage over the “Interval.”

4. If the objective function has not increased over the defined “Interval,” we rewind the

simulation to the last checkpoint and dynamically re-seed the simulation.

5. Repeat steps 2, 3 and 4 until an improvement is observed in the coverage. If the seed

resulted in an improved coverage, we update the checkpoint and proceed with the

simulation to run the next “Interval” using the latest seed.

14

Throughout this thesis, the simulation run for the defined “Interval” is referred to as an iteration

and the performance of a verification environment is going to be measured in terms of the number

of iterations it takes to converge to the coverage goal.

The simulator uses TCL commands to pause the simulation after the “Interval” and invokes TCL

functions to evaluate the interval by checking if the objective function, i.e. the coverage, has

improved over the “Interval.” If not, TCL restores the last checkpoint, reseeds the simulation and

re-runs the simulation with the new seed. Given below is a snippet of a log file for a rejected seed

for a scenario where no improvement was observed on the objective function. Highlighted in red

is the seed rejected and rewinding to previous checkpoint on observing no progress in coverage

from 25% over the interval.

------------------------- START eval_loop

DEBUG current simulation time is ctime : 37 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 2 at time: 27 ns

INFO STATUS : TCL : 37 ns : NO PROGRESS : false: 25.000000 > 25.000000

REWINDING TO CHECKPOINT {2} at 27 ns

All the Checkpoints created after checkpoint 2 are removed...

------------------------- END eval_loop

When an improvement is seen in the objective function, the seed is accepted, the checkpoint is

updated and the simulation proceeds to run for the next “Interval.” The loop continues until the

objective function is satisfied, i.e. the simulation converges to the 100% coverage. Given below is

the snippet of a log file for an accepted seed. Highlighted in green is the seed accepted, on observing

an increase in coverage from 0% to 25% over the interval.

------------------------- START eval_loop

DEBUG current simulation time is ctime : 27 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 2 at time: 17 ns

INFO STATUS : TCL : 27 ns : GOOD : 25.000000 > 0.000000

------------------------- END eval_loop

15

The advantage of the method is the fact that the simulation environment is independent of the design

being verified. Irrespective of what the design is, the simulation environment is autonomous and

approaches the coverage goal over time. The author of the prior work claims that, irrespective of

what the design is, the simulation environment will converge to the 100% coverage over time.

16

3. DRAWBACKS OF THE PRIOR WORK

Verification using the simulation environment defined in the prior work can get stuck in a

simulation loop, in which case the coverage function does not converge to the coverage goal. In

such scenarios, the conventional UVM timeout mechanisms will no longer be effective at

terminating a simulation, since it is based on simulation time and not the clock time. Therefore, in

scenarios where we fail to achieve an improvement on the objective function, the simulation repeats

the same simulation period and gets stuck in an infinite loop.

The techniques mentioned in the prior work [4] look promising and work very well for small

combinational designs. However, the scalability of the environment is most definitely questionable.

This is because the framework of the testbench does not optimize the time taken to converge to the

coverage goal. Though the simulation time is optimized using the techniques of objective function,

rewinding and dynamic seed-manipulation, the clock time taken to converge to the coverage goal

is similar to that of an unconstrained random simulation. As the complexity of the design being

verified increases, the size of the state space defining it increases dramatically. Hence, the

verification of the design using the unconstrained environment is unrealistically time-consuming.

Rigorous testing was done to check the scalability of the environment, and the environment was

experimentally shown to be inefficient to verify complex designs. The observations made are as

follows:

1. Verification of a comparator with reconfigurable input widths: The block diagram of the design

being verified is given in the figure below:

17

Figure 3: DUT used for testing the original environment (after [4])

The Design Under Test (DUT) is a 2-input parameterized comparator. When the inputs A and B are

equal, the output C is asserted. The internal signal match is assigned with A when C is asserted at

a positive edge of the clock. Otherwise, it is assigned to be 0. A covergroup has been defined inside

the DUT, with the internal signal match, as the coverpoint, in order to check if all possible

matching values have been generated on A and B at the positive edge of the clock. The

parameterized design is used to check the compatibility of the verification environment for varying

input widths. Observations about the simulation results are as follows:

a. When the parameter width was set to 1, i.e. for a 1-bit comparator, the simulation results

were promising. The simulation converged to 100% coverage in 3 iterations. A snippet of

the log file is shown below with the total number of iterations and the coverage goal

highlighted:

------------------------- START eval_loop

DEBUG current simulation time is ctime : 47 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 106767085 at time: 27 ns

INFO STATUS : TCL : 47 ns : GOOD : 100.000000 > 50.000000

INFO STATUS : TCL : MET OBJECTIVE!

------------------------- END eval_loop

UVM_INFO sv/rseed_interface.sv(122) @ 57: reporter [RS]

COVERAGE GOAL MET coverage: 100 max_objective: 100

18

INFO STATUS : TCL : ITERATIONS TOTAL = 3

INFO STATUS : TCL : final_report END

b. On increasing the width of the comparator, the number of iterations to converge to 100%

coverage increased dramatically. When the width was set to 3, i.e. for a 3-bit comparator,

the simulation converged to 100% coverage in 261 iterations. A snippet of the log file has

been presented below with the total number of iterations and coverage goal highlighted:

------------------------- START eval_loop

DEBUG current simulation time is ctime : 107 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 41496968 at time: 87 ns

INFO STATUS : TCL : 107 ns : GOOD : 100.000000 > 87.500000

INFO STATUS : TCL : MET OBJECTIVE!

------------------------- END eval_loop

UVM_INFO sv/rseed_interface.sv(122) @ 117: reporter [RS]

COVERAGE GOAL MET coverage: 100 max_objective: 100

INFO STATUS : TCL : ITERATIONS TOTAL = 261

INFO STATUS : TCL : final_report END

c. For widths greater than 3, a 64-bit mode VCS simulation was so time-consuming that it

terminated giving a segmentation fault before converging to the coverage goal. A snippet

of the log file with the error highlighted is given below:

------------------------- START eval_loop

DEBUG current simulation time is ctime : 167 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 110487736 at time: 157 ns

INFO STATUS : TCL : 167 ns : NO PROGRESS : false: 87.500000 >

87.500000 REWINDING TO CHECKPOINT {2} at 157 ns

All the Checkpoints created after checkpoint 2 are removed...

/usr/local/apps/synopsys/vcs/amd64/../gui/dve/bin/dve: line

159: 1264 Segmentation fault (core dumped) $CMD "$@"

make: *** [sim_synopsys] Error 139

19

A summary of the simulation results for comparators of different widths using the simulation

environment in [4] is shown in the table given below:

Table 1: Simulation Results (Original Environment)

These results show that the verification environment is incapable of verifying complex designs. As

the width of the comparator increases, the number of iterations taken to converge to the coverage

goal is increasing rapidly. Even for a design as simple as a 4-bit comparator, the simulation

terminated giving a segmentation fault. The reason for this large increase in the time taken to

converge to the coverage goal is that the simulation environment is similar to an unconstrained

random simulation, in terms of the state space and the time taken to explore the state space.

2. Verification of Sequential Designs: Additional difficulties were discovered when attempting to

apply the prior method to sequential circuits. Consider, for example, a design with a binary tree-

structured Finite State Machine (FSM) with a root state and numerous leaf states as shown in the

figure below:

Width of Comparator No of Iterations

1 1 3

2 2 60

3 3 261

4 4 or more Segmentation Fault

20

Figure 4: Binary tree structured FSM

In such a scenario, it is obvious that once the simulation reaches one of the leaf states, the simulation

will not proceed, since no combination of input will result in an increase in the objective function,

irrespective of the input seed on which the simulation interval is run.

In certain cases, there may be scenarios where only very few combinations of inputs can result in

a particular state-transition. In such cases as well, the probability of the simulation converging to

100% coverage is very small. Consider the state machine diagram presented in the figure below,

where A and B are 3-bit inputs to the FSM.

Figure 5: FSM DUT used for testing the original environment

21

After reset de-assertion, only when A and B are both 7 will the state machine go from STATE_1 to

STATE_2, i.e. 63 out of 64 times the State Machine goes from STATE_1 to STATE_4. A similar

situation occurs for the other labeled transitions. Therefore, the probability of the sequence

STATE_1 -> STATE_2 -> STATE_3-> STATE_4 to occur is 1 out of (64*64*64); which is

negligibly small. Therefore, the odds are that the simulation will not converge to a 100% coverage

in most cases.

These observations were experimentally demonstrated through simulations. The test design was

simulated using a SystemVerilog testbench employing the optimizations in [4], i.e. Objective

Function, Rewinding and Dynamic Seed Manipulation. The most probable transition after the de-

assertion of the reset would be from STATE_reset->STATE_1->STATE_4. If the covergroup is

defined with the CurrentState as the coverpoint (shown below), in such a scenario the

simulation would have only covered 3 out of 5 possible states, i.e. the simulation will be stuck at

60% coverage.

reg [2:0] CurrentState;

covergroup objective_cg;

 coverpoint CurrentState {

 bins state_initial = {STATE_Initial};

 bins state1 = {STATE_1};

 bins state2 = {STATE_2};

 bins state3 = {STATE_3};

 bins state4 = {STATE_4};

 ignore_bins states567 = {STATE_5, STATE_6, STATE_7};

}

endgroup

22

A snippet of the simulation log is shown below. As expected the simulation does not converge to

100% coverage. The simulation will be stuck at 60% coverage in STATE_4 and terminate giving

a segmentation fault after some time (highlighted).

------------------------- START eval_loop

DEBUG current simulation time is ctime : 37 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 23 at time: 27 ns

INFO STATUS : TCL : 37 ns : NO PROGRESS : false: 60.000000 > 60.000000

REWINDING TO CHECKPOINT {2} at 27 ns

All the Checkpoints created after checkpoint 2 are removed...

------------------------- END eval_loop

UVM_INFO sv/dut.sv(15)@30: reporter [dut_if] AFTER drive regs A: 7 B: 4

UVM_INFO sv/dut.sv(113)@30: reporter [dut] Current State: STATE_4

------------------------- START eval_loop

DEBUG current simulation time is ctime : 37 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 771 at time: 27 ns

INFO STATUS : TCL : 37 ns : NO PROGRESS : false: 60.000000 > 60.000000

REWINDING TO CHECKPOINT {2} at 27 ns

All the Checkpoints created after checkpoint 2 are removed...

/usr/local/apps/synopsys/vcs/amd64/../gui/dve/bin/dve: line 159: 29466

Segmentation fault (core dumped) $CMD "$@"

make: *** [sim_synopsys] Error 139

The research undertaken in this thesis targets resolving all the above-mentioned drawbacks in the

environment and developing an autonomous, design-independent, UVM-compatible technique to

update the constraints during runtime without having to recompile the updated environment. The

next chapter summarizes the structure of the test environment used in the research.

23

4. TEST ENVIRONMENT

The test environment is a simplified version of the conventional UVM framework. It extends the

UVM base classes, uvm_sequence_item and uvm_test. The environment is set up to include

only the necessary components required to facilitate the demonstration. No agents or environments

have been used. Though simplified, the test environment employs constrained random verification

and demonstrates the optimizations clearly. Given in the figure below is the structure of the

SystemVerilog testbench framework used to demonstrate the research.

Figure 6: SystemVerilog testbench framework (after [4])

The dut is the design being verified; for example, the parameterized comparator discussed earlier,

with inputs A and B of configurable widths. The static module, instantiated in the top module,

interfaces and interacts with the dynamic testbench through the interface, dut_if. The testbench

drives the inputs into the dut through the dut_if. The test0, extending uvm_test,

instantiates the interface virtually. The top module sets the configuration database with the

hierarchical path to connect to the interface, using the set command:

24

uvm_config_db#(virtual dut_if#(width))::set(null, "uvm_test_top",

"dif", dif);

The command sets the (name, value) pair corresponding to dut_if, in the configuration database,

which may be accessed from the dynamic classes. Virtual connections may be made to the interface

from test0 using:

if (!uvm_config_db#(virtual dut_if)::get(this, "", "dif", dif))

begin

 `uvm_fatal("test0", "Failed to get dut_if")

end

test0 converts the transactions c_a and c_b, objects of the handle num_sequence_item

extending the uvm_sequence_item, to pin wiggles and drives the inputs of the dut through

the virtual interface.

An interesting feature in the framework is the rseed_interface (i.e. the randomization seed

interface). The simulator may use the static interface to trigger SystemVerilog functions that

dynamically interrogate and modify the verification environment [4]. The interface contains knobs

and functions that control the functionality of the testbench, which may be used to interface with

the simulator. The basic structure of the rseed_interface which illustrates some of the

variables and functions in it is shown below:

interface rseed_interface (input clk, input reset);

 bit trigger = 0;

 time start_time = 7;

 time interval_time = 10;

 bit final_report = 0;

 real coverage_value = 0;

 int max_objective = 100;

 int unsigned seed;

25

 // INCLUDE ALL VARIABLES HERE

 function void get_instance();

 ms.get_instance();

 endfunction

 // Set the Seed of the Singleton

 function void set_seed(int unsigned s);

 seed = s;

 ms.set_seed(s);

 endfunction

 // Get the Current Coverage Value

 function real get_coverage_value();

 return ms.get_coverage_value();

 endfunction

 // INCLUDE ALL OTHER FUNCTIONS HERE

 initial begin // Initialize variables using in-line arguments

 $value$plusargs("start_time=%d", start_time);

 $value$plusargs("interval_time=%d", interval_time);

 $value$plusargs("ml_enabled=%d", ml_enabled);

 $value$plusargs("fsm_opt_enable=%d", fsm_opt_enable);

 // ADD REMAINING ARGUMENTS

 #(start_time);

 forever begin

 #(interval_time);

 // use variable instead of file to pass coverage value

 coverage_value = dut.objective.match.get_coverage();

 ms.set_coverage_value(coverage_value);

 if (reset == 0) // Trigger TCL function to evaluate seed

 trigger = ~trigger;

 if (ms.get_coverage_value() >= ms.max_objective) begin

 final_report = 1;

 end

 end

endinterface

26

The above is a sample of the variables and functions defined in the interface. Many of the key

features integral to the implementation of the optimization techniques interface with the simulation

environment through the rseed_interface. Not all SystemVerilog simulators can call

functions from dynamic objects in the UVM framework. Hence, the static interface,

rseed_interface, with the wrapper to all the functions in the classes, provides a static location

which may be accessed from the simulator. The dynamic objects may connect to these static

locations, using a virtual interface, providing a software communication layer to the simulator. The

set and the get commands, similar to that used in case of dut_if, may be used to make virtual

connections to the interface through the configuration database.

The simulator can invoke TCL commands to interface and interact with the SystemVerilog

testbench. In general, we would like to get the value of a variable from a known location in the

SystemVerilog testbench. For example, to get the value of max_objective from the

SystemVerilog testbench, which defines the maximum value the objective function is expected to

be converging to during the simulation, we may use the TCL command:

set max_objective [get top.rseed_interface.max_objective]

Similarly, we may also set internal signals in the SystemVerilog testbench using TCL commands.

For example, to force an internal signal, say beta_ready in rseed_interface in the

SystemVerilog testbench from the simulator, we may use:

force top.rseed_interface.beta_ready 1;

To call a function in the SystemVerilog testbench, say set_seed() passing input arguments

from the simulator, we may use:

27

set last_seed [expr {int(rand()*4294967294+1)}]

call top.rseed_interface.set_seed(32'd${last_seed})

The above explained test environment can efficiently implement the optimization techniques

including, Objective Function, Rewinding, and Dynamic Seed-Manipulation. A brief flow chart of

the simulation environment employing these techniques is presented in the figure below:

Figure 7: Simulation Flow employing TCL commands to implement Objective Function, Rewinding

and Dynamic Seed-Manipulation (after [4])

The simulator initializes the TCL Environment with variables from the SystemVerilog testbench.

Once the TCL Environment has been set up, the simulation starts and runs for a configurable

duration of time which is equivalent to the start_time plus the loop_time. After updating

the checkpoint in the simulator, the simulation runs for loop_time. Triggers from the

rseed_interface invoke the TCL commands to run the function to evaluate the loop, in order

28

to check if the objective function has improved. The simulator can access the objective function,

i.e. the coverage, by invoking the get_coverage_value() function in rseed_interface.

If the coverage has not improved, we rewind the simulation by restoring the previous checkpoint.

We re-seed the simulation and run the simulation loop with the new seed. We pass the random seed

generated by the simulator to the pre_randomize() function in the uvm_sequence_item

through the rseed_interface and use the built-in UVM function reseed()to re-seed a

simulation. If an improvement is achieved in the objective function, we update the checkpoint and

proceed to the next simulation period until the objective function is satisfied, i.e. the simulation has

converged to the coverage goal.

The remaining chapters in the thesis report present the novel optimizations of the test environment

proposed in this research and gives the implementation details. Empirical results showing the

enhancements achieved through the optimizations are also presented.

29

5. OPTIMIZATION OF CONSTRAINED RANDOM VERIFICATION

USING MACHINE LEARNING ALGORITHM

As the design complexity increases the state space defining the same increases rapidly. Hence, the

probability of finding efficient stimuli diminishes. The aim of this research is to autonomously

update the constraints during runtime in order to hit bins that have not been previously hit during

the simulation, and hence converge to the coverage goal faster. This should ideally resolve the

segmentation fault issue too since the simulation will converge much faster and eliminate the need

for excess memory, which leads to the segmentation faults. There are multiple challenges that need

to be addressed to efficiently implement the optimization proposed and to be able to converge to

100% coverage in one simulation run, including:

1. Autonomous update of constraints to trigger efficient stimuli on the inputs that generate

the necessary outputs, so as to achieve an improvement in the objective function.

2. Develop design-independent, efficient techniques to update the constraints during runtime

without having to recompile the updated environment.

3. Synchronize the enhancements with the other optimization techniques, including Objective

Function, Rewinding and Dynamic Seed Manipulation, and integrating the environment.

All of the above-mentioned challenges have been efficiently resolved in the research work.

Machine Learning, as stated earlier, is the science of getting a computer to act without explicit

programming. It uses training sets, which represent the relationships between inputs and outputs in

the state space, to model a design. It is this property that we are going to exploit to resolve the

scalability issue of the environment. Machine Learning, as the name suggests, learns the design,

irrespective of what the design is, i.e. the algorithms are design-independent, resolving one of the

challenges inherently. So, the next big challenge is employing the Machine Learning algorithm

efficiently to autonomously update the constraints.

30

Functional coverage provides essential feedback for knowing what was tested, the device

configuration used and, perhaps most importantly, what still has not been tested. The idea is to pass

this information to the trained machine learning models, in order to identify the inputs that generate

outputs that hit the previously missed bins and update the constraints using the same to facilitate

the generation of these inputs. Since the aim is to find the function that best fits the state space to

make accurate predictions of input stimuli, it is a regression problem. In order to solve the problem,

we are going to use supervised machine learning algorithms, using labeled training sets to train the

model. The training sets contain information necessary to train the model, which include the inputs

and the expected output for the corresponding set of inputs as the label.

Presented below is a stepwise summary of the optimized constrained random simulation flow using

machine learning as proposed in this research work:

1. Run a limited number of random simulations.

2. Generate valid training sets from the random simulations.

3. Once the minimum number of training sets necessary to train the Machine Learning model

have been generated from the random simulations, train the model.

4. Identify an output bin that has not been hit previously during the simulation and feed the

same as input to the Machine Learning model.

5. Use the model to predict the input stimuli that can generate the output.

6. Update the constraints such that the input stimuli identified may be generated and drive the

inputs of the DUT with the same.

7. Repeat steps (4), (5) and (6) until all the bins have been hit and the simulation converges

to 100% coverage.

31

Figure 8: Optimized Constrained Random Simulations using Machine Learning

Irrespective of the Machine Learning algorithm used to model the relationship, the flow will remain

the same. However, the accuracy of the prediction will greatly depend on the algorithm used. In

order to demonstrate the method, we are going to use two models: a Linear Regression Model and

an Artificial Neural Network (ANN).

32

6. OPTIMIZATION OF THE TEST ENVIRONMENT USING A LINEAR

REGRESSION MODEL

For demonstration purposes, we have chosen the design of the comparator having configurable

input widths, discussed earlier, as the DUT. A covergroup has been defined inside the DUT, with

the internal signal match as the coverpoint, to check if all possible matching values have been

generated on A and B at the positive edge of the clock. When A equates to B at the positive edge

of the clock, the output C is asserted and match is assigned with A. Hence, we can see that there

is a linear relation between the output, match and the inputs A and B. In such a scenario, a simple

Machine Learning algorithm, like a Linear Regression Model will meet the requirements.

6.1 Generating Training Sets

An intriguing feature about this approach is the fact that the environment generates the necessary

training sets by itself, making the approach completely independent and mitigating the need for any

design-dependent inputs to run the simulation.

Structures defining the information to be contained in the training sets are defined in the

environment package. These make addressing the training sets easier and also causes them to be

less error-prone. For instance, training sets for modeling the relationships of the parameterized

comparator contains information corresponding to the inputs A and B, the output, match, and a

flag, TS_ready, indicating that the training set is ready, to train the model effectively.

typedef struct {

 bit [width-1:0] a;

 bit [width-1:0] b;

 bit [width-1:0] match;

 bit TS_ready;

} training_set;

33

The simulation samples valid data, i.e. when the inputs A and B are equal, during the random

simulations and loads the data into the training_set and asserts the corresponding

TS_ready signal. We have defined a function in the environment,

generate_TS_and_track_hit_bins (presented below) to generate the

no_of_TS_required number of training sets, TS and to track the output bins hit. The output

bins hit are tracked using an associative array, OUT_HIT [match].

function void generate_TS_and_track_hit_bins(

 bit [width-1:0] a,

 bit [width-1:0] b,

 bit [width-1:0] match);

 // Load TS with "no_of_TS_required" number of training sets

 // [Input=0 and Match = 0] cannot be used for training

 if(i<no_of_TS_required && (match!=0))

 begin

 // Generating Training Sets

 TS[i].a = a;

 TS[i].b = b;

 TS[i].match = match;

 TS[i].TS_ready = 1;

 // Tracking Output Bins hit

 OUT_HIT[match] = 1;

 i = i+1;

 end

 else

 begin

 OUT_HIT[match] = 1;

 end

endfunction

34

This function is called whenever the condition, A==B is met, to generate the necessary number of

training sets and to keep track of the output bins hit. The number of training sets required to train a

model can differ based on the design. To allow for this, the simulation is parameterized, with

no_of_TS_required made to be configurable.

6.2 Training the Model

Now that the training sets are ready, we can use them to efficiently train the Linear Regression

Model. We are using a TCL library, math::linearalgebra, in order to solve the linear

regression problem and compute the parameters, beta_a and beta_b. Once the training sets are

ready, i.e. once the TS_ready of no_of_TS_required number of training sets are all asserted,

the eval_coeff function (presented below) from rclass.tcl is invoked to evaluate the

coefficients.

proc ::rclass::eval_coeff {} {

 variable a0

 variable b0

 variable match0

 variable beta_a

 variable beta_b

 # Get the Training Sets

 set a0 [get top.dif.TS_a_0 -radix decimal]

 set b0 [get top.dif.TS_b_0 -radix decimal]

 set match0 [get top.dif.TS_match_0 -radix decimal]

 # Solve Linear Equation

 set beta_a [math::linearalgebra::solveGauss $a0 $match0]

 set beta_b [math::linearalgebra::solveGauss $b0 $match0]

 # Force Beta Values to SV Environment

 force top.rseed_interface.beta_a $beta_a;

 force top.rseed_interface.beta_b $beta_b;

 force top.rseed_interface.beta_ready 1; }

35

The computed parameters beta_a and beta_b, along with a flag beta_ready indicating that

the Machine Learning model has been trained, are forced onto variables in the SystemVerilog

environment and can now be used to update the constraints and generate inputs based on the

expected outputs.

6.3 Updating the Constraints

Once the Machine Learning Model has been trained, i.e. beta_ready is asserted, we may use it

to accurately predict the input stimuli and to use the same to update the constraints and generate

outputs hitting previously missed bins.

We use queues to define in-line constraints, while randomizing the inputs feeding the DUT and

dynamically update the queues during runtime to update the constraints. Presented below is the

function rprint used for randomizing and printing the input num, with num_inside_queue

used to define the inline constraints.

// randomize and print

function void rprint();

 this.randomize() with {(num inside num_inside_queue);};

 `uvm_info("CR", $sformatf("num is: %d", num), UVM_LOW)

endfunction

To identify the output bins that have not been previously hit we use the associative array keeping

track of the output bins hit, OUT_HIT[match]. The inputs used for updating the queue,

num_inside_queue, are computed from the identified expected outputs using the Linear

Regression Model parameters i.e. the beta_value. The function used for updating the

constraints, update_constraint is presented below:

36

function void update_constraint(integer beta_value);

 num_inside_queue = {};

 i = 0;

 repeat(2**width)

 if(!(OUT_HIT.exists(i))) begin

 num_inside_queue.push_back(i++/beta_value);

 break;

 end

 else i++;

endfunction

This novel implementation used for updating the constraints comes with the advantage that it

eliminates the need to recompile the environment every time the constraint is updated. Such an

implementation overcomes all the challenges foreseen and hence, the simulation should efficiently

converge to the coverage goal autonomously, in a single run.

6.4 Simulation Results for Comparator Design

The simulation results were promising and remarkably good in terms of the quality of input

stimulus generated using the optimized constrained random simulations, which in turn translated

to minimization of the time taken to converge to the 100% coverage.

The simulation environment also maintains the capability of random simulations to invoke

unpredicted bugs in the design. In order to achieve this, the simulation runs a configurable number

of unconstrained random iterations in the beginning. The simulation is guided by a plusarg,

+max_rand_sim_count that defines the number of random simulations run prior to employing

the Machine Learning algorithm, even if an improvement is not observed in the Objective Function

over the iterations.

37

To demonstrate the simulation results, a comparator with width=3 is chosen. A Makefile, with

adequate arguments, has been defined to configure the simulation environment efficiently. The

simulation is run using:

make synopsys WIDTH=3 ML_ENABLED=1

ML_ENABLED=1, enables the Linear Regression model as the machine learning algorithm.

+max_rand_sim_count was set to 10. During the random simulations, the valid training sets

are generated, and outputs bins hit are tracked (highlighted in the log below). The matching inputs

A=4, B=4 will be used as the training set to train the Linear Regression Model.

UVM_INFO sv/dut.sv(26)@ 20: reporter [dut_if] AFTER drive regs A: 4 B: 4

UVM_INFO sv/env_pkg.sv(28) @ 26: reporter [ENV_PKG] A and B matching;

Generate training sets; Track output bins hit

rseed_interface.sv, 111 : begin

------------------------- START eval_loop

DEBUG current simulation time is ctime : 27 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 2 at time: 17 ns

INFO STATUS : TCL : 27 ns : GOOD : 12.500000 > 0.000000

DEBUG stable_count == 0

------------------------- END eval_loop

The stable_count gives the number of iterations for which an improvement is not observed on

the Objective Function. The machine learning algorithm is trained when this value equates to the

max_rand_sim_count defined. Hence, when stable_count=10, the function,

eval_coeff is called to evaluate the parameters (Highlighted in the log below).

------------------------- START eval_loop

DEBUG current simulation time is ctime : 67 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 1067 at time: 57 ns

38

INFO STATUS : TCL : 67 ns : NO PROGRESS : false: 50.000000 > 50.000000

REWINDING TO CHECKPOINT {2} at 57 ns

All the Checkpoints created after checkpoint 2 are removed...

DEBUG stable_count == 10

######################### START eval_coeff

INFO STATUS : TCL : Evaluating Coefficients for LR Model at time: 57 ns

Training Sets:

A0 = 4; MATCH = 4

B0 = 4; MATCH = 4

Evaluate Coefficients:

BETA_A = 1.0; BETA_B = 1.0

######################### END eval_coeff

------------------------- END eval_loop

Once the parameters, beta_a and beta_b, are evaluated using the training sets, every

successive iteration of the SystemVerilog testbench updates the constraints using the parameters to

guide the simulation to generate outputs hitting previously missed bins. Ideally, every iteration is

expected to hit a previously missed bin, resulting in an improvement in the objective function. A

snippet of the simulation log presenting two iterations is given below. The constraints are updated

in every iteration, such that new matching values are generated on A and B every iteration, and

hence, an improvement is observed in the objective function (Highlighted in the log),

UVM_INFO sv/env_pkg.sv(171) @ 80: reporter@@uvm_sequence_item [ENV_PKG]

Updating Constraints

UVM_INFO sv/env_pkg.sv(196) @ 80: reporter@@uvm_sequence_item [ENV_PKG]

AFTER UPDATE num_inside_queue contain: '{'h2}

UVM_INFO sv/dut.sv(26)@ 80: reporter [dut_if] AFTER drive regs a: 2 b: 2

UVM_INFO sv/env_pkg.sv(28) @ 86: reporter [ENV_PKG] A and B matching;

Generate training sets; Track output bins hit

------------------------- START eval_loop

DEBUG current simulation time is ctime : 87 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 77 ns

39

INFO STATUS : TCL : 87 ns : GOOD : 75.000000 > 62.500000

------------------------- END eval_loop

UVM_INFO sv/env_pkg.sv(171) @ 90: reporter@@uvm_sequence_item [ENV_PKG]

Updating Constraints

UVM_INFO sv/env_pkg.sv(196) @ 90: reporter@@uvm_sequence_item [ENV_PKG]

AFTER UPDATE num_inside_queue contain: '{'h3}

UVM_INFO sv/dut.sv(26)@ 90: reporter [dut_if] AFTER drive regs a: 3 b: 3

UVM_INFO sv/env_pkg.sv(28) @ 96: reporter [ENV_PKG] A and B matching;

Generate training sets; Track output bins hit

------------------------- START eval_loop

DEBUG current simulation time is ctime : 97 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 87 ns

INFO STATUS : TCL : 97 ns : GOOD : 87.500000 > 75.000000

------------------------- END eval_loop

The simulation proceeds until the coverage goal is met. The simulator prints a final report once the

simulation converges to the 100% coverage goal.

INFO STATUS : TCL : WIDTH OF COMPARATOR = 3

INFO STATUS : TCL : ITERATIONS TOTAL = 24

INFO STATUS : TCL : final_report END

UVM_INFO sv/rseed_interface.sv(143) @ 117: reporter [RS]

COVERAGE GOAL MET coverage: 100 max_objective: 100

The simulation converges in 24 iterations (highlighted in the log) as opposed to 261 iterations in

the case of the original environment. This represents significant improvement in terms of both the

number of iterations required and the time taken to converge to the coverage goal.

The simulation environment was tested using multiple inputs widths. The results are tabulated

below, presenting the number of iterations taken to converge to the coverage goal as a function of

the width of the comparator.

40

Table 2: Simulation Results (Optimized Environment employing the Linear Regression Model)

Width of Comparator No of Iterations

1 1 5

2 2 14

3 3 24

4 4 26

5 5 78

6 6 96

7 7 144

The optimized environment resolves the segmentation fault issues observed in the original

environment. The increase in the number of iterations for higher widths is expected as it takes

longer to generate valid training sets. The technique clearly demonstrates marked advantages over

the prior approach. However, a Linear Regression model can only model linear relationships

between inputs and outputs. It is impractical to verify designs with non-linear behavior using the

environment.

6.5 Simulation Results for Non-Linear Design

To demonstrate the inefficiency of the environment using a Linear Regression Model at verifying

non-linear designs, we have chosen the simple non-linear parameterized design shown in the figure

below. The design has two inputs, A and B, with configurable sizes, corresponding to the parameter

width. The output C is asserted when both the inputs have the same value. The internal signal

product is assigned with the product of A and B, whenever C is asserted at a positive edge of the

clock. Otherwise, it is assigned to be 0.

41

Figure 9: Non-Linear DUT used for testing Optimized Verification Environment

The covergroup is defined with the internal signal product as the coverpoint. The covergroup for

a design with width = 4 is presented below. The bins defined check only the basic functionality

of the design, since the purpose is to demonstrate the test environment.

covergroup objective_cg;

 coverpoint product {

 bins bin_1 = {1};

 bins bin_4 = {4};

 bins bin_9 = {9};

 bins bin_16 = {16};

 bins bin_25 = {25};

 bins bin_36 = {36};

 bins bin_49 = {49};

 bins bin_64 = {64};

 bins bin_81 = {81};

 bins bin_100 = {100};

 bins bin_121 = {121};

 bins bin_144 = {144};

 bins bin_169 = {169};

 bins bin_196 = {196};

 bins bin_225 = {225};

}

endgroup

42

The design is simple but non-linear (since it effectively computes the square when the inputs are

equal). With the parameters beta_a and beta_b computed from the training sets, the model will

not be capable of making accurate predictions. A snippet of the log file highlighting the

computation of the parameters beta_a and beta_b using the training set A=13, B=13 and

product=169 is shown below:

######################### START eval_coeff

INFO STATUS : TCL : Evaluating Coefficients for LR Model at time: 127 ns

DEBUG A0 = 13; PRODUCT = 169

DEBUG B0 = 13; PRODUCT = 169

BETA_A = 13.0; BETA_B = 13.0

######################### END eval_coeff

The simulation will be stuck in a deadlock wherein the Linear Regression Model keeps making

incorrect predictions using the computed parameters. Consequently, the simulation will terminate

giving a segmentation fault after some time. A snippet of the log file of a simulation terminating

giving a segmentation fault (highlighted) is shown below:

DEBUG current simulation time is ctime : 137 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 64 at time: 127 ns

INFO STATUS : TCL : 137 ns : NO PROGRESS : false: 68.750000 > 68.750000

REWINDING TO CHECKPOINT {2} at 127 ns

All the Checkpoints created after checkpoint 2 are removed...

/usr/local/apps/synopsys/vcs/amd64/../gui/dve/bin/dve: line 159: 16805

Segmentation fault (core dumped) $CMD "$@"

make: *** [sim_synopsys] Error 139

Hence, we may conclude that the verification environment employing Linear Regression Model is

incapable of verifying non-linear designs. This limitation can be overcome by using Artificial

Neural Networks.

43

7. OPTIMIZATION OF THE TEST ENVIRONMENT USING AN ANN

Artificial Neural Networks (ANN) are non-linear statistical data modeling tools that can model

complex relationships between inputs and outputs in a state space. This ability may be exploited to

optimize the scalability of our test environment and enhance for verifying complex non-linear

designs. Successfully integrating ANNs into the verification environment largely eliminates any

design dependency and resolves most challenges pertaining to the capability of the test environment

to make accurate predictions for complex designs.

7.1 Modeling the Artificial Neural Network

We are using a TCL extension [7], fann, to model the Artificial Neural Networks. This extension

supports efficient implementations of Neural Networks with numerous knobs to configure the

network. The free open source neural network FANN library supports:

• Multilayer networks with configurable connections, enabling fully, sparse and shortcut

type connected networks.

• Backpropagation training which dynamically builds and trains the ANN, using multiple

evolving topology training algorithms and configurations.

• Numerous activation functions, including linear, sigmoid, Gaussian, etc.

Depending on the complexity of the relationship between the inputs and outputs of the design, we

may configure the ANN in terms of the number of layers, the number of neurons per layer, training

algorithm, activation function of each neuron, etc.

fann create name layers layer1 layer2

The command above creates a new ANN named name with layers number of layers, and

layer1, layer2,...., number of neurons per layer respectively, starting from the input

layer and towards the output layer.

44

name function layer <0,1,...> activation_function

name function output activation_function

These commands may be used to configure the activation function of each of the neurons in the

ANN, except for those in the input layer. Each neuron in the hidden layers and the output layer will

be assigned with an activation function. The activation function may be selected from the set of

available functions.

The FANN library also includes a framework for easy handling of the training sets. We can train

the ANN using either of the two commands:

name trainondata epochs error input output

name trainonfile filepath epochs error

Detailed information regarding the other commands required for advanced configuration of the

ANN to model complex design may be found in [7]. Once trained, the neural network may be used

on unseen inputs to predict outputs. To run the ANN on unseen inputs, we may use the command:

name run input

7.2 Simulation Results for Comparator Design

To demonstrate the method and validate the environment, we have chosen first the parameterized

comparator design with configurable input widths as the DUT. This simple design, though linear,

was chosen to check for the correctness of the technique, and to make a quantitative comparison of

the different methods explored in the research.

To demonstrate the simulation results, a comparator with width=3 was selected. A Makefile, with

appropriate arguments, has been defined to configure the simulation environment efficiently. The

simulation is run using:

45

make synopsys WIDTH=3 ML_ENABLED=2

ML_ENABLED=2 invokes the Artificial Neural Network as the machine learning algorithm. The

technique used to generate the training sets and update the constraints is similar to that explained

in previous sections for the Linear Regression Model.

The machine learning algorithm is trained when stable_count equates to the

max_rand_sim_count defined. The function train_ANN is called to train the ANN. The

function creates the ANN, defines the activation functions, and trains the ANN using the

trainondata command, as shown below:

fann create ANN 2 1 1

ANN function hidden linear

ANN function output linear

ANN trainondata 500000 0 {TS_inputs} {TS_outputs}

A snippet of the log has been presented below. When stable_count=10, the function to train

the ANN, train_ANN using two training sets is called (highlighted in the log below).

------------------------- START eval_loop

DEBUG current simulation time is ctime : 57 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 1140 at time: 47 ns

INFO STATUS : TCL : 57 ns : NO PROGRESS : false: 37.500000 > 37.500000

REWINDING TO CHECKPOINT {2} at 47 ns

All the Checkpoints created after checkpoint 2 are removed...

DEBUG stable_count == 10

************************* START train_ANN

INFO STATUS : TCL : TRAINING ANN at time: 47 ns

Training Sets:

A0 = 4; B0 = 4; MATCH0 = 4;

A0 = 3; B1 = 3; MATCH0 = 3;

************************* END train_ANN

------------------------- END eval_loop

46

Once the Neural Network is trained, every successive iteration of the SystemVerilog testbench

updates the constraints using the neural network to guide the simulation to generate outputs hitting

previously missed bins. Ideally, every iteration is expected to generate outputs hitting a previously

missed bin, resulting in an improvement in the objective function. We use the run command from

the fann library for the same. Presented in the snippet below are two iterations using the run_ANN

function which predicts the inputs, used to update the queues, from the output bins previously

missed (highlighted). Also highlighted is the improvement in the objective function on driving A

and B with the predicted inputs.

UVM_INFO sv/env_pkg.sv(205) @ 60: reporter@@uvm_sequence_item [ENV_PKG]

Updating Constraints (using ANN)

************************* START run_ANN

INFO STATUS : TCL : RUNNING ANN at time: 60 ns

INFO_STATUS : TCL : Output Bin NOT Hit: 1; Predicted Input to Update

Constraint Queue: 1

************************* END run_ANN

UVM_INFO sv/env_pkg.sv(305) @ 61: uvm_test_top [ENV_PKG] AFTER UPDATE

num_inside_queue contain: '{'h1}

UVM_INFO sv/dut.sv(37)@ 61: reporter [dut_if] AFTER drive regs A: 1 B: 1

UVM_INFO sv/env_pkg.sv(29) @ 66: reporter [ENV_PKG] Generate training

sets; Track output bins hit

------------------------- START eval_loop

DEBUG current simulation time is ctime : 67 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 319 at time: 47 ns

INFO STATUS : TCL : 67 ns : GOOD : 50.000000 > 37.500000

------------------------- END eval_loop

UVM_INFO sv/env_pkg.sv(205) @ 70: reporter@@uvm_sequence_item [ENV_PKG]

Updating Constraints (using ANN)

************************* START run_ANN

INFO STATUS : TCL : RUNNING ANN at time: 70 ns

INFO_STATUS : TCL : Output Bin NOT Hit: 2; Predicted Input to Update

Constraint Queue: 2

47

************************* END run_ANN

UVM_INFO sv/env_pkg.sv(305) @ 71: uvm_test_top [ENV_PKG] AFTER UPDATE

num_inside_queue contain: '{'h2}

UVM_INFO sv/dut.sv(37)@ 71: reporter [dut_if] AFTER drive regs A: 2 B: 2

UVM_INFO sv/env_pkg.sv(29) @ 76: reporter [ENV_PKG] Generate training

sets; Track output bins hit

------------------------- START eval_loop

DEBUG current simulation time is ctime : 77 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 319 at time: 67 ns

INFO STATUS : TCL : 77 ns : GOOD : 62.500000 > 50.000000

------------------------- END eval_loop

The simulation proceeds until the coverage goal is met. A final report is printed summarizing the

simulation once the simulation converges to the 100% coverage goal.

INFO STATUS : TCL : WIDTH OF COMPARATOR = 3

INFO STATUS : TCL : ITERATIONS TOTAL = 23

INFO STATUS : TCL : final_report END

UVM_INFO sv/rseed_interface.sv(161) @ 117: reporter [RS]

COVERAGE GOAL MET coverage: 100 max_objective: 100

The simulation converged to the 100% coverage goal in 23 iterations (highlighted above) as

opposed to 261 iterations in the case of the original environment. It is also similar to the 24

iterations required using the Linear Regression Model.

Simulations were carried out for multiple inputs widths. The results have been tabulated, presenting

the number of iterations taken to converge to the coverage goal as a function of the width of the

comparator.

48

Table 3: Simulation Results (Optimized Environment employing ANN)

Width of Comparator No of Iterations

1 1 3

2 2 9

3 3 23

4 4 27

5 5 62

6 6 170

7 7 220

Employing ANNs resolve the segmentation faults observed in the original environment. In terms

of number of iterations, the environment using ANN as the machine learning algorithm gives

similar trends as when using Linear Regression Model. However, the ANN can be applied in a

much wider set of applications, as will be shown in the remainder of this thesis.

7.3 Simulation Results for Non-Linear Design

To demonstrate the efficiency of the environment at verifying non-linear designs, we have chosen

the same non-linear parameterized design used earlier (shown in Figure 9). Experimental results

presented earlier in the report have shown that it is impractical to verify the non-linear design using

a Linear Regression model. Hence, successfully verifying the design using the ANN, accentuates

the role of ANNs in scaling the environment.

The Neural Network is trained after the initial random simulations, i.e. when stable_count

equates to the specified max_rand_sim_count. When stable_count=10, the function

49

train_ANN is called to load the trained ANN. The function loads the ANN trained using the

trainonfile command. We are using a sigmoid activation function for the hidden layer, so that

the ANN can deal with non-linear functions. Presented below are the TCL functions used to create,

configure and train the ANN.

fann create ANN 3 1 30 1

ANN function output linear

ANN function layer 0 sigmoid

ANN trainonfile <filepath> 500000 0

The trained ANN is loaded, when stable_count equates to 10, which indicates that the

objective function has been stable for 10 continuous iterations. A snippet of the log presenting the

same is given below. Highlighted is the function train_ANN used to train the ANN, called when

stable_count equates to 10.

------------------------- START eval_loop

DEBUG current simulation time is ctime : 57 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 909 at time: 47 ns

INFO STATUS : TCL : 57 ns : NO PROGRESS : false: 18.750000 > 18.750000

REWINDING TO CHECKPOINT {2} at 47 ns

All the Checkpoints created after checkpoint 2 are removed...

DEBUG stable_count == 10

************************* START train_ANN

INFO STATUS : TCL : TRAINING ANN at time: 47 ns

INFO STATUS : TCL : ANN Trained using Training Set

INFO STATUS : TCL : Trained ANN loaded

INFO STATUS : TCL : Training DONE

************************* END train_ANN

------------------------- END eval_loop

Once the trained ANN is loaded, ideally the ANN must be capable of predicting the inputs

producing outputs hitting previously missed bins, such that every successive iteration of the

50

SystemVerilog testbench updates the constraints using the neural network to guide the simulation

to achieve an improvement in the objective function. We use the run command from the fann library

for the same. Presented in the snippet below are two iterations using the run_ANN function which

predicts the inputs, used to update the queues, from the output bin previously missed (highlighted).

Also highlighted is the improvement in objective function on driving A and B with the predicted

inputs.

UVM_INFO sv/env_pkg.sv(206) @ 120: reporter@@uvm_sequence_item [ENV_PKG]

Updating Constraints (DNN)

************************* START run_ANN

INFO STATUS : TCL : RUNNING ANN at time: 120 ns

INFO_STATUS : TCL : Output Bin NOT Hit: 64; Predicted Input to Update

Constraint Queue: 8

************************* END run_ANN

UVM_INFO sv/env_pkg.sv(305) @ 121: uvm_test_top [ENV_PKG] AFTER UPDATE

num_inside_queue contain: '{'h8}

UVM_INFO sv/dut.sv(37)@121:reporter [dut_if] AFTER drive regs A: 8 B: 8

UVM_INFO sv/env_pkg.sv(29) @ 126: reporter [ENV_PKG] Generate training

sets; Track output bins hit

------------------------- START eval_loop

DEBUG current simulation time is ctime : 127 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 1141 at time: 117 ns

INFO STATUS : TCL : 127 ns : GOOD : 62.500000 > 56.250000

------------------------- END eval_loop

UVM_INFO sv/env_pkg.sv(206) @ 130: reporter@@uvm_sequence_item [ENV_PKG]

Updating Constraints (DNN)

************************* START run_ANN

INFO STATUS : TCL : RUNNING ANN at time: 130 ns

INFO_STATUS : TCL : Output Bin NOT Hit: 81; Predicted Input to Update

Constraint Queue: 9

************************* END run_ANN

UVM_INFO sv/env_pkg.sv(305) @ 131: uvm_test_top [ENV_PKG] AFTER UPDATE

num_inside_queue contain: '{'h9}

51

UVM_INFO sv/dut.sv(37)@131:reporter [dut_if] AFTER drive regs A: 9 B: 9

UVM_INFO sv/env_pkg.sv(29) @ 136: reporter [ENV_PKG] Generate training

sets; Track output bins hit

------------------------- START eval_loop

DEBUG current simulation time is ctime : 137 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 1141 at time: 127 ns

INFO STATUS : TCL : 137 ns : GOOD : 68.750000 > 62.500000

DEBUG stable_count == 0

------------------------- END eval_loop

The simulation proceeds until the coverage goal is met. Once the simulation converges to the 100%

coverage, a final report is printed, presenting the number of iterations.

INFO STATUS : TCL : ITERATIONS TOTAL = 29

INFO STATUS : TCL : final_report END

COVERAGE GOAL MET coverage: 100 max_objective: 100

The simulation converges in 29 iterations (highlighted above). Simulations were carried out for

multiple inputs widths. The results have been tabulated, presenting the number of iterations taken

to converge to the coverage goal as a function of the width of the design.

Table 4: Simulation Results (Optimized Environment employing ANN)

Input Width No of Iterations

1 1 3

2 2 16

3 3 24

4 4 29

5 5 96

These results show that the ANN is capable of making good predictions even for non-linear designs.

52

8. TEST ENVIRONMENT FOR VERIFYING AN FSM

 One key aspect about the verification environment in [4] is that it is based on rewinding the

simulation when progress is not observed on the objective function. Adding to the increased

complexity, sequential circuits, unlike combinational circuits, can have scenarios wherein no (or

very few) combinations of inputs can result in an increase in the objective function. Experimental

results presented earlier in the report have shown that the simulation using the environment in [4]

can get stuck in a deadlock and it may not converge to 100% coverage in one simulation run in

such a scenario.

One simple optimization that can resolve this issue will be to reset the design when the simulation

is stuck and the objective function is observed to be stable for a predefined number of clock cycles.

The simple optimization can get the simulation out of a possible deadlock condition. To make this

simple check, we keep track of the number of iterations the objective function has been stable for.

We use stable_count during the execution of the function eval_loop in rclass.tcl,

as the indicator. When stable_count exceeds a maximum value, the function to generate a

reset from within the SystemVerilog environment is invoked. Presented below is the code snippet

implementing this approach:

Check if objective function has not improved

if { [expr "$new_objective" == "$old_objective"] } {

Increment Count

 incr stable_count;

if {$stable_count >= $max_rand_sim_count} {

 # Call function to generate reset

 call top.rseed_interface.generate_reset();

 set stable_count 0; }

}

53

The technique can be further optimized by combining the reset generation with a method to

constrain the inputs such that previously taken branches are avoided. This implies that the

simulation will progress by taking a previously missed branch, thereby likely improving the

objective function. The set of valid input combinations that can cause a state transition in an FSM

will be small, as compared to the set of all possible combinations at the input. Hence, hardcoding

the constraints using this set of valid combinations is a simple and effective solution. An array

array_to_update_queue holding the set is passed to the function update_constraint,

used for updating the constraint. A snippet of the driver code calling the functions to generate a

reset drive_reset and to update the constraints update_constraint is given below:

// this is the forever loop that represents the UVM driver

forever begin

@(negedge dif.Clock);

 if (rseed_interface.generate_pulse_on_reset == 1)

begin

 // Drive Reset on DUT interface

 dif.drive_reset;

 // Function to update constraint

c_a.update_constraint(array_to_update_queue);

 c_b.update_constraint(array_to_update_queue);

end

else

begin

// randomize class txns using inline constraints

 c_a.rprint();

 c_b.rprint();

 // Drive DUT inputs

 dif.drive(c_a.get_num(), c_b.get_num());

end

end

54

Currently the constraints are hardcoded. This may be optimized by automating the constraint update

using Neural Networks; but this will require retraining of the ANN in case of mispredictions and

is left as future work.

8.1 Simulation Results for FSM Designs

For demonstration purpose we have chosen the same FSM that was used for experimenting with

the original environment from the prior work [4], shown in figure below. It was empirically shown

that the simulation using the verification environment in [4] gets stuck at 60% coverage and does

not proceed any further. The simulation terminates giving a segmentation fault after some time.

The reasons for this have been presented earlier in the report.

Figure 10: FSM Design used for Testing Optimized Verification Environment

Ideally, the optimized environment is expected to detect such a deadlock and generate a reset in

such scenarios. Also, the constraints should be updated to guide the simulation to proceed in the

desired direction.

55

If the simulation is found to be stuck in a state for n iterations, where n is a configurable parameter,

we assume that the simulation is stuck in a deadlock. For the current simulation we have set n=10.

Hence, when the stable_count, which gives the number of iterations for which the objective

function has not improved, equates to n, we call the function to generate the reset and update the

constraints to guide the simulation. Presented below is the log file of the simulation using the

updated environment. The function to generate a reset is called when stable_count equates to

10, after which the constraints are updated such that the FSM hits the previously missed states,

STATE_2 and STATE_3, and converges to meet the coverage goal (Highlighted in the log below).

------------------------- START eval_loop

DEBUG current simulation time is ctime : 37 ns

INFO STATUS : TCL : LOCAL REJECTED seed: 819 at time: 27 ns

INFO STATUS : TCL : 37 ns : NO PROGRESS : false: 60.000000 > 60.000000

REWINDING TO CHECKPOINT {2} at 27 ns

All the Checkpoints created after checkpoint 2 are removed...

DEBUG stable_count == 10

DEBUG "Generate Reset" Function called

------------------------- END eval_loop

UVM_INFO sv/dut.sv(20) @ 30: reporter [dut_if] Pulse generated on Reset

UVM_INFO sv/dut.sv(95) @ 35: reporter [dut] Current State: STATE_reset

UVM_INFO sv/env_pkg.sv(127) @ 45: reporter@@uvm_sequence_item [ENV_PKG]

Updating Constraints

UVM_INFO sv/env_pkg.sv(132) @ 45: reporter@@uvm_sequence_item [ENV_PKG]

AFTER UPDATE num_inside_queue contain: '{'h7}

UVM_INFO sv/dut.sv(15)@ 50: reporter [dut_if] AFTER drive regs A: 7 B: 7

UVM_INFO sv/dut.sv(100) @ 50: reporter [dut] Current State: STATE_1

UVM_INFO sv/dut.sv(105) @ 55: reporter [dut] Current State: STATE_2

56

------------------------- START eval_loop

DEBUG current simulation time is ctime : 57 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 898 at time: 27 ns

INFO STATUS : TCL : 57 ns : GOOD : 80.000000 > 60.000000

------------------------- END eval_loop

UVM_INFO sv/dut.sv(15)@ 60: reporter [dut_if] AFTER drive regs A: 7 B: 7

UVM_INFO sv/dut.sv(110) @ 65: reporter [dut] Current State: STATE_3

------------------------- START eval_loop

DEBUG current simulation time is ctime : 77 ns

INFO STATUS : TCL : LOCAL ACCEPTED seed: 898 at time: 57 ns

INFO STATUS : TCL : 77 ns : GOOD : 100.000000 > 80.000000

INFO STATUS : TCL : MET OBJECTIVE!

------------------------- END eval_loop

UVM_INFO sv/dut.sv(113) @ 75: reporter [dut] Current State: STATE_4

UVM_INFO sv/rseed_interface.sv(138) @ 77: reporter [RS]

COVERAGE GOAL MET coverage: 100 max_objective: 100

INFO STATUS : TCL : ITERATIONS TOTAL = 13

INFO STATUS : TCL : final_report END

The simulation no longer gets stuck in any deadlock. When a deadlock is detected, a reset is

generated and the constraints are updated to guide the simulation to proceed in a desired direction.

Simulation converges to the 100% coverage, proving that the optimization works as expected.

57

9. CONCLUSION

With the rapid scaling of technology nodes, more and more functionality is getting packed on to

the same-sized die, translating to increasingly complex designs. Accordingly, the verification of

such SoCs is becoming a greater challenge, impacting the time-to-market. Constrained random

simulations have become mainstream in ASIC and FPGA verification. But the effort spent to

analyze and prioritize unverified features and time spent on manually updating stimulus constraints

to close the coverage holes introduce a significant amount of unwanted delay in the time-to-market

of the product. This manual intervention is the biggest hindrance in the verification cycle of

complex designs.

This research work addresses these challenges by introducing an efficient, design-independent

technique to autonomously update the constraints using machine learning algorithms in order to

converge to the coverage goal faster. The test environment is further optimized using techniques

including Objective Function, Rewinding and Dynamic Seed Manipulation. The SystemVerilog

testbench, enhanced with multiple machine learning algorithms including a Linear Regression

model and Artificial Neural Networks, has been empirically shown to converge to the 100%

coverage goal much faster. A link to the GitHub repository with the proposed test environment can

be found in [9].

58

10. FUTURE WORK

The current environment waits for a minimum number of training sets to be generated prior to

training the neural network. In case of complex designs which might require a large number of

training sets to efficiently train the ANN to make accurate predictions, such a methodology will

stall the training and hence will take a longer time to converge to the coverage goal, or might even

terminate giving a segmentation fault. Though workarounds have been implemented in the current

environment to avoid this stalling, by using the trainonfile option to train the ANN, this will

require the user to provide valid training sets.

A solution to this would be to optimize the test environment to be capable of retraining the neural

network in case of mispredictions. This would eliminate the need to wait until all the training sets

are available to train the ANN. It will keep the verification environment completely design-

independent, without the need for any design-dependent inputs from the user, and also scale the

test environment even further to be capable of verifying much more complex designs.

59

REFERENCES

[1] Constrained Random Verification, Yuan J.; Pixley, C.; Aziz, A.; 2006, XII, 254p. 72 Illus.,

Hardcover, ISBN: 978-0-387-25974-5.

[2] Accellera, Universal Verification Methodology (UVM) 1.2 Class Reference (2014)

[3] Accellera, Universal Verification Methodology (UVM) 1.2 User’s Guide (2015)

[4] Eldon Nelson, “Improving Constrained Random Testing by Achieving Simulation Verification

Goals through Objective Functions, Rewinding and Dynamic Seed Manipulation”, Design and

Verification Conference (DVCon), Feb 2017.

[5] Panos Louridas and Christof Ebert, “Machine Learning”, IEEE Software, (Volume: 33, Issue:

5, Sept.-Oct. 2016), DOI: 10.1109/MS.2016.114.

[6] Carter, Hamilton B., Hemmady and Shankar G., “Metric Driven Design Verification”, 2007.

[7] TCL FANN Extension -http://tcl-fann.sourceforge.net/

[8] Dejan Tanikić and Vladimir Despotovic, “Artificial Intelligence Techniques for Modeling of

Temperature in the Metal Cutting Process”, Metallurgy Yogiraj Pardhi, IntechOpen, September

2012, DOI: 10.5772/47850.

[9] GitHub Repository: https://github.com/sarath-mohan/optimize-constrained-random-using-

machine-learning

[10] Nguyen Le and Mike Andrews, “Efficient Bug-Hunting Techniques Using Graph-Based

Stimulus Models”, Design and Verification Conference (DVCon) US, 2016.

http://tcl-fann.sourceforge.net/

60

[11] Sheena Angra and Sachin Ahuja, “Machine Learning and its Applications: A Review”,

International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), 2017,

DOI: 10.1109/ICBDACI.2017.8070809

 [12] “IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and

Verification Language,” IEEE Std 1800-2012 (Revision of IEEE Std 1800-2009), pp. 1 –1315,

2013.

[13] Stan Sokorac, “Optimizing Random Test Constraints Using Machine Learning Algorithms”,

Design and Verification Conference (DVCon), Feb 2017.

[14] Ahmed Yehia, “Faster Coverage Closure: Runtime Guidance of Constrained Random Stimuli

by Collected Coverage”, Saudi International Electronics, Communications and Photonics

Conference (SIECPC), 2013, DOI: 10.1109/SIECPC.2013.655100.

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature, vol. 521, no. 7553, pp. 436–

444, May 2015.

[16] Chris Kwok, Priya Viswanathan and Ping Yeung, “Addressing the Challenges of Reset

Verification in SoC Designs”, Design and Verification Conference (DVCon), 2015.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6542274
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6542274

