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ABSTRACT 

 

Use of the 4R’s (right rate, right source, right placement, right time) for nitrogen 

(N) management may improve farmer productivity and enhance environmental 

sustainability. However, best management practices for the 4R’s are not consistent across 

landscapes due to variable soil and growing season conditions. Research that 

systematically modifies the 4R’s may allow for selection of best N management practices 

for high yielding corn (Zea mays L.) and N use efficiency. Because corn yield is 

dependent on N uptake from the soil, frequent in-season soil sampling may be useful to 

assess N availability to the crop over time and may be a useful tool to forecast soil N 

sufficiency for agronomically optimal grain production. We examined the effect of N 

rate, source, and time of fertilizer application on soil N availability and corn grain yield 

for 12 site-years across Minnesota for the 2014 and 2015 growing seasons. Fertilizer 

treatments consisted of: pre-plant urea applied at 35 to 45 kg N ha-1 increments at seven 

to eight N rates; pre-plant applications at 105 or 135 kg N ha-1 of anhydrous ammonia 

with (AAI) and without (AA) nitrification inhibitor, polymer coated urea (PCU), and 

PCU-urea blends at ratios of 1:2 (PCU-U 1:2) and 2:1 (PCU-U 2:1); and split fertilizer 

applications of 35 or 45 kg N ha-1 urea ammonium nitrate applied as a starter fertilizer 

and side-dressed with 70 or 90 kg N ha-1 urea plus nitrification inhibitor at the V2, V4, 

V6, V8, or V12 vegetative development stage. Site-years were grouped based on similar 

soil textures and responses of grain yield to either N rate or time of fertilizer application. 

In-season soil and plant samples were collected five times during the growing season. 

The modified arcsine-log calibration curve was used to examine the potential of in-season 
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soil nitrate-N, ammonium-N, and total inorganic N concentrations to predict corn grain 

yields and the in-season N fertilizer rate needed to achieve those yields. 

Coarse textured soils were prone to rapid N loss for all pre-plant fertilizer 

treatments where yield was not maximized even when 315 kg N ha-1 urea was applied. 

AA, AAI, and PCU delayed nitrification or fertilizer N release from the prill relative to 

pre-plant urea for improved synchrony of N availability to corn demand with a 1.6-fold 

yield improvement on average. Likewise, split-applications from V4 to V12 improved 

yields 1.5 to 1.9-fold over pre-plant urea with 50 to 63% of the applied fertilizer N rate 

recovered in plant biomass. 

On fine-textured soils, seasonal precipitation strongly influenced site response to 

N fertilizer treatments. Site-years with low N loss potential had no yield differences 

between N sources and were either non-responsive to N rate or optimized yield at 180 kg 

N ha-1. Site-years with high N loss potential had reduced N availability and did not 

maximize yield regardless of the applied N rate. Under these conditions, yield, N use 

efficiency, and economic return was greatest for PCU-U blends relative to other N 

sources. Precipitation timeliness was important for incorporation of split-applied urea and 

for corn N uptake. With dry summer conditions, fertilizer N accumulated in the 0- to 30-

cm soil layer primarily as ammonium-N. Under well-distributed rainfall, side-dressed N 

was rapidly nitrified and taken up by the crop with the V2 to V8 timings producing 11.2 

Mg grain ha-1 on average. This highlights the importance of synchronizing in-season 

fertilizer applications with precipitation events and that adequate soil moisture is required 

for soil N to be crop available.  
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The modified arcsine-log calibration curve successfully correlated grain yields 

with soil test values for fine-textured sites but showed limited utility for coarse textured 

soils because of excessive N loss. For fine-textured soils, V4 soil nitrate from the 0- to 

30-cm was better correlated than pre-plant or V8 timings and was similarly correlated to 

deeper sampling depths or N species. This is positive as it represents labor and analysis 

cost savings as well as greater time for side-dress fertilization when the crop is small. 

With this study, we demonstrated that seasonal weather patterns and soil texture are 

major drivers of soil N availability such that there is not a single N fertilizer rate, source, 

or application timing that will optimize yields in all situations. On coarse-textured soils or 

when early spring conditions are expected to be wetter than normal, pre-plant urea should 

be avoided in favor of split-applications or other N sources, but little differences are 

likely between sources or applications timings when N loss potential is low. 
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CHAPTER 1: SOIL NITROGEN AVAILABILITY FOR CORN AS INFLUENCED 

BY NITROGEN RATE AND SOURCE IN MINNESOTA 

 

1.1. SYNOPSIS 

 

 Application of the right rate and right source are two of 4R’s recommended to 

improve nitrogen use efficiency (NUE) in corn (Zea mays L.) but the literature often 

reports contrasting recommendations. This study determined the effect of fertilizer rate 

and source on soil N and corn grain yield and evaluated in-season soil N testing to 

forecast grain yield. Experiments were conducted at five locations in Minnesota over two 

growing seasons with site-years grouped according to soil texture and grain yield 

response to N rate: Group 1 (coarse, linear), Group 2 (fine, linear), Group 3 (fine, 

quadratic-plateau), Group 4 (fine, non-responsive). Site-years with soil and weather 

conditions favoring N loss had linear responses to N rate applied as pre-plant urea and 

produced less yield at equivalent N rates relative to site-years where N loss potential was 

low. Anhydrous ammonia with (AAI) and without (AA) nitrification inhibitor, polymer 

coated urea (PCU) and PCU-urea blends improved yield 1.2- to 1.7-fold greater than urea 

in site-years with high N loss potential, but there were limited differences due to N source 

in low N loss potential site-years. Soil nitrate-N collected at the 0- to 30-cm layer at the 

four-leaf collar stage (V4) correlated well to relative yield on fine-textured soils with a 

critical soil test value (CSTV) of 24 to 30 mg kg-1 but showed no utility for coarse-

textured soils. This study illustrates that weather and site-year conditions strongly 

influence yield response to fertilizer source and rate. Pre-plant urea should be avoided in 
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favor of controlled-release products or sources that delay nitrification on coarse-textured 

soils but may be acceptable on fine-textured sources. 

 

1.2. INTRODUCTION 

 

Minnesota is the fourth largest corn grain producing state in the United States 

with over 36 million Mg produced in 2015 (USDA NASS, 2016). Nitrogen is frequently 

limiting for corn production (Mamo et al., 2003) and is often supplied through inorganic 

fertilizers that represent a large cost to growers (Raun and Johnson, 1999). It can also 

degrade air and water quality as nitrous oxide or methane emissions (Venterea et al., 

2011) or nitrate-N leaching to ground and surface waters (Randall and Vetsch, 2005; 

Rubin et al., 2016). Under ongoing climate change, it is predicted that the Midwest will 

experience warmer winter and night-time temperatures (Seeley, 2015) and more intense 

precipitation events during the early spring months followed by dry summer months 

(USEPA, 2013). Changes in temperature will likely affect corn growth and development 

(Muchow et al., 1990) and N cycling processes (Leirós et al., 1999; Rawluk et al., 2001; 

Morris et al., 2018). Large rainfall events and warmer temperatures in the early spring 

can be especially important in enhancing N loss potential, while reduced soil moisture 

during dry summers may reduce N availability to the crop. Modification of grower 

management practices of fertilizer rate, source, time, or placement may be required to 

minimize potential for N losses and optimize yield.  

Application of the right rate of N has long been recognized as one of the most 

effective management strategies to produce corn and improve N use efficiency (Roberts, 
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2007; Kaiser et al., 2011; Burzaco et al., 2013). With variable yearly and seasonal 

weather conditions, determining the right rate for a given field each year is a significant 

challenge (Johnson and Raun, 2003; Mamo et al., 2003). Some farmers apply excess N as 

“insurance” to avoid unrealized yield potential, but this practice can incur significant N 

loss when rates exceed crop needs (Fernández et al., 2016) reducing NUE (Baker and 

Johnson, 1981; Francis et al., 1993; Van Groenigen et al., 2010; Wortman et al., 2011; 

Burzaco et al., 2013). Minnesota has developed N best management practices regions for 

corn production based on soil and climatic conditions (Lamb et al., 2008). Nitrogen rate 

guidelines cannot be viewed as static values because they are influenced by many 

evolving variables such as climate and agronomic practices. The University of Minnesota 

increased its N rate guidelines for corn on irrigated sands (Lamb et al., 2015) raising 

concerns of increased potential for nitrate-N leaching. Struffert et al. (2016) found no 

difference between nitrate-N leaching losses for corn receiving N at the economic 

optimal N rate (EONR) and reduced N rates.     

Nitrogen source can have a significant impact on NUE and corn production. In the 

Upper Midwest, the preferred N source has changed from anhydrous ammonia to urea 

(Bierman et al., 2012). Use of enhanced efficiency products including slow- and 

controlled-release fertilizers and nitrification and urease inhibitors are becoming 

increasingly common (Trenkel, 2010; Halvorson and Bartolo, 2014). Enhanced efficiency 

fertilizers may improve NUE by delaying the rate of N release at times when the potential 

for N loss is high, extending the period of N availability by inhibiting microbial and 

enzymatic activity, or by improving the synchrony of fertilizer availability and corn N 

uptake (Motavalli et al., 2008; Sistani et al., 2014). Enhanced efficiency fertilizers are 
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likely to be of greatest efficacy when potential for N loss is high such as on coarse-

textured soils or poorly-drained fine-textured soils (Nelson et al., 2008). Enhanced 

efficiency fertilizers need further exploration because growing season conditions and soil 

characteristics can affect their usefulness (Motavalli et al., 2008). 

Nitrogen research often focuses on the effect of a given treatment on end of 

season metrics, such as grain yield. Relatively less attention has been devoted to the 

impact of N management on N availability throughout the growing season. Many 

midwestern U.S. soils are high in organic matter mineralizing 80 to 240 kg N ha-1 each 

growing season (Cassman et al., 2002). However, soil supplying capacity is variable 

depending on weather, soil properties, landscape aspect, and cropping history (Cassman 

et al., 2002; Dyson and Conyers, 2013; Morris et al., 2018). Corn producing 10 Mg grain 

ha-1 requires approximately 190 kg N ha-1 with a median value of 130 kg N ha-1 coming 

from the soil (Cassman et al., 2002). Soil testing can provide valuable information on N 

availability at the time of sampling and estimates of future soil supply (Dyson and 

Conyers, 2013). The pre-plant soil nitrate test is recommended as a tool to credit residual 

soil nitrate from the previous growing season on semi-humid regions on medium and 

fine-textured soils (Kaiser et al., 2011). This test has limited or unreliable application for 

coarse-textured soils or soils that have received above normal precipitation (Bundy et al., 

1999).  

In more humid regions of the US Midwest and Northeast, the pre-sidedress soil 

nitrate test is often used during the V4 to V6 corn development stage (Abendroth et al., 

2011). This test provides an estimate of the amount of N that could be available to the 

crop throughout the growing season from organic matter, manure, and crop residues 
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(Magdoff, 1991b). When pre-sidedress soil nitrate test soil test values (STV) are above 

the critical STV (CSTV) of 20-25 mg kg-1, it is likely that the crop will not respond to N 

fertilizer (Fox et al., 1989; Bundy et al., 1999).  Soil test values less than the CSTV are 

not well correlated to yield, relegating its usefulness only as a predictive tool to identify 

crop responsivity to fertilizer N needs (Fox et al., 1989). Research has provided 

calibrated or suggested calculations for fertilizer recommendations when STVs are below 

the CSTV (Blackmer et al., 1997; Laboski and Peters, 2012; Ferrer et al., 2003). Research 

in Minnesota has not found the pre-sidedress nitrate test to be effective (Lamb et al., 

2014; Yost et al., 2014; Walker 2018). The pre-sidedress soil nitrate test may not perform 

well following greater than normal precipitation on permeable soils or if soil conditions 

were cold and wet resulting in poor N mineralization rates (Magdoff, 1991a; Andraski 

and Bundy, 2002). Additional research is needed to determine the value of in-season soil 

testing as a tool to determine sufficiency levels and predict in-season N rate application to 

optimize yield and improve NUE. 

The objectives of this study were to determine the effect of N rate and source on 

soil N availability throughout the growing season and its impact on corn grain yield and 

NUE, and to determine the potential of in-season soil N testing as a tool to predict 

optimum corn grain yield and N rate needed to achieve that optimum.   

 

1.3. MATERIALS AND METHODS 

 

Study Sites 
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Field trials were conducted in 2014 and 2015 on 12 field site-years that represent 

major soils and agricultural regions across the upper Midwest. Field sites were located at 

the University of Minnesota Sand Plain Research Farm in Becker, MN, at the University 

of Minnesota Research and Outreach Centers at Lamberton and Waseca, MN, and on 

farmers’ fields near Theilman and Clara City, MN (Table 1.1). All site-years were corn 

following corn except for Waseca14a that was corn following soybean [Glycine max (L.) 

Merr.]. All site-years were dryland, except for those at Becker that were irrigated. Air 

temperature and precipitation data were obtained from the National Weather Service 

weather stations in closest proximity to each site (MNDNR, 2016). 

 

Soil Sampling 

 

Before site-year establishment, a 10-core (1.8-cm diameter) composite soil 

sample was collected from the 0- to 15-cm layer from each replicate and analyzed for 

texture by the hydrometer method (Gee and Bauder, 1986), pH (1:1 soil:water) (Peters et 

al., 2012), cation exchange capacity and ammonium-acetate exchangeable K, Ca, and Mg 

(Warncke and Brown, 2012), organic matter by loss on ignition (Combs and Nathan, 

2012), and Bray-P1 for all site-years except Clara City (pH > 7.2), which was analyzed 

by Olson-P (Frank et al., 2012) (Table 1.2). Bulk density was measured at the center of 0- 

to 30- and 30- to 60-cm increments (Table 1.2) by collecting two 5 cm deep samples per 

replication using the intact core technique (Blake and Hartge, 1986). An additional 10-

core (1.8-cm diameter) composite soil sample was collected from the 0- to 30- and 30- to 

60-cm layer from each replicate, dried at 35°C in a forced-air oven until constant mass, 
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ground to pass through a 2 mm sieve, and analyzed for nitrate-N (Gelderman and Beegle, 

2012) and ammonium-N (Bremner and Mulvaney, 1982). Additional soil samples were 

collected for nitrate-N and ammonium-N analysis from each treatment plot at 0- to 30- 

and 30- to 60-cm increments concurrent with plant sampling (V4, V8, V12, R1) as four-

core (1.8-cm diameter) composite soil samples using a hand probe and at post-harvest as 

a two-core (5-cm diameter) composite soil sample using a hydraulic probe.  

 

Experimental Design 

 

Treatments were arranged in a randomized complete block design with four 

replications. Treatments consisted of pre-plant urea (46-0-0, N-P-K) at each site-year at 

45 kg N ha-1 rate increments from 0 to 270 kg N ha-1 except at Theilman14 and 

Waseca14a, where the N rates were reduced by 25% and at the Becker site-years that 

received an additional rate of 315 kg N ha-1. Additional pre-plant treatments consisted of 

135 kg N ha-1 (102 kg N ha-1 at Theilman14 and Waseca14a) as polymer-coated urea, 

(PCU) (44-0-0) (ESN® Smart Nitrogen, Agrium Advanced Technologies, Loveland, CO) 

that releases urea in response to temperature and moisture conditions; PCU-urea (U) 

blends of 45/90 (PCU-U 1:2) and 90/45 (PCU-U 2:1) kg N ha-1; and anhydrous ammonia 

(AA) (82-0-0), applied with (AAI) and without (AA) a nitrification inhibitor [2-chloro-6-

(trichloromethyl) pyridine (N-Serve®, Dow Agrosciences LLC, Indianapolis, IN)]. Urea 

and PCU fertilizer treatments were incorporated into the soil by shallow (5-cm) tillage or 

6 mm of irrigation within two days of broadcast application. Corn was planted in rows 

spaced 76 cm apart at all site-years except in Clara City (56 cm). Plots were 21.3 meters 
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long by 3.0 meters wide in Becker, Lamberton, and Theilman, 12.2 meters long by 3.4 

meters wide in Clara City, and 15.2 meters long by 4.6 meters wide in Waseca. 

Becker15a, Waseca15a, and Clara City15 were placed on the same treatment-plots as the 

2014 site-years of Becker14, Waseca14b, and Clara City14 because the 2015 pre-plant 

soil samples indicated that no residual N treatment effects existed from the previous year 

(TIN in all treatments was similar to the unfertilized check plot).  

After full width tillage, site-years were planted at 84,000 to 89,000 seeds ha-1 

with PIONEER P9917AMX at Theilman14, Clara City15, and all Becker and Lamberton 

site-years; DKC44-13 RIB AR at Clara City14; and DKC53-56 RIB at all Waseca site-

years (Table 1.3). Following university guidelines (Lamb et al., 2015), the N rates were 

not adjusted for nitrate-N contributions from the irrigation water for the Becker site-years 

because concentrations were <10 mg L-1 supplying a total of 20-27 kg N ha-1. Irrigation 

was applied 17 times in 2014 (266 mm) and 12 times in 2015 (188 mm) based on the 

water-balance approach (Steele et al., 2010). Other than N treatments, experimental areas 

were fertilized and limed to maximize corn yield.  

 

Corn Sampling 

 

Stand counts were taken at V4 from 6.1 m of the two center rows of each plot. 

Nitrogen uptake was measured by collecting six representative whole plant samples cut at 

the soil surface at V4, V8, V12, and R1. Plant samples were chipped, dried at 60 °C in a 

forced-air oven until constant mass, and weighed. Dried samples were then mixed and 

ground to pass through a 2-mm screen. Cobs, grain, and vegetative tissues were 
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partitioned at the R6 stage and processed similar to earlier samplings. Total N of the 

ground plant samples was determined by combustion analysis using a Carlo Erba 1500 

elemental analyzer (Carlo Erba, La Metairie, France) (Horneck and Miller, 1998). Grain 

yield was measured by harvesting the center two rows by hand or using a research grade 

plot combine. A representative grain subsample was saved to determine grain moisture 

content and analyzed for total N content by combustion analysis using an Elementar 

Analyzer (Langenselbold, Hesse, Germany). Grain yield was adjusted to 155 g kg-1 

moisture. Nitrogen uptake was calculated as the product of dry matter for the grain, cob, 

and stover and their respective N concentrations. 

 

Nitrogen Use Efficiency Calculations 

 

In units of kg kg-1, agronomic efficiency [(AE= YldN - Yld0)/N rateN], partial 

factor productivity (PFP=YldN/N rateN), grain N harvest index (GNHI=GN/TN), 

fertilizer recovery efficiency [FRE= (TN - T0)/N rateN * 100%], and grain N recovery 

efficiency [GNRE= (G N - G0)/N rateN * 100%] were calculated to describe crop-N 

utilization (Sawyer et al., 2017). In these equations, T, G, and Yld represent total 

aboveground N uptake, grain N uptake, and grain yield, respectively, and the subscript 

“N” represents the fertilizer N treatment of interest, while subscript “0” represents the 

nonfertilized control treatment. Gross revenue differences between PCU and urea were 

calculated as: Gross revenue={[Yld(PCU or PCU blend) – YldUrea] * corn price} – 

{[fertilizer cost(PCU or PCU blend) – fertilizer cost(Urea)] x fertilizer application rate} 
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at a corn price of $198.41 Mg-1, urea fertilizer-N cost of $1.10 kg-1, and a PCU 

fertilizer-N cost of $2.15 kg-1 (ESN-ROI, 2018).  

 

Data Analysis 

 

Site-years were initially separated by soil texture where site-years with coarse-

textured soils (loamy sands) were separated from site-years with fine-textured soils (loam 

or finer). Within those groups, site-years were separated into subgroups based on the 

response of grain yield to N rate using the two-tailed log likelihood test at P > 0.15. 

Group 1 (Becker14, Becker15a, Becker15b) had a linear response and were loamy sands, 

Group 2 (Clara City14, Waseca14a, Waseca14b, Waseca15a, Waseca15b) had a linear 

response and were silty-clay loam or finer soils, Group 3 (Clara City15, Lamberton14, 

Theilman14) had a quadratic-plateau response and were loam or finer soils, and Group 4 

(Lamberton15) was non-responsive and was a loam soil (Table 1.4). The same groupings 

were maintained for analysis of other dependent variables.  

Data were analyzed using the MIXED procedure of SAS (SAS Institute, 2012). 

Nitrogen treatments associated with N rate were analyzed separately from N treatments 

comparing N sources. In both analyses, N treatment was considered a fixed effect, while 

site-year, block (nested within site-year) and interactions of fixed effects with site-year 

and block were considered random effects. Model assumptions of normally distributed 

residuals and homogeneity of variance of treatment means were verified using the 

UNIVARIATE procedure of SAS (Kutner et al., 2004). When appropriate, pairwise mean 
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comparisons were made with t-tests at P ≤ 0.05 using the PDIFF option in the MIXED 

procedure of SAS (SAS Institute, 2012).  

For the N rate analysis, the REG or NLIN procedures were used to relate the 

response variables (i.e., grain yield, corn N uptake, NUE variables, etc.) with N rate when 

the main effect of fertilizer N rate was significant (SAS Institute 2012). When regression 

models were not significant, results were averaged across N rates and reported. The 

agronomic optimal N rate (AONR) was the point at which the model plateaued for 

quadratic-plateau regressions or the highest applied N rate for linear or quadratic 

regression models. The EONR was determined by setting the first derivative of the 

regression model to the urea fertilizer cost/corn price ratio of 0.0056 (i.e., $1.10 kg-1 N, 

$198.41 Mg-1 corn grain) based on the regional N rate guideline method by Sawyer et al. 

(2006).  

Repeated measures analysis was performed for in-season soil and plant samplings 

using the MIXED procedure of SAS and autoregressive covariance structure, where N 

treatment, time, and depth and their interactions were considered fixed effects while site-

year, block (nested within site-year) and interactions of fixed effects with site-year and 

block were considered random effects. Significant fixed effects or interactions of fixed 

effects were compared using means separation at P ≤ 0.05 with the PDIFF option of the 

MIXED procedure of SAS (SAS Institute, 2012). 

Soil-test value and yield calibration curves were performed using the modified 

arcsine-log calibration curve (MALCC) to determine the confidence interval of STVs 

required to produce near-optimal yield (Dyson and Conyers, 2013; Correndo et al., 2017). 

Following Correndo et al. (2017), STVs from the various site-year groupings, and an 
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additional grouping consisting of all fine-textured site-years (Group Fine) were natural 

log transformed (Y) while relative yield was transformed by taking the arcsine of the 

square root of relative yield (X). The transformed relative yield was then centered with 

respect to a given yield goal (i.e., 90%) and fitted with an ordinary least squares 

regression line. To estimate the bivariate equation between X and Y, the fitted least 

squares regression line was adjusted to a standardized major axis line by dividing the 

least squares regression line slope coefficient by the Pearson correlation coefficient. The 

estimated CSTV (y-intercept of the standardized major axis line), its associated 

confidence limits, and the standardized major axis line were back transformed to the 

original units. The MALCC was used to examine soil nitrate-N, ammonium-N, and TIN 

for pre-plant STVs plus the applied N rate, and the V4 and V8 STVs at the 0-30 and 0-60 

cm sampling increments. Each model was visually inspected for homogeneity of variance 

using scatterplots of the residuals vs. predicted values, and best-fit models were selected 

based on greater squared Pearson correlation coefficients.  

While determining yield level with a CSTV can be valuable, from an N 

management perspective it is more important to predict how much additional N fertilizer 

may be needed when STV are less than the CSTV. Others have reported no yield 

differences between a single and split fertilizer applications on fine-textured soils (Jokela 

and Randall, 1989; Jokela and Randall, 1997; Scharf et al., 2002; Venterea and Coulter, 

2015; Mueller et al., 2017). Therefore, it may be realistic to use in-season STV from pre-

plant fertilizer applications to determine the amount of N fertilizer needed at sidedress 

when split applications are used. To examine this hypothesis, STV from selected 

MALCC’s were regressed against applied N fertilizer rates using the REG procedure of 
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SAS (SAS Institute, 2012). Because STV variability increased with increasing N rate, 

STVs were natural log transformed prior to analysis. Model assumptions of normally 

distributed residuals and homogeneity of variance of treatment means were verified using 

the UNIVARIATE procedure of SAS (Kutner et al., 2004). Seventy-percent confidence 

limits were calculated (approximately one standard deviation) for the regression lines to 

account for STV variability and the regression line and confidence intervals were back-

transformed to the original units. 

 

1.4. RESULTS AND DISCUSSION 

 

Weather 

 

Monthly precipitation was arbitrarily considered below average when it was at 

least 25-mm less than the 30-yr normal and considered above average when it was at 

least 25-mm greater than the 30-yr normal. Likewise, monthly mean air temperature was 

considered below average when they were at least 0.55 ˚C less than 30-yr normal and 

considered above average when they were at least 0.55 ˚C greater than the 30-yr normal.  

In 2014, the period from April to June was wetter than normal for all site-years, 

with 46-60% of the total annual precipitation compared to 33-37% for the 30-yr normal 

(Table 1.5). July through October was normal or drier than normal at all site-years except 

Clara City and Theilman in August and Lamberton in September that were wetter than 

normal (Table 1.5). The air temperature was generally cooler than normal at all site-years 

in 2014 in April, May and July while June and August through October were generally 

near the 30-yr normal. Wetter and cooler than normal conditions in April and May 
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delayed planting until mid- to late-May at all site-years (Table 1.3, 1.5). These 

conditions, especially in Becker and Waseca, may have negatively impacted seedling 

growth by slowing germination and nutrient uptake (Abendroth et. al, 2011). Excessive 

precipitation in June set many new records across Minnesota and likely reduced N 

availability through leaching at Becker and denitrification at Waseca and Clara City 

where soils were saturated for several days following four 50-mm rain events. Drier than 

normal conditions at all site-years in July corresponded to V8 to VT development stages 

that is typically a time of rapid plant growth and N uptake (Bender et al., 2013). Water 

stress, especially two weeks before and after silking, can negatively impact N uptake and 

yield (Abendroth et. al, 2011). Additionally, in Waseca, there was an early frost on 13 

Sept. and the Waseca14a site-year was damaged by hail on 20 Sept. when the crop was at 

R5. Excessively wet soil conditions followed by freezing prevented post-harvest soil 

sampling at Waseca14a.  

Overall, the 2014 growing season was less favorable for corn production due to 

excessive precipitation in the early spring months followed by dry conditions starting in 

July, while the 2015 growing season was overall more favorable due to evenly distributed 

precipitation events and a longer growing season. In 2015, May through August 

precipitation was normal or above normal for all site-years, except Becker and Clara City 

in June that were below the 30-yr normal. April, September, and October temperatures 

were warmer than normal that enabled planting in late April to early May (except 

Lamberton15 that was not planted until 21 May) and a longer growing season than 

normal (Table 1.3, 1.5). May through August temperatures were normal or slightly cooler 

than normal at all site-years. 
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End of Season Yield Metrics – Nitrogen Rate 

 

Groups 1 (loamy sands) and 2 (silty clay loam or finer) had positive linear grain 

yield responses to N yielding 8.0 Mg ha-1 in Group 1 and 11.3 Mg ha-1 in Group 2 at the 

highest applied N rate (Table 1.4). Group 3 (loam or finer) had a quadratic-plateau 

response with an EONR and AONR of 163 and 182 kg N ha-1, respectively but similar 

yield of 11.1 Mg ha-1. Group 4 (loam) was not responsive to N with a mean yield of 12.6 

Mg ha-1. These results illustrate that site-specific differences can result in variable yield 

responses to pre-plant urea and represents commonly observed N responses contained 

within the EONR database used to generate N rate guidelines. In the upper Midwest, the 

EONR (ratio=0.0056) for corn following corn is 215 to 252 kg N ha-1 on irrigated 

coarse-textured soils (Lamb et al., 2015) and 165 to 189 kg N ha-1 for fine-textured soils 

(CNRC, 2017).  

The linear responses of grain yield for Groups 1 and 2 are indicative of substantial 

N fertilizer loss (Table 1.4). Pre-plant N applications are highly susceptible to leaching 

losses on irrigated coarse-textured soils (Group 1). Applying the full N rate at pre-plant 

contrasts best management practices for irrigated sands (Lamb et al., 2015), but urea was 

applied at pre-plant to maintain experiment uniformity across all site-years in this study. 

Because Group 1 precipitation was at or above normal in April and May (Table 1.5) and 

crop N uptake and water use were low, leaching potential of pre-plant N was likely high. 

Although potential for N loss on fine-textured soils is generally lower than on sands, 

Group 2 also had linear yield response to N likely as result of several large rain events in 
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June 2014 and 2015 that produced waterlogged conditions and increased potential for N 

losses. 

Corn N uptake at the end of the growing season (R6) and grain N removal had 

positive linear responses to N rate for all groups except Group 3 where grain N removal 

showed a quadratic response (Table 1.4). Others have observed similar values and 

responses for N uptake and removal (Halvorson et al., 2006; Van Groenigen et al., 2010; 

Holou et al., 2011; Sindelar et al., 2015). Similar to grain yield response to N, corn N 

uptake and grain N removal at the 0 N rate increased sequentially from Group 1 to Group 

4. Also, the slopes of the regression models increased from Groups 1 to 3 indicating that 

for the years of the study, these soils had different yield potentials (Table 1.4). Group 4 

had the smallest slope but largest intercepts for N uptake (204 kg N ha-1) and grain N 

(139 kg N ha-1) indicating that indigenous soil N supply was adequate for the crop 

(Table 1.4).  

There was generally no response of NUE indices to increasing N rate for all 

groups (Table 1.6) except for PFP (Table 1.4). There was a quadratic decrease with 

increasing N rate for PFP, which was minimized at 23, 38, 42, and 45 kg kg-1 for Groups 

1, 2, 3, and 4, respectively when the N fertilizer rate was 224 to 238 kg N ha-1. Partial 

factor productivity values declined most rapidly in groups with high soil N availability 

(i.e., Group 4) whereas in Group 1, where N was limiting, the decline was more gradual 

(Table 1.4). Averaged across N rates, AE and GNRE increased from Group 4 < Group 1 

< Group 2 <Group 3 (Table 1.7). The low NUE’s in Groups 1 and 2 are likely due to N 

losses (Cassman et al., 2002). Low NUE at rates greater than the AONR in Groups 3 and 

4 are due to N supplied in excess of crop needs (Baker and Johnson, 1981; Francis et al., 



 17 

1993; Van Groenigen et al., 2010; Burzaco et al., 2013). Even at the AONR in Group 3, 

FRE was only 48% indicating that the right N rate alone might not be sufficient to 

substantially increase NUE. Simultaneous manipulation of N fertilizer rate, source, 

application timing, and placement may be needed to significantly improve NUE. Using 

three of the four management strategies, Venterea et al. (2016) reduced the N rate by 

15% and increase FRE by 16% using a split application of urea with urease and 

nitrification inhibitors relative to pre-plant urea. An additional potential challenge with 

improving NUE was demonstrated by Francis et al. (1993) who reported that 

approximately 15-20% of 15N fertilizer incorporated into aboveground biomass was lost 

between R2 and R6, potentially as ammonia volatilization from the leaves. Improving 

NUE may require further adaptation of crop genetics in addition to reducing N loss from 

the soil or improving N uptake. 

 

In-Season Corn Nitrogen Uptake - Nitrogen Rate 

 

In-season corn N uptake had a significant N rate by time interaction for all groups 

(Table 1.7). Corn N uptake increased over time, but the increase was most pronounced 

with greater N fertilizer rates (Table 1.7). Differences in N uptake due to N rate within 

groups were not statistically evident until V8. In a related study, Paiao (2017) also 

observed that different canopy sensors at V4 were unable to detect crop differences due 

to N rate. These findings indicate that little, if any, N needs to be applied before V4 

because crops have limited N requirements and the native soil supply is sufficient to 

satisfy the crop demand. Irrigated, coarse-textured soils or cold, fine-textured soils may 
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still require a small (< 45 kg N ha-1) starter fertilizer N application if the soil N supply is 

low. This finding supports guidelines for sandy soils, where pre-plant N applications are 

not recommended because the potential for N loss is too great and N application is not 

warranted by crop demands (Laboski and Peters, 2012; Lamb et al., 2015).  

Starting at V8 and persisting throughout the growing season, corn N uptake was 

greater with increasing N rate in all groups but the magnitude of uptake at equivalent N 

rates followed the order Group 1 < Group 2 < Group 3 < Group 4 (Table 1.7). In Illinois 

under optimal growing conditions, Bender et al. (2013) reported maximal corn N uptake 

rates from V10 to V14. Nitrogen uptake was most rapid between V8 and V12 for all N 

rate treatments (Table 1.7). At the highest applied N rate, plant uptake rates were 

generally smaller (0.30, 0.39, 0.39, and 0.72 kg N ha-1 GDDC-1 for Groups 1 through 4, 

respectively) than 0.66 kg N ha-1 reported by Bender et al. (2013) (Table 1.7). Rates of N 

uptake declined in all groups from V12 to R1 relative to the V8 to V12 period (Table 1.7) 

and by R1 Group 1, 2, and 3 accumulated 60, 67, and 70%, respectively of the total R6 N 

uptake, similar to 66% reported by Bender et al. (2013) but Group 4 was greater at 83%. 

This illustrates the importance of supplying adequate soil N during the vegetative and 

reproductive stages to maximize yield potential.  

 

In-Season Soil Nitrogen - Nitrogen Rate 

 

In-season soil TIN values may help explain yield and corn N uptake differences 

due to N rate. There was a significant N rate by soil depth by sampling time interaction 

for TIN in Group 1 (Table 1.8). Soil TIN increased with increasing N rate for both 
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surface (0- to 30-cm) and subsurface (30- to 60-cm) layers, with increasingly greater N in 

the top layer than the subsurface with application > 90 kg N ha-1 at V4, but after V4 

differences in TIN due to soil layer became negligible (Table 1.7). Differences due to N 

rate persisted only through V8 for rates ≥135 kg N ha-1 (lower rates being similar to the 

check) where increasing N rates increased TIN, though 0- to 60-cm layer TIN values for 

those N rates were reduced by an average of 45% relative to the V4 sampling time (Table 

1.7). After V8, no differences in TIN were observed due to soil depth or N rate. The large 

decline in TIN (59 kg N ha-1 on average) from V4 to V8 for rates ≥135 kg N ha-1 (Table 

1.8) was substantially greater than what can be attributed to corn N uptake (21 kg N ha-1 

on average) during this period (Table 1.7), and reflects N loss by leaching or 

denitrification. Across rates the ratio of TIN for the surface vs. subsurface was 1.7 at V4 

and 0.9 at V8, illustrating downward movement of N. Because TIN at V8 was similar to 

the unfertilized check for rates ≤135 kg N ha-1 and for all rates at V12 or later help 

explain the low grain yield and linear response to N observed (Table 1.4).  

Similar to Group 1, Group 2 had a significant N rate by soil depth by sampling 

time interaction for TIN (Table 1.9). Soil TIN increased with increasing N rate at both 

increments at V4 and V8; at V12 and R1 the effect of N rate was only detected at the 

highest N rate. Greater TIN in the surface than the subsurface due to N fertilizer was 

consistently observed only at V4 and the difference between increments increased with 

increasing rate (4 to 17 mg kg-1 for the 45 to 270 kg N ha-1, respectively) (Table 1.9). 

Accounting for corn N uptake (Table 1.7) and the change in soil TIN in the top 60 cm 

(Table 1.9) from V4 to V8, it was clear that as N rate increased the amount of 

unaccounted N also increased. This disparity may be indicative of greater N loss potential 
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with greater fertilizer rates under waterlogged conditions following several large rain 

events. Although Groups 1 and 2 had similar responses of yield and corn N uptake to 

fertilizer rate (Table 1.4, 1.6), Group 2 had 0.9 to 4.2 times greater TIN concentration in 

the top 60 cm of soil than Group 1 across timings at equivalent N rates (Table 1.9), likely 

resulting from greater mineralization of organic N and improved corn grain yield in 

Group 2. 

The N rate by depth interaction for Group 3 and Group 4 was explained by no 

TIN differences between soil layers for rates <180 kg N ha-1 and topsoil TIN being 

greater than the subsoil when rates were ≥180 kg N ha-1 with the difference becoming 

larger as N rates increased (P = 0.1 and 0.05 for Group 3 and 4, respectively) (Table 1.10, 

11). Greater N in the surface than the subsurface is a result of N being applied directly on 

the surface layer. For the highest N rate, relative to the subsoil, the topsoil was 1.6 times 

greater for Group 3 and 1.9 times greater for Group 4. The N rate by time interaction for 

Group 3 and Group 4 can be explained by a decline in TIN as the season progressed 

regardless of N rate, though the decline was greater with increasing N rates that had 

greater starting TIN concentrations. Averaged across all N rates, from V4 to V8, V8 to 

V12, V12 to R1, and R1 to post-harvest TIN declined by 33, 23, 36, and 4%, respectively 

in Group 3 and by 15, 34, 14, and 44%, respectively in Group 4. Additionally, TIN for N 

rates ≥135 and <270 kg N ha-1 were greater than the check until V12 or later in Group 3, 

while rates ≥180 kg N ha-1 were greater than the check until post-harvest in Group 4. 

Slightly greater concentrations of TIN from V4 to V8 may have improved N uptake in 

Group 4 (63-95 kg N ha-1 across all N rates) relative to Group 3 (30 to 60 kg N ha-1 

across N rates) and improved yield, but it is uncertain why Group 4 was non-responsive 



 21 

to N at all rates when both groups had similar soil types, cropping history, agronomic 

practices, hybrids, weather, and soil fertility levels (N,P,K, pH) (Table 1.4, 1.7, 1.8) and 

indicates that there were other, unaccounted factors that likely influenced yield. The 

depth by time interaction for both Group 3 and Group 4 was explained by a decline in 

TIN over time for both topsoil and subsoil where topsoil was greater than subsoil TIN 

until V12 when differences between layers disappeared (P = 0.1 and 0.05 for Group 3 and 

4, respectively) (Table 1.10, 1.11). The largest difference between soil layers was at V4 

with 1.6 times and 2.0 times greater TIN in the topsoil than the subsoil for Group 3 and 

Group 4, respectively and reflects the influence of fertilizer applied on the soil surface. 

 

Nitrogen Source  

 

Because of its growing use in the Midwest, urea was the standard by which to 

compare all other N sources. In Group 1, 135 kg N ha-1 as PCU, AA, and AAI produced 

an average grain yield that was 1.6-fold greater than urea (Table 1.12). Based on the grain 

yield response to urea N rate (Table 1.4), this average yield increase would correspond to 

a urea fertilizer rate of 216 kg N ha-1. Similarly, AE was 1.2-fold greater than urea 

averaged across PCU, AA, and AAI (Table 1.12). The N source by time interaction for 

corn N uptake was explained by uptake increasing over time with generally no 

differences between N sources at V4 and V8 but from V12 through R6 PCU, AA, and 

AAI were 1.6, 1.9, 1.3 times greater than urea at each timing (Table 1.13). This indicates 

that N loss potential was greater for urea with less N available to the crop later in the 

season. Relative to urea, AAI increased grain N removal by 21.9 kg ha-1 and FRE by 
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22% (Table 1.12). At V4 and V8, 58 and 63% of soil TIN was ammonium-N averaged 

across AA and AAI while it was only 28 and 44% at each timing for urea. Delayed 

nitrification of ammonium-N for the AA products may have improved soil N availability 

and uptake for the greater yield and efficiencies. Grain yield, grain N removal, AE, and 

GNHI was greater with increasing concentrations of PCU with urea < PCU-U 1:2 < 

PCU-U 2:1 < PCU (Table 1.12). This indicates that PCU improved N availability 

compared to urea especially after V12 (Table 1.13). While the soil data did not show 

improved retention of TIN with PCU (only the depth by time interaction for soil TIN was 

significant indicating no differences between layers except at V4 when topsoil was 

greater than the subsoil by 4.6 mg kg-1), it is possible that PCU retained N in urea form 

until the crop was quickly utilizing N. On average TIN values in the 0- to 60-cm 

increment declined to 2.6 mg kg-1 by V12 with no differences at later timings (Table 

1.14). The data illustrate that urea is a poor choice for pre-plant applications on irrigated 

corn in sandy soils and agrees with current guidelines for these soils (Laboski and Peters, 

2012; Lamb et al., 2015). These results indicate that on coarse-textured soils, pre-plant 

urea should be avoided in favor of other N sources that will not readily nitrify, providing 

increased soil time presence. Applying N only at pre-plant regardless of the source can be 

problematic for these soils. This was pointed out by another Minnesota study in irrigated 

corn in sandy soils where a split urea application (half of the N applied pre-plant and half 

at V4) was superior to a single pre-plant PCU application (Rubin et al., 2016).  

Treatment differences were less pronounced for the fine-textured groups relative 

to Group 1, although the magnitude of yield, and plant and grain N uptake increased from 

Group 2 < Group 3 < Group 4 (Table 1.12). In Group 2, PCU, PCU-U 2:1, and PCU-U 
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1:2 performed similarly, with no differences for grain yield, grain N removal, and AE. 

Relative to urea, AA, and AAI on average: PCU-U 2:1 and PCU-U 1:2 improved grain 

yield by 1.3 Mg ha-1; PCU and PCU-U 2:1 improved grain N removal by 23 kg N ha-1; 

and PCU-U 2:1 improved AE by 1.8-fold but there were no differences for GNHI or 

FRE. Yield and NUE differences were supported by corn N uptake that had a significant 

source by time interaction. Plant uptake increased over time with no differences between 

treatments from planting through V8, but from V12 through R1 PCU, PCU-U 2:1, and 

PCU-U 1:2 improved uptake 1.2- to 1.4-fold on average relative to urea, AA, and AAI 

(Table 1.13). The soil TIN source by time interaction also validated these results as at 

each sampling time, soil TIN was lowest for AA and AAI, similar to urea, while soil TIN 

concentration increased with increasing amounts of PCU, although it was only at trend 

starting at V12. Further, soil TIN concentrations were greatest at V4 and declined over 

time for all treatments until V12 when differences between sampling times disappeared 

(Table 1.14). Downward movement of soil TIN may be indicated in the depth by time 

interaction as there was a 56% decline of topsoil TIN from V4 to V12 while subsoil TIN 

was constant from V4 to V8 and declined thereafter (Table 1.14) that corresponded to 

several large (28- to 53-mm) rain events. These results indicate that PCU products may 

increase soil TIN, yield, and NUE on fine-textured, poorly-drained soils in wet years. 

Similar results were reported by Noellsch et al. (2009), who found PCU improved yield 

1.2-fold over urea in two growing seasons but yield for PCU-U at a 50/50% blend 

improved only in one year. In other studies, PCU reduced the amount of nitrate-N early 

in the season relative to urea, which may have reduced nitrate leaching and improved 

plant N availability (Motavalli et al., 2005; Nelson et al., 2009; Venterea et al., 2011). 
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Across all N sources in Group 2, nitrate-N was 63-73% and 52-59% of TIN at V4 and V8 

respectively (P = 0.0004) indicating rapid nitrification and potential for leaching or 

denitrification processes given observed wet conditions. The required yield increase 

needed to break-even for PCU, PCU-U 2:1 and PCU-U 1:2 was 1.2, 0.8, and 0.4 Mg 

grain ha-1, respectively at the 135 kg N ha-1 rate. Although yield was similar for all PCU 

treatments, PCU-U 1:2 or PCU-U 2:1 provided the greatest revenue over urea at $246.44 

ha-1 on average while PCU was only $115.89 ha-1. Likewise, Halvorson and Bartolo 

(2014) reported a yield increase with PCU in two of three years with 4 to 14% profit over 

urea. These results indicate that on wet, poorly-drained fine-textured soils, PCU-U blends 

may provide both economic and environmental advantages over other N sources.  

In Group 3 and 4 there were no differences in grain yield or grain N content due 

to N source (Table 1.12). This was also reflected in efficiency measurements where there 

were no differences or inconsistent differences due to N source except for FRE in Group 

3 where the AA, AAI and PCU-U blends increased efficiency relative to urea, and for AE 

in Group 4 where AA and AAI increased efficiency relative to urea. Others have 

observed that AA is generally superior to urea but using an inhibitor is not as important 

for application in spring relative to fall (Randall et al., 2003; Vetsch and Randall, 2004; 

Randall and Vetsch, 2005). Polymer coated urea-urea blends likely synchronized N 

supply with crop demand and reduced potential for N loss for improved FRE over PCU 

or PPU. There was an economic advantage for PCU-U blends in Group 3 with a 7-11% 

increase in gross profit over urea, but only a 1-2% increase in gross profits for Group 4, 

while PCU resulted in a 2% gross loss for both groups. The significant N source by time 

interaction for plant N in Group 3 and 4 was explained by N uptake increasing over time 
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with no differences due to N source until V12 (Table 1.13). In Group 3 AAI increased N 

uptake relative to urea starting at V12. Like FRE, N uptake at R6 was improved by PCU-

U blends relative to PCU or urea alone. In Group 4, AAI increased N uptake relative to 

AA and PCU starting at V12, but differences between other N sources were inconsistent 

and reflect that corn was not responsive to N rate (Table 1.4). There were no differences 

in TIN due to N source (Table 1.16, 1.17). Differences in TIN due to depth and time were 

similar to those explained earlier in Table 1.10 and 1.11. These results demonstrate that N 

source for spring applications are not as important when the potential for N loss is low, 

and contrasts the results for Group 1 and 2 where N loss potential was greater and N 

source was an important variable. 

 

Modified Arcsine-Log Calibration Curve 

 

Soil N may be useful for predicting yield response and supplemental N needed to 

achieve optimal yield. The MALCC produced significantly correlated models for relative 

yield and soil nitrate-N, ammonium-N, or TIN for the pre-plant STV+N rate, and V4 and 

V8 STV in the 0- to 30- and 0- to 60-cm increments for all groups, except Group 4 (Table 

1.18). While nitrate-N, ammonium-N, and TIN produced significantly correlated models, 

I decided to focus only on nitrate-N and TIN as ammonium-N had smaller correlations 

(data not shown). Blackmer et al. (1989) and Binford et al. (1992) similarly found 

stronger relationships with soil nitrate-N and TIN than ammonium-N. Because Group 4 

yield was non-responsive to N rate, relative yield was not significantly correlated to STV 

and was not used for this analysis except when combined with all fine-textured soils (all 
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site-years in Groups 2 and 3) in the Group Fine analysis (Table 1.18). The MALCC 

method estimates a CSTV assuming relative yield is calculated from a non-deficient 

maximum yield (Correndo et al., 2017) which did not occur in Group 1, the MALCC 

method produced erroneously high CSTVs for all soil sampling times and layers. This 

indicates that the MALCC method may have limited utility for site-years with high 

potential for N loss (such as coarse-textured soils when all N is applied at pre-plant) and 

follows what others observed for predictive models on coarse-textured soils including the 

pre-plant soil nitrate test (Kaiser et al., 2011) and pre-sidedress soil nitrate test (Magdoff, 

1991a; Laboski and Peters, 2012). Group 2, Group 3, and Group Fine had similar squared 

Pearson correlation coefficients within layer for nitrate-N and TIN. Across N species, 

deeper increments (0- to 60-cm) had slightly greater squared Pearson correlation 

coefficients at pre-plant and V8 (Table 1.18). The greater sampling depth (0- to 60-cm) 

more completely accounts for residual N at pre-plant and total N availability within the 

rooting zone at V8 than the 0- to 30-cm increment. This sampling strategy may be of 

greater importance in years following seasons with wet conditions where soil nitrate may 

leach below the topsoil but remain within the rooting zone. The improvement of the 0- to 

60-cm increment relative to the 0- to 30-cm increment was small (< 0.1) and may not 

justify the additional sampling cost (Binford et al., 1992). In Groups 2 and Fine, the V4 

timing provided better correlations than the pre-plant or V8 timings with no difference in 

correlation coefficients across N species and between layers (Table 1.18). These are 

positive outcomes because of cost and time savings associated with shallow sampling 

depth (0- to 30-cm) and analysis of only nitrate-N (instead of nitrate-N and ammonium-

N). Logistically, compared to V8 the V4 sampling timing is advantageous as it provides 
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greater time to apply N when the crop is small and does not require high-clearance 

equipment.  

The pre-plant MALCC model accurately reflected individual group yield 

responses to N fertilizer by predicting a greater CSTV for Group 2 than Group 3 (Table 

1.18). This reflects the greater N needs associated with Group 2 due to N loss from 

excessive spring rain and reduced grain yield, as previously mentioned. Group Fine’s V4 

nitrate-N 0- to 30-cm CSTV was 94 kg N ha-1 (25 mg kg-1), similar to commonly 

reported pre-sidedress soil nitrate-N test critical values of 20-26 mg kg-1 (Blackmer et al., 

1989; Fox et al., 1989; Binford et al., 1992; Bundy et al., 1999). The pre-sidedress soil 

nitrate test is recommended for site-years where little (starter) to no N has been applied 

before soil sample collection, following manure application the previous year, or when 

high carryover of residual N is expected (Magdoff, 1991b). Variability in STVs (and 

related CSTVs and 95% confidence limits) increased the closer the sampling time was to 

the time of fertilizer application and with increasing N rate (Table 1.18). This study found 

a similar critical concentration following fertilizer application as the pre-sidedress soil 

nitrate test that may indicate the MALCC model may help manage in-season N 

applications even in fields where N was previously applied.  

While a CSTV provides a threshold at which to estimate a response of yield to N 

fertilizer additions, the value itself does not indicate how much additional N fertilizer is 

required should a STV be suboptimal. Ferrer et al. (2003) suggested for the pre-sidedress 

soil nitrate test that the difference between the CSTV and a sample STV could be used as 

a sidedress N fertilizer recommendation. This assumes that one unit of fertilizer N is 

equivalent to one unit of soil N and may underestimate the actual amount needed as 
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fertilizer use efficiency is less than 100% (Motavalli et al., 2008; Engel et al., 2011). For 

the pre-plant soil nitrate test in Minnesota, the University fertilizer guideline is the 

difference between the maximum return to N (MRTN) (kg N ha-1) and a soil credit 

calculated as 0.6 times the STV (kg N ha-1) for the top 60 cm of soil (Kaiser et al., 2011), 

but there is not an equivalent calculation for in-season soil samples. In this study, natural 

log STVs were regressed against the pre-plant urea N rate to directly correlate one-unit 

increase of N fertilizer to one-unit increase of natural log STV (Table 1.19). This method 

directly accounted for plant available N from soil mineralization and fertilizer and 

allowed for prediction of the amount of additional N fertilizer needed to raise the STV to 

the CSTV. As an example, for the V4 nitrate-N 0- to 30-cm Group Fine model, the 

MALCC CSTV is 94 kg N ha-1 (25 mg kg-1) and is equivalent to a N fertilizer rate of 234 

(212-259) kg N ha-1 (Fig. 1.1, Table 1.19). A field sample with a STV of 40 kg N ha-1 (11 

mg kg-1) is equivalent to the N fertilizer rate of 104 (90-121) kg N ha-1. The fertilizer N 

recommendation is calculated by difference and suggests applying 130 kg N ha-1 to raise 

the sample STV to the CSTV. Using the same example, but for Groups 2 and 3, the 

fertilizer recommendation would be 107 and 148 kg N ha-1, respectively. The ability to 

relate STVs directly to fertilizer N rates may help improve N management. However, 

because STV variability increases with increasing N rate, the 70% confidence limits 

around the regression line increases with greater N rates. Inclusion of additional site-

years may improve the accuracy and precision of these models. This study represents a 

small step in that direction. 

 

1.5. CONCLUSIONS 
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Nitrogen rate and source can have a significant impact on in-season soil N 

measurements, corn grain yield, and NUE, especially when potential for N loss is high. 

Both coarse- and fine-textured soils can have high soil N losses following excessive 

precipitation. However, even when N loss potential was low, fine-textured soils either 

responded similar to University of Minnesota guidelines or were non-responsive to N 

fertilizer illustrating the difficulty of predicting the optimal N rate. Pre-plant urea is a 

poor fertilizer choice for coarse-textured soils and should be avoided in favor of other 

sources that delay nitrification such as AA, AAI, or PCU. PCU-U blends provide both 

immediate and delayed N availability to corn and are likely to improve grain yield, AE, 

and revenue on fine-textured soils with high potential for N loss. When potential for N 

loss is low, N source is not an important consideration. Since response to N source 

effectiveness is dependent on weather, these findings underscore the challenge of 

selecting the correct fertilizer N source. Producers should combine knowledge of their 

fields’ characteristics with previous years’ experience of weather patterns to determine 

which field areas may be prone to N loss and select an appropriate rate and source that 

matches their growing conditions. The MALCC models predict CSTV for V4 soil nitrate-

N in the top 30 cm that were similar to estimates for the pre-sidedress soil nitrate test at 

25 mg kg-1 in Group Fine illustrating that this CSTV may be appropriate, even when 

fertilizer had been applied earlier that season. These preliminary results show that this 

could be especially useful in wet springs when significant N loss occurred and it might be 

important to determine the need for additional fertilizer. Future studies should be 

designed to further evaluate this model.
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Table 1.1  Site location and soil classification for 12 field sites for the 2014 and 2015 

growing seasons in Minnesota. Sites were separated into groups based on soil texture and 

response of yield to N rate.  

Site Year Coordinates County Soil Series Classification 

Becker 14† 2014 45˚23’32"N, 

93˚52’57"W 

Sherburne Hubbard loamy sand (Sandy, mixed, frigid 

Entic Hapludolls) 

Becker15a† 2015 45˚23’32"N, 

93˚52’57"W 

Sherburne Hubbard loamy sand (Sandy, mixed, frigid 

Entic Hapludolls) 

Becker15b† 2015 45˚23’31"N, 

93˚52’57"W 

Sherburne Hubbard loamy sand (Sandy, mixed, frigid 

Entic Hapludolls) 

Clara City14‡ 2014 44˚58’14"N, 

95˚22’25"W 

Chippewa Bearden-Quam silty clay loam (Fine-silty, 

mixed, superactive, frigid Aeric 

Calciaquolls) 

Waseca14a‡ 2014 44˚03’40"N, 

93˚31’26"W 

Waseca Predominantly Webster clay loam (Fine-

loamy, mixed, superactive, mesic Typic 

Endoaquolls) with Canisteo silty clay loam 

(Fine-loamy, mixed, superactive, 

calcareous, mesic Typic Endoaquolls) 

Waseca14b‡ 2014 44˚04’15"N, 

93˚31’16"W 

Waseca Nicollet clay loam (Fine-loamy, mixed, 

superactive, mesic Aquic Hapludolls)- 

Webster clay loam (Fine-loamy, mixed, 

superactive, mesic Typic Endoaquolls) 

Waseca15a‡ 2015 44˚04’15"N, 

93˚31’16"W 

Waseca Nicollet clay loam (Fine-loamy, mixed, 

superactive, mesic Aquic Hapludolls)- 

Webster clay loam (Fine-loamy, mixed, 

superactive, mesic Typic Endoaquolls) 

Waseca15b‡ 2015 44˚03’35"N, 

93˚31’20"W 

Waseca Nicollet clay loam (Fine-loamy, mixed, 

superactive, mesic Aquic Hapludolls)- 

Webster clay loam (Fine-loamy, mixed, 

superactive, mesic Typic Endoaquolls) 

Lamberton14§ 2014 44˚14’50"N, 

95˚18’37"W 

Redwood Amiret loam (Fine-loamy, mixed, 

superactive, mesic Calcic Hapludolls) 

Theilman14§ 2014 44˚16’46"N, 

92˚12’2"W 

Wabasha Fayette silt loam (Fine-silty, mixed, 

superactive, mesic Typic Hapludalfs) 

Clara City15§ 2015 44˚58’14"N, 

95˚22’25"W 

Chippewa Bearden-Quam silty clay loam (Fine-silty, 

mixed, superactive, frigid Aeric 

Calciaquolls) 

Lamberton15¶ 2015 44˚14’41"N, 

95˚18’1"W 

Redwood Normania loam (Fine-loamy, mixed, 

superactive, mesic Aquic Hapludolls) 

† Denotes sites included in Group 1. 

‡ Denotes sites included in Group 2. 

§ Denotes sites included in Group 3. 
¶ Denotes the site included in Group 4.
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Table 1.2  Initial site-year soil physical and chemical properties in the top 15 cm except total inorganic N (TIN) that was measured in 

the top 60 cm and bulk density (BD) reported for 0- to 30-cm and 0- to 60-cm increments for 12 Minnesotan field site-years. Site-

years were separated into Groups based on soil texture and response of yield to N rate..  

Group Site-year 
Sand, Silt, 

Clay 
pH CEC SOM P† K† Ca† Mg† TIN‡ BD 

  % Water cmolc kg-1 g kg-1 ______________ mg kg-1 ______________ 0-30 cm 0-60 cm  

Group 1         

 Becker14, 15a§ 72, 6, 22 6.1 4.3 15.9 26 95 615 113 3.0 1.58 1.61 

 Becker15b 74, 3, 23 6.2 4.4 15.0 22 94 649 100 4.6 1.58 1.61 

 Weighted Mean          1.58 1.61 

Group 2             

 Clara City14§ 10, 48, 42 7.7 46.7 71.5 48 531 7313 963 7.9 1.07 1.19 

 Waseca14a 20, 34, 46 5.9 34.0 66.0 24 215 5461 727 6.8 1.19 1.27 

 Waseca14b, 15a§ 19, 35, 46 5.6 29.6 66.8 23 161 4571 746 6.1 1.19 1.27 

 Waseca15b 23, 30, 47 6 26.0 56.0 26 212 4042 612 7.1 1.25 1.30 

 Weighted Mean          1.18 1.26 

Group 3             

 Clara City15§ 10, 48, 42 7.7 46.7 71.5 48 531 7313 963 7.9 1.07 1.21 

 Lamberton14 29, 31, 40 5.5 14.1 40.0 27 148 2089 381 7.2 1.31 1.43 

 Theilman14 1, 69, 30 6.8 13.9 31.0 53 180 1924 435 6.8 1.49 1.55 

 Weighted Mean          1.29 1.39 

Group 4             

 Lamberton15 35, 25, 40 5.1 16.3 47.0 30 112 2375 385 11.4 1.31 1.43 

Group Fine             

 Weighted Mean          1.23 1.32 

† Bray-1 P (pH ≤ 7.2) or Olsen P (pH > 7.2). Potassium, calcium, and magnesium extracted with ammonia acetate. 

‡ Total inorganic nitrogen includes ammonium-N and nitrate-N. 

§ Becker15a, Clara City15, and Waseca15a were conducted on the same plots as Becker14, Clara City14, and Waseca14b with soil properties only 

measured in the first year.  

¶ Group Fine consists of all site-years from Groups 2, 3, and 4.
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Table 1.3  Corn hybrid, planting population, and planting and harvest dates for 12 site-

years in Minnesota. 

Site-year Hybrid Plant 

Population† 

Planting Harvest 

  plants ha-1   

Becker14† PIONEER 

P9917AMX 

78,400 14/05/2014 13/10/2014 

Clara City14‡ DKC44-13 RIB AR 80,700 30/05/2014 15/10/2014 

Lamberton14§ PIONEER 

P9917AMX 

82,000 29/05/2014 18/10/2014 

Theilman14§ PIONEER 

P9917AMX 

81,900 22/05/2014 16/10/2014 

Waseca14a‡ DKC53-56 RIB 77,400 11/05/2014 21/10/2014 

Waseca14b‡ DKC53-56 RIB 81,100 23/05/2014 21/10/2014 

Becker15a† PIONEER 

P9917AMX 

87,300 27/04/2015 13/10/2015 

Becker15b† PIONEER 

P9917AMX 

86,000 27/04/2015 13/10/2015 

Clara City15§ PIONEER 

P9917AMX 

78,500 30/04/2015 06/10/2015 

Lamberton15¶ PIONEER 

P9917AMX 

80,800 21/05/2015 14/10/2015 

Waseca15a‡ DKC53-56 RIB 85,400 30/04/2015 12/10/2015 

Waseca15b‡ DKC53-56 RIB 77,600 05/05/2015 09/10/2015 

†Plant population determined at the V4 development stage. 
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Table 1.4  Parameter estimates for response models of grain yield (Mg ha-1), R6 corn N uptake (kg ha-1), grain N (kg ha-1), and partial 

factor productivity (treatment yield/applied N rate) with increasing N (kg N ha-1) with associated economic and agronomic optimum 

nitrogen rate (EONR N/corn price ratio = 0.0056 and AONR) and yield at EONR and AONR for corn for each Group. 

Group Parameter estimates†       

 A B C X0 P>F Adj. r2 EONR Yield at EONR AONR Yield at AONR 

       kg ha-1 Mg ha-1 kg ha-1 Mg ha-1 

 Grain Yield  

Group 1 1.53 0.0207 - - <0.0001 0.60 - - 315 8.0 

Group 2 4.72 0.0243 - - <0.0001 0.61 - - 270 11.3 

Group 3 6.19 0.0545 -0.00015 182 <0.0001 0.47‡ 163 11.1 182 11.1 

Group 4 12.6 - - - - - - - 0 12.6 

 R6 Corn N Uptake 

Group 1 43.64 0.2890 - - <0.0001 0.62     

Group 2 76.78 0.3667 - - <0.0001 0.66     

Group 3 119.14 0.4260 - - <0.0001 0.54     

Group 4 203.97 0.2089 - - <0.0001 0.53     

 Grain N 

Group 1 15.14 0.1757 - - <0.0001 0.60     

Group 2 40.67 0.2861 - - <0.0001 0.63     

Group 3 59.29 0.5705 -0.0011 - <0.0001 0.54     

Group 4 138.57 0.0537 - - 0.0307 0.14     

 Partial Factor Productivity 

Group 1 68.41 -0.3800 0.0008 - <0.0001 0.39     

Group 2 175.13 -1.2151 0.0027 - <0.0001 0.75     

Group 3 246.73 -1.7062 0.0036 - <0.0001 0.85     

Group 4 393.41 -3.1369 0.0070 - <0.0001 0.95     

† A, B, and C represent the intercept, linear term, and quadratic term in the appropriate model. X0 is the asymptotic maximum in the 

quadratic model. 

‡ Psuedo r2 where model sum of squares is divided by corrected total sum of squares.
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Table 1.5  Monthly precipitation and mean air temperatures during the 2014 and 2015 growing seasons and for the year for 5 locations 

in Minnesota, with departures from the 30-yr mean (1981-2010) in parentheses†. 

Site-year Year Apr. May June July Aug. Sept. Oct. Year avg. 

  

______________________________________________ Precipitation (mm) ________________________________________________ 

Becker‡ 2014 140 (68) 220 (143) 216 (100) 53 (-46) 106 (-2) 98 (13) 17 (-50) 991 (227) 

 

2015 47 (-24) 145 (67) 87 (-29) 186 (87) 148 (40) 41 (-43) 100 (34) 877 (113) 

Clara City 2014 72 (12) 40 (-37) 239 (129) 26 (-67) 169 (84) 48 (-35) 26 (-32) 747 (42) 

 

2015 21 (-39) 200 (123) 57 (-53) 152 (59) 101 (16) 17 (-65) 49 (-10) 714 (9) 

Lamberton 2014 87 (11) 46 (-37) 188 (84) 30 (-66) 94 (1) 154 (70) 12 (-39) 705 (-1) 

 

2015 31 (-44) 139 (57) 128 (24) 96 (0) 113 (20) 87 (3) 41 (-11) 780 (74) 

Waseca 2014 141 (60) 73 (-27) 328 (209) 30 (-83) 81 (-40) 59 (-34) 35 (-33) 903 (0) 

 

2015 70 (-12) 121 (21) 194 (75) 188 (75) 152 (32) 149 (56) 31 (-37) 1160 (257) 

Theilman 2014 148 (71) 75 (-19) 200 (91) 25 (-84) 169 (49) 62 (-41) 59 (4) 863 (120) 

  

______________________________________________ Temperature avg. (˚C) _____________________________________________ 

Becker 2014 4.5 (-3.2) 13.6 (-0.7) 19.0 (0.1) 19.9 (-1.6) 20.3 (0.2) 15.4 (0.1) 8.4 (0.1) 4.8 (-1.8) 

 

2015 8.5 (0.8) 13.5 (-0.8) 18.9 (0.0) 21.0 (-0.5) 19.5 (-0.6) 18.2 (2.9) 9.6 (1.3) 7.7 (1.1) 

Clara City 2014 4.4 (-3.2) 13.5 (-1.0) 19.8 (0.1) 20.4 (-1.7) 20.6 (-0.3) 15.9 (0.0) 9.2 (0.5) 5.1 (-2.0) 

 

2015 7.9 (0.3) 13.4 (-1.1) 19.8 (0.1) 21.7 (-0.4) 19.5 (-1.3) 19.0 (3.0) 10.2 (1.5) 7.7 (0.6) 

Lamberton 2014 5.6 (-1.8) 13.8 (-0.8) 20.1 (-0.1) 20.5 (-1.7) 21.0 (0.4) 16.3 (0.4) 9.6 (0.9) 5.8 (-1.3) 

 

2015 8.6 (1.2) 13.9 (-0.7) 20.3 (0.2) 21.7 (-0.4) 19.7 (-1.0) 19.5 (3.6) 10.3 (1.6) 8.2 (1.1) 

Waseca 2014 5.9 (-1.9) 13.7 (-1.0) 20.2 (0.2) 20.1 (-1.9) 21.5 (0.8) 16.0 (-0.1) 8.8 (-0.1) 5.3 (-1.9) 

 

2015 8.7 (0.9) 14.4 (-0.2) 20.2 (0.1) 21.4 (-0.6) 19.8 (-0.9) 20.0 (3.9) 10.8 (1.9) 8.3 (1.1) 

Theilman 2014 5.1 (-2.9) 13.4 (-0.9) 20.4 (1.0) 20.2 (-1.7) 21.4 (0.8) 15.9 (-0.1) 7.8 (-1.1) 5.2 (-1.7) 

† Monthly total precipitation and average air temperature data were obtained from the Minnesota Department of Natural Resources. 

‡ Precipitation values at Becker do not include irrigation events. 
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Table 1.6  Treatment means for each Group of agronomic efficiency (AE), grain N 

harvest index (GNHI), and fertilizer recovery efficiency (FRE) with standard errors (SE) 

in response to pre-plant fertilizer N rate applications. The nitrogen rates were reduced by 

25% for Waseca 14a in Group 2 and Theilman in Group 3. 

Treatment† AE† GNHI FRE GNRE  AE GNHI FRE GNRE 

 

kg kg-1 kg kg-1 % kg kg-1  kg kg-1 kg kg-1 % kg kg-1 

N rate Group 1  Group 2 

0  0.37d‡     0.62   

45 11.9 0.43cd 14 0.12  20.7 0.57 45 0.16c 

90 17.3 0.51abc 18 0.15  33.0 0.67 40 0.32bc 

135 13.9 0.43bcd 22 0.11  22.9 0.64 31 0.21ab 

180 20.4 0.54ab 24 0.17  26.2 0.69 35 0.27ab 

225 14.4 0.43bcd 26 0.12  24.1 0.68 36 0.26ab 

270 18.2 0.52abc 24 0.16  24.9 0.72 40 0.31a 

315 22.2 0.55a 30 0.19      

SE 5.0 0.04 5 0.04  3.2 0.04 8 0.04 

Pr(>F) 0.7445 0.0229 0.4855 0.7449  0.0876 0.1043 0.7716 0.0291 

 Group 3  Group 4 

0  0.54     0.69a   

45 24.9 0.58 25 0.20  16.8 0.63bcd 42 0.01 

90 47.6 0.63 61 0.51  11.6 0.68ab 28 0.16 

135 29.4 0.65 37 0.32  4.2 0.61cd 20 0.01 

180 28.7 0.62 48 0.35  6.0 0.64abc 29 0.13 

225 25.7 0.66 49 0.38  1.9 0.60cd 20 0.04 

270 20.1 0.61 47 0.31  4.5 0.58d 23 0.05 

SE 7.9 0.03 14 0.12  6.5 0.02 10 0.07 

Pr(>F) 0.283 0.152 0.5796 0.6126  0.6163 0.0078 0.5858 0.4798 

† AE and FRE are calculated as the yield or corn N uptake difference between the 0N and 

treatment of interest divided by the applied N rate. GNHI is the quotient of grain N and 

R6 corn N uptake.  

‡ Within group and agronomic variable, means followed by the same lower-case letter 

are not different (P>0.05).
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Table 1.7  In-season plant nitrogen uptake treatment means for urea nitrogen rate treatments of each group with time in cumulative growing degree days Celsius 

(GDD). The nitrogen rates were reduced by 25% for Waseca 14a in Group 2 and Theilman in Group 3 relative to rates presented in the table. 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If Tmax >30 ˚C, then it was set 

to 30 ˚C and if Tmax or Tmin <10 ˚C, it was set to 10 ˚C. 

‡ Within Group, same lower-case letters within column and same uppercase letters across rows are not significantly different at P = 0.05. 

 Group 1 Group 2 

 V4 V8 V12 R1 R6 V4 V8 V12 R1 R6 

GDD† 196 388 586 758 1180 238 410 587 728 1283 

N Rate __________________________________ kg N ha-1 __________________________________ _________________________________ kg N ha-1 __________________________________ 

0 0.4aC‡ 4.8bC 15.4dBC 21.0dB 50.2dA 1.2aC 9.7cC 29.0dB 40.1eB 76.6fA 

45 1.1aC 7.4bC 21.4cdBC 27.7cdB 56.4dA 2.5aE 15.6bcD 39.2dC 53.4dB 95.2eA 

90 1.3aC 12.6aC 28.7cdB 39.1cB 66.0dA 3.2aE 22.7bD 56.3cC 69.9cB 109.5dA 

135 1.2aC 15.0aC 37.0cB 37.0cB 79.1cdA 3.5aE 24.6bD 64.2cC 78.1cB 112.8dA 

180 1.8aD 22.6aC 56.8bB 59.7bB 92.8cA 4.0aE 35.0abD 87.9bC 109.6bB 137.0cA 

225 1.3aD 21.0aC 61.4bB 71.0bB 109.5bA 4.4aE 34.0abD 87.9bC 113.2bB 151.3bA 

270 1.4aD 25.3aC 79.9aB 93.0aB 114.2bA 4.9aE 42.5aD 112.0aC 134.3aB 177.2aA 

315 1.4aE 26.7aD 85.1aC 103.5aB 143.5aA      

 Group 3   Group 4   

GDD† 231 438 585 724 1293 279 563 675 859 1158 

N Rate ________________________________ kg N ha-1 ______________________________ ___________________________________ kg N ha-1 __________________________________ 

0 2.6aD 32.3cC 51.8dBC 63.9dB 115.1dA 3.1aD 66.3bC 120.7cB 137.0dB 199.6cA 

45 5.9aD 49.3bC 76.9cB 87.7cB 127.1dA 3.6aE 82.7abD 134.6bcC 167.1cB 218.1bcA 

90 5.1aE 55.3abD 99.1bC 124.9bB 164.2cA 3.4aE 86.4abD 151.6bC 201.8bB 224.6bA 

135 6.2aD 62.2abC 95.4bB 119.5bB 160.0cA 3.7aE 91.4aC 159.9abB 175.2cB 226.0bA 

180 6.6aE 68.0aD 117.7aC 153.8aB 194.8bA 3.4aE 92.2aD 159.0abC 212.5bB 251.1bA 

225 6.5aE 69.7aD 122.2aC 150.0aB 212.7aA 3.6aD 98.7aC 165.2abB 230.9abA 244.9abA 

270 5.6aE 66.0abD 122.6aC 150.6aB 228.1aA 3.6aE 98.4aD 179.4aC 235.1aB 260.3aA 

  Test of fixed effects      

Source of variation Group 1 Group 2 Group 3 Group 4      

N <0.001 <0.001 <0.001 <0.001      

Time <0.001 <0.001 <0.001 <0.001      

N*Time <0.001 <0.001 <0.001 <0.001      
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Table 1.8  Group 1 pre-plant urea nitrogen rate treatment means for in-season total inorganic nitrogen at the 0- to 30- and 30- to 60-cm increments 

with time in cumulative growing degree days Celsius (GDD). 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If Tmax >30˚C, 

then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Same lowercase letters within column are not significantly different while same uppercase letters across rows and depths are not significantly 

different at P = 0.05. 

 V4 V8 V12 R1 Post-harvest 

GDD† 196 388 586 758  

 ______________________________________________________________________ mg kg-1 ______________________________________________________________________ 

kg N ha-1 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

0 3.6eA‡ 2.5cA 4.5cA 3.8cA 2.9aA 2.4aA 2.4aA 2.3aA 3.9aA 2.7aA 

45 5.3eA 4.4cA 4.4cA 4.9cA 2.9aA 2.4aA 2.6aA 1.9aA 4.3aA 2.2aA 

90 6.5eAB 7.3bcA 4.9cAB 6.2cAB 2.6aAB 1.9aB 2.2aAB 2.0aAB 4.7aAB 2.3aAB 

135 14.9dA 10.2bB 4.8cBC 7.8bcBC 3.1aC 2.5aC 2.7aC 2.3aC 4.1aC 4.0aC 

180 21.6cA 12.5abB 7.5bcBC 9.4bcBC 2.6aC 2.0aC 2.7aC 2.1aC 5.1aC 2.5aC 

225 26.9bA 15.6aB 8.8bcC 11.0bcBC 2.8aD 2.3aD 2.1aD 1.8aD 3.9aCD 2.2aD 

270 24.3bcA 11.7abB 10.7bB 12.2bB 3.6aC 2.9aC 2.4aC 2.1aC 4.9aC 2.7aC 

315 36.4aA 16.5aB 17.0aB 17.8aB 4.0aC 4.0aC 3.5aC 3.5aC 4.1aC 2.6aC 

Test of fixed effects          

Source of variation          

Nitrogen rate (N) <0.0001          

Depth (D) 0.0004          

Time (T) <0.0001          

N*D 0.0651          

N*T <0.0001          

D*T <0.0001          

N*D*T <0.0001          
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Table 1.9  Group 2 pre-plant urea nitrogen rate treatment means for in-season total inorganic nitrogen at the 0- to 30- and 30- to 60-cm 

increments with time in cumulative growing degree days Celsius (GDD). The nitrogen rates were reduced by 25% for Waseca 14a 

relative to rates presented in the table. 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If 

Tmax >30˚C, then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Same lowercase letters within column are not significantly different while same uppercase letters across rows and depths are not 

significantly different at P = 0.05. 

 V4 V8 V12 R1 Post-harvest 

GDD† 238 410 587 728  

 ______________________________________________________________________ mg kg-1 ______________________________________________________________________ 

kg N ha-1 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

0 7.8eA‡ 5.7dAB 7.8dA 5.7dAB 5.6bAB 3.9cB 5.4bAB 2.8bB 5.4aAB 2.8aB 

45 11.3dA 6.9dB 8.7cdA 6.6cdBC 6.4bBC 4.2cBC 6.7bB 3.6bC 6.1aBC 2.6aC 

90 13.6dA 8.7cdBC 10.3cdB 8.6cBC 6.9bC 5.4bcC 6.1bC 4.4bC 6.6aC 3.4aC 

135 16.7cA 10.2cB 10.5cB 7.8cdBC 6.5bC 5.1bcCD 6.2bC 3.7bCD 6.1aC 2.3aD 

180 22.9bA 12.5bcB 13.1bcB 11.9bB 7.9bC 6.3bcCD 7.5bC 5.3abCD 6.7aC 3.0aD 

225 24.5bA 13.7bB 15.4bB 13.1bB 9.0abC 6.9bCD 8.0bC 5.0bD 5.9aCD 3.2aD 

270 34.8aA 17.6aBC 20.4aB 16.1aC 11.3aD 11.2aD 11.0aD 7.7aE 7.4aE 3.2aF 

Test of fixed effects          

Source of variation          

Nitrogen rate (N) <0.001          

Depth (D) 0.001          

Time (T) <0.001          

N*D <0.001          

N*T <0.001          

D*T <0.001          

N*D*T <0.001          
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Table 1.10  Group 3 pre-plant urea nitrogen rate treatment means for in-season total inorganic nitrogen at the 0- to 30- and 30- to 60-cm 

increments with time in cumulative growing degree days Celsius (GDD). The nitrogen rates were reduced by 25% for Theilman relative to rates 

presented in the table. 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If 

Tmax >30˚C, then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Same lowercase letters within column are not significantly different while same uppercase letters across rows and depths are not 

significantly different at P = 0.05. 

§ Group 3 has a significance level of P = 0.1. 

 V4 V8 V12 R1 Post-harvest 

GDD† 231 438 585 724  

 ______________________________________________________________________ mg kg-1 ______________________________________________________________________ 

kg N ha-1 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

0 11.7dA‡ 8.3dAB 6.9eAB 5.2dAB 6.7dAB 5.2bcAB 4.0bB 3.1bB 5.8aAB 3.3aB 

45 16.0cdA 11.0cdAB 8.7deBC 6.8cdBC 7.0dBC 4.6cBC 4.3bBC 3.5bC 5.7aBC 3.5aC 

90 21.8cA 12.8cdB 10.9deBC 10.5bcdBC 9.9bcdBC 6.3bcBC 5.9bBC 4.4abC 6.5aBC 3.8aC 

135 20.3cA 13.9cdB 13.9cdAB 11.0bcdBC 8.7cdBCD 7.6bcBCD 6.1bCD 4.2abD 7.6aBCD 3.8aD 

180 29.8bA 17.8bcB 18.0cB 12.3abcBC 14.1bcBC 8.3bcCD 9.2abCD 6.7abCD 8.0aCD 5.5aD 

225 34.7bA 21.4abC 26.1bB 14.8abDE 16.2bCD 12.0abDEF 10.0abDEF 8.4abEF 9.7aEF 6.6aF 

270 49.0aA 26.1aB 32.6aB 19.0aC 27.9aB 17.0aCD 15.6aCDE 11.0aDE 12.3aCDE 10.2aE 

Tests of fixed effects§         

Source of variation          

Nitrogen rate (N) <0.001         

Depth (D) 0.005         

Time (T) <0.001         

N*D 0.001         

N*T <0.001         

D*T <0.001         

N*D*T 0.088         
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Table 1.11  Group 4 pre-plant urea nitrogen rate treatment means for in-season total inorganic nitrogen at the 0- to 30- and 30- to 60-

cm increments with time in cumulative growing degree days Celsius (GDD). 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If 

Tmax >30˚C, then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Same lowercase letters within column are not significantly different while same uppercase letters across rows and depths are not 

significantly different at P = 0.05.

 V4 V8 V12 R1 Post-harvest 

GDD† 279 563 675 859  

 ______________________________________________________________________ mg kg-1 ______________________________________________________________________ 

kg N ha-1 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

0 10.8cA‡ 8.9cA 7.3dA 6.5cA 7.3dA 5.1bA 4.8cA 2.5bA 6.6aA 2.9aA 

45 18.5cA 10.1bcAB 10.0dAB 8.5cAB 7.6dB 4.8bB 4.8cB 2.5bB 5.6aB 2.9aB 

90 20.3bcAB 10.0bcBC 21.5bcA 13.1bcABC 12.6cdABC 10.3abBC 8.5cC 5.6bC 7.1aC 3.4aC 

135 31.1bA 14.0bcBC 20.0cB 13.4abcBC 9.1cdC 7.9abC 8.4cC 7.6bC 7.9aC 6.3aC 

180 31.9bA 13.6bcCD 29.4bcAB 17.1abcC 20.4bcBC 15.8abCD 20.1bBC 22.3aABC 13.1aCD 5.8aD 

225 45.1aA 20.6abBC 30.0bB 20.1abBCD 30.1bB 16.6aCD 20.3bBCD 12.8abCD 10.9aCD 10.4aD 

270 54.3aA 27.8aDE 50.6aAB 21.5aE 43.8aBC 18.6aEF 36.4aCD 23.5aE 9.5aF 9.3aF 

Test of fixed effects         

Source of variation          

Nitrogen rate (N) <0.0001         

Depth (D) <0.0001         

Time (T) <0.0001         

N*D 0.0217         

N*T 0.0007         

D*T 0.0002         

N*D*T 0.3619         
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Table 1.12.  Treatment means for each Group of grain yield, grain nitrogen (N), agronomic efficiency (AE), grain N harvest index 

(GNHI), and fertilizer recovery efficiency (FRE) with standard errors (SE) in response to source of N application at 135 kg N ha-1rates. 

The nitrogen rates were 102 kg N ha-1 Waseca 14a in Group 2 and Theilman in Group 3. 

Treatment† Grain Yield Grain N AE‡ GNHI FRE 

Grain 

Yield Grain N AE‡ GNHI FRE 

 

Mg ha-1 kg N ha-1 kg kg-1 kg kg-1 % Mg ha-1 kg N ha-1 kg kg-1 kg kg-1 % 

 Group 1 Group 2 

AA 5.4 AB§ 46.9 AB 26.0 AB 0.47 BC 37 A 6.8 C 65.2 C 17.5 C 0.69 A 22 A 

AAI 6.4 A 55.1 A 33.2 A 0.51 ABC 44 A 7.2 C 70.5 BC 19.3 C 0.69 A 27 A 

PCU 6.2 A 54.8 A 31.8 A 0.61 A 32 A 8.8 AB 89.9 A 32.1 B 0.65 A 46 A 

PCU-U 2:1 5.1 ABC 44.1 AB 23.6 ABC 0.55 AB 23 A 9.3 A 92.6 A 36.1 A 0.63 A 43 A 

PCU-U 1:2 4.4 BC 36.5 B 18.6 BC 0.46 BC 23 A 8.9 A 86.2 AB 33.6 B 0.64 A 46 A 

Urea 3.8 C 33.2 B 13.9 C 0.43 C 22 A 7.5 BC 68.8 BC 22.9 C 0.72 A 31 A 

SE 0.5 4.6 3.7 0.04 6 0.6 6.7 4.1 0.03 7 

Pr(>F) 0.022 0.031 0.023 0.041 0.094 0.011 0.015 0.008 0.165 0.096 

 Group 3 Group 4 

AA 10.4 A 112.2 A 34.0 A 0.61 A 57 AB 13.5 A 160.2 A 12.2 A 0.73 A 17 A 

AAI 11.2 A 128.3 A 40.7 A 0.63 A 74 A 13.5 A 153.8 A 11.9 A 0.63 BC 35 A 

PCU 10.5 A 107.3 A 33.9 A 0.63 A 43 BC 12.9 A 152.0 A 9.0 AB 0.68 ABC 18 A 

PCU-U 2:1 11.5 A 125.3 A 43.4 A 0.67 A 62 A 13.1 A 153.6 A 7.9 AB 0.69 AB 17 A 

PCU-U 1:2 10.9 A 122.7 A 37.8 A 0.65 A 63 A 12.8 A 138.3 A 7.4 AB 0.61 BC 21 A 

Urea 10.0 A 103.9 A 29.4 A 0.65 A 37 C 12.4 A 137.3 A 4.2 B 0.61 C 20 A 

SE 1.2 10.6 8.4 0.04 7 0.3 6.7 2.6 0.03 8 

Pr(>F) 0.357 0.079 0.359 0.902 0.01 0.133 0.071 0.04 0.037 0.448 

† Anhydrous ammonia (AA), anhydrous ammonia with nitrification inhibitor (AAI), polymer coated urea (PCU), PCU-urea  

blends at a ratio of 2:1 (PCU-U 2:1), PCU-urea blends at ratio of 1:2 (PCU-U 1:2). 

‡ AE and FRE are calculated as the yield or corn N uptake difference between the 0N and treatment of interest divided by the  

applied N rate. GNHI is the quotient of grain N and R6 corn N uptake.  

§ Within group and agronomic variable, means followed by the same upper case letter are not different (P>0.05).
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Table 1.13  In-season plant nitrogen uptake treatment means for nitrogen source treatments applied at 135 kg N ha-

1 of each Group with time in cumulative growing degree days Celsius (GDD). 

 Group 1 Group 2† 

 V4 V8 V12 R1 R6 V4 V8 V12 R1 R6 

GDD 196 388 586 758 1180 238 410 587 728 1283 

 __________________________ kg N ha-1 __________________________ ___________________________ kg N ha-1 __________________________ 

AA 1.3aE‡ 22.3aD 58.2abC 76.9aB 100.7abA 2.8aE 22.9abD 50.9bC 76.1bB 103.4bA 

AAI 1.7aD 26.0aC 63.3aB 73.0abB 109.4aA 2.5aE 17.9bD 55.1bC 70.1bB 111.5bA 

PCU 1.6aD 21.5aC 55.4abB 62.3bB 93.6bA 4.5aD 32.4aC 80.4aB 92.4aB 133.8aA 

PCU-U 2:1 1.5aD 21.8aC 46.7bB 46.5cB 81.0bcA 4.2aE 31.9aD 81.7aC 98.7aB 131.2aA 

PCU-U 1:2 1.6aD 19.1aC 46.5bB 46.2cB 81.3bcA 4.2aD 30.3abC 75.0abB 87.1abB 133.1aA 

Urea 1.2aD 15.0aC 37.0bB 37.0cB 79.1cA 3.5aE 24.6abD 64.2bC 78.1bB 112.7bA 

 Group 3 Group 4 

GDD 231 438 585 724 1293 279 563 675 859 1158 

 __________________________ kg N ha-1 __________________________ ___________________________ kg N ha-1 __________________________ 

AA 4.6aD 56.0aC 103.0abB 126.0bB 184.6bA 3.4aE 83.2aD 130.2bC 199.5bB 222.0bA 

AAI 4.8aD 61.6aC 113.5aB 143.9aB 204.7aA 3.9aD 94.8aC 167.2aB 231.5aA 246.2aA 

PCU 6.4aD 66.3aC 113.1aB 125.0bB 169.4cA 3.2aE 92.9aD 136.6bC 203.9bB 223.0bA 

PCU-U 2:1 5.4aE 61.5aD 106.7abC 144.2aB 190.3abA 3.8aE 87.8aD 165.3aC 192.7bcB 221.7bA 

PCU-U 1:2 6.3aD 63.4aC 113.1aB 135.4abB 191.4abA 3.6aE 95.8aD 153.4abC 202.7bB 227.7abA 

Urea 6.2aD 62.2aC 95.4bB 119.5bB 160.0cA 3.7aD 91.4aC 159.9aB 175.2cB 226.0abA 

  Tests of fixed effects      

 Source of variation Group 1 Group 2 Group 3 Group 4      

Nitrogen source (N) 0.0002 0.0001 0.0088 0.0155      

Time  <0.0001 <0.0001 <0.0001 <0.0001      

N*Time 0.0028 0.0093 0.0031 0.0188      

† The nitrogen rates were 102 kg N ha-1 for Waseca 14a in Group 2 and Theilman in Group 3. 

‡ Within Group, same lowercase letters within column are not significantly different while same uppercase letters 

across rows are not significantly different at P = 0.05. 
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Table 1.14  Group 1 nitrogen source treatment means for in-season total inorganic nitrogen applied at 135 kg N ha-1 at the 0- to 30- 

and 30- to 60-cm increments with time in cumulative growing degree days Celsius (GDD). 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 

10. If Tmax >30˚C, then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Anhydrous ammonia (AA), anhydrous ammonia with nitrification inhibitor (AAI), polymer coated urea (PCU), PCU-urea blends at 

a ratio of 2:1 (PCU-U 2:1), PCU-urea blends at ratio of 1:2 (PCU-U 1:2). 

§ Same lowercase letters within column are not significantly different while same uppercase letters across rows and depths are not 

significantly different at P = 0.05. 

 V4 V8 V12 R1 Post-harvest 

GDD† 196 388 586 758  

 _____________________________________________________________ mg kg-1 _____________________________________________________________ 

 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

AA‡ 10.9bA§ 5.2cB 5.8abB 5.5aB 3.0aB 2.9aB 2.7aB 2.4aB 4.9aB 2.1aB 

AAI 10.5bA 5.5cBC 8.9aAB 5.5aBC 3.7aC 2.0aC 2.5aC 2.0aC 4.7aBC 2.8aC 

PCU 13.0abA 9.0abB 7.2abBC 6.4aBC 3.0aCD 2.3aD 3.2aCD 2.1aD 4.5aCD 2.5aD 

PCU-U 2:1 10.8bA 5.9bBCD 6.8abABC 7.3aAB 2.5aD 1.9aD 2.6aCD 2.3aD 4.7aBCD 3.1aBCD 

PCU-U 1:2 11.9abA 8.8abB 7.1abB 7.3aB 2.6aC 2.2aC 2.8aC 2.2aC 4.6aBC 2.3aC 

Urea 14.9aA 10.2aB 4.8bCD 7.8aBC 3.1aD 2.5aD 2.7aD 2.3aD 4.1aCD 4.0aCD 

Tests of fixed effects        

Source of variation         

Nitrogen source (N) 0.6401        

Depth (D) 0.0013        

N*D 0.2123        

Time (T) <0.0001        

N*T 0.6777        

D*T 0.0203        

N*D*T 0.9006        
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Table 1.15  Group 2 nitrogen source treatment means for in-season total inorganic nitrogen applied at 135 kg N ha-1, except for 

Waseca14a that was 102 kg N ha-1, at the 0- to 30- and 30- to 60-cm increments with time in cumulative growing degree days Celsius 

(GDD). 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If 

Tmax >30˚C, then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Anhydrous ammonia (AA), anhydrous ammonia with nitrification inhibitor (AAI), polymer coated urea (PCU), PCU-urea blends at 

a ratio of 2:1 (PCU-U 2:1), PCU-urea blends at ratio of 1:2 (PCU-U 1:2). 

§ Same lowercase letters within column are not significantly different while same uppercase letters across rows and depths are not 

significantly different at P = 0.05. 

 V4 V8 V12 R1 Post-harvest 

GDD† 238 410 587 728  

 ____________________________________________________________________ mg kg-1 ________________________________________________________________ 

 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

AA‡ 12.6dA§ 8.7abBC 10.4bAB 8.5bcBC 6.8aCD 5.1aDE 6.4aCDE 4.4aE 6.2aCDE 3.2aE 

AAI 14.2cdA 7.8bC 10.6bB 8.0bcC 6.9aCD 4.8aDE 6.2aCD 4.2aDE 4.9aCDE 2.2aE 

PCU 19.8aA 10.0aC 13.2aB 10.1abC 7.3aCDE 5.6aDEF 8.2aCD 4.8aEF 6.7aDE 3.1aF 

PCU-U 2:1 19.0aA 10.1aC 13.3aB 11.7aB 8.3aCD 6.0aDE 7.2aCD 5.1aDE 7.1aCD 3.3aE 

PCU-U 1:2 15.3bcA 9.8abBC 11.3abB 10.0abB 6.8aCD 5.0aDE 6.4aD 4.3aDE 6.6aCD 2.7aE 

Urea 16.7bA 10.2aBC 10.5bB 7.8cCD 6.5aDE 5.1aE 6.2aDE 3.7aEF 6.1aDE 2.3aF 

Tests of fixed effects         

Source of variation          

Nitrogen source (N) 0.0005         

Depth (D) 0.0003         

N*D 0.0598         

Time (T) <0.0001         

N*T 0.0149         

D*T <0.0001         

N*D*T 0.2534         
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Table 1.16  Group 3 nitrogen source treatment means for in-season total inorganic nitrogen applied at 135 kg N ha-1, except for 

Theilman that was 102 kg N ha-1, at the 0- to 30- and 30- to 60-cm increments with time in cumulative growing degree days Celsius 

(GDD). 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If 

Tmax >30˚C, then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Anhydrous ammonia (AA), anhydrous ammonia with nitrification inhibitor (AAI), polymer coated urea (PCU), PCU-urea blends at 

a ratio of 2:1 (PCU-U 2:1), PCU-urea blends at ratio of 1:2 (PCU-U 1:2).

 V4 V8 V12 R1 Post-harvest 

GDD† 231 438 585 724  

 _________________________________________________________________ mg kg-1 __________________________________________________________________ 

 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

AA‡ 19.3 12.2 14.0 9.5 12.0 8.2 6.4 4.6 6.9 5.1 

AAI 21.0 11.8 18.4 11.5 13.4 7.0 10.9 6.0 8.7 5.7 

PCU 27.3 14.1 20.0 14.9 17.5 8.6 7.3 6.8 7.9 4.9 

PCU-U 2:1 23.1 16.5 18.0 13.9 13.5 8.5 7.6 7.9 8.5 4.7 

PCU-U 1:2 28.9 17.7 22.4 15.4 11.9 11.3 8.6 7.4 9.2 4.7 

Urea 20.3 13.9 13.9 11.0 8.7 7.6 6.1 4.2 7.6 3.8 

Tests of fixed effects         

Source of variation          

Nitrogen source (N) 0.196         

Depth (D) <0.001         

N*D 0.179         

Time (T) <0.001         

N*T 0.176         

D*T 0.085         

N*D*T 0.706         
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Table 1.17  Group 4 nitrogen source treatment means for in-season total inorganic nitrogen applied at 135 kg N ha-1 at the 0- to 30- 

and 30- to 60-cm increments with time in cumulative growing degree days Celsius (GDD). 

† GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If 

Tmax >30˚C, then it was set to 30˚C and if Tmax or Tmin <10˚C, it was set to 10˚C. 

‡ Anhydrous ammonia (AA), anhydrous ammonia with nitrification inhibitor (AAI), polymer coated urea (PCU), PCU-urea blends at 

a ratio of 2:1 (PCU-U 2:1), PCU-urea blends at ratio of 1:2 (PCU-U 1:2). 

§ Same uppercase letters across rows and depths are not significantly different at P = 0.05.

 V4 V8 V12 R1 Post-harvest 

GDD† 279 563 675 859  

 _________________________________________________________________ mg kg-1 __________________________________________________________________ 

 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 0-30 cm 30-60 cm 

AA‡ 20.6A§ 11.1B 9.1BC 9.9B 7.7BC 7.0BC 9.0BC 6.3BC 7.4BC 3.8C 

AAI 18.0A 10.6BC 13.3AB 10.0BCD 7.4CD 6.5CD 5.6CD 4.3CD 7.4BCD 4.1D 

PCU 27.3A 10.5DE 23.5AB 12.8CD 18.1BC 10.0DE 8.9DEF 6.5EF 9.3DEF 3.6F 

PCU-U 2:1 26.6A 11.6BCD 17.3B 12.6BC 16.8B 9.6CDE 7.6DE 6.4 7.0CDE 4.3E 

PCU-U 1:2 23.9A 11.9BCD 16.8B 12.3BCD 13.9BC 9.0CDE 7.5E 5.5 10.6CDE 5.4E 

Urea 31.1A 14.0BC 20.0B 13.4CD 9.4CDE 7.9CDE 8.4CDE 7.6DE 7.9DE 6.3E 

Tests of fixed effects         

Source of variation          

Nitrogen source (N) 0.0918         

Depth (D) <.0001         

N*D 0.1158         

Time (T) <.0001         

N*T 0.133         

D*T <.0001         

N*D*T 0.0918         
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Table 1.18  Modified arcsine-log calibration curve critical soil test values (CSTV), 95% upper (UCL) and lower (LCL) confidence limits, and 

squared Pearson correlation coefficient (r2) of natural log transformed soil test values and arcsine of the square root for relative yield 

transformations for nitrate-nitrogen (NO3) and total inorganic nitrogen (TIN) for pre-plant plus the applied N rate (PP+R) and V4 and V8 

development stages. 

 r2 CSTV 95% LCL 95% UCL r2 CSTV 95% LCL 95% UCL 

  _______________ kg N ha-1 _______________  _______________ kg N ha-1 _______________ 

 _____________________ Group 1 _____________________ _____________________ Group 2 ____________________ 

PP NO3+R 0-30 cm 0.37 1251 748 2093 0.42 385 301 491 

PP NO3+R 0-60 cm 0.41 1009 650 1566 0.44 353 293 425 

PP TIN+R 0-30 cm 0.44 796 559 1134 0.42 359 303 426 

PP TIN+R 0-60 cm 0.46 687 513 921 0.37 385 331 448 

V4 NO3 0-30 cm 0.36 250 162 386 0.59 86 76 99 

V4 NO3 0-60 cm 0.40 405 276 595 0.58 146 129 165 

V4 TIN 0-30 cm 0.44 337 238 475 0.58 111 100 123 

V4 TIN 0-60 cm 0.48 488 362 658 0.58 177 162 194 

V8 NO3 0-30 cm 0.38 56 41 75 0.22 40 32 49 

V8 NO3 0-60 cm 0.48 172 128 232 0.31 90 76 106 

V8 TIN 0-30 cm 0.37 93 74 117 0.19 67 59 76 

V8 TIN 0-60 cm 0.46 207 169 253 0.24 128 114 143 

                                 _____________________ Group 3 _____________________ ___________________ Group Fine _________________ 

PP NO3+R 0-30 cm 0.50 200 163 247 0.45 301 259 349 

PP NO3+R 0-60 cm 0.55 211 181 245 0.46 314 279 353 

PP TIN+R 0-30 cm 0.55 213 184 247 0.44 307 275 342 

PP TIN+R 0-60 cm 0.56 241 216 269 0.50 199 185 213 

V4 NO3 0-30 cm 0.42 102 87 118 0.55 94 86 103 

V4 NO3 0-60 cm 0.44 170 148 195 0.55 157 144 171 

V4 TIN 0-30 cm 0.40 128 113 146 0.50 121 112 131 

V4 TIN 0-60 cm 0.40 218 193 247 0.52 199 185 213 

V8 NO3 0-30 cm 0.30 61 47 79 0.25 51 43 60 

V8 NO3 0-60 cm 0.37 110 91 133 0.32 101 90 115 

V8 TIN 0-30 cm 0.30 81 68 96 0.23 79 72 87 

V8 TIN 0-60 cm 0.37 145 127 165 0.29 143 132 156 
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Table 1.19  Regression parameter estimates of soil test value (STV) by nitrogen rate (N) (kg ha-1) and the associated lower (LCL) and 

upper (UCL) 70% confidence levels for the equation STV=e^(a+b*N). 

† RMSE: root mean square error; Adj. R2: adjusted R2; CV: coefficient of variation 

‡ Model significance; *** significant at the 0.001 probability level 

§ PP NO3+R: pre-plant soil values plus the applied nitrogen rate; V4: vegetative development stage 4; V8: vegetative development 

stage 8; NO3: nitrate-N 

  __ STV x N Rate__ _____ LCL 70% ______ _____ UCL 70%______    Model 

  a b a b a b RMSE† Adj. r2† CV‡ Sig.‡ 

Group 2 PP NO3+R 0-30 cm § 3.257 0.01061 3.161 0.00999 3.353 0.01123 0.614 0.70 13.28 *** 

Group 2 PP NO3+R 0-60 cm 3.746 0.00852 3.677 0.00807 3.815 0.00896 0.440 0.74 9.10 *** 

Group 2 V4 NO3 0-30 cm 2.635 0.00717 2.569 0.00675 2.701 0.00760 0.420 0.69 11.81 *** 

Group 2 V4 NO3 0-60 cm 3.302 0.00661 3.240 0.00621 3.364 0.00701 0.393 0.68 9.47 *** 

Group 2 V8 NO3 0-30 cm 1.976 0.00622 1.893 0.00568 2.059 0.00675 0.529 0.51 19.05 *** 

Group 2 V8 NO3 0-60 cm 2.882 0.00619 2.814 0.00576 2.949 0.00662 0.429 0.61 11.68 *** 

Group 3 PP NO3+R 0-30 cm 3.245 0.01076 3.153 0.01015 3.337 0.01137 0.453 0.80 9.90 *** 

Group 3 PP NO3+R 0-60 cm 3.748 0.00851 3.692 0.00813 3.804 0.00888 0.277 0.87 5.77 *** 

Group 3 V4 NO3 0-30 cm 3.371 0.00634 3.293 0.00581 3.449 0.00686 0.387 0.66 9.31 *** 

Group 3 V4 NO3 0-60 cm 3.938 0.00622 3.874 0.00579 4.001 0.00664 0.314 0.74 6.67 *** 

Group 3 V8 NO3 0-30 cm 2.191 0.00965 2.064 0.00881 2.317 0.01050 0.626 0.63 18.50 *** 

Group 3 V8 NO3 0-60 cm 3.074 0.00835 2.986 0.00777 3.161 0.00893 0.431 0.73 10.49 *** 

Group Fine PP NO3+R 0-30 cm 3.466 0.00989 3.390 0.00939 3.542 0.01038 0.653 0.63 13.80 *** 

Group Fine PP NO3+R 0-60 cm 3.948 0.00792 3.885 0.00752 4.011 0.00833 0.539 0.62 10.88 *** 

Group Fine V4 NO3 0-30 cm 3.002 0.00658 2.941 0.00619 3.063 0.00698 0.525 0.54 13.66 *** 

Group Fine V4 NO3 0-60 cm 3.621 0.00621 3.566 0.00586 3.676 0.00657 0.469 0.57 10.62 *** 

Group Fine V8 NO3 0-30 cm 2.043 0.00793 1.963 0.00742 2.123 0.00845 0.685 0.50 22.41 *** 

Group Fine V8 NO3 0-60 cm 2.981 0.00715 2.922 0.00676 3.041 0.00753 0.511 0.60 13.13 *** 
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Fig. 1.1  A plot for Group Fine V4 nitrate-N 0- to 30-cm combining the arcsine-log calibration curve critical soil test value (CSTV) 

with the regression of soil test value (STV) against the applied N rate.
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CHAPTER 2: SOIL TEXTURE AND WEATHER INFLUENCE OPTIMAL TIME 

OF NITROGEN FERTILIZATION FOR CORN 

 

2.1. SYNOPSIS 

 

In-season N fertilization is increasingly being used as a management strategy to 

reduce risk of N loss to the environment. This study systematically evaluated the optimal 

timing for a split N application in corn (Zea mays L.) grain production across different 

environments and soil textural classes in Minnesota. Fertilizer treatments consisted of 

urea applied at pre-plant at 45 kg N ha-1 increments from 0 to 270 or 315 kg N ha-1 and 

five split-applications of 45 kg N ha-1 urea ammonium nitrate as a starter fertilizer and 90 

kg N ha-1 of urea with N-(n-butyl) thiophosphoric triamide applied at vegetative (V) V2, 

V4, V6, V8, or V12 development stage. Site-years were grouped according to soil texture 

and grain yield response to fertilizer timing. Irrigated coarse-textured soils produced 1.5 

to 1.9 times greater grain yield when sidedress (SD) fertilizer was applied from V4 to 

V12 due to improved synchrony of N availability to crop demand and reduced potential 

for nitrate-N leaching. Rain-fed, fine-textured soils had mixed results where site-years 

receiving well-distributed rainfall produced greater yield when SD fertilizer was applied 

from V2 to V8 but site-years with dry summer months had reduced yield potential and no 

improvement of N use efficiencies (NUE). There is not a single N fertilizer timing that 

will optimize yield each year due to variable weather conditions. This study offers 

insights of N availability under multiple growing conditions that can be used to minimize 

grower risk for improved N management and corn production. 
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2.2. INTRODUCTION 

 

Nitrogen is a major limiting nutrient for producing high yielding corn (Zea mays 

L.) that is often supplied as inorganic fertilizer. While N fertilizer can significantly 

improve grain yield, agricultural producers must strive to maximize NUE and produce 

optimal yield to stay profitable in an increasingly competitive market. One of the major 

difficulties to improving NUE is that once N fertilizer is applied, it is subject to loss 

under certain environmental conditions. This is not only detrimental to farmer’s 

profitability, but N loss becomes a societal issue as it can also negatively impact 

environmental quality (Wortman et al., 2006). There is increasing scrutiny on this 

nutrient because of the impact of N on the environment. Many states in the US have 

developed nutrient reduction strategies to implement best management practices to limit 

the amount of N lost to the environment (MPCA, 2014; IDA, 2015; IOWA, 2017; PSE, 

2018). Even when best management practices are employed, reducing N loss may still be 

difficult. A recent study on a coarse-textured soil in a continuous corn cropping system 

showed that nitrate-N leaching losses were 86 kg ha-1 at the economic optimal N rate 

(EONR) of 250 kg N ha-1 (Struffert et al., 2016). When the EONR was reduced by 25%, 

there was a 6% reduction in corn grain yield and only an 11% reduction in total nitrate-N 

leaching. Although application rate can have a significant role in reducing N losses, corn 

cropping systems are typically prone to N loss (Magdoff et al., 1991a; Lawlor et al., 

2005; Struffert et al., 2016) and other practices must be evaluated. This may become 

especially important if climate in parts of the Midwest shifts towards cooler and wetter 

springs with large precipitation events, and warmer and drier summers (Seeley, 2015)  
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Improved synchrony of time of N application to crop uptake is one practice that 

has been proposed to maintain productivity and reduce N loss potential (Dinnes et al., 

2002). The Minnesota Nutrient Reduction Strategy indicates that a 4 to 7% reduction in 

N loss to surface waters may be possible by shifting N applications from pre-plant to SD 

(MPCA, 2014). Predominant N loss from corn cropping systems occurs in the spring 

months of April to June when the Upper Midwest typically receives 35% of its annual 

precipitation and the corn crop is not yet actively taking up large amounts of soil water or 

N (Randall et al., 2003a; Randall et al., 2003b; Vetsch and Randall, 2004; Struffert et al., 

2016; Chapter 1). Applying N closer to the time of crop N uptake can reduce leaching 

and denitrification losses (Vetsch and Randall, 2004; Fernández et al., 2016) but split-

applications may also prove challenging. Surface-applied N fertilizer can result in up to 

50% volatilization losses (Engel et al., 2011) or dry soil conditions following in-season 

application may result in inadequate uptake by corn and high residual soil N that would 

be susceptible to loss (Randall et al., 2003b). Split-applications can have nitrous oxide 

emissions equal to or greater than a single spring application (Venterea and Coulter, 

2015). Grain yield response to timing of application is not conclusive. Relative to single 

pre-plant spring application, split-applications had no yield difference (Jokela and 

Randall, 1989; Jokela and Randall, 1997; Mueller et al., 2017; Randall et al., 1997; 

Venterea and Coulter, 2015), increased yield (Randall et al., 2003a; Tremblay et al., 

2012; Jaynes, 2013), or decreased yield (Jaynes and Colvin, 2006; Tremblay et al., 2012). 

These differences may be related to variable growing season conditions or timings of N 

applications across these studies. A study that systematically evaluates when in the 

growing season a split N application may be most beneficial across different 
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environments may help elucidate these seemingly contradictory reports. The objectives of 

the study were to determine when in-season N should be applied to optimize grain yield 

and NUE relative to single pre-plant N applications and to examine in-season changes in 

corn and soil N status due to time of application.  

 

2.3. MATERIALS AND METHODS 

 

Study Sites 

 

Studies were conducted at twelve field sites during the 2014 and 2015 growing 

seasons across major soils and agricultural regions in Minnesota, US. Site-years were 

located at the Sand Plain Research Farm at Becker, MN, at the University of Minnesota 

Research and Outreach Centers at Lamberton and Waseca, MN, and on farmers’ fields 

near Theilman and Clara City, MN. All site-years were in a continuous corn cropping 

system except for Waseca14a that had a soybean [Glycine max (L.) Merr.] corn rotation. 

All site-years were dryland, except for those at Becker that were irrigated. Air 

temperature and precipitation data were obtained from the National Weather Service 

weather stations in closest proximity to each site-year (MNDNR, 2016). Growing degree 

days was calculated as the mean of the daily maximum and minimum temperature 

subtracted by 10, where any temperatures less than 10 °C or greater than 30 °C were set 

to values of 10 or 30, respectively. Detailed site and management descriptions are 

provided elsewhere (Chapter 1).  

 

Experimental Design 
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Treatments were arranged in a randomized complete block design with four 

replications. Treatments consisted of a single pre-plant (PP) application of urea (46-0-0, 

N-P-K) at 45 kg N ha-1 rate increments from 0 to 270 kg N ha-1 except at the Becker site-

years that received an additional rate of 315 kg N ha-1. Five additional treatments were 

added where 45 kg N ha-1 was applied in a band on the soil surface to the side of the row 

at planting as urea ammonium nitrate solution followed by 90 kg N ha-1 as urea (135 kg 

N ha-1 applied in total) with N-(n-butyl) thiophosphoric triamide (NBPT), Agrotain 

(Koch Fertilizer LLC, Wichita, KS) applied at the V2 (SD-V2), V4 (SD-V4), V6 (SD-

V6), V8 (SD-V8) or V12 (SD-V12) corn development stages (Abendroth et al., 2011). 

All fertilizer rates for Theilman14 and Waseca14a were reduced by 25%. Pre-plant and 

starter N fertilizers were applied within one week of planting, except at Clara City15 

where pre-plant fertilizer was applied 18 days before planting (Table 2.1, 2.2). All PP and 

SD urea N fertilizer treatments were broadcast by hand and PP was incorporated with 

shallow tillage (5 cm) except at Becker14 where treatments were incorporated with 6 mm 

of irrigation immediately after the application. The SD fertilizer applications received 6- 

to 20-mm of water within 2 days of fertilizer application on irrigated site-years, except 

for a single rain event at V4 at Becker14 where 40 mm of precipitation fell within 24 h of 

application. On non-irrigated site-years, incorporation occurred with at least 12 mm of 

precipitation within two weeks of N application at all site-years and application timings 

except Clara City14 at V4; Lamberton14 at V6; Lamberton15 and Waseca14b at V8; and 

Lamberton14, Waseca14a, and Theilman14 at V12 (Table 2.1; 2.2).  
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Corn Sampling 

 

Corn N uptake was measured at the V4, V8, V12, R1, and R6 development stages 

(Abendroth et al., 2011). Six representative corn plants were collected from each plot, 

chipped, dried at 60 °C until constant mass, and weighed. The dried samples were then 

mixed and ground to pass through a 2 mm screen and analyzed for total N by combustion 

analysis using a Carlo Erba 1500 elemental analyzer (Carlo Erba, La Metairie, France) 

(Horneck and Miller, 1998). Cobs, grain, and vegetative tissues were partitioned at the 

R6 stage and processed similar to earlier samplings. Grain yield was measured by 

harvesting the center two rows of each plot by hand or using a research grade plot 

combine. Ears were shelled, weighed, and a representative subsample was saved to 

determine grain moisture content and analyzed for total N content by combustion analysis 

using an Elementar Analyzer (Langenselbold, Hesse, Germany). Grain yield was 

corrected to 155 g kg-1 moisture. Nitrogen uptake was calculated as the product of dry 

matter for the grain, cob, and stover by their respective N concentrations.  

 

Soil Sampling 

 

Concurrent with plant sampling, four-core (1.8 cm diameter) composite soil 

samples were collected from the 0- to 30- and 30- to 60- cm increments while at post-

harvest, a two-core (5 cm diameter) composite soil sample was collected at the same 

increments using a hydraulic probe. However, at Waseca14a, excessively wet conditions 

followed by freezing prevented post-harvest soil sample collection. Soil samples were 
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dried at 35 °C, ground to pass through a 2 mm screen, and analyzed for nitrate-N 

(Gelderman and Beegle, 2012) and ammonium-N (Bremner and Mulvaney, 1982). A pre-

plant soil sample collected in 2015 indicated that there were no significant residual soil N 

treatment effects from the previous year (data not shown) so Becker15a, Waseca15a, and 

Clara City15 were placed on the same treatment-plots as the 2014 site-years of Becker14, 

Waseca14b, and Clara City14.  

 

Data Analysis 

 

Site-years were separated into three groups based on the response of grain yield to 

time of N application using the two-tailed log likelihood test where site-years were 

grouped when the chi-squared value was greater than 0.05. Group 1 had four site-years 

(Becker14, Becker15a, Becker15b, and Waseca15b), Group 2 had five site-years (Clara 

City14, Clara City15, Lamberton15, Theilman14, and Waseca15a), and Group 3 had 

three site-years (Lamberton14, Waseca14a, Waseca14b). These same groupings were 

maintained for analysis of other dependent variables.  

All data were analyzed at P ≤ 0.05 using various procedures of SAS (SAS 

Institute, 2012). Nitrogen treatments associated with time of N application were analyzed 

separately from treatments comparing N rates. Using the MIXED procedure of SAS, time 

of N application was considered a fixed effect, while site-year, block (nested within site-

year) and interactions of fixed effects with site-year and block were considered random 

effects. Residual normality was verified with the UNIVARIATE procedure and 

scatterplots of the residuals versus predicted values verified homogeneity of variance 
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(Kutner et al., 2004). When appropriate, pairwise mean comparisons were made with t 

tests at P ≤ 0.05 using the PDIFF option in the MIXED procedure of SAS.  

Repeated measures were performed for the in-season soil and plant data for the 

time of N application (SD-V2, SD-V4, SD-V6, SD-V8, SD-V12) treatments using the 

MIXED procedure of SAS where time of N application, development stage, depth, and 

their interactions were considered fixed effects while site-year, block (nested within site-

year) and interactions of fixed effects with site-year and block were considered random 

effects. The autoregressive covariance structure was used. The repeated subject was the N 

treatment by block (nested within site-year) interaction. Significant fixed effects or 

interactions of fixed effects were compared using means separation at P ≤ 0.05 with the 

PDIFF option of the MIXED procedure of SAS.  

To determine the response of grain yield to N rate, linear, quadratic, or quadratic-

plateau regression models were developed using the REG or NLIN procedures of SAS. 

Models were selected that produced the largest correlation coefficients and had normally 

distributed residuals (SAS Institute, 2004, Kutner et al., 2004). The agronomic optimal N 

rate (AONR) was determined to be the highest applied N rate for linear and quadratic 

regressions or the point at which the model plateaued for quadratic-plateau regressions. 

The EONR was determined by setting the first derivative of the regression model to the 

fertilizer cost to corn price ratio of 0.0056 [$1.10 kg-1 N as fertilizer ), $196.84 Mg-1 corn 

grain] based on a regional N rate guideline (Sawyer et al., 2006).  

 

Nitrogen Use Efficiency Calculations 
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Agronomic efficiency (AE) was calculated as AE= (YN-Y0)/N rateN while 

fertilizer recovery efficiency (FRE) was calculated as FRE= (TN-T0)/N rateN where Y and 

T represent grain yield and total aboveground N uptake, and the subscript “N” and “0” 

represent the fertilizer N treatment of interest and the nonfertilized control treatment 

(Snyder and Bruulsema, 2007). 

 

2.4. RESULTS AND DISCUSSION 

 

Weather Conditions  

 

Monthly average precipitation, air temperatures, and departures from the 30-year 

average for each site year were described in Chapter 1. Briefly, 2014 was characterized 

by cool, excessively wet springs receiving on average across site-years 52% of the total 

annual precipitation from April through June. Theilman14 was the only exception for 

2014 where precipitation was more evenly distributed. The wet spring conditions in 2014 

likely favored N loss from the pre-plant and starter fertilizer applications. Adverse 

weather conditions continued in 2014 with drier than normal conditions in July that 

corresponded with V8 to R1 (Chapter 1; Table 2.1) that represents a critical period when 

moisture or nutrient deficiency can negatively impact grain yield potential (Abendroth et 

al., 2011).  In contrast, 36% of the total annual precipitation fell in April through June in 

2015 and is comparable to the 30-year normal (Chapter 1). In addition, the 2015 growing 

season had warm spring temperatures that facilitated earlier planting than 2014 followed 

by evenly distributed rain events throughout the growing season (Chapter 1; Table 2.2). 

Overall, the 2015 growing season was more favorable for corn production than 2014. 
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Potential for Volatilization 

 

A 12 mm precipitation event or greater is often sufficient to incorporate surface-

applied urea and reduce potential volatilization losses, but smaller precipitation events 

may increase the volatilization potential (Jones et al., 2013). We used NBPT (urease 

inhibitor) for SD applications to provide greater time for urea incorporation by rainfall 

and to minimize volatilization losses. The amount of time until a 12 mm rain event could 

impact volatilization potential because NBPT effectiveness decreases after one to two 

weeks (Rawluk et al., 2001; Motavalli et al., 2008; Engel et al., 2011; Silva et al., 2016). 

For Group 1, there was likely low potential for volatilization loss as a 12 mm 

precipitation or irrigation event occurred within 7 days of all SD applications (Table 2.1; 

2.2). In Group 2, spring rainfall was moderate and well distributed (except Clara City14) 

and most SD applications were followed by a 12 mm rainfall event within 14 days of 

fertilizer application except for Clara City14 at V4, Lamberton15 at V8, and Theilman14 

at V12 (Table 2.1; 2.2). For these reasons, Group 2 may represent site-years with low to 

moderate potential for volatilization. For Group 3, the V2 and V4 SD applications 

received 12 mm of rainfall within 7 days of application (except Lamberton14 at V4) but 

later applications did not receive a 12 mm rainfall event for over two weeks (except 

Waseca14a at V6 and Lamberton14 at V8). For these reasons, later fertilizer applications 

in Group 3 likely had moderate potential for N volatilization. Besides influencing 

potential volatilization, dry soil moisture conditions following the V6 and later SD 

timings for 2014 non-irrigated site-years may have limited root exploration, N uptake, 
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and biomass production that likely reduce seed number and weight (Bennett et al., 1989). 

These results illustrate the challenges associated with predicting yearly weather patterns 

and timing in-season fertilizer applications to rainfall events of sufficient magnitude to 

adequately incorporate surface applied urea. 

 

Group 1 – End of Season Metrics 

 

Group 1 had a linear grain yield response to increasing rates of PP fertilizer across 

all site-years (Yield=0.0201*N rate+2.4945; P<0.001; adj. r2=0.43) that is indicative of N 

loss, especially at the greater N application rates. Within Group 1, the coarse-textured 

soils at Becker (Yield=0.0207*N rate+1.5351; P<0.001; adj. r2=0.60) produced less grain 

yield than the fine-textured soil at Waseca15b (Yield=0.0261*Nrate+4.7489; P<0.001; 

adj. r2=0.78) at equivalent N rates. This may be due to the greater potential for nitrate-N 

leaching associated with coarse-textured soils than for fine-textured soils. The split-

applied treatments produced 1.5- to 1.9-fold more grain yield than PP and were 

equivalent to applying a PP N rate of 229 to 313 kg N ha-1 (Table 2.3). Rubin et al. 

(2016) found split-applying N fertilizer was a better N management strategy than a single 

pre-plant application of polymer coated urea for coarse-textured soils. Split-applying N is 

advantageous from both a fertilizer cost savings and an environmental protection 

perspective when early season conditions lead to high N loss potential. This also supports 

University guidelines that pre-plant N fertilizer should not be applied on coarse-textured 

soils, except as a small amount as a starter (Lamb et al., 2015). Delaying a split-

application until V6 or later increased grain yield by 23% on average compared to SD-V2 
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and SD-V4 that produced an intermediate response (Table 2.3). Similar responses were 

observed for AE where the split-applications improved AE 2.1- to 3.0-fold compared to 

PP and delaying SD application until V6 or later increased AE by 37% on average 

compared to SD-V2. The FRE and grain N content measurements highlight that the 

advantage of delaying SD can be significant even at SD-V12 where, compared to the SD-

V8 time, SD-V12 improved FRE by 26% and grain N content by 16%. Relative to PP, N 

concentration in the grain was similar up to SD-V6 and increased by 10% for SD-V8 and 

28% for SD-V12 (Table 2.3). The difference in grain N content was the result of both 

greater grain yield and N concentrations with the late SD applications. Mueller et al. 

(2017) also reported similar FRE values (68%) for a SD-V12 treatment, and indicated 

that when precipitation or irrigation is timely, delayed fertilizer applications are likely to 

improve uptake as the crop’s root system is better developed with greater crop N demand 

than at earlier vegetative stages.  

 

Group 1 – In-Season Corn Nitrogen Uptake and Biomass  

 

The significant time of N application by development stage interaction for corn N 

uptake (Table 2.4) and biomass (Table 2.5) were explained by increasing values as the 

growing season progressed but the increase became larger later in the growing season for 

the later SD treatments (SD-V8 and SD-V12). Further evaluation showed that regardless 

of time of N application, corn N uptake (Table 2.4) and biomass (Table 2.5) increased as 

the season progressed. Others have observed similar patterns (Abendroth et al., 2011; 

Bender et al., 2013). Corn N uptake increased rapidly after the SD application, normally 
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showing similar cumulative uptake to earlier SD treatments by the second sampling after 

N application (Table 2.4).  

Corn biomass also increased rapidly after SD applications (Table 2.5). All SD 

treatments ultimately produced greater biomass than the PP timing but the later SD 

applications (SD-V8 and SD-V12) had less biomass (smaller leaves and stalks observed 

in the field) throughout the growing season. This follows what others have reported 

(Bennett et al., 1989; Walsh et al., 2012). Because vegetative biomass in general 

decreased while corn N uptake increased with the later SD fertilizer applications, the 

rapidly accumulated N was increasingly partitioned into the grain compared to earlier SD 

timings (Table 2.3) and is consistent with 15N tracer studies (Weiland et al, 1989; Subedi 

and Ma, 2005). Further, Subedi and Ma, (2005) observed that N supplied right before and 

during critical growth periods was more likely to influence grain yield than total N 

availability to the crop throughout the growing season or even the total amount of N 

taken up by the crop. 

 

Group 1 – In-Season Soil Nitrogen 

 

A significant three-way interaction of time of N application by sampling stage by 

soil depth for ammonium-N, nitrate-N, and total inorganic N (TIN; ammonium-N plus 

nitrate-N) gave important insights on N availability throughout the growing season as 

affected by the different times of N application (Table 2.6, Fig. 2.1). Early in the growing 

season (V4 and V8) the effect of previous fertilizer timings could be observed in soil 

ammonium-N and nitrate-N levels at the time of sampling (Fig. 2.1A, B). Later in the 



 

 63 

season (V12 or later), only the application done two to three weeks before soil sampling 

(Fig. 2.1) could be detected in the soil test, likely because of rapid crop N uptake (Fig. 

2.1C, D, E). As the length of time between split-application and sampling increased, 

earlier applications had similar TIN levels as the 0 N control at V12, R1, and post-harvest 

(Fig. 2.1C, D, E, F). At V8 and V12 the PP and SD treatments that had received only 45 

kg N ha-1 starter fertilizer (SD-V8, SD-V12) had similar soil inorganic N as the 0 N 

control (Fig. 2.1B, C, F). The rapid decline of inorganic N from these treatments 

illustrates how lack of synchrony between N supply and crop N demand caused stress 

that reduced biomass production in all three treatments relative to earlier SD applications, 

and reduced N uptake and grain yield for PP. Finally, the increase in TIN (especially 

ammonium-N) in the 0 N control at V8 and at post-harvest are likely indicative of N 

mineralization (Fig. 2.1F). 

At V4 and V8, a large portion of the N was nitrate except for SD-V2 at V4 and 

SD-V6 at V8. This indicates that fertilizer N nitrified relatively quickly at all growth 

stages. Nitrate is prone to loss compared to ammonium and can largely influence N 

availability. At the V8 sampling stage, PP and SD-V2 had greater amounts of nitrate-N in 

the 30- to 60-cm increment than in the surface layer (Fig. 2.1B). Reduction in N 

availability was also evident when available N of the 0 N control was subtracted from the 

135 kg N ha-1 early season treatments. Assuming that N cycling was similar between the 

fertilized and unfertilized treatments and that N uptake early in the season is low (≤2.1 kg 

N ha-1) (Table 2.4), we observed only 79 and 72 kg fertilizer-N ha-1 for PP and SD-V2 

present at V4 (Fig. 2.1A). The importance of retaining N in the ammonium form when 

nitrate leaching potential is high was illustrated by changes in soil N between V4 and V8 
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sampling times. For PP, where most N was nitrate at V4, TIN from the fertilizer 

(accounting for N in the 0 N control) changed from 79 kg N ha-1 at V4 to 19 kg N ha-1 at 

V8. Corn uptake during that period was only 15.7 kg N ha-1 (Table 2.4) and indicates that 

44 kg N ha-1 were likely lost or unavailable for the crop. In contrast, for SD-V2, where a 

substantial amount of N was ammonium-N at V4, TIN from the fertilizer (accounting for 

N in the 0 N control) changed from 72 kg N ha-1 at V4 to 57 kg N ha-1 at V8, which is 

less than total corn N uptake for that period (Table 2.4). At V8, there was a substantial 

increase in ammonium-N levels at the 30- to 60-cm increment for the SD-V6 application 

(Fig. 2.1B). This increase may indicate leaching of ammonium-N or dissolved urea into 

the subsoil before hydrolysis (Figure 1B). Leaching of urea or ammonium-N may be 

plausible as three of the four site-years in Group 1 had coarse-textured soils with low 

organic matter (15.6 g kg-1), low cation exchange capacity (4.3 cmolc kg-1) (Chapter 1), 

and Becker15b and Waseca15b received 19- and 9-mm of water within two days of 

fertilization and all site-years received 28- to 79-mm of water on average from V6 to V8 

(6 to 9 d) (Table 2.1, 2.2). Our data also show that there can be substantial amounts of 

ammonium-N in the soil from N fertilization early in the season. Soil nitrate tests, like the 

pre-SD nitrate test, may not fully quantify N availability. Possibly because of this reason 

the pre-SD nitrate test has been most successfully used in situations where little or no N 

has been applied before samples are taken (Bundy and Andraski, 1995). 

 

Group 2 – End of Season Metrics 
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Group 2 had a quadratic response of grain yield to increasing rates of pre-plant 

fertilizer across all site-years (Yield=-0.00005*Nrate2+0.0339*Nrate+7.1409; P<0.001; 

adj. r2=0.38; EONR 260 kg N ha-1; AONR 270 kg N ha-1). Yield and AE for split-applied 

fertilizer treatments were not different between SD-V2, SD-V4, SD-V6, and SD-V8 (11.2 

Mg ha-1; 30.8 kg kg-1 on average) while PP and SD-V12 had smaller yield and AE at 10.1 

Mg ha-1 and 22.3 kg kg-1 on average (Table 2.3). Similar patterns were observed for R6 

biomass (Table 2.5) and corn N uptake (Table 2.4). Grain yield reduction for PP relative 

to SD-V2, SD-V4, SD-V6, and SD-V8 was likely due to lower soil N availability and 

corn N uptake during grain fill from R1 to R6 (Fig. 2.2D, E, Table 2.4). In contrast, yield 

reduction for SD-V12 relative to the earlier SD treatments (V2 to V8) was likely due to N 

deficiency from V8 to V12 when soil TIN (0- to 60-cm) was similar to the 0 N control 

(Fig. 2.2B, C, F). Inadequate N availability during the period of V8 to V12 can reduce 

biomass production (Table 2.5) and may have reduce the potential number of seeds set 

(Abendroth et al., 2011). Despite receiving SD N at V12, there was not sufficient time 

prior to reproduction for corn N uptake or biomass accumulation to “catch up” to the 

earlier SD treatments resulting in a smaller photosynthetic factory for carbohydrate 

production and grain fill (Table 2.4, 2.5). On fine-textured soils, others have reported no 

difference in grain yield when all N was delayed until V11 (Scharf et al., 2002) or 

observed yield losses with delayed SD applications that was attributed to early season N 

stress (Binder et al., 2000; Walsh et al., 2012). Similar to Group 1, FRE and grain N 

increased with delayed fertilization, although for FRE it was only a trend (Table 2.3). 

Fertilizer recovery efficiency was generally less in Group 2 than Group 1 that may 

indicate that site-years in Group 1 were more dependent on fertilizer N than site-years in 
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Group 2 where native N supply and mineralization provided a larger portion of crop N 

needs (Table 2.3).  

 

Group 2 – In-season Corn Nitrogen Uptake, Biomass, and Soil Nitrogen 

 

Group 2 had a significant SD time by sampling stage interaction for corn N 

uptake (Table 2.4) and biomass (Table 2.5). There was also a significant three-way 

interaction for nitrate-N and TIN, but only the SD time by sampling stage interaction and 

depth was significant for ammonium-N (Table 2.5).  The overall response of corn N 

uptake and biomass was similar between Group 2 to Group 1, but the magnitude of N 

uptake and biomass accumulation was greater in Group 2 with smaller relative 

differences of uptake or biomass between PP and the SD treatments (Table 2.4, 2.5). As 

in Group 1, corn N uptake for later applied treatments of Group 2 “caught up” to earlier 

applied treatments by R6, but unlike Group 1, there was no difference between SD-V2, 

SD-V6, SD-V8, or SD-V12 at R6 at 164.7 kg N ha-1 on average (Table 2.4). Greater 

grain yield, N uptake, and biomass of Group 2 relative to Group 1 was likely due to 

greater native N fertility as indicated by 0 N control soil TIN (0- to 60-cm) levels where 

Group 2 was 40 kg N ha-1 greater than Group 1 at the V4 soil sampling and remained 

greater for the remainder of the growing season (Fig. 2.1F, Fig. 2.2F). Improved retention 

of starter fertilizer N (SD-V12) was evidenced by soil TIN-N (0- to 60-cm) being greater 

than the 0 N control until V12 for Group 2 compared to V8 for Group 1 (Fig. 2.1, 2.2). 

By the V12 sampling, SD-V12 only received 33% of the total fertilizer received in other 

treatments but accumulated 68 and 80% as much plant N and biomass, respectively as 
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PP, SD-V2, SD-V4 and SD-V6 on average (Table 2.4, 2.5). These results indicate that 

starter fertilizer plus soil mineralization supplied sufficient N to meet crop N demands 

until SD fertilizer was applied between V2 and V8.  

Similar to Group 1, fertilizer applications could be observed in subsequent soil 

nitrate-N, ammonium-N, and TIN tests through V12, but later in the season (R1 or later) 

only the SD-V12 treatment could be detected at R1 (Fig. 2.2). Unlike Group 1, after 

receiving the full 135 kg N ha-1 rate, fertilized treatments had greater soil TIN values than 

the 0 N control for the remainder of the growing season. This supports the observation of 

smaller relative differences in N uptake and grain yield between PP and SD treatments. 

Similar to Group 1, nitrification of fertilizer was rapid with the majority of TIN as nitrate-

N at V4 for all treatments and at V8 for PP, SD-V2, and SD-V4 at both increments (Fig. 

2.2). From V12 forward, ammonium-N and nitrate-N each comprised about 50% of TIN.  

Despite rapid nitrification, Group 2 improved retention of fertilizer N relative to 

the coarse-textured soils of Group 1 likely due to the greater water holding capacity 

associated with loam or finer textured soils. Smaller pores and greater soil surface area 

restricted the downward movement of nitrate-N dissolved in soil water for improved 

residence time of fertilizer N in the root zone. The reduction of soil TIN (0- to 60-cm) for 

the PP treatment was nearly identical to the amount of N taken up by the crop from V4 to 

V8 to V12 (Table 2.4, Fig. 2.2) contrasting Group 1 where soil N reduction was likely 

primarily due to leaching. Although there was a trend of increasing residual soil TIN (0- 

to 60-cm) with delayed N application (Fig. 2.2), cumulative corn N uptake was 4.8 to 

33.8 kg N ha-1 greater than the applied 135 kg N ha-1 rate (Table 2.4).  
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Assuming mineralization was similar across all treatments, later SD treatments 

took up additional soil mineralized N while PP and early SD treatments may have had 

some N losses early in the season when the plants were small. Overall, these results 

suggest that on fine-textured soils with well-distributed rainfall, a split-application of 

fertilizer with a small amount applied as starter and the remainder sidedressed from V2 to 

V8 could potentially minimize N losses and N stress to the crop for high grain yield. 

These results suggest that growers have a large time-frame in which N fertilizer may be 

applied with minimal risk of lost grain yield potential or environmental contamination if 

there are early season conditions that delay fertilizer application. 

 

Group 3 – End of Season Metrics 

 

Group 3 had a quadratic-plateau response of grain yield to increasing rates of pre-

plant fertilizer plateauing at 8.9 Mg ha-1 (Yield=-0.00008*Nrate2+0.0381*Nrate+4.3452; 

P<0.001; EONR 203 kg N ha-1, AONR of 238 kg N ha-1). Similar to responses noted by 

Jaynes (2013) and Venterea and Coulter (2015), there were no differences in grain yield 

(7.0 Mg ha-1), AE (22.7 kg kg-1), FRE (0.41 kg kg-1), or grain N (77.1 kg N ha-1) 

regardless of time of N fertilization (Table 2.3). There was a trend of decreasing yield, 

AE, and FRE when SD was delayed past V4 (Table 2.3) that corresponded to dry 

conditions at all site-years from V8 to R1 (Table 2.1). Furthermore, the reduced yield of 

Group 3 treatments relative to Group 2 is similar to results reported by Venterea et al. 

(2016) for the 2014 growing season.  
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Group 3 – In-season Corn Nitrogen Uptake and Biomass 

 

The significant SD time by sampling stage interaction for corn N uptake (Table 

2.4) and biomass (Table 2.5) was associated with increasing uptake and biomass over 

time for each treatment. In addition, from V8 to R1 for N uptake and V8 to R6 for 

biomass, there was a pattern of decreasing values with increasing time until SD 

application (Table 2.4, 2.5). As previously mentioned, wet conditions with four days of 

ponded water at Waseca 14a and Waseca 14b in June 2014 followed by minimal rainfall 

in July 2014 (V8 to R1, 18- to 31-mm) caused water stress that limited soil N 

accessibility, corn N uptake, and biomass production (Table 2.1). The combination of 

delayed N application with dry conditions produced the greatest stress on SD-V8 and SD-

V12 as biomass was 1.0 and 1.1 Mg ha-1 less than SD-PP, SD-V2 and SD-V4 on average 

at V12 and R1, and 2.6 Mg ha-1 less than SD-PP and SD-V4 on average at R6 (Table 

2.5). From R1 to R6, corn N uptake increased in all treatments following several 

precipitation events and SD-V8 and SD-V12 had a faster rate of accumulation of plant N 

uptake relative to the other treatments although at the end of the season SD-V8 was still 

21 kg N ha-1 less than PP, SD-V4, and SD-V6 on average (Table 2.4). 

  

Group 3 – In-season Soil Nitrogen 

 

There was a significant three-way interaction for nitrate-N, but only the SD time 

by sampling stage interaction and main effect of depth was significant for ammonium-N 

and TIN (Table 2.6). Similar to Groups 1 and 2, PP fertilizer N rapidly nitrified by V4 
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with greater nitrate-N in the topsoil than subsoil, while treatments that received only 

starter had similar amounts of nitrate-N and ammonium-N at both increments (Fig. 2.3 

A). Dry conditions from V8 to R1 resulted in few differences of soil nitrate-N within 

treatments and between increments over time likely because the rate of nitrification of 

fertilizer and soil mineralized N was reduced resulting in ammonium-N accumulation in 

the topsoil from V8 to R1 (Fig. 2.3 B, C, D). During this same period, soil TIN (0- to 60-

cm) reduction was similar to N uptake for all treatments, except SD-V8 from V8 to V12 

and SD-V6, SD-V8, and SD-V12 from V12 to R1 where measured soil N fertility 

increased with later sampling time (Table 2.4, Fig. 2.3). The measured increase in N 

fertility over time may have been due to dry conditions slowing the rate of urea and 

ammonium-N dispersion from the prill into soil solution. By the post-harvest soil 

sampling, most of the soil ammonium-N had either nitrified or was taken up by the crop 

while SD-V6 and SD-V12 topsoil nitrate-N was 14.2 kg ha-1 greater than SD-PP and SD-

V4 on average. This can represent increased potential for N loss before the next growing 

season for later SD applications relative to early applications (Fig. 2.3 F). These results 

highlight the importance of soil moisture and receiving sufficient rainfall to incorporate 

surface broadcast SD N. Without adequate rainfall, fertilizer N remained at the soil 

surface and was largely unavailable to the crop roots. Crop uptake of soil water and N in 

the soil solution was reduced, clearly showing that yearly precipitation patterns 

significantly impact the effectiveness of SD applications for rain-fed corn on fine-

textured soils.  

 

2.5. CONCLUSIONS 
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There is great interest in improving synchrony of inorganic N to corn demand by 

split-applying fertilizer N. Our research shows that the efficacy of split-fertilizer 

applications for improved grain yield is strongly dependent on seasonal weather patterns 

and soil texture. Site-years with well-distributed rainfall or irrigation following fertilizer 

application and throughout the growing season improve grain yield of split-applications 

over PP. For irrigated coarse-textured soils, split-applications from V4 to V12 are likely 

to improve grain yield relative to PP because of greater corn N uptake and N partitioning 

to the grain. Split-applications also represent a significant reduction in N rate and 

improved FRE over PP that may represent cost savings and environmental protection 

from N losses. On fine-textured soils, growing season conditions have an important role 

in determining success with timing of N application. When adequate precipitation is 

available, early split-applications (V2 to V8 SD) are likely to produce the greatest grain 

yield, corn N uptake, FRE, and grain N, but delaying SD beyond V8 may reduce total 

aboveground corn N uptake and grain yield. When precipitation is not well-distributed or 

timely following SD applications, there is no improvement of grain yield or efficiencies 

over a single PP application. With dry summer conditions, SD fertilizer N will 

accumulate in the surface layer as ammonium-N. Given that soil testing labs primarily 

test for nitrate-N, under dry conditions it would be important that farmers test their soils 

for ammonium-N in addition to nitrate-N to avoid underestimating soil N availability.  
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Table 2.1 Day of the year (DOY), cumulative growing degree days (GDD), cumulative precipitation (C-P) since pre-plant soil 

sampling, and days until a 12 mm precipitation event occurred following fertilization at all 2014 site-years. 

 Becker14†  Clara City14‡   Lamberton14§ Theilman14‡  Waseca14a§ Waseca14b§ 

 DOY GDD¶ C-P DOY GDD C-P DOY GDD C-P DOY GDD C-P DOY GDD C-P DOY GDD C-P 

PP-S# 123 0 0 141 0 0 146 0 0 140 0 0 124 0 0 124 0 0 

Plant  132 0 151 148 0 2 147 0 0 140 0 0 129 0 15 141 0 64 

PP-N 139 32 177‡‡ 146 0 4‡‡ 146 0 0‡‡ 140 0 0§§ 125 0 4‡‡ 140 0 64§§ 

StartN 140 38 183‡‡ 152 45 50†† 147 0 0†† 146 36 4‡‡ 133 13 54¶¶ 141 0 64§§ 

V2 155 179 306†† 159 96 96‡‡ 165 163 148†† 155 135 25§§ 152 166 159‡‡ 158 108 181‡‡ 

V4 161 221 335†† 172 227 248¶¶ 176 293 187¶¶ 162 190 25†† 160 234 187‡‡ 175 284 383†† 

V6 172 326 424‡‡ 179 310 248§§ 181 349 188¶¶ 172 301 155‡‡ 172 357 383‡‡ 179 336 400¶¶ 

V8 180 408 452†† 189 416 249†† 194 487 199§§ 188 473 210†† 179 443 400¶¶ 186 403 408¶¶ 

V12 193 532 528†† 208 612 274§§ 207 629 217¶¶ 196 543 225¶¶ 197 611 419¶¶ 200 542 419¶¶ 

R1 202 625 579 215 680 274 214 699 217 214 747 239 210 756 431 215 707 439 

R6 259 1136 952 286 1207 501 280 1239 470 277 1273 487 271 1325 570 271 1218 570 

H 284 1242 969 294 1239 509 289 1267 475 287 1299 510 292 1378 604 292 1270 604 

PH-S 306 1296 973 309 1261 520 309 1323 479 298 1334 519 NA NA NA 459 1371 725 

† Denotes site-years included in Group 1 depending on soil texture and response of grain yield to time of N application. 

‡ Denotes site-years included in Group 2 depending on soil texture and response of grain yield to time of N application. 

§ Denotes site-years included in Group 3 depending on soil texture and response of grain yield to time of N application. 

¶ GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If Tmax >30 °C, then it was set 

to 30 °C and if Tmax or Tmin <10 °C, it was set to 10 °C. 

# PP-S, pre-plant soil sampling; PP-N, pre-plant N fertilizer application; StartN, starter fertilizer N application; V, vegetative development stage; H, Harvest; PH 

Soil, post-harvest soil sampling. 

†† Site-year received a 12 mm precipitation or irrigation event within 3 d following fertilizer application. 

‡‡ Site-year received a 12 mm precipitation or irrigation event within 7 d following fertilizer application. 

§§ Site-year received a 12 mm precipitation or irrigation event within 14 d following fertilizer application. 

¶¶ Site-year received a 12 mm precipitation or irrigation event greater than 14 d following fertilizer application.  
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Table 2.2 Day of the year (DOY), cumulative growing degree days (GDD), cumulative precipitation (C-P) since pre-plant soil 

sampling, and days until a 12 mm precipitation event occurred following fertilization at all 2015 field-sites.  

 

Becker15a† Becker15b† Clara City15‡  Lamberton15 ‡ Waseca15a‡  Waseca15b† 

 DOY GDD§ C-P DOY GDD C-P DOY GDD C-P DOY GDD C-P DOY GDD C-P DOY GDD C-P 

PP-S¶ 91 0 0 88 0 0 102 0 0 122 0 2 95 0 0 110 0 10 

Plant 115 0 45 115 0 45 123 0 19 139 0 71 118 0 61 123 0 30 

PP-N 109 0 37§§ 109 0 37§§ 105 0 0§§ 139 0 71‡‡ 116 0 61§§ 123 0 30‡‡ 

StartN 119 18 46†† 119 18 46†† 123 0 19# 145 66 88# 118 0 61§§ 123 0 30‡‡ 

V2 137 107 162†† 137 107 162†† 139 61 185‡‡ 157 181 172‡‡ 138 99 128†† 145 108 121# 

V4 150 183 207# 150 183 207# 158 209 233‡‡ 164 279 185†† 154 209 187# 159 233 200# 

V6 162 288 243†† 162 288 243†† 164 269 235†† 175 413 264†† 167 344 294# 167 310 254# 

V8 172 378 294# 172 378 294# 173 353 266‡‡ 188 563 302§§ 175 433 357# 174 386 318†† 

V12 195 614 492# 195 614 492# 194 584 336# 199 675 307†† 193 621 428†† 192 572 388†† 

R1 213 824 642 213 824 642 206 727 408 217 859 367 210 832 563 202 694 403 

R6 251 1202 830 251 1202 830 272 1366 544 266 1158 564 263 1371 861 263 1336 821 

H 284 1408 857 284 1408 857 277 1385 544 285 1205 565 283 1512 866 280 1457 826 

PH-S 290 1428 857 291 1428 857 298 1471 586 305 1206 606 293 1552 866 292 1514 826 

† Denotes site-years included in Group 1 depending on soil texture and response of grain yield to time of nitrogen application. 

‡ Denotes site-years included in Group 2 depending on soil texture and response of grain yield to time of nitrogen application. 

§ GDD calculated as daily max temperature (Tmax) plus daily min temperature (Tmin) all divided by 2 and all subtracted by 10. If Tmax >30 °C, then it was set 

to 30 °C and if Tmax or Tmin <10 °C, it was set to 10 °C. 

¶ PP-S, pre-plant soil sampling; PP-N, pre-plant N fertilizer application; StartN, starter fertilizer N application; V, vegetative development stage; H, Harvest; PH 

Soil, post-harvest soil sampling. 

# Site-year received a 12 mm precipitation or irrigation event within 3 d following fertilizer application. 

†† Site-year received a 12 mm precipitation or irrigation event within 7 d following fertilizer application. 

‡‡ Site-year received a 12 mm precipitation or irrigation event within 14 d following fertilizer application. 

§§ Site-year received a 12 mm precipitation or irrigation event greater than 14 d following fertilizer application.  
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Table 2.3. Average values of various dependent variables in response to time of fertilizer 

N application. Groups consist of the following site-years: Group 1 (Becker14, Becker15a, 

Becker15b, and Waseca15b); Group 2 (Clara City14, Clara City15, Lamberton15, 

Theilman14, and Waseca15a); and Group 3 (Lamberton14, Waseca14a, Waseca14b). 

Treatment† Grain Yield  AE‡  FRE§ Grain N 

 

Mg ha-1 ___________ kg kg-1 ___________ kg ha-1 

Group 1 

PP 4.7 (0.8)¶ c# 15.4 (2.5) c 0.23 (0.05) c 41.4 (9.7) d 

SD-V2 7.1 (0.9) b 33.0 (3.4) b 0.37 (0.07) bc 65.0 (9.7) c 

SD-V4 8.1 (0.8) ab 40.8 (2.6) ab 0.50 (0.05) b 72.7 (9.7) c 

SD-V6 8.6 (0.8) a 44.2 (2.5) a 0.46 (0.05) b 75.7 (9.7) bc 

SD-V8 8.8 (0.8) a 45.3 (2.5) a 0.50 (0.05) b 85.3 (9.7) b 

SD-V12 8.8 (0.8) a 45.8 (2.5) a 0.63 (0.05) a 99.2 (9.7) a 

P Value <0.001 <0.001 <0.001 <0.001 

Group 2 

PP 10.0 (0.8) b 21.3 (6.6) b 0.26 (0.09) a 98.9 (11.1) b 

SD-V2 11.2 (0.8) a 31.4 (6.6) a 0.43 (0.09) a 113.5 (11.1) a 

SD-V4 10.8 (0.8) ab 27.9 (6.6) ab 0.33 (0.09) a 115.5 (11.1) a 

SD-V6 11.2 (0.8) a 31.1 (6.6) ab 0.44 (0.09) a 116.8 (11.1) a 

SD-V8 11.5 (0.8) a 32.6 (6.6) a 0.46 (0.09) a 118.9 (11.1) a 

SD-V12 10.2 (0.8) b 23.2 (6.6) b 0.49 (0.09) a 122.1 (11.1) a 

P Value 0.017 0.019 0.059 0.030 

Group 3 

PP 7.5 (0.8) a 26.8 (3.7) a 0.49 (0.06) a 77.5 (11.2) a 

SD-V2 7.4 (0.8) a 25.7 (3.7) a 0.37 (0.06) a 78.1 (11.2) a 

SD-V4 7.5 (0.8) a 26.5 (3.7) a 0.48 (0.06) a 82.8 (11.2) a 

SD-V6 6.9 (0.8) a 21.9 (3.7) a 0.46 (0.06) a 78.5 (11.2) a 

SD-V8 6.5 (0.8) a 17.2 (3.7) a 0.29 (0.06) a 70.1 (11.2) a 

SD-V12 6.5 (0.8) a 17.9 (3.7) a 0.38 (0.06) a 75.8 (11.2) a 

P Value 0.088 0.112 0.273 0.542 

† PP, pre-plant urea; SD, sidedress; V, vegetative stage. 

‡ AE, agronomic efficiency calculated as the grain yield difference between the time of 

fertilization treatment and 0 N control divided by the applied nitrogen rate.  

§ FRE, fertilizer recovery efficiency calculated as the corn nitrogen uptake difference 

between the time of fertilization treatment and 0 N control divided by the applied 

nitrogen rate. 

¶ Standard error within parenthesis 

# Within Group and agronomic variable, means followed by the same letter are not 

significantly different at P = 0.05.  
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Table 2.4. Above ground corn N uptake as affected by time of fertilizer N application 

(Time) and corn development stage (Stage). Groups consist of the following site-years: 

Group 1 (Becker14, Becker15a, Becker15b, and Waseca15b); Group 2 (Clara City14, 

Clara City15, Lamberton15, Theilman14, and Waseca15a); and Group 3 (Lamberton14, 

Waseca14a, Waseca14b). 

 V4 V8 V12 R1 R6 

Group 1 

 
     __________________________ kg N ha-1 _________________________ 

PP† 1.7aC‡ 17.4abcC 42.9cB 45.2cB 86.7dA 

SD-V2 2.1aD 28.6abC 77.6abB 88.0aAB 106.2cA 

SD-V4 1.6aD 30.1aC 78.8aB 89.4aB 122.9bA 

SD-V6 1.8aD 16.2bcD 72.5abC 94.4aB 118.4bcA 

SD-V8 1.6aD 9.8cD 61.1bC 81.5aB 123.1bA 

SD-V12 1.8aD 11.2cCD 26.2dC 65.9bB 141.6aA 

Group 2 

 
     __________________________ kg N ha-1 _________________________ 

PP 4.7aD 47.4abC 84.7abB 105.9aB 139.8cA 

SD-V2 4.3aD 47.8aC 92.6aB 106.8aB 158.5abA 

SD-V4 3.8aD 46.1abC 89.2abB 108.8aB 154.4bA 

SD-V6 3.6aE 41.9abcD 86.5abC 111.1aB 164.0abA 

SD-V8 3.8aE 34.9bcD 78.9bC 104.9aB 167.3aA 

SD-V12 3.1aD 33.2cC 60.3cB 81.3bB 168.8aA 

Group 3 

 
     __________________________ kg N ha-1 _________________________ 

PP 7.4aD 40.2aC 74.5aB 89.3aB 135.7aA 

SD-V2 6.5aD 33.8abC 64.6abB 81.8abB 123.9abA 

SD-V4 5.6aE 31.5abD 69.0aC 92.3aB 139.1aA 

SD-V6 5.9aE 29.1abD 55.7bcC 85.9aB 132.1aA 

SD-V8 6.0aE 25.5bD 51.0cdC 71.0bcB 114.6bA 

SD-V12 5.5aC 22.8bC 41.8dBC 58.3cB 127.7abA 

 Test of fixed effects   

 Group 1 Group 2 Group 3   

Source of variation __________________ P > F __________________   

Time (T) <0.001 0.042 <0.001   

Stage (S) <0.001 <0.001 <0.001   

T × S <0.001 <0.001 0.008   

† PP, pre-plant urea; SD, sidedress; V, vegetative development stage. 

‡ Within Group, means within a row followed by the same upper-case letter are not 

different while means within a column followed by the same lower-case letter are not 

different at P = 0.05.



 

 76 

Table 2.5. Vegetative biomass as affected by time of fertilizer N application (Time) and 

corn development stages (Stage). Groups consist of the following site-years: Group 1 

(Becker14, Becker15a, Becker15b, and Waseca15b); Group 2 (Clara City14, Clara 

City15, Lamberton15, Theilman14, and Waseca15a); and Group 3 (Lamberton14, 

Waseca14a, Waseca14b). 

 V4 V8 V12 R1 R6 

Group 1 

 
           _________________________Mg ha-1_________________________ 

PP† 0.04aC 0.7aC 3.6bcB 5.5bcB 12.8dA 

SD-V2 0.05aD 0.9aD 4.8abC 8.2aB 15.6bcA 

SD-V4 0.05aD 0.9aD 5.4aC 9.2aB 17.7aA 

SD-V6 0.05aD 0.6aD 4.3bcC 8.4aB 16.8abA 

SD-V8 0.04aD 0.5aD 3.2cdC 6.6bB 15.7bcA 

SD-V12 0.05aD 0.6aCD 2.4dC 4.5cB 14.8cA 

Group 2 

 _________________________Mg ha-1_________________________ 

PP 0.1aE 1.8aD 5.0abC 9.1abB 18.6cA 

SD-V2 0.1aE 1.8aD 5.4aC 9.5aB 19.8abA 

SD-V4 0.1aD 1.7aD 5.2aC 9.0abB 19.0abcA 

SD-V6 0.1aD 1.5aD 4.8abC 8.7abB 19.8abA 

SD-V8 0.1aD 1.6aD 4.4abC 8.2bB 19.9aA 

SD-V12 0.1aD 1.5aD 4.1bC 7.1cB 18.8bcA 

Group 3 

 _________________________Mg ha-1_________________________ 

PP 0.2aD 1.6aD 4.4aC 6.9aB 17.2aA 

SD-V2 0.2aD 1.5aD 4.1aC 6.8aB 15.6bA 

SD-V4 0.2aD 1.3aD 4.0abC 6.9aB 17.0aA 

SD-V6 0.2aD 1.3aD 3.4bcC 6.3abB 16.0bA 

SD-V8 0.2aD 1.2aD 3.3cC 5.9bB 14.5cA 

SD-V12 0.2aD 1.1aD 3.1cC 5.7bB 14.5cA 

 Test of fixed effects   

 Group 1 Group 2 Group 3   

Source of variation __________________ P > F __________________   

Stage (S) <0.001 0.104 <0.001   

Time (T) <0.001 <0.001 <0.001   

S × T <0.001 0.015 <0.001   

† SD, sidedress; V, vegetative stage; PP, pre-plant urea. 

‡ Within Group, means within a row followed by the same upper-case letter are not 

different while means within a column followed by the same lower-case letter are not 

different at P = 0.05. 
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Table 2.6. Test of fixed effects for soil NO3-N, NH4-N, and total inorganic N for Groups 1, 2, and 3. Groups consist of the following 

site-years: Group 1 (Becker14, Becker15a, Becker15b, and Waseca15b); Group 2 (Clara City14, Clara City15, Lamberton15, 

Theilman14, and Waseca15a); and Group 3 (Lamberton14, Waseca14a, Waseca14b). 

 ________ Group 1 ________ ________ Group 2 ________ ________ Group 3 ________ 

 ___________________________________________ P > F ____________________________________________ 

Source of variation NO3-N NH4-N TIN NO3-N NH4-N TIN NO3-N NH4-N TIN 

Stage (S) 0.108 0.082 0.068 0.476 0.141 0.069 0.042 0.120 0.028 

Time (T) <0.001 0.066 <0.001 <0.001 0.381 <0.001 0.013 0.006 0.011 

Depth (D) 0.003 0.032 0.009 0.001 0.045 0.001 0.002 <0.001 <0.001 

S × T <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.015 0.001 

S × D 0.156 0.264 0.118 0.204 0.375 0.028 0.043 0.389 0.347 

T × D 0.003 0.153 0.029 0.264 0.202 0.183 0.247 0.269 0.732 

S × T × D <0.001 0.001 <0.001 <0.001 0.365 <0.001 0.001 0.164 0.093 
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Fig. 2.1. Group 1 soil NO3-N and NH4-N at the 0- to 30- and 30- to 60-cm increments for time of fertilizer application treatments at 

each sampling stage (panels A-E). Total inorganic N values (0- to 60-cm) are also presented where treatments with the same lower-

case letters within a panel are not significantly different (P = 0.05), while uppercase letters for the same treatment between panels are 

not significantly different. Treatments to the right of the dashed vertical dashed line had only received the starter fertilizer by time of 

sampling. Panel F presents soil NO3-N and NH4-N at the 0- to 30- and 0- to 60-cm increments over time for the unfertilized check 

plot. Values for total inorganic N (0- to 60-cm) with the same uppercase letters are not significantly different (P = 0.05). 
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Fig. 2.2. Group 2 soil NO3-N and NH4-N at the 0- to 30- and 30- to 60-cm increments for time of fertilizer application treatments at 

each sampling stage (panels A-E). Total inorganic N values (0- to 60-cm) are also presented where treatments with the same lower-

case letters within a panel are not significantly different (P = 0.05), while uppercase letters for the same treatment between panels are 

not significantly different. Treatments to the right of the dashed vertical dashed line had only received the starter fertilizer by time of 

sampling. Panel F presents soil NO3-N and NH4-N at the 0- to 30- and 0- to 60-cm increments over time for the unfertilized check 

plot. Values for total inorganic N (0- to 60-cm) with the same uppercase letters are not significantly different (P = 0.05). 
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Fig. 2.3. Group 3 soil NO3-N and NH4-N at the 0- to 30- and 30- to 60-cm increments for time of fertilizer application treatments at 

each sampling stage (panels A-E). Total inorganic N values (0- to 60-cm) are also presented where treatments with the same lower-

case letters within a panel are not significantly different (P = 0.05), while uppercase letters for the same treatment between panels are 

not significantly different. Treatments to the right of the dashed vertical dashed line had only received the starter fertilizer by time of 

sampling. Panel F presents soil NO3-N and NH4-N at the 0- to 30- and 0- to 60-cm increments over time for the unfertilized check 

plot. Values for total inorganic N (0- to 60-cm) with the same uppercase letters are not significantly different (P = 0.05). 
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CHAPTER 3: CONCLUSION 

 

Selecting the best N fertilizer management practice is a significant challenge 

because soil texture and weather conditions strongly influence N availability to the crop. 

These studies were designed to improve our understanding of how N fertilizer rate, 

source, and time of application affect corn grain yield and soil N availability and how the 

effects change with different soil textures and weather patterns. These studies also 

allowed us to examine the utility of in-season soil testing for grain yield prediction and 

in-season fertilizer recommendations.  

 Regardless of soil texture, urea fertilizer was rapidly nitrified at all times 

throughout the growing season when soil conditions were moist. This is important 

because nitrate-N is susceptible to leaching and denitrification that can reduce N 

availability to corn. Dry soil conditions reduced nitrification and allowed for ammonium-

N build up in the surface layer of the soil. Under these conditions, soil fertility analyses 

should test for both nitrate-N and ammonium-N to avoid underestimating N availability.  

 Soil texture had a significant role in determining N availability to the growing 

corn crop and influencing N retention in the top 60 cm of the soil profile. The coarse-

textured soils we examined have low soil organic matter and low water holding capacity 

relative to the fine-textured soils. For pre-plant urea applications, soil N availability 

declined more rapidly on coarse-textured soils than for fine-textured soils limiting corn N 

uptake and grain yield. This illustrates the importance of not applying full N rates of pre-

plant urea on coarse-textured soils. Split-applications or fertilizer sources that inhibit 
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nitrification (AA and AAI) or slowly release urea to the soil (PCU or PCU-U blends) 

improve synchrony of N availability to the growing crop for greater yield and NUE.  

Fine-textured soils had greater soil N levels throughout the growing season and 

greater yield in the non-fertilized checks than coarse-textured soils. This is likely due to 

greater mineralization of soil organic matter and slower downward movement of water 

through the soil profile. Weather patterns strongly influenced the response of N 

availability and yield to our N management practices on fine-textured soils. When spring 

conditions are wetter than normal, PCU-U blends provide a balance of immediately 

accessible N and later-season N that reduce potential for N losses and improved grain 

yield. However, under normal conditions with low N loss potential, there is not likely to 

be differences between pre-plant urea and other N sources. Likewise, under normal 

conditions, split-fertilizer applications can be done anytime from V2 to V8 with similar 

yield and NUE as pre-plant. However, droughty conditions, especially later in the season 

(V12) can reduce the efficacy of split-applications and can compound water and N stress 

for reduced yield.  

The MALCC successfully correlated relative yield with STV to estimate a CSTV 

range for nitrate-N, ammonium-N, and TIN. When fertilizer is pre-plant applied, the 

MALCC produced similar CSTVs as commonly reported for the pre-sidedress nitrate 

test. Like the pre-sidedress nitrate test, the MALCC had limited utility for coarse-textured 

soils or sites that were not responsive to N. Twelve site-years is a limited data set to 

validate the MALCC model. Additional site-years should be included to strengthen our 

confidence in the methodology and in the MALCC’s ability to estimate the CSTV and 

provide an in-season fertilizer recommendation. Future work should combine additional 
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data sets from the Midwest considering crop rotation, soil texture, seasonal weather 

patterns, N source, and field management practices to estimate regional CSTVs. These 

CSTVs and in-season fertilizer recommendations should then be verified using field 

studies that may be concurrently used to test the ability of remote sensing algorithms to 

estimate in-season fertilizer recommendations.  

One of the strengths of this study is that the same methodology was maintained 

across all 12 site-years of differing soils and weather patterns. While the literature reports 

improvement, no change, or reduction of yield and NUE for the same N management 

practice, we were able to clearly document which conditions produced these variable 

responses. However, because we used the same methodology for all site-years, coarse-

textured soils received full rates of pre-plant urea that is not a best management practice.  

One shortcoming of this study is that we did not quantify soil N additions from 

mineralization or losses due to immobilization, volatilization, leaching, or denitrification. 

We could only generalize the fate of fertilizer N. In a future study, lysimeters could be 

used to quantify nitrate-N leaching losses below the root zone. In-situ ammonia 

volatilization acid traps deployed during the two weeks following fertilizer application 

can quantify volatilization losses. Volatilization traps would be especially effective for 

side-dressed applications on rain-fed systems. Further, partitioning the 0- to 30-cm layer 

into two layers (0- to 15-cm and 15- to 30-cm) may provide greater resolution of N 

transformations and dispersion, especially as the majority of the applications were 

applied to the soil surface or incorporated within the top 5-cm of the soil. 

Although we did not quantify N lost from the soil system, this study housed a 

smaller 15N tracer microplot study that is not part of this thesis. The 15N tracer study will 
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be used to track enriched fertilizer N as it transforms from ammonium-N to nitrate-N, 

moves through the soil profile, and is taken up by the crop over two growing seasons. 

This study will improve our understanding of the fate of fertilizer N and help us quantify 

how much of the N taken up by corn is derived from the fertilizer or soil N pool.  
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