Protein Kinase C Epsilon (PKCε) involvement in Nicotine Addiction

Julia E. Myjak, Jamie J. Maertens, Janna K. Moen, Jillienne C. Tuchette, and Anna M. Lee
Department of Pharmacology, University of Minnesota- Twin Cities

Background

- Alcohol and nicotine addition are often co-morbid
- The current annual costs associated with nicotine addiction is 300 billion
- Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in the mechanisms of drug action and are found throughout the central nervous system (CNS)
- The brain reward system is comprised of dopaminergic neurons that are found in the ventral tegmental area (VTA) that release dopamine in the nucleus accumbens (Nac)
- Nicotine can interact with nAChRs and the brain reward system to produce rewarding, and addictive, effects
- Protein kinase C (PKC) are a family of enzymes that are believed to modulate drug addiction
- PKCε is involved in many CNS signaling pathways and is known to act upon nAChRs
- Previous studies have shown male mice with the deletion of the PKCε gene have reduced nicotine consumption. Therefore, PKCε may be a good drug target to reduce nicotine consumption in males.
- The role of PKCε in nicotine addiction in female mice has not been previously investigated
- Our work suggests a sex by genotype difference exists in the contribution of PKCε in nicotine consumption

Acknowledgements

- Thank you to the Undergraduate Research Opportunities Program for support and Funding on this project
- Special thank you to all the current and former members of the Lee Laboratory for the help and support on this project

Methods

Continuous Access 2-Bottle Choice: Female PKCε wild-type (n= 35) and knockout mice (n= 30) were presented with a water bottle containing 2% Saccharine, and a nicotine bottle containing a solution of 2% Saccharine and 15µg/mL nicotine. The bottles were presented to the mice for four weeks. There were no changes in nicotine concentration presented over the four weeks of measurements.

Statistical Analysis: Average daily nicotine (mg/kg/day) was calculated based on the differences in weights of the bottles and weights of each mouse. Nicotine preference was also determined. The consumption data was compared using 2-way repeated ANOVA with multiple comparisons.

Summary and Conclusions

- Female PKCε knock-out mice consumed more nicotine compared with wild-type mice in the first week.
- Thereafter, female PKCε knock-out mice had similar nicotine consumption compared with wild-type mice.
- Our results indicate that a sex by genotype difference exists in the contribution of PKCε to nicotine consumption.
- These results contribute may play a role in future development of treatment options for nicotine addiction.

References