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Abstract 

The sequencing of the human genome suggests that transcription factors (TFs) 

make up one of the largest classes of human proteins, revealing that there are over 2000 

genes that code for transcription factors. The pivotal roles of TFs in cell biology become 

quite apparent when one or more of these regulatory mechanisms becomes mutated or 

altered. For example, the androgen receptor (AR) transcription factor plays a pivotal role 

in prostate carcinogenesis and progression. Additionally, the inflammatory response of 

the NF-κB transcription factor proteins results in the transcription of many genes, which 

play pivotal roles in carcinogenesis. There are several approaches to modulate and study 

transcription factor activity and biochemistry. Utilizing cis element DNA decoys to 

sequester TFs is one approach to directly modulate transcription factors. Introducing 

these synthetic double-stranded DNA decoys containing TF binding sites into cells 

effectively sequesters TFs and inhibits their target gene expression. Over the past couple 

of decades, numerous reports have validated utilizing this approach. For example, a 

phosphorthioate STAT3 DNA decoy has entered the “first-in-human” Phase 0 clinical 

trials for the treatment of head and neck squamous cancer. STAT3 expression and cell 

viability was reduced in the head and neck cancers injected with the decoy compared to 

the saline control. Combining the spatial and temporal resolution of caging technology 

with the DNA decoy strategy for the inhibition of transcription factor activity can yield 

an approach for the very precise ability to photochemically regulate gene expression, 

which has potential as a therapeutic agent and tool for probing biological pathways. 
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This thesis will focus on efforts to develop several novel DNA-based and small 

molecule-based probes to investigate the biochemistry of TFs and their signaling 

pathways. Chapter 2 discusses the synthesis and characterization of caged DNA decoys 

that target the Androgen Receptor (AR). Caged DNA decoys successfully captured AR in 

LNCaP lysate when irradiated with light. Chapter 3 introduces the complement to caging 

technology, which is catch and release DNA decoys (CRDDs). CRDDs capture 

transcription factors, by binding and sequestering them, and then a pulse of light 

photochemically destroys the CRDD, permitting release of the TF. Several 7-nitroindole 

(7-NI, 1.47) nucleobase mimics were incorporated into NF-κB-directed DNA decoys, 

which still allowed the capture of the p50-p65 NF-κB proteins. Irradiation with 350 nm 

light drives the release of the p50-p65 NF-κB. The capture and photochemical release of 

an endogenous transcription factor is demonstrated for the first time. Chapter 4 continues 

the work of Chapter 3 by developing second-generation nucleobase mimics for use in 

CRDDs. Addition of molecular recognition properties on a photo-responsive monomer is 

hypothesized to increase binding affinity to capture endogenous TFs. 8-Nitroguanosine 

contains this added molecular recognition, is more stable within duplex DNA, and also 

displayed similar photochemical depurination properties. Chapter 5 outlines work 

developing photoswitchable nucleobases that transpose their hybridization properties 

upon photolysis. Chapter 6 highlights work to determine the mechanistic NF-κB 

inhibitory properties of several Cryptocaryone analogues, which were found to inhibit the 

NF-κB translocation to the nucleus. Appendix A focuses on the characterization of the 
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enantioselectivity of guanosine monophosphate synthetase (GMPS), a crucial enzyme in 

nucleotide biosynthesis.  
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Chapter 1 

 

 

APPROACHES FOR MODULATING TRANSCRIPTION FACTORS 

CULMINATING IN PHOTOCHEMICAL SPATIOTEMPORAL CONTROL OF 

NF-κB WITH CAGED DNA DECOYS 

 

 

 

The figures of Section 1.6 are reprinted (adapted) with permission from Govan, J. M.; 
Lively, M. O.; Deiters, A. Photochemical Control of DNA Decoy Enables Precise 
Regulation of Nuclear Factor κB activity. J Am Chem Soc 2011, 133, 13176-82. 

Copyright 2011 American Chemical Society. 
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1.1.1 Transcription Factor DNA Binding Domains 

 

The sequencing of the human genome suggests that transcription factors make up 

one of the largest classes of human proteins, revealing that there are over 2000 genes that 

code for transcription factors.1 Transcription factors have several distinct families of 

three-dimensional structural motifs that recognize and bind DNA, which can be divided 

into four superclasses (Figure 1.1).2,3 Superclass 1 DNA binding domains contain three 

basic, but distinct motifs, centralizing around a pair of dimerized α-helices forming 

sequence-specific interactions with the major groove of DNA. One major class of these is 

the basic leucine zipper (bZIP) motifs characteristic in TFs such as Activator Protein 1 

and cAMP Response Element-binding Protein (CREB, PDB: 1DH3, 1.1).4 Another is the 

basic helix-loop-helix (bHLH) motif characteristic in TFs such as MyoD, aryl 

hydrocarbon receptor nuclear translocator (ARNT), and hypoxia-inducible factor 1α 

(HIF1α, PBD: 4ZPR, 1.2).5 The last major motif in superclass 1 is the helix-loop-helix-

leucine zipper (bHLH-ZIP) including the EF2, Mad, and c-Myc-Max TFs (PDB: 1NKP, 

1.3).6 Superclass 2 comprises of zinc-coordinating DNA binding domains that are often 

folded into compact structures known as zinc fingers. Zinc fingers are made up of 

different α-helices and β-sheets whereby zinc is required to stabilize the protein folds 

creating a finger-like structure that interacts with the major groove of DNA. Nuclear 

receptors (estrogen receptor, androgen receptor PDB: 1R4I, 1.4, etc.)7 are a major class of 

transcription factors that bind DNA via zinc fingers. Superclass 3 motifs are series of β-

sheets that are able to interact with the major groove of DNA. This superclass is made up  
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of 11 classes of TFs including Nuclear Factors of Activated T cells (NF-ATs), Signal 

Transducer and Activator of Transcription 3  (STAT-3), and Nuclear Factor-κ of 

Activated B cells (NF-κB). The NF-κB protein largely exists as a p50-p65 heterodimer 

(PDB: 1VKX, 1.5).8 Superclass 4 motifs consist of helix-turn-helix folds, where the 

majority of the recognition and binding to DNA is accomplished by the second α-helix, 

known as the recognition helix.9 Nearly 800 homeodomain-containing sequences have 

been identified including 116 that are implicated in disease.10 For example, many 

mutations in pancreatic and duodenal homeobox 1 (PDX1, PBD: 2H1K, 1.6)11 have been 

linked to type II diabetes.12  

 Each superclass often has a conserved primary sequence conferring similar 

DNA binding sites to which each protein binds. Amino acid differences in the sequence 

give rise to specificity among each family.13 In some instances, a single amino acid 

change can dictate specificity. For example, substitution of residue 9 on the recognition 

α-helix in the Bicoid Activator Protein no longer activated Bicoid targets, suggesting that 

residue 9 is crucial for the specific binding of Bicoid Activator Protein to DNA.14 These 

residues can act either directly on the DNA or by influencing the interactions of other 

residues with DNA. Specific DNA recognition can be achieved through these multiple 

mechanisms. 
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1.1.2 Transcription Factor Trans-activator Domains 

 

  The domains of TFs involved protein-protein interactions with 

transcriptional machinery, identified as trans-activator domains, stimulate transcription 

after binding to a specific sequence of DNA. These activation domains function by 

interacting with RNA polymerase II (Pol II), various other basal transcription factors 

such as TFIIB and TFIID, and other proteins essential for transcription by recruiting them 

to the promoter for activation of gene expression (Figure 1.2).  This recruitment drives 

the rate of transcription; thereby increasing the overall transcriptional activity after DNA 

binding in a very controlled manner, which ultimately determines the spatial and 

temporal expression of genes for development, homeostasis, and response to external 

stimuli.3,15,16 Activation domains can either interact directly with these proteins or 

indirectly with co-activator proteins, which then interact with the transcriptional 

machinery. For example, the Elk1 transcription factor binds to a Sur2 subunit of a co-

factor called meditator, which is then able to recruit Pol II and basal transcription factors 

 
Figure 1.2. Recruitment of transcriptional machinery to activate gene expression. Gene-specific TFs can 
recruit basal TFs (such as TFIIB and TFIID) and RNA polymerase II (Pol II) either directly or indirectly 
with co-activator proteins.  
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TFIIB, TFIIE, TFIIF, and TFIIH to Gal4 DNA binding sites, resulting in activation of 

transcription in murine embryonic stem cells.17  

 

1.1.3 Endogenous Modulation of Transcription Factors 

 

 Endogenous modulation of TFs and their gene expression is a main 

component that dictates which genes are being transcribed in every cellular context and 

 
Figure 1.3. Signal induced activation of transcription factors. (a) Nuclear hormone receptor binding the 
hormone ligand induces dissociation of inhibitor and allows the TF to bind DNA to activate gene 
expression. (b) TFs bound to an inhibitory protein are rendered inactive until either the TF or the 
inhibitory protein are signaled to be degraded or conformationally changed, releasing the TF to activate 
gene expression. (c) Post-translational modifications to the TF induce conformational change allowing 
the TF to bind DNA.  
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in response to diverse stimuli.18  Endogenous regulation of TFs can occur through the 

control of transcription and synthesis of the TF, epigenetic control through chromatin 

remodeling, and through multiple mechanisms of post-translational activation including 

phosphorylation, other co-activators, and even other TFs. In many cases, the TF is 

regulated by synthesis depending on the cell or tissue type. For example, the MyoD 

transcription factor is only synthesized in skeletal muscle cells. When MyoD was 

overexpressed in undifferentiated fibroblast cells, the cells differentiated into skeletal 

muscle cells showing MyoD’s role in the induction of skeletal muscle specific gene 

expression.19,20 Additionally, histone and chromatin modulation is a way to administer 

transcriptional control, which includes histone acetyltransferases and histone 

deacetylases.21  

 A considerable extent of TF modulation occurs through signal-induced 

activation for a rapid and amplified response to a stimulus. This occurs through several 

different mechanisms including ligand binding, degradation or changes of the inhibitory 

proteins, post-translational modifications including phosphorylation of the transcription 

factor and dimerizations with other TFs, or combinations of the three (Figure 1.3).  

 

1.1.4 Ligand Modulation of Transcription Factors and the Androgen Receptor 

 

 Nuclear hormone receptors (androgen, glucocorticoid, retinoid, and 

prostaglandin receptors) are a superfamily of transcription factors that are modulated by 

small lipophilic hormones. As their name implies, the hormone receptors reside in the 
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nucleus and heat shock proteins bind many members of this class, rendering them 

inactive state. Binding of the hormone ligand results in a conformational change in the 

receptor, causing dissociation of heat shock protein in many cases, allowing the 

transcription factor to bind DNA as a homodimer, thus activating gene expression 

(Figure 1.3a).22,23 

 The androgen receptor (AR) transcription factor plays a pivotal role in the 

development and function of the prostate. Prostate carcinogenesis and progression is 

distinctively contingent on AR signaling (Figure 1.4).24 Androgens including 

testosterone are synthesized in the body and distributed through the blood stream (Figure 

 
Figure 1.4. Androgen receptor signaling pathway. (a) Androgens including testosterone are synthesized 
in the body and distributed through the blood stream. (b) Androgens diffuse into androgen responsive 
cells. (c) Heat shock protein (HSP) inhibits AR activation. Upon binding testosterone or other androgens, 
HSP dissociates from AR. (d) Free AR is allowed to translocate to the nucleus and bind the ARE 
sequence as a homodimer to activate gene expression.   
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1.4a). Androgens diffuse into androgen responsive cells (Figure 1.4b). Heat shock 

protein (HSP) inhibits AR activation. Upon binding testosterone or other androgens, HSP 

dissociates from AR (Figure 1.4c). Free AR is allowed to translocate to the nucleus and 

bind the Androgen Response Element (ARE) sequence as a homodimer to activate gene 

expression (Figure 1.4d).  

 

1.1.5 Inhibitory Proteins and Post-translational Modulation of TFs and NF-κB 

  

 Another level of control that is imposed endogenously on several 

transcription factors (NF-κB, HIF-1, E2F, MDM4) is their binding to an inhibitory 

protein either in the cytosol or in the nucleus. These transcription factors are in an 

inactive state until conformational change in the transcription factor itself, degradation of 

the inhibitory protein, or conformation change of the inhibitory protein, often due to 

phosphorylation, disrupts the protein-protein interactions of the transcription factor and 

inhibitor protein, thus freeing the transcription factor to translocate into the nucleus or 

dimerize, if needed, bind DNA, and activate gene expression (Figure 1.3b).25  

 The other major regulatory pathway of transcription factors is post-

translational modifications. This can be seen with the Signal Transducer and Activator of 

Transcription 3 (STAT3) transcription factors. Upon exposure to interleukin-6, STAT3 is 

phosphorylated on a tyrosine residue by the JAK family of kinases. This allows the 

STAT3 transcription factor to dimerize, translocate into the nucleus, bind to DNA, and 

activate gene expression (Figure 1.3c).26 
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A combination of both inhibitory proteins and post-translational modifications 

modulate NF-κB activity. Since their discovery by Sen and Baltimore in 1986,27 the NF-

κB family of transcription factors have been linked to myriad cellular processes such as 

proliferation, differentiation, and immune responses to pathogens.25,28,29 In the canonical 

pathway of NF-κB signaling (Figure 1.5), a p50-p65 NF-κB heterodimer is sequestered 

in the cytoplasm by the protein IκBα. Following extracellular stress signals or pathogens, 

the activated IKKα/IKKβ/NEMO complex (IKK) phosphorylates IκBα, which induces 

 

 
Figure 1.5. The canonical NF-κB pathway. Small molecule stimuli such as TNF bind to their receptor, 
which leads to the activation of the IKK complex. (a) The IKK complex phosphorylates IκBα, which 
then gets polyubiquitinated and sent to the 26S proteasome for degradation. p65 is further activated by 
phosphorylation. (b-c) The freed NF-κB heterodimer translocates to the nucleus to activate gene 
expression.  
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ubiquitination and subsequent degradation of IκBα by the 26S proteasome.25,30,31 Protein 

Kinase A then phosphorylates the p65 subunit, which additionally activates NF-κB by 

promoting transcriptional co-activators (Figure 1.5a). An exposed nuclear localization 

sequence on p65 resulted from IκBα degradation, which alters the cellular p50-p65 

equilibrium from exclusively cytosolic to nuclear (Figure 1.5b).32 In the nucleus the p50-

p65 heterodimer can activate the expression of genes with NF-κB binding sites in their 

promoters, including genes coding for inflammatory response such as adhesion 

molecules, chemokines, MMP, and cytokines (Figure 1.5c).25,30,31,33-35  

  

1.1.6 Oncogenic Gene Expression and Transcription Factors 

 

 The pivotal roles of TFs in cell biology become quite apparent when one or 

more of these regulatory mechanisms becomes mutated or altered.36 The aberrant change 

in gene expression patterns result in the emergence of clinical manifestations including 

developmental disorders, immune disorders, metabolic disorders, as well as 

carcinogenesis.3,37 Oncogenetics, the study of understanding the genes associated with the 

susceptibility of malignancies, has uncovered that about one-third of the identified 

cellular oncogenes code for DNA-binding proteins that act as gene-specific TFs.38-41  

 For example, AR was found to promote site-specific double stranded DNA 

breaks, which induces nonrandom translocations driving prostate carcinogenesis in some 

cases.42,43 Prostate cancer has become one of largest causes of cancer-related mortality of 

men in the western world, with nearly 220,000 new cases estimated annually.44 Many 
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patients progress to a castration-resistant (CRPC) stage where current primary therapies 

are inadequate, due to mutations, often in the ligand-binding domain of AR, leading to 

constitutive hyperactivation.45  Inhibition of AR in CRPC, preventing its function to 

activate cancer-related genes, results in cellular arrest and subsequent death.46   

 Additionally, the NF-κB proteins are referred to as “the master regulators at 

the center of inflammation” and their inflammatory response results in the transcription 

of many genes, which play pivotal roles in carcinogenesis.30 NF-κB has been found to 

control genes for tumor proliferation, angiogenesis, invasion, metastasis, 

chemoresistance, and radiorestance.47  NF-κB is constitutively active in most tumor cells 

and its inhibition results in stopping of cancer growth leading to tumor reduction.48  

 

1.2.1 Indirect Transcription Factor Modulators  

 

 There are several approaches to modulate and study transcription factor 

activity and biochemistry. Transcription factors can be targeted either indirectly or 

directly. Several methods have been developed to inhibit TFs indirectly (Figure 1.6). 

Induction of signaling pathways that affect TF activity can be modulated by inhibiting the 

extracellular signaling molecules or their cell surface protein receptors, thereby, 

controlling downstream cellular gene expression (Figure 1.6a). Since transcription 

factors are focal points for intracellular signaling, one common method of modulation is 

to inhibit an upstream target in the signaling pathway, thus indirectly impeding TF  
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activity (Figure 1.6b). Additionally, activation of several signaling pathways result in 

post-translational modification to the TF, allowing TF translocation from the cytosol to 

the nucleus via nuclear location signals, thus resulting in activation of gene expression. 

Inhibiting this translocation to the nucleus is another method to reduce transcription 

 

 
 
Figure 1.6.  Indirect transcription factor modulators. (a) Modulation of extracellular signaling 
molecules or surface receptors. (b) Inhibition of upstream targets including kinases. (c) Inhibition of 
nuclear translocation. (d) Inhibition of epigenetic targets including HATs and HDACs. 
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factor activity (Figure 1.6c).49 Lastly, targeting epigenetic regulation, such as controlling 

histone modifications, has been shown to inhibit the activity of several transcription 

factors indirectly (Figure 1.6d).50  

 

1.2.2 Modulation of TFs Through the Inhibition of the Surface Receptor or 

Extracellular Signaling Molecules 

 

 Many cell surface receptors can be inhibited or down regulated to prevent the 

activation of downstream signaling pathways that eventually activate gene-specific TFs 

(Figure 1.6a). A small molecule screen for TNF-α inhibitors uncovered the molecule 

conophylline 1.7, which prevented NF-κB activation, including its phosphorylation and 

the degradation of IκBα by significantly reducing the expression of TNF-α surface 

receptors (Figure 1.7).51 Another way this can be accomplished is by interfering with the 

ability of the extracellular signaling molecules to bind and activate the receptor. Several 

anti-TNF-α antibodies including infliximab (REMICADE) and etanercept (Enbrel) have 

made it into clinical trials and are FDA approved for the treatments of rheumatoid 
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Figure 1.7. Structure of conophylline. 
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arthritis and psoriasis by inhibiting the NF-κB inflammatory response.52 

 

1.2.3 Modulation of TFs Through the Inhibition of Upstream Signaling Targets 

  

Kinases and other upstream signaling proteins are frequently targeted for 

therapeutic modulation of TF activity and have been very successful in clinical 

applications to treat aberrantly active oncogenic gene expression (Figure 1.6b). One of 

the more famous examples is the small molecule imatinib 1.8, which is marketed by 

Novartis as Gleevec (Figure 1.8). Imatinib targets the tyrosine-kinase BCR-Abl, which is 

aberrantly activated in multiple cancers including Philadelphia chromosome-positive and 

chronic myelogenous leukemia (CML).53 Hyperactivation of this upstream kinase results 

in the activation of several downstream TFs including NF-κB, STAT3, and 

CCAAT/enhancer-binding protein–α (C/EBPα).54-56 This Inhibition of BCR-Abl results 

in tumor suppression, leading to a five-year survival rate of 80% of chronic myeloid 

leukemia (CML) patients. 57 
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Figure 1.8. Structure of imatinib. 
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1.2.4 Modulation of TFs Through the Inhibition of Nuclear Translocation 

 

Controlling the sub-cellular localization of TFs is a strategy for specific signaling 

pathway inhibition (Figure 1.6c).49 For example, sequestration of the NF-κB proteins in 

the cytosol prevents activation of NF-κB-directed gene expression. This can be 

accomplished through the inhibition of nuclear import proteins with peptide mimics of 

nuclear location sequences (NLSs). NLSs are short peptides on proteins that mediate the 

nuclear import of proteins by binding to their receptors on the nuclear envelope. The NF-

κB NLS peptide SN50 (1.9) competitively inhibited NF-κB activation at a concentration 

of 100 µg/mL in mice, which significantly reduced the nuclear induction of NF-κB, 

demonstrating that the sequestration of NF-κB in the cytosol is a valid strategy for TF 

modulation. (Figure 1.9).58  

 

1.2.5 Modulation of TFs Through the Inhibition of Epigenetic Targets 

 

Targeting epigenetic regulation is a strategy to inhibit the activity of several 

transcription factors indirectly (Figure 1.6d). One example is the small molecule I-

1.9
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Figure 1.9. Structure of SN50.  
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BET151 1.10, a bromodomain inhibitor, which prevents the recognition of epigenetic 

modifications, and resulted in irreversibly suppressing development of type-1 diabetes in 

NOD mice (Figure 1.10). The inhibition of the BET subfamily of bromodomains with I-

BET151 suppressed NF-κB-directed pro-inflammatory gene expression by inhibiting 

TNF-α induced pathway activation.59  

 

1.3.1 Direct Transcription Factor Modulators  

 

 Transcription factor activity can be modulated by indirect methods; however, 

they are largely non-specific. Cellular signaling cascades are complex and often involve 

cross talk between pathways. The result of indirect inhibition, then, affects several 

transcription factors.60 Since many transcription factors are both oncogenic themselves 

and are the focal points for aberrant gene expression that confers many of the hallmarks 

of cancer progression, the selective inhibition of TFs serve as the most direct targets for 

therapeutic development.38,61,62 In this way, even several upstream oncogene mutations 

would be neutralized with the right transcription factor inhibitor. There are numerous 
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Figure 1.10. Structure of I-BET151.  
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examples demonstrating that inhibition of TFs preferentially causes cancer cell death 

versus normal cells because of the redundancies in normal signaling pathways, thus 

making them excellent therapeutic targets.63  

 Approaches to modulating TFs directly include the use of small molecules 

and peptides that block protein-protein interactions preventing dimerization of crucial 

TFs, translocation to the nucleus, or binding to the DNA (Figure 1.11b).64 There are also 

modulators targeting specific sequences of DNA to block TF binding (Figure 1.11c), 

methods involved in mRNA regulation (Figure 1.11d), and cis element DNA decoys to 

sequester TFs preventing gene activation (Figure 1.11e).  

 

 
Figure 1.11.  Direct transcription factor modulators. (a) Normal TF function. (b) Inhibition of key 
interactions including dimerization and DNA binding by small molecules or peptides. (c) Small molecule 
DNA binders blocking TF attachment. (d) mRNA degradation preventing TF synthesis. (e) Cis element 
DNA decoy sequestering TFs from activating gene expression. 
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1.3.2 Small Molecule Transcription Factor Modulators  

 

 Historically, small molecules have been widely used to directly inhibit 

therapeutic targets including receptors and kinases that contain binding pockets (Figure 

1.11b). Since nuclear hormone receptor transcription factors contain a ligand-binding 

domain, small molecule modulators have been used clinically as agonists, antagonists, 

and inverse agonists. The estrogen receptor (ER), which is the determining TF driving 

75% of breast cancers, can be inhibited with clinical efficacy.65 Tamoxifen (1.11), an ER 

antagonist, was introduced into the clinic in the 1980s to treat ER positive breast cancer 

patients and is one of the most successful targeted therapies, increasing patient’s survival 

rate (Figure 1.12).66 Similarly to the ER, the androgen receptor (AR), as described above, 

drives the progression of prostate cancer.67 Many therapies have been designed to take 

advantage of this dependence.68 Enzalutamide (1.12), which was FDA approved in 2012, 

increased the overall survival rate of patients by exhibiting multiple mechanisms of 

action (Figure 1.12). Enzalutamide binds to the ligand-binding domain of AR, preventing 

its activation by testosterone, translocation to the nucleus, and transcriptional activity.69 
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Figure 1.12. Structures of Tamoxifen and Enzalutamide.  
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 With the exception of nuclear hormone receptors, there are relatively few 

examples of small molecule inhibitors of transcription factors because most transcription 

factors lack a ligand-binding domain. Thus, direct modulation of such proteins has been 

difficult due to the fact that they are composed of large, shallow, surfaces, and have even 

been referred to as ‘undruggable’.38,70 Advances in the understanding of the energetics of 

molecular recognition, both high-throughput and in silico screening technologies, and 

organic synthesis have permitted the ability to inhibit such protein-DNA and protein-

protein interactions that have been previously referred to as undruggable.71-78 The 

Koehler lab has developed an unbiased small molecule microarray as a common 

approach to discover ligand-protein interactions of several types of proteins including 

TFs.79,80 These advancements have paved the way for an exponentially expanding 

quantity of inhibitors and therapeutic agents. For example, Vogt and co-workers 

discovered several small molecule antagonists of the Myc/Max protein-protein 

interaction, which interfered with Myc induced oncogenic transformation (Figure 

1.13).81  

 A small molecule inhibitor could also bind to DNA binding domains of TFs 

and prevent them from binding their target sequences. This strategy has been used to 
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Figure 1.13. Structures of Myc/Max antagonists. 
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develop inhibitors of the transcription factor C/EBPα. A fluorescent polarization screen 

was used to identify 39 small molecule inhibitors of the C/EBPα DNA binding domain 

(Figure 1.14).82  

  

1.3.3 Peptide or Peptidomimetic Transcription Factor Modulators  

 

 An alternative approach to small molecules blocking protein-protein 

interactions is through peptide or peptidomimetic inhibitors (Figure 1.11b). This 

approach has been successful with the in vivo targeting of the NOTCH transcriptional 
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Figure 1.14. Structures of C/EBPα DNA binding domain inhibitors. 
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Figure 1.15. Wild-type p53 peptide fragment and the locked SAH peptide inhibitor. * denotes point off 
linker attachment to lock the peptide in an alpha helical conformation.  
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complex in xenograft models, inhibiting the progression of leukemia.83 This strategy has 

also been utilized in the most well studied TF complex of p53-MDM2. The tumor 

suppressor p53 upregulates genes responsible for DNA repair, cell-cycle arrest, and 

apoptosis, which is why p53 mutations are associated with a number of cancers.84 The 

p53 protein is regulated by MDM2, which binds to p53 and blocks its ability to 

upregulate transcription.85,86 A locked, stabilized alpha helix (SAH) peptide inhibitor of 

MDM2 1.18, which mimics the wild-type p53 alpha helix 1.17, has just moved into phase 

I clinical trials for patients with advanced malignancies expressing wild-type p53 (Figure 

1.15).86  

 Limitations to the peptide approach include lack of cell permeability and 

poor stability due to proteolytic degradation. One way to overcome these limitations is by 

utilizing peptidomimetics. Peptidomimetic inhibitors combine the advantages of peptides 

(high efficacy and target selectivity) and small molecules (cell permeable, stable, and 

bioavailability).87 Peptidomimetics function by arranging their three-dimensional 

conformation in the shallow binding pockets to inhibit protein-protein interactions.88 

There are a number of peptidomimetic compounds in preclinical and clinical trials. Signal 

transducer and activator of transcription 3 (STAT3) is an oncogenic TF constitutively 

 
 

Figure 1.16. Peptide lead and peptidomimetic inhibitor of STAT3. 
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active in many breast cancers.89 Several peptidomimetic compounds have been identified 

that inhibit STAT3 and cell proliferation (Figure 1.16).90  

  

1.3.4 Modulation of TFs Through Small Molecule DNA Binders 

 

 Another method to directly modulate TF activity is to block it from binding 

its target sequence by manipulating the DNA structure, thus preventing target gene 

expression (Figure 1.11c). DNA binding pyrrole-imidazole (Py-Im) polyamides have 

become a great strategy and class of gene modulators. Py-Im polyamides are small 

molecule minor groove binders that achieve sequence-specific recognition of DNA 

through hydrogen bonds to DNA. This strategy has been used to rationally design small 

molecules to inhibit the binding NF-κB p50-p65 (1.21) and the AR (1.22) to DNA 

(Figure 1.17).91-93 In addition, because G-quadruplexes are secondary DNA structures 

formed by guanine-rich sequences and are over-represented in telomeres and 

transcriptional start sites, small molecules have been used to stabilize G-quadruplexes to 

inhibit the binding of TFs, such as c-Myc, to DNA.94 95 
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Figure 1.17. Small molecule Py-Im polyamides that inhibit NF-κB p50-p65 and AR. 
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1.3.5 Modulation of TFs Through mRNA Regulation 

 

 Small interfering RNA (siRNA), short hairpin RNA (shRNA), and antisense 

oligonucleotides are standard laboratory tools used for mRNA regulation, which can be 

utilized to target transcription factors to directly downregulate their mRNA expression 

and subsequent protein synthesis (Figure 1.11d). These technologies utilize double-

stranded RNAs (dsRNAs) that get processed by the Dicer protein to yield short (~20 base 

pair) dsRNAs, which can dissociate into two single-stranded RNAs (ssRNAs). This 

single-stranded RNA is incorporated into the RNA-induced silencing complex (RISC) 

and is a sequence-specific complement of the target mRNA. Upon hybridizing with the 

mRNA, a conformational shift allows the catalytic subunit, Argonaute, to cleave the 

mRNA, which results in inhibition of protein synthesis.96-99 These technologies have 

limitations associated with cellular uptake and short half-lives, but have tremendous 

advantages including specificity and efficacy against their targets. For example, the 

STAT3 antisense oligonucleotide AZD9150 (1.23), has undergone phase I clinical trials 

for advanced lymphoma and solid tumor patients whereby two out of three patients 

observed a greater than 50% reduction in tumor size by inhibiting STAT3 gene 

expression (Figure 1.18).100  

 

1.23

5'- CTATTTGGATGTCAGC -3'

 
 

Figure 1.18. STAT3 antisense oligonucleotide AZD9150. The nucleotides are locked nucleic acids (LNA, 
1.27), which also contain constrained ethyl groups.101 



 

 25 

1.4 DNA Decoys 

 

 Utilizing cis element DNA decoys to sequester TFs is another approach to 

directly modulate transcription factors (Figure 1.11e). Previous studies have shown that 

tandem repeats of DNA in the genome that contain transcription factor binding sites 

could serve as decoy binding sites, which effectively sequesters a TF and inhibits its 

target gene expression.102-104 This endogenous form of TF competitive inhibition can be 

replicated exogenously by introducing synthetic double-stranded oligodeoxynucleotides 

(ODN) containing TF binding sites into cells. These platforms of artificial gene 

modulation utilizing cis element DNA decoys can be transfected into cells, sequestering 

their targeted TFs, and alter gene expression by inhibiting their endogenous activity 

(Figure 1.19b).105 There are several types of DNA decoys, usually ranging from 10-20 

base pair ODNs to plasmid DNA containing multiple decoys in the sequence.106  

 There are numerous advantages to this approach of modulating TFs and gene 

expression: the TF targets are abundant and identifiable as publications of TFs and their 

consensus sequences become more common, which is attributable to genome 

 
 

Figure 1.19.  Inhibition of gene expression by DNA decoys. (a) TFs able to bind genomic DNA and 
activate gene expression. (b) DNA decoys sequester TFs thereby reducing its effective concentration and 
subsequent endogenous activity. 
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technologies like chromatin immunoprecipitation sequencing (ChIP-seq),107,108 the 

synthesis of DNA decoys are relatively simple using phosphoramidite chemistry,109,110 

the DNA binding domains of TFs are unlikely to acquire mutations to achieve resistance, 

and DNA decoys can be rationally designed to modulate any TF because the only 

structural information about the TF that is needed is the sequence that it binds.  

 One major limitation of DNA decoys, or DNA therapeutic agents in general, 

is their poor cellular uptake. Laboratory techniques such as cationic liposomes, heat 

shock, and electroporation can be used to introduce foreign DNA into cells; however, 

these techniques cannot be used in vivo. However, there has been progress to rectify this 

problem. The Hemaggulitinating Virus of Japan (HVJ)-liposome method and ultrasound-

mediated gene transfer method have demonstrated enhanced gene transfer and uptake of 

DNA decoys.111-118 Another major limitation of DNA decoys is their rapid degradation by 

serum and intracellular nucleases,119,120 consequently, there have been several different 

modifications of DNA decoys to improve their stability (Scheme 1.1). Modified 

phosphodiester bonds (1.24), such as replacing a non-bridging oxygen in the phosphate 

linkages with sulfur to form phosphorothioate (PS) bonds (1.25), greatly increases DNA 

stability.121 Other modifications to the backbone including methyl phosphate and methyl 

phosphonate (1.26) derivatives have also demonstrated nuclease resistance, giving rise to 

higher stabilities.122,123 Conformational restriction of nucleosides is another successful 

strategy in designing potent DNA decoys. These locked nucleic acids (LNAs, 1.27) 

contain a 2′-O-4′-C-methylene bridge in the sugar of the DNA and have demonstrated 

added thermal stability and nuclease resistance while retaining their ability to bind 
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TFs.124,125 Peptide nucleic acids (PNAs, 1.28) are a class of DNA mimics in which the 

sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units and are able to 

efficiently undergo Watson-Crick hybridization.126,127 Recently, PNA-DNA decoy 

chimeras have been shown to inhibit the NF-κB and Sp1 TFs and are fully resistant to 

exonucleases.128  

 Tethering the two hybridized strands of a DNA decoy together with one or 

two closed nucleotide loops on the end form either hairpin or dumbbell structures 

(Figure 1.20). These structures exhibit improved nuclease stability, improved sequence 
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Scheme 1.1. Modifications to DNA to improve its serum and intracellular stability. B denotes any 
nucleobase.   
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specificity, cellular uptake, and lowered toxicity.119,129 Studies with AP-1 and STAT 

decoys have demonstrated that hairpin and dumbbell DNA decoys yield significantly 

greater TF inhibition in vitro (78% knockdown with the dumbbell versus 39% 

knockdown with the phosphorothioate modified). Importantly, they are more stable and 

effective over phosphorothioate and unmodified DNA decoys in vivo as well.130-132 

Another advantage of hairpin and dumbbell DNA decoys is an added level of specificity. 

Changing the sequence of the loop region of a pan STAT dumbbell DNA decoy 

discriminates it for either STAT1 or STAT3.132,133 These studies demonstrate that hairpin 

and dumbbell DNA decoys are markedly improved over other chemically modified DNA 

decoys, and therefore, utilization of these decoys are quite relevant for therapeutic 

intervention and as a tool for further research. 

 The efficiency and versatility of DNA decoys make it an attractive approach 

for use as a tool and a possible therapeutic agent. Over the past couple of decades, 

numerous reports have validated utilizing this approach and the increased utilization over 

a wide breadth of applications and range in clinical areas.134,135 Several targets and 

applications are summarized in Table 1.1.20,135-146 Among these are regulating several 

manifestations of inflammation including cystic fibrosis (NF-κB),140 regulating neural 

stem cell differentiation (HNF4-1 and MAZ-1),141 reducing oxidative  

 
 
Figure 1.20.  (a) Hairpin and (b) dumbbell oligonucleotide structures formed by tethering two 
oligonucleotide strands together giving more stable and effective complexes. 
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stress-induced cardiac fibroblast proliferation (AP-1),142 and altering cell-cycle regulatory 

genes (E2F).20,145,146 Since this approach gives an efficient and specific TF inhibition, a 

wide-ranging list of DNA decoys have been developed to inhibit numerous TFs 

implicated in cancer growth and development (Table 1.1).147-154 Among these, DNA 

decoys designed against NF-κB, Sp1, STAT3, and MAZ have all demonstrated anti-

cancer activity over many different cancer types including breast, melanoma, colorectal, 

pancreatic, and several more.147-150 Additionally, DNA decoys designed against hormone 

receptor TFs including the androgen receptor (AR), the estrogen receptor (ER), and the 

cyclic AMP receptor protein (CRP) have all been shown to induce apoptosis and cell 

death in several cancer types.151,152,155,156  

 The DNA decoy approach is also validated in several in vivo mice and rat 

models. Local administration of an NF-κB decoy to rats induced apoptosis of osteoclasts 

via Fas signaling, which could be used as a strategy for treatment of conditions such as 

osteoporosis, peri-articular osteolysis, inflammatory arthritis, and Paget’s syndrome.157 

An E2F DNA decoy was administered into rats via HVJ-liposome complexes and 

demonstrated reduced expression of the c-myc, cdc2, and PCNA genes, which resulted in 

the inhibition of vascular smooth muscle cell (VSMC) proliferation.158 More recently, a 

phosphorthioate STAT3 DNA decoy has entered the “first-in-human” Phase 0 clinical 

trials for the treatment of head and neck squamous cancer.159 STAT3 expression and cell 

viability was reduced in the head and neck cancers injected with the decoy compared to 

the saline control. Additionally, since systemic administration results in degradation of 

the decoys, dumbbell STAT3 decoys were synthesized and attached hexaethyleneglycol 
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linkers to yield a cyclic STAT3 decoy. Intravenous injection of this cyclic decoy 

inhibited xenograft growth and downregulated STAT3 target genes within the tumor, 

demonstrating successful systemic administration of DNA decoys.159 Collectively, the 

DNA decoy strategy for the inhibition of transcription factor activity can be considered 

one of the most useful approaches for both a therapeutic for disease progression and as a 

tool to examine molecular mechanisms.  

 

1.5 Caging Technology 

 

 To obtain spatiotemporal resolution of DNA decoy function, an external 

trigger that enables precise activation or deactivation is needed. Light is an ideal external 

trigger as it is highly selective, easily and precisely controlled in time, space, and 

intensity, and, if done correctly, is harmless to biological systems. Strategies to develop 

such a trigger for biochemical experiments have been investigated since the 1970s when 

J. F. Hoffman synthesized an adenosine triphosphate (ATP) derivative with a 2-

nitrobenzyl photolabile group (Scheme 1.2, 1.29).160 This otherwise active molecule is 

rendered inactive by appendage of the 2-NB photolabile masking (or caging, which was 

coined by Hoffman) molecule, which disrupts key molecular recognition properties 
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Scheme 1.2.  Caging technology utilized for spatiotemporal resolution of ATP. 
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between the molecule and its target as a result of steric interference. Photolysis of the 

molecule renders the system active by liberating the caging group (1.31) and regenerating 

the original, bioactive ATP molecule (1.30). Early studies with this caged ATP 

demonstrated spatial and temporal control over a biological system and single turnovers 

of a sodium pump could be observed.161 2-NB caging groups had been used previously as 

organic synthesis protecting groups.162 Since then, a myriad of applications have been 

developed utilizing this technology from the analysis of neurological processes to 

studying secondary messengers and cellular signaling molecules, proteins, and nucleic 

acids, all achieving a higher level of control of cellular processes.163-168  

 Over 80% of the publications on caging technology are applications of the 

most widely used 2-nitrobenzyl (2-NB, 1.32) photolabile molecule or its derivatives.169 

The events from the absorption of light and eventual release of the substrate have been 

subdivided into five major steps (Scheme 1.3).170 The first step is excitation to form the 

diradical 1.33 at a rate of 2x107 s-1. 2-NB has a strong UV absorbance with a λmax at 275 

nm.171 The excited singlet can either undergo intersystem crossing to the triplet state 1.34 

at the rate kST (109 s-1) or undergo hydrogen atom abstraction at the rate kH (~109 s-1).170 

The triplet state cannot undergo hydrogen atom abstraction. After a bond rearrangement, 

the product of hydrogen atom abstraction is aci-nitro intermediate 1.35. This intermediate 

is stable enough to be observed and kinetic rate studies have been performed extensively 

on this intermediate demonstrating its sensitivity to pH.172 Several tautomers and isomers 

exist of the aci-nitro intermediate, but it has been demonstrated that the E,E isomer 

cyclizes directly to form the oxazole intermediate 1.36. The rate at which the oxazole is 
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formed (kcyc) is immediately followed by the formation of the nitroso species or the ring-

opening to the hemiacetal intermediate 1.37 (kfrag, ~5000 s-1).171 The last step is the 

collapse of the hemiacetal releasing the substrate 1.38 and the nitroso by-product 1.39, 

which is the rate-limiting step (khemi, 0.11 s-1) of the photo-uncaging process.171 
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Scheme 1.3. Mechanism of photolytic release of 2-NB 1.32. The five-step mechanism includes the 
excitation of the nitro-group with light yielding the diradical 1.33. The radical performs a hydrogen atom 
abstraction followed by a rearrangement to give the aci-nitro intermediate 1.35. Bond rearrangement 
leads to heterocyclic intermediate 1.36, which fragments to yield hemiacetal nitroso 1.37. The final rate-
limiting step is the collapse of the hemiacetal releasing the substrate 1.38 and the nitroso by-product 1.39.  
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 Several requirements need to be met to yield a good caging group like 2-NB: 

it should be easy to synthesize and introduce to a wide array of substrates; it should be 

stable under physiological conditions; it should have a large molar extinction coefficient 

(ε) for photoactivation; it should photoactivate at a wavelength that reduces the amount of 

photodamage; this photoactivation should result in a large percentage of photo-uncaging 

quantified by the quantum yield (ϕ); and finally, the photo by-product should not be 

toxic.164 Copious amounts of papers have been published in the last 10 years presenting 

modifications to caging scaffolds, changing one or several of these properties. 

Considerable work has been done modifying the 2-NB scaffold to make it more efficient 

(Figure 1.21).173-180 Various functional groups such as hydroxyl, carboxylic acid, or 

phosphate groups can be protected with 2-NB (1.40). Oxycarbonyl derivatives of 2-NB 

allow amino groups to be protected (1.41). Addition of a benzyl substituent of the 2-NB 

group is also very common. Addition of a methyl substituent to form the 2-
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Figure 1.21.  Common 2-NB derivatives. 2-NB 1.40 can be used to protect several different functional 
groups. Functionalization of 2-NB with an oxycarbonyl group 1.41 allows amines to be protected. 
Addition of a benzylmethyl substituent 1.42 increases efficacy of the 2-NB. Addition of electron donating 
groups (1.43-1.44) or increased aromaticity (1.45-1.46) enhances absorptivity of the 2-NB. Additional 
scaffolds including 7-nitroindole and indoline (1.47-1.48) have demonstrating efficient caging.  
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nitrophenylethyl (2-NPE, 1.42) caging group demonstrates a higher photo-release rate 

than 2-NB (34300 s-1 for 2-NPE compared to 600 s-1 for 2-NB).169 Addition of electron 

donating aryl substituents, such as a catechol (1.43) or piperonal (NPOM, 1.44) enhance 

the absorptivity of the scaffold increasing the λmax up to 365 nm.176,181 Similarly, 

substitution of the phenyl group with other aromatic groups that contain more 

conjugation such as naphthalene (1.45) or dibenzofuran (NDBF, 1.46) have shown to red-

shift to 350-400 nm.178 7-Nitroindole (7-NI, 1.47) and 4-Methoxyl-7-nitroindolinyl 

(MNI, 1.48) photolabile groups have also been identified as efficient caging groups.182 

MNI caged glutamate was used in spatial temporal resolution of the neurotransmitter.183  

 An alternative to single-photon uncaging like 2-NB, is two-photon uncaging, 

where light equaling twice the wavelength of the maximum absorption of the caging 

group is applied, such as using 730 nm light to uncage a photolabile molecule with a 

maximum absorption at 365 nm. These caging groups have resulted in improvements of 

spatiotemporal resolution as well as increased tissue penetration.184 Numerous biological 

studies have utilized this technology. One example is the caging of a farnesyltransferase 

inhibitor with the two-photon uncaging coumarin-based thiol-protecting group (1.49). 
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Figure 1.22. Two-photon uncaging of a farnesyltransferase inhibitor with 800 nm light.  
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Irradiation with 800 nm light yielded two-photon uncaging producing the free 

farnesyltransferase inhibitor (1.50) in Ciras-3 fibroblasts to inhibit Ras localization and 

alter cell morphology.185 

 Relatively new in the history of caging technology, is the application of 

caging DNA, RNA, and their analogues. Depending on the application, the caging group 

can be introduced on the nucleobase (blocking key molecular recognition interactions, 

1.51), as the nucleobase (leaving an abasic site when photocleaved, 1.52), on the ribose 

sugar (1.53), on the phosphodiester backbone (1.54), or as an internal photolabile linker 

(resulting in fragmented products when cleaved, 1.55).164,186,187  
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Figure 1.23. Different approaches to caging DNA/RNA. The caging group can be placed on the 
nucleobase 1.51, as the nucleobase 1.52, on the ribose sugar 1.53, on the phosphodiester backbone 
1.54, or as an internal photocleavable linker 1.55. B denotes any nucleobase.   
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 The effects of nucleobase caging have been widely studied and demonstrate 

a perturbation in duplex stability with the addition of multiple caged groups.188 Caged 

guanosine and caged cytosine have used light to induce the formation of G-quadruplexes 

and light-trigger aptamers that contain antidote activity.189,190 This caging approach has 

been used extensively to control gene expression in a spatial and temporal manner 

(Figure 1.24). For example, caged nucleobases have been used to photochemically 

activate DNAzymes to degrade mRNA and silence protein synthesis (Figure 1.24a).191 In 

a similar manner, caging technology has been used to photoinduce T7 RNA polymerase 

transcription both by incorporation of caging groups on the oligonucleotide and on the 

polymerase (Figure 1.24b).192,193 One major approach to regulate gene expression is 

through antisense and siRNA. Caged antisense and siRNA have been used widely to 

knockdown gene expression spatiotemporally both in cells and in zebrafish and Xenopus 

Embryos.194-196 This is realized by a few of different mechanisms. One early and widely 

used application is the use of the photocleavable backbone by insertion of a caging linker 

in the RNA backbone (Figure 1.24c).197 Duplex RNA is introduced with a 

photocleavable linker and unable to bind mRNA thus leaving translation active. Upon 

photolysis, the RNA is cleaved, yielding a single complementary strand that can bind 

mRNA, thus deactivating translation. Alternatively, caging groups attached to the 

nucleobase on an antisense RNA strand can prevent self-hybridization, yielding an active 

antisense strand. Photolysis and removable of the caged groups drives self-hybridization, 

obstructing its antisense activity, effectively activating translation (Figure 1.24d).198 As 

another method of gene expression control, caging groups introduced on the 
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phosphodiester backbone and nucleobases can interfere with the formation of the siRNA-

RISC complex necessary to cleave the mRNA. Photolysis, and removal of the photolabile 

groups, permits the RISC complex to bind, cleave the mRNA, and deactivate translation 

(Figure 1.24e).199,200  

 

1.6 Caged DNA Decoys 

 

 Combining the spatial and temporal resolution of caging technology with the 

DNA decoy strategy for the inhibition of transcription factor activity can yield an 

approach for the very precise ability to photochemically regulate gene expression, which 

has potential as a therapeutic agent and tool for probing biological pathways. Deiters and  

co-workers developed a caged NF-κB-directed DNA decoy to photochemically control 

NF-κB gene expression.201 It was hypothesized that caging groups would disrupt Watson-

Crick base pairing, thus rendering the decoy inactive. Photolysis of the caging groups 

would then restore duplex formation, permitting NF-κB binding, thus sequestering the 

TF, leading to inhibition of gene expression (Figure 1.25). Deiters incorporated several 

NPOM (1.44) caging groups into hairpin and dumbbell DNA decoys that resulted in 

disruption of duplex formation, which is demonstrated by thermal melting studies.  When 

four caging groups were incorporated into the hairpin decoy (Figure 1.26.D4), or just 

three in the dumbbell (Figure 1.26.D6), all duplex formation is abolished. Upon 

irradiation with light (350 nm for 10 minutes in buffer), the caging groups were removed  
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Figure 1.25. Adopted with permission from J. Am. Chem. Soc. 2011, 133, 13176. The caging groups 
disrupted Watson-Crick base pairing, thus rendering the decoy inactive. Irradiation and removal of the 
caging groups restored duplex formation, permitting NF-κB binding, thus sequestering the TF, leading to 
inhibition of gene expression. 

 

 
 
Figure 1.26. Adapted with permission from J. Am. Chem. Soc. 2011, 133, 13176. Thermal stability of 
caged hairpin and dumbbell DNA decoys before and after photolysis. A bold T denotes a caged 
thymidine nucleotide and NA indicated no melting temperature could be measured.  
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and hybridization can now occur, restoring the duplex stability seen in the non-caged 

DNA decoys (D2).  

 To identify the proficiency of binding of the DNA decoys to NF-κB in vitro, 

the electrophoretic mobility shift assay (EMSA) was used (Figure 1.27). If a binding 

event occurs, the higher molecular weight complex (DNA + protein) will hinder its 

progression down the gel, hence is “shifted” up the gel from the unbound DNA. The 

addition of nuclear extract containing NF-κB proteins to non-caged DNA decoys 

promotes binding and is specific as no binding was seen with a scrambled DNA decoy 

(Figure 1.27, lanes 2 and 10). The same addition of nuclear extract to the caged DNA 

decoy showed no appreciable binding event, demonstrating the caging groups provided 

sufficient perturbation to abolish transcription factor binding affinity (Figure 1.27, lanes 

4, 7, 12, and 15). Irradiation with light, removal of the caging groups, and formation of 

 
 
Figure 1.27. Adapted with permission from J. Am. Chem. Soc. 2011, 133, 13176. EMSAs 
demonstrating light activation of NF-κB DNA decoys. Caged decoys do not induce a gel shift (lanes 4, 
7, 12, and 15). Irradiation with light restores duplex DNA and induces a gel shift demonstrating NF-κB 
binding in vitro (lanes 5, 8, 13, and 16). 
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duplex hairpin or dumbbell DNA decoys, restores their binding affinity and demonstrated 

capture of NF-κB (Figure 1.27, lanes 5, 8, 13, and 16).  

 The DNA decoys were then transfected into NF-κB/SEAP HEK293 cells to 

investigate the photochemical control of gene expression within mammalian cells 

(Figure 1.28). The transfection of native decoys (Figure 1.28.D2, D5) into the HEK293 

cells down-regulated NF-κB-mediated gene expression by 60% or 100% compared to the 

scrambled control (Figure 1.28.D0). The introduction of caged DNA decoys with no 

duplex formation (Figure 1.26.D4, D6, D7) demonstrated no inhibition of NF-κB-

mediated SEAP expression. UV irradiation for 2 min restored the structure and function 

of the DNA decoys within the cells and resulted in effective sequestering of NF-κB, 

 
 
Figure 1.28. Adapted with permission from J. Am. Chem. Soc. 2011, 133, 13176. Photochemical 
activation of NF-κB-mediated SEAP expression. Transfection of caged DNA decoys with no duplex 
formation demonstrated no inhibition of NF-κB-mediated SEAP expression. UV irradiation for 2 min 
restores the structure and function of the DNA decoys within the cells and resulted in effective 
sequestering of NF-κB, leading to inhibition of SEAP expression.   
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leading to inhibition of SEAP expression. This caged DNA decoy approach enables the 

precise deactivation of gene expression in both a spatial and time-resolved manner, which 

have great potential as therapeutic agents and will enable the study of gene function in 

biological pathways.  

 

1.7 Preface to this Thesis 

 

 The following chapters disclose my efforts to develop several novel DNA-

based and small molecule-based probes to investigate the biochemistry of transcription 

factors and their signaling pathways. Chapter 2 discusses the synthesis and 

characterization of caged DNA decoys that target the Androgen Receptor (AR). Caged 

DNA decoys with 6 and 8 NPOM (1.44) caging groups successfully captured AR in 

LNCaP lysate when irradiated with light. Chapter 3 introduces a complement to caging 

technology, which are catch and release DNA decoys (CRDDs). CRDDs capture 

transcription factors, by binding and sequestering them, and then a pulse of light 

photochemically destroys the CRDD, permitting release of the TF. Several 7-nitroindole 

(7-NI, 1.47) nucleobase mimics were incorporated into NF-κB-directed DNA decoys, 

which still allowed the capture of the p50-p65 NF-κB proteins. Irradiation with 350 nm 

light drives the release of the p50-p65 NF-κB. The capture and photochemical release of 

an endogenous transcription factor is demonstrated for the first time. Chapter 4 continues 

the work of Chapter 3 by developing second-generation nucleobase mimics for use in 

CRDDs. Addition of molecular recognition properties on a photo-responsive monomer 
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was hypothesized to increase binding affinity to capture endogenous TFs. 8-

Nitroguanosine contains this added molecular recognition, is more stable within duplex 

DNA, and also displayed similar photochemical depurination properties. Chapter 5 

outlines work developing photoswitchable nucleobases that transpose their hybridization 

properties upon photolysis. Chapter 6 highlights work with determining the mechanistic 

NF-κB inhibitory properties of several Cryptocaryone analogues, which were found to 

inhibit the NF-κB translocation to the nucleus. Appendix A focuses on the 

characterization of the enantioselectivity of guanosine monophosphate synthetase 

(GMPS), a crucial enzyme in nucleotide biosynthesis.  
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Chapter 2 

 

 

ANDROGEN RECEPTOR-DIRECTED CAGED DNA DECOYS 

 

 

This work was performed in collaboration with Mr. Matthew Bockman and Professor 
Daniel A. Harki. In this work, Mr. Matthew Bockman was responsible for synthesizing 

oligonucleotides 2.3 and 2.4 and obtaining their melting temperatures, which is shown in 
Table 2.1. 
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2.1 Androgen Receptor (AR) DNA Decoys 

 

As discussed in Chapter 1.1.4, AR is activated by the binding of androgens, 

which allows translocatation to the nucleus, and activation of gene expression (Figure 

1.4). Prostate carcinogenesis and its progression is contingent on AR signaling and 

activation, thus has been exploited for therapy development. Enzalutamide (1.12), which 

was FDA approved in 2012, binds to the ligand-binding domain of AR, preventing its 

activation, and increasing overall survival. Despite the benefit on survival of 

Enzalutamide, approximately one quarter of prostate cancer patients will develop 

resistance due to AR gene mutations and amplifications, up-regulation of AR synthesis, 

and/or altering signaling pathway with cross talk to AR signaling.202 Developing DNA 

decoys to sequester AR is an approach to circumvent resistance since the DNA binding 

domain of AR is less prone to mutations, and will therefore avoid several of these 

mechanisms of resistance. Classical DNA response elements of nuclear hormone 

receptors contain inverted repeats of 5′-AGAACA-3′, but extensive research has 

discovered several AR-distinct androgen receptor elements (ARE) that have contributed 

to consensus sequences useful for targeting the ARE.203 With this information readily 

available, ARE DNA decoys can be a strategy employed to inhibit AR.151,204 Kuratsukuri 

and co-workers synthesized double stranded DNA with the 21 base pair ARE sequence of 

the prostate specific antigen (PSA) gene.151 This decoy shifted active AR protein from 

LNCaP nuclear lysate, demonstrating specific binding in an electrophoretic mobility shift 

assay (EMSA). The decoy was also transfected into LNCaP cells, inhibiting key 
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downstream AR-driven genes including prostate specific antigen (PSA), which induced 

apoptosis. The spatiotemporal resolution of caging technology on AR-directed DNA 

decoys would yield a powerful tool to interrogate AR-signaling and a possible therapeutic 

agent. Therefore, we designed and synthesized caged DNA decoys to AR. Kinetic studies 

determined the speed and efficiency of this process, demonstrating full uncaging within 

one minute; however, incomplete uncaging was observed. Nonetheless, caged DNA 

decoys with 6 and 8 NPOM (1.44) caged groups successfully captured AR in LNCaP 

lysate following irradiation with light.  

 

2.2 Oligonucleotide Synthesis 

 

 
 
Figure 2.1. Introduction of caged AR-directed DNA decoys. Introduction of caged groups prevent duplex 
hybridization and AR binding. Upon photolysis and removal of the caging groups, hybridization of the 
DNA decoy is restored, and AR is sequestered, effectively deactivating gene expression.   
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We designed caged AR-directed DNA decoys based on the ARE sequence of PSA 

and utilized a three-thymine loop to yield hairpin DNA decoys that are expected to be 

stable and efficient (Figure 2.1). Introduction of caged groups was hypothesized to 

prevent duplex hybridization and AR binding based on previous caged DNA examples.201 

Upon photolysis of the caging groups, hybridization of the DNA decoy is restored, which 

is hypothesized to sequester AR, and effectively deactivate gene expression.  

The NPOM (1.44) caging group was developed in 2006,205 has been previously 

used in caged DNA applications,206 and the phosphoramidite has been made 

commercially available by Glen Research. With the phosphoramidite in hand, we 

synthesized several DNA decoys under standard solid-phase DNA synthesis conditions, 

incorporating this caged thymine in place of native thymines in key positions to block 

hybridization (Figure 2.2). We synthesized decoy 2.1 with one NPOM caging group 

installed, to study kinetics of uncaging for one group within duplex DNA (Section 2.5). 

As mentioned, the 21 base pair sequence of the ARE of PSA was synthesized as a hairpin 

with a three-thymine loop (2.2) The incorporation of 6 and 8 NPOM caging groups into 

 
 

Figure 2.2. Synthesized DNA decoys with varying degrees of NPOM caging. X denotes an NPOM caged 
thymine.  
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this hairpin was envisioned to be sufficient in order to disrupt duplex formation yielding 

the ability of spatiotemporal control of AR binding (2.3 and 2.4, respectively).  

 

2.3 Thermal Melting Analysis 

 

The thermal stability of the AR-directed DNA decoys containing the NPOM 

caging groups and their corresponding deprotected products were studied by UV thermal 

melting experiments (Table 2.1).207 The native 45-mer DNA decoy is very thermally 

stable (Tm = 86.4 °C). Incorporation of NPOM caging groups located on both sides of the 

duplex introduces much more steric hindrance than just on a single side, especially when 

they are positioned close to one another. Previous studies have shown that complete 

disruption of DNA hybridization requires a caging group every 4-6 nucleotides 

throughout the sequence.191,208 The introduction of 6 NPOM caged thymines (2.3) located 

Table 2.1. Thermal melting of 2.2-2.4 demonstrating DNA duplex destabilization from incorporation of 
NPOM caging groups and restoration of stability upon irradiation with light. Thermal melting 
experiments were performed in 10 mM sodium cacodylate, 10 mM KCl, 10 mM MgCl2, 5 mM CaCl2, pH 
7.0 buffer. Mean ± SD (n = 4). 
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on both sides of the duplex lowers thermal stability of the caged decoy to 68.1 °C 

compared to the 86.4 °C of the native decoy (ΔTm = -18.3 °C). Even more perturbed, 

incorporation of 8 NPOM caged thymines (2.4) dramatically lowers thermal stability 

(ΔTm = -35.0 °C). Photolysis of both caged DNA decoys resulted in the recovery of 

thermal stability (Tm = 86.2 °C and 85.9 °C, respectively). Similarly to the caged DNA 

decoys in Chapter 1.6, the loss of thermal stability was hypothesized to confer to loss of 

binding affinity towards AR since duplex DNA is required for TF binding.  

 

2.4 Kinetics of Uncaging 

 

To characterize the kinetics and the identities of the photo-products resulting from 

irradiation of the caged DNA decoys, we utilized liquid chromatography-mass 

spectrometry (LC-MS) analysis of an irradiated aqueous sample. As shown in Figure 2.3, 

irradiation of 2.1, with a single NPOM caging group, yielded fast photolysis (t1/2 = 0.9 

min; 350 nm light; light intensity: 2.38x10-8 ein cm-2s-1). The quantum yield (Φ) of 2.1  

was determined to be 0.051, which is comparable to the literature value (Φ = 0.094).209 

After 5 minutes of irradiation, very little caged decoy remained, demonstrating efficient 

uncaging. AR Decoys 2.3 and 2.4 with 6 and 8 caged groups were irradiated similarly to 

decoy 2.1. Unexpectedly, multiple products formed upon irradiation (Figure 2.4). From 

the mass spectrum, it was determined that these products were the result of incomplete 

photolytic decay, whereas 1-4 methoxy groups are still attached to the nucleobase. It is 

hypothesized that photolysis produces free alcohol 2.7, and instead of releasing  
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Figure 2.3. Photolytic decay curve of 2.1 with calculated half-life and quantum yield (R2 = 0.99). 

 
 
Figure 2.4. Photo-products of 2.3 demonstrating the failed release of formaldehyde resulting in formation 
of multiple products. Analysis of photo-products at t = 5 min from experiment shown in Figure 2.3. 
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formaldehyde to yield the native thymine 2.8, the pendant methoxy group engages in a 

six-membered ring that is stabilized by an intramolecular hydrogen-bond (2.9, Scheme 

2.1). Brief preliminary studies suggests pH dependence, where a low pH (pH 3-5) 

prevents formaldehyde release while a high pH (pH 10-13) encourages formaldehyde 

release yielding the native decoy complex.  

  

2.5 Capturing AR Utilizing Caged DNA Decoys 

 

 We next evaluated the ability of the AR-directed decoys to capture AR by 

electrophoretic mobility shift assays (EMSAs). 32P-labeled 2.2-2.4 were added to a 

solution of testosterone induced LNCaP lysate and protein binding was measured. Native 

AR-directed DNA decoy 2.2 exhibited the appropriate band shift demonstrating AR 

binding (Figure 2.5, lane 2). Addition of LNCaP lysate to the 6 or 8 caged DNA decoys, 

2.3 and 2.4, were unable to bind the protein efficiently (Figure 2.5, lanes 4 and 7). 

Irradiation of 2.3 and 2.4 with 350 nm light for 5 minutes, resulted in partial restoration 
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Scheme 2.1. Photolytic decay mechanism of NPOM caging group leading to either formation of the 
native thymine 2.8 or the residual methoxy group getting trapped in the six-membered ring 2.9.  
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the native complex as discussed above. Addition of lysate to the photolyzed 2.3 and 2.4 

yields evidence of protein binding (Figure 2.5, lanes 5 and 8). The binding events 

following photolysis are weaker than native 2.2 (Figure 2.5, lane 2), presumably because 

of the incomplete photolytic decay to the native decoy.   

 

 

 

 

 
 
Figure 2.5. Electrophoretic mobility shift assays with 2.2-2.4. 5′-32P-labeled 2.2 incubated with AR rich 
LNCaP lysate demonstrated the ability to bind AR (lane 2). 5′-32P-labeled 2.3-2.4 incubated with LNCaP 
lysate were unable to bind the protein with efficiency (lanes 4 and 7). Irradiation of samples followed by 
addition of LNCaP lysate demonstrated capture of the AR protein (lanes 5 and 8). 
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2.6 Cellular Location of DNA Decoys Utilizing Confocal Microscopy 

 

With evidence demonstrating that our decoys can capture the AR protein, we 

synthesized a Texas Red (TR) labeled AR-directed DNA decoy to detect whether the 

decoy could be transfected into LNCaP cells and where within the cell the decoys would 

be distributed. We purchased the 5′-C6-amino derivative of the native decoy 2.2, decoy 

2.10, and conjugated it to the NHS-ester of Texas Red (TR), yielding AR decoy 2.11. In 

future studies, this decoy will be transfected into LNCaP cells to determine sub-cellular 

location and transfection efficiency of the DNA decoys.  

  

2.7 Conclusions and Future Work 

 

Hairpin DNA decoys were designed to tightly bind and sequester the AR protein. 

Addition of NPOM caging groups to these decoys created steric interactions, which 

reduced their duplex stability and dramatically affected their affinity for AR. Photolysis 

of 2.3 and 2.4 restores the duplex, providing evidence for the photochemical 

sequestration of AR. Thermal melting analysis and electrophoretic mobility shift assays 

 
 

Scheme 2.2. Synthesis of TR-labeled AR-directed DNA decoys for confocal microscopy studies. 
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were used to characterize the caged decoys 2.3 and 2.4. The introduction of 6 NPOM 

caged thymines (2.3) lowers thermal stability of the caged decoy to 68.1 °C compared to 

the 86.4 °C of the native decoy (ΔTm = -18.3 °C). Even more perturbed, incorporation of 

8 NPOM caged thymines (2.4) dramatically lowers thermal stability (ΔTm = -35.0 °C). 

This result was very encouraging, which demonstrates lack of thermal stability and 

duplex formation needed to abolish AR binding affinity. Kinetic studies determined the 

speed of this process, demonstrating loss of caging groups within one minute; however, 

the major product formed was not the native decoy 2.2.  Due to incomplete uncaging, 

multiple methoxy adducts remained on the decoy. This result is believed to have hindered 

the binding of AR in the EMSA assays (Figure 2.5, lanes 5 and 8) and is a major 

limitation of this technology. One method currently being investigated to overcome this 

limitation is by synthesizing O6-linked NPOM thymines lacking the methoxy linker, thus 

removing the intermediate in the photolytic decay process leading to methoxy adducts. 

This simpler uncaging method should result in improved protein binding similar to native 

2.2. Other than switching caging methods, other future directions for this project will 

include transfections of the decoys into mammalian cells. We will be using variety of 

chemical transfection reagents and electroporation methods to transfect the DNA decoys 

into LNCaP cells to sequester the AR in mammalian cells. The TR-labeled AR-directed 

decoy will allow characterization of transfection efficiency. Overall, this AR-directed 

caged DNA decoy strategy enabled the precise capture of AR in a spatiotemporal 

manner, which can have great potential as therapeutic agents and will enable the study of 

the AR gene function in biological pathways.  
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2.8 Experimental Section 

 

2.8.1 Solid-Phase DNA Synthesis. Oligonucleotides were synthesized using standard 

solid-phase phosphoramidite chemistry on an Applied Biosystems 394 DNA/RNA 

synthesizer.210  All phosphoramidites, solvents, and solid supports (1.0 µmol) were 

purchased from Glen Research Corporation. Following the synthesis, the resin was 

transferred to a fritted reaction vessel. Concentrated aqueous ammonium hydroxide (2.5 

mL) was added and the vessel was placed in a shaker for 18 hours at room temperature. 

After deprotection, the solution was filtered into a centrifuge tube (10 mL) and distilled 

water (2 mL) was added. The ammonium hydroxide was evaporated in vacuo (samples 

were transferred to microcentrifuge tubes and placed in a SpeedVac) and the remaining 

solution was purified by HPLC (see below). After purification, the oligonucleotides were 

desalted with DNase/RNase free H2O using Illustra NAP-5 columns (Sephadex G-25 

DNA grade, GE Healthcare) according to manufacturer instructions. The desalted 

oligonucleotides were quantified by UV-Vis (A260, using predicted molar extinction 

coefficients for native dNTPs and ε=5,000 M-1 cm-1 for NPOM at 260 nm) and confirmed 

by LC-MS (see below). The purity was assessed by HPLC reinjection of the purified 

oligonucleotides (see Appendix B for chromatograms). 

Oligonucleotide  2.1. Purity = 87.7% (260 nm). MS calc’d 9741.1, found 9741.6 (parent) 

Oligonucleotide 2.2. Purity = 88.6% (260 nm). MS calc’d 13827.0, found 13827.8 

(parent)   
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Oligonucleotide 2.3. Purity = 96.9% (260 nm). MS calc’d 15163.4, found 15163.2 

(parent)   

Oligonucleotide 2.4. Purity = 86.0% (260 nm). MS calc’d 15609.2, found 15610.4 

(parent) 

Oligonucleotide 2.10. Purity = 75.2% (260 nm). MS calc’d 14015.2, found 14015.7 

(parent) 

Oligonucleotide 2.11. Purity = 91.4% (260 and 589 nm). MS calc’d 14708.0, found 

14721.2 (parent)   

 

2.8.2 HPLC Purification & LC-MS Analysis. Oligonucleotides were HPLC purified on 

an Agilent 1200 series instrument equipped with a diode array detector and a PLRP-S 

column (8 µm, 100 Å, 4.6 x 150 mm, Agilent Technologies). The analysis method (2.750 

mL/min flow rate) involved isocratic 100 mM TEAA (aqueous, pH 7.0, Sigma-Aldrich; 0 

to 5 mins) followed by a linear gradient to 10% 100 mM TEAA:MeCN (1:1, 5 to 10 

mins) and finally a linear gradient of 30% to 70% 100 mM TEAA:MeCN (1:1, 10 to 45 

mins). Wavelengths monitored = 215 nm and 260 nm. LC-MS was performed on an 

Agilent 1100 series HPLC instrument equipped with an Agilent MSD SL Ion Trap mass 

spectrometer (operating in negative ion mode). A Zorbax SB-C18 column (5 µm, 300 Å, 

0.5 x 150 mm, Agilent Technologies) was used for LC-MS analysis. The analysis method 

(15 µL/min flow rate) involved 15 mM aqueous NH4OAc containing 2% MeCN followed 

by a linear gradient of 2% to 25% MeCN (0 to 15 mins) and 25% to 60% MeCN (15 to 

25 mins). Wavelengths monitored = 215 nm and 260 nm.  
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2.8.3 Thermal Melting Analysis. Thermal melting analyses were performed on a 

temperature-controlled Agilent Cary 100 UV-Vis spectrophotometer containing a 6-cell 

block with a path length of 1 cm. A degassed aqueous solution of 10 mM sodium 

cacodylate, 10 mM KCl, 10mM MgCl2, and 5 mM CaCl2 (pH 7.0) was used as analysis 

buffer.211 Oligonucleotides (1 nmol) were mixed in the buffer (1 mL). Before data 

collection, samples were heated to 90 °C and cooled to a starting temperature of 30 °C 

with a 5 °C/min ramp. Data points were recorded at λ = 260 nm every 12 seconds on a 

0.5 °C/min ramp from 30 °C to 90 °C. After data collection, the sample was cooled back 

down to 30 °C on a 5 °C/min ramp. The method was repeated to obtain a technical 

replicate. The experiment was repeated to obtain a biological replicate (n=4 total 

analyses). The reported thermal melting temperatures (Tm) were calculated from the 

maximum of the first derivative of the denaturation curve (Cary WinUV Thermal 

Application; v 4.20). Mean Tm values (with standard deviation) were calculated in 

Microsoft Excel from the individual Tm values obtained from each replicate (n = 4). 

 

2.8.4 Photolysis, Exponential Decay, and Quantum Yield Analysis. DNA photolysis 

experiments were carried out using a Rayonet photochemical reactor (RMR-600, 

Southern New England Ultraviolet Co.) fitted with two, 350 nm bulbs. To enable 

quantitative analysis of photochemical decay of DNA decoys, calibration plots for each 

DNA decoy were generated. Increasing concentrations of each DNA decoy (0.55, 1.65, 

4.94, 14.81, 44.44, 133.33 pmol) were added to a fixed concentration of a non-modified 
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DNA oligonucleotide (5′-TAACTA-3′, 100 pmol) and analyzed by extracted ion current 

(EIC) LC-MS (masses monitored at -9 charge state for decoys).212 A calibration plot was 

created by plotting the ratio of decoy:standard area under the curve (AUC) versus DNA 

decoy concentration, yielding calibration plots with a slope-intercept equation of R2 > 

0.99.  

 Quantitative analysis of DNA decoy photolysis was performed by dissolving the 

DNA decoy (800 pmol) in DNase/RNase free H2O and then adding the solution to 

conical pulled point vial inserts (250 µL; Agilent, 8010-0125). Vessels containing the 

aqueous DNA solution was placed into the photochemical reactor and irradiated (light 

intensity: 2.38x10-8 ein cm-2 s-1; calculated as described below). Aliquots (4 µL) were 

taken at several time points (0, 0.25, 0.5, 1, 2, 3, 4, 5 min), diluted with standard (1 µL) 

and then analyzed by LC-MS. The concentration of the decoy species from irradiation 

were determined by fitting the decoy/standard ratios from each sample into the slope-

intercept equation from the calibration plot to yield the amount of decoy (pmol) in sample 

(performed in Microsoft Excel). This process was repeated for each prominent molecular 

ion observed in the photolysis sample. Furthermore, this quantitative analysis method 

assures comparable ionization properties for the photolyzed products in comparison to 

the non-irradiated sample. First order decay analysis (GraphPad Prism; v5.0b) was then 

fitted to the data (percentage of starting material over time) to obtain the decay equation 

and half-life (t1/2) of the DNA decoy. Mean t1/2 values (with standard deviation) were 

calculated in Microsoft Excel from the fitting of the decay curve with the individual data 

points obtained from each replicate (n = 4).  



 

 60 

 Quantum yield (Φ) calculations were carried out to determine the efficiency of 

photolysis of caged 2.2.1 (eq. 1). The intensity of the light source (I, eq. 2) was 

determined using K3[Fe(C2O4)3] actinometry as previously described.213,214 In brief, a 

solution of K3[Fe(C2O4)3]�3H2O in distilled H2O (6 M, 2 mL) was irradiated for 180 

seconds in the Rayonet equipped with two, 350 nm bulbs. After irradiation, the sample 

was transferred to a volumetric flask (25 mL). To the flask was added aqueous buffer (3 

mL; recipe to make a 500 mL solution of aqueous buffer: 300 mL of 1.0 M NaOAc, 180 

mL of 1.0 M H2SO4, and 20 mL distilled H2O), phenanthroline solution (3 mL of 0.1% 

v/v phenanthroline in distilled H2O), KF solution (1 mL of a 2.0 M solution), and distilled 

water (~18 mL, to 25 mL). The solution was placed in the dark for 1 hour. A non-

irradiated sample was prepared in the same manner. After 1 hour, the solutions were 

transferred to a cuvette and the A510 was measured for both samples. The Rayonet light 

intensity was then calculated using eq. 2 (2.38x10-8 ein cm-2 s-1). The extinction 

coefficient at 350 nm (ε350) of caged decoy 2.2.1 was calculated by UV-Vis absorbance 

using the Beer-Lambert law (5077 M-1 cm-1). The irradiation time for 90% conversion 

(t90%) of the DNA decoy was calculated from the first order decay equation (above). 

Quantum yield was then calculated using eq. 1 to give a value less than one.215  

 

(Eq. 1)  Φ = (I*σ*t90%)-1  

where σ (cm-2 mol-1) is equal to 1000*ε350 of the DNA decoy 

 

(Eq. 2)  I (ein cm-2 s-1) = (V1*V3*ΔA510)/(1000 (mL/l)*ε510*V2*ΦFe*t) 
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where V1 is the volume of K3[Fe(C2O4)3] irradiated (mL); V2 is the volume of the 

K3[Fe(C2O4)3] solution transferred to the volumetric flask (mL); V3 is the volume of the 

volumetric flask (mL); ΔA510 is the difference in absorbances at 510 nm between the 

irradiated and non-irradiated samples; ε510 is the extinction coefficient of K3[Fe(C2O4)3] 

at 510 nm (11,100 cm-2 s-1)213; ΦFe is the quantum yield of K3[Fe(C2O4)3]�3H2O (1.21)213; 

and t is the time irradiated (s).  

 

2.8.5 32P Radiolabeling. DNA decoys in DNase/RNase free water were annealed by 

heating to 95 °C in a heating block for 5 minutes, followed by slow cooling to room 

temperature. To a microcentrifuge tube (1.7 mL) was added the annealed DNA decoy (50 

pmol) and T4 polynucleotide kinase (PNK) buffer (5 µL of a 10X solution, Thermo 

Scientific). DNase/RNase-free H2O was added to yield a final volume of 40 µL. The 

reaction tube was placed into a shielded rack then [γ-32P]-ATP (5 µL; 6,000 Ci/mmol, 

Perkin Elmer) was added. PNK was diluted in DNase/RNase-free H2O (1:10) then added 

to the reaction (5 µL). The reaction was briefly mixed, centrifuged (to remove any 

material from cap), and then placed in a 37 °C heat block for 30 minutes. Heating to 70 

°C for 30 minutes in the second heat block was then used to inactivate the kinase. The 

radioactive reaction mixture was transferred to an Illustra MicroSpin G-50 column (GE 

Healthcare, prepared according to vendor instructions) and centrifuged at 1500 rpm for 

20 seconds to yield 32P-labeled oligonucleotides. The radioactivity of the 

oligonucleotides were quantified (counts/min/µL) by transferring an aliquot to an 
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Eppendorf tube followed by analysis on a Beckman LS 6500 multi-purpose scintillation 

counter (dry counting).  

 

2.8.6 Electrophoretic Mobility Shift Assay (EMSA). Binding reactions containing 

binding buffer (2 µL of a 10X solution; 10X solution: 100 mM Tris, 10 mM EDTA, 500 

mM NaCl, and 10% NP-40),92 sheared salmon sperm DNA (1 µL of a 1.0 µg/µL 

solution), and DNase/RNase free H2O (to a final volume of 20 µL) were prepared in 

microcentrifuge tubes (0.65 mL) and incubated on ice for 30 mins. 32P-labeled DNA 

decoys (1 µL, 25,000 counts/min/µL) were added to the binding reaction. Binding 

reactions were then transferred to glass HPLC vial inserts (each 20 µL binding reaction 

was pipetted into individual inserts) and irradiated (with the exception of non-irradiated 

control samples) in the Rayonet with two 350 nm bulbs (2.28x10-8 ein cm-2 s-1) at room 

temperature. The samples were taken out of the Rayonet at various time points and 

transferred (~20 µL volume) to a new microcentrifuge tube (0.65 mL). Testosterone 

induced LNCaP lysate (1 µL of a 4.0 µg/µL solution, Active Motif) was added to the 

binding reaction. All samples and controls were then incubated at room temperature for 

20 min. Loading dye (2 µL, 10X solution; 0.5X TBE, 40% glycerol, 2 mg/mL Orange G 

dye, Sigma) was added to each reaction and samples were loaded onto a 5% non-

denaturing PAGE gel that was pre-run at 200 V for 1 hr in 0.5X TBE. Samples were 

electrophoresed at 200V until the loading dye was ~¾ down the gel. The gel was 

transferred to filter paper (Bio-Rad; the plates were pried apart and the gel was placed on 

the wetted filter paper), covered with plastic wrap and cellophane (Bio-Rad), and dried 
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for 1 hr (Gel Air Dryer, Bio-Rad). The gel was transferred to a phosphorimager screen 

overnight and then analyzed on a Typhoon FLA 7000 biomolecular imager (GE 

Healthcare). Images were analyzed using Image Quant TL software (v 7.0, GE 

Healthcare).  

 

2.8.7 Texas Red Conjugation. The amino-modified oligonucleotide 2.10 (0.1 µmole of 

free primary amines) was dissolved in 0.7 mL DNase/RNase free H2O. 10X conjugation 

buffer (1M NaHCO3/Na2CO3, pH 9, 0.1 mL) was added to the oligonucleotide. A freshly 

prepared 10 mg/mL solution of active Texas Red NHS ester (Molecular Probe) in DMF 

(0.2 mL) was added to the reaction mixture. The mixture was vortexed and reacted with a 

stir bar for 24 hours. The reaction was HPLC purified and desalted to afford 2.11 (28 

nmol, 28% yield).  
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Chapter 3 

 

7-NITROINDOLE (7-NI) CONTAINING NF-κB-DIRECTED ‘CATCH AND 

RELEASE DNA DECOYS’ (CRDDs) 

 

 
 
 

 
This work was performed in collaboration with Bryant Keller and Professor Daniel A. 
Harki. In this work, Bryant Keller was responsible for synthesizing the 6-nitroindole 

phosphoramidite and oligonucleotide 3.23. 
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3.1 ‘Catch and Release’ DNA Decoys (CRDDs) and the NF-κB Signaling Pathway 

 

The caged DNA decoy examples in Chapter 1.6 and Chapter 2 demonstrate the 

precise activation of decoys in a spatiotemporal manner, which has potential as 

therapeutic agents and may enable the studies specific TFs by deactivation of their 

signaling pathways. However, biochemical signaling pathways are extremely complex 

and involve inter-pathway cross talk, which complicates their study and analysis. For 

instance, it has been demonstrated that the transcription factor Nuclear Factor Kappa B 

(NF-κB) is constitutively activated in prostate cancer and regulates AR expression.216,217 

NF-κB interacts and cooperates with more than 40 other TFs in cancer.47 Additionally, it 

has been shown that oscillation in NF-κB signaling controls the dynamics of gene 

expression, and therefore, it is quite difficult to obtain more than a snapshot of the 

function of these types of transcription factors.218,219 Given the real-time complexity of 

cellular signaling pathways and the limitations of current technologies, including 

engineered cell lines,220 there is a need for chemical tools to study the activation of gene-

specific TFs in a spatiotemporal manner.  

To study the activation of TF pathways, biomedical researchers typically dose 

cells with exogenous stimulatory ligands, such as small molecules or proteins, to activate 

specific pathways of interest. One example is tumor necrosis factor (TNF), which is 

widely used to activate the canonical NF-κB pathway. However, it has been shown that 

TNF activates more than the NF-κB pathway, including the MAP kinase and death 

receptor pathways (Figure 3.1ai).60,221 Therefore, the utilization of signaling molecules  
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such as TNF can result in the incorrect assignment of a subset of NF-κB-controlled 

cellular processes due to other signaling pathways being stimulated in addition to the 

desired (NF-κB) target (Figure 3.1a).  

This problem can be overcome through a ‘catch and release’ mechanism of NF-

κB sequestering, re-establishment of equilibrium, then photochemical release allowing 

exclusive activation of NF-κB driven genes in a spatiotemporal manner (Figure 3.1b). As 

discussed in Chapter 1.4, the DNA decoy strategy can be considered one of the most 

useful approaches to examine molecular mechanisms of TFs and their specific signaling 

pathways. This has been demonstrated utilizing a cAMP response element (CRE)-

directed DNA decoy and analyzing alterations in gene expression by DNA microarrays. 

The CRE-directed decoy sequestered the TF, which resulted in the up-regulation of the 

AP-2β and other genes involved in development and cell differentiation, and down-

regulated different clusters of genes involved in cell proliferation and transformation. 

This indicates that CRE transcription favors tumor growth and may serve as a target to 

treat cancer.222 We hypothesized that a photo-responsive ‘on-to-off’ DNA decoy could 

sequester NF-κB in the cytoplasm following TNF-α stimulation (Figure 3.1bi). DNA 

decoys are known to have half-lives of ~3 days in vitro and ~5 days in vivo,223 therefore, 

we predicted that the cell would re-establish an equilibrium following withdraw of the 

signaling ligand (Figure 3.1bii). Finally, the NF-κB transcription factor could be then 

released from the DNA decoy photochemically (Figure 3.1biii) to yield exclusive 

activation of NF-κB target genes after nuclear translocation. This ‘Catch and Release’ 

approach could then allow for an in-depth understanding of the mechanisms that activate 
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gene expression and precise mapping of complex signaling pathways and their cross talk, 

such knowledge could be valuable information for the understanding of disease processes 

and for the development of therapeutic agents.37,224 

 

3.2 CRDD Design and Synthesis 

 

We developed a novel class of DNA decoys, termed ‘Catch and Release DNA 

Decoys (CRDDs)’, that capture and release DNA-binding proteins using a light trigger 

(Figure 3.2). Unlike caged DNA decoys, CRDDs are an ‘on-to-off’ platform that utilizes 

light to promote photochemical destruction of the DNA decoy and dissociation of the 

protein-DNA complex. Our design utilizes depurination-competent mimics of natural 

nucleobases that when incorporated into a DNA decoy function as natural nucleobases 

and enable decoy binding to its designed protein target. However, CRDD photolysis 

results in formation of multiple abasic sites within the decoy, as well as truncated decoys 

resulting from β- and δ-elimination at abasic sites, yielding a modified CRDD that 

possesses significantly diminished affinity for its design protein target. Consequently, 

CRDD photolysis enables release of the sequestered protein target.  

 

Figure 3.2. A Catch and Release DNA Decoy (CRDD) targeting the NF-κB transcription factor. 
Photolysis of DNA decoys containing photo-responsive nucleotides (X with stars) with UV-light (hν) 
results in formation of abasic sites (_) and strand cleavage products (not shown).  
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 Incorporation of 2-nitrobenzylethers in place of native nucleobases in DNA 

oligonucleotides has been utilized as a strategy to generate abasic sites photochemically 

with sequence specificity.225-227 Additionally, 7-nitroindole (3.1) has been shown to 

photochemically depurinate in DNA oligonucleotides, through formation of a diradical, 

hydrogen atom abstraction, heterocycle formation and degradation similar to the 2-NB 

mechanism (Scheme 1.3), yielding a 2′-deoxyribolactone (3.2) abasic site in DNA, which 

can undergo β- and δ-elimination resulting in strand cleavage, and a 7-nitrosoindole (3.3) 

 

Figure 3.3. (a) 7-Nitroindole-containing nucleotides (3.1) depurinate with UV-light resulting 
information of 2′-deoxyribolactone 3.2 and 7-nitrosoindole (3.3) products. (b) Incorporation of three 7-
nitroindole nucleotides (X = 3.1) into a DNA decoy sequence known to target the NF-κB proteins still 
permit protein binding (catch). Photolysis of the decoy with UV-light (350 nm) results in the formation 
of multiple abasic sites and truncation products that have lowered affinity for the protein, thereby 
enabling dissociation of the NF-κB-CRDD complex (release). 
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by-product (Figure 3.3a).228-231 Given the obvious structural similarities between indole 

heterocycles and purine nucleobases, which is further reinforced by work demonstrating 

that 5-nitroindole can serve as a ‘universal base’ in DNA232 and that both 5- and 7-

nitroindole nucleobases can be enzymatically recognized by Klenow fragment DNA 

polymerase I,233 we hypothesized that 7-nitroindole may suitably mimic natural purines 

in established DNA decoys that bind the NF-κB proteins. Furthermore, we hypothesized 

that photolysis of the NF-κB-decoy complex would enable protein release through 

photochemical destruction of the decoy as previously described (Figure 3.3b).  

The synthesis of phosphoramidite 3.9 starting from 7-nitroindole (7-NI, 3.4) can 

be prepared in four steps as previously described (Scheme 3.1).228,234 SN2 displacement 

of 3′,5′-O-toluoyl-1′-α-chloro-2′-deoxyribose 3.5 with the sodium salt of 7-nitroindole 

(3.4) yields the protected 7-NI nucleoside 3.6. Deprotection of the toluoyl protecting 

groups, followed by 5′-hydroxyl protection with 4,4′-dimethoxytrityl chloride afforded 

3.8. Finally, incorporation of the phosphoramidite on the 3′-hydroxyl group of the 
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Scheme 3.1. Synthesis of 7-nitroindole-containing phosphoramidite 3.9.   
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nucleoside yielded 7-nitroindole-2′-deoxyribose phosphoramidite 3.9, which is now ready 

for incorporation into CRDDs by solid-phase oligonucleotide synthesis.  

The NF-κB signaling pathway regulates scores of cellular processes associated 

with inflammation, cell survival and proliferation, and aberrant NF-κB activity is 

frequently found in cancer, cardiovascular disease, and autoimmune diseases.235 Given 

the fundamental role of NF-κB signaling in many human diseases, as well as strong 

precedence for the development of NF-κB-targeted DNA decoys,236-240 including caged 

reagents,201 we developed our first CRDD against the NF-κB proteins. The four purine 

site of the NF-κB consensus sequence (5′-GGGRNYYYCC-3′, where R is a purine, Y is 

a pyrimidine, and N is any nucleotide) is crucial for DNA binding of p50.241 Therefore, 

we utilized established NF-κB decoy 3.10201 as our base hairpin sequence for optimizing 

NF-κB-targeted CRDDs (Figure 3.4). One-to-three purines included in or flanking the 4-

 

Figure 3.4. Synthesized decoys 3.10-3.19 (X = 3.1; _ = 3.2). 
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G site were replaced with 7-NI nucleotides, yielding CRDDs 3.11, 3.13, and 3.15. The 

substitutions of the 7-NIs were also placed in succession to amplify the result of multiple 

depurination events in a concentrated area. These decoys were synthesized using 3.9 

under standard solid-phase DNA synthesis conditions. Photolysis of 3.11, 3.13, and 3.15, 

followed by purification afforded decoys 3.12, 3.14, and 3.16 containing one, two, and 

three abasic sites, respectively. A control scrambled DNA decoy 3.17 and scrambled 

CRDD containing three 7-NI nucleotides 3.18 were also synthesized, as well a DNA 

decoy with three base pair mismatches 3.19 in place of the three 7-NI nucleotides.  

 

3.3 Thermal Melting Analysis 

 

Table 3.1 Thermal melting of duplex DNA containing the 7-nitroindole 3.21 and 6-nitroindole 3.23 
nucleotides. DNA containing the 5-nitroindole nucleotide 3.22, an established universal base,232 was used 
as a control. Thermal melting experiments performed in 10 mM sodium cacodylate, 10 mM KCl, 10 mM 
MgCl2, 5 mM CaCl2, pH 7.0 buffer.211 Mean ± SD (n = 4) are shown. 

 



 

 73 

The thermal stability of DNA duplexes and hairpins containing the 7-NI 

nucleobase was studied by UV thermal melting experiments and compared to native 

guanine 3.20.207 First, 7-NI was singly incorporated into oligonucleotide 3.21 and thermal 

melting of duplex DNA containing all natural nucleotides hybridized to 7-NI was 

measured. In addition, the DNA stability of duplexes containing 5-nitroindole 3.22 and 6-

nitroindole 3.23 nucleobases was included for comparison (Table 3.1).207,231,232 In 

comparison to G-C pairing, incorporation of 5-nitroindole 3.22 into duplex DNA in place 

of guanine decreases stability (ΔTm  = -7.5 °C), while 6-nitroindole 3.23 is more 

destabilizing (ΔTm = -10.0 °C), and 7-nitroindole 3.21 is even more destabilizing (ΔTm = 

-15.2 °C). However, 7-Nitroindole 3.21 is the only nucleotide able to undergo 

photochemical depurination.  

Table 3.2 Thermal stability of synthesized NF-κB-directed (3.10-3.16), scramble (3.17 and 3.18), and 
three base pair mismatch (3.19) CRDDs. Thermal melting of 3.10-3.16 demonstrating DNA duplex 
destabilization resulting from incorporation of 7-nitroindoles (CRDDs 3.11, 3.13, and 3.15) and more 
predominantly, abasic sites (CRDDs 3.14 and 3.16). Thermal melting of 3.17-3.19 demonstrating 
scramble DNA duplex destabilization resulting from incorporation of 7-nitroindoles (3.18) and 
destabilization from incorporation of base pair mismatches (3.18). Thermal melting experiments were 
performed in 10 mM sodium cacodylate, 10 mM KCl, 10 mM MgCl2, 5 mM CaCl2, pH 7.0 buffer. 
Mean ± SD (n = 4). 
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Thermal melting of CRDDs 3.11, 3.13, and 3.15 and the stability of their 

corresponding abasic photoproducts 3.12, 3.14, and 3.16 were then performed (Table 

3.2). The introduction of a single 7-NI nucleotide into the CCRD 3.11 decreased duplex 

stability as expected (ΔTm = -4.1 °C), but photochemical introduction of the abasic site in 

3.12 increased stability compared to 3.11 (ΔTm = +2.6 °C). From this result, it was 

hypothesized that more than one abasic site would be needed to sufficiently disrupt 

duplex formation and overall binding affinity after depurination. The thermal stabilities 

of 3.13 and 3.15 were lower in comparison to non-modified decoy 3.10 (ΔTm = -10.3 °C 

and -12.2 °C, respectively), yet both are sufficiently stable (Tm = 72.3 °C and 70.4 °C, 

respectively). As anticipated, photochemical introduction of multiple abasic sites forming 

3.14 (two abasic sites) is destabilizing to duplex DNA (ΔTm = -12.3 °C compared to 

3.10; ΔTm = -2.0 °C compared to 3.13) and even greater for 3.16 (ΔTm = -15.8 °C 

compared to 3.10; ΔTm = -3.6 °C compared to 3.15), which contains three abasic sites. 

The thermal stability of scramble 3.18 containing three 7-NIs was lower in comparison to 

non-modified scramble decoy 3.17 (ΔTm = -9.9 °C), similarly to the incorporation of 7-

NIs into the CRDDs. Three base pair mismatch 3.19 in place of the three 7-NI 

nucleotides also displayed a lowered Tm compared to native 3.10 (ΔTm = -10.4 °C). 

 

3.4 Capture of NF-κB by CRDDs 

 

We next evaluated the ability of the decoys to capture NF-κB proteins by 

electrophoretic mobility shift assays (EMSAs). 32P-end-labeled 3.10, 3.15, and 3.17-3.19 
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were added to a solution of recombinant p50-p65 proteins and protein binding was 

measured. The NF-κB directed DNA decoys exhibited specific binding toward the NF-κB 

proteins, as little binding occurred with the scramble and base pair mismatch decoys 

3.17-3.19 (Figure 3.5).  

To characterize the NF-κB complexes responsible for binding to DNA decoys, 

supershifting EMSAs were carried out (Figure 3.6). p50 utilized in all experiments is a 

partially truncated recombinant protein (35-381; 433 amino acids for wild-type enzyme). 

The p65 recombinant protein utilized in these experiments is primarily the DNA-binding 

domain with a N-terminal GST tag (1-306; 551 amino acids for wild-type enzyme). 

Addition of p50 antibody to NF-κB-3.10 complexes completely supershifted the band, 

indicating that p50 protein is present in all complexes bound to 3.10 (Figure 3.6a).  

 
 
Figure 3.5. EMSA to characterize CRDD protein binding ability. 5ʹ′-32P-labeled 3.10 (NF-κB decoy 
without 7-NI modifications), 3.15 (NF-κB decoy with three 7-NI modifications), 3.17 (scramble 
decoy without 7-NI modifications), 3.18 (scramble decoy with three 7-NI modifications), and 3.19 
(NF-κB decoy with three natural base pair mismatch modifications) incubated with p50-p65 
recombinant proteins results in the formation of NF-κB-3.10 and NF-κB-3.15 complexes. Scramble 
decoys 3.17 and 3.18 as well as three base pair mismatch 3.19 show no affinity towards p50-p65. 
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However, addition of p65 antibody only partially supershifted the NF-κB complex 

(Figure 3.6a). These data suggest that the observed NF-κB-3.10 complex is comprised of 

both p50-p65 heterodimers (supershift) and p50-p50 homodimers (shift), which is 

consistent with previously studies.242 The supershift experiment was repeated with a near 

full-length p65 recombinant protein (1-537), which confirmed these results (Figure 

3.6b). The ability of CRDD 3.15 (containing three 7-NIs) to bind the NF-κB complexes 

was similarly confirmed by EMSA supershift analysis (Figure 3.6c) To support these 

EMSA results, we performed quantitative EMSA titrations with NF-κB proteins to obtain 

equilibrium dissociation constants for all three possible NF-κB complexes with native 

DNA decoy 3.10 (Figure 3.6d). The p50-p65 heterodimer demonstrated the highest 

binding affinity (Kd = 15.3 nM). The p50 and p65 homodimer proteins were also 

measured (Kd = 31.1 nM and 91.7 nM, respectively), revealing the p65 homodimer has a 

6-fold lower binding affinity for 3.10 than the p50-p65 heterodimer, which is consistent 

with a previous study.243 Therefore, our studies of CRDD binding to NF-κB proteins are 

sampling a mixture of both p50 and p65 heterodimers and homodimers. 

As shown in Figure 3.7a, CRDDs 3.11, 3.13, and 3.15 demonstrated the ability to 

bind the NF-κB complex similarly to native decoy 3.10. Decoys 3.12 and 3.14, however, 

retain the ability to bind despite containing one and two abasic sites. Decoy 3.16, 

containing three abasic sites, demonstrated no observable complex formation upon 

addition of proteins. This result revealed that the photochemical transformation of 3.15 to 

3.16 abolishes NF-κB binding, and therefore, we utilized this compound for further 

studies.  
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To corroborate our EMSA results, we performed quantitative EMSA titrations 

with NF-κB proteins and 3.10, 3.15, and 3.16 to obtain equilibrium dissociation constants 

for our probes. DNA decoy 3.10 (Kd = 15.3 nM) and CRDD 3.15 (Kd = 36.2 nM) 

exhibited comparable binding affinities for the NF-κB proteins (Figure 3.7b). 

Quantitative analysis using densitometry revealed approximately ~50% decrease in signal 

of CRDD 3.15 compared to native 3.10 (Figure 3.7a), which is consistent with a lower 

Kd (Figure 3.7b). Remarkably, CRDD 3.16, which contains three abasic sites in the p50 

recognition domain, exhibited no observable binding to the NF-κB proteins (Kd > 500 

nM). These data further support our model by which CRDD depurination ablates protein 

recognition.   

 

 

 

 
 
Figure 3.7. (a) Electrophoretic mobility shift assays with 3.10-3.16. 5′-32P-labeled 3.10-3.16 incubated 
with p50-p65 (Sino Biological) recombinant proteins displays formation of the NF-κB-CRDD 
complexes. NF-κB binding is observed until three abasic sites are formed (i.e., 10). (b) Quantitative 
EMSA analysis to measure equilibrium dissociation (Kd) constants for 3.10, 3.15, and 3.16 with 
recombinant p50-p65 proteins. 
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3.5 Kinetics of Depurination 

 

To characterize the kinetics and the identities of the photo-products resulting from 

irradiation of 3.15, we utilized liquid chromatography-mass spectrometry (LC-MS) 

analysis of an irradiated aqueous sample. As shown in Figure 3.8, irradiation of 3.15 

yielded fast photolysis (t1/2 = 1.2 min; 350 nm light; light intensity: 5.66x10-8 ein cm-2s-1) 

whereby 90% of 3.15 was converted to photo-products within 4.5 minutes. The quantum 

yield (Φ) of 3.15 was determined to be 0.0104, which is comparable, albeit slower, than 

6-nitropiperonyloxymethyl (NPOM)-protected thymine (Φ = 0.094).209  

 

After 25 minutes of irradiation of CRDD 3.15, very little decoy remained and 

multiple abasic decoys and truncation products resulting from β- and δ-elimination were 

detected (Figure 3.9). As expected, formation of decoys with one abasic site increases 

immediately, peaks around 5 minutes, and decreases as multiple abasic sites are formed. 

 
 
Figure 3.8. Photolysis of CRDD 3.15 (350 nm light). Samples analyzed by ion-extracted LC-MS. 
Photolytic decay curve of 3.15 with calculated half-life and quantum yield (R2 = 0.97). 
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Decoys with one, two, and three abasic sites (3.24, 3.25, and 3.16, respectively) were 

observed after 25 minutes of irradiation. These abasic decoys result in approximately 

65% of the total number of photo-products formed (Figure 3.9, dashed lines). Several 

truncated products (3.26-3.29) are formed by β and δ-eliminations of the 3′ and 5′ 

phosphates, due to the instability of the abasic lactones within DNA.230 Of these 

truncated products, 2-6 nucleotides are cleaved from the 5′-end of the decoy (Figure 3.9, 

solid lines). Consequently, photolysis of 3.15 results in substantial modification to the 

essential 4-G NF-κB binding site, which disrupts protein-CRDD binding. 

 

3.6 Photochemical Catch and Release of NF-κB 

 

To assess the ability of CRDD 3.15 to release the NF-κB complex 

photochemically, a solution of 32P-labeled 3.15 and recombinant proteins were incubated 

in binding buffer, followed by treatment with 350 nm light. Photolysis of the 3.15-NF-κB 

 
 

Figure 3.9. Photolysis of CRDD 3.15 (350 nm light). Samples analyzed by ion-extracted LC-MS. 
Formation of abasic sites and truncation products 3.16 and 3.24-3.29 resulting from photolysis of 3.15 
(P = 5′-phosphate). Dashed line denotes full-length DNA decoys containing abasic products and solid 
lines denote truncation products (some contain abasic sites as well). Isomers denote constitution 
isomers resulting from photolysis of 3.15 (e.g., X and _ are in different arrangements). Mean ± SD (n = 
4). An LC-MS chromatogram of the photo-products from irradiation of 9 can be found in Appendix B. 
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complex, over time, drives release of the transcription factor upon formation of abasic 

sites and truncated products of the DNA decoy (Figure 3.10a). After 4 minutes of 

irradiation of the 3.15-NF-κB complex, approximately 50% of the NF-κB proteins are 

released even through the protein is in large excess (Figure 3.10b). Recovery of the 

complex can be obtained by additional 32P-labeled 3.15, demonstrating the viability of 

NF-κB to bind DNA after irradiation with light.  

 
 

Figure 3.10. Quantitative electrophoretic mobility shift assay with CRDD 3.15. (a) 5′-32P-labeled 3.15 
incubated with NF-κB proteins yields complex formation (catch, t = 0 min), which is dissociated upon 
photolysis with 350 nm light (release) in a time-dependent manner. Recovery of the NF-κB-3.15 
complex can be obtained by addition of 32P-labeled 3.15. (b) Densitometry of EMSAs yielding half-life 
of NF-κB release (R2 = 0.93). Mean ± SD. (n = 3). 

 

 
 

Figure 3.11. (a) Western blots for p50 (left) and p65 (right) following irradiation of NF-κB recombinant 
p50 protein (Enzo Life Sciences, BML-UW9885-0050, amino acids 35-381), recombinant p65 protein 
(Sino Biological, 12054-H09E, amino acids 1-306) at 350 nm for 60 minutes. (b) EMSA of NF-κB 
recombinant p50 protein (Enzo Life Sciences, BML-UW9885-0050, amino acids 35-381), recombinant 
p65 protein (Sino Biological, 12054-H09E, amino acids 1-306) with 5ʹ′-32P-labeled 4 following irradiation 
of proteins at 350 nm for 60 minutes. 
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Additionally, western blot (Figure 3.11a-3.11b) and EMSA (Figure 3.11c) 

analysis of p50 and p65 proteins following subjection to the photolysis conditions (350 

nm light, in H2O) reveals no apparent damage to proteins. 

 

3.7 Conclusions and Future Work 

 

We demonstrate for the first time the capture and photochemical release of an 

endogenous transcription factor heterodimer using a novel photo-responsive Catch and 

Release DNA Decoy (CRDD). Photolysis of CRDD 3.15 resulted in formation of abasic 

sites and truncated products abolishing affinity for NF-κB protein binding. These results 

have demonstrated that CRDDs can be used to effectively capture and spatiotemporally 

release TFs.  

The EMSA experiments demonstrated the ability of the 7-nitroindole decoy 3.15 

to catch, photochemically release, and recapture NF-κB in vitro (Figure 3.10a). Future 

work will demonstrate the ability of our ‘catch and release’ NF-κB decoys to work in cell 

culture. We will utilize a commercial cell line (CHO/GFP-NF-κB-p65, Affymetrix 

RC2001), which is a stable, p65-GFP reporter cell lines that is useful in monitoring the 

cellular activity of NF-κB. Under basal conditions, the NF-κB dimer is sequestered in the 

cytoplasm Figure 3.12. Induction of the signaling pathway by addition of IL-1β results in 

NF-κB activation and nuclear translocation. This is evident by visualizing our data in 

Figure 3.12 where the GFP signal overlays with the nuclear stain (Hoechst33342, 

H33342) following IL-1β activation. We will utilize this cell line to study catch and 
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release by fluorescently-labeled CRDDs. We expect to see overlap of our fluorescently-

labeled CRDDs and p65-GFP when transfected into this cell line. Irradiation of the 

CRDD will result in dissociation of NF-κB and we expect to visualize the nuclear 

translocation of the p65-GFP.  

 

3.8 Experimental Section 

3.8.1 Chemical Synthesis. 

General. Chemical reagents were typically from Sigma-Aldrich or Acros and used 

without additional purification unless explicitly noted. Reactions were performed under 

 
Figure 3.12. NF-κB reporter assay in CHO cells. (Top) p65-GFP is visualized in the cytoplasm, yielding 
distinct localization versus H33342 (nuclear stain). Induction of NF-κB results nuclear translocation of 
p65-GFP, as evidenced by co-localization of the GFP signal and H33342. 
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an atmosphere of dry N2 unless otherwise noted. Silica gel chromatography was 

performed on a Teledyne-Isco Combiflash Rf-200 instrument utilizing Redisep Rf Gold 

High Performance silica gel columns (Teledyne-Isco) or self-packed columns with 

SiliaFlash 60Å silica gel (SiliCycle). Nuclear magnetic resonance (NMR) spectroscopy 

employed a Bruker AvanceII+ instrument operating at 400 MHz (for 1H), 100 MHz (for 

13C), or 161 MHz (for 31P) at ambient temperature. Chemical shifts are reported in parts 

per million and normalized to internal solvent peaks or tetramethylsilane (δ = 0 ppm).  

 

1-(2′-Deoxy-3′,5′-di-O-p-toluoyl-β-ribofuranosyl)-7-nitroindole (3.6): Prepared as 

previously described.244,245 

 

1-(2′-Deoxy-β-ribofuranosyl)-7-nitroindole (3.7): Prepared as previously 

described.244,245 

 

1-(2′-Deoxy-5′-dimethoxytrityl-β-ribofuranosyl)-7-nitroindole (3.8): Prepared as 

previously described.244,245 

 

1-(2′-Deoxy-3′-(2-cyanoethyl-N,N-diisopropylphosphoramidite-5′-dimethoxytrityl-β-

ribofuranosyl)-7-nitroindole (3.9): Prepared as previously described.244,245 

 

3.8.2 Solid-Phase DNA Synthesis. Oligonucleotides were synthesized using standard 

solid-phase phosphoramidite chemistry on an Applied Biosystems 394 DNA/RNA 
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synthesizer.210 7-Nitroindole (7-NI) phosphoramidite was synthesized as previously 

described.244,245 All other phosphoramidites, solvents, and solid supports (1.0 µmol) were 

purchased from Glen Research Corporation. 7-NI was incorporated into the 

oligonucleotide by a manual coupling, whereas all other nucleotides were incorporated 

with automated couplings. Automated DNA synthesis was paused immediately prior to 

incorporation of 7-NI and the solid support was removed from the synthesizer. To 

achieve a manual coupling, 7-NI phosphoramidite (15 mg) was dissolved in anhydrous 

MeCN (200 µL), loaded into a syringe (1 mL), and attached to one side of the solid 

support. A second syringe (1 mL) was loaded with Activator (600 µL, Glen Research 

Corp.) and attached to the other end of the solid support. The solutions were then mixed 

through the solid support vessel manually by the two syringes for 20 min. Afterwards, the 

solid support vessel was drained, washed with anhydrous MeCN (1 mL) and returned to 

the synthesizer. This procedure for manual coupling was performed for all 7-NI 

incorporations. Following the synthesis, the resin was transferred to a fritted reaction 

vessel. Concentrated aqueous ammonium hydroxide (2.5 mL) was added and the vessel 

was placed in a shaker for 18 hours at room temperature. After deprotection, the solution 

was filtered into a centrifuge tube (10 mL) and distilled water (2 mL) was added. The 

ammonium hydroxide was evaporated in vacuo (samples were transferred to 

microcentrifuge tubes and placed in a SpeedVac) and the remaining solution was purified 

by HPLC (see below). After purification, the oligonucleotides were desalted with 

DNase/RNase free H2O using Illustra NAP-5 columns (Sephadex G-25 DNA grade, GE 

Healthcare) according to manufacturer instructions. The desalted oligonucleotides were 
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quantified by UV-Vis (A260, using predicted molar extinction coefficients for native 

dNTPs and ε=5,900 M-1 cm-1 for 7-NI at 260 nm) and confirmed by LC-MS (see below). 

The purity was assessed by HPLC reinjection of the purified oligonucleotides (see 

Appendix B for chromatograms). 

Oligonucleotide 3.10. Purity = 95.9% (260 nm). MS calc’d 9502.2, found 9501.6 (parent) 

Oligonucleotide 3.11. Purity = 97.9% (260 nm). MS calc’d 9513.2, found 9513.9 (parent)   

Oligonucleotide 3.12. Purity = 95.8% (260 nm). MS calc’d 9367.1, found 9368.1 (parent)   

Oligonucleotide 3.13. Purity = 98.6% (260 nm). MS calc’d 9524.2, found 9524.7 (parent) 

Oligonucleotide 3.14. Purity = 98.4% (260 nm). MS calc’d 9232.9, found 9233.1 (parent) 

Oligonucleotide 3.15. Purity = 98.5% (260 nm). MS calc’d 9551.2, found 9551.7 (parent)   

Oligonucleotide 3.16. Purity = 96.1% (260 nm). MS calc’d 9114.8, found 9113.5 (parent)   

Oligonucleotide 3.17. Purity = 93.0% (260 nm). MS calc’d 9502.2, found 9502.0 (parent) 

Oligonucleotide 3.18. Purity = 95.3% (260 nm). MS calc’d 9551.2, found 9550.8 (parent) 

Oligonucleotide 3.19. Purity = 94.5% (260 nm). MS calc’d 9486.2, found 9486.4 (parent) 

Oligonucleotide 3.21. Purity = 93.0% (260 nm). MS calc’d 4557.0, found 4556.8 (parent) 

Oligonucleotide 3.23. Purity = 87.5% (260 nm). MS calc’d 4557.0, found 4556.5 (parent) 

 

3.8.3 HPLC Purification & LC-MS Analysis. Procedure outlined in Chapter 2.8.2. 

 

3.8.4 Thermal Melting Analysis. Procedure outlined in Chapter 2.8.3. 
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3.8.5 Photolysis, Exponential Decay, and Quantum Yield Analysis. DNA photolysis 

experiments were carried out using a Rayonet photochemical reactor (RMR-600, 

Southern New England Ultraviolet Co.) fitted with eight, 350 nm bulbs. To enable 

quantitative analysis of photochemical decay of DNA decoys, calibration plots for each 

DNA decoy were generated. Increasing concentrations of each DNA decoy (0.55, 1.65, 

4.94, 14.81, 44.44, 133.33 pmol) were added to a fixed concentration of a non-modified 

DNA oligonucleotide (5′-TAACTA-3′, 100 pmol) and analyzed by extracted ion current 

(EIC) LC-MS (masses monitored at -9 charge state for decoys).212 A calibration plot was 

created by plotting the ratio of decoy:standard area under the curve (AUC) versus DNA 

decoy concentration, yielding calibration plots with a slope-intercept equation of R2 > 

0.99.  

 Quantitative analysis of DNA decoy photolysis was performed by dissolving the 

DNA decoy (800 pmol) in DNase/RNase free H2O and then adding the solution to 

conical pulled point vial inserts (250 µL; Agilent, 8010-0125). Vessels containing the 

aqueous DNA solution was placed into the photochemical reactor and irradiated (light 

intensity: 5.66x10-8 ein cm-2 s-1; calculated as described below). Aliquots (4 µL) were 

taken at several time points (1, 2, 5, 7, 10, 15, 20, 25 min), diluted with standard (1 µL) 

and then analyzed by LC-MS. The concentration of the decoy species from irradiation 

were determined by fitting the decoy/standard ratios from each sample into the slope-

intercept equation from the calibration plot to yield the amount of decoy (pmol) in 

sample. This process was repeated for each prominent molecular ion observed in the 

photolysis sample. Furthermore, this quantitative analysis method assures comparable 
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ionization properties for the photolyzed products in comparison to the non-irradiated 

sample. First order decay analysis (GraphPad Prism; v5.0b) was then fitted to the data 

(percentage of starting material over time) to obtain the decay equation and half-life (t1/2) 

of the DNA decoy. Mean t1/2 values (with standard deviation) were calculated from the 

fitting of the decay curve with the individual data points obtained from each replicate (n 

= 4).  

 Quantum yield (Φ) calculations were carried out to determine the efficiency of 

photolysis of CRDD 3.15 (eq. 1). The intensity of the light source (I, eq. 2) was 

determined using K3[Fe(C2O4)3] actinometry as previously described.213,214 In brief, a 

solution of K3[Fe(C2O4)3]�3H2O in distilled H2O (6 M, 2 mL) was irradiated for 180 

seconds in the Rayonet equipped with eight, 350 nm bulbs. After irradiation, the sample 

was transferred to a volumetric flask (25 mL). To the flask was added aqueous buffer (3 

mL; recipe to make a 500 mL solution of aqueous buffer: 300 mL of 1.0 M NaOAc, 180 

mL of 1.0 M H2SO4, and 20 mL distilled H2O), phenanthroline solution (3 mL of 0.1% 

v/v phenanthroline in distilled H2O), KF solution (1 mL of a 2.0 M solution), and distilled 

water (~18 mL, to 25 mL). The solution was placed in the dark for 1 hour. A non-

irradiated sample was prepared in the same manner. After 1 hour, the solutions were 

transferred to a cuvette and the A510 was measured for both samples. The Rayonet light 

intensity was then calculated using eq. 2 (5.66x10-8 ein cm-2 s-1). The extinction 

coefficient at 350 nm (ε350) of CRDD 3.15 was calculated by UV-Vis absorbance using 

the Beer-Lambert law (7070 M-1 cm-1). The irradiation time for 90% conversion (t90%) of 
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the DNA decoy was calculated from the first order decay equation (above). Quantum 

yield was then calculated using eq. 1 to give a value less than one.215  

(Eq. 1)  Φ = (I*σ*t90%)-1  

where σ (cm-2 mol-1) is equal to 1000*ε350 of the DNA decoy 

(Eq. 2)  I (ein cm-2 s-1) = (V1*V3*ΔA510)/(1000 (mL/l)*ε510*V2*ΦFe*t) 

where V1 is the volume of K3[Fe(C2O4)3] irradiated (mL); V2 is the volume of the 

 K3[Fe(C2O4)3] solution transferred to the volumetric flask (mL); V3 is the volume 

of the volumetric flask (mL); ΔA510 is the difference in absorbances at 510 nm between 

the  irradiated and non-irradiated samples; ε510 is the extinction coefficient of 

K3[Fe(C2O4)3] at 510 nm (11,100 cm-2 s-1)213; ΦFe is the quantum yield of 

K3[Fe(C2O4)3]�3H2O (1.21)213; and t is the time irradiated (s).  

 

3.8.6 32P Radiolabeling. Procedure outlined in Chapter 2.8.5. 

 

3.8.7 Electrophoretic Mobility Shift Assay (EMSA). Binding reactions containing 

binding buffer (2 µL of a 10X solution; 10X solution: 100 mM Tris, 10 mM EDTA, 500 

mM NaCl, and 10% NP-40),92 recombinant p50 protein (0.5 µL; 0.50 µg/µL, Enzo Life 

Sciences, BML-UW9885-0050, amino acids 35-381), recombinant p65 protein (0.5 µL; 

0.50 µg/µL Sino Biological, 12054-H09E, amino acids 1-306), and DNase/RNase free 

H2O (to a final volume of 20 µL) were prepared in microcentrifuge tubes (0.65 mL) and 

incubated on ice for 30 mins. 32P-labeled DNA decoys (1 µL, 25,000 counts/min/µL) 

were added to the binding reaction and then incubated at 37 °C for 10 mins.  
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For catch and release, binding reactions were then transferred to glass HPLC vial 

inserts (each 20 µL binding reaction was pipetted into individual inserts) and irradiated 

(with the exception of non-irradiated control samples) in the Rayonet with eight 350 nm 

bulbs (5.66x10-8 ein cm-2 s-1) at room temperature. The samples were taken out of the 

Rayonet at various time points and transferred (~20 µL volume) to a new microcentrifuge 

tube (0.65 mL). For rebinding studies (Figure 3.10a, lane 10), additional 32P-labeled 

DNA was added to only that sample (1 µL, 25,000 counts/min/µL of DNA). All samples 

and controls were then incubated at 37 °C for 2 hours. 

For supershift experiments, binding reactions containing recombinant p50 

proteins (0.5 µL; 0.50 µg/µL, Enzo Life Sciences, BML-UW9885-0050, amino acids 35-

381), recombinant p65 protein (0.5 µL; 0.50 µg/µL Sino Biological, 12054-H09E, amino 

acids 1-306 (Figure 3.6a and Figure 3.6b) or 2.5 µL; 0.10 µg/µL Active Motif, 31302, 

amino acids 1-537 (Figure 3.6c)), p50 antibody (10 µL; 200 µg/0.1 ml, Santa Cruz 

Biotechnology, sc-7178 x), or p65 antibody (10 µL; 200 µg/0.1 ml, Santa Cruz 

Biotechnology, sc-8008 x) were prepared in microcentrifuge tubes (0.65 mL) and 

incubated on ice for 60 mins. 32P-labeled DNA decoys (1 µL, 25,000 counts/min/µL) 

were added to the binding reaction and then incubated at 37 °C for 10 mins.  

For binding constant studies (Figure 3.6d and Figure 3.7b), DNA concentration 

was held constant (20,000 counts/min/µL) and titrated with increasing p50-p65 

heterodimer, p50-p50 homodimer, or p65-p65 homodimer at various concentrations (0, 

0.90 nM, 9.00 nM, 17.98 nM, 26.98 nM, 35.97 nM, 44.96 nM, 89.92 nM, 134.88 nM, 

and 179.84 nM; 500 nM was only used for decoy 3.16).243 Recombinant p50 protein was 
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from Enzo Life Sciences (BML-UW9885-0050, amino acids 35-381) and recombinant 

p65 protein was from Sino Biological (12054-H09E, amino acids 1-306). The fraction of 

DNA bound in each reaction was determined by dividing the densitometry of each bound 

band by the total densitometry of the bound and free bands. These fractions were then 

plotted on a semi-logarithmic plot (GraphPad Prism; v5.0b) and the equilibrium 

dissociation constants were calculated. Mean ± SD. (n = 3). 

For photochemical stability studies, binding reactions containing binding buffer, 

recombinant p50 protein (0.5 µL; 0.50 µg/µL, Enzo Life Sciences, BML-UW9885-0050, 

amino acids 35-381), recombinant p65 protein (0.5 µL; 0.50 µg/µL Sino Biological, 

12054-H09E, amino acids 1-306), and DNase/RNase free H2O (to a final volume of 19 

µL) were prepared in microcentrifuge tubes (0.65 mL) and incubated at room temperature 

for 10 mins. The sample to be irradiated (19 µL) was pipetted into a glass HPLC vial 

insert and irradiated in the Rayonet with eight 350 nm bulbs (5.66x10-8 ein cm-2 s-1) at 

room temperature for 1 hr. The sample was then transferred to a new microcentrifuge 

tube. 32P-labeled DNA decoys (1 µL, 25,000 counts/min/µL) were added to the binding 

reaction and then incubated at 37 °C for 10 mins. 

Loading dye (2 µL, 10X solution; 0.5X TBE, 40% glycerol, 2 mg/mL Orange G 

dye, Sigma) was added to each reaction and samples were loaded onto a 5% non-

denaturing PAGE gel that was pre-run at 200 V for 1 hr in 0.5X TBE. Samples were 

electrophoresed at 200V until the loading dye was ~¾ down the gel. The gel was 

transferred to filter paper (Bio-Rad; the plates were pried apart and the gel was placed on 

the wetted filter paper), covered with plastic wrap and cellophane (Bio-Rad), and dried 
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for 1 hr (Gel Air Dryer, Bio-Rad). The gel was transferred to a phosphorimager screen 

overnight and then analyzed on a Typhoon FLA 7000 biomolecular imager (GE 

Healthcare). Images were analyzed using Image Quant TL software (v 7.0, GE 

Healthcare).  

 

3.8.8 Western Blots. Binding reactions were prepared as described above for EMSA 

analysis, except the binding buffer was omitted. Western blots were performed as 

previously described.246 The sample to be irradiated (20 µL) was pipetted into a glass 

HPLC vial insert and irradiated in the Rayonet with eight 350 nm bulbs (5.66x10-8 ein 

cm-2 s-1) at room temperature for 1 hr. The sample was then transferred to a new 

microcentrifuge tube. To each sample was added NuPAGE 4X LDS sample buffer (5 µL, 

Invitrogen) and NuPAGE 10X sample reducing agent (2 µL, Invitrogen) and the samples 

were heated to 99 °C for 5 minutes. Protein samples were separated on a gradient 4-12% 

SDS-PAGE gel (Invitrogen) using MES SDS running buffer (NuPAGE), and then 

electrotransferred to a polyvinylidene difluoride membrane (Immobilon). The membrane 

was transferred to a heat-sealed bag containing Odyssey blocking buffer (5 mL, LI-COR 

Biotech.) to block the membrane overnight at 4 °C. Proteins were detected by incubation 

with primary antibodies for p65 (5 µL; Santa Cruz Biotechnology, sc-372) and p50 (30 

µL; Enzo Life Sciences, ALX-804-043-C100) in a heat-sealed bag containing blocking 

buffer (5 mL) overnight at 4 °C. The membrane was then briefly washed by gentle 

rocking in ddH2O (50 mL, 1 min, total 5x), and then incubated with IRDye 800 anti-

rabbit (5 µL; LI-COR Biotech., 926-32211) and IRDye 680 anti-mouse (5 µL; LI-COR 



 

 93 

Biotech., 926-68020) conjugated secondary antibodies together in a heat-sealed bag 

containing blocking buffer (5 mL) for 2 hours at room temperature. The membrane was 

again washed via gentle rocking in ddH2O (50 mL, 1 min, total 5x). The 

immunocomplexes were visualized using the Odyssey classic infrared imaging system 

(LI-COR Biotech.).  

 

3.8.9 Protocol for Mammalian Cell Culture. All cell lines were maintained in a 

humidified 5% CO2 environment at 37 °C. CHO/NFκBp65-GFP cells 

(Affymetrix/Panomics #RC2001) were cultured in Hams F12K media supplemented with 

10% fetal bovine serum (FBS, Gibco), penicillin (100 I.U./mL), streptomycin (100 

µg/mL), and hygromycin (100 µg/mL, Roche, 10843555001) at a density of 2×105 - 

2×106 cells/mL. This cell line (Affymetrix/Panomics #RC2001) was designed for the 

study of p65 translocation and was developed by co-transfection of an expression vector 

for a fusion protein of turboGFP and human NFκBp65 as well as pHyg. GFP+ cells are 

selected by culturing the cells with hygromycin B.  

 

3.8.10 Confocal Microscopy. CHO/NF-κBp65-GFP cells were grown in a T75 culture 

flask to 70-80% confluency. The CHO/NF-κBp65-GFP cells were detached from the 

surface of the T75 culture flask using trypsin-EDTA solution. After the cells are 

detached, media was added to inactivate the trypsin and transfer this solution to a 15 mL 

tube. The cell density was determined using a hemocytometer and spin down the cells at 

125 × g for 5 minutes. The CHO/NF-κBp65-GFP cells were resuspended in fresh media 



 

 94 

at a density of 10,000 cells/mL. 200 µL of this cell solution was added to the appropriate 

number of wells in an 8-well glass slide (Sigma Aldrich, C7057-1PAK). The plate was 

incubated on a level, vibration-free table for 1 hour at room temperature (20-25°C) to 

ensure an even distribution of cells throughout each well. After the cells are attached 

evenly in each well, the plate was incubated at 37°C and 5% CO2 for 18-24 hours. The 

appropriate wells were induced with 10 ng/mL TNF-α (or IL-1β) for 30 minutes. After 

incubation, the media was replaced in each well with 100 µL of Hoechst 33342 (#B2261-

100MG, 1:10,000 dilution) staining solution and incubated for 30 minutes at room 

temperature in the dark. The Hoechst staining solution was replaced in each well with 

100 µL of fresh media. The cells were imaged on the Zeiss Cell Observer Spinning Disk 

confocal microscope using the provided protocol utilizing the Phase II channel, blue 

channel for nuclear stain, and green channel for GFP-p65. The data was worked up on the 

NIS Elements Viewer (version 4.11.0) software. 
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Chapter 4 

 

THE 8-NITROGUANOSINE NUCLEOBASE FOR INCORPORATION INTO 

SECOND-GENERATION CATCH AND RELEASE DNA DECOYS (CRDDs) 

 

 

This work was performed in collaboration with Professor Daniel A. Harki 
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4.1 Rationale 

 

 The 7-nitroindole (7-NI) nucleobase 3.1 has allowed us to ‘catch and release’ the 

NF-κB transcription factor (TF) complex when incorporated into a DNA decoy (Figure 

3.10). However, 7-NI destabilizes duplex formation, such as 3.15, which contains three 7-

NIs incorporated compared to non-modified decoy 3.10 (ΔTm = -12.2 °C), and shows 

lower binding affinity to the protein than the native bases (~50%, Figure 3.7). It has been 

noted before that the worst steric repulsion effects involving purines occurs as a result of 

modification to the N3 atoms.247 As an example of this steric repulsion, N3-

methyladenine, a cytotoxic lesion, has been demonstrated to block DNA 

polymerization.248 Since the 7-nitro group of 3.1 is in similar space as the N3 of purines, 

we hypothesize the 7-nitro group sterically perturbs duplex formation by pushing the 

aromatic ring out of favorable stacking, therefore, leading to the negative effects seen in 

duplex stability and protein binding affinity. Additionally, 7-NI is incapable of hydrogen 

bonding and selective hybridization with natural nucleobases, thus reducing molecular 

interactions between the DNA-protein interface, which decreases the overall binding 

affinity. 8-Nitroguanosine has been studied as a chemical probe for protein S-

guanylation.249,250 8-Nitroguanosine (8-NG, 4.1) was envisioned to contain the 

depurination properties of the 7-NI nucleobase, while positioning the nitro group away 

from the hybridization face by placing it in the C8 positions of purines, which is shown to 

be solvent accessible in Figure 5.1, thus reducing the steric repulsions. Additionally, 8-

NG has a full hydrogen-bond profile on the hybridization face, which is hypothesized to 
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increase the amount of molecular interactions with TFs. Photolysis of 8-NG 4.1 is 

predicted to follow a similar mechanism as 7-NI (Figure 3.3a) to produce the nitroso 

guanine photo-byproduct 4.2, and an abasic lactone (4.3, Scheme 4.1). To test these 

hypotheses, we prepared 2′-α-fluoro-8-nitro-2′-deoxyguanosine phosphoramidite 4.13, 

which was then incorporated into oligonucleotide 4.14. This oligonucleotide was 

demonstrated to be more stable than the 7-NI oligonucleotide 3.21, and kept the 

photolytic uncaging properties, producing the abasic lactone 4.16 and the truncation 

product 4.17 upon photolysis.  

 

4.2 Nucleoside and Oligonucleotide Synthesis 

 

 8-Bromoguanosine 4.4 was utilized to synthesize the acetylated 8-nitroguanosine 

4.8 (Scheme 4.2). Acetic anhydride was used to protect 8-bromoguanosine 4.4 to give 

2,3,5-tri-O-acetyl-8-bromoguanosine 4.5 in 94% yield. The exocyclic amine of 4.5 was 

protected with 4,4′-dimethoxytrityl chloride to afford 4.6 in quantitative yield. Nitration 

of 4.6 with potassium nitrite gave 4.7 in 49% yield, and a very mild deprotection of the 

DMT using 1,1,1,3,3,3-hexafluoro-2-propanol gave 4.8 in quantitative yield.251 

 
 
Scheme 4.1. Second-generation 8-nitroguanosine (8-NG) depurination probe for use in CRDDs. 
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Nitration of the 8-position of guanine renders the nucleoside unstable (t1/2 = 5 min 

in H2O) due to a longer glycosidic bond (1.523 Å of 4.8 compared to 1.473 Å of 4.6).249 

Incorporation of a 2′-α-fluorine on the sugar restores stability by slightly shortening the 

glycosidic bond, which dramatically increased its stability (t1/2 = 45 days in 0.05 M 

sodium phosphate buffer).249 With this in mind, 2′-α-fluoro-8-nitro-2′-deoxyguanosine 

phosphoramidite 4.13 was hypothesized to remain stable enough for incorporation into 

CRDDs (Scheme 4.3).249 Initially, 2′-α-fluoro-2′-deoxyguanosine 4.9 was brominated 

utilizing NBS to achieve 8-bromo-2′-α-fluoro-2′-deoxyguanosine 4.10 in 72% yield. 

Similarly to Scheme 4.2, both the exocyclic amine and 5′-hydroxyl group of 4.10 were 

protected with 4,4′-dimethoxytrityl chloride with 88% yield to afford protected 4.11, 

which was then nitrated to afford protected 2′-α-fluoro-8-nitro-2′-deoxyguanosine 4.12 in 

51% yield. Finally, incorporation of the phosphoramidite on the 3-hydroxyl group of the 

nucleoside provided 2′-α-fluoro-8-nitro-2′-deoxyguanosine phosphoramidite 4.13 after 
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Scheme 4.2. Synthesis of 8-nitroguanosine. 
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rigorous purification in 58% yield, which is now ready for incorporation into a set of 

CRDDs.  

Similarly to the 7-NI oligonucleotide 3.21, 2′-α-fluoro-8-nitro-2′-deoxyguanosine 

4.13 was incorporated into oligonucleotide 4.14 to measure the thermal melting of duplex 

DNA containing all natural nucleotides hybridized to 8-NG. In addition, the 8-oxo-2′-

deoxyguanosine (8-oxoG) phosphoramidite was purchased and used in the synthesis of 

the oligonucleotide 4.15 for comparative stability studies.  

 
 
Figure 4.1. Synthesized oligonucleotides. 
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4.3 Thermal Melting Analysis 

 

UV thermal melting experiments were used to determine the relative stability of 

8-NG 4.14 compared to the 7-nitroindole oligonucleotide 3.21 (Table 4.1).207,231,232 8-NG 

4.14 has a clear preference when base paired against C than the other three bases due to 

Watson-Crick base pairing (Tm  = 46.9 °C against C compared to Tm  = 40.9 °C against 

G, Tm = 37.3 °C against A, and Tm  = 38.1 °C against T). This is a dramatic shift from the 

universal nitroindole bases, which base pair appreciably against all four bases. In 

comparison to G-C pairing, incorporation of 8-NG into oligonucleotide 4.14 still 

decreases stability compared to G (ΔTm  = -10.4 °C), however, is quite more stable than 

Table 4.1. Thermal melting of duplex DNA containing the 7-nitroindole, 2′-α-fluoro-8-nitro-2′-
deoxyguanosine, and 8-oxo-2′-deoxyguanosine nucleotides. Thermal melting experiments performed in 10 
mM sodium cacodylate, 10 mM KCl, 10 mM MgCl2, 5 mM CaCl2, pH 7.0 buffer.211 Mean ± SD (n = 4) are 
shown. 
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7-nitroindole (ΔΔTm = +4.8 °C). This added duplex stability is hypothesized to confer to 

a higher protein-DNA binding affinity than 7-NI when incorporated into CRDDs, 

especially when multiple 8-NG monomers are incorporated.  

 A potential limitation of 4.14, however, is the steric hindrance of the nitro group 

over the sugar, preventing the nucleobase from occupying the anti position. 8-Oxo-2′-

deoxyguanosine 4.15 is known to exist partially in the syn conformation, which places 

the oxo group into the hybridization interface.252,253 During the syn conformation, the 

nucleobase undergoes Hoogsteen base-pairing, accepting hydrogen bonds from the top 

face of adenosine, leading to an increased stability with mismatched nucleotides (Figure 

4.2). If the nitro group of 4.14 is also in the syn conformation, it may prevent the nitro 

group from being in proximity to the anomeric proton it needs to abstract or destabilize 

molecular recognition interactions. Thermal analysis is informative of this syn-anti 

preference. 8-Oxo-2′-deoxyguanosine 4.15 has clear preferences when base paired 

against C or A (Watson-Crick and anti vs. Hoogsteen and syn preferences, respectively) 

than the other two bases (Tm  = 53.3 °C against C and Tm  = 50.6 °C against A compared 

to Tm  = 43.7 °C against G and Tm = 45.6 °C against T). This clearly demonstrates that 8- 
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Figure 4.2. Hoogsteen base pairing between syn 8-oxo-G 4.15 and anti adenosine. 
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oxo-G is undergoing both Watson-Crick and Hoogsteen base pairing, validating that 8-

oxo-G exists in both an anti and syn conformation. To identify what conformation 8-NG 

4.14 exists in, a direct comparison of 8-NG 4.14 to that of 8-oxo-G 4.15 reveals that the 

thermal stability of 4.14 against A is largely decreased by existing primarily in the anti 

conformation (ΔTm  = -8.6 °C compared to G), whereby the thermal stability of 4.15 

against A actually increases (ΔTm  = +4.7 °C compared to G) due to existing partially in 

the syn conformation and undergoing Hoogsteen base pairing. This provides evidence 

that 8-NG 4.14 undergoes traditional Watson-Crick base pairing (seen in Scheme 4.1). 

 

4.4 Proof of Uncaging 

 

To demonstrate whether or not 2′-α-fluoro-8-nitro-2′-deoxyguanosine 4.1 would 

depurinate within duplex DNA, the oligonucleotide 4.14 was annealed with its 

complementary strand. Irradiation (350 nm light; light intensity: 5.66x10-8 ein cm-2s-1) of 

4.14 yielded photolytic breakdown of the nucleotide, completing its conversion to the 

corresponding abasic 4.16 and a truncation product 4.17 within 30 minutes (Figure 4.3). 

Figure 4.3a displays the LC traces of 4.14 and the formed photo-products. Figure 4.3b 

shows the MS traces of the corresponding oligonucleotides.  
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4.5 Conclusions and Future 

 

The second-generation probe, 2′-α-fluoro-8-nitro-2′-deoxyguanosine 4.1, contains 

added molecular recognition capabilities, yielding greater duplex stability. Going 

forward, we will synthesize our second-generation catch and release DNA decoys to 

sequester and release TFs such as NF-κB. Our prediction is that a greater duplex stability, 

in addition to added molecular recognition, will give higher affinity DNA-protein 

interactions, which will increase the efficiency of the catch and release DNA decoys. 

This tighter binder will result in a greater difference in binding affinity after photolysis 

and formation of abasic sites yielding a more efficient probe. A more efficient probe will 

give us a higher degree of binding and subsequent release, resulting in lower dosing 

required in order to sequester cellular TFs.  

 

4.6 Experimental Section 

4.6.1 Chemical Synthesis. 

General. Procedure outlined in Chapter 3.8.1. (see Appendix B for chromatograms). 

 

 2′,3′,6′-O-acetyl-8-bromo-guanosine (4.5). Prepared as previously described.249 

 

2′,3′,6′-O-acetyl-2-dimethoxytrityl-8-bromo-guanosine (4.6). Prepared as previously 

described.249 
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2′,3′,6′-O-acetyl-2-dimethoxytrityl-8-nitro-guanosine (4.7). Prepared as previously 

described.249 

 

2′,3′,6′-O-acetyl-8-nitro-guanosine (4.8). Prepared as previously described.249 

 

8-bromo-2′-α-fluoro-2′-deoxyguanosine (4.10). Prepared as previously described.249 
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8-bromo-2,6′-dimethoxytrityl-2′-α-fluoro-2′-deoxyguanosine (4.11). 8-bromo-2′-α-

fluoro-2′-deoxyguanosine (4.10, 2.55 g, 7.01 mmol) was dissolved in pyridine (10 mL) 

and evaporated three times to remove any water. It was then re-dissolved in pyridine (10 

mL) and charged with a catalytic amount of DMAP (85.5 mg, 0.70 mmol). 4,4′-

dimethoxytrityl chloride (5.23 g, 15.4 mmol) was added in portions and stirred at room 

temperature for 24 hours. It was diluted with ddH2O (200 mL) and extracted with DCM 

(200 mL). The organic layer was washed with saturated aqueous NaHCO3 (200 mL) and 

brine (200 mL). The resultant organic layer was dried (Na2SO4), and concentrated in 

vacuo. The residue was purified by column chromatography on silica gel (gradient of 0-

5% methanol in DCM). It was concentrated in vacuo to yield an orange foam (3.85 g, 
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56.8% yield over two steps. 1H NMR (CDCl3): δ = 8.60 (dt, 4 H, J = 1.8 Hz, 6.00 Hz), 

7.67 (tt, 2 H, J = 1.8 Hz, 7.6 Hz, 15.2 Hz), 7.45-6.60 (m, 20H), 5.66 (d, 1H, J = 24.1 Hz), 

4.85 (dd, 1H, JH-H = 3.5 Hz, JH-F = 54.1 Hz), 3.86 (ddd, 1H, J = 2.85 Hz, 6.1 Hz, 9.3 Hz), 

3.78 (t, 2H, J = 1.8 Hz, 4.8 Hz), 3.73 (s, 6H), 3.72 (s, 6H), 3.58 (m, 5H) 3.27 (m, 1H), 

3.13 (dd, 1H, J = 6.24 Hz, 10.7 Hz); 13C NMR (CDCl3): δ = 158.5, 158.3, 157.4, 151.3, 

150.8, 136.0, 130.1, 130.0, 128.1, 127.8, 126.9, 122.9, 118.0, 113.13, 91.8, 90.3, 87.9, 

87.6, 86.4, 80.9, 55.2, 30.6, 19.1, 13.7; HRMS-ESI- m/z [M-H]- calc’d for 

C52H46BrFN5O8
-: 966.2519, found: 966.2527.  

 

NH

N

N
O

NHDMTrN
O

OH

DMTrO
O2N

F
4.12  

2,6′-dimethoxytrityl-2′-α-fluoro-8-nitro-2′-deoxyguanosine (4.12). 8-bromo-2,6′-

dimethoxytrityl-2′-α-fluoro-2′-deoxyguanosine (4.11, 357 mg, 0.370 mmol) was 

dissolved in DMF (10.00 mL) and heated to 90 °C. Potassium nitrite (313 mg, 3.68 

mmol) and 18-crown-6 (972 mg, 3.68 mmol) was added to the solution and stirred for 24 

hours. It was diluted with ddH2O (50 mL) and extracted with DCM (50 mL). The organic 

layer was washed with saturated aqueous brine (50 mL). The resultant organic layer was 

dried (Na2SO4), and concentrated in vacuo. The residue was purified by column 

chromatography on silica gel (gradient of 0-5% methanol in DCM). It was concentrated 

in vacuo to yield an orange foam (0.175 g, 49% yield, 68% yield BRSM). 1H NMR 
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(CDCl3): δ = 7.37-6.95 (m, 18H), 6.72 (m, 4H), 6.61 (m, 4H), 5.58 (d, 1H, J = 23.6 Hz), 

4.72 (dd, 1H, JH-H = 3.5 Hz, JH-F = 57.4 Hz), 3.76 (m, 1H), 3.69 (s, 3H), 3.68 (s, 3H), 

3.61 (s, 3H), 3.60 (s, 3H), 3.30 (d, 1H, J = 10.45 Hz), 3.15 (m, 2H); 13C NMR (CDCl3): δ 

= 158.8, 158.6, 158.4, 147.3, 139.4, 135.9, 130.8, 130.1, 129.9, 129.7, 129.1, 128.6, 

128.1, 127.8, 127.8, 127.1, 113.2, 87.1, 86.3, 81.4, 55.3, 30.6, 19.1, 13.7; HRMS-ESI- 

m/z [M-H]- calc’d for C52H46FN6O10
-: 933.3265, found: 933.3341. 

 

NH

N

N
O

NHDMTrN
O

O

DMTrO
O2N

F
P

O

N

CN

4.13  

2-Cyanoethyl-N,N-diisopropylphosphoramidite-2,6′-dimethoxytrityl-2′-α-fluoro-8-

nitro-2′-deoxyguanosine (4.13). 2,6′-dimethoxytrityl-2′-α-fluoro-8-nitro-2′-

deoxyguanosine (4.12, 166 mg, 0.18 mmol) was put into an Abderhalden with P2O5 and 

dried for 24 hours. It was then dissolved in dry DCM (5 mL) and charged with four 

molecule sieves and stirred at room temperature for 1 hour. Distilled triethylamine (96 

µL, 0.69 mmol) and 2-Cyanoethyl-N,N-diisopropylchlorophosphoramidite (160 µL, 0.69 

mmol) were added and stirred at room temperature for 2 hours. Silica gel, deactivated 

with triethylamine, was added to the resultant reaction mixture and was concentrated in 

vacuo. The residue was purified by column chromatography on silica gel (gradient of 0-

5% methanol in DCM). It was concentrated in vacuo to yield an orange foam (63.7 mg, 
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32% yield). 1H NMR (CDCl3): δ = 7.51-7.15 (m, 22H), 6.85-6.75 (m, 4H), 6.23 (s, 1H), 

4.08 (m, 5H), 3.49 (m, 4H), 2.69 (m, 2H), 1.25 (t, 12H, J = 7.05 Hz); 13C NMR (CDCl3): 

δ = 162.9, 158.4, 158.3, 149.3, 147.6, 139.8, 130.2, 130.0, 129.2, 129.2, 128.2, 127.8, 

127.8, 127.7, 126.8, 117.1, 113.0, 113.0, 112.9, 81.2, 58.3, 55.1, 50.1, 45.8, 45.3, 30.8, 

22.9, 19.9, 9.0; 31P NMR δ = 150.84 (s, 1P) HRMS-ESI- m/z [M-H]- calc’d for 

C61H64FN8O11P-: 1133.4343, found: 1133.4591. 

 

4.6.2 Solid-Phase DNA Synthesis. Procedure outlined in Chapter 3.8.2. (see Appendix 

B for chromatograms). 

Oligonucleotide 4.14. Purity = 90.9% (260 nm). MS calc’d 4608.9, found 4609.5 (parent) 

Oligonucleotide 4.15. Purity = 85.9% (260 nm). MS calc’d 4561.9, found 4563.2 (parent)   

 

4.6.3 HPLC Purification & LC-MS Analysis. Procedure outlined in Chapter 2.8.2. 

 

4.6.4 Thermal Melting Analysis. Procedure outlined in Chapter 2.8.3. 
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Chapter 5 

 

PHOTOSWITCHABLE NUCLEOBASES THAT TRANSPOSE 

HYBRIDIZATION PREFERENCES 

 

 

This work was performed in collaboration with Professor Daniel A. Harki 
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5.1 Rationale 

 

 Noticeably missing from our toolbox of reagents for studying DNA and RNA 

structure/function properties are photoswitchable nucleotides: non-natural nucleosides 

(and –tides) that can base pair with a cognate purine or pyrimidine and then switch base 

pairing preferences after treatment with light (e.g., the designed ligand base pairs with 

cytosine and administration of light triggers a switch in binding preference for thymine). 

As opposed to the caged nucleobases (Chapter 1.6 and 2) or CRDDs (Chapter 3), 

which are either ‘off-to-on’ or ‘on-to-off’ triggered systems, non-natural photoswitchable 

nucleobases are designed to be functionally active before and after photolysis. Non-

natural nucleobases that transpose their hybridization properties upon photolysis were 

designed based upon the established ability of nucleosides to adopt, albeit infrequently, 

different tautomeric forms.254,255 Watson and Crick postulated that DNA mutations could 

occur by the mispairing of minor tautomers, which was later termed the “rare tautomer” 

hypothesis for DNA replication because of the rare occurrence of natural nucleobase 

tautomers.256 Chemical modifications can be used to increase the populations of these 

“rare” tautomers (Scheme 5.1). For example, converting the exocyclic amines of 

NH

N

N

N OO
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Scheme 5.1. Examples of chemical modifications to increase the frequency of nucleobase tautomers. 
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adenines or cytosines to hydroxylamine or methoxyamines, shift the tautomeric 

equilibrium from the amino to the imino tautomers (Scheme 5.1a-b).257-263 The P 

nucleobase is an analogue of the hydroxylamine cytosine, where the hydroxyl group is 

tethered to make a 6-membered ring and prevent syn-anti isomerization (Scheme 

5.1c).264-268 The P nucleotide and oligonucleotides have been utilized in numerous 

applications including substrates for DNA polymerases, primers for DNA synthesis, and 

viral mutagens.269-271 

The ability of these systems to transpose their hybridization preferences exploits 

differences in ground state energies (ΔGrel) between discrete tautomers. Locking of the 

high-energy tautomer through appendage of a photolabile caging group yields a 

nucleobase that will hybridize to a native purine or pyrimidine. Photolysis of the caging 

group removes the barrier for nucleobase tautomerization and enables return to its lowest 

energy structure, which results in formation of a modified nucleobase with a different 

hydrogen-bonding profile. These reagents then base pair with their new complement 

purine or pyrimidine.  

The position of the caging group should be away from the hydrogen-bonding face 

of the nucleobase to minimize the steric hindrance to the complementary nucleobases. 

The x-ray crystal structure of the DNA sequence 5′-CCAAGCTTGG-3′ reveals that C5 

and C6 of pyrimidines and C7 and C8 of purines are solvent exposed and point into the 

major groove, therefore, the addition of the caging group to these positions should 

minimize any steric interactions (Figure 5.1, PDB: 1en3).272  
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 We designed and have successfully made benzyl protected isatin nucleobase that 

contains a locked, high energy, imine tautomer. Photolysis of this isatin has been shown 

to release the high-energy imine tautomer and isomerize to the lower energy amine 

tautomer. 

 

5.2.1 Isatin Scaffold  

 

One example of this strategy is shown in Figure 5.2. Enolate trapping of the 

higher energy tautomer of the isomerizable isatin system with 2-nitrobenzyl (1.40), locks 

the tautomer in one hydrogen-bonding arrangement, yielding a non-natural guanosine 

mimic 5.4. Photolysis of the 2-NB group followed by isomerization of the nucleobase to 

the lower energy tautomer, yields a new hydrogen-bonding conformation as a non-natural 

 
Figure 5.1. X-ray crystal structure of the DNA sequence 5′-CCAAGCTTGG-3′ (PDB: 1en3). (a) 
Solvent exposed 5-CH3 of thymine (shown in blue). (b) Solvent exposed 8-H of adenine (shown in 
red). 
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adenosine mimic 5.5. The mechanism of photochemical tautomerization can follow 

traditional 2-NB uncaging (Scheme 1.3). Irradiation with light produces a diradical 5.7 

that undergoes a hydrogen atom abstraction 5.8 and rearranges to the heterocyclic 

intermediate 5.10. This intermediate breaks down, releases the nitroso by-product 5.11 

and rearranges the electrons from the imine to the nitrogen, which is protonated, yielding 

the amino group 5.12 (Figure 5.2b). Calculated differences in ground state energies of 

the two possible isatin tautomers utilizing density functional theory calculations 

(B3LYP/DFT, 6-31G* basis set, Spartan) reveals a clear preference for one tautomer over 

the other (ΔGrel = 34.4 kcal/mol, Figure 5.2c). We utilize these relatively simple ground 

state energy calculations to predict the lowest energy and predominant tautomer when 

designing new nucleobases for synthesis. The position of the caging moiety is also 

essential in our design since this modification cannot interfere with nucleobase 

hybridization. To avoid the steric disruption of hybridization that occurs with caged 

 
 
Figure 5.2. (a) Isatin G-to-A mimic scaffold. (b) Calculated relative stabilities of the tautomers of the 
isatin photoswitch. (c) Proposed mechanism of photochemical tautomerization. R′ = ribose sugar. R = 
oligonucleotide. 
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nucleobases, we rationalized that appending the photolabile molecule to the 3-position of 

isatin would not significantly disrupt DNA hybridization since this position of the 

heterocycle would be expected to project into the major groove in duplex DNA, akin to 

the region in space occupied by the 8-position of native purines.  

 

5.2.2 Isatin Synthesis 

 

To this point, we have successfully made benzyl protected isatin nucleobase 5.18 

(Scheme 5.2). Benzyl protection of 4-bromoisatin 5.13 followed by reduction of the 3-

position ketone of intermediate 5.14 proceeded smoothly to deliver alcohol 5.15. 

Alkylation with the requisite 2-NB caging group (1.40) provided intermediate 5.16. 

Coupling of Boc protected hydroxylamine to the isatin heterocycle by copper catalyzed 

carboamination followed by spontaneous dehydration delivered 5.17,273 which was 

immediately deprotected to yield the trapped non-natural guanosine mimic imine 5.18.   
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Scheme 5.2. Synthesis of the benzyl protected caged isatin imine 5.18. 
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5.2.3 Isatin Photochemical Tautomerization 

 

With 5.18 in hand we conducted preliminary photolysis experiments to 

demonstrate the ability of the nucleobase to tautomerize (Figure 5.3). Compound 5.18 

was dissolved in CDCl3 and a 1H NMR spectrum was acquired. Upon photolysis at 254 

nm over 4 hours, we see complete elimination of proton HA (internally hydrogen bonded 

imine proton) from the tautomerization to the amine 5.19 and large chemical shifts of the 

2-NB protons upon production of the predicted nitroso aldehyde 5.20. This experiment 

suggests the ability to photochemically tautomerize a trapped non-natural guanosine 

 
 
Figure 5.3. NMR photolysis experiment of the caged isatin scaffold demonstrating tautomerization 
from the imine 5.18 to the amine 5.19. 
 



 

 116 

mimic imine to a lower energy amine derivative, yielding a non-natural adenosine mimic, 

although more definitive experiments are needed to fully characterize this process.  

 

5.3 Conclusions and Future Work 

 

We synthesized the non-natural guanosine mimic imine 5.18 and demonstrated 

that it is able to photochemically tautomerize to the lower energy amine derivative, 

yielding a non-natural adenosine mimic. Future work will include synthesizing the 

phosphoramidite of the isatin scaffold 5.7. Once incorporated in oligonucleotides, we will 

utilize thermal DNA denaturation (Tm) to characterize the DNA oligos bearing our 

photoswitchable nucleosides. A decrease in duplex DNA Tm confers destabilization of 

 
 
Figure 5.4. The photoswitchable isatin heterocycle is incorporated into DNA oligos by solid-phase 
synthesis, and isatin-functionalized duplex DNAs are measured for stability by thermal denaturation 
studies (melting temperature, Tm, experiments). (i) Hypothetical example of the isatin photoswitch base-
paired with its designed complement cytosine. Photolysis of this sample switches the isatin to an adenine 
mimic, lowering Tm. (ii) Mispairing of the isatin photoswitch with thymine; however, photolysis of the 
isatin heterocycle yields the adenine mimic, which forms a favorable base-pair with adenine and 
increases the Tm. R = ribose  
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the duplex, whereas an increase in Tm signifies enhanced stabilization. An illustration of 

this technique is shown in Figure 5.4, where incorporation of the ‘trapped’ isatin 

photoswitchable nucleoside (Figure 5.4ai) into a DNA oligo and base pairing opposite its 

designed complement, cytosine, in duplex DNA is predicted to yield a favorable Tm. 

However, photolysis of this sample will switch the hybridization preference of the isatin 

nucleobase to an adenine mimic that will exhibit a lower Tm due to mispairing with 

cytosine. Conversely, mispairing of the ‘trapped’ isatin heterocycle across from thymine 

can be quantified by simply using another DNA strand (Figure 5.4aii). Photolysis of this 

sample will then convert the isatin nucleobase into an adenine mimic, which should form 

a favorable base pair with thymine and yield an increase in duplex Tm upon a second 

analysis of the sample. These experiments allow us to quickly triage newly synthesized 

photoswitchable probes for their base pairing preferences. In addition to these studies, 

other photoswitchable scaffolds will be developed.  

 

5.4 Experimental Section 

 

5.4.1 Ab initio calculations. Energy minimized three-dimensional conformations were 

generated for each compound using the calculations function of Spartan Student Edition 

(Version 4.1.1, Build 132) utilizing density functional theory calculations (B3LYP/DFT, 

6-31G* basis set). Energies were normalized to the lowest energy structure.  
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5.4.2 Chemical Synthesis. 

General. Procedure outlined in Chapter 3.8.1. (see Appendix B for chromatograms). 

 

N

Br O

O

Bn
5.14  

 1-Benzyl-4-bromoisatin (5.14). Sodium Hydride (326 mg, 8.49 mmol) was added to a 

slurry of 4-bromoisatin (1.28 g, 5.66 mmol) in DMF (10 mL) and stirred at room 

temperature for 10 minutes. Benzylbromide (1.01 mL, 8.49 mmol) was added dropwise 

and stirred at room temperature for 15 minutes. The mixture was poured into cold stirring 

brine (150 mL) and the orange precipitate was filtered to give 5.14 (1.78 g, quantitative 

yield). 1H NMR (CDCl3): δ = 7.37-7.29 (m, 6H), 7.22 (d, 1H, J = 8.15 Hz), 6.72 (d, 1H, J 

= 7.8 Hz), 4.94 (s, 2H); 13C NMR (CDCl3): δ = 180.6, 157.3, 152.2, 138.3, 134.1, 133.3, 

129.1, 128.6, 128.3, 127.4, 121.7, 116.5, 109.7, 100.0, 44.1; HRMS-ESI- m/z [M+Na]+ 

calc’d for C15H10BrNO2Na+: 337.9787, found: 337.9815.   

N

Br OH

O

Bn
5.15  

1-Benzyl-4-bromo-3-hydroxy-isatin (5.15). Sodium borohydride (18 mg, 0.47 mmol) 

was added to a solution of 5.14 (100 mg) in MeOH/DCM (1:1, 10 mL) at 0 °C and stirred 

for 1 hour. It was quenched with 1N HCl (10 mL), concentrated in vacuo, extracted with 
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ethyl acetate (10 mL), and SiO2 purified (100% DCM) to give 5.15 (100 mg, 99%). 1H 

NMR (CDCl3): δ = 7.34-7.27 (m, 5H), 7.17 (d, 1H, J = 9.3 Hz), 7.08 (t, 1H, J = 7.9 Hz), 

6.65 (d, 1H, J = 7.8 Hz), 5.17 (s, 1H), 4.87 (m, 2H); 13C NMR (CDCl3): δ = 174.8, 144.8, 

134.8, 131.4, 128.9, 127.9, 127.3, 126.5, 120.5, 108.5, 100.0, 70.3, 60.4, 44.0, 14.2; 

HRMS-ESI- m/z [M+Na]+ calc’d for C15H12BrNO2Na+: 339.9944, found: 339.9888.  

N

Br O

O

Bn

NO2

5.16  

1-Benzyl-4-bromo-3-(2-nitrobenzyl)-isatin (5.16). 2-Nitrobenzyl alcohol (73 mg, 0.471 

mmol) and triphenylphosphine (124 mg, 0.47 mmol) were added to a solution of 5.15 

(100 mg, 0.31 mmol) in THF (15 mL) at room temperature. DIAD (0.093 mL, 0.47 

mmol) was added dropwise to the reaction mixture and stirred for 24 hours. The reaction 

was quenched with H2O (15 mL), extracted with DCM (50 mL) and washed with brine 

(20 mL), then SiO2 purified (gradient of 0-40% ethyl acetate in hexanes) to give 5.16 

(80.0 mg, 56%). 1H NMR (CDCl3): δ = 8.11 (dd, 1H, J = 1.3 Hz, 8.1 Hz), 7.75 (m, 1H), 

7.68 (td, 1H, J = 1.35 Hz, 7.5 Hz), 7.48 (dt, 1H, J = 1.55 Hz, 3.55 Hz), 7.34-7.27 (m, 3H) 

7.19-7.11 (m, 3H), 6.72 (m, 1H), 6.59 (m, 1H), 5.30 (s, 2H), 4.94 (s, 2H), 2.78 (t, 1H, J = 

6.55 Hz); 13C NMR (CDCl3): δ = 171.2, 134.1, 133.2, 129.8, 129.0, 128.9, 128.4, 127.8, 

127.6, 127.4, 127.2, 127.1, 70.1, 62.3, 60.4, 44.4, 21.1, 14.2; HRMS-ESI- m/z [M-2H]2- 

calc’d for C22H15BrN2O4
2-: 225.0113, found: 225.0990.  
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N

N O

O

Bn

NO2
H

5.18  

1-Benzyl-4-imine-3-(2-nitrobenzyl)-isatin (5.18). A 10 mL Schlenk flask was oven 

dried, cooled, and then charged with 5.16 (45 mg, 0.10 mmol), CuI (1.9 mg, 0.01 mmol), 

KI (33 mg, 0.20 mmol), Boc-protected hydroxylamine (17 mg, 0.14 mmol), 

dimethylethylenediamine (5 µL, 0.05 mmol). The flask was evacuated and refilled with 

nitrogen. The reagents were dissolved in DMF (5 mL) and cesium carbonate (46 mg, 0.14 

mmol) was added. The reaction was heated to 110 °C and stirred for 6 hours. The 

reaction was filtered and evaporated to afford crude 5.17. 

 

Trifluoroacetic acid (6 µL, 0.08 mmol) was added dropwise to a solution of crude 5.17 

(25 mg, 0.05 mmol) in DCM (5 mL) at room temperature. The reaction was concentrated 

in vacuo, then SiO2 purified (gradient of 0-5% methanol in DCM) to give 5.18 (11 mg, 

28% over two steps). 1H NMR (CDCl3): δ = 10.37 (s, 1H), 8.05 (d, 1H, J = 8.28 Hz), 

7.89 (dd, 1H, J = 2.0 Hz, 7.4), 7.73 (m, 1H), 7.71 (dt, 1H, J = 0.96 Hz, 7.28 Hz, 9.04 Hz), 

7.45 (t, 1H, J = 5.32), 7.34-7.14 (m, 4H), 7.03 (t, 1H, J = 7.96 Hz), 6.66 (d, 1H, J = 8.84 

Hz), 5.23 (s, 2H), 4.87 (s, 2H); 13C NMR (CDCl3): δ = 206.9, 148.3, 138.3, 130.8, 129.1, 
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129.0, 128.6, 128.3, 128.1, 127.4, 127.2, 53.4, 44.1, 31.9, 29.7, 22.7, 22.0, 14.2; HRMS-

ESI- m/z [M-H]- calc’d for C22H17N3O4
-: 387.1219, found: 387.1174.  
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Chapter 6 

 

BICYCLIC CYCLOHEXENONES AS INHIBITORS OF NF-κB  SIGNALING 

 

This work has been published by the American Chemical Society: 
The full text is reprinted with permission from Hexum, J. K.; Tello-Aburto, R.; Struntz, 

N. B.; Harned, A. M.; Harki, D. A. Bicyclic Cyclohexenones as Inhibitors of NF-kappaB 
Signaling. ACS Med Chem Lett 2012, 3, 459-464. Copyright 2012 American Chemical 

Society. 
 

 
 
 

 
This work was performed in collaboration with Mr. Joseph Hexum, Dr. Rodolfo Tello-

Aburto, Professor Andrew M. Harned, and Professor Daniel A. Harki 
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6.1 Rationale 

 

 Transient induction of the nuclear factor-κB (NF-κB) transcription factors is an 

essential step in the immune response to pathogens, resulting in the expression of genes 

associated with cellular proliferation, differentiation, and survival, as well as activating 

the cellular inflammatory response.274-276 Equally important is the ability of cells to 

down-regulate or terminate this activity.275 Constitutive NF-κB activation has been 

observed in a spectrum of human cancers, such as acute and chronic myeloid leukemias, 

prostate, breast, lung, and brain cancers.47 Chronic inflammation resulting from 

constitutive NF-κB activation has been strongly implicated in the carcinogenesis of 

tissues from these organ sites.48,277-279 Consequently, the NF-κB signaling pathway has 

become an important therapeutic target for developing the next-generation of small 

molecule anticancer agents.277  

There have been numerous efforts aimed at identifying natural products with 

activity against the NF-κB pathway.280-283 Many of these natural products contain reactive 

moieties (e.g. enones) that can capture nucleophiles and inhibit signaling through a 

covalent mechanism.284,285 Drugs that function through a covalent mechanism are widely 

used in the pharmaceutical industry and at least 39 FDA-approved medicines can be 

classified as ‘covalent drugs.’286 One recently identified natural product NF-κB inhibitor 

with a reactive enone moiety is cryptocaryone (6.1).287-289 Researchers at the National 

Cancer Institute reported that 6.1 inhibits degradation of the NF-κB repressor protein 

IκBα in B lymphocytes with high constitutive IKK (IκB kinase complex) activity (Figure 
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1.5).290 As discussed above, activated IKKs phosphorylate IκB repressor proteins, 

targeting them for ubiquitination and degradation by the 26S proteosome. Freed p50-p65 

(NF-κB) heterodimers can then translocate to the nucleus and activate the expression of 

NF-κB target genes.73,274,279 Accordingly, inhibiting the degradation of IkB proteins by 

small molecules such as cryptocaryone (6.1) is a strategy that can be used to modulate 

aberrant NF-κB signaling by inhibiting its translocation to the nucleus (Figure 1.6c). Due 

to this promising activity, enantioselective total syntheses of cryptocaryone have been 

recently described by both Fujioka291 and Helmchen.292  

 Our interest in cryptocaryone stems from its structural similarity to a series of 

compounds we have recently prepared via Pd-catalyzed acetoxylation of alkyne-tethered 

cyclohexadienones (e.g., 6.2→6.3, Figure 6.1a).293 While 6.3 does not have the 

 

Figure 6.1. (A) Structure of cryptocaryone (6.1) and methodology for the preparation of the bicyclic 
enones of interest. (B) Analogues 6.4-6.12 (racemic) screened for NF-kB inhibitory activity. 
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cinnamoyl side chain present in 6.1, we hypothesized that the structurally similar enone 

moiety that is present in both 6.1 and 6.3 may yield similar biological activity profiles for 

both compounds. Previous studies with sesquiterpene lactones that inhibit NF-κB 

signaling have revealed covalent Michael adduct formation to exposed cysteine residues 

on essential NF-κB proteins, thereby eliminating their enzymatic activity and disrupting 

the signaling pathway.283 While cryptocaryone’s exact protein target(s) and mechanism 

of binding (e.g., covalent or non-covalent) are unknown at this time, it is possible that it 

similarly captures accessible cysteine sulfhydryl groups on key protein(s) involved in 

NF-κB signaling and abolishes their function.  If this is the case, then structurally 

analogous compounds to cryptocaryone (6.1), such as 6.3, should also possess NF-κB 

inhibitory properties. The presence of the fully substituted carbon atom at the γ-position 

of the enone in 6.3 does provide some additional steric hindrance that may deter Michael 

adduct formation in comparison to 6.1. Undeterred, we investigated the NF-κB inhibitory 

activity of several bicyclic enones similar to 6.3 and we also studied their 

antiproliferative activities against protypical leukemia and prostate cancer cell lines. The 

compounds investigated during this study are shown in Figure 6.1b and were prepared 

using methods previously described by the Harned lab. Compounds 6.4-6.11 were all 

prepared as racemic samples. 
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6.2 Cytotoxicity of Cryptocaryone Analogues and Inhibition of NF-κB Gene 

Expression Utilizing a Reporter Assay 

 

Initial screening of 6.4-6.11 was carried out utilizing a standard NF-κB luciferase 

reporter assay in A549 human lung cancer cells.  This cell line bears a stably transfected 

luciferase reporter construct downstream of six repeats of the consensus NF-κB binding 

site.  Induction of NF-κB signaling is achieved by treatment with TNF-α, and cell 

permeable small molecules can inhibit this induced activity. We performed a preliminary 

screen by treating induced cells with 50 µM concentrations of 6.4-6.11. This 

concentration was selected based upon cryptocaryone’s ability to inhibit the degradation 

of IκBα at 16 µM.290 Results from our study found 6.4 to be poorly soluble under the 

assay conditions, yielding unreliable values, and compounds 6.5-6.9 failed to inhibit 

induced NF-κB activity (Figure 6.2).  

 

Figure 6.2. Initial Screening of Compounds 6.4-6.9 for NF-κB Inhibitory Activity. Assay was performed in 

A549 cells as described below. NI = non-induced control wells, I = cells induced with TNF-α (15 ng/mL). 

A549 cells are induced with TNF-α (15 ng/mL) and treated with 6.4-6.9 at a concentration of 50 µM. 

Notably, 6.4 was poorly soluble in this assay and significant amounts of precipitate were noticed upon 

serial dilution of the DMSO stock into media. 
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Figure 6.3. (a) Cellular NF-κB luciferase reporter assay in A549 cells. NI = non-induced control cells, 
I = cells induced with TNF-α. Compound-treated cells are induced with TNF-α and treated with 
analogues 10-12 at the following concentrations: 100 µM, 50 µM, and 10 µM. (b) Cytotoxicity of 10-
12 in the NF-κB Reporter Assay. Cells are treated with 10, 11, and 12 at 250 µM, 100 µM, and 50 µM 
concentrations and cell viability was assessed by Alamar Blue staining. (c-f) Cytotoxicity of 6.10-6.12 
against (c) CCRF-CEM cells, (d) DU-145 cells, (e) RWPE-1 cells, and (f) Vero cells. Cells were 
treated with 6.10 (open triangles), 6.11 (closed circles), and 6.12 (open squares) at various 
concentrations. Cell viability was measured by Alamar Blue staining.  

 



 

 128 

Gratifyingly, analogues 6.10 and 6.11 both inhibited induced NF-κB activity 

(Figure 6.3a and Table 6.1). At a concentration of 50 µM, both compounds inhibited 

induced NF-κB activity, with 6.11 (36% residual NF-κB activity) exhibiting more potent 

inhibition than 6.10 (62% residual NF-κB activity) following treatment. The NF-κB 

inhibitory activity was not attributable to non-specific cell death as only 5% (for 6.10) 

and 10% (for 6.11) decreases in cell viability were observed following 50 µM treatment 

with each compound under identical assay conditions (Figure 6.3b). Compound 6.11 

completely inhibited NF-κB activity to non-induced levels at a 100 µM treatment and 

was more potent than 6.10 at all concentrations examined.  

To determine if 6.10 and 6.11 function through a covalent mechanism of 

inhibition, the enone moiety of compound 6.10 was reduced to produce the respective 

cyclohexanone, 6.12 (racemic). If covalent capture of proteins is the mechanism of 

activity, then compound 6.12 should exhibit diminished NF-κB inhibitory activity in the 

A549 luciferase reporter assay. We found that compound 6.12 only reduced NF-κB 

activity by 24% (Figure 6.3a and Table 6.1) at the highest concentration tested (100 

µM), which is a ~4-fold decrease in potency compared to 6.11. Therefore, these 

molecules function, at least in part, through a covalent mechanism of inhibition. 

Encouraged by these results we evaluated compounds 6.10-6.12 for their 

cytotoxicity in two standard human cancer cell lines, DU-145 and CCRF-CEM. DU-145 

is a model for hormone-independent prostate cancer and CCRF-CEM is a model for 

childhood T-cell acute lymphoblastic leukemia. DU-145 cells are known to possess 

constitutive NF-κB activity.294,295 In addition, these three compounds were tested against 
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RWPE-1, an immortalized prostate epithelial cell line derived from non-cancerous 

prostate cells, and Vero, a cell line developed from the kidney of a normal African green 

monkey (Figure 6.3e-f).296-301 The RWPE-1 and Vero cell lines were utilized in this 

study to allow us to measure the selectivity of compounds 6.10-6.12. Selectivity indices 

are frequently-used metrics that directly compare the potency of a compound in cancer 

cells to the potency of the same compound in ‘normal’ cells.302  

As shown in Figure 6.3c-d, 6.10 and 6.11 exhibited similar cytotoxicities against 

DU-145 and CCRF-CEM. Both compounds were slightly more potent against CCRF-

CEM cells (IC50: 6.10, 6.11 = 26 µM) than DU-145 cells (IC50: 6.10 = 34 µM, 6.11 = 36 

µM) in a 48-hr cytotoxicity assay (Table 6.1). The observed IC50 values for 6.10 and 6.11 

against DU-145 are approximately 15-fold higher than the reported IC50 value for 

cryptocaryone (IC50 = 2.3 µM) in the same cell line.303 Control compound 6.12 exhibited 

very little activity against either cell line (IC50 values could not be accurately calculated 

due to lack of potency). This result further confirms that the enone moiety is essential for 

activity. To measure selectivity indices (SI) for 6.10 and 6.11, we compared the IC50 

values for inhibition of DU-145 versus RWPE-1 cells (Table 6.1). These values were 

calculated by dividing the IC50 value obtained for each compound against the RWPE-1 

cell line by the IC50 value obtained for each compound against the DU-145 cell line. 

Compound 6.10 resulted in an SI value of 0.44, suggesting that this compound is not 

selective towards DU-145 prostate cancer cells. In contrast, compound 6.11 resulted in an 

SI value of 2.75. Thus, 6.11 appears to be more selective towards DU-145 cells than 

RWPE-1 cells, adding to our interest in this analogue. 
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6.3 Thiol Reactivity of Cryptocaryone Analogues 

 

Following the cytotoxicity assays, we decided to further investigate the Michael 

acceptor mechanism hypothesis for these compounds. Therefore, we performed an NMR 

experiment in which 6.10 was incubated with cysteamine (Figure 6.4a).304 NMR spectra 

were collected at various timepoints (Figure 6.4b). The disappearance of the doublet at 

6.06 ppm followed by the disappearance of the doublet at 6.75 ppm provides evidence for 

a two-step Michael addition of cysteamine into the enone moiety of 6.10. To confirm the 

Michael addition adduct had formed, the cysteamine reaction mixture was purified by 

HPLC and analyzed by mass spectrometry (Figure 6.4c).  

Table 6.1. Results of NF-κB reporter and cytotoxicity assays performed with 6.10-6.12. aPercentage (%) 
NF-κB activity at various doses is shown relative to the induced, DMSO treated control arbitrarily assigned 
100% activity. Mean values of biological triplicate data are shown with propagated standard deviation (± 
SD) from all replicates. bIC50 values shown are the mean of three biological replicates. The error values are 
shown as the standard deviation (± SD) of the triplicate data. cThe selectivity indices (SI) were calculated 
by dividing the IC50 value obtained for each compound against the RWPE-1 cell line by the IC50 value 
obtained for each compound against the DU-145 cell line. 

 

Compound  % NF-κB Activitya 

 100 µM 50 µM 10 µM 

6.10  33.9 ± 10.8 61.6 ± 10.7 90.9 ± 13.5 
6.11  17.3 ± 5.1 36.2 ± 8.2 93.7 ± 15.5 
6.12  76.1 ± 10.9 94.4 ± 13.1 109.4 ± 12.0 

 

Compound   IC50 (µM)b 
SIc 

  
CCRF-
CEM DU-145 Vero RWPE-1 

6.10   26.4 ± 7.3 33.7 ± 
5.8 >500 14.8 ± 2.6 0.44 

6.11   26.4 ± 3.1 35.9 ± 
4.8 >500 98.8 ± 15.1 2.75 

6.12   >500 >500 >500 >500 - 
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Figure 6.4. Cysteamine reaction assay using compound 6.10. (a) Reaction of 6.10 with cysteamine. (b) 
HPLC traces of 6.10 and the cysteamine reaction product. Chromatograms were obtained using a signal 
wavelength of 254 nm. (c) 1H NMR spectra for the cysteamine reaction are shown at four different time 
points (0, 0.5, 2, and 5 minutes). X = H or D (from deuterated solvent). 
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6.4 Inhibition of NF-κB Nuclear Translocation by Western Blot Analysis, 

ELISA, and RT-PCR 

 

To further characterize the mechanism of NF-κB inhibition by cryptocaryone 

analogues, we fractionated NF-κB-induced and compound-treated DU-145 and CCRF-

CEM cells and then immunoblotted for p65 protein in the nuclear lysate (Figure 6.5a 

and Figure 6.5b). Decreased p50-p65 nuclear translocation is expected if 6.10 and 6.11 

inhibit the degradation of IκB repressor proteins, whereas no change in nuclear p65 levels 

should be observed if 6.10 and 6.11 modulate NF-κB by directly targeting the p50 or p65 

protein (e.g., alkylation of NF-κB proteins by the small molecule abolishes DNA-binding 

 

Figure 6.5.  Western blot analysis of p65 and histone H2B proteins from nuclear lysate fractions of 
compound-treated (a) DU-145 cells and (b) CCRF-CEM cells. Cells were dosed with either vehicle control 
(DMSO; NI and I lanes) or analogues 6.10 or 6.11 (100 µM and 25 µM), followed by induction of the NF-
κB pathway with TNF-a. (c) Nuclear (N) and cytoplasmic (C) control blots for DU-145 cells. This blot 
shows that α-tubulin, a cytoplasmic protein, was not found in the nuclear samples. (d) RT-PCR analysis of 
IL-8 and GAPDH mRNA from DU-145 cells. (e) Secreted IL-8 protein levels as measured by ELISA.  
Data shown is mean ± SEM (standard error of the mean). NI = non-induced cells, I = induced cells. (d-e) 
Cells were dosed at concentrations of 100 µM and 33 µM for 6.10 and 6.11.  Cells were dosed with 6.12 at 
a concentration of 100 µM. 
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capability). Both 6.10 and 6.11 completely inhibited nuclear translocation of p65 at a 100 

µM treatment in NF-κB-induced DU-145 (Figure 6.5a) and CCRF-CEM (Figure 6.5b) 

cell lines. Partial inhibition of p65 nuclear translocation was observed at a 25 µM 

treatment of 6.10 and 6.11 in both cell lines. Immunoblotting of our prepared nuclear 

fractions for a-tubulin, an abundant cytosolic protein, revealed no detectable signal, 

which verifies that our nuclear p65 lysate samples are not contaminated with cytosolic 

p65 (Figure 6.5c). Based upon these results, we can conclude that cryptocaryone 

analogues such as 6.10 and 6.11 modulate NF-κB activity by inhibiting IκB degradation 

and p50-p65 heterodimer translocation to the nucleus. 

To further evaluate the ability of our molecules to regulate NF-κB activity in 

cells, we tested their ability to inhibit the activation of IL-8, a well-known 

proinflammatory regulator. IL-8 is a chemokine whose expression is driven by NF-κB 

binding to the IL-8 promoter and activation of gene expression.305-307 DU-145 cells were 

treated with 6.10-6.12 and NF-κB was induced by addition of TNF-α. Secreted IL-8 

levels in cell media were measured by ELISA.308,309  Additionally, we further correlated 

IL-8 protein levels to IL-8 mRNA levels by semi-quantitative (traditional) RT-PCR 

analysis. As expected, analysis of IL-8 mRNA and protein levels revealed significant 

increases in both following NF-κB induction with TNF-α (Figure 6.5d-e). Compound 

6.11 was found to inhibit the production of IL-8 mRNA to visibly lower levels than that 

of 6.10 at the lowest concentration tested (33 µM). The changes in mRNA levels 

observed with 6.10 and 11 were mirrored in the amount of secreted IL-8 protein 

measured. Compound 6.10 abolished IL-8 production to non-induced levels, while 
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compound 6.11 depleted IL-8 protein levels to nearly undetectable levels at the highest 

concentration tested. Additionally, control compound 6.12 at 100 µM had an insignificant 

effect (4,900 pg/mL) on IL-8 levels as compared to 6.10 and 6.11 at 33 µM dose (3,480 

pg/mL and 2,970 pg/mL, respectively). These data support the hypothesis that the 

formation of Michael adducts is vital to the mechanism of NF-κB pathway inhibition for 

bicyclic cyclohexenones 6.10 and 6.11. These data also suggest that compound 6.11, 

which bears a pendent aromatic ring adjacent to the Michael acceptor, compared to 6.10, 

which contains a methyl group, is a better lead compound for further optimization. 

With another goal of beginning to establish the stereoisomeric preferences of 

these compounds, we carried out the enantioselective reaction shown in Figure 6.6. To 

our delight, the use of the chiral bipyridine ligand (-)-iso-PINDY310 allowed us to 

produce enone 6.11* in 63% ee from precursor 6.13, with the major enantiomer being the 

one shown (Figure 6.6a).  To determine if enantioenriched 6.11 (which we have denoted 

as 6.11*) possesses enhanced biological potency compared with racemic 6.11, we 

repeated the NF-κB reporter assay and cancer cell cytotoxicity experiments with 6.11*. 

 

Figure 6.6. Enhanced potency of enantioenriched 6.11*. (a) Synthesis of 6.11*. (b) Cellular NF-kB 
luciferase reporter assay in A549 cells. NI = non-induced control wells, I = cells induced with TNF-α. 
Compound-treated cells are induced with TNF-α and treated with analogue 6.11* at the following 
concentrations: 100 µM, 50 µM, and 10 µM. (c) Cytotoxicity of 6.11* against CCRF-CEM (open triangles) 
and DU-145 human prostate cancer cells (closed circles). Cell viability was measured by Alamar Blue 
staining.  
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Interestingly, 6.11* completely abolished induced NF-κB signaling to non-induced levels 

(Figure 6.6b), resulting in 18% relative NF-κB activity at 50 µM. This constitutes a 2-

fold enhancement in potency compared with racemic 6.11. An enhancement in potency 

with 6.11* versus racemic 6.11 was observed in cytotoxicity assays (Figure 6.6c) against 

CCRF-CEM cells (IC50 = 19 µM), whereas 6.11* was slightly less active towards DU-

145 cells (IC50 = 46 µM). Unfortunately, (-)-iso-PINDY has not proven to be generally 

useful for preparing other bicyclic products with high selectivity; therefore, a more 

thorough study into this effect will have to wait until a more effective ligand is identified. 

 

6.5 Conclusions and Future Work 

 

In conclusion, we have identified a new class of oxygenated bicyclic enones with 

activity against the NF-κB signaling pathway. While the cytotoxic and NF-κB inhibitory 

activity is modest, it is sufficiently strong to view these compounds as interesting lead 

compounds for further development. In addition to establishing a more comprehensive 

structure-activity relationship, we are working to further clarify the exact molecular 

target(s) of these compounds.  All of these results will be reported in due course. 

 

6.6 Experimental Section 

6.6.1 Chemical Synthesis. Reference experimental methods for chemical synthesis are 

available online at: http://pubs.acs.org/doi/abs/10.1021/ml300034a 
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6.6.2 Preparation of Stock Solutions of Compounds 6.4-6.12. Compound stock 

solutions were prepared in DMSO (100 mM or 200 mM concentrations) and stored at -

20° C when not in use. Compound purities were assessed frequently by analytical 

reverse-phase HPLC analysis and fresh solutions were prepared as needed. 

 

6.6.3 Protocol for Mammalian Cell Culture. All cell lines were maintained in a 

humidified 5% CO2 environment at 37 °C. CCRF-CEM cells (ATCC, CCL-119) were 

cultured in RPMI-1640 media (ATCC) supplemented with 10% fetal bovine serum (FBS, 

Gibco), penicillin (100 I.U./mL), and streptomycin (100 µg/mL, ATCC) at a density of 2 

× 105 - 2 × 106 cells/mL. A549/NF-κB-luc cells (Panomics, RC0002) were cultured in 

DMEM media (ATCC) supplemented with 10% FBS (Gibco), penicillin (100 I.U./mL), 

streptomycin (100 µg/mL, ATCC), and hygromycin (100 µg/mL, Roche). DU-145 cells 

were cultured in EMEM media (ATCC) supplemented with 10% FBS (Gibco), penicillin 

(100 I.U./mL), and streptomycin (100 µg/mL, ATCC). RWPE-1 cells (ATCC, CRL-

11609), which are non-cancerous prostate epithelial cells, were cultured in Keratinocyte 

Serum-Free Medium (K-SFM; Gibco) supplemented with human recombinant epidermal 

growth factor (EGF, 5 ng/mL, PeproTech), bovine pituitary extract (BPE, 0.05 mg/mL, 

PeproTech), penicillin (100 I.U./mL, ATCC), and streptomycin (100 µg/mL, ATCC). 

 

6.6.4 Protocol for NF-κB Reporter Assay. A549/NF-κB-luc cells were seeded at a 

density of 5,000 cells/well in cell culture media (50 µL) in 96-well white plates with clear 

bottoms (Costar) 24 h prior to treatment.  Compounds were serially diluted in pre-
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warmed media and dosed to cells (final volume/well = 100 µL; final DMSO 

concentration = 0.5%). Thirty minutes after treating the cells, NF-κB was induced by 

adding TNF-α (15 ng/mL final concentration, delivered in PBS; Invitrogen) to the treated 

wells and the induced control wells. After 7 h, Bright-Glo luciferase reagent (Promega) 

was added to each well (100 µL) and the plate was allowed to stand for two minutes. 

Luminescence measurements were then obtained using an LJL BioSystems HT Analyst 

plate reader. Background luminescence from reagents (no cell controls) was subtracted. 

Typical induction yields were ~7-fold. Negligible decreases in cell viability (<15%) were 

observed with test compounds under these conditions, as measured by colorimetric 

viability staining (Alamar Blue, Invitrogen). Each experiment was performed in 

biological triplicate (at minimum) with three technical replicates per experiment. 

Uncertainty in each % NF-κB activity value was calculated via the propagated standard 

error (the square root of the sum of squares of the individual standard deviations).  

Statistical analyses were performed with Microsoft Excel and the results were plotted 

with GraphPad Prism (v. 5.0).   

 

6.6.5 Cell Culture Cytotoxicity Assays. CCRF-CEM cells were seeded at a density of 

10,000 cells/well in cell culture media (50 µL) in standard 96-well plates (Costar) 24 h 

prior to treatment. DU-145 and RWPE-1 cells were seeded at a density of 5,000 

cells/well in cell culture media (50 µL) in standard 96-well plates (Costar).  Blank (no 

cells) wells and control (vehicle control treated) wells were prepared with each 

experiment. Compounds were serially diluted in pre-warmed media and dosed to cells 
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(final volume/well = 100 µL; final DMSO concentration = 0.5%). Approximately 2 h 

before the end of the treatment period (48 h), AlamarBlue (Invitrogen) cell viability 

reagent was added to each well (10 µL). This procedure yields a quantitative measure of 

cell viability by evaluating the ability of metabolically active cells (which are 

proportional to the number of living cells) to convert resazurin (non-fluorescent dye) to 

red-fluorescent resorufin. Fluorescence data were obtained on either a Molecular Devices 

SpectraMax M2 plate reader or an LJL BioSystems HT Analyst plate reader. Background 

fluorescence (no cell controls) was subtracted from each well and cellular viability values 

following compound treatment were normalized to vehicle-only treated wells (control 

wells only treated with aqueous DMSO, which were arbitrarily assigned 100% viability). 

Individual IC50 curves were generated by fitting data to the sigmoidal (dose response) 

function of varied slope in GraphPad Prism (v. 5.0) software. Only curve fits with r2 > 

0.95 were deemed sufficient. Each experiment was performed in biological triplicate and 

mean IC50 values (with standard deviation) were calculated from the individual IC50 

values obtained from each replicate. 

 

6.6.6 Cell Fractionation and Western Blotting. CCRF-CEM and DU-145 cells were 

plated at 4 x 106 cells/well in 6-well culture dishes 24 h before dosing. Cells were then 

treated with compounds 6.10 and 6.11 for 16 h. The final volume of media/well 

following compound dosing was 2.25 mL. CCRF-CEM cells were induced with phorbol 

12-myristate 13-acetate (PMA, 850 ng/mL, Fisher BioReagents) for the last 4 h of the 16 

h dosing.47 DU-145 cells were induced with TNF-α (117 ng/mL, Gibco) for the last 2 h 
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of the 16 h dosing. DU-145 cells were then trypsinized and pelleted, and CCRF-CEM 

cells were immediately pelleted (500 x g for 5 min, room temperature). The media was 

decanted and cell pellets were resuspended once in ice-cold phosphate buffered saline 

(PBS, 1 mL) and pelleted again (500 x g for 5 min, 4 °C). Cell pellets were subsequently 

lysed in Buffer 1 (400 µL; Buffer 1 components (to make 50 mL): 10 mM HEPES, 10 

mM KCl, 1.5 mM MgCl2, 1 mM DTT, and one tablet of cOmplete (Roche) EDTA-free 

protease inhibitor cocktail) and incubated on ice for 10 min. The cells were homogenized 

by passing them through a 28-gauge syringe four times. Cell nuclei were pelleted by 

centrifugation at maximum speed (21,000 x g) for 5 min at 4 °C. The supernatants 

(cytosolic extracts) were collected in pre-chilled tubes and stored at -80 °C until further 

use. The residual pellets were gently washed with PBS without pellet disruption (200 µL) 

and subsequently resuspended in Buffer 2 (400 µL; Buffer 2 components (to make 50 

mL): 20 mM HEPES, 600 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 0.2 mM EDTA, 25% 

(v/v) glycerol, and one tablet of cOmplete [Roche] EDTA-free protease inhibitor 

cocktail) to lyse the nuclei. Samples were incubated on ice and vortexed on the highest 

setting for 15 sec every 10 min for a total of 40 min. The suspension was centrifuged at 

maximum speed (21,000 x g) for 10 min at 4 °C. The supernatants (nuclear extracts) were 

collected in pre-chilled tubes and stored at -80 °C until further use. The protein 

concentrations were determined using the BCA protein assay kit (Pierce).  

 Samples of nuclear and cytosolic extracts (30 µg) were combined with 

NuPAGE 4X LDS sample buffer and NuPAGE 10X sample reducing agent (Invitrogen) 

and put in heat block at 99 °C for 5 minutes. Protein samples were electrophoresed on a 
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gradient 4-20% SDS-PAGE gel (BioRad), then electrotransferred to a polyvinylidene 

difluoride membrane (Immobilon). The membrane was then blocked with Odyssey 

blocking buffer (LI-COR Biotech.) for 1 h. Proteins were detected by incubation with 

primary antibodies for p65 (Active Motif, 39283), histone H2B (Active Motif, 61038), 

and α-tubulin (Active Motif, 39528) in blocking buffer supplemented with 0.1% Tween 

20 for 1 h. The membrane was then briefly washed by gentle rocking in a solution of PBS 

(50 mL, 1 min, total 5x), and then incubated with IRDye 800 anti-rabbit (LI-COR 

Biotech., 926-32211) and IRDye 680 anti-mouse conjugated secondary antibodies (LI-

COR Biotech., 926-68020) in blocking buffer supplemented 0.1% Tween 20 for 1 h. The 

membrane was again washed via gentle rocking in a solution of PBS (50 mL, 1 min, total 

5x). The immunocomplexes were visualized using the Odyssey classic infrared imaging 

system (LI-COR Biotech.).  

 

6.6.7 Compound Treatment for ELISA and PCR. DU-145 cells were seeded into 24-

well plates at a cell density of 2 × 105 cells/well. The plate was dosed with compounds 

6.10-6.12 for 24 hours. The cells were induced with TNF-α (117 ng/mL) six hours after 

the initial dosing, resulting in an 18 hour induction. 

 

6.6.8 IL-8 Enzyme-Linked Immunosorbent Assays. A human IL-8 ELISA kit (Thermo 

Scientific, EH2IL82) was used to quantitate secreted IL-8 protein levels in NF-κB-

induced DU-145 cells treated with 6.10-6.12. Following the dosing and induction of DU-

145 cells (described above), cell media (500 µL) was collected from each treated well 
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and stored at -20 °C until analysis. Immediately prior to analysis, samples were 

centrifuged at maximum speed (21,000 x g) for 1 minute and then secreted IL-8 protein 

levels were measured for each sample according to vendor instructions. The absorbance 

of each sample at 450 nm and 550 nm was collected following addition of the substrate 

stop solution using a Molecular Devices SpectraMax M2 plate reader. The standard curve 

was fitted using a 4-parameter logistic (4-PL) algorithm in GraphPad Prism (v. 5.0) 

software. Unknown samples were plotted against the standard curve to yield IL-8 protein 

concentrations in pg/mL. Triplicate biological replicates were performed and each bar 

represents at least 6 individual wells. The data shown in Figure 3 is mean ± SEM, which 

was calculated from mean values of each of the three biological replicates. Statistical 

analyses were performed in Microsoft excel and data was plotted using GraphPad Prism 

(v. 5.0) software. 

 

6.6.9 mRNA Isolation and Purification. RNeasy Plus Micro Kits (Qiagen, 74034) and 

QIAshredders (Qiagen, 79654) were used to isolate and purify mRNA from DU-145 

cells. Following compound dosing, NF-κB induction, and harvesting of the cell media 

(described above), cell monolayers were washed with PBS (1X) and then lysed according 

to the method described in the RNeasy Plus Micro Kit (β-Mercaptoethanol supplement 

was included). The samples were then homogenized using QIAshredders according to 

vendor instructions. mRNA was isolated and purified using the RNease Plus Micro Kit 

and eluted in RNase-free water (14 µL). RNA samples were immediately stored at -80 

°C. 
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6.6.10 Reverse Transcription (RT) & Polymerase Chain Reaction (PCR) assays. The 

RNA concentration and purity of each sample were determined using a NanoDrop 

instrument (Thermo Scientific). RNA samples with A260/A280 ratios ≥ 1.9 were used in 

PCR assays. The concentration of each mRNA sample within a biological experiment 

was normalized to the value obtained from the sample with the lowest measured mRNA 

concentration. Reverse transcription of mRNA into cDNA was carried out using the 

QuantiTect Reverse Transcription Kit (Qiagen, 205311). Template mRNA was added to 

gDNA Wipeout Buffer (7X) and RNase-free water for a total volume of 14 µL (less than 

1 µg of mRNA was added to each sample). Samples were then incubated at 42 °C for 2 

minutes (Bio-Rad T100 thermal cycler) and then immediately placed on ice. Next, the 

entire contents of the previous mix were added to 6 µL of reverse-transcription master 

mix, and mRNA was reverse transcripted to cDNA per vendor instructions. cDNA 

samples were stored at -20 °C immediately following reverse transcription.  

The cDNA samples were carried forward to the PCR assays. These assays utilized 

HotStarTaq DNA Polymerase Kit (Qiagen, 203203) along with a dNTP Mix (Qiagen, 

201900). Primers specific to either IL-8 or GAPDH (control) were purchased for 

Integrated DNA Technologies. The following IL-8 and GAPDH oligonucleotide primers 

were reported previously in the literature277,311 and were used in our study: 

IL-8 Forward:  5′ – CTC TCT TGG CAG CCT TCC TGA TT – 3′ 

IL-8 Reverse:  5′ – AAC TTC TCC ACA ACC CTC TGC AC – 3′ 

GAPDH Forward:  5′ – GTA AAG TGG ATA TTG TTG CCA TCA – 3′ 
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GAPDH Reverse:  5′ – AAA TTC GTT GTC ATA CCA GGA AAT – 3′ 

Primers (IL-8 and GAPDH) were added to separate HotStarTaq DNA Polymerase master 

mixes (no extra Mg2+ was added) containing PCR Buffer, dNTP mix, HotStarTaq DNA 

Polymerase, and RNase-free water. An aliquot (2 µL) of the template cDNA obtained 

from the previous reverse transcription procedures was then added to the master mix in 

0.200 mL PCR tubes for a total volume of 100 µL. A total of 27 PCR cycles were 

performed (on a Bio-Rad T-100 thermal cycler) for both IL-8 and GAPDH according to 

the following method: 

1. Initial Activation: 15 minutes at 95 °C 

2. Denaturation: 1 minute at 94 °C 

3. Annealing: 1 minute at 54 °C 

4. Extension: 1 minute at 72 °C 

5. Final Extension: 10 minutes at 72 °C 

6. Final Hold: 4 °C 

Steps 2-4 were repeated 27 times (27 cycles). 

An aliquot of the resulting PCR products (2 µL) was added to loading buffer (8 µL; 

recipe for loading buffer: 10 mg of orange G, 10 mg of bromophenol blue sodium salt, 

and 10 mg of xylene cyanol FF in 6 mL of formamide). The samples were then 

electrophoresed on a 1% agarose gel made in 0.5% TBE buffer (10X TBE components 

(to make 1 L): 108 g tris base, 55 g boric acid, and 7.4 g EDTA in distilled and deionized 

water). The agarose gel was stained using SYBR Gold nucleic acid gel stain (Invitrogen) 
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and then visualized using the Typhoon FLA 7000 (GE Healthcare). Gels were analyzed 

using ImageQuant TL software (GE, version 7.0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 145 

References: 

 

1. Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; 

Hamilton, O. S.; Yandell, M.; Evans, C. A.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; 

Ballew, R. M.; Huson, D. H.; Wortman, J. R.; Zhang, Q.; Kodira, C. D.; Zheng, X. H.; 

Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P. D.; Zhang, J.; Miklos, G. L. G.; 

Nelson, C.; Broder, S.; Clark, A. G.; Nadeau, J.; McKusick, V. A.; Norton, Z.; Levine, A. 

J.; Roberts, R. J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; 

Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Aaron, H.; Hannenhalli, S.; Kravitz, S.; 

Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; 

Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; 

Chaturvedi, K.; Deng, Z.; Francesco, V. D.; Dunn, P.; Eilbeck, K.; Evangelista, C.; 

Gabrielian, A. E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T. J.; Higgins, 

M. E.; Ji, R.-R.; Ke, Z.; Ketchum, K. A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; 

Lu, F.; Merkulov, G. V.; Milshina, N.; Moore, H. M.; Naik, A. K.; Narayan, V. A.; 

Neelam, B.; Nusskern, D.; Rusch, D. B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, 

Z. Y.; Wang, A.; Wang, X.; Wang, J.; Wei, M.-H.; Ron, W.; Xiao, C.; Yan, C.; Alison, 

Y.; Ye, J.; Zhan, M.; Zhang, W.; Zhang, H.; Zhao, Q.; Zheng, L.; Zhong, F.; Zhong, W.; 

Zhu, S. C.; Zhao, S.; Gilbert, D.; Baumhueter, S.; Spier, G.; Carter, C.; Cravchik, A.; 

Woodage, T.; Ali, F.; An, H.; Awe, A.; Baldwin, D.; Baden, H.; Barnstead, M.; Barrow, 

I.; Beeson, K.; Busam, D.; Carver, A.; Center, A.; Cheng, M. L.; Curry, L.; Danaher, S.; 

Davenport, L.; Desilets, R.; Dietz, S.; Dodson, K.; Doup, L.; Ferriera, S.; Garg, N.; 



 

 146 

Gluecksmann, A.; Hart, B.; Jason, H.; Haynes, C.; Heiner, C.; Hladun, S.; Damon, H.; 

Houck, J.; Howland, T.; Ibegwam, C.; Johnson, J.; Kalush, F.; Kline, L.; Koduru, S.; 

Love, A.; Mann, F.; May, D.; McCawley, S.; McLntosh, T.; McMullen, I.; Moy, M.; 

Moy, L.; Murphy, B.; Nelson, K.; Pfannkoch, C.; Pratts, E.; Puri, V.; Qureshi, H.; 

Reardon, M.; Rodriguez, R.; Rogers, Y.-H.; Romblad, D.; Ruhfel, B.; Scott, R.; Sitter, C.; 

Smallwood, M.; Stewart, E.; Strong, R.; Suh, E.; Thomas, R.; Tint; Tse, S.; Vech, C.; 

Wang, G.; Wetter, J.; Williams, S.; Williams, M.; Windsor, S.; Winn-Deen, E.; Wolfe, 

K.; Zaveri, J.; Zaveri, K.; Abril, J. F.; Guigó, R.; Campbell, M. J.; Sjolander, K. V.; 

Karlak, B.; Kejariwal, A.; Mi, H.; Lazareva, B.; Hatton, T.; Narechania, A.; Diemer, K.; 

Muruganujan, A.; Guo, N.; Sato, S.; Bafna, V.; Istrail, S.; Lippert, R.; Schwartz, R.; 

Walenz, B.; Yooseph, S.; Allen, D.; Anand, B.; Baxendale, J.; Blick, L.; Caminha, M.; 

Carnes-Stine, J.; Caulk, P.; Chiang, Y.-H.; Coyne, M.; Dahlke, C.; Mays, A. D.; 

Dombroski, M.; Donnelly, M.; Ely, D.; Esparham, S.; Fosler, C.; Gire, H.; Glanowski, S.; 

Glasser, K.; Glodek, A.; Gorokhov, M.; Graham, K.; Gropman, B.; Harris, M.; Heil, J.; 

Henderson, S.; Hoover, J.; Jennings, D.; Jordan, C.; Jordan, J.; Kasha, J.; Kagan, L.; 

Kraft, C.; Levitsky, A.; Lewis, M.; Liu, X.; Lopez, J.; Ma, D.; Majoros, W.; McDaniel, 

J.; Murphy, S.; Newman, M.; Nguyen, T.; Nguyen, N.; Nodell, M.; Pan, S.; Peck, J.; 

Peterson, M.; Rowe, W.; Sanders, R.; Scott, J.; Simpson, M.; Smith, T.; Sprague, A.; 

Stockwell, T.; Turner, R.; Venter, E.; Wang, M.; Wen, M.; Wu, D.; Wu, M.; Xia, A.; 

Zandieh, A.; Zhu, X. The Sequence of the Human Genome. Science 2001, 291, 1304-

1351. 



 

 147 

2. Emery, J. G.; Ohlstein, E. H.; Jaye, M. Therapeutic Modulation of Transcription 

Factor Activity. TRENDS Pharmacol Sci 2001, 22, 233-240. 

3. Latchman, D. S. Transcription Factors: An Overview. Int J Biochem Cell Biol 

1997, 29, 1305-1312. 

4. Schumacher, M. A.; Goodman, R. H.; Brennan, R. G. The structure of a CREB 

bZIP.somatostatin CRE complex reveals the basis for selective dimerization and divalent 

cation-enhanced DNA binding. J Biol Chem 2000, 275, 35242-7. 

5. Wu, D.; Potluri, N.; Lu, J.; Kim, Y.; Rastinejad, F. Structural integration in 

hypoxia-inducible factors. Nature 2015, 524, 303-308. 

6. Nair, S. K.; Burley, S. K. X-ray structures of Myc-Max and Mad-Max 

recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription 

factors. Cell 2003, 112, 193-205. 

7. Shaffer, P. L.; Jivan, A.; Dollins, D. E.; Claessens, F.; Gewirth, D. T. Structural 

basis of androgen receptor binding to selective androgen response elements. Proc Natl 

Acad Sci U S A 2004, 101, 4758-63. 

8. Chen, F. E.; Huang, D. B.; Chen, Y. Q.; Ghosh, G. Crystal structure of p50/p65 

heterodimer of transcription factor NF-kappaB bound to DNA. Nature 1998, 391, 410-3. 

9. Wintjens, R.; Rooman, M. Structural Classification of HTH DNA-binding 

Domains and Protein – DNA Interaction Modes. J Mol Biol 1996, 262, 294-313. 

10. Banerjee-Basu, S.; Ferlanti, E. S.; Ryan, J. F.; Baxevanis, A. D. The 

Homeodomain Resource: sequences, structures and genomic information. Nucleic Acids 

Res 1999, 27, 336-337. 



 

 148 

11. Longo, A.; Guanga, G. P.; Rose, R. B. Structural basis for induced fit mechanisms 

in DNA recognition by the Pdx1 homeodomain. Biochemistry 2007, 46, 2948-57. 

12. Staffers, D. A.; Ferrer, J.; Clarke, W. L.; Habener, J. F. Early-onset type-ll 

diabetes mellitus (MODY4) linked to IPF1. Nat Genet 1997, 17, 138-139. 

13. Shore, P.; Whitmarsh Aj Fau - Bhaskaran, R.; Bhaskaran R Fau - Davis, R. J.; 

Davis Rj Fau - Waltho, J. P.; Waltho Jp Fau - Sharrocks, A. D.; Sharrocks, A. D. 

Determinants of DNA-binding specificity of ETS-domain transcription factors. Mol Cell 

Biol 1996, 16, 3338-3349. 

14. Hanes, S. D.; Brent, R. DNA specificity of the bicoid activator protein is 

determined by homeodomain recognition helix residue 9. Cell 1989, 57, 1275-1283. 

15. Roeder, R. G. The role of general initiation factors in transcription by RNA 

polymerase II. Trends Biochem Sci 1996, 21, 327-335. 

16. Nikolov, D. B.; Burley, S. K. RNA polymerase II transcription initiation: A 

structural  view. Proc Natl Acad Sci USA 1997, 94, 15-22. 

17. Cantin, G. T.; Stevens, J. L.; Berk, A. J. Activation domain–mediator interactions 

promote transcription preinitiation complex assembly on promoter DNA. P Natl Acad Sci 

USA 2003, 100, 12003-12008. 

18. Calkhoven, C. F.; Ab, G. Multiple steps in the regulation of transcription-factor 

level and activity. Biochem J 1996, 317, 329-342. 

19. Edmondson, D. G.; Olson, E. N. Helix-loop-helix proteins as regulators of 

muscle-specific transcription. J Biol Chem 1993, 268, 755-758. 



 

 149 

20. Maeshima, Y.; Kashihara, N.; Yasuda, T.; Sugiyama, H.; Sekikawa, T.; Okamoto, 

K.; Kanao, K.; Watanabe, Y.; Kanwar, Y. S.; Makino, H. Inhibition of mesangial cell 

proliferation by E2F decoy oligodeoxynucleotide in vitro and in vivo. J Clin Invest 1998, 

101, 2589-2597. 

21. Spencer, V. A.; Davie, J. R. Role of covalent modifications of histones in 

regulating gene expression. Gene 1999, 240, 1-12. 

22. Tenbaum, S.; Baniahmad, A. Nuclear receptors: Structure, function and 

involvement in disease. Int J Biochem Cell B 1997, 29, 1325-1341. 

23. Lonergan, P.; Tindall, D. Androgen receptor signaling in prostate cancer 

development and progression. J Carcinog 2011, 10, 20-20. 

24. Lonergan, P. E.; Tindall, D. J. Androgen receptor signaling in prostate cancer 

development and progression. J Carcinog 2011, 10, 20. 

25. Hayden, M. S., Ghosh, S. Shared principles in NF-kappaB signaling. Cell 2008, 

132, 344-362. 

26. Levy, D. E.; Darnell, J. E. STATs: transcriptional control and biological impact. 

Nat Rev Mol Cell Biol 2002, 3, 651-662. 

27. Sen, R., Baltimore, D. Multiple nuclear factors interact with the immune- globulin 

enhancer sequences. Cell 1986, 46, 705-716. 

28. Karin, M.; Greten, F. R. NF-[kappa]B: linking inflammation and immunity to 

cancer development and progression. Nat Rev Immunol 2005, 5, 749-759. 

29. Karin, M. Nuclear factor-[kappa]B in cancer development and progression. 

Nature 2006, 441, 431-436. 



 

 150 

30. Naugler, W. E., Karin, M. NF-κB and cancer-identifying targets and mechanisms. 

Curr Opin Genet Dev 2008, 18, 19-26. 

31. Karin, M., Yamamoto, Y., Wang, Q. M. The IKK NF-kappa B system: a treasure 

trove for drug development. Nat. Rev. Drug Discov. 2004, 3, 17-26. 

32. Tergaonkar, V., Correa, R. G., Ikawa, M., Verma, I. M. Distinct roles of IkappaB 

proteins in regulating constitutive NF-kappaB activity. Nat Cell Biol 2005, 7, 921-923. 

33. Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868-874. 

34. Monaco, C., Paleolog, E. Nuclear factor κB a potential therapeutic target in 

atherosclerosis and thromboses. Cardiovascular Res. 2004, 61, 671-682. 

35. Aggarwal, B. B. Nuclear factor-kappaB the enemy within. Cancer Cell 2004, 6, 

203-208. 

36. Kontos, C. K.; Scorilas, A.; Papavassiliou, A. G. The role of transcription factors 

in laboratory medicine. Clin Chem Lab Med 2013, 51, 1563-71. 

37. Karamouzis, M. V.; Konstantinopoulos, P. A.; Papavassiliou, A. G. The activator 

protein-1 transcription factor in respiratory epithelium carcinogenesis. Mol Cancer Res 

2007, 5, 109-20. 

38. Darnell, J. E., Jr. Transcription factors as targets for cancer therapy. Nat Rev 

Cancer 2002, 2, 740-9. 

39. Mukherjee, S. The Emperor of All Maladies. Scribner; Reprint edition: 2011; p 

608. 

40. Nogués, C. Oncogenetics: How Far, and What for? B Cancer 1998, 85, 243-245. 



 

 151 

41. Varmus, H. E. Oncogenes and Transcriptional Control. Science 1987, 238, 1337-

1339. 

42. Mani, R.-S.; Tomlins, S. A.; Callahan, K.; Ghosh, A.; Nyati, M. K.; Varambally, 

S.; Palanisamy, N.; Chinnaiyan, A. M. Induced Chromosomal Proximity and Gene 

Fusions in Prostate Cancer. Science 2009, 326, 1230. 

43. Lin, C.; Yang, L.; Tanasa, B.; Hutt, K.; Ju, B.-g.; Ohgi, K. A.; Zhang, J.; Rose, D. 

W.; Fu, X.-D.; Glass, C. K.; Rosenfeld, M. G. Nuclear Receptor-Induced Chromosomal 

Proximity and DNA Breaks Underlie Specific Translocations in Cancer. Cell 2009, 139, 

1069-1083. 

44. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2015. CA Cancer J Clin 

2015, 65, 5-29. 

45. Nadiminty, N.; Gao, A. Mechanisms of persistent activation of the androgen 

receptor in CRPC: recent advances and future perspectives. World J Urol 2012, 30, 287-

295. 

46. Scher, H. I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C. N.; Miller, K.; de 

Wit, R.; Mulders, P.; Chi, K. N.; Shore, N. D.; Armstrong, A. J.; Flaig, T. W.; Fléchon, 

A.; Mainwaring, P.; Fleming, M.; Hainsworth, J. D.; Hirmand, M.; Selby, B.; Seely, L.; 

de Bono, J. S. Increased Survival with Enzalutamide in Prostate Cancer after 

Chemotherapy. New Engl J Med 2012, 367, 1187-1197. 

47. Chaturvedi, M. M.; Sung, B.; Yadav, V. R.; Kannappan, R.; Aggarwal, B. B. NF-

kappaB addiction and its role in cancer: 'one size does not fit all'. Oncogene 2011, 30, 

1615-30. 



 

 152 

48. Karin, M. Nuclear factor-kappa B in cancer development and progression. Nature 

2006, 441, 431-436. 

49. Ziegler, E. C.; Ghosh, S. Regulating inducible transcription through controlled 

localization. Sci STKE 2005, 2005, re6. 

50. Pennisi, E. Opening the Way to Gene Activity. Science 1997, 275, 155-157. 

51. Gohda, J.; Inoue J Fau - Umezawa, K.; Umezawa, K. Down-regulation of TNF-

alpha receptors by conophylline in human T-cell leukemia cells. Int J Oncol 2003, 23, 

1019-6439 (Print). 

52. Song, X.; Torphy, T.; Grisowold, D.; Shealy, D. Coming of Age: Anti-Cytokine 

Therapies. Mol Interv 2002, 2, 36-46. 

53. Stegmeier, F.; Warmuth, M.; Sellers, W. R.; Dorsch, M. Targeted Cancer 

Therapies in the Twenty-First Century: Lessons From Imatinib. Clin Pharmacol Ther 

2010, 87, 543-552. 

54. Kirchner, D.; Duyster, J.; Ottmann, O.; Schmid, R. M.; Bergmann, L.; Munzert, 

G. Mechanisms of Bcr-Abl-mediated NF-κB/Rel activation. Exp Hematol 2003, 31, 504-

511. 

55. Coppo, P.; Dusanter-Fourt, I.; Millot, G.; Nogueira, M. M.; Dugray, A.; Bonnet, 

M. L.; Mitjavila-Garcia, M. T.; Le Pesteur, D.; Guilhot, F.; Vainchenker, W.; Sainteny, 

F.; Turhan, A. G. Constitutive and specific activation of STAT3 by BCR-ABL in 

embryonic stem cells. Oncogene 2003, 22, 4102-4110. 

56. Schuster, C.; Forster, K.; Dierks, H.; Elsässer, A.; Behre, G.; Simon, N.; 

Danhauser-Riedl, S.; Hallek, M.; Warmuth, M. The effects of Bcr-Abl on C/EBP 



 

 153 

transcription-factor regulation and neutrophilic differentiation are reversed by the Abl 

kinase inhibitor imatinib mesylate. Blood 2002, 101, 655-663. 

57. Goldman, J. M.; Marin, D. Is imatinib still an acceptable first-line treatment for 

CML in chronic phase? Oncology 2012, 26, 901. 

58. Das, J.; Chen, C.-H.; Yang, L.; Cohn, L.; Ray, P.; Ray, A. A critical role for NF-

[kappa]B in Gata3 expression and TH2 differentiation in allergic airway inflammation. 

Nat Immunol 2001, 2, 45-50. 

59. Fu, W.; Farache, J.; Clardy, S. M.; Hattori, K.; Mander, P.; Lee, K.; Rioja, I.; 

Weissleder, R.; Prinjha, R. K.; Benoist, C.; Mathis, D. Epigenetic modulation of type-1 

diabetes via a dual effect on pancreatic macrophages and β cells. eLife 2014, 3. 

60. Banno, M.; Mizuno, T.; Kato, H.; Zhang, G.; Kawanokuchi, J.; Wang, J.; Kuno, 

R.; Jin, S.; Takeuchi, H.; Suzumura, A. The radical scavenger edaravone prevents 

oxidative neurotoxicity induced by peroxynitrite and activated microglia. 

Neuropharmacology 2005, 48, 283-90. 

61. Papavassiliou, A. G. Transcription factor-based drug design in anticancer drug 

development. Mol Med 1997, 3, 799-810. 

62. Hanahan, D.; Weinberg, R. A. The Hallmarks of Cancer. Cell 2000, 100, 57-70. 

63. Yeh, J. E.; Toniolo, P. A.; Frank, D. A. Targeting transcription factors: promising 

new strategies for cancer therapy. Curr Opin Oncol 2013, 25, 652-8. 

64. Arndt, H.-D. Small Molecule Modulators of Transcription. Angew Chem Int Edit 

2006, 45, 4552-4560. 



 

 154 

65. Allred, D. C.; Brown, P.; Medina, D. The origins of estrogen receptor alpha-

positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res 

2004, 6, 240-245. 

66. Jordan, V. C. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug 

Discov 2003, 2, 205-213. 

67. Attard, G.; Richards, J.; de Bono, J. S. New strategies in metastatic prostate 

cancer: targeting the androgen receptor signaling pathway. Clin Cancer Res 2011, 17, 

1649-57. 

68. Chen, Y.; Sawyers, C. L.; Scher, H. I. Targeting the androgen receptor pathway in 

prostate cancer. Curr Opin Pharm 2008, 8, 440-448. 

69. Patel, N. K.; Finianos, A.; Whitaker, K. D.; Aragon-Ching, J. B. Advanced 

prostate cancer – patient survival and potential impact of enzalutamide and other 

emerging therapies. Ther Clin Risk Manag 2014, 10, 651-664. 

70. Koehler, A. N. A complex task? Direct modulation of transcription factors with 

small molecules. Curr Opin Chem Biol 2010, 14, 331-40. 

71. Stockwell, B. R. Exploring biology with small organic molecules. Nature 2004, 

432, 846-854. 

72. Arkin, M. Protein–protein interactions and cancer: small molecules going in for 

the kill. Curr Opin Chem Biol 2005, 9, 317-324. 

73. Pagliaro, L.; Felding, J.; Audouze, K.; Nielsen, S. J.; Terry, R. B.; Krog-Jensen, 

C.; Butcher, S. Emerging classes of protein–protein interaction inhibitors and new tools 

for their development. Curr Opin Chem Biol 2004, 8, 442-449. 



 

 155 

74. Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein-protein 

interactions: progressing towards the dream. Nat Rev Drug Discov 2004, 3, 301-317. 

75. Yap, J. L.; Chauhan, J.; Jung, K.-Y.; Chen, L.; Prochownik, E. V.; Fletcher, S. 

Small-molecule inhibitors of dimeric transcription factors: Antagonism of protein-protein 

and protein-DNA interactions. MedChemComm 2012, 3, 541-551. 

76. Glanzer, J. G.; Liu, S.; Oakley, G. G. Small molecule inhibitor of the RPA70 N-

terminal protein interaction domain discovered using in silico and in vitro methods. 

Bioorg Med Chem 2011, 19, 2589-95. 

77. Berg, T. Modulation of Protein–Protein Interactions with Small Organic 

Molecules. Angew Chem Int Edit 2003, 42, 2462-2481. 

78. Yin, H.; Hamilton, A. D. Strategies for Targeting Protein–Protein Interactions 

With Synthetic Agents. Angew Chem Int Edit 2005, 44, 4130-4163. 

79. Hong, J. A.; Neel, D. V.; Wassaf, D.; Caballero, F.; Koehler, A. N. Recent 

discoveries and applications involving small-molecule microarrays. Curr Opin Chem Biol 

2014, 18, 21-28. 

80. Pop, M. S.; Stransky, N.; Garvie, C. W.; Theurillat, J.-P.; Hartman, E. C.; Lewis, 

T. A.; Zhong, C.; Culyba, E. K.; Lin, F.; Daniels, D. S.; Pagliarini, R.; Ronco, L.; 

Koehler, A. N.; Garraway, L. A. A Small Molecule That Binds and Inhibits the ETV1 

Transcription Factor Oncoprotein. Mol Cancer Ther 2014, 13, 1492-1502. 

81. Berg, T.; Cohen, S. B.; Desharnais, J.; Sonderegger, C.; Maslyar, D. J.; Goldberg, 

J.; Boger, D. L.; Vogt, P. K. Small-molecule antagonists of Myc/Max dimerization 



 

 156 

inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci 

USA 2002, 99, 3830-3835. 

82. Rishi, V.; Potter, T.; Laudeman, J.; Reinhart, R.; Silvers, T.; Selby, M.; 

Stevenson, T.; Krosky, P.; Stephen, A. G.; Acharya, A.; Moll, J.; Oh, W. J.; Scudiero, D.; 

Shoemaker, R. H.; Vinson, C. A high-throughput fluorescence–anisotropy screen that 

identifies small molecule inhibitors of the DNA binding of B-ZIP transcription factors. 

Anal Biochem 2005, 340, 259-271. 

83. Moellering, R. E.; Cornejo, M.; Davis, T. N.; Bianco, C. D.; Aster, J. C.; 

Blacklow, S. C.; Kung, A. L.; Gilliland, D. G.; Verdine, G. L.; Bradner, J. E. Direct 

inhibition of the NOTCH transcription factor complex. Nature 2009, 462, 182-188. 

84. Bargonetti, J.; Manfredi, J. J. Multiple roles of the tumor suppressor p53. Curr 

Opin Oncol 2002, 14, 86-91. 

85. Harris, S. L.; Levine, A. J. The p53 pathway: positive and negative feedback 

loops. Oncogene 2005, 24, 2899-2908. 

86. Bernal, F.; Wade, M.; Godes, M.; Davis, T. N.; Whitehead, D. G.; Kung, A. L.; 

Wahl, G. M.; Walensky, L. D. A stapled p53 helix overcomes HDMX-mediated 

suppression of p53. Cancer Cell 2010, 18, 411-22. 

87. Ravindranathan, P.; Lee, T.-K.; Yang, L.; Centenera, M. M.; Butler, L.; Tilley, W. 

D.; Hsieh, J.-T.; Ahn, J.-M.; Raj, G. V. Peptidomimetic targeting of critical androgen 

receptor–coregulator interactions in prostate cancer. Nat Commun 2013, 4, 1923. 

88. Ahn, J. M.; Boyle, N. A.; Macdonald, M. T.; Janda, K. D. Peptidomimetics and 

peptide backbone modifications. Mini Rev Med Chem 2002, 2, 463-473. 



 

 157 

89. Garcia, R.; Bowman, T. L.; Niu, G.; Yu, H.; Minton, S.; Muro-Cacho, C. A.; Cox, 

C. E.; Falcone, R.; Fairclough, R.; Parsons, S.; Laudano, A.; Gazit, A.; Levitzki, A.; 

Kraker, A.; Jove, R. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases 

participates in growth regulation of human breast carcinoma cells. Oncogene 2001, 20, 

2499. 

90. Chen, J.; Bai, L.; Bernard, D.; Nikolovska-Coleska, Z.; Gomez, C.; Zhang, J.; Yi, 

H.; Wang, S. Structure-Based Design of Conformationally Constrained, Cell-Permeable 

STAT3 Inhibitors. ACS Med Chem Lett 2010, 1, 85-89. 

91. Trauger, J. W.; Baird, E. E.; Dervan, P. B. Recognition of DNA by designed 

ligands at subnanomolar concentrations. Nature 1996, 382, 559-561. 

92. Chenoweth, D. M.; Poposki, J. A.; Marques, M. A.; Dervan, P. B. Programmable 

oligomers targeting 5'-GGGG-3' in the minor groove of DNA and NF-kappaB binding 

inhibition. Bioorg Med Chem 2007, 15, 759-70. 

93. Nickols, N. G.; Dervan, P. B. Suppression of androgen receptor-mediated gene 

expression by a sequence-specific DNA-binding polyamide. Proc Natl Acad Sci 2007, 

104, 10418-10423. 

94. Bochman, M. L.; Paeschke, K.; Zakian, V. A. DNA secondary structures: stability 

and function of G-quadruplex structures. Nat Rev Genet 2012, 13, 770-780. 

95. Balasubramanian, S.; Hurley, L. H.; Neidle, S. Targeting G-quadruplexes in gene 

promoters: a novel anticancer strategy? Nat Rev Drug Discov 2011, 10, 261-275. 

96. Dias, N.; Stein, C. A. Antisense Oligonucleotides: Basic Concepts and 

Mechanisms. Mol Cancer Ther 2002, 1, 347-355. 



 

 158 

97. Rao, D. D.; Vorhies, J. S.; Senzer, N.; Nemunaitis, J. siRNA vs. shRNA: 

similarities and differences. Adv Drug Deliv Rev 2009, 61, 746-59. 

98. Deng, Y.; Wang, C. C.; Choy, K. W.; Du, Q.; Chen, J.; Wang, Q.; Li, L.; Chung, 

T. K.; Tang, T. Therapeutic potentials of gene silencing by RNA interference: principles, 

challenges, and new strategies. Gene 2014, 538, 217-27. 

99. Matranga, C.; Tomari, Y.; Shin, C.; Bartel, D. P.; Zamore, P. D. Passenger-strand 

cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. 

Cell 2005, 123, 607-20. 

100. Hong, D. S.; Younes, A.; L. Fayad, e. a. A phase I study of ISIS 481464 

(AZD9150), a first-in-human, first-in-class, antisense oligonucleotide inibitor of STAT3, 

in patients with advanced cancers. J Clin Oncol 2013, 31, Supplement, abstract 8523. 

101. Seth, P. P.; Siwkowski, A.; Allerson, C. R.; Vasquez, G.; Lee, S.; Prakash, T. P.; 

Kinberger, G.; Migawa, M. T.; Gaus, H.; Bhat, B.; Swayze, E. E. Design, Synthesis And 

Evaluation Of Constrained Methoxyethyl (cMOE) and Constrained Ethyl (cEt) 

Nucleoside Analogs. Nucl Acid S 2008, 52, 553-554. 

102. Janssen, S.; Cuvier, O.; Müller, M.; Laemmli, U. K. Specific Gain- and Loss-of-

Function Phenotypes Induced by Satellite-Specific DNA-Binding Drugs Fed to 

Drosophila melanogaster. Mol Cell 2000, 6, 1013-1024. 

103. Lee, T.-H.; Maheshri, N. A regulatory role for repeated decoy transcription factor 

binding sites in target gene expression. Mol Sys Biol 2012, 8, 576-576. 



 

 159 

104. Liu, X.; Wu, B.; Szary, J.; Kofoed, E. M.; Schaufele, F. Functional Sequestration 

of Transcription Factor Activity By Repetitive DNA. J Biol Chem 2007, 282, 

10.1074/jbc.M702547200. 

105. Gambari, R. New trends in the development of transcription factor decoy (TFD) 

pharmacotherapy. Curr Drug Targets 2004, 5, 419-30. 

106. Weintraub, S. J.; Prater, C. A.; Dean, D. C. Retinoblastoma protein switches the 

E2F site from positive to negative element. Nature 1992, 358, 259-261. 

107. Wingender, E.; Chen, X.; Fricke, E.; Geffers, R.; Hehl, R.; Liebich, I.; Krull, M.; 

Matys, V.; Michael, H.; Ohnhäuser, R.; Prüß, M.; Schacherer, F.; Thiele, S.; Urbach, S. 

The TRANSFAC system on gene expression regulation. Nucleic Acids Res 2001, 29, 

281-283. 

108. Faisst, S.; Meyer, S. Compilation of vertebrate-encoded transcription factors. 

Nucleic Acids Res 1992, 20, 3-26. 

109. Beaucage, S. L.; Caruthers, M. H. Deoxynucleoside phosphoramidites—A new 

class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 1981, 22, 

1859-1862. 

110. McBride, L. J.; Caruthers, M. H. An investigation of several deoxynucleoside 

phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett 1983, 

24, 245-248. 

111. Tomita, N.; Morishita, R.; Higaki, J.; Aoki, M.; Nakamura, Y.; Mikami, H.; 

Fukamizu, A.; Murakami, K.; Kaneda, Y.; Ogihara, T. Transient Decrease in High Blood 



 

 160 

Pressure by In Vivo Transfer of Antisense Oligodeoxynucleotides Against Rat 

Angiotensinogen. Hypertension 1995, 26, 131-136. 

112. Tomita, N.; Morishita, R.; Higaki, J.; Tomita, S.; Aoki, M.; Ogihara, T.; Kaneda, 

Y. In vivo gene transfer of insulin gene into neonatal rats by the HVJ-liposome method 

resulted in sustained transgene expression. Gene Ther 1996, 3, 477-482. 

113. Morishita, R.; Gibbons, G. H.; Kaneda, Y.; Ogihara, T.; Dzau, V. J. 

Pharmacokinetics of antisense oligodeoxyribonucleotides (cyclin B1 and CDC 2 kinase) 

in the vessel wall in vivo: enhanced therapeutic utility for restenosis by HVJ-liposome 

delivery. Gene 1994, 149, 13-19. 

114. Morishita, R.; Gibbons, G. H.; Ellison, K. E.; Nakajima, M.; Zhang, L.; Kaneda, 

Y.; Ogihara, T.; Dzau, V. J. Single intraluminal delivery of antisense cdc2 kinase and 

proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of 

neointimal hyperplasia. Proc Natl Acad Sci USA 1993, 90, 8474-8478. 

115. Taniyama, Y.; Tachibana, K.; Hiraoka, K.; Namba, T.; Yamasaki, K.; Hashiya, 

N.; Aoki, M.; Ogihara, T.; Yasufumi, K.; Morishita, R. Local Delivery of Plasmid DNA 

Into Rat Carotid Artery Using Ultrasound. Circulation 2002, 105, 1233-1239. 

116. Morishita, R.; Gibbons, G. H.; Pratt, R. E.; Tomita, N.; Kaneda, Y.; Ogihara, T.; 

Dzau, V. J. Autocrine and paracrine effects of atrial natriuretic peptide gene transfer on 

vascular smooth muscle and endothelial cellular growth. J Clin Invest 1994, 94, 824-829. 

117. Tomita, N.; Higaki, J.; Kaneda, Y.; Yu, H.; Morishita, R.; Mikami, H.; Ogihara, 

T. Hypertensive rats produced by in vivo introduction of the human renin gene. Circ Res 

1993, 73, 898-905. 



 

 161 

118. Tomita, N.; Higaki, J.; Morishita, R.; Kato, K.; Mikami, H.; Kaneda, Y.; Ogihara, 

T. Direct in vivo gene introduction into rat kidney. Biochem Biophys Res Co 1992, 186, 

129-134. 

119. Chu, B. C.; Orgel, L. E. The stability of different forms of double-stranded decoy 

DNA in serum and nuclear extracts. Nucleic Acids Res 1992, 20, 5857-8. 

120. Bielinska, A.; Shivdasani, R. A.; Zhang, L.; Nabel, G. J. Regulation of Gene 

Expression with Double-Stranded Phosphorothioate Oligonucleotides. Science 1990, 250, 

997-1000. 

121. Stein, C. A.; Subasinghe, C.; Shinozuka, K.; Cohen, J. S. Physicochemical 

properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 1988, 16, 3209-

3221. 

122. Agrawal, S.; Jiang, Z.; Zhao, Q.; Shaw, D.; Cai, Q.; Roskey, A.; Channavajjala, 

L.; Saxinger, C.; Zhang, R. Mixed-backbone oligonucleotides as second generation 

antisense oligonucleotides: In vitro and in vivo  studies. Proc Natl Acad Sci USA 1997, 

94, 2620-2625. 

123. Zon, G. Oligonucleotide Analogues as Potential Chemotherapeutic Agents. 

Pharm Res 1988, 5, 539-549. 

124. Singh, S.; Koshkin, A.; Wengel, J.; Nielsen, P. LNA (locked nucleic acids): 

synthesis and high-affinity nucleic acid recognition. Chem Commun 1998, 455-456. 

125. Crinelli, R.; Bianchi, M.; Gentilini, L.; Magnani, M. Design and characterization 

of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res 2002, 30, 

2435-2443. 



 

 162 

126. Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Sequence-Selective 

Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide. 

Science 1991, 254, 1497-1500. 

127. Egholm, M.; Buchardt, O.; Nielsen, P. E.; Berg, R. H. Peptide nucleic acids 

(PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 1992, 

114, 1895-1897. 

128. Borgatti, M.; Finotti, A.; Romanelli, A.; Saviano, M.; Bianchi, N.; Lampronti, I.; 

Lambertini, E.; Penolazzi, L.; Nastruzzi, C.; Mischiati, C.; Piva, R.; Pedone, C.; Gambari, 

R. Peptide Nucleic Acids (PNA)-DNA Chimeras Targeting Transcription Factors as a 

Tool to Modify Gene Expression. Curr Drug Targets 2004, 5, 735-744. 

129. Lee, I. K.; Ahn, J. D.; Kim, H. S.; Park, J. Y.; Lee, K. U. Advantages of the 

Circular Dumbbell Decoy in Gene Therapy and Studies of Gene Regulation. Curr Drug 

Targets 2003, 4, 619-623. 

130. Ahn, J. D.; Morishita, R.; Kaneda, Y.; Lee, S.-J.; Kwon, K.-Y.; Choi, S.-Y.; Lee, 

K.-U.; Park, J.-Y.; Moon, I.-J.; Park, J.-G.; Yoshizumi, M.; Ouchi, Y.; Lee, I.-K. 

Inhibitory Effects of Novel AP-1 Decoy Oligodeoxynucleotides on Vascular Smooth 

Muscle Cell Proliferation In Vitro and Neointimal Formation In Vivo. Circ Res 2002, 90, 

1325-1332. 

131. Hosoya, T.; Takeuchi, H.; Kanesaka, Y.; Yamakawa, H.; Miyano-Kurosaki, N.; 

Takai, K.; Yamamoto, N.; Takaku, H. Sequence-specific inhibition of a transcription 

factor by circular dumbbell DNA oligonucleotides. FEBS Letters 1999, 461, 136-140. 



 

 163 

132. Souissi, I.; Ladam, P.; Cognet, J. A. H.; Le Coquil, S.; Varin-Blank, N.; Baran-

Marszak, F.; Metelev, V.; Fagard, R. A STAT3-inhibitory hairpin decoy 

oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a 

human colon carcinoma cell line. Mol Cancer 2012, 11, 12-12. 

133. Tadlaoui Hbibi, A.; Laguillier, C.; Souissi, I.; Lesage, D.; Le Coquil, S.; Cao, A.; 

Metelev, V.; Baran-Marszak, F.; Fagard, R. Efficient killing of SW480 colon carcinoma 

cells by a signal transducer and activator of transcription (STAT) 3 hairpin decoy 

oligodeoxynucleotide – interference with interferon-γ-STAT1-mediated killing. FEBS 

Journal 2009, 276, 2505-2515. 

134. Tomita, N.; Ogihara, T.; Morishita, R. Transcription Factors as Molecular 

Targets: Molecular Mechanisms of Decoy ODN and their Design. Curr Drug Targets 

2003, 4, 603-608. 

135. Mann, M. J. Transcription Factor Decoys: A New Model for Disease Intervention. 

Ann NY Acad Sci 2005, 1058, 128-139. 

136. D’Acquisto, F.; Ialenti, A.; Ianaro, A.; Di Vaio, R.; Carnuccio, R. Local 

administration of transcription factor decoy oligonucleotides to nuclear factor-κB 

prevents carrageenin-induced inflammation in rat hind paw. Gene Ther 2000, 7, 1731. 

137. Matsuda, N.; Hattori, Y.; Takahashi, Y.; Nishihira, J.; Jesmin, S.; Kobayashi, M.; 

Gando, S. Therapeutic effect of in vivo transfection of transcription factor decoy to NF-

κB on septic lung in mice. Am J Physiol-Lung C 2004, 287, L1248-L1255. 

138. Ahn, J. D.; Morishita, R.; Kaneda, Y.; Kim, H. J.; Kim, Y. D.; Lee, H. J.; Lee, K. 

U.; Park, J. Y.; Kim, Y. H.; Park, K. K.; Chang, Y. C.; Yoon, K. H.; Kwon, H. S.; Park, 



 

 164 

K. G.; Lee, I. K. Transcription factor decoy for AP-1 reduces mesangial cell proliferation 

and extracellular matrix production in vitro and in vivo. Gene Ther 2004, 11, 916-923. 

139. Quarcoo, D.; Weixler, S.; Groneberg, D.; Joachim, R.; Ahrens, B.; Wagner, A. 

H.; Hecker, M.; Hamelmann, E. Inhibition of signal transducer and activator of 

transcription 1 attenuates allergen-induced airway inflammation and hyperreactivity. J 

Allergy Clin Immun 2004, 114, 288-295. 

140. Finotti, A.; Borgatti, M.; Bezzerri, V.; Nicolis, E.; Lampronti, I.; Dechecchi, M.; 

Mancini, I.; Cabrini, G.; Saviano, M.; Avitabile, C.; Romanelli, A.; Gambari, R. Effects 

of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 

cells. Artif DNA PNA XNA 2012, 3, 97-104. 

141. Wang, J.; Cheng, H.; Li, X.; Lu, W.; Wang, K.; Wen, T. Regulation of Neural 

Stem Cell Differentiation by Transcription Factors HNF4-1 and MAZ-1. Mol Neurobiol 

2013, 47, 228-240. 

142. Xie, S.; Nie, R.; Wang, J.; Li, F.; Yuan, W. Transcription factor decoys for 

activator protein-1 (AP-1) inhibit oxidative stress-induced proliferation and matrix 

metalloproteinases in rat cardiac fibroblasts. Transl Res 2009, 153, 17-23. 

143. Feeley, B. T.; Miniati, D. N.; Park, A. K.; Grant Hoyt, E.; Robbins, R. C. Nuclear 

Factor-kappaB Transcription Factor Decoy Treatment Inhibits Graft Coronary Artery 

Disease After Cardiac Transplantation in Rodents. Transplantation 2000, 70, 1560-1568. 

144. Desmet, C.; Gosset, P.; Pajak, B.; Cataldo, D.; Bentires-Alj, M.; Lekeux, P.; 

Bureau, F. Selective Blockade of NF-κB Activity in Airway Immune Cells Inhibits the 

Effector Phase of Experimental Asthma. J Immunol 2004, 173, 5766-5775. 



 

 165 

145. Kawauchi, M.; Suzuki, J.; Wada, Y.; Morishita, R.; Kaneda, Y.; Isobe, M.; 

Amano, J.; Takamoto, S. Downregulation of nuclear factor kappa B expression in primate 

cardiac allograft arteries after E2F decoy transfection. Transpl P 2001, 33, 451. 

146. Mann, M. J.; Whittemore, A. D.; Donaldson, M. C.; Belkin, M.; Conte, M. S.; 

Polak, J. F.; Orav, E. J.; Ehsan, A.; Dell'Acqua, G.; Dzau, V. J. Ex-vivo gene therapy of 

human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, 

controlled trial. The Lancet 1999, 354, 1493-1498. 

147. Nishimura, A.; Akeda, K.; Matsubara, T.; Kusuzaki, K.; Matsumine, A.; Masuda, 

K.; Gemba, T.; Uchida, A.; Sudo, A. Transfection of NF-κB decoy oligodeoxynucleotide 

suppresses pulmonary metastasis by murine osteosarcoma. Cancer Gene Ther 2011, 18, 

250-259. 

148. Novak, E. M.; Metzger, M.; Chammas, R.; da Costa, M.; Dantas, K.; Manabe, C.; 

Pires, J.; de Oliveira, A. C.; Bydlowski, S. P. Downregulation of TNF-[alpha] and VEGF 

expression by Sp1 decoy oligodeoxynucleotides in mouse melanoma tumor. Gene Ther 

2003, 10, 1992-1997. 

149. Souissi, I.; Najjar, I.; Ah-Koon, L.; Schischmanoff, P. O.; Lesage, D.; Le Coquil, 

S.; Roger, C.; Dusanter-Fourt, I.; Varin-Blank, N.; Cao, A.; Metelev, V.; Baran-Marszak, 

F.; Fagard, R. A STAT3-decoy oligonucleotide induces cell death in a human colorectal 

carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB. 

BMC Cell Biology 2011, 12, 14-14. 

150. Cogoi, S.; Zorzet, S.; Rapozzi, V.; Géci, I.; Pedersen, E. B.; Xodo, L. E. MAZ-

binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid 



 

 166 

modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in 

mice. Nucleic Acids Res 2013, 41, 4049-4064. 

151. Kuratsukuri, K.; Sugimura, K.; Harimoto, K.; Kawashima, H.; Kishimoto, T. 

"Decoy" of Androgen-Responsive Element Induces Apoptosis in LNCaP Cells. Prostate 

1999, 41, 121-126. 

152. Wang, L. H.; Yang, X. Y.; Zhang, X.; Mihalic, K.; Xiao, W.; Farrar, W. L. The 

cis Decoy against the Estrogen Response Element Suppresses Breast Cancer Cells via 

Target Disrupting c-fos not Mitogen-activated Protein Kinase Activity. Cancer Res 2003, 

63, 2046-2051. 

153. Leong, P. L.; Andrews, G. A.; Johnson, D. E.; Dyer, K. F.; Xi, S.; Mai, J. C.; 

Robbins, P. D.; Gadiparthi, S.; Burke, N. A.; Watkins, S. F.; Grandis, J. R. Targeted 

inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell 

growth. Proc Natl Acad Sci USA 2003, 100, 4138-4143. 

154. Chan, K. S.; Sano, S.; Kiguchi, K.; Anders, J.; Komazawa, N.; Takeda, J.; 

DiGiovanni, J. Disruption of Stat3 reveals a critical role in both the initiation and the 

promotion stages of epithelial carcinogenesis. J Clin Invest 2004, 114, 720-728. 

155. Liu, W. M.; Scott, K. A.; Shahin, S.; Propper, D. J. The in vitro effects of CRE-

decoy oligonucleotides in combination with conventional chemotherapy in colorectal 

cancer cell lines. Eur J Bioch 2004, 271, 2773-2781. 

156. Alper, Ö.; Bergmann-Leitner, E.; Abrams, S.; Cho-Chung, Y. Apoptosis, growth 

arrest and suppression of invasiveness by CRE-decoy oligonucleotide in ovarian cancer 



 

 167 

cells: Protein kinase A downregulation and cytoplasmic export of CRE-binding proteins. 

Mol Cell Biochem 2001, 218, 55-63. 

157. Penolazzi, L., Magri, E., Lambertini, E., Calò, G., Cozzani, M., Siciliani, G., Piva, 

R., Gambari, R. Local in vivo administration of a decoy oligonucleotide targeting NF-κB 

induces apoptosis of osteoclasts after application of orthodontic forces to rat teeth. Int J 

Mol Med 2006, 18, 807-811. 

158. Morishita, R.; Gibbons, G. H.; Horiuchi, M.; Ellison, K. E.; Nakama, M.; Zhang, 

L.; Kaneda, Y.; Ogihara, T.; Dzau, V. J. A gene therapy strategy using a transcription 

factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc 

Natl Acad Sci USA 1995, 92, 5855-5859. 

159. Sen, M.; Thomas, S. M.; Kim, S.; Yeh, J. I.; Ferris, R. L.; Johnson, J. T.; Duvvuri, 

U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M. L.; Shi, H.; Li, C.; Ly, D.; Rapireddy, S.; 

Etter, J. P.; Li, P.-K.; Wang, L.; Chiosea, S.; Seethala, R. R.; Gooding, W. E.; Chen, X.; 

Kaminski, N.; Pandit, K.; Johnson, D. E.; Grandis, J. R. First-in-human trial of a STAT3 

decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer 

Discov 2, 694-705. 

160. Kaplan, J. H.; Forbush, B.; Hoffman, J. F. Rapid photolytic release of adenosine 

5'-triphosphate from a protected analog: utilization by the sodium:potassium pump of 

human red blood cell ghosts. Biochemistry 1978, 17, 1929-1935. 

161. Forbush, B. Na+ movement in a single turnover of the Na pump. Proc Natl Acad 

Sci USA 1984, 81, 5310-5314. 



 

 168 

162. Rajasekharan Pillai, V. N. Photoremovable Protecting Groups in Organic 

Synthesis. Synthesis 1980, 1980, 1-26. 

163. Mayer, G.; Heckel, A. Biologically Active Molecules with a “Light Switch”. 

Angew Chem Int Ed 2006, 45, 4900-4921. 

164. Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A. Light-Controlled 

Tools. Angew Chem Int Ed 2012, 51, 8446-8476. 

165. Lee, H.-M.; Larson, D. R.; Lawrence, D. S. Illuminating the Chemistry of Life: 

Design, Synthesis, and Applications of “Caged” and Related Photoresponsive 

Compounds. ACS Chem Biol 2009, 4, 409-427. 

166. Deiters, A. Principles and Applications of the Photochemical Control of Cellular 

Processes. ChemBioChem 2010, 11, 47-53. 

167. Callaway, E. M.; Yuste, R. Stimulating neurons with light. Curr Opin Neurobiol 

2002, 12, 587-592. 

168. Bennett, I. M.; Farfano, H. M. V.; Bogani, F.; Primak, A.; Liddell, P. A.; Otero, 

L.; Sereno, L.; Silber, J. J.; Moore, A. L.; Moore, T. A.; Gust, D. Active transport of 

Ca2+ by an artificial photosynthetic membrane. Nature 2002, 420, 398-401. 

169. Pelliccioli, A. P.; Wirz, J. Photoremovable protecting groups: reaction 

mechanisms and applications. Photoch Photobio Sci 2002, 1, 441-458. 

170. Givens, R.; Kotala, M. B.; Lee, J.-I. Mechanistic Overview of Phototriggers and 

Cage Release. In Dynamic Studies in Biology, Wiley-VCH Verlag GmbH & Co. KGaA: 

2005; pp 95-129. 



 

 169 

171. Corrie, J. E. T.; Furuta, T.; Givens, R.; Yousef, A. L.; Goeldner, M. 

Photoremovable Protecting Groups Used for the Caging of Biomolecules. In Dynamic 

Studies in Biology, Wiley-VCH Verlag GmbH & Co. KGaA: 2005; pp 1-94. 

172. Il'ichev, Y. V.; Schwörer, M. A.; Wirz, J. Photochemical Reaction Mechanisms of 

2-Nitrobenzyl Compounds:   Methyl Ethers and Caged ATP. J Am Chem Soc 2004, 126, 

4581-4595. 

173. Aujard, I.; Benbrahim, C.; Gouget, M.; Ruel, O.; Baudin, J.-B.; Neveu, P.; Jullien, 

L. o-Nitrobenzyl Photolabile Protecting Groups with Red-Shifted Absorption: Syntheses 

and Uncaging Cross-Sections for One- and Two-Photon Excitation. Chem Eur J 2006, 

12, 6865-6879. 

174. Petit, M.; Tran, C.; Roger, T.; Gallavardin, T.; Dhimane, H.; Palma-Cerda, F.; 

Blanchard-Desce, M.; Acher, F. C.; Ogden, D.; Dalko, P. I. Substitution Effect on the 

One- and Two-photon Sensitivity of DMAQ “Caging” Groups. Org Lett 2012, 14, 6366-

6369. 

175. Yu, H.; Li, J.; Wu, D.; Qiu, Z.; Zhang, Y. Chemistry and biological applications 

of photo-labile organic molecules. Chem Soc Rev 2010, 39, 464-473. 

176. Adams, S. R.; Kao, J. P. Y.; Tsien, R. Y. Biologically useful chelators that take up 

calcium(2+) upon illumination. J Am Chem Soc 1989, 111, 7957-7968. 

177. Wieboldt, R.; Gee, K. R.; Niu, L.; Ramesh, D.; Carpenter, B. K.; Hess, G. P. 

Photolabile precursors of glutamate: synthesis, photochemical properties, and activation 

of glutamate receptors on a microsecond time scale. Proc Natl Acad Sci 1994, 91, 8752-

8756. 



 

 170 

178. Singh, A.; Khade, P. Synthesis and Photochemical Properties of Nitro-Naphthyl 

Chromophore and the Corresponding Immunoglobulin Bioconjugate. Bioconjugate Chem 

2002, 13, 1286-1291. 

179. Momotake, A.; Lindegger, N.; Niggli, E.; Barsotti, R. J.; Ellis-Davies, G. C. R. 

The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in 

living cells. Nat Meth 2006, 3, 35-40. 

180. Blanc, A.; Bochet, C. G. Bis(o-nitrophenyl)ethanediol:   A Practical Photolabile 

Protecting Group for Ketones and Aldehydes. J Org Chem 2003, 68, 1138-1141. 

181. Yip, R. W.; Sharma, D. K.; Giasson, R.; Gravel, D. Photochemistry of the o-

nitrobenzyl system in solution: evidence for singlet-state intramolecular hydrogen 

abstraction. J Phys Chem 1985, 89, 5328-5330. 

182. Papageorgiou, G.; Ogden, D. C.; Barth, A.; Corrie, J. E. T. Photorelease of 

Carboxylic Acids from 1-Acyl-7-nitroindolines in Aqueous Solution:   Rapid and 

Efficient Photorelease of l-Glutamate1. J Am Chem Soc 1999, 121, 6503-6504. 

183. Matsuzaki, M.; Honkura, N.; Ellis-Davies, G. C. R.; Kasai, H. Structural basis of 

long-term potentiation in single dendritic spines. Nature 2004, 429, 761-766. 

184. Warther, D.; Gug, S.; Specht, A.; Bolze, F.; Nicoud, J. F.; Mourot, A.; Goeldner, 

M. Two-photon uncaging: New prospects in neuroscience and cellular biology. Bioorg 

Med Chem 2010, 18, 7753-7758. 

185. Abate-Pella, D.; Zeliadt, N. A.; Ochocki, J. D.; Warmka, J. K.; Dore, T. M.; 

Blank, D. A.; Wattenberg, E. V.; Distefano, M. D. Photochemical Modulation of Ras-



 

 171 

Mediated Signal Transduction Using Caged Farnesyltransferase Inhibitors: Activation by 

One- and Two-Photon Excitation. ChemBioChem 2012, 13, 1009-1016. 

186. Liu, Q.; Deiters, A. Optochemical Control of Deoxyoligonucleotide Function via 

a Nucleobase-Caging Approach. Accounts Chem Res 2014, 47, 45-55. 

187. Ceo, L. M.; Koh, J. T. Photocaged DNA Provides New Levels of Transcription 

Control. ChemBioChem 2012, 13, 511-513. 

188. Rodrigues-Correia, A.; Koeppel, M.; Schäfer, F.; Joshi, K. B.; Mack, T.; Heckel, 

A. Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides. 

Anal Bioanal Chem 2011, 399, 441-447. 

189. Mayer, G.; Kröck, L.; Mikat, V.; Engeser, M.; Heckel, A. Light-Induced 

Formation of G-Quadruplex DNA Secondary Structures. ChemBioChem 2005, 6, 1966-

1970. 

190. Heckel, A.; Buff, M. C. R.; Raddatz, M.-S. L.; Müller, J.; Pötzsch, B.; Mayer, G. 

An Anticoagulant with Light-Triggered Antidote Activity. Angew Chem Int Ed 2006, 45, 

6748-6750. 

191. Lusic, H.; Young, D. D.; Lively, M. O.; Deiters, A. Photochemical DNA 

Activation. Org Lett 2007, 9, 1903-1906. 

192. Kröck, L.; Heckel, A. Photoinduced Transcription by Using Temporarily 

Mismatched Caged Oligonucleotides. Angew Chem Int Ed 2005, 44, 471-473. 

193. Chou, C.; Young, D. D.; Deiters, A. Photocaged T7 RNA Polymerase for the 

Light Activation of Transcription and Gene Function in Pro- and Eukaryotic Cells. 

ChemBioChem 2010, 11, 972-977. 



 

 172 

194. Casey, J. P.; Blidner, R. A.; Monroe, W. T. Caged siRNAs for Spatiotemporal 

Control of Gene Silencing. Mol Pharm 2009, 6, 669-685. 

195. Deiters, A. Light activation as a method of regulating and studying gene 

expression. Curr Opin Chem Biol 2009, 13, 678-686. 

196. Deiters, A.; Garner, R. A.; Lusic, H.; Govan, J. M.; Dush, M.; Nascone-Yoder, N. 

M.; Yoder, J. A. Photocaged Morpholino Oligomers for the Light-Regulation of Gene 

Function in Zebrafish and Xenopus Embryos. J Am Chem Soc 2010, 132, 15644-15650. 

197. Ordoukhanian, P.; Taylor, J.-S. Design and Synthesis of a Versatile 

Photocleavable DNA Building Block. Application to Phototriggered Hybridization. J Am 

Chem Soc 1995, 117, 9570-9571. 

198. Young, D. D.; Lively, M. O.; Deiters, A. Activation and Deactivation of 

DNAzyme and Antisense Function with Light for the Photochemical Regulation of Gene 

Expression in Mammalian Cells. J Am Chem Soc 2010, 132, 6183-6193. 

199. Shah, S.; Rangarajan, S.; Friedman, S. H. Light-Activated RNA Interference. 

Angew Chem Int Ed 2005, 44, 1328-1332. 

200. Mikat, V.; Heckel, A. Light-dependent RNA interference with nucleobase-caged 

siRNAs. RNA 2007, 13, 2341-2347. 

201. Govan, J. M.; Lively, M. O.; Deiters, A. Photochemical control of DNA decoy 

function enables precise regulation of nuclear factor kappaB activity. J Am Chem Soc 

2011, 133, 13176-82. 

202. Buttigliero, C.; Tucci, M.; Bertaglia, V.; Vignani, F.; Bironzo, P.; Di Maio, M.; 

Scagliotti, G. V. Understanding and overcoming the mechanisms of primary and acquired 



 

 173 

resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer 

Treat Rev 2015. 

203. Denayer, S.; Helsen, C.; Thorrez, L.; Haelens, A.; Claessens, F. The Rules of 

DNA Recognition by the Androgen Receptor. Mol Endocrinol 2010, 24, 898-913. 

204. Zhang, P.; Zhang, J.; Young, C. Y. F.; Kao, P. C.; Chen, W.; Jiang, A.; Zhang, L.; 

Guo, Q. Decoy Androgen-Responsive Element DNA Can Inhibit Androgen Receptor 

Transactivation of the PSA Promoter Gene. Ann Clin Lab Sci 2005, 35, 278-284. 

205. Lusic, H.; Deiters, A. A New Photocaging Group for Aromatic N-Heterocycles. 

Synthesis 2006, 2006, 2147-2150. 

206. Young, D. D.; Lusic, H.; Lively, M. O.; Yoder, J. A.; Deiters, A. Gene Silencing 

in Mammalian Cells with Light-Activated Antisense Agents. ChemBioChem 2008, 9, 

2937-2940. 

207. Mergny, J. L.; Lacroix, L. Analysis of thermal melting curves. Oligonucleotides 

2003, 13, 515-37. 

208. Young, D. D.; Edwards, W. F.; Lusic, H.; Lively, M. O.; Deiters, A. Light-

triggered polymerase chain reaction. Chem Commun 2008, 462-464. 

209. Lusic, H.; Young, D. D.; Lively, M. O.; Deiters, A. Photochemical DNA 

activation. Org Lett 2007, 9, 1903-6. 

210. Usman, N., Ogilvie, K.K., Jiang, M.Y., Cedergren, R.J. Automated Chemical 

Synthesis of Long Oligoribonucleotides Using 2’-O-Silylated Ribonucleoside 3’-O-

Phosphoramidites on a Controlled-Pore Glass Support: Synthesis of a 43-Nucleotide 



 

 174 

Sequence Similar to the 3’-Half Molecule of an Escherichia coli Formylmethionine 

tRNA. J Am Chem Soc 1987, 109, 7845. 

211. Chenoweth, D. M.; Harki, D. A.; Phillips, J. W.; Dose, C.; Dervan, P. B. Cyclic 

Pyrrole-Imidazole Polyamides Targeted to the Androgen Response Element. J Am Chem 

Soc 2009, 131, 7182-7188. 

212. Yang, B.; Chang, Y.; Weyers, A. M.; Sterner, E.; Linhardt, R. J. Disaccharide 

analysis of glycosaminoglycan mixtures by ultra-high-performance liquid 

chromatography-mass spectrometry. J Chromatogr 2012, 1225, 91-8. 

213. Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Chemical Actinometry. Pure Appl 

Chem 2004, 76, 2105-2146. 

214. Demas, J. N.; Bowman, W. D.; Zalewski, E. F.; Velapoldi, R. A. Determination 

of the quantum yield of the ferrioxalate actinometer with electrically calibrated 

radiometers. J Phys Chem 1981, 85, 2766-2771. 

215. Zhu, Y.; Pavlos, C. M.; Toscano, J. P.; Dore, T. M. 8-Bromo-7-hydroxyquinoline 

as a Photoremovable Protecting Group for Physiological Use:   Mechanism and Scope. J 

Am Chem Soc 2006, 128, 4267-4276. 

216. Sweeney, C.; Li, L.; Shanmugam, R.; Bhat-Nakshatri, P.; Jayaprakasan, V.; 

Baldridge, L. A.; Gardner, T.; Smith, M.; Nakshatri, H.; Cheng, L. Nuclear Factor-κB Is 

Constitutively Activated in Prostate Cancer In vitro and Is Overexpressed in Prostatic 

Intraepithelial Neoplasia and Adenocarcinoma of the Prostate. Clin Cancer Res 2004, 10, 

5501-5507. 



 

 175 

217. Zhang, L.; Altuwaijri, S.; Deng, F.; Chen, L.; Lal, P.; Bhanot, U. K.; Korets, R.; 

Wenske, S.; Lilja, H. G.; Chang, C.; Scher, H. I.; Gerald, W. L. NF-κB Regulates 

Androgen Receptor Expression and Prostate Cancer Growth. Am J Pathol 2009, 175, 

489-499. 

218. Nelson, D. E.; Ihekwaba, A. E. C.; Elliott, M.; Johnson, J. R.; Gibney, C. A.; 

Foreman, B. E.; Nelson, G.; See, V.; Horton, C. A.; Spiller, D. G.; Edwards, S. W.; 

McDowell, H. P.; Unitt, J. F.; Sullivan, E.; Grimley, R.; Benson, N.; Broomhead, D.; 

Kell, D. B.; White, M. R. H. Oscillations in NF-κB Signaling Control the Dynamics of 

Gene Expression. Science 2004, 306, 704-708. 

219. Sung, M.-H.; Salvatore, L.; De Lorenzi, R.; Indrawan, A.; Pasparakis, M.; Hager, 

G. L.; Bianchi, M. E.; Agresti, A. Sustained Oscillations of NF-κB Produce Distinct 

Genome Scanning and Gene Expression Profiles. PLoS ONE 2009, 4, e7163. 

220. O'Shaughnessy, E. C.; Sarkar, C. A. Analyzing and engineering cell signaling 

modules with synthetic biology. Curr Opin Biotech 2012, 23, 785-790. 

221. Pluvinet, R.; Olivar, R.; Krupinski, J.; Herrero-Fresneda, I.; Luque, A.; Torras, J.; 

Cruzado, J. M.; Grinyo, J. M.; Sumoy, L.; Aran, J. M. CD40: an upstream master switch 

for endothelial cell activation uncovered by RNAi-coupled transcriptional profiling. 

Blood 2008, 112, 3624-37. 

222. Cho, Y. S.; Kim, M.-K.; Cheadle, C.; Neary, C.; Park, Y. G.; Becker, K. G.; Cho-

Chung, Y. S. A genomic-scale view of the cAMP response element-enhancer decoy: A 

tumor target-based genetic tool. Proc Natl Acad Sci 2002, 99, 15626-15631. 



 

 176 

223. Ahn, J. D.; Morishita, R.; Kaneda, Y.; Kim, H. S.; Chang, Y. C.; Lee, K. U.; Park, 

J. Y.; Lee, H. W.; Kim, Y. H.; Lee, I. K. Novel E2F decoy oligodeoxynucleotides inhibit 

in vitro vascular smooth muscle cell proliferation and in vivo neointimal hyperplasia. 

Gene Ther 2002, 9, 1682-92. 

224. Karamouzis, M. V.; Gorgoulis, V. G.; Papavassiliou, A. G. Transcription Factors 

and Neoplasia: Vistas in Novel Drug Design. Clin Cancer Res 2002, 8, 949-961. 

225. Lenox, H. J.; McCoy, C. P.; Sheppard, T. L. Site-Specific Generation of 

Deoxyribonolactone Lesions in DNA Oligonucleotides. Org Lett 2001, 3, 2415-2418. 

226. Trzupek, J. D.; Sheppard, T. L. Photochemical Generation of Ribose Abasic Sites 

in RNA Oligonucleotides. Org Lett 2005, 7, 1493-1496. 

227. Wang, Y.; Sheppard, T. L.; Tornaletti, S.; Maeda, L. S.; Hanawalt, P. C. 

Transcriptional Inhibition by an Oxidized Abasic Site in DNA. Chem Res Toxicol 2006, 

19, 234-241. 

228. Kotera, M.; Bourdat, A. G.; Defrancq, E.; Lhomme, J. A highly efficient synthesis 

of oligodeocyribonucleotides containing the 2'-deoxyribonolactone lesion. J Am Chem 

Soc 1998, 120, 11810-11811. 

229. Kotera, M.; Roupioz, Y.; Defrancq, E.; Bourdat, A. G.; Garcia, J.; Coulombeau, 

C.; Lhomme, J. The 7-nitroindole nucleoside as a photochemical precursor of 2'-

deoxyribonolactone: access to DNA fragments containing this oxidative abasic lesion. 

Chem Eur J 2000, 6, 4163-9. 



 

 177 

230. Roupioz, Y.; Lhomme, J.; Kotera, M. Chemistry of the 2-deoxyribonolactone 

lesion in oligonucleotides: cleavage kinetics and products analysis. J Am Chem Soc 2002, 

124, 9129-35. 

231. Brennan, P.; Donev, R.; Hewamana, S. Targeting transcription factors for 

therapeutic benefit. Mol Biosyst 2008, 4, 909-19. 

232. Loakes, D.; Brown, D. M. 5-Nitroindole as an universal base analogue. Nuc Acids 

Res 1994, 22, 4039-4043. 

233. Crey-Desbiolles, C.; Berthet, N.; Kotera, M.; Dumy, P. Hybridization properties 

and enzymatic replication of oligonucleotides containing the photocleavable 7-nitroindole 

base analog. Nucleic Acids Res 2005, 33, 1532-1543. 

234. Kotera, M., Roupioz, Y., Defracq, E., Bourday, A., Garcia, J., Coulombeau, C., 

Lhomme, J. The 7-nitroindole nucleoside as a photochemical precursor of 2’-

deoxyribonolactone: access to DNA fragments containing this oxidative abasic lesion. 

Chem Eur J 2000, 6, 4163. 

235. Hayden, M. S.; Ghosh, S. NF-kB, the first quarter-century: remarkable progress 

and outstanding questions. Gene Dev 2012, 26, 203-234. 

236. Morishita, R.; Sugimoto, T.; Aoki, M.; Kida, I.; Tomita, N.; Moriguchi, A.; 

Maeda, K.; Sawa, Y.; Kaneda, Y.; Higaki, J.; Ogihara, T. In vivo transfection of cis 

element "decoy" against nuclear factor-kappaB binding site prevents myocardial 

infarction. Nat Med 1997, 3, 894-9. 

237. Penolazzi, L.; Magri, E.; Lambertini, E.; Calò, G.; M., C.; Siciliani, G.; Piva, R.; 

Gambari, R. Local in vivo administration of a decoy oligonucleotide targeting NF-κB 



 

 178 

induces apoptosis of osteoclasts after application of orthodontic forces to rat teeth. Int J 

Mol Med 2006, 18, 807-811. 

238. Metelev, V. G.; Kubareva, E. A.; Oretskaya, T. S. Regulation of activity of 

transcription factor NF-κB by synthetic oligonucleotides. Biochem (Moscow) 2013, 78, 

867-878. 

239. Lee, H. M.; Larson, D. R.; Lawrence, D. S. Illuminating the chemistry of life: 

design, synthesis, and applications of "caged" and related photoresponsive compounds. 

ACS Chem Biol 2009, 4, 409-27. 

240. Ceo, L. M.; Koh, J. T. Photocaged DNA provides new levels of transcription 

control. Chembiochem 2012, 13, 511-3. 

241. Chen, F. E.; Huang, D. B.; Chen, Y. Q.; Ghosh, G. Crystal structure of p50/p65 

heterodimer of transcription factor NF-kappa B bound to DNA. Nature 1998, 391, 410-

413. 

242. Sun, L.; Carpenter, G. Epidermal growth factor activation of NF-κB is mediated 

through IκBα degradation and intracellular free calcium. Oncogene 1998, 16, 2095. 

243. Phelps, C. B.; Sengchanthalangsy, L. L.; Malek, S.; Ghosh, G. Mechanism of κB 

DNA binding by Rel/NF-κB dimers. J Biol Chem 2000, 275, 24392-24399. 

244. Kotera, M., Bourdat, A., Defracq, E.,  Lhomme, J. A Highly efficient synthesis of 

oligodeoxyribonucleotides containing the 2'-deoxyribonolactone lesion. J Am Chem Soc 

1998, 120, 11810-11811. 

245. Heckel, A. Nucleobase-caged phosphoramidites for oligonucleotide synthesis. 

Curr Protoc Nucleic Acid Chem 2007, Chapter 1, Unit 1 17. 



 

 179 

246. Hexum, J. K.; Tello-Aburto, R.; Struntz, N. B.; Harned, A. M.; Harki, D. A. 

Bicyclic Cyclohexenones as Inhibitors of NF-kappaB Signaling. ACS Med Chem Lett 

2012, 3, 459-464. 

247. Lawson, C. L.; Berman, H. M. Chapter 4 Indirect Readout of DNA Sequence by 

Proteins. In Protein-Nucleic Acid Interactions: Structural Biology, The Royal Society of 

Chemistry: 2008; pp 66-90. 

248. Settles, S.; Wang, R.-W.; Fronza, G.; Gold, B. Effect of N3-Methyladenine and 

an Isosteric Stable Analogue on DNA Polymerization. J Nucleic Acids 2010, 2010, 14. 

249. Saito, Y.; Taguchi, H.; Fujii, S.; Sawa, T.; Kida, E.; Kabuto, C.; Akaike, T.; 

Arimoto, H. 8-Nitroguanosines as chemical probes of the protein S-guanylation. Chem 

Commun (Camb) 2008, 5984-6. 

250. Kunieda, K.; Tsutsuki, H.; Ida, T.; Kishimoto, Y.; Kasamatsu, S.; Sawa, T.; 

Goshima, N.; Itakura, M.; Takahashi, M.; Akaike, T.; Ihara, H. 8-Nitro-cGMP Enhances 

SNARE Complex Formation through S-Guanylation of Cys90 in SNAP25. ACS Chem 

Neurosci 2015, 6, 1715-1725. 

251. Leonard, N. J.; Neelima. 1,1,1,3,3,3-Hexafluoro-2-propanol for the removal of the 

4,4′-DimethoxytrityI protecting group from the 5′-hydroxyl of acid-sensitive nucleosides 

and nucleotides. Tetrahedron Lett 1995, 36, 7833-7836. 

252. Borkakoti, N. The active Site of Ribonuclease A from the Crystallographic 

Studies of Ribonuclease-A-Inhibitor Complexes. Eur J Biochem 1983, 132, 89-94. 



 

 180 

253. Cheng, K. C.; Cahill, D. S.; Kasai, H.; Nishimura, S.; Loeb, L. A. 8-

Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C 

substitutions. J Biol Chem 1992, 267, 166-172. 

254. Watson, J. D.; Crick, F. H. C. Genetical Implications of the Structure of 

Deoxyribonucleic Acid. Nature 1953, 171, 964-967. 

255. Krishnamurthy, R. Role of pKa of Nucleobases in the Origins of Chemical 

Evolution. Accounts Chem Res 2012, 45, 2035-2044. 

256. Topal, M. D.; Fresco, J. R. Complementary base pairing and the origin of 

substitution mutations. Nature 1976, 263, 285-289. 

257. Abdul-Masih, M. T.; Bessman, M. J. Biochemical studies on the mutagen, 6-N-

hydroxylaminopurine. Synthesis of the deoxynucleoside triphosphate and its 

incorporation into DNA in vitro. J Biol Chem 1986, 261, 2020-2026. 

258. Budowsky, I. Mechanism of the mutagenic action of hydroxylamine. VII. 

Functional activity and specificity of cytidine triphosphate modified with hydroxylamine 

and O-methylhydroxylamine. Biochim et biophys acta 1972, 287, 195-210. 

259. Brown, D. M.; Hewlins, M. J. E.; Schell, P. The tautomeric state of N(4)-

hydroxy- and of N(4)-amino-cytosine derivatives. J Chem Soc C 1968, 1925-1929. 

260. Hill, F.; Williams, D. M.; Loakes, D.; Brown, D. M. Comparative mutagenicities 

of N6-methoxy-2,6-diaminopurine and N6-methoxyaminopurine 2′-deoxyribonucleosides 

and their 5′-triphosphates. Nucleic Acids Res 1998, 26, 1144-1149. 

261. Morozov, Y. V.; Savin, F. A.; Chekhov, V. O.; Budowsky, E. I.; Yakovlev, D. Y. 

Photochemistry of N6-methoxyadenosine and of N4-hydroxycytidine and its methyl 



 

 181 

derivatives I: spectroscopic and quantum chemical investigation of ionic and tautomeric 

forms: syn-anti isomerization. J Photochem 1982, 20, 229-252. 

262. Reeves, S. T.; Beattie, K. L. Base-pairing properties of N4-methoxydeoxycytidine 

5'-triphosphate during DNA synthesis on natural templates, catalyzed by DNA 

polymerase I of Escherichia coli. Biochemistry 1985, 24, 2262-2268. 

263. Singer, B.; Fraenkel-Conrat, H.; Abbott, L. G.; Spengler, S. J. N4-

Methoxydeoxycytidine triphosphate is in the imino tautomeric form and substitutes for 

deoxythymidine triphosphate in primed poly d[A-T] synthesis with E. coli DNA 

polymerase I. Nucleic Acids Res 1984, 12, 4609-4619. 

264. Harris, V. H.; Smith, C. L.; Jonathan Cummins, W.; Hamilton, A. L.; Adams, H.; 

Dickman, M.; Hornby, D. P.; Williams, D. M. The Effect of Tautomeric Constant on the 

Specificity of Nucleotide Incorporation during DNA Replication: Support for the Rare 

Tautomer Hypothesis of Substitution Mutagenesis. J Mol Biol 2003, 326, 1389-1401. 

265. Moore, M. H.; Van Meervelt, L.; Salisbury, S. A.; Kong Thoo Lin, P.; Brown, D. 

M. Direct Observation of Two Base-pairing Modes of a Cytosine-Thymine Analogue 

with Guanine in a DNAZ-form Duplex: Significance for Base Analogue Mutagenesis. J 

Mol Biol 1995, 251, 665-673. 

266. Lin, P. K.; Brown, D. M. Synthesis and duplex stability of oligonucleotides 

containing cytosine-thymine analogues. Nucleic Acids Res 1989, 17, 10373-10383. 

267. Podolyan, Y.; Gorb, L.; Leszczynski, J. Rare Tautomer Hypothesis Supported by 

Theoretical Studies:   Ab Initio Investigations of Prototropic Tautomerism in the N-

Methyl-P Base. J Phys Chem A 2005, 109, 10445-10450. 



 

 182 

268. Schuerman, G. S.; Van Meervelt, L.; Loakes, D.; Brown, D. M.; Kong Thoo Lin, 

P.; Moore, M. H.; Salisbury, S. A. A thymine-like base analogue forms wobble pairs with 

adenine in a Z-DNA duplex1. J Mol Biol 1998, 282, 1005-1011. 

269. Graci, J. D.; Harki, D. A.; Korneeva, V. S.; Edathil, J. P.; Too, K.; Franco, D.; 

Smidansky, E. D.; Paul, A. V.; Peterson, B. R.; Brown, D. M.; Loakes, D.; Cameron, C. 

E. Lethal Mutagenesis of Poliovirus Mediated by a Mutagenic Pyrimidine Analogue. J 

Virol 2007, 81, 11256-11266. 

270. Hill, F.; Loakes, D.; Brown, D. M. Polymerase recognition of synthetic 

oligodeoxyribonucleotides incorporating degenerate pyrimidine and purine bases. Proc 

Natl Acad Sci 1998, 95, 4258-4263. 

271. Moriyama, K.; Otsuka, C.; Loakes, D.; Negishi, K. Highly Efficient Random 

Mutagenesis in Transcription-reverse-transcription Cycles by a Hydrogen Bond 

Ambivalent Nucleoide  5′-Triphosphate Analogue: Potential Candidates for a Selective 

Anti-retroviral Therapy. Nucleosides Nucleotides Nucleic Acids 2001, 20, 1473. 

272. Chiu, T. K.; Dickerson, R. E. 1 A crystal structures of B-DNA reveal sequence-

specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol 

Biol 2000, 301, 915-45. 

273. Jones, K. L. P., A.; Hall, A.; Woodrow, M.D.; Tomkinson, N.C.O. . Copper-

Catalyzed Coupling of Hydroxylamines with Aryl Iodides. Org. Lett. 2008, 10, 797. 

274. Hayden, M. S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell 2008, 

132, 344-362. 



 

 183 

275. Ruland, J. Return to homeostasis: downregulation of NF-κB responses. Nature 

Immunology 2011, 12, 709-714. 

276. Sen, R.; Baltimore, D. Multiple Nuclear Factors Interact with the Immunoglobulin 

Enhancer Sequences. Cell 1986, 46, 705-716. 

277. Karin, M.; Greten, F. R. NF-kappaB: linking inflammation and immunity to 

cancer development and progression. Nat Rev Immunol 2005, 5, 749-759. 

278. Naugler, W. E.; Karin, M. NF-kappaB and cancer-identifying targets and 

mechanisms. Curr Opin Genet Devel 2008, 18, 19-26. 

279. Aggarwal, B. B. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004, 6, 

203-208. 

280. Bremner, P.; Heinrich, M. Natural products as targeted modulators of the nuclear 

factor-kappaB pathway. J Pharm Pharmacol 2002, 54, 453-472. 

281. Folmer, F.; Harrison, W. T. A.; Tabudravu, J. N.; Jaspars, M.; Aalbersberg, W.; 

Feussner, K.; Wright, A. D.; Dicato, M.; Diederich, M. NF-kappaB-inhibiting 

naphthopyrones from the Fijian echinoderm Comanthus parvicirrus. J Nat Prod 2008, 71, 

106-111. 

282. Müller, S.; Murillo, R.; Castro, V.; Brecht, V.; Merfort, I. Sesquiterpene lactones 

from Montanoa hibiscifolia that inhibit the transcription factor NF-kappa B. J Nat Prod 

2004, 67, 622-630. 

283. Rüngeler, P.; Castro, V.; Mora, G.; Gören, N.; Vichnewski, W.; Pahl, H. L.; 

Merfort, I.; Schmidt, T. J. Inhibition of transcription factor NF-kappaB by sesquiterpene 



 

 184 

lactones: a proposed molecular mechanism of action. Bioorg Med Chem 1999, 7, 2343-

2352. 

284. Nam, N.-H. Naturally occurring NF-kappaB inhibitors. Mini-Rev Med Chem 

2006, 6, 945-951. 

285. Merfort, I. Perspectives on sesquiterpene lactones in inflammation and cancer. 

Curr Drug Targets 2011, 12, 1560-1573. 

286. Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence of covalent 

drugs. Nat Rev Drug Discov 2011, 10, 307-317. 

287. Dumontet, V. New cytotoxic flavonoids from Cryptocarya infectoria. 

Tetrahedron 2001, 57, 6189-6196. 

288. Govindachari, T. R.; Parthasarathy, P. C. Cryptocaryone, a novel 5′,6′-

dihydrochalcone, from Cryptocarya bourdilloni gamb. Tetrahedron Lett 1972, 13, 3419-

3420. 

289. Maddry, J. A.; Joshi, B. S.; Gary Newton, M.; William Pelletier, S.; 

Parthasarathy, P. C. Crytocaryone: A revised structure. Tetrahedron Lett 1985, 26, 5491-

5492. 

290. Meragelman, T. L.; Scudiero, D. A.; Davis, R. E.; Staudt, L. M.; McCloud, T. G.; 

Cardellina, J. H., 2nd; Shoemaker, R. H. Inhibitors of the NF-kappaB activation pathway 

from Cryptocarya rugulosa. J Nat Prod 2009, 72, 336-339. 

291. Fujioka, H.; Nakahara, K.; Oki, T.; Hirano, K.; Hayashi, T.; Kita, Y. The first 

asymmetric total syntheses of both enantiomers of cryptocaryone. Tetrahedron Lett 2010, 

51, 1945-1946. 



 

 185 

292. Franck, G. r.; Brödner, K.; Helmchen, G. n. Enantioselective Modular Synthesis 

of Cyclohexenones: Total Syntheses of (+)-Crypto- and (+)-Infectocaryone. Org Lett 

2010, 12, 3886-3889. 

293. Tello-Aburto, R.; Harned, A. M. Palladium-catalyzed reactions of 

cyclohexadienones: regioselective cyclizations triggered by alkyne acetoxylation. Org 

Lett 2009, 11, 3998-4000. 

294. Palayoor, S. T.; Youmell, M. Y.; Calderwood, S. K.; Coleman, C. N.; Price, B. D. 

Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is 

inhibited by ibuprofen. Oncogene 1999, 18, 7389-7394. 

295. Suh, J.; Payvandi, F.; Edelstein, L. C.; Amenta, P. S.; Zong, W.-X.; Gélinas, C.; 

Rabson, A. B. Mechanisms of constitutive NF-kappaB activation in human prostate 

cancer cells. The Prostate 2002, 52, 183-200. 

296. Webber, M. M. Normal and benign human prostatic epithelium in culture. I. 

Isolation. In Vitro 1979, 15, 967-982. 

297. Webber, M. M.; Bello, D.; Quader, S. Immortalized and tumorigenic adult human 

prostatic epithelial cell lines: characteristics and applications. Part I. Cell markers and 

immortalized nontumorigenic cell lines. The Prostate 1996, 29, 386-394. 

298. Teahan, O.; Bevan, C. L.; Waxman, J.; Keun, H. C. Metabolic signatures of 

malignant progression in prostate epithelial cells. Int J Biochem Cell Biol 2011, 43, 1002-

1009. 

299. Moraski, G. C.; Markley, L. D.; Hipskind, P. A.; Boshoff, H.; Cho, S.; Franzblau, 

S. G.; Miller, M. J. Advent of Imidazo [1, 2-a] pyridine-3-carboxamides with potent 



 

 186 

multi-and extended drug resistant antituberculosis activity. ACS Med Chem Lett 2011, 6, 

466-470. 

300. Bello, D.; Webber, M. M.; Kleinman, H. K.; Wartinger, D. D.; Rhim, J. S. 

Androgen responsive adult human prostatic epithelial cell lines immortalized by human 

papillomavirus 18. Carcinogenesis 1997, 18, 1215-1223. 

301. Li, X. C.; Babu, K. S.; Jacob, M. R.; Khan, S. I.; Agarwal, A. K.; Clark, A. M. 

Natural Product-Based 6-Hydroxy-2, 3, 4, 6-tetrahydropyrrolo [1, 2-a] pyrimidinium 

Scaffold as a New Antifungal Template. ACS Med Chem Lett 2011, 5, 391-395. 

302. Raj, L.; Ide, T.; Gurkar, A. U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N. J.; 

Golub, T. R.; Carr, S. A.; Shamji, A. F.; Stern, A. M.; Mandinova, A.; Schreiber, S. L.; 

Lee, S. W. Selective killing of cancer cells by a small molecule targeting the stress 

response to ROS. Nature 2011, 475, 231-234. 

303. Chen, Y.-C.; Kung, F.-L.; Tsai, I.-L.; Chou, T.-H.; Chen, I.-S.; Guh, J.-H. 

Cryptocaryone, a Natural Dihydrochalcone, Induces Apoptosis in Human Androgen 

Independent Prostate Cancer Cells by Death Receptor Clustering in Lipid Raft and 

Nonraft Compartments. J Urology 2010, 183, 2409-2418. 

304. Avonto, C.; Taglialatela-Scafati, O.; Pollastro, F.; Minassi, A.; Di Marzo, V.; De 

Petrocellis, L.; Appendino, G. An NMR spectroscopic method to identify and classify 

thiol-trapping agents: revival of Michael acceptors for drug discovery? Angew Chem Int 

Ed Engl 2011, 50, 467-471. 

305. Kunsch, C.; Rosen, C. A. NF-kappa B subunit-specific regulation of the 

interleukin-8 promoter. Mol Cell Biol 1993, 13, 6137-6146. 



 

 187 

306. Xie, K. Interleukin-8 and human cancer biology. Cytokine & Growth Factor Rev 

2001, 12, 375-391. 

307. Lindenmeyer, M. T.; Hrenn, A.; Kern, C.; Castro, V.; Murillo, R.; Müller, S.; 

Laufer, S.; Schulte-Mönting, J.; Siedle, B.; Merfort, I. Sesquiterpene lactones as 

inhibitors of IL-8 expression in HeLa cells. Bioorg Med Chem 2006, 14, 2487-2497. 

308. Singh, R. K.; Lokeshwar, B. L. Depletion of intrinsic expression of Interleukin-8 

in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the 

efficacy of chemotherapeutic drugs. Mol Cancer 2009, 8, 57-57. 

309. Galli, R.; Starace, D.; Busà, R.; Angelini, D. F.; Paone, A.; De Cesaris, P.; 

Filippini, A.; Sette, C.; Battistini, L.; Ziparo, E.; Riccioli, A. TLR stimulation of prostate 

tumor cells induces chemokine-mediated recruitment of specific immune cell types. J 

Immunol 2010, 184, 6658-6669. 

310. Lötscher, D.; Rupprecht, S.; Stoeckli-Evans, H.; von Zelewsky, A. 

Enantioselective catalytic cyclopropanation of styrenes by copper complexes with chiral 

pinene-[5,6]-bipyridine ligands. Tetrahedron Asymmetr 2000, 11, 4341-4357. 

311. Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 

2006, 441, 431-436. 

312. Verri, A.; Montecucco, A.; Gosselin, G.; Boudou, V.; Imbach, J. L.; Spadari, S.; 

Focher, F. L-ATP is recognized by some cellular and viral enzymes: does chance drive 

enzymic enantioselectivity? Biochem J 1999, 337, 585-590. 



 

 188 

313. Focher, F.; Spadari, S.; Maga, G. Antivirals at the mirror: The lack of 

stereospecificity of some viral and human enzymes offers novel opportunities in antiviral 

drug development. Curr Drug Targets 2003, 3, 41-53. 

314. Spadari, S.; Maga, G.; Verri, A.; Focher, F. Molecular basis for the antiviral and 

anticancer activities of unnatural L-beta-nucleosides. Expert Opin Investig Drugs 1998, 

7, 1285-300. 

315. Maury, G. The enantioselectivity of enzymes involved in current antiviral therapy 

using nucleoside analogues: a new strategy? Antivir Chem Chemoth 2000, 11, 165-189. 

316. Zemlicka, J. Enantioselectivity of the antiviral effects of nucleoside analogues. 

Pharmacol Therapeut 2000, 85, 251-266. 

317. Mathe, C.; Gosselin, G. L-Nucleoside enantiomers as antivirals drugs: a mini-

review. Antivir Res 2006, 71, 276-281. 

318. Gray, N. M. M., C.L.P.; Penn, C.R.; Cameron, J.M.; Bethell, R.C. The 

Intracellular Phosphorylation of (-)-2'-Deoxy-3'-thiacytidine (3CT) and the Incorporation 

of 3TC 5'-monophosphate into DNA by HIV-1 Reverse Transcriptase and Human DNA 

Polymerase y. Biochem Pharm 1995, 50, 1043-1051. 

319. Christopherson, R. I.; Lyons, S. D.; Wilson, P. K. Inhibitors of de novo nucleotide 

biosynthesis as drugs. Accounts Chem Res 2002, 35, 961-971. 

320. Ishikawa, H. Mizaribine and mycophenolate mofetil. Curr Med Chem 1999, 6, 

575-597. 

321. Nakamura, J.; Lou, L. Biochemical characterization of human GMP synthetase. J 

Biol Chem 1995, 270, 7347-7353. 



 

 189 

322. Kusumi, T. T., M.; Katsunuma, T.; Yamamura, M. Dual Inhibitory Effect of 

Bredinin. Cell Biochem Fun 1988, 7, 201-204. 

323. McConkey, G. A. Plasmodium falciparum: Isolation and Characterisation of a 

Gene Encoding 

Protozoan GMP Synthase. Exp Parasitol 2000, 94, 23-32. 

324. Chittur, S. V.; Klem, T. J.; Shafer, C. M.; Davisson, V. J. Mechanism for acivicin 

inactivation of triad glutamine amidotransferases. Biochemistry 2001, 40, 876-887. 

325. Salaski, E. J., Maag, H. GMP Synthetase: Synthesis and Biological Evaluation of 

a Stable Analog of the Proposed AMP-XMP Reaction Intermediate. Synlett 1999, S1, 

897-900. 

326. Nakamura, J.; Straub, K.; Wu, J.; Lou, L. The glutamine hydrolysis function of 

human GMP synthetase-identification of an essential active site cysteine. J Biol Chem 

1995, 270, 23450-23455. 

327. Tesmer, J. J. G.; Stemmler, T. L.; Pennerhahn, J. E.; Davisson, V. J.; Smith, J. L. 

Preliminary X-ray analysis of Escherichia coli GMP Synthetase: determination of 

anomalous scattering factors for a cysteinyl mercury derivative. Proteins 1994, 18, 394-

403. 

328. Tesmer, J. G.; Klem, T. J.; Deras, M. L.; Davisson, V. J.; Smith, J. L. The crystal 

structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm 

for two enzyme families. Nat Struct Biol 1996, 3, 74-86. 

329. Spector, T. Studies with GMP Synthetase from Ehrlich Ascites Cells. J Biol Chem 

1975, 250, 7372-7376. 



 

 190 

330. Forsman, J. J.; Warna, J.; Murzin, D. Y.; Leino, R. Reaction kinetics and 

mechanism of acid-catalyzed anomerization of 1-O-acetyl-2,3,5-tri-O-benzoyl-L-

ribofuranose. Carbohyd Res 2009, 344, 1102-1109. 

331. Vorbruggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside Syntheses 22. 

Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem Ber-

Recl 1981, 114, 1234-1255. 

332. Nishimura, T. I., I. . Studies of Synthetic Nucleosides. I. Trimethylsilyl Derivative 

of Pyrimidines and Purines. Chem Phar Bull 1964, 12, 352-356. 

333. Yoshikawa, M.; Kato, T.; Takenishi, T. A novel method for phosphorylation of 

nucleosides to 5'-nucleotides. Tetrahedron Lett 1967, 50, 5065-5068. 

334. Sakamoto, N. GMP Sythetase (Escherichia coli). Method Enzymol 1978, 51, 213-

218. 

335. Abbott, J. L.; Newell, J. M.; Lightcap, C. M.; Olanich, M. E.; Loughlin, D. T.; 

Weller, M. A.; Lam, G.; Pollack, S.; Patton, W. A. The Effects of Removing the GAT 

Domain from E. coli GMP Synthetase. Protein J 2006, 25, 483-491. 

336. Hirst, M.; Haliday, E.; Nakamura, J.; Lou, L. Human GMP synthetase. Protein 

purification, cloning, and functional exression of cDNA. J Biol Chem 1994, 269, 23830-

23837. 

337. Lou, L.; Nakamura, J.; Tsing, S.; Nguyen, B.; Chow, J.; Straub, K.; Chan, H.; 

Barnett, J. High-level production from a baculovirus expression system and biochemical 

characterization of human GMP synthetase. Protein Expres Purif 1995, 6, 487-495. 



 

 191 

338. Bhat, J. Y. S., B.G.; Balaram, H. Kinetic and biochemical characterization of 

plasmodium falciparum GMP synthetase. Biochem J 2008, 409, 263-273. 

339. Spector, T.; Jones, T. E.; Krenitsky, T. A.; Harvey, R. J. Guanosine 

monophosphate synthetase from Ehrlich ascites cells-multiple inhibition by 

pyrophosphate and nucleosides. Biochim Biophys Acta 1976, 452, 597-607. 

340. Rodriguez-Suarez, R.; Xu, D. M.; Veillette, K.; Davison, J.; Sillaots, S.; 

Kauffman, S.; Hu, W. Q.; Bowman, J.; Martel, N.; Trosok, S.; Wang, H.; Zhang, L.; 

Huang, L. Y.; Li, Y.; Rahkhoodaee, F.; Ransom, T.; Gauvin, D.; Douglas, C.; 

Youngman, P.; Becker, J.; Jiang, B.; Roemer, T. Mechanism-of-action determination of 

GMP synthase inhibitors and target validation in Candida albicans and Aspergillus 

fumigatus. Chem Biol 2007, 14, 1163-1175. 

341. Christopherson, R. I.; Lyons, S. D.; Wilson, P. K. Inhibitors of de Novo 

Nucleotide Biosynthesis as Drugs. Acc Chem Res 2002, 35, 961-971. 

342. Perigaud, C.; Gosselin, G.; Imbach, J. L. Nucleoside analogs as chemotherapeutic 

agents: a review. Nucleos Nucleot 1992, 11, 903-945. 

343. Berman, P. A.; Human, L.; Freese, J. A. Xanthine oxidase inhibits growth of 

Plasmodium falciparum in human erythrocytes in vitro. J Clin Invest 1991, 88, 1848-

1855. 

344. McConkey, G. A. Plasmodium falciparum: Isolation and Characterisation of a 

Gene Encoding Protozoan GMP Synthase. Exp Parasitol 2000, 94, 23-32. 



 

 192 

345. Deras, M. L. C., S.V.; Davisson, V.J. N2-Hydroxyguanosine 5'-Monophosphate Is 

a Time-Dependent Inhibitor of Escherichia coli Guanosine Monophosphate Synthetase. 

Biochemistry 1999, 38, 303-310. 

346. Pietta, P. M., P.; Pace, M. . HPLC Assay of Enzymatic Activities. 

Chromatographia 1987, 24, 439-441. 

347. Pettersen, E. F.; Goddard Td Fau - Huang, C. C.; Huang Cc Fau - Couch, G. S.; 

Couch Gs Fau - Greenblatt, D. M.; Greenblatt Dm Fau - Meng, E. C.; Meng Ec Fau - 

Ferrin, T. E.; Ferrin, T. E. UCSF Chimera--a visualization system for exploratory 

research and analysis. J Comput Chem 2004, 25, 1605-1612. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 193 

 

 

 

Appendix A 

 

 
INHIBITION OF GUANOSINE MONOPHOSPHATE SYNTHETASE BY THE 

SUBSTRATE ENANTIOMER L-XMP 

 

This work has been published by John Wiley & Sons: 
Struntz, N. B.; Hu, T.; White, B. R.; Olson, M. E.; Harki, D. A. Inhibition of guanosine 

monophosphate synthetase by the substrate enantiomer L-XMP. ChemBioChem 2012, 13, 
2517-20. 
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A.1 Rationale 

 

  Studies with mirror-image L-enantiomer nucleosides and nucleotides have 

revealed relaxed enantioselectivities of several cellular kinases and viral 

polymerases.312,313 This feature of enzyme-ligand molecular recognition has been 

exploited in the design of efficacious antiviral L-nucleoside drugs, which have lowered 

host cell toxicity.314-317 For example, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC), an 

L-nucleoside drug, exploits the relaxed enantioselectivity of HIV reverse transcriptase to 

inhibit viral replication.318 Conversely, the enantioselectivities of the majority of 

nucleotide biosynthesis enzymes have not been characterized. The depletion of cellular 

nucleotide pools has been shown to result in antiproliferative, antibacterial, and 

immunosuppressive effects.319-322 

  GMP Synthetase (GMPS), an enzyme in de novo nucleotide biosynthesis, 

catalyzes the amination of xanthosine 5′-monophosphate (XMP, A.1) to guanosine 5′-
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Scheme A.1. Enzymatic reaction catalyzed by GMPS. D-XMP A.1 is adenylated in the synthetase active 
site by ATP, yielding A.2, which causes a conformational shift, allowing ammonia to be liberated in the 
amidotransferase active site A.3 to A.4. GMPS then catalysis aminolysis of the adenylated D-XMP to 
afford D-GMP A.5. 
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monophosphate (GMP, A.5) in the presence of glutamine (the amine source) and ATP 

(Scheme A.1).315,316 GMPS possesses two active sites that are separated by 

approximately 30 Å, suggesting that GMPS undergoes a significant conformational 

change during catalysis.323 In the amidotransferase active site, a glutamine residue A.3 is 

hydrolyzed to glutamate A.4 and liberates ammonia, which subsequently functions as the 

nucleophile in the amination of XMP.324 In the synthetase active site, the 2-carbonyl of 

XMP is adenylated with ATP to activate the aromatic ring for subsequent aminolysis 

(A.2).320,323,325 Formation of this intermediate is believed to trigger glutamine hydrolysis 

in the amidotransferase active site.326 

  A crystal structure of E. coli GMPS has been solved that reveals a large 

solvent-accessible synthetase pocket with considerable surface area.327,328 Several base-

modified D-XMP analogues have been shown to function as substrates for GMPS and be 

converted to their amine derivatives.329 Based on this structural information and our 

interest in characterizing for the first time the enantioselectivity of GMPS, we 

hypothesized that L-XMP, the enantiomer of native ligand D-XMP, could target GMPS 

and modulate enzymatic activity. We hypothesized that L-XMP could incorporate into the 

synthetase active site and inhibit enzyme function, or less likely, L-XMP could function 

as a substrate for GMPS and undergo aminolysis to yield L-GMP.  In either case, the 

biosynthesis of D-GMP would be affected, either by direct enzyme inhibition or by the 

activity of a suicide substrate. Given the central importance of GMPS in eukaryote and 

prokaryote biochemistry, we examined the enantioselectivity of the enzyme.  
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A.2 L-XMP Synthesis  

 

  Preceding this work, a synthesis of L-XMP (A.10), the enantiomer of 

natural ligand D-XMP, had not been reported. Our synthesis of L-XMP (A.10) started 

from L-arabinose, which was elaborated to 1-O-acetyl-2,3,5-tri-O-benzoyl-β-L-

ribofuranoside (A.6) by reported methods (Scheme A.2).330 A Vorbrüggen coupling with 

trimethylsilyl protected xanthine A.7 gave a separable mixture protected L-xanthosine 

isomer A.8 (N9 isomer, N7 isomer not shown).331,332 Deprotection of the benzoyl 

protecting groups of A.8 using ammonia afforded L-xanthosine (A.9). Selective 
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Scheme A.2. Synthesis of L-XMP A.10: Reagents and conditions: (i) TMSOTf, DCE, reflux, 70% (for 
A.8), 21% (A.11 for N7-isomer, not shown); (ii) NH3, MeOH, 55 °C (sealed tube), 93%; (iii) POCl3, 
PO(OMe)3, Proton-Sponge; aq. TEAB, 25%.    
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phosphorylation of the 5′-OH of A.9 utilizing phosphorous oxychloride gave L-XMP 

(A.10).333  

 

A.3 GMPS Expression and Kinetic Analysis of GMPS by HPLC and UV-Vis 

 

  E. coli GMPS was overexpressed and purified (Figure A.6) and an HPLC-

based assay was developed to quantitate enzymatic reaction products. GMPS was 

incubated with test substrates and NH4OAc (ammonia source), and the reaction was 

terminated at various time points by addition of EDTA. GMPS protein was then removed 

by a molecular weight spin-column (30 kDa), and enzymatic reaction products were 

analyzed by reverse-phase HPLC. Surprisingly, we found that incubation of L-XMP and 

GMPS yielded a new peak of identical retention time as D-GMP (Figure A.1a). 

Figure A.1. (a) HPLC analysis of L-XMP conversion to L-GMP by GMPS (254 nm) (b) MS analysis of 
L-GMP peak. 
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Characterization of this new peak (MS analysis, (Figure A.1b) confirmed that L-XMP 

was converted to L-GMP by GMPS, demonstrating that turnover of the opposite 

enantiomer substrate was possible. 

Biochemical characterization of the kinetics of L-XMP conversion to L-GMP by 

GMPS, as well as D-XMP conversion to D-GMP, was measured by fitting the individual 

GMP/CMP (cytosine 5′-monophosphate, an external standard) ratios from each sample  

into the slope-intercept equation from the calibration plot. Initial velocity measurements 

of GMP production as a  function of time were measured at a variety of substrate (XMP) 

concentrations, and at fixed saturating concentrations of the non-varied substrates ATP 

and NH4OAc (Figure A.2a). Fitting these data to the Michaelis-Menten equation and 

analysis by non-linear regression allowed measurement of kinetic parameters (Table 

A.1).  

Analysis of D-XMP revealed an apparent Km of 35.3 µM, which was similar to 

previously reported Km values for E. coli GMPS (29 µM and 166 µM).334,335 The turnover 

number (kcat) was found to be 5.6×10−2 s−1, which was comparable to a previous report of 

9.4×10−2 s−1,335 but 100-fold lower than human GMPS.336,337 Analysis of L-XMP revealed 

an apparent Km of 316.7 µM, which is ~10-fold higher than the natural enantiomer. 

Surprisingly, the kcat was measured at 3.8×10−5 s−1, which is a 1000-fold difference in 

turnover number compared to D-XMP. The specific activity (kcat/Km) of L-XMP 

decreased 13,000-fold from the natural enantiomer (1.6×10−3 µM−1s−1 for D-XMP versus 

1.2×10−7 µM−1s−1 for L-XMP). These results suggest that L-XMP may also inhibit GMPS. 
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Table A.1. Kinetic parameters of GMPS enantiomer substrates D-XMP 

and L-XMP. 
 
Substrate kcat (s −1) Km

 (µM)  kcat/Km (µM−1 s −1) 

D-XMP[a] 5.6 (± 0.4) × 10−2 35.3 ± 8.5 1.6 × 10−3 

D-XMP[b] 5.1 (± 0.8) × 10−2 24.9 ± 6.6 2.0 × 10−3 

L-XMP[a] 3.8 (± 0.4) × 10−5 316.7 ± 55.6 1.2 × 10−7 

L-XMP[b] 3.7 (± 0.8) × 10−5 329.9 ± 104.9 1.1 × 10−7 

[a] HPLC Analysis [b] UV-Vis Analysis 

 

Figure A.2. Initial velocities versus substrate plots for D-XMP and L-XMP as measured by (a) HPLC 
analysis and (b) UV-Vis analysis. 
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To confirm the values derived from the HPLC assay, a known continuous UV 

spectrophotometric assay was also employed.334,338 This assay monitors a reduction in 

290 nm absorbance resulting from conversion of XMP (ε290 = 4800 M−1 cm−1) to GMP 

(ε290 = 3300 M−1 cm−1). UV-based kinetic data was calculated analogously to the HPLC-

derived data (Figure A.2b). Analysis of both D-XMP and L-XMP revealed nearly 

identical results to the HPLC assay (for L-XMP: kcat/Km = 1.1×10−7 µM−1s−1 (UV) versus 

1.2×10−7 µM−1s−1 (HPLC); Table A.1). 

 

A.4 Inhibition of GMPS by L-XMP 

 

  Although L-XMP conversion to L-GMP by GMPS was demonstrated, the 

weak affinity of L-XMP for GMPS, coupled with its slow turnover number, suggested 

possible enzyme inhibition by this ligand. To probe for GMPS inhibition, we performed 

 
Figure A.3. Inhibition experiment plots of initial velocity versus substrate concentration for (A) 
decoyinine (B) mizoribine (C) D-xanthosine (D) L-xanthosine (E) L-XMP. Circles denote [Inhibitor] = 0 
µM and squares denote [Inhibitor] = (A) 43 µM, (B) 0.4 µM, (C) 100 µM, (D) 100 µM, and (E) 3.2 µM. 
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enzymatic activity experiments with our xanthosine-based molecules to demonstrate 

reduction of GMPS-mediated amination of D-XMP (Figure A.3). Addition of a fixed 

concentration of inhibitor to varying D-XMP concentrations, followed by analysis by 

UV-Vis and fitting to the competitive inhibition equation (or uncompetitive for 

decoyinine towards XMP),321 yielded the Ki data shown in Table A.2. Evaluation of the 

known GMPS uncompetitive inhibitor decoyinine revealed a Ki = 54.1 µM, which was 

similar to a previous report (26 µM).339 Mizoribine, a known GMPS competitive 

inhibitor, was found to be more potent in our hands (Ki = 1.8 µM), and this activity is 

similar to reports of the same compound against E. brefeldianum GMPS (Ki of 10 

µM).320,337 L-XMP (6) inhibition results were quite interesting, revealing that L-XMP is 

almost 7-fold more potent than decoyinine inhibition against E. coli GMPS (Ki = 7.5 

µM). Both D-xanthosine and L-xanthosine nucleosides were also tested and neither 

molecule inhibited GMPS, suggesting that 5′-monophosphorylation is required for 

inhibition. Mizoribine does not require phosphorylation for GMPS inhibition. Our results 

suggest that L-XMP can inhibit GMPS enzymatic activity with potency similar to or 

slightly better than other known inhibitors.320,337,339,340 

 

Table A.2. GMPS inhibition data of 
known inhibitors and xanthosine 
analogues.  

Inhibitor Ki (µM) 
Decoyinine 54.1 ± 14.5 
Mizoribine 1.8 ± 0.7 

D-Xanthosine > 1500 
L-Xanthosine >  500 

L-XMP 7.5 ± 1.8 
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A.5 Docking Analysis of L-XMP 

 

  To understand the molecular interactions of D-XMP and L-XMP within the 

GMPS active site, energy minimized three-dimensional conformations of the biochemical 

reaction intermediates (adenyl-D-XMP and adenyl-L-XMP; Figure A.4a) were docked 

(Surflex-dock in the SYBYL software suite) into the crystal structure of E. coli GMPS 

(PDB 1GPM).327,328 The molecule of AMP observed in the x-ray crystal structure was 

extracted and re-docked into GMPS with a calculated similarity of 0.908 (1.0 is the  

 

Figure A.4. (a) Structures of adenylated D-XMP, the known intermediate in GMPS biosynthesis, and 
the putative adenylated L-XMP intermediate in the synthesis of L-GMP by GMPS (b) Bound ligand 
AMP (blue) from X-ray crystal structure of E. coli GMPS was extracted from the structure and re-
docked into the GMPS binding pocket overlaid with the crystallized AMP (black) (residues 207-406, 
pdb 1GPM) (c) Adenylated D-XMP (green) docked into the GMPS binding pocket demonstrating 
docking accuracy of intermediates (d) Adenylated L-XMP (yellow) and adenylated D-XMP (green) 
docked into the GMPS binding pocket demonstrating a 2.0 Å conformational shift in xanthine 
nucleobases. 
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theoretical maximum), showing reliability in docking accuracy of the program (Figure 

A.4b). The docking of adenyl-D-XMP and adenyl-L-XMP over AMP demonstrated 

accuracy of the intermediates (Figure A.4c-d). Several stabilizing molecular interactions 

were observed between adenyl-D-XMP and GMPS, such as hydrogen bonds between 

 

Figure A.5. Docking of (a) adenyl-D-XMP and (b) adenyl-L-XMP intermediates into the E. coli 
GMPS synthetase binding pocket. Key hydrogen-bonding interactions between the adenylated ligands 
and GMPS are marked with dashed lines. The 2-position of the xanthine nucleobase is marked (2.0 Å 
conformational shift). 
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Lys856 and the xanthine nucleobase; Arg785, Arg765, and Glu768 to ribose alcohols; 

and Asn761 to the phosphate of D-XMP (Figure A.5a). The considerable size of the 

GMPS synthetase pocket readily accommodated the docking of adenyl-L-XMP; however, 

the L-ribose sugar occupied a substantially different position within the synthetase 

domain (Figure A.5b). No longer present were many of the key molecular interactions 

between the nucleobase and ribose alcohols as evident by a decreased in consensus score, 

which is an estimate of the overall ligand binding affinity (CScore = 7.68 for D-XMP 

versus 6.16 for L-XMP). One compensating molecular interaction was observed for 

adenyl-L-XMP, which was a hydrogen bond between Asn761 to a ribose alcohol. The 

conformation of the L-ribose sugar in adenyl-L-XMP also forces C2 of the nucleobase to 

be positioned approximately 2.0 Å away from the region in space occupied by natural 

adenyl-D-XMP ligand. This perturbation to nucleobase conformation may deter 

aminolysis of the adenylated unnatural monophosphate, thereby slowing enzyme 

turnover. Additionally, the loss of key hydrogen-bonding interactions may also contribute 

to the loss in enzyme efficiency. Nonetheless, our observation of the synthesis of L-GMP 

from L-XMP implies the large size of the synthetase pocket must allow some movement 

of adenyl-L-XMP to obtain the correct conformation for amination.  

 

A.6 Anti-malarial Activity of L-XMP Analogues 

 

 Inhibitors of enzymes that catalyze de novo nucleotide biosynthesis can be 

effective drugs against cancer, inflammatory disorders, and infections, especially if the 
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target is dependent on the pathway.341  All parasitic protozoa rely on salvage of nucleic 

acids for cell division because of the limited access to purines and therefore, are sensitive 

to imbalances in dNTP pools, with depletion of one dNTP halting DNA synthesis 

altogether.319,342 Hence, drugs that deplete intracellular dNTPs have the potential to starve 

parasites of necessary reagents for cell division. For example, parasitic growth is 

inhibited in Plasmodium falciparum by degradation of exogenous hypoxanthine.343 Since 

a crucial step in the de novo synthesis 2′-deoxyguanosine triphosphates (dGTP) is the de 

novo synthesis of guanosine monophosphate by GMPS, the inhibition of GMPS is 

hypothesized to confer to antiparasitic activity.344 Since the pharmacokinetics of 

phosphate compounds are generally poor, we synthesized a prodrug of A.10 that masked 

the negative charges on the phosphates and would hydrolyze to yield A.10 within cells 

(Scheme A.3). 4-Hydroxyl benzyl alcohol A.12 was acetylated to yield the intermediate 

A.13, which was reacted with diisopropylphosphoramidous dichloride to afford the 4-
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acetoxy benzyl phosphoramidite A.14. L-Xanosine A.9 was reacted with the 

phosphoramidite A.14 and oxidized to the phosphate to yield the L-XMP prodrug A.15.  

Because P. falciparum is the parasite that causes malaria in humans, we sent A.9, 

A.10, and the prodrug A.15 to the Swiss Tropical and Public Health Institute for 

antimalarial testing. Both L-Xanosine A.9 and L-XMP A.10 did not demonstrate any 

antimalarial activity (greater than 10000 nM) compared to the 3.9 and 9.2 nM activity of 

the known antimalarial drugs Artesunate and Chloroquine (Table A.3). The L-XMP 

prodrug A.15, however, exhibited weak antimalarial activity (IC50 = 6.3 µM), which 

could be overall toxicity due to release of the quinone methide from the masked 

phosphate. We concluded that although antimalarial activity was observed, it is unclear if 

it was due to modulation of dNTP levels.  

  

A.7 Conclusions and Future Work 

 

  In conclusion, the biochemical conversion of L-GMP from L-XMP 

provides new insight into the substrate promiscuity of GMPS. GMPS was also inhibited 

 

Table A.3. Antimalarial data of 
known inhibitors and xanthosine 
analogues.  

Inhibitor IC50 (nM) 
Artesunate 3.9 

Chloroquine 9.2 
A.9 > 10000 
A.10 >  10000 
A.15 6324 
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by L-XMP at low micromolar levels, which is comparable to other known inhibitors. This 

inhibition lead to a low micromolar antimalarial activity against Plasmodium falciparum 

strain NF54. These results provide new insight into GMPS-ligand interactions that will be 

useful for future inhibitor designs. 

 

A.8 Experimental Section 

 

A.8.1 Chemical Synthesis. 

General. Chemical reagents were typically from Sigma-Aldrich or Acros and used 

without additional purification unless explicitly noted. Triethylammonium acetate 

(TEAA, 1 M aq. solution) and triethylammonium bicarbonate (TEAB, 1 M aq. solution) 

buffers were from Sigma-Aldrich. Bulk solvents were from Fisher Scientific and 

anhydrous 1,2-dichloroethane was purchased from Sigma-Aldrich.  Buffers for HPLC 

purification and analysis were prepared and diluted with distilled and deionized H2O 

(ddH2O) and the pH was adjusted with HCl (1 N aq. soln). Reactions were performed 

under an atmosphere of dry N2 unless otherwise noted. Silica gel chromatography was 

performed on a Teledyne-Isco Combiflash Rf-200 instrument utilizing Redisep Rf Gold 

High Performance silica gel columns (Teledyne-Isco) or self-packed columns with 

SiliaFlash 60Å silica gel (SiliCycle). Analytical HPLC analysis and semi-preparative 

HPLC purifications were performed on an Agilent 1200 series instrument equipped with 

a diode array detector and a Zorbax SB-AQ column (4.6 x 150 mm, 3.5 µm, Agilent 

Technologies) for analytical-scale analysis or a Zorbax SB-AQ column (9.4 x 250 mm, 5 
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µm, Agilent Technologies) for semi-preparative purification. Nuclear magnetic resonance 

(NMR) spectroscopy employed a Bruker AvanceII+ instrument operating at 400 MHz 

(for 1H), 100 MHz (for 13C), or 161 MHz (for 31P) at ambient temperature. Chemical 

shifts are reported in parts per million and normalized to internal solvent peaks or 

tetramethylsilane. High-resolution mass spectrometry (HRMS) was recorded in either 

positive-ion or negative-ion mode on a Bruker BioTOF II instrument. (see Appendix B 

for chromatograms). 
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A.11A.8  

9-(2′,3′,5′-tri-O-benzoyl-β-L-ribo-furanosyl)xanthine (A.8) and 7-(2′,3′,5′-tri-O-

benzoyl-β-L-ribofuranosyl)xanthine (A.11). Vorbrüggen coupling conditions were used 

to prepare protected nucleosides A.8 and A.11.331 In brief, a solution of 1-O-acetyl-2,3,5-

tri-O-benzoyl-β-L-ribofuranose341,343 (A.6, 150.0 mg, 0.30 mmol) and 

tris(trimethylsilyl)xanthine344 (A.7, 243.3 mg, 0.66 mmol) in anhydrous 1,2-

dichloroethane (5 mL) was treated with TMSOTf (65 µL, 0.36 mmol) and heated to 

reflux for 1 h. The mixture was then diluted with dichloromethane (10 mL), washed with 

aqueous NaHCO3 (sat′d, 20 mL), and the aqueous layer was extracted with additional 

dichloromethane (10 mL, 3x). The combined organic layers were dried over Na2SO4, 

concentrated in vacuo, and SiO2 purified (gradient 50 to 80% acetone in hexanes) to give 
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A.8 (124.0 mg, 70%) and A.11 (37.5 mg, 21%) as white foams. 9-(2′, 3′, 5′-tri-O-

benzoyl-β-L-ribofuranosyl)-xanthine (A.8). 1H NMR (MeOH-d4): δ 7.96-7.94 (m, 2H), 

7.90-7.88 (m, 2H), 7.85-7.81 (m, 3H), 7.53-7.45 (m, 3H), 7.39-7.25 (m, 6H), 6.31 (d, J = 

5.3 Hz, 1H), 6.03 (t, J = 5.5 Hz, 1H), 5.94-5.91 (m, 1H), 4.79-4.73 (m, 2H), 4.64 (dd, J = 

11.9, 4.1 Hz, 1H); 13C NMR (MeOH-d4): δ 176.5, 167.6, 166.8, 166.7, 160.5, 154.6, 

145.1, 135.6, 135.2, 135.0, 134.8, 131.0, 130.82, 130.76, 130.2, 129.9, 129.8, 117.3, 87.5, 

82.0, 75.8, 72.7, 64.8; HRMS (ESI＋) calc'd for C31H24N4NaO9 [M+Na]+, 619.1441; found 

619.1448. 7-(2′,3′,5′-tri-O-benzoyl-β-L-ribofuranosyl)-xanthine (A.11) 1H NMR 

(MeOH-d4): δ 8.13 (s, 1H), 8.00-7.92 (m, 2H), 7.90-7.85 (m, 2H), 7.83-7.80 (dd, J = 9.9, 

2.7 Hz, 2H), 7.51-7.46 (m, 3H), 7.38-7.24 (m, 6H), 6.47 (d, J = 4.9 Hz, 1H), 6.15-6.07 

(m, 1H), 6.01-5.98 (m, 1H), 4.77-4.71 (m, 2H), 4.72-4.64 (m, 1H); 13C NMR (MeOH-d4): 

δ 167.7, 166.8, 166.6, 157.0, 153.4, 152.2, 143.7, 135.0, 134.9, 134.6, 131.0, 130.92, 

130.85, 130.7, 130.3, 130.1, 129.8, 129.7, 129.6, 108.0, 90.8, 81.5, 76.4, 72.6, 65.1; 

HRMS (ESI＋) calc'd for C31H24N4NaO9 [M+Na], 619.1441; found 619.1427.  
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A.9  

L-xanthosine (L-Xao, A.9). Protected L-xanthosine A.8 (102.0 mg, 0.17 mmol) was 

dissolved in ammonia in methanol (~7 N, 5 mL) in a sealed tube and heated to 50 ºC 
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overnight. The reaction was cooled to RT, concentrated in vacuo, and SiO2 purified (33% 

MeOH in CH2Cl2) to afford A.9 (45.1 mg, 93%) as a white solid. 1H NMR (DMSO-d6): δ 

11.74 (br s, 1H), 10.88 (br s, 1H), 7.88 (s, 1H), 5.75 (d, J = 6.9 Hz, 1H), 5.41 (br s, 3H), 

4.22 (dd, J = 6.8, 5.1 Hz, 1H), 4.06 (dd, J = 5.0, 2.1 Hz, 1H), 4.03 – 3.98 (m, 1H), 3.66 

(d, J = 2.5 Hz, 2H); 13C NMR (DMSO-d6): δ 157.9, 150.5, 139.4, 135.7, 116.2, 88.7, 

86.1, 74.0, 70.9, 61.3; HRMS (ESI＋) calc'd for C10H12N4NaO6 [M+Na]+, 307.0655; found 

307.0651. 
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A.10  

L-Xanthosine-5′-monophosphate triethylammonium salt (L-XMP, A.10). This 

compound was prepared by a modification to the previously reported synthesis of D-

Xanthosine-5′-monophosphate (D-XMP).333 To a partially dissolved solution of L-

xanthosine (A.9, 62.5 mg, 0.22 mmol) in trimethyl phosphate (2.2 mL) was added 

proton-sponge (83.0 mg, 0.39 mmol). The solution was cooled to 2 ºC and POCl3 (50 µL, 

0.54 mmol) was added dropwise. After stirring at 2 ºC for 2 h, triethylammonium 

bicarbonate (TEAB, 1.0 M, 5 mL) was added and the crude material was concentrated in 

vacuo. The crude monophosphate was purified by stepwise semi-preparative HPLC. The 

HPLC purification method (flow rate = 4.5 mL/min) involved isocratic 

triethylammonium acetate buffer (TEAA, 20 mM, pH = 6, 0 to 5 min), followed by linear 
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gradients of 0% to 15% CH3CN in TEAA buffer (5 to 15 min) and 15% to 90% CH3CN 

in TEAA buffer (15 to 20 min). The material eluting broadly from 7-10 minutes was 

collected and lyophilized to dryness. The crude material was purified an additional time 

by the semi-preparative HPLC utilizing this method and the material eluting broadly from 

6-9.5 minutes was collected and lyophilized to dryness. The residual material was re-

dissolved in ddH2O (10 mL), frozen, and then lyophilized to dryness to give L-XMP 

(55.3 mg, 19%) as a white syrup. By 1H NMR analysis, approximately 10 equivalents of 

TEA salt were associated with each equivalent of L-XMP. 1H NMR (D2O): δ 7.89 (s, 

1H), 5.87 (d, J = 6.4 Hz, 1H), 4.46 – 4.38 (m, 1H), 4.26 (d, J = 2.9 Hz, 1H), 3.90 (dd, J = 

13.0, 2.7 Hz, 1H), 3.81 (dd, J = 12.9, 3.4 Hz, 1H), 3.16 (q, J = 7.3 Hz, 12H), 1.27 (t, J = 

7.3 Hz, 18H); 13C NMR (D2O): δ 160.4, 156.4, 148.1, 136.1, 115.1, 86.9, 84.3, 74.3, 70.5, 

64.4, 46.6, 22.9, 8.2; 31P NMR (D2O): δ 0.48. HRMS (ESI-) calc'd for C10H12N4O9P [M-

H]-, 363.0347; found 363.0343. The regiochemistry of phosphorylation was additionally 

verified by analytical HPLC analysis of a co-injection of L-XMP and commercial D-

XMP. A singly eluting peak was observed (data not shown).  

 

 

AcO

OH

A.13  

Acetoxybenzyl alcohol (A.13). Acetylchloride (1.95 mL, 25.0 mmol) was added 

dropwise to a solution of 4-hydroxybenzyl alcohol A.12 (3.10 g, 25.0 mmol) and TEA 

(3.50 mL, 25.0 mmol) in DCM (100 mL) at 0 °C and stirred for 24 hours. The solution 
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was extracted with saturated sodium bicarbonate (100 mL) and DCM (100 mL), 

concentrated in vacuo, and SiO2 purified (gradient of 0-10% methanol in DCM) to afford 

A.13 as an oil (960 mg, 23%). 1H NMR (CDCl3): δ = 7.35 (d, 2H, J = 6.76 Hz), 7.06 (d, 

2H, J = 6.84 Hz), 4.64 (s, 2H), 2.29 (s, 3H); 13C NMR (CDCl3): δ = 169.7, 150.0, 138.6, 

128.1, 121.6, 64.6, 21.1; HRMS-ESI- m/z [M+Na]+ calc’d for C9H10O3Na+: 189.0522, 

found: 189.0618.  
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A.14  

1,1-Diacetoxybenzylalcohol-N,N-diisopropylphosphinamine (A.14). A mixture of 

A.13 (71 mg, 0.43 mmol) and TEA (0.07 mL, 0.49 mmol) in THF (1.0 mL) was added 

dropwise to diisopropylphosphoramidous dichloride (0.04 mL, 0.21 mmol) in THF (1.0 

mL) at -80 °C.  The reaction was warmed to RT, concentrated in vacuo, and SiO2 purified 

(gradient of 0-70% ethyl acetate in hexanes) to afford A.14 as an oil (92 mg, 66%). 1H 

NMR (CDCl3): δ = 7.28 (d, 4H, J = 8.08 Hz), 6.97 (d, 4H, J = 8.12 Hz), 3.42 (s, 4H), 

2.23 (s, 6H), 1.97 (s, 2H), 1.14 (s, 6H), 1.12 (s, 6H); 13C NMR (CDCl3): δ = 128.6, 128.0, 

121.6, 121.3, 67.98, 45.8, 25.6, 22.6, 21.1; 31P NMR (CDCl3): δ = 147.94 (s, 1P); 

HRMS-ESI- m/z [M-2H]2- calc’d for C24H30NO6P2-: 229.5911, found: 229.0383.  
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L-Xanthosine-5′-1,1-Diacetoxybenzylalcohol monophosphate (A.15). 

Phosphoramidite A.14 (13 mg, 0.03 mmol) was added to a solution of L-xanthosine A.9 

(8.0 mg, 0.03 mmol) in DCM (5 mL) and molecular sieves. Tetrazole (0.27 mL, 0.47 M 

in acetonitrile) was added and it was stirred at room temperature for 24 hours. The 

reaction was poured into brine (10 mL), extracted with DCM (10 mL), and concentrated 

in vacuo. The crude phosphine was immediately dissolved in DCM (5 mL) and mCPBA 

(14 mg, 0.06 mmol) was added and stirred at room temperature for 24 hours. The reaction 

was poured into H2O:NaHCO3 (10 mL, 1:1), extracted with DCM (10 mL), and SiO2 

purified (gradient of 0-40% ethyl acetate in hexanes) to afford A.15 as a white solid (17 

mg, 92%). 1H NMR (CDCl3): δ = 7.76 (s, 1H), 7.30 (d, 4H, J = 10.1 Hz), 7.05 (d, 4H, J = 

10.2 Hz), 5.77 (d, 1H), 5.13-5.00 (m, 2H), 4.05 (m, 1H), 3.69 (m, 1H), 3.56 (m, 1H), 3.42 

(s, 4H), 2.10 (s, 6H); 13C NMR (CDCl3): δ = 151.0, 150.3, 149.7, 136.2, 130.1, 129.2, 

128.7,  123.8, 121.9, 121.6, 100.0, 99.5, 87.2, 66.7, 47.5, 30.8, 21.0; 31P NMR (CDCl3): δ 

= 8.46; HRMS-ESI- m/z [M-H]- calc’d for C28H29N4O13P-: 659.1396, found: 659.1410.  

 

A.8.2 Sequencing of E. coli GMP Synthetase. The pET28a plasmid bearing the E. coli 

GuaA gene with a hexahistidine tag on the 5′ end was a generous gift from Professor 



 

 214 

Janet Smith (University of Michigan).327,328 To verify that we purified a plasmid 

containing the guaA gene, we utilized two forward sequencing primers – 5′-

GGAAAACATTCATAAGC-3′ and 5′-CGTATTCGTCGACAACG-3′ for automated 

sequencing at the University of Minnesota Biomedical Genomics Center. Sequencing 

results from each primer were aligned with the E. coli K12 genome using BLASTn. 

Positive alignment along with manually overlapping the two sequences yielded a large 

portion of the guaA sequence containing one silent mutation at proline 404 (CCG à 

CCA). The overlapping sequence was assembled and aligned against the nonredundant 

protein database using BLASTx, confirming that the sequence derived from the plasmid 

indeed codes for E. coli GMPS.  

 

A.8.3 Overexpression and Purification of E. coli GMP Synthetase. Two x 10 mL LB-

Kanamycin (LB-Kan, 50 µg/mL Kan) media was inoculated with single colonies from 

freshly transformed BL21 (DE3) E. coli. After overnight incubation at 37 ºC with shaking 

at 250 rpm, these cultures were used to inoculate 2 x 1 L LB-Kan cultures. Protein 

expression was induced when the OD600 of the culture reached 1.2 via the addition of 1 

mM IPTG. Cultures were incubated overnight at 37 ºC with shaking at 250 rpm. Cells 

were recovered via centrifugation at 7500 x g for 15 minutes at 4 ºC. The cell pellets (~4 

g each) were frozen in a dry ice/EtOH bath, then thawed and resuspended in 10 mL 

buffer A (0.25 M KCl, 10 mM KH2PO4, 10 mM imidazole, 1 mM DTT, pH 7.4) with 1 

mg/mL lysozyme and a protease inhibitor tablet (Roche). The cell suspension was 

incubated for 30 minutes at room temperature with shaking. The cell paste was then 
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sonicated (VibraCell VCX-750 sonicator with temperature probe, Sonics and Materials, 

Inc.) for 12 pulses of 15 s with a 45 s rest period between pulses, taking care to keep the 

temperature of the lysate from exceeding 20 ºC. Cell debris was removed via 

centrifugation at 40,000 x g for 45 min at 4 ºC. The supernatants from both cultures were 

combined at this point and directly loaded onto a Ni-NTA column, washed with 200 mL 

of buffer A, then eluted with buffer B (0.25 M KCl, 10 mM KH2PO4, 150 mM Imidazole, 

1 mM DTT, pH 7.4). An Econo gradient pump and fraction collector (Bio-Rad) was used 

for chromatography. Fractions with measurable A280 and an A280/A260 ratio of >1.4 were 

pooled, concentrated to ~10 mg/mL, and stored as a 25% glycerol stock at -80 ºC. 

Typical yields of ~50 mg protein/L of culture were obtained. Protein purities were >95% 

as evidenced by gel electrophoresis (Figure A.6). 

 

 

A.8.4 UV-Vis Spectrophotometric Assay for GMPS Enzymatic Activity. GMPS 

enzymatic activity was measured spectrophotometrically utilizing a previously reported 

assay.338 In brief, this assay monitors a reduction in 290 nm absorbance resulting from 

conversion of XMP (ε = 4800 M-1cm-1) to GMP (ε = 3300 M-1 cm-1) by the enzyme. A ∆ε 

                       
 
Figure A.6. Purified GMPS. (a) Ni-NTA purified. (b) Mono-Q purified. 
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value of 1500 M-1 cm-1 was used to calculate the amount of GMP formed. Aqueous 

solutions (800 µL) of XMP (1, 2, 4, 8, 11, 17, and 27 µM) and GMPS (0.65 µM for D-

XMP or 6.5 µM for L-XMP) were diluted into ddH2O and pre-incubated in 

microcentrifuge tubes for two hours. The pre-incubated solutions were transferred to 

quartz cuvettes and incubated for 3 min at 37 ºC in a heat block. 200 µL of an aqueous 

solution of Tris/HCl (75 mM, pH 8.5), ATP (1.25 mM), (NH4)2SO4 (60 mM), and MgSO4 

(10 mM) was added to the pre-incubated solution of XMP and GMPS. The cuvettes were 

mixed, and ∆A290 was recorded at 37 ºC using a temperature-controlled Agilent Cary 100 

UV-Vis spectrophotometer. GMP production as a function of time was measured at a 

variety of substrate (XMP) concentrations. These discrete initial velocity values (µM/min) 

were obtained by plotting a tangental line to the first (approximately) 15% of data points, 

followed by dividing the slope of the resulting line to the difference in molar extinction 

coefficient between XMP and GMP (∆ε value of 1500 M-1cm-1 at 290 nm). This series of 

experiments yielded initial velocity values of GMP production at a variety of XMP 

concentrations. The measured initial velocity values of different XMP concentrations 

were fitted to the Michaelis-Menten equation (eq. 1) and analyzed by non-linear 

regression using the software GraphPad Prism 5 to determine the Km and Vmax. Each 

experiment was performed in triplicate and mean Km and Vmax values (with standard 

deviation) were calculated. 

 

(Equation 1)  v = Vmax[S]/(Km + [S]) 
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A.8.5 Substrate Competition Experiments with GMPS.  The inhibition constants 

were measured utilizing the above spectrophotometric assay. Previous studies with 

nucleoside inhibitors of GMPS have demonstrated progressive-type inhibition, therefore, 

pre-incubation of D-XMP, inhibitor, and GMPS was required before addition of the 

amine source.321,345 Two known GMPS inhibitors (decoyinine (Santa Cruz 

Biotechnology) and Mizoribine (Sigma-Aldrich)) were used in this assay. In brief, 

aqueous solutions (800 µL) of D-XMP (1, 2, 4, 8, 11, 17, and 27 µM), GMPS (0.65 µM), 

and inhibitor (constant concentrations, shown below) were diluted into ddH2O and pre-

incubated in microcentrifuge tubes for two hours. The pre-incubated solutions were 

transferred to quartz cuvettes and incubated for 3 min at 37 ºC in a heat block. 200 µL of 

an aqueous solution of Tris/HCl (75 mM, pH 8.5), ATP (1.25 mM), (NH4)2SO4 (60 mM), 

and MgSO4 (10 mM) was added to the pre-incubated solution of XMP, GMPS, and 

inhibitor. The cuvettes were mixed, and ∆A290 was recorded at 37 ºC as described above. 

The measured initial velocity values of different D-XMP concentrations were fitted to the 

uncompetitive Michaelis-Menten equation for decoyinine321 (eq. 2) or competitive 

Michaelis-Menten equation for all other inhibitors (eq. 3) and analyzed by non-linear 

regression to determine the Ki. Each experiment was performed in triplicate and mean Ki 

values (with standard deviation) were calculated. 

  

(Equation 2)   v = Vmax[S]/(Km,app + [S])     Km,app = Km/(1+[I]/αKi); 

Vmax,app=Vmax/(1+[I]/αKi) 
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(Equation 3) v = Vmax[S]/(Km,app + [S])     Km,app = Km/(1+[I]/αKi)    

   

 

A.8.6 HPLC Assay for GMPS Enzymatic Activity. GMPS enzymatic activity was also 

measured by quantifying the amount of aminated products (D-GMP or L-GMP) formed 

from reaction of D-XMP or L-XMP with GMPS by analytical HPLC analysis. Modifying 

a previously reported HPLC assay of enzymatic activities,346  the enzymatic reactions 

were carried out in microcentrifuge tubes and contained aqueous solutions with the 

following components (final volume of 500 µL): Tris/HCl (75 mM, pH 8.5), ATP (1.25 

mM), (NH4)2SO4 (60 mM), and MgSO4 (10 mM), myokinase (5 IU/mL, Sigma-Aldrich) 

and varying concentrations of XMP. The solutions were incubated for 3 min at 37 ºC to 

permit myokinase to convert all the ADP (present in commercial preparations of ATP) to 

ATP. The concentration of ATP remains constant throughout the reaction. Reactions 

were initiated by the addition of GMPS (0.65 µM for D-XMP as ligand or 6.5 µM for L-

XMP as ligand), the tubes were gently mixed, and the reaction was allowed to proceed at 

37 ºC.  At different time points, 500 µL of a solution of cytosine 5′-monophosphate 

(CMP, 1.6 mM, external standard, Sigma-Aldrich) and EDTA (100 mM) was added to 

stop the reaction. The final mixtures were filtered through a Millipore centrifugal filter 

(Amicon Ultra – 0.5 mL, 30 kDa molecular weight cutoff) to remove proteins and 

triplicate injections of 40 µL of filtrate were then analyzed by HPLC.  

An Agilent 1200 series instrument equipped with a diode array detector and a 

Zorbax SB-AQ column (4.6 x 150 mm, 3.5 µm, Agilent Technologies) at 22 ºC was used 
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for analysis. The mobile phase comprised aqueous triethylammonium acetate buffer 

(TEAA, 20 mM, pH = 6, 0 to 5 min), followed by 0 to 50% CH3CN in TEAA buffer (5 to 

15 min) at a flow-rate 1.0 mL/min. A representative HPLC chromatogram is shown in 

Figure A.1a. The formation of L-GMP (LRMS (ESI-) calcd for C10H12N4O9P [M-H]-, 

362.05; found 362.09) was verified by mass spectral analysis (Figure S2). CMP was used 

as an external standard in this assay (see above), and a linear plot of GMP/CMP 

absorbance (measured by area integration of respective peaks at 260 nm) versus [GMP, 

mM] was created (yielding a slope-intercept equation, R2 > 0.99). The concentration of 

GMP formed from the test samples was determined by fitting the individual GMP/CMP 

ratios from each sample into the slope-intercept equation from the calibration plot. GMP 

production as a function of time was measured at a variety of substrate (XMP) 

concentrations. This series of experiments yielded initial velocity values of GMP 

production at a variety of XMP concentrations. Three sets of initial velocity experiments 

were acquired for each XMP concentration tested. The measured initial velocities values 

of different XMP concentrations were fitted to the Michaelis-Menten equation (eq. 1) and 

analyzed by non-linear regression using the software GraphPad Prism 5 to determine the 

Km and Vmax.  

 

A.8.7 Docking Studies of L-XMP into GMPS Active Site. Energy minimized three-

dimensional conformations were generated for each compound using the Minimize 

Molecule function of the SYBYL 8.0 discovery software suite (Tripos, Inc.) with 

Gasteiger-Marsili charges. The three dimensional compounds were docked into GMPS 
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(PDB: 1GPM)328 using Surflex-Dock function in the SYBYL software suite. In Surflex-

Dock, the cocrystallized AMP ligand was used to guide the protomol generation required 

for docking. Docking accuracy was verified by extracting the bound ligand AMP (blue) 

from X-ray crystal structure and re-docking it into the GMPS binding pocket, which 

yielded a calculated similarity of 0.908 to the bound ligand (1.0 being identical 

structures)(Figure A.4b). Parameters of 0.3 and 2 were used for docking threshold and 

bloat, respectively. The maximum number of conformations per compound fragment and 

the maximum number of poses per ligand were both set to their default values of 20, and 

the maximum number of rotatable bonds per molecule was set to 100. All calculations 

were done on Minnesota Supercomputing Institute (MSI) workstations running under the 

Suse Linux Enterprise Desktop 10.2 operating system. Visualizations were rendered 

using UCSF Chimera.347  

 

 

 

 

 

 

 

 

 

 



 

 221 

 

 

 

 

 

Appendix B 

 

SPECTRAL DATA FOR SYNTHESIZED COMPOUNDS 
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B.1 Chapter 2 Compounds 
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B.2 Chapter 3 Compounds 
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Products Formed From the Photolysis of 3.15. 
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B.3 Chapter 4 Compounds 
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B.4 Chapter 5 Compounds 
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B.5 Appendix A Compounds 
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