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Investigating Linear and Nonlinear Item Parameter Drift with Explanatory IRT Models 

 

INTRODUCTION 

Test scores can be distorted by shifts in item performance over time because of cognitive 

or noncognitive examinee characteristics (Bulut, Palma, Rodriguez, & Stanke, 2015), examinees’ 

opportunities to learn (Albano & Rodriguez, 2013), and changes in curriculum and teaching 

methods (DeMars, 2004; Miller & Linn, 1988). In the context of item response theory (IRT), 

these distortions in item parameters over multiple administrations of a test are called item 

parameter drift (IPD; Goldstein, 1983).  

IPD is typically considered as a result of construct-irrelevant variability in test items over 

time. However, drift can also occur due to the difference in the perception of a construct across 

grade spans and developmental levels in a single occasion. This type of drift is construct 

relevant. Martineau (2006) described the presence construct-relevant variability in item 

parameters as construct shift.  

Given the constant physical, social, and emotional development of students through 

grades at school, developmental measures are more likely to be exposed to construct shift. In 

standard measurement literature, IPD is considered construct irrelevant, however this drift might 

really be construct relevant drift. Like IPD, the presence of construct shift may still lead to 

systematic errors in equating, scaling, and consequently scoring (Kolen & Brennan, 2004). By 

using incorrect measurement models, our assumptions about students’ scores on these 

developmental measures are false, which might lead to inappropriate conclusions about students’ 

developmental performance. 
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METHODS 

Research Questions 

This proposal has one research question, however more are answered for the 

presentation: How often does IPD model or construct shift misspecification occur under 

controlled conditions? For this study, we study construct shift as measure of IPD. 

Simulation Conditions 

Table 1 shows the simulation conditions of the study. The simulation conditions of this 

study included drift type (linear, quadratic, and offset quadratic), drift magnitude (0, 0.1, 0.2), 

and sample size (500, 1000), resulting in 18 crossed conditions. Test length was fixed to 10 items 

and there were seven hypothetical grade levels for all crossed conditions.   

Data Generation 

Item difficulty parameters and abilities were drawn from a normal distribution. Two 

items were considered as anchor items with no drift across grades. The remaining items were 

modified to drift linearly (i.e., the same magnitude of drift across grades) and nonlinearly (i.e., 

the magnitude of drift increases quadratically across grades). 50 response data sets were 

generated for each crossed condition.  

Data Analysis 

Four explanatory IRT models were fit to the data sets using the lme4 package (Bates, 

Maechler, Bolker, & Walker, 2015) in R: 1) Rasch model assuming model invariance; 2) linear 

IPD model with grade as a continuous predictor; 3) Quadratic IPD model with grade as a 

continuous predictor; and 4) nonlinear IPD model with grade as a categorical predictor. For 

brevity, the Quadratic IPD model is specified as 
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where the log odds of obtaining a correct response, Pij, is equal the trait level of an individual, 

minus the item difficulty, βi0, the linear drift constant, βi1, and the quadratic drift constant, βi2, of 

item i.  

RESULTS 

The simulation results summarizing model fit are presented in Tables 2 and 3. The 

models with the lowest AIC and BIC values were selected as the best-fitting model in each of the 

50 replications across 18 crossed conditions. The findings suggest that the factor IPD model 

provided the best model fit under nonlinear and offset nonlinear conditions. However, the 

quadratic IPD model outperformed the factor IPD model when sample size was small. When 

linear IPD was present, the linear IPD model was the best fitting model due to its greater 

parsimony in explaining linear drift.  

CONCLUSION 

This study shows that either factor or quadratic IPD models can be highly useful in 

detecting drift when the amount of drift varies across testing occasions or grade levels. If, 

however, linear IPD is present, quadratic and factor IPD models may be highly redundant and 

laborious. Considering the computational demands of the three IPD models, one may want to 

begin with a linear IPD model first, and then move to the quadratic or factor IPD models if the 

magnitude of drift is not fixed across grade levels. In addition to model fit results, the impact of 

drift on estimated item parameters and ability estimated will be discussed in the final form of the 

proposal.  

While this paper only examined one research question, our presentation would expand on 

model selection, bias, and person estimates. Practically, if we are obtaining responses of students 

and these response are not being scaled correctly, we may be producing incorrect conclusions 
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about the developmental levels of students. As more and more schools are interested in 

understanding the developmental levels of students in areas other than academic performance, 

correct measurement models will become even more important, as will understanding construct 

variability. 
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Table 1 

Simulation Design of the Study 

Cell Drift Type Drift Magnitude Sample Size 
1 Linear None Small 
2 Linear None Large 
3 Linear Small Small 
4 Linear Small Large 
5 Linear Large Small 
6 Linear Large Large 
7 Quadratic None Small 
8 Quadratic None Large 
9 Quadratic Small Small 
10 Quadratic Small Large 
11 Quadratic Large Small 
12 Quadratic Large Large 
13 Offset Quadratic None Small 
14 Offset Quadratic None Large 
15 Offset Quadratic Small Small 
16 Offset Quadratic Small Large 
17 Offset Quadratic Large Small 
18 Offset Quadratic Large Large 
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Table 2 

Proportion of Models with the Lowest BIC Value by Cell 

 Simulation Conditions IPD Models 

Cell Drift Type 
Drift 

Magnitude 
Sample 

Size Rasch 
Linear 
IPD 

Quadratic 
IPD 

Factor 
Model 

1 Linear None Small 1.00 .00 .00 .00 
2 Linear None Large 1.00 .00 .00 .00 
3 Linear Small Small .00 1.00 .00 .00 
4 Linear Small Large .00 1.00 .00 .00 
5 Linear Large Small .00 1.00 .00 .00 
6 Linear Large Large .00 1.00 .00 .00 
7 Nonlinear None Small .00 .00 .80 .20 
8 Nonlinear None Large .00 .00 .00 1.00 
9 Nonlinear Small Small .00 .00 .80 .20 
10 Nonlinear Small Large .00 .00 .00 1.00 
11 Nonlinear Large Small .00 .00 .92 .08 
12 Nonlinear Large Large .00 .00 .00 1.00 
13 Offset Nonlinear None Small .00 .00 1.00 .00 
14 Offset Nonlinear None Large .00 .00 1.00 .00 
15 Offset Nonlinear Small Small .00 .00 1.00 .00 
16 Offset Nonlinear Small Large .00 .00 1.00 .00 
17 Offset Nonlinear Large Small .00 .00 1.00 .00 
18 Offset Nonlinear Large Large .00 .00 1.00 .00 
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Table 3 

Proportion of Models with the Lowest AIC Value by Cell 

 Simulation Conditions IPD Models 

Cell Drift Type 
Drift 

Magnitude 
Sample 

Size Rasch 
Linear 
IPD 

Quadratic 
IPD 

Factor 
Model 

1 Linear None Small 1.00 .00 .00 .00 
2 Linear None Large .96 .04 .00 .00 
3 Linear Small Small .00 1.00 .00 .00 
4 Linear Small Large .00 .98 .02 .00 
5 Linear Large Small .00 1.00 .00 .00 
6 Linear Large Large .00 .98 .02 .00 
7 Nonlinear None Small .00 .00 .00 1.00 
8 Nonlinear None Large .00 .00 .00 1.00 
9 Nonlinear Small Small .00 .00 .00 1.00 
10 Nonlinear Small Large .00 .00 .00 1.00 
11 Nonlinear Large Small .00 .00 .00 1.00 
12 Nonlinear Large Large .00 .00 .00 1.00 
13 Offset Nonlinear None Small .00 .00 .00 1.00 
14 Offset Nonlinear None Large .00 .00 .00 1.00 
15 Offset Nonlinear Small Small .00 .00 .00 1.00 
16 Offset Nonlinear Small Large .00 .00 .00 1.00 
17 Offset Nonlinear Large Small .00 .00 .00 1.00 
18 Offset Nonlinear Large Large .00 .00 .00 1.00 
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