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1 Introduction 

This investigation aims to evaluate whether the Safety In Numbers phenomenon is observable in 
originally collected pedestrian and crash data in the midwestern U.S. city of Minneapolis, Min-
nesota. Safety In Numbers (SIN) refers to the phenomenon that pedestrian safety is positively 
correlated with increased pedestrian traffic in a given area, e.g., that the per-pedestrian risk of inju-
rious interaction with motorized vehicles decreases as a function of the increasing flow of pedestrian 
traffic. SIN is well-supported by pedestrian crash data across a number of studies in various ur-
ban environments and reviews [18, 23, 3]. The concept has seen relatively widespread adoption 
in urban planning schools of thought, though its temporal causality is not clear-cut [3], and it is 
commonly discussed only in the context of pedestrian risk depending on pedestrian flow levels. 

Walking and bicycling are increasingly becoming important transportation modes in modern 
cities, for a wide variety of reasons. Rates of walking and bicycling to work in the United States 
hover around 2.8% and 0.6%, respectively, with public transit use barely higher at 5% nation-
ally [30]. Proper placement of non-motorized facilities and improvements has implications for 
safety [38], accessibility, and mode choice [17], but proper information regarding estimated non-
motorized traffic levels is needed to locate areas where investments can have the greatest impact. 
Assessment of collision risk between automobiles and non-motorized travelers offers a powerful 
and informative tool in urban planning, and can help inform proper placement of improvements 
and treatment projects to improve non-motorized traveler safety. 

Many of the issues with the collection of standardized non-motorized transportation data have 
to do with the factors that influence pedestrian and bicycle behavior. A model of non-motorized 
transport risk assessment is uninformative if the pedestrian and vehicular flows do not accurately 
represent real levels, and many cities do not have dense datasets of non-motorized transport flow 
levels, instead favoring counts of vehicle traffic. As such, active transport flow levels must be 
extrapolated from sparse datasets using comprehensive methodologies. For these reasons, as well 
as the overall lack in non-motorized travel counts for many communities, methods of estimating 
pedestrian and bicycle behavior that do not rely heavily on high-resolution count data are applied 
in this study. 

Pedestrian and cyclist traffic counts, average automobile traffic, and crash data from the city 
of Minneapolis are used to build models of crash frequencies at the intersection level as a func-
tion of modal traffic inputs. These models determine whether the SIN effect is observable within 
the available datasets both pedestrians, cyclists, and cars, as well as determine specific spatial lo-
cations within Minneapolis where non-motorized travelers experience elevated levels of risk of 
crashes with automobiles, relative to intersections elsewhere in the city. The ability to identify 
specific unsafe locations based upon aggregated count and crash data offers an additional tool for 
city planners to implement in multimodal planning. 
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2 Pedestrian Activity Estimation 

Walking and bicycling are increasingly becoming important transportation modes in modern cities, 
for reasons including individual and societal wellness, avoiding negative environmental externali-
ties associated with motorized modes, and the costs and availability shortages sometimes associated 
with fossil fuels [21]. Planning for biking and walking, and creating societal programs to increase 
their levels, has been cited as a targeted health need in urban planning going forward [27, 33, 4]. Re-
source limitations, particularly in high-population and developing countries, impose constraints on 
the maximum level of personal motorized travel allowed, and as a result, there is a greater need for 
viable alternatives. In addressing the viability and availability of alternative modes, high-resolution 
spatial data on non-motorized transportation behavior patterns is needed. 

Rates of walking and bicycling to work in the United States hover around 2.8% and 0.6%, re-
spectively, with public transit use barely higher at 5% nationally [30]. Proper placement of pedes-
trian treatments and improvements has implications for safety [38], accessibility, and mode choice 
[17], but proper information regarding estimated non-motorized traffic levels is needed to locate ar-
eas in need of improvement. In determining salient locations for non-motorized improvements, it is 
important to have accurate records of both existing and potential travel demand (e.g., current levels 
of walking in a neighborhood, as well as good models of increased demand due to potential treat-
ments); however, good quality, high-granularity datasets for non-motorized travel can be difficult 
to obtain, especially standardized for national spatial inventories [29]. For this reason, practitioners 
and researchers must frequently rely on estimation models for non-motorized traffic, and various 
methods can suffer from issues of data quality, granularity, and the presence of location-specific 
variables [26]. 

Many of the issues with the collection of standardized non-motorized transportation data have to 
do with the factors that influence pedestrian and bicycle behavior. A model of active transport risk 
assessment is uninformative if the pedestrian and vehicular flows do not accurately represent cor-
responding levels in situ, and many cities do not have dense datasets of active transport flow levels, 
instead favoring counts of vehicle traffic. As such, active transport flow levels must be extrapolated 
from sparse datasets using comprehensive methodologies. Land use data are well-documented by 
the U.S. Census Bureau to the Census Block level of resolution; general socioeconomic character-
istics are maintained as well, and can have significant influence [36]. However, more specific so-
cioeconomic characteristics are salient in non-motorized travel beyond just adjusted income levels, 
as well as weather variables [31] and latent, subjective variables such as visibility and perceptions 
of lighting, which can be more difficult to obtain at high spatial resolution [20], and can compli-
cate inter-city comparisons. For these reasons, as well as the overall lack in non-motorized travel 
counts for many communities, methods of estimating pedestrian and bicycle behavior that do not 
rely heavily on high-resolution count data are applied in this study. 

Aggregate travel behavior studies typically involve analysis at the level of Transportation Anal-
ysis Zones (TAZs), which are too coarse to allow robust analysis of non-motorized travel [36, 17]; 
regional travel surveys at the TAZ level consider many trip purposes but are similarly coarse and 
typically have too small of sample sizes to allow for robust city-to-city comparison. Census block-
level information regarding economic accessibility (access to jobs) via both strictly walking and via 
the net accessibility benefit of public transportation will first be used to explain observed pedestrian 
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traffic at a subset of intersections in the city of Minneapolis, Minnesota. Road network between-
ness centrality will also be used as an explanatory variable, as a proxy of the underlying network 
structure. A framework for comprehensive pedestrian risk assessment modeling, using pedestrian 
volume, vehicle volume, and an environmental factor (crosswalk length) on a university campus 
is provided by Schneider et al. [38]. The motivation for constructing models of pedestrian traffic 
is in supplementing the sparse data currently available and deriving a reusable framework to pro-
vide a more complete picture of pedestrian activity throughout the city at the level of individual 
intersections, based on non-location-specific available data. This study aims to extensively use 
accessibility to jobs as its primary metric of modeling and estimating pedestrian activity in an ur-
ban area, supplemented by other variables which describe vehicular traffic and the built network 
environment. 

2.1 Methodology 

2.1.1 Data 

This section briefly describes the data sources used in the pedestrian estimation models, and the 
data preparation process. 

To serve the project’s mapping and geometry needs, U.S. Census TIGER 2010 datasets for 
blocks and core-based statistical areas (CBSAs) were used, specifically for the Minneapolis-St. 
Paul, Minnesota region. U.S. Census Longitudinal Employer-Household Dynamics (LEHD) 2011 
Origin-Destination Employment Statistics (LODES) data were used to quantify job accessibility 
and land use. A North America extract of OpenStreetMap (OSM), retrieved April 2014, was used 
as an input to custom-developed software for calculating job accessibility at the block level. Turn-
ing movement counts (TMC) for the years 2000-2013 in Minneapolis provided the targeted pedes-
trian count data, and GTFS data provided by Metro Transit allowed for use of the Minneapolis-St. 
Paul metropolitan region’s transit operators’ current schedules in performing the necessary job ac-
cessibility computations. 

A pedestrian travel network graph for Minneapolis was then constructed, to begin the data 
preparation steps. The datasets for TMCs and AADT figures were not geocoded; this process 
was performed manually, linking the pedestrian and automobile count data to the intersections of 
interest. The count data were spread across multiple years, and were processed in PostgreSQL to 
obtain daily figures, averaged across the years for which count data were available. TMC data were 
processed by summing the total number of pedestrians passing through each intersection during the 
count day-long count periods. The count numbers used in the regression models were raw, and not 
upscaled to create 24-hour estimates. 

For each Census block in Minneapolis, the travel time to all other blocks within a 3.1 mile 
radius (5 km) was calculated for a single departure time, as walking speed was taken to be constant 
and independent of the time of day. Using this travel time matrix, the cumulative opportunity 
accessibility to jobs was computed for each census block, using time thresholds of 5, 10, …, 30 
minutes. Performing these same calculations with transit as the transportation mode instead of 
walking allows calculation of the “net transit” benefit experienced by transportation system users. 
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Betweenness centrality was calculated for the Minneapolis OSM road network, with a radius of 1 
km (approximately 0.7 miles), to represent typical, short-length walking trips [46]. 

Once all data were collated and prepared, negative binomial regression was performed to de-
scribe pedestrian behavior with variables of walking accessibility, net transit accessibility, network 
betweenness centrality, and accessibility to job opportunities by sector. The time-thresholds for 
walking accessibility and time of day for the pedestrian counts to use in the modeling were deter-
mined with single-variable regression models, to compare variable explanatory power. The model 
formulation appropriateness was tested using a repeated k-fold cross-validation process, withhold-
ing random 20% test samples. 

Regarding software used, intersection locations were determined from OSM road centerline 
data for the Minneapolis-St. Paul CBSA in QGIS. The subset of intersections for which count 
data were available is displayed in Figure 1; these intersections were used to construct the regres-
sion models. Accessibility calculations were performed using OpenTripPlanner (OTP) open-source 
routing software; GIS work performed in QGIS and PostGIS; network centrality measures com-
puted in ArcMap GIS with the Urban Network Analysis Tools toolbox; statistical work done in 
SQL, Python, and R. 

2.1.2 Accessibility 

The first type of explanatory variable used in the model of Minneapolis pedestrian count data is 
cumulative opportunity accessibility. Using OTP software, walking travel times along the network 
are calculated from each Census block centroid in Minneapolis, to each other block centroid within 
the travel-time thresholds of 5, 10, …, 30 minutes. Travel times by transit were calculated using 
General Transit Feed Specification (GTFS) data in conjunction with the OTP software framework. 
GTFS data are included wherever feeds are made available by transit agencies, and the targeted 
service date for analysis was January 22nd, 2014, to reflect non-holiday, normal weekday service 
schedules. Job opportunities are summed from each block centroid reachable within a given time 
threshold, yielding an X-minute accessibility measure. Job opportunities are broken down by eco-
nomic sector, as defined by the North American Industry Classification System. There are two 
accessibility calculations used in this study: accessibility to jobs from Census block centroids by 
walking, and accessibility to jobs from Census block centroids by both transit and walking. 

The walking mode is included in transit accessibility calculations, to account for access to, 
and egress from, transit stations, as well as mid-trip transfers. Pedestrian counts are often taken at 
intersections in either gross counts, or divided by turning movement type. This study uses Turning 
Movement Count (TMC) data from approximately 750 intersections in Minneapolis; intersection 
counts were calculated by adding the various TMC types for each intersection in the analysis group, 
to yield a gross figure of pedestrian activity within an intersection. Two-hour counts for pedestrian 
activity were used for morning peak (7 a.m. – 9 a.m.), midday (11 a.m. – 1 p.m.), and evening peak 
(4 p.m. – 6 p.m.). Accessibility calculations were performed using the following formulation of a 
gravity-based model: ∑ 

Ai = Oj f (Cij ) (1) 
j 
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Figure 1: Locations of intersections in Minneapolis with raw pedestrian count data. 
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Ai = accessibility for location i (2) 
Oj = number of opportunities at location j (3) 
Cij = time cost of travel from i to j (4) 

f (Cij ) = weighting function (5) 
(6) 

The choice of weighting function has a large impact on the resulting Accessibility calculations; 
however, one of the simplest interpretations of cumulative opportunities is an integer count, using 
the following weighting function: 

{
1 if Cij ≤ t 

f (Cij ) = (7)
0 if Cij > t 

t = travel time threshold 

This intuitively makes sense when applied to opportunities such as jobs, number of restaurants, 
transit route departures, and other discrete integer variables in the surrounding environment, and the 
simplicity of counting destinations within on-network travel radii avoids complexities introduced 
with impedance variables such as demographics and differential monetary costs. It is predicted 
that origins exhibiting higher accessibility values would see greater pedestrian activity throughout 
the day. It should be noted that this formulation relies on a simplifying assumption: as all job 
opportunities within a Census block are assumed to be located at its centroid, intra-block walking 
trips, which are a real use-case, are not directly captured by this framework. However, if a person 
is traversing an intersection and thus would be counted within the Turning Movement Counts, it is 
likely they are moving from one Census block to another. 

Accessibility for both walking, and walking + transit modes, are used in the estimation models; 
subtracting walking accessibility from the multimodal walking + transit accessibility yields the net 
transit benefit, and including walking and net transit separately in the regression models allows for 
explicit evaluation of how important transit benefits are to influencing pedestrian activity. Multiple 
regression was then performed to determine the explanatory power of the accessibility measures in 
predicting pedestrian and vehicular traffic in the AM, midday, PM peaks, as well as for a 6-hour 
summed count. These additional tables are omitted here. It was expected that origins exhibit-
ing higher walking-accessibility values, and higher centrality values, would see greater pedestrian 
activity throughout the day. 

Sector-specific significant factors were then added to the model, to examine which job sec-
tor categories may be more strongly correlated with walking as a commute mode. To determine 
which variables should be included, a stepwise negative binomial regression process was imple-
mented: evening pedestrian count data were modeled with only accessibility data corresponding 
to the 20 LEHD job sectors as inputs. In each round of stepwise modeling, the least-significant 
sector factor was removed from the model; this process continued until only factors significant at 
the p < 0.05 level remained. These sector factors were then included in the parsimonious negative 
binomial model. A 5-minute threshold was chosen for these sector factors, to assess the ability of 
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certain types of jobs to be walking-attractants in the more immediate walk-shed; this process was 
performed across the entire population of 788 intersections with pedestrian count data. 

2.1.3 Centrality 

In an attempt to reflect pedestrian activity on the underlying topology of the transportation net-
work, a centrality measure was computed in ArcGIS with the Urban Network Analysis Toolbox, 
and added to the regression models. Various types of network measures of centrality have been pro-
posed in their applicability to estimation of non-motorized activity levels [29, 2, 9], and safety and 
collision rates [47, 7]. One of the most common measures of centrality is “betweenness” centrality, 
or how “between” other nodes or links a given node or link is. When considering route choice and 
estimating modal traffic flows, link betweenness centrality is often considered, and consists of the 
proportion of shortest paths between all node pairs that pass through a link or node [28]. Relatedly, 
stress centrality consists of counting the number of times each link in a given network is utilized 
among the set of shortest paths between all node pairs, and is given by: ∑ 

Cs(k) = σij (k) (8) 
i,j∈V 

where σij is either 1 if link k is used in shortest path σij , and 0 otherwise. This form of stress 
centrality has been used to spatially assess transportation systems ([8]). 

Instead of assessing centrality at the link level, this study adapts the above formulation to cal-
culate betweenness centrality of intersections themselves. This allows a direct correspondence 
between the centrality metric and the pedestrian count data, which are intersection-based and not 
link-based. For the walking mode, it is not reasonable to include the entire set of road network 
intersections as possible destinations for a given intersection-origin, due to the lower speed of the 
walking mode - an assumed 5 km/h. Thus, for the centrality calculations for the walking mode, an 
on-network radius of 1 km, to represent 12 minutes of walking at average speed, was implemented 
to increase the saliency and relevance of centrality to actual walking behavior. Additionally, sim-
ilar modifications to the above for bicycle modes may be implemented for walking, in particular 
modifying O/D frequency to reflect that a certain subset of nodal origins and destinations exhibit 
much higher activity levels than others; for simplicity, such modifications were not attempted in 
this study. 

To reflect typical work trips, [29] chose O/D pairs such that origins were strictly residential 
parcels, and non-residential parcels were destinations in the morning, and the order was reversed in 
the evening. However, the authors speculated that allowing for non-residential destinations in the 
evening to reflect more complex after-work tours could increase model explanatory power [29]. 
Additionally, O/D pairs were limited by a network distance threshold of 5 miles, per the National 
Household Travel Survey [13]. O/D multipliers specified relative magnitude of trip generation, 
since parcels are heterogeneous in their trip generation capacity; these included density of dwelling 
units within residential parcels, and square footage density for all other parcels. 

These modifications constitute potentially salient areas for further investigation in our model 
of pedestrian traffic. O/D pairs can be tailored to favor walking trips from residential parcels to 
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commercial destinations, as well as modeled in a distribution based on trip length instead of us-
ing a single figure. Stress centrality is first used to evaluate preliminary explanatory power, and 
feasibility of applying centrality metrics to this model. 

2.1.4 Pedestrian Activity Estimation 

Multivariate negative binomial regression over the explanatory variables was performed in R for 
the walking mode. Different time-thresholds of accessibility were compared for explanatory power 
of pedestrian activity, of which the strongest threshold was chosen for a final parsimonious model 
to estimate pedestrian traffic throughout the sampled intersections. Iterative stepwise regression 
was performed using the economic sector accessibility variables, in an attempt to account for the 
possible differential walking trip generation levels of different job sectors. The parsimonious model 
is then applied to the entire sample of intersections within Minneapolis with count data, and the 
estimated pedestrian levels are compared to actual counts for comparison. The model formulation 
used is as follows: 

ln(Z) = β0 + β1 ∗ x1 + β2 ∗ x2 + . . . + βm ∗ xm (9) 

Z is the pedestrian count, x1, x2, . . . , xm are known predictive variables, and β0, β1, β2, . . . , βm 

are coefficients to be estimated. Use of the negative binomial model for non-motorized traffic count 
data is well-supported in the literature [37, 16, 38]. 

A k-fold cross-validation process was performed to assess the robustness of the model and 
its sensitivity to input sampling. Specific spatial areas of underestimation and overestimation are 
discussed. 

2.2 Results 
Full tabulation of all single-variable regression models, to determine which time thresholds and 
peak-hour periods to use for greatest explanatory power in modeling pedestrian traffic levels, are 
omitted for brevity. It was found that the 15-minute threshold of total accessibility, combined 
with the PM-peak period pedestrian counts and other variables, yielded the best explanatory power 
for walking accessibility. A parsimonious model for walking activity, in terms of the strongest 
explanatory variables, is reported in Table 3. Net transit accessibility benefit was included as an 
explanatory variable in the pedestrian activity estimation model, to account for the effect of transit 
in urban cores of increasing pedestrian activity by attracting additional users beyond pure foot 
traffic. Table 1 lists summary statistics for the pedestrian count datasets used in the following 
analysis—pedestrian turning movement counts between 2000 and 2013 for Minneapolis. 

A total of 788 intersections were included in the study, distributed across the entire city, and 
correspond to locations where pedestrian count data were available. This population was split into 
two subpopulations of intersections—those at which AADT data were available, and those at which 
AADT data were not available. This yielded two separate, parallel sampled populations and mod-
els, and allowed for comparison between the two models to determine what, if any, explanatory 
power AADT information offered for pedestrian activity. Each subpopulation was modeled across 
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Table 1: Pedestrian Activity Dataset Summary Statistics 

Description Value 

Intersections with evening ped counts 788 
Intersections with AADT counts 470 
Intersections without AADT counts 318 
80% training sample size for AADT models 376 
80% training sample size for non-AADT models 256 
20% testing sample size for AADT models 94 
20% testing sample size for non-AADT models 64 
Average & standard deviation 6-hour peds per day, AADT 812.99; 1825.90 
Average & standard deviation 6-hour peds per day, no 515.23; 1160.458 
AADT 
Maximum 6-hour peds, AADT 14, 793 
Maximum 6-hour peds, no AADT 11, 470 
Average & standard deviation morning peds per day, 209.43; 466.99 
AADT 
Average & standard deviation morning peds per day , no 123.29; 239.94 
AADT 
Maximum morning peds, AADT 3, 968 
Maximum morning peds, no AADT 1, 856 
Average & standard deviation midday peds per day, AADT 291.20; 751.86 
Average & standard deviation midday peds per day, no 182.08; 523.59 
AADT 
Maximum midday peds, AADT 6, 057 
Maximum midday peds, no AADT 6, 266 
Average & standard deviation evening peds per day , 306.10; 636.26 
AADT 
Average & standard deviation evening peds per day, no 208.32; 435.74 
AADT 
Maximum evening peds, AADT 4, 951 
Maximum evening peds, no AADT 3, 577 
Note: Summary statistics for datasets used in pedestrian activity analysis: pedestrian 
turning movements between 2000 and 2013 for the City of Minneapolis. 
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the entire sample for the parsimonious negative binomial models listed in Table 3, and then in-
dependently sampled for k-fold cross-validation at an 80% training level. Table 1 also gives the 
specific sample sizes for the cross-validation procedure, as well as basic statistics of the pedestrian 
count dataset, broken down by time of day and by model. 

First, the pedestrian counts were modeled in terms of only walking accessibility, for different 
thresholds and times of day. From this, the strongest explanatory power was determined for PM 
peak period counts, at a 15-minute accessibility threshold. Pedestrian counts were then modeled 
in terms of transit & walking accessibility (bimodal accessibility), for different times of day. A 
30-minute transit threshold was used, in accordance with the reported data available in the Access 
Across America: Transit 2014 report [32]. Net transit accessibility, a measure which looks at the 
contribution to accessibility from transit service, was also investigated as a potential explanatory 
variable for walking activity. A threshold of 30-minutes was again used. Betweenness stress cen-
trality was included to relate walking activity to the underlying network structure. Accessibility 
and betweenness centrality are mapped in Figure 2 and Figure 3, respectively. 

Table 2 displays the most significant factors obtained in the stepwise negative binomial regres-
sion process, to determine which LEHD sector job categories are more strongly correlated with 
walking behavior in their immediate walk-sheds. The categories of jobs found to positively cor-
relate with walking activity were Finance, Education, and Arts & Entertainment; the categories of 
jobs found to negatively correlate with walking activity were Transportation, Real Estate, Admin-
istrative, and Hospitality & Food. 

Table 2: LEHD job sector stepwise negative binomial regression results: remaining signifi-
cant factors at the 5-minute travel time threshold. 

Explanatory variable Coefficient estimate 

Transportation jobs 5min −0.0141∗∗(0.0043) 
Finance jobs 5min 0.0081∗∗∗(0.0023) 
Real Estate jobs 5min −0.0037∗(0.0016) 
Administrative jobs 5min −0.0105∗∗∗(0.0013) 
Education jobs 5min 0.0107∗∗∗(0.0010) 
Arts & Entertainment jobs 5min 0.0146∗∗(0.0047) 
Hospitality & Food jobs 5min −0.0090∗∗∗(0.0010) 
Constant 5.4026∗∗∗(0.0556) 

Observations 782 
Log Likelihood -4,893.324 
θ 0.579∗∗∗ (0.026) 
Akaike Inf. Crit. 9,802.65 

Note: ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

Regression results for the two negative binomial models for walking activity, with and without 
AADT included, are in Table 3. For the model which included AADT data, the significant ex-
planatory factors were: accessibility by walking, net transit benefit to accessibility, betweenness 
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centrality, AADT, and accessibility to finance, education, and hospitality jobs. Of these, the ag-
gregate accessibility factors were positively correlated with walking activity, as were AADT and 
accessibility to finance and education jobs; betweenness and accessibility to hospitality jobs were 
negative correlates, though betweenness was less strongly correlated at the p < 0.1 level. For the 
model of intersections at which AADT data were not available, fewer significant factors emerged: 
accessibility by walking, and accessibility to administrative, eduction, and hospitality jobs. Of 
these, walking accessibility and accessibility to education jobs were strongly positively correlated 
with pedestrian activity; accessibility to administrative and hospitality jobs were each negatively 
correlated with pedestrian activity. In this model, betweenness centrality was not found to be a 
significant predictor, but was weakly positively correlated with walking. 

A series of maps shows additional views of the data used in the modeling process; Figure 2 
shows accessibility to jobs within 30 minutes by walking in Minneapolis, and Figure 3 shows the 
normalized betweenness centrality of all intersections in Minneapolis calculated with a 1 km ra-
dius. Accessibility by walking, given the walking mode’s uniform nature, shows where economic 
activity is most concentrated in the region. Centrality gives a sense of the most important nodes 
in the street network of Minneapolis — that is, the nodes that would affect the highest number 
of shortest paths between origins and destinations, were they to be rendered impassible. Walking 
accessibility showed a positive correlation with pedestrian activity in both models, as shown in 
Table 3. Figure 4 shows the raw levels of daily pedestrian activity, aggregated from manual pedes-
trian counts between 2000 and 2013, while Figure 5 shows the estimated levels of evening peak 
pedestrian activity in Minneapolis at intersections which had AADT data, calculated using the co-
efficients outlined in Table 3 for the AADT model. Figure 6 shows estimated pedestrian activity 
at intersections without AADT data, calculated using the coefficients outlined in Table 3 for the 
no-AADT model. 

To examine the accuracy of the estimated model, the differences between actual and estimated 
pedestrian activity, for the AADT and no-AADT models, are mapped in Figure 7 and Figure 8, 
respectively. Additionally, example spatial distributions of jobs in categories of Finance and Edu-
cation are shown in Figure 9 and Figure 10, respectively. 
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Table 3: Parsimonious Negative Binomial Pedestrian Model Regression Results: With & 
Without AADT 

Explanatory variable: Dependent variable: 
Average PM pedestrians 

With AADT Without AADT 

Walking accessibility (15-minute) 

Net transit accessibility (30-minute) 

7.027e − 06∗∗ 

(2.536e − 06) 
1.140e − 05∗∗∗ 

3.312e − 05∗∗∗ 

(4.057e − 06) 
2.418e − 06 

Betweenness 
(1.388e − 06) 
−1.025e − 05∗ 

(1.642e − 06) 
9.414e − 06. 

AADT 
(4.172e − 06) 
2.746e − 05∗∗ 

(5.085e − 06) 

Transportation jobs 5min 

Finance jobs 5min 

Real estate jobs 5min 

(9.930e − 06) 
−8.833e − 03. 

(5.233e − 03) 
6.656e − 03∗∗ 

(2.507e − 03) 
−9.182e − 04 

−1.117e − 02. 

(6.074e − 03) 
9.389e − 04 
(3.568e − 03) 
−1.554e − 03 

Administrative jobs 5min 

Education jobs 5min 

Arts entertainment jobs 5min 

Hospitality food jobs 5min 

(2.488e − 03) 
−4.962e − 04 
(1.702e − 03) 
9.140e − 03∗∗∗ 

(1.114e − 03) 
1.096e − 02∗ 

(5.575e − 03) 
−7.644e − 03∗∗∗ 

(1.917e − 03) 
−1.088e − 02∗∗∗ 

(1.720e − 03) 
6.664e − 03∗∗∗ 

(1.715e − 03) 
1.072e − 02 
(7.009e − 03) 
−5.282e − 03∗∗ 

Constant 
(1.162e − 03) 
4.054∗∗∗ 

(1.665e − 03) 
4.469∗∗∗ 

(1.564e − 01) (1.521e − 01) 

Observations 452 303 
Log Likelihood 
θ 
Akaike Inf. Crit. 
F Statistic 

-2, 857.964 
0.719∗∗∗ (0.044) 

5,739.927 
23.970∗∗∗ (df = 8; 477) 

-1, 781.407 
0.704∗∗∗ (0.054) 

3,584.814 
42.139∗∗∗ (df = 7; 1008) 

Note: ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01; (standard error) 
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Figure 2: Accessibility to jobs within 30 minutes by walking in Minneapolis. 
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Figure 3: Normalized betweenness centrality of all intersections in Minneapolis; radius of 
1km. 
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Figure 4: Raw levels of evening peak (4-6pm) pedestrian activity in Minneapolis, 2000-2013. 
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Figure 5: Estimated levels of evening peak pedestrian activity in Minneapolis, at intersections 
included in the AADT model. 
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Figure 6: Estimated levels of evening peak pedestrian activity in Minneapolis, at intersections 
included in the no-AADT model. 
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Figure 7: Estimated minus actual pedestrian activity, PM peak period, at intersections in-
cluded in the AADT model. Reds are areas of overestimation; blues are areas of underesti-
mation. 
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Figure 8: Estimated minus actual pedestrian activity, PM peak period, at intersections in-
cluded in the no-AADT model. Reds are areas of overestimation; blues are areas of under-
estimation. 
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Figure 9: Spatial distribution of finance jobs in Minneapolis, based on LEHD data. 
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Figure 10: Spatial distribution of education jobs in Minneapolis, based on LEHD data. 
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2.2.1 Data Validation 

A repeated k-fold cross validation process was used to test the robustness of the model formulation 
and its ability to predict pedestrian traffic at intersections not included in the modeling. The full 
dataset used previously was split in an 80% training, 20% testing regime, as referenced in the dataset 
statistics in Table 1. The dataset was divided into 5 folds 10 separate times, and the mean standard 
error and standard deviation metrics were computed for the results compared to the testing subset, 
to assess the predictive accuracy for both models using AADT data and without using AADT data. 
These metrics, along with the Grand Mean and Pooled Variance across all validation trials, are 
listed in Table 4. 

Table 4: K-fold cross-validation results: mean standard errors and standard deviations across 
10 trials of 80% training, 20% testing sample split. 

Trial number MSE (AADT) MSE (no AADT) SD (AADT) SD (no AADT) 

1 549.93 961.48 117.63 728.89 
2 514.12 803.85 248.29 389.76 
3 708.68 766.85 354.83 245.79 
4 525.83 781.60 213.11 428.40 
5 549.62 830.44 123.46 349.28 
6 543.69 860.92 130.39 476.30 
7 552.63 768.29 125.24 287.04 
8 557.71 826.65 94.92 113.69 
9 563.99 679.43 102.90 421.67 
10 549.71 906.26 120.21 808.95 

Grand Mean (AADT) 561.59 
Grand Mean (no AADT) 818.58 
Pooled Standard Deviation (AADT) 181.32 
Pooled Standard Deviation (no AADT) 469.42 

As listed in Table 1, the average and standard deviation for evening pedestrian counts for AADT 
intersections were 306.10 and 636.26, respectively; these figures for the non-AADT intersection 
population were 208.32 and 435.74, respectively. The Grand Mean Standard Errors for the k-fold 
cross-validation process, after 10 folds, as percentages of the average PM pedestrian counts, were 
183.47% for the AADT population, and 392.94% for the non-AADT population. In both popula-
tion cases, the MSE of prediction in the k-fold cross-validation process was larger than the actual 
average evening pedestrian activity, with this gap significantly larger for the non-AADT intersec-
tion population. The Pooled Standard Deviations for the cross-validation process, as percentages 
of the actual population standard deviations, were 28.50% for the AADT population, and 107.73%. 
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2.3 Discussion & Conclusion 

For the single-variable models of pedestrian activity in terms of census block centroid accessibility 
to jobs via walking, the evening peak period provided the best explanatory power. For all three time 
periods, as well as the 6-hour total count, log-likelihood values peaked near 15-minute thresholds, 
and dropped off in either direction. The correlation between walking accessibility and walking 
activity is positive. Walking is commonly thought of as a 15-minute-mode, in that the majority of 
people walking in urban areas will be on trips of duration 15 minutes or less. Further, in dense urban 
areas, distance matters - a high-threshold measurement of walking accessibility will tend to blur the 
results and differences between origin points, thus potentially failing to reflect local variabilities 
in walking patterns. Additionally, aggregate accessibility data at the 5-minute threshold level was 
found to be a consistently less significant predictor of pedestrian activity than higher thresholds. 
And while other, non-work walking trips do occur throughout the day, the choice of an evening 
peak commute time for analysis and modeling links the work-based accessibility metrics and the 
walking count data. 

It was found that pedestrian counts in the evenings exhibited the strongest correlations with 
the accessibility variables tested, and midday counts exhibited the weakest correlation strengths. 
It is possible that midday pedestrian traffic is more dispersed in both nature of trip-making and 
timing, due to variable work schedules. Both the morning and evening periods exhibited stronger 
correlations with job-based accessibility metrics, in accordance with traditional work commute 
timings. The subtle difference between the two periods could be explained in part through analysis 
of individual trip diaries - specifically the distributions of departure and arrival times for morning 
and evening trips. 

As was hypothesized, the aggregate walking and net transit accessibility measures exhibited 
positive correlations with pedestrian activity levels for both AADT and non-AADT models, and 
walking accessibility was a significant correlate in both models. However, betweenness at a radius 
of 1 km was found to be a negative correlate and weakly significant in the AADT model, and pos-
itive but not significant in the non-AADT model. Its influence on pedestrian activity in the model 
was overshadowed by that of other factors, and perhaps was too positively correlated with AADT in 
the first model for both factors to exhibit positive correlation with walking. However, the accessi-
bility metrics give a reasonable framework through which to estimate modal traffic levels at every 
intersection in Minneapolis and, by extension of the broader framework, in other cities as well. 
Betweenness centrality did not exhibit as strong a positive correlation as was predicted. This may 
have resulted from the specific methodology used - that is, a centrality calculation that takes into 
account heterogeneous trip generation within an urban area due to varying land use patterns may 
lead to higher predictive power of centrality measures toward actual pedestrian behavior patterns. 
Pedestrian behavior in urban areas does not exhibit uniform all-to-all trip generation distribution; 
rather, there are major sources and attractors, which would shift the distribution of route choices, 
and thus link and intersection centrality, to favor routes between those origin-destination pairs. 
Applying techniques analogous to those in [29] to the walking model may yield more accurate 
pedestrian behavior estimation based on the centrality metric. 

Accessibility to Education and Finance jobs was found to be significantly predictive of in-
creased pedestrian activity in the first model, while accessibility to Hospitality & food jobs was 

23 



found to be significantly predictive of decreased pedestrian activity, relative to other categories. 
Only accessibility to Education jobs was found to be a significant positive predictor in the second 
model, while accessibility to Administrative and Hospitality & food jobs were found to be signifi-
cant negative predictors. Spatial maps of the distributions of Finance and Education jobs are shown 
in Figure 9 and Figure 10, respectively. Finance jobs are heavily concentrated in the downtown 
core area, and education jobs are concentrated on walkable campuses. Further, it is plausible that 
certain categories of jobs attract greater or lesser levels of walking among their workers, depen-
dent on such factors as dress requirements, vehicle needs (e.g. construction and contract workers), 
and typical density of jobs within each category. Additional cross-comparison analysis among eco-
nomic job categories is needed to investigate these effects, but initial analysis indicates these spatial 
distributions correlate to the regression coefficients in Table 2. 

A significant and pervasive challenge with analysis dependent on pedestrian, bicycle, and ve-
hicular count data is the issue of data quality and format. Methodologies and data standards can vary 
from city to city and jurisdiction to jurisdiction; this study used a combination of national (Census, 
LEHD) datasets and local (Minneapolis traffic) data. Some cities, such as Boston, do not have 
robust pedestrian and bicycle counting programs throughout the city; others, such as Philadelphia, 
may have varying data release and non-disclosure agreements between MPOs, cities, and police 
departments; still other cities may have inconsistent data tracking and release practices, such as 
Washington, D.C. Such hurdles can make the collection and processing of pedestrian and bicy-
cle spatial use data on a national scale exceedingly difficult. Better standards of practice in data 
collection, management, and distribution are needed. 

However, with pedestrian activity estimation based on sampling existing counts, accessibility 
analysis, and betweenness centrality of the underlying network, it becomes possible to predict the 
landscape of pedestrian activity within the urban area. Such techniques may prove important in 
informing urban planning processes and decisions, pedestrian safety programs, and highlighting 
areas of the city that experience higher pedestrian activity as salient areas for fine-grained attention 
to built environment details. An important extension of the identification of intersections with 
higher potential pedestrian traffic is the visualization of such areas - e.g. downtown. It is reasonable 
to expect certain levels of pedestrian traffic, even where counts may not exist. 

Data validation was performed using a k-fold cross-validation process, with 10 trials of 5 folds 
each. The AADT model showed both a lower grand MSE and lower pooled pooled variance across 
all 10 trials than the non-AADT model, indicating that the model which included AADT as a vari-
able was more reliable and less inaccurate in its predictions of pedestrian activity. The loss of 
AADT information produces more variability in the predictions, indicating that AADT offers some 
amount of explanatory power for pedestrian activity—indeed this is the case, as shown in Table 3. 
Generally within a downtown area this makes sense—traffic across modes would be positively 
correlated. 

There are a few caveats to mention regarding the ability of simply accessibility and centrality to 
accurately predict pedestrian behavior. Figure 7 and Figure 8 highlight sections of the urban area 
where the model differed significantly from the actual pedestrian counts in each model. Within the 
AADT model, pedestrian activity at 306 intersections was overpredicted, and activity at 146 inter-
sections was underpredicted. Within the non-AADT model, 199 intersections were overpredicted, 

24 



and 104 intersections were underpredicted. The distributions of prediction differences for AADT 
and non-AADT models had means µ = −10.36 and µ = 65.25, and standard deviations σ = 548.65 
and σ = 706.18, respectively. 94.25% of the sampled intersections had estimated − actual differ-
ences within 1 standard deviation from the mean for the AADT model; 94.06% of sampled inter-
sections had prediction differences within 1 standard deviation from the mean for the non-AADT 
model. The cases of underestimation and overestimation are geographically interesting to note; the 
two major areas of underestimation are the inner downtown core, and the East Bank Campus of 
the University of Minnesota, just east of the Mississippi River, while the major area of overesti-
mation is the north-central business district downtown. The downtown core and the campus of the 
University are characterized by significant pedestrian activity and are considered walkable areas, 
while streets become less walkable closer to the I-94 and I-394 corridors in the western portion of 
downtown. While the road network structure and proximity to downtown would predict significant 
pedestrian activity, physical barriers exist within the built environment. These cases highlight the 
limitations of centrality and accessibility in capturing elements of the built environment relevant to 
pedestrian activity where local and hyper-local factors may play significant roles. 
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3 Pedestrian Safety Analysis 

3.1 Introduction 

Assessment of collision risk between pedestrians and automobiles offers a powerful and informa-
tive tool in urban planning regimes, and can be leveraged to inform proper placement of improve-
ments and treatment projects to improve pedestrian safety. Existing, available datasets of crashes, 
pedestrian counts, and automobile traffic flows can be combined to identify intersections, corri-
dors, or other urban areas that exhibit elevated collision risks to pedestrians. As the availability 
of count data gradually increases due to automation techniques in counting and crash detection, 
the process of leveraging these data to determine areas of cities in need of intermodal conflict 
mitigation will become easier and more problem areas can be identified [14, 5]. Many cities and 
urban areas do not have access to good-quality count data for traffic other than vehicles, and must 
instead use estimation techniques to model active transport flow levels, a technique commonly 
used in planning applications in Europe and Asia, but not yet in the United States [33]. Example 
methodologies for modeling pedestrian and bicycle non-motorized traffic levels are readily avail-
able [25, 9, 34, 40, 37, 16]. However, the City of Minneapolis has a sufficiently rich dataset of 
pedestrian counts available to allow for meaningful pedestrian safety analysis without implement-
ing complex traffic estimation models. 

Safety levels associated with transportation in cities continue to be a problem, with 1.24 mil-
lion road users being killed in on-road accidents in 2010 globally, and another 20-50 million injured 
[45]. Further, a full 22% of traffic deaths worldwide are pedestrians, which is quite a high figure 
considering the transportation mode of walking harbors little danger unto itself; additionally, only 
79 countries worldwide have implemented policies to physically separate vulnerable road users 
(pedestrians, cyclists, and motorcyclists) from autos [45]. Non-motorized transportation modes 
tend to be some degree of unsafe in most average developed urban areas, except where specific 
programs and treatments have been employed to address the safety concerns, such as in Copen-
hagen, Denmark [19]. 

This investigation aims to evaluate whether the Safety In Numbers phenomenon is observ-
able in originally collected pedestrian and crash data in the midwestern U.S. city of Minneapolis, 
Minnesota. Safety In Numbers (SIN) refers to the phenomenon that pedestrian safety is positively 
correlated with increased pedestrian traffic in a given area, e.g. that the per-pedestrian risk of injuri-
ous interaction with motorized vehicles decreases as a function of the increasing flow of pedestrian 
traffic. SIN is well-supported by pedestrian crash data across a number of studies in various ur-
ban environments and reviews [18, 23, 3]. The concept has seen relatively widespread adoption 
in urban planning schools of thought, though its temporal causality is not clear-cut [3], and it is 
commonly discussed only in the context of pedestrian risk depending on pedestrian flow levels. 
The United States Department of Transportation (USDOT) Strategic Plan for Fiscal Years 2012-
2016 aims to reduce non-vehicle-occupant fatalities to 0.15 per 100 million vehicle-miles-traveled 
(VMT) by 2016. However, such a goal does not account for risk dependence on pedestrian flow 
levels, and thus the federal guidelines ignore the SIN effect. 

By necessity, data informing placement of improvements and projects for walking and bicy-
cling safety, such as pedestrian bump-outs [44] and traffic-calming measures [6], must be suf-
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ficiently granular; travel behavior studies are typically performed at the Transportation Analysis 
Zone (TAZ) level, which is insufficiently fine-grained to allow for analysis of the shorter-distance 
travel modes of bicycling and walking. [38] provides a relevant framework for building a compre-
hensive pedestrian risk assessment model, with a granular focus on a specific university campus 
and a model which included factors of pedestrian flow, vehicle flow, and an environmental factor 
(crosswalk length). [43] provide precedent for area-level modeling of pedestrian risk incorporating 
zoning and land use characteristics. These levels of detail correlate well with the realities of im-
plementation of pedestrian safety investments, which occur not on the city-wide level, but within 
specific intersections and road segments. 

Pedestrian traffic counts, Average Annual Daily Traffic (AADT), and crash data from the city 
of Minneapolis are used to build a model of crash frequencies at the intersection level as a function 
of modal traffic inputs. This model determines whether the SIN effect is observable within the 
available datasets for both pedestrians and cars, as well as determine specific spatial locations 
within Minneapolis where pedestrians experience elevated levels of risk of automobile crashes, 
relative to intersections elsewhere in the city. The ability to identify specific unsafe locations based 
upon aggregated count and crash data offers an additional tool for city planners to implement in 
multimodal and pedestrian-specific planning. 

3.2 Methodology 

The existence of the SIN effect was examined within collected data for the city of Minneapolis, at 
the intersection level. This framework was chosen over other possible areas of analysis, such as 
mid-block or a link-based framework, due to intersections being the predominant location where 
pedestrians interact with cars. Turning movement counts (TMCs) for the years 2000-2013 provided 
pedestrian count data at the intersection level; AADT measurements from 2000-2013 provided 
vehicle traffic flow levels on street links; traffic crash records from 2000-2013 yielded crash data 
with location-specific metadata to allow geocoding; an ESRI shapefile of intersection geolocations 
in Minneapolis provided by the city allowed for spatial analysis and geocoding. 

A few steps of data processing occurred prior to building models of crash counts, and crashes 
per pedestrian. The TMC data identified independent pedestrians passing through an intersection, 
defined by their directional heading, across 12-hour counts (6AM to 6PM); to account for this, 
pedestrian counts for each direction (e.g. northbound, eastbound) were summed together to yield a 
total count. The time windows extracted from the count data were the three peak periods of the day: 
morning peak (7-9AM), midday (11AM-1PM), and evening peak (4-6PM); these were summed 
together to produce a 6-hour count, representing pedestrian traffic when a higher number of cars are 
on the road. The counts took place sporadically across the 14-year window, and most intersections 
were only counted once or twice due to the rotating schedule on which counts occurred. An “annual 
average daily 6-hour count” was obtained by averaging the intersection-counts over the number of 
years for which that intersection was counted. AADT measurements were associated with street 
links, not to intersections. To associate AADT numbers with intersections, the AADT for each 
unique street at an intersection (typically two) was summed together. Crashes were tabulated to 
include both non-fatal and fatal crashes. Finally, manual geocoding of the three datasets (TMC, 
AADT, and crash counts) to the intersection spatial layer took place, to allow spatial analysis. 
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At a given intersection, “pedestrian risk” is defined as the number of crashes, between cars and 
pedestrians, that occurred across the 14-year period, divided by the 6-hour count of pedestrians; this 
gives a metric to assess the risk of being hit by a car that an individual pedestrian may experience 
at such an intersection. “Car risk” is defined as the number of crashes that occurred across the 
analysis period, divided by AADT, which gives a metric to assess the risk of being involved in a 
car-pedestrian collision which a driver may experience. How these risks vary from intersections 
with low to high traffic flows determines whether pedestrians or cars experience SIN. 

The sample of intersections to use within the analysis was created by identifying intersections 
with both nonzero pedestrian counts and nonzero AADT data; there were 448 such intersections, 
and a summary of the sample data can be found in Table 5 in Section 3.3. A map of the intersections 
included in the analysis is shown in Figure 11. Of note, the 6-hour pedestrian counts comprised 
a full 84.29% of the 12-hour count totals, averaged across the the 448 included intersections. Of 
the 448 in the sample, 105 intersections had 6-hour counts which constituted 100% of the 12-hour 
count totals. 

Table 5: Pedestrian Safety Dataset Summary Statistics 

Description Value 

Intersections with pedestrian counts & AADT 448 
Minimum 6-hour pedestrians 1 
Maximum 6-hour pedestrians 14,793 
Average 6-hour pedestrians (standard deviation) 832.96 (1,843.72) 
6-hour peds average percent of 12-hour count 82.49% 
Minimum AADT 252 
Maximum AADT 40,623 
Average AADT (standard deviation) 8893.33 (5613.00) 
Total crashes at sampled intersections 1192 (1180 injuries, 12 deaths) 
Minimum crashes at sampled intersections 0 
Maximum crashes at sampled intersections 27 
Average crashes at sampled intersections (standard devia- 2.66 (3.86) 
tion) 

Note: Summary statistics for datasets used in pedestrian safety analysis: pedestrian turning 
movements between 2000-2013, AADT between 2000-2013, and aggregate crash reports be-
tween 2000-2013, for the City of Minneapolis. 

The model form used is as follows: 

R = C ∗ Qb
p 
p ∗ Qb

c 
c (10) 

where R is the risk factor (either crashes per pedestrian, or crashes per car), Qp is 6-hour pedes-
trian traffic flow, Qc is auto traffic flow (AADT), and C is a constant. This model form allows for 
log-linear regression analysis, since 

log(R) = bp ∗ log(Qp) + bc ∗ log(Qc) + log(C) (11) 
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Such a log-linear model form is commonly used within crash modeling frameworks involving 
vehicular flows; Abdel-Aty et al. [1] give a log-linear framework for modeling crash frequency 
using demographic and environmental variables, and Lee et al. [24] give a model of crash exposure 
in terms of vehicular flows and environmental variables. 

Single-variable models including only pedestrian traffic or vehicle traffic, as well as a model 
with both traffic modes, are included in the analysis. Table 6 outlines the hypotheses for the signs 
of the exponents in both single-variable and multivariable models of pedestrian and car risk factors. 

Table 6: Hypotheses for signs of variable exponents in per-pedestrian and per-car crash risk 
models. 

Model 6-hour peds (bp) AADT (bc) 
Single-variable, pedestrian risk - n/a 
Single-variable, car risk n/a -
Multivariable, pedestrian risk - + 
Multivariable, car risk + -

In general, it is hypothesized that increased traffic of a mode has a negative effect on rate 
of crashes per vehicle or user of that mode (e.g. increased pedestrians correlate with lower per-
pedestrian crash risk); and, that increased traffic of a mode has a positive effect on rate of crashes 
per vehicle or user of the other mode (e.g. increased car traffic correlates with higher per-pedestrian 
crash risk). Thus, the SIN effect is predicted for both pedestrian and auto modes, and it is predicted 
that safety for a mode decreases with an increase in traffic of other modes. 
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Figure 11: Locations of intersections in Minneapolis with both pedestrian counts and AADT 
data. 
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3.3 Data analysis 
Table 5 lists summary statistics for the datasets used in the safety analysis: automobile-pedestrian 
crashes between 2000 and 2013; pedestrian turning movement counts (TMC) between 2000 and 
2013; and automobile AADT figures between 2000 and 2013. 

As mentioned in Section 3.2, a total of 448 intersections were identified as having both nonzero 
pedestrian counts and AADT data. The average 6-hour pedestrian count across these intersections 
was 832.96, and the average AADT was 8893.33. The number of crashes counted at individual 
intersections, across the 14-year window, ranged from 0 to 27, with an average of 2.66. A series of 
figures shows visual representations of the datasets included in the analysis. Figs. 12 to 14 show 
histograms of the pedestrian counts, AADT data, and crash counts, respectively. Figs. 15 to 17 
show maps of the pedestrian counts, AADT data, and crash counts, respectively. 

Figure 12: Histogram of pedestrian count data. 
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As shown in the histograms in Figs. 12 to 14, intersections trend towards having low pedestrian 
counts, middling AADT, and few crashes. Pedestrian counts and crash counts show decreasing ex-
ponential distributions, while AADT values show a more unimodular distribution. Figure 15 gives 
a spatial representation of pedestrian counts, showing significant activity within the downtown 
core, as well as areas east of the Mississippi River, corresponding to the University of Minnesota 
campus. Figure 16 shows the spatial AADT distribution across the city; AADT is more uniformly 
distributed across a broader area than the pedestrian activity. Finally, Figure 17 shows the spatial 
distribution of crash counts, with the most occurring along busy corridors to the south and imme-
diate northwest of the downtown core. 
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Figure 13: Histogram of AADT data. 
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Figure 14: Histogram of crash count data.
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Figure 15: Average annual 6-hour pedestrian counts. Both dot size and color scale correlate 
with pedestrian count levels. 
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Figure 16: Average annual daily car traffic (AADT). Both dot size and color scale correlate 
with AADT levels. 
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Figure 17: Crash counts at sample intersections across the analysis time window of 2000-352013. Both dot size and color scale correlate with crash count levels.



Figure 18: Scatter plot of 14-year crashes (2000-2013) per pedestrian (6-hour average daily) 
vs. 6-hour pedestrian counts, log-log scale. 
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Figure 19: Scatter plot of 14-year crashes per car (AADT) vs. AADT, log-log scale. 

500 1000 2000 5000 10000

5e
−

05
2e

−
04

1e
−

03
5e

−
03

Crashes per car vs. AADT

AADT (2000−2013)

C
ra

sh
es

 (
20

00
−

20
13

) 
pe

r 
ca

r

36 



Figure 18 and Figure 19 show log-log scatter plots of the relationships between crashes per 
pedestrian and pedestrian traffic, and crashes per car and car traffic, respectively. These plots 
suggest a negative relationship between crashes per pedestrian and pedestrian traffic, and between 
crashes per car and car traffic, and give a view of the dependent variables for the single-variable and 
multivariable regression analysis. The parallel linear patterns in these plots correspond to isoclines 
of intersections with the same crash counts. 

Figure 20 shows a map of crash totals at intersections, divided by the number of pedestrians 
counted across the three two-hour peak periods in a day. This view of the data gives spatial rep-
resentation to intersections, or clusters of intersections, characterized by different levels of risk 
associated with crossing the intersection. Focus area A corresponds to the north-south corridor of 
Penn Avenue in Minneapolis; focus area B is the University of Minnesota campus; focus area C is 
the downtown Central Business District (CBD); focus area D constitutes the area surrounding the 
east-west corridor of Lake Street and the north-south corridor of Lyndale Avenue. All four of these 
focus areas show a change in pedestrian risk, from considering only raw crash counts (Figure 17) 
to accounting for pedestrian counts (Figure 20). Areas A and D show elevated pedestrian risk when 
accounting for pedestrian counts, and areas B and C show lower levels of per-pedestrian crash risk. 
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Figure 20: Total crashes (2000-2013) per pedestrian (6-hour daily average) at intersections 
in Minneapolis. Letter labels indicate focus areas for discussion. 
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3.4 Regression results 
Table 7 shows the log-linear regression results for the single-variable models, and Table 8 shows the 
log-linear regression results for the multivariate models. For the single-variable log-linear model 
for SIN for pedestrians, the coefficient of log(6-hour peds) was found to be −0.035 and strongly 
significant. This is also the exponent bp in (10), indicating a negative exponential relationship 
between pedestrian traffic levels and the per-pedestrian risk of a crash. For the single-variable log-
linear model for SIN for automobiles, the coefficient of log(AADT) was found to be −0.0003 and 
strongly significant. This is the exponent bc in (10), suggesting a negative exponential relationship 
between auto traffic levels and the per-automobile risk of hitting a pedestrian. However, the effect 
is two orders of magnitude less for automobiles than it is for pedestrians. Additionally, an R2 of 
0.213 was observed for the single-variable pedestrian risk model, while an R2 of only 0.098 was 
observed for the single-variable car risk model. 

Table 7: Single-variable log-linear pedestrian safety regression results 

log(crashes/ped) log(crashes/car) 
log(6-hour peds) −0.035∗∗∗ 

(0.003) 
log(AADT) −0.0003∗∗∗ 

(0.00004) 
Constant 0.223∗∗∗ 0.003∗∗∗ 

(0.019) (0.0004) 
Observations 448 448 
R2 0.213 0.098 
Adjusted R2 0.211 0.096 
Residual Std. Error (df = 446) 0.109 0.001 
F Statistic (df = 1; 446) 120.392∗∗∗ 48.536∗∗∗ 

Note: (standard error); ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

For the multivariable log-linear model describing per-pedestrian crash risk, the exponent bp 

was again found to be negative (−0.036) and strongly significant, indicating a negative relationship 
between increasing pedestrian traffic and per-pedestrian risk of a crash. The exponent bc was found 
to be positive and weakly significant, indicating that increased automobile traffic has a positive 
relationship with the per-pedestrian risk of a crash at intersections. 

Similar relationships were found in the multivariable log-linear model describing per-car crash 
risk. Exponent bp was positive and strongly significant, indicating a positive relationship between 
pedestrian traffic and per-car risk of hitting a pedestrian; exponent bc was negative and strongly sig-
nificant, indicating a negative relationship between auto traffic and per-car risk of hitting a pedes-
trian. Again, the model for per-pedestrian crash risk showed a higher R2 (0.219) than that of the 
per-car crash risk model (0.117). 

In both single-variable and multivariable models, the SIN effect appeared to be stronger for 
pedestrians than for cars, indicated by the coefficient for log(6-hour peds) in the crashes-per-
pedestrian models being larger in magnitude than the coefficient for log(AADT) in the crashes-
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Table 8: Multivariable log-linear pedestrian safety regression results 

log(crashes/ped) log(crashes/car) 
log(6-hour peds) −0.036∗∗∗ 0.0001∗∗∗ 

(0.003) (0.00002) 
log(AADT) 0.014∗ −0.0003∗∗∗ 

(0.007) (0.00004) 
Constant 0.102 0.003∗∗∗ 

(0.067) (0.0004) 
Observations 448 448 
R2 0.219 0.117 
Adjusted R2 0.215 0.113 
Residual Std. Error (df = 445) 0.109 0.001 
F Statistic (df = 2; 445) 62.284∗∗∗ 29.462∗∗∗ 

Note: (standard error); ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

per-car models. This is visible in Figure 18, in which the relationship for pedestrians appears to be 
more coherent than that shown in Figure 19 for cars. 

3.5 Discussion 

The SIN effect was observed in the analysis of the available pedestrian, auto, and crash data at 448 
sampled intersections in Minneapolis. At intersections characterized by higher levels of pedestrian 
traffic, lower per-pedestrian rates of crashes involving automobiles and pedestrians were observed; 
at intersections characterized by higher levels of auto traffic, lower per-car rates of crashes in-
volving automobiles and pedestrians were observed. The SIN effect for cars was found to be a 
few orders of magnitude weaker than the SIN effect for pedestrians; SIN pertaining to pedestrian 
safety is a well-documented phenomenon [18, 23, 3]. The precise reasons behind this effect are 
not definitively known; however, the aforementioned studies have hypothesized psychological ef-
fects on drivers, in that when driving in environments characterized by greater average levels of 
pedestrians, drivers may tend to act with more caution. And while these various relationships were 
statistically observed within the traffic data, it is important to note that the causal directionality of 
the SIN effect cannot be inferred directly. 

The per-pedestrian crash rate was found to increase with increasing automobile traffic, and the 
per-car crash rate was found to increase with increasing pedestrian traffic, as shown in Table 8. 
These effects, along with the SIN phenomenon observed for both pedestrians and cars, were con-
sistent with the hypotheses outlined in Table 6. Holding pedestrians constant and increasing car 
traffic increases the risk of a pedestrian being hit by a car by simple probability of interaction, and 
the same holds true for increasing pedestrian traffic for a given AADT value. However, the SIN 
effect was stronger and more coherent for pedestrians than for cars, indicated by their disparate 
R2 values. This suggests that there may be more factors relevant to the number of auto-pedestrian 
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crashes per vehicle than just the intersection’s AADT, such as intersection geometry, speed limit, 
number of lanes, or other environmental variables. 

An ongoing challenge with pedestrian safety analysis dependent on count and crash data is the 
issue of data quality and availability. Data practices vary from city to city and state to state, with 
implications to investigations intending to aggregate safety data for cross-jurisdiction comparison. 
Additionally, a large amount of city data collection pertaining to street utilization is still performed 
manually, and such processes are error-prone and inconsistent between jurisdictions. This study 
used an available, fairly robust dataset provided by the City of Minneapolis, covering pedestrian 
counts, AADT, and crash data for 14 years from 2000–2013. Some cities, such as Boston, do not 
have robust pedestrian and bicycle counting programs throughout the city; others, such as Philadel-
phia, may have varying data release and non-disclosure agreements between Metropolitan Planning 
Organizations (MPOs), cities, and police departments; still other cities may have inconsistent data 
tracking and release practices. The collection and processing of pedestrian and bicycle spatial 
safety data on an aggregate scale becomes exceedingly difficult. Better standards of practice in 
data collection, management, and distribution are needed. 

This analysis took place over a 14-year time period, during which there may have been changes 
to the on-street pedestrian network facilities which influenced both pedestrian and auto traffic, 
as well as crash frequency. For instance, construction on the Metro Transit Green Line light rail 
system, which runs through the University of Minnesota campus (area B in Figure 20), began in 
2010. Auto and pedestrian traffic patterns in the area were greatly altered, with part of the area 
being permanently closed to car traffic, and many pedestrian improvements being implemented 
with the light rail line. This study does not account for area-specific network changes, as the focus is 
city-wide aggregate pedestrian safety; more detailed investigation into network changes in specific 
areas, and resulting traffic and accident patterns, would be needed. 

Visualizing unsafe intersections, or groups of intersections, within an urban area is an important 
angle of analysis to undertake with the types of datasets used in this investigation. Problematic areas 
within the city environment become readily apparent; when multiple intersections with relatively 
high pedestrian injury risk burden lie in the same corridor, such as Lake Street in Minneapolis (see 
area D in Figure 20), a discussion of pedestrian safety and the surrounding built environment should 
occur. The entire Lake Street corridor stands out as an area with elevated pedestrian risk burdens, 
given the number of pedestrians walking there, compared to the relatively walk-friendly downtown 
district (area C) and the University of Minnesota campus (area B). Similarly, the Penn Avenue 
corridor in North Minneapolis (area A) shows a series of intersections with elevated pedestrian 
risk. 

Most of the corridors displaying elevated pedestrian risks in Figure 20 may be classified as 
urban arterials, with more than one lane of traffic in each direction. That such roadways would be 
unsafe for pedestrians may seem obvious, but a visualization tool can be more powerful in informing 
planners the scope and extent of dangerous streets within an urban area than simple crash counts 
alone. 
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3.6 Conclusion 

Through the pedestrian risk burden analysis framework outlined in this study, it is possible to ob-
serve the SIN effect at the individual intersection level for both pedestrians and cars, as well as 
identify intersections with disproportionately high rates of crashes for its level of pedestrian activ-
ity. Pedestrians were found to be at a lower risk of being hit by a car at intersections with higher 
pedestrian traffic, and individual cars were found to be at a lower risk of hitting pedestrians at 
intersections with more car traffic. The causality of the SIN effect is not understood, and more 
research should be conducted to understand its causes, but it is still a justification for improving the 
walkability and pedestrian safety of urban environments. Assessing the per-pedestrian crash rates 
at spatial locations, as opposed to crash counts alone, allows practitioners and planners to more 
readily identify target areas where improvements to pedestrian infrastructure may be warranted. 

All associated datasets and appropriate metadata used within the pedestrian study have been 
uploaded to the Data Repository for the University of Minnesota (DRUM). 
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4 Bicyclist Activity Estimation and Safety Analysis 

4.1 Introduction 

Active modes of travel, including walking and bicycling, are increasingly becoming important 
transportation modes in modern cities. Individual and societal wellness, environmental impacts, 
and resource availability are among multifarious reasons that have drawn the attention of trans-
portation and urban planners toward active modes of travel. Planning for biking and walking and 
creating societal programs to increase their levels have been cited as a targeted health need in urban 
planning going forward [27, 33, 4]. 

Resource limitations, particularly in high-population and developing countries, impose con-
straints on the maximum level of personal motorized travel allowed, and as a result, there is a 
greater need for viable alternatives. While active modes of travel have been shown to be positively 
correlated with curbing air pollution and promoting health, over half of the global annually reported 
1.25 million vehicle accidents involve a pedestrian, bicyclist or motorcyclist. The number of bicy-
clists compared to motorized vehicles would suggest nearly negligible annual traffic accidents, yet 
bicyclists make up 2% of all traffic related deaths [42]. Active modes of travel as a set of modes 
tends to be less safe than motor vehicles on a per-kilometer basis. This holds true in most aver-
age developed urban areas, except where specific programs and treatments have been employed to 
address safety concerns, such as in Copenhagen, Denmark [19]. 

Rates of walking and bicycling to work in the United States hover around 2.8% and 0.6%, 
respectively, with public transit use higher at 5% nationally [42]. Although proper placement of 
bicyclist treatments and improvements has implications to both safety [36] and accessibility and 
mode choice [17], proper information regarding estimated non-motorized traffic levels is needed 
to locate areas in need of improvement. In determining salient locations for non-motorized im-
provements, it is important to have accurate records of both existing and potential travel demand 
(e.g., current levels of biking in a neighborhood, as well as good models of increased demand due 
to potential treatments); however, good quality, high-granularity datasets for non-motorized travel 
can be difficult to obtain, especially standardized for national spatial inventories [29]. Hence, prac-
titioners and researchers must frequently rely on estimation models for non-motorized traffic, and 
various methods can suffer from issues of data quality, granularity, and the presence of location-
specific variables [26]. 

Many of the issues with the collection of standardized non-motorized transportation data have 
to do with the factors that influence pedestrian and bicyclist behavior. A model of active transport 
risk assessment is uninformative if the bicyclist and vehicular flows do not accurately represent 
corresponding levels in situ, and many cities do not have dense datasets of active transport flow 
levels, instead favoring counts of vehicle traffic. As such, active transport flow levels must be ex-
trapolated from sparse datasets using comprehensive methodologies. Population and employment 
data are well-documented by the U.S. Census Bureau to the Census Block level of resolution, and 
general socioeconomic characteristics are maintained as well and can have significant influence 
[36]. However, more specific socioeconomic characteristics are salient in non-motorized travel 
beyond just adjusted income levels, as well as weather variables [31] and latent, subjective vari-
ables, such as visibility and perceptions of lighting, which can be more difficult to obtain at high 
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spatial resolution [20] and can complicate inter-city comparisons. For these reasons, as well as the 
overall lack in non-motorized travel counts for many communities, methods of estimating pedes-
trian and bicyclist behavior that do not rely heavily on high-resolution count data are applied in this 
study. 

A reduced-form core facility demand model gets around the issue of data quality and granu-
larity by using easily retrievable datasets to predict bicyclist counts at the intersection level [15]. 
This model was developed using existing pedestrian and bicyclist counts, land-use variables, and 
transportation network variables extracted from the state of Minnesota. The facility demand model 
estimates peak-period traffic volumes at intersections where counts are unavailable. The outcome 
was an estimated comprehensive pedestrian and bicyclist count dataset for the city of Minneapolis, 
which can be used to examine trends related to bicyclist activity. 

This investigation aims to further understanding of the “safety in numbers” (SIN) phenomenon 
and its dependence on both bicyclist and vehicular flow levels. SIN refers to the phenomenon 
that bicyclists as road users become safer when there are more riders present in a given locale or 
area. To date, SIN is well-supported by bicyclist crash data across a number of studies in various 
urban environments and reviews [18, 23, 3]. The most frequently cited hypothesized cause of the 
SIN effect is that motorists adapt their driving behavior when traversing a roadway that frequently 
carries pedestrian and bicyclist traffic [41, 18]. The SIN concept has seen relatively widespread 
adoption in urban planning schools of thought, though its temporal causality is not clear-cut [3], and 
it is commonly discussed only in the context of bicyclist risk depending on bicyclist flow levels. 

A lesser-studied occurrence is the “safety in congestion” (SIC) effect. The hypothesis states that 
greater volumes of cars will reduce the per-car crash rate. The reasoning is that greater congestion 
reduces vehicle speeds thereby giving drivers greater reaction time to reduce the severity of a crash 
or avoid one altogether. This study tests the SIC effect in two ways. By assessing the estimated 
crashes per bicyclist and per car outcomes as a function of bicyclist and vehicle traffic, the SIC 
effect can be supported by either modes of transport. 

Aggregate travel behavior studies typically involve analysis at the level of Traffic Analysis 
Zones (TAZs), which are too coarse to allow robust analysis of non-motorized travel [36, 17]. 
Regional travel surveys consider many trip purposes but are similarly coarse, and typically have 
sample sizes too small to allow for robust city-to-city comparison. A framework for comprehensive 
bicyclist risk assessment modeling, using estimated bicyclist volume per intersection, observed 
vehicle volume and crash records is presented in this report. The motivation for using models 
of bicyclist traffic is in supplementing the sparse data currently available to assess bicyclist risk 
burdens of collisions at every intersection in Minneapolis. Bicyclist risk burdens — the risk of an 
individual bicyclist being struck by a vehicle — are calculated and compared for both the raw and 
predicted crash per bicyclist datasets. This process allows us to construct a more complete spatial 
picture of how bicyclist collision risk varies throughout an urban area at the level of individual 
intersections, based on data widely available to practitioners, transportation authorities and the 
public. 

The remainder of this report is organized as follows. Section 4.2 reviews the studies that make 
up the background of the current state of SIN research. Section 4.3 introduces the data used in this 
research along with the data extraction and preparation process. Following the discussion of the 
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methodology in Section 4.5, the results of the modeling procedure are provided along with an in-
depth interpretation of interest variables both qualitatively and quantitatively. Finally, Section 4.6 
concludes the report with summarizing the key findings and opening new research avenues. 

4.2 Background 

The notion of a safety in numbers effect has been around since the 1940s, when Smeed [39] showed 
that road fatalities per vehicle were lower in countries with more driving. He demonstrated that an 
exponential curve describes the relationship between fatal vehicular crashes and vehicle kilometers 
traveled (VKT). In the last two decades, several studies from around the world have shown that the 
SIN effect exists. A variety of methodologies were employed to try to capture the magnitude and 
the contributing factors to the SIN effect while controlling for environment and human behavior. 
One such study took place in Hamilton, Ontario, Canada where pedestrian flow was compared 
to the crash rates [23]. Data collected from 300 signalized intersections from 1983-1986 con-
tained pedestrian crashes and estimated pedestrian and vehicular flows. When risk per pedestrian 
was calculated using the expected pedestrian flows, decreasing risk was associated with increasing 
pedestrian flows. Conversely, increasing vehicle flows was associated with increased pedestrian 
risk. Models were estimated for different times of the day. The crash counts at each intersection 
were considered as a Poisson random variable. This study found that drivers seem to expect pedes-
trians when the pedestrian flow is over 30 pedestrians per hour. It was also found that the level of 
bicyclist flow is more important for bicyclist safety than the level of vehicular exposure. A simi-
lar study was conducted in Sweden in 1996 which compared bicyclist volumes against crashes at 
95 intersections. Once again, an inverse relationship was found between bicyclist volume and the 
number of bicyclist-auto crashes [11]. 

A study in 2003 used five datasets which included three population level and two time series 
datasets. It was found that the SIN effect is “consistent across communities of varying size, from 
specific intersections to cities and countries, and across time periods” [18]. This study used a dataset 
that linked the number of crashes with the amount of walking and bicycling, however vehicle flow 
was not an explanatory variable. The model was estimated as a power curve. It was found that 
the number of pedestrians and bicyclists struck by vehicle vary by the 0.4 power of the pedestrian 
or bicyclist traffic. Years earlier, researchers in Australia had tested the power model on a dataset 
that contained over 100 years of crash information [22]. Another more recent Australian study [12] 
used three types of pedestrian/bicyclist injury datasets to recreate the negative exponential curve. 
Safety in numbers was found to exist in Australia with a similar exponential relationship compared 
to the American studies. If cycling doubles, the risk per kilometer falls by about 34%. 

After reviewing several years of studies that were conducted around the world to verify the SIN 
effect, Rune Elvik found that transferring trips from motorized vehicles to walking and biking will 
reduce the number of crashes [12]. This study changed functional form based on the type of crash 
involving a pedestrian/bicyclist (multi-vehicle, single-vehicle). The parameters that were varied 
included number of motor vehicles, pedestrians, bicyclists and the coefficient values for pedestrian 
and bicyclist crashes. The exponential form was used and the risk calculated for different AADT 
values (2,000-30,000). It was found that, in theory, the total number of crashes could go down if a 
substantial share of trips by motorist transport is transferred to walking or cycling [12]. 
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Studies that show evidence of the safety in numbers effect have suggested that policies that 
encourage walking or biking may improve safety for these vulnerable road users. Bhatia and Wier 
[3] asserts that the non-linear association between pedestrian and bicyclist volumes and the rates of 
crashes is too simplistic of a model to draw conclusions from and basing urban planning guidelines 
on the SIN effect would be unwise. 

4.3 Data 

We employed two types of data to create the crash prediction models: (1) Estimated Bicyclist Ac-
tivity Data and (2) Bicyclist-Auto Crash Prediction Model Data. The former is borrowed from a 
previously developed land use and transportation network regression model. The latter is raw obser-
vations taken from local records. This section discusses these data sources and the data preparation 
process. 

4.3.1 Estimated Bicyclist Activity Data 

Facility-demand bicyclist estimates developed by Hankey and Lindsey [15] are derived from a 
reduced-form core model, which allows practitioners to use easily retrievable datasets to predict 
bicyclist counts at the intersection level. The model used to develop the estimated bicyclist traffic 
was derived from counts taken in September during the peak-period (4 p.m. - 6 p.m.). Independent 
variables were selected based on their known likelihood to affect a citizen’s propensity to bike. The 
2014 employment accessibility for the Twin Cities region was included along with land use vari-
ables (i.e., industrial area, population density, retail area, open space) and the number of bicyclist 
facilities. Temporal variables such as temperature and precipitation were used to account for the 
weather shifts in Minnesota and the resulting bicyclist activity. The 2010 U.S. Census core-based 
statistical areas for Minneapolis-St. Paul were used to cordon bicyclist facility counts, population, 
and demographic information. A complete discussion is provided by Hankey and Lindsey [15]. 
The estimated counts were chosen for this study to expand the dataset available for analysis. Fig-
ure 21 depicts the number of daily bicyclists observed to pass through each intersection shown. In 
comparison, Figure 22 shows the estimated bicyclist counts that were made available through the 
facility-demand model. 

• PM peak period bicyclist counts observed in September from 2007-2015, conducted by the 
City of Minneapolis Department of Public Works (DPW) and Transit for Livable Communi-
ties (TLC) 

• Employment accessibility within 5-60 minutes of walking in 2014, University of Minnesota 
Accessibility Observatory 

• Land use statistics, Metropolitan Council 2015 

• U.S. Census TIGER 2010 datasets: blocks, core-based statistical area (CBSA) for Minneapolis-
St. Paul 

• Tabulation of yearly bicyclist facilities, (DPW) and (TLC) 2007-2015 
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• Weather parameters, (DPW) and (TLC) 2007-2015 

4.3.2 Bicyclist-Auto Crash Prediction Model Data 

The crash prediction model presented in this report uses four independent variables to predict the 
number of crashes at a given intersection in Minneapolis over a 14 year period. The indepen-
dent variables include the estimated bicyclist TMC and the observed average annual daily traffic 
(AADT) and their quadratic forms for 489 intersection in Minneapolis. The training dataset in-
cluded 80% of these for a total of 383 intersections. The remaining 20% were used as the test 
dataset. For comparative purposes, raw bicyclist turning movement counts (TMC) were assessed 
and plotted to verify that using estimated bicyclist TMCs would be an improvement compared with 
the raw data. The number of bicyclist-auto crashes that were recorded from 2000 to 2013 at each 
of these intersection was included as the dependent variable. A 2014 OpenStreetMap extract of 
the Twin Cities region was used to geocode crash records to intersections. OpenStreetMap is an 
open-source platform of free and reusable geospatial data. 

• OpenStreetMap (OSM) North America extract, retrieved July 2016 

• Raw bicyclist Turning Movement Counts (TMC) 2007-2014, City of Minneapolis 

• Estimated bicyclist Turning Movement Counts September 4-6 PM, City of Minneapolis 

• Average Annual Daily Traffic (AADT) measurements 2000-2013, City of Minneapolis 

• Traffic crash records 2000-2013, City of Minneapolis 

4.4 Data Preparation 

Intersection locations were determined from OSM road centerline data for the Minneapolis-St. 
Paul CBSA (Core-Based Statistical Area). To get a sense for the magnitude of bicyclist traffic 
throughout Minneapolis, Figure 23 was developed to visualize the distribution of bicyclist activity. 
The estimated bicyclist TMC was geocoded to intersections for a single value of bicyclist traffic 
at each intersection from 4 p.m. - 6 p.m. Estimated peak-hour bicyclist volumes were expanded 
to 24-hour counts using bicyclist traffic count factors to extrapolate the estimated counts [35]. The 
AADT records from 2000 to 2013 were averaged over those years and assigned to intersections 
by applying a mid-block buffer around each intersection in QGIS and summing the cross streets 
for a single value of vehicle traffic. Crash records were geocoded to intersections using the OSM 
extract and QGIS. Figure 23 shows the locations and levels of bicyclist-auto crashes that occurred 
at each intersection in the test dataset. GIS work was performed in QGIS and PostGIS; statistical 
work done in Stata and NLOGIT. Table 9 gives the description and statistics of the variables used 
in this study for both parts of the modeling procedure. 

1. Construct bicyclist travel network graph for Minneapolis 
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2. Geocode bicyclist Turning Movement Count (TMC), estimated bicyclist activity, Average 
Annual Daily Traffic (AADT), and crash data to spatial locations 

Table 9: Bike Activity & Safety Dataset summary statistics 

Variable Description 
Training Data (n=383) 

Min Max Mean Std. Dev. 

Crashes Cumulative crashes from 2000-2013 0 16 1.50 2.4 
Vehicle Traffic Mean daily traffic per intersection 2000-2013 252 30798 8584.9 5693.0 
Bicyclist Traffic 24 hour bicyclist count per intersection 37 3,935 793.1 562.6 

Test Data (n=106) 
Crashes 
Vehicle Traffic 
Bicyclist Traffic 

Cumulative crashes from 2000-2013 
Mean daily traffic per intersection 2000-2013 
24 hour bicyclist count per intersection 

0 
440 
57 

11 
25927 
2,163 

1.54 
8424.8 
877.2 

2.3 
4920.1 
539.7 
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Figure 21: Observed levels of daily bicyclist activity in Minneapolis, 2007-2014 
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Figure 22: Estimated levels of daily bicyclist activity in Minneapolis. 
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Figure 23: Raw levels of bicyclist-auto crashes in Minneapolis, 2000-2013. 
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4.5 Modeling: The Evidence of Safety in Numbers 
To investigate the association between number of crashes and interest variables, two distinct models 
were used: (1) Ordinary Least Squares and (2) Two-part Model of Crashes. Student’s t-statistic 
and Adjusted R2 are measured to test the statistical significance of variables and the general fit of 
models, respectively. The data is randomly divided into two portions: An 80% part for training the 
models and a 20% part for testing the prediction power of the models. These models are based on 
two primary hypotheses: 

• The number of crashes has a diminishing return to scale with respect to average daily motor 
vehicle traffic. 

• The number of crashes has a diminishing return to scale with respect to daily bicyclist traffic. 

To test the preceding hypotheses, the interest variable is used along with its quadratic form 
in the models. Doing so reflecects a more realistic association between number of crashes and 
the interest variables. The following subsections delve into the modeling process and testing the 
preceding hypotheses. 

4.5.1 Ordinary Least Squares Model of Crashes 

Ordinary Least Squares (OLS) regression is used at the outset of this study to get a preliminary 
understanding of the relationship between bicyclist and vehicle traffic and the resulting number 
of crashes over a 14 year period. The summary statistics for the predicted and predictor variables 
is given in Table 9. The linear regression analysis is performed in STATA V.14, and the results 
are shown in Table 10. The results indicate that the explanatory variables are significant at the 
5% significance level. Both the SIN and SIC effects are supported by the direction of the linear 
regression results. Vehicle and bicyclist activity are estimated to have a positive effect on the 
number of crashes. The overall fit of the model is (R2 = 0.10). Figure 24 is based on the test set 
of intersections in Minneapolis and shows that intersections with low observed crashes tend to be 
overestimated while more dangerous intersections are have an underestimated number of crashes. 

Table 10: Ordinary Least Squares regression results—bike crashes 

Variable Coefficient Std. Err. t-test p-value 
Vehicle Traffic 2.46 × 10−4 6.22 × 10−5 3.95 0.000 
Vehicle Traffic2 −6.14 × 10−9 2.45 × 10−9 -2.51 0.013 
bicyclist Traffic 
bicyclist Traffic2 

1.74 × 10−3 

−5.06 × 10−7 
5.07 × 10−4 

1.91 × 10−7 
3.44 
-2.65 

0.001 
0.008 

Constant -0.84 0.39 -2.13 0.034 
Number of observations 383 
Adjusted R2 0.1032 
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Figure 24: OLS regression estimated crashes against observed crashes with 45 degree divider. 

4.5.2 Two-part Model of Crashes 

Modeling the number of bicyclist-auto crashes requires a different procedure than traditional count 
outcomes or linear models, as the majority of intersections have no cumulative crashes over time. 
A high proportion of zeros in the distribution of the number of crashes variable means that stan-
dard approaches such as least squares regression misleads the results. To overcome this challenge, 
statisticians have introduced a host of methods that account for such infrequent distributions in-
cluding the Heckit, latent Heckit, and Two-part methods. These models are generally applied to 
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model distributions of continuous and nonnegative data which contain a large proportion of zero 
observations. Dow and Norton [10] discuss the advantages and disadvantages of each method 
broadly. 

First cut analysis demonstrates that nearly half of the intersections used in this study have no 
reported crashes between 2000 and 2013. To represent the marginal effects of exogenous variables 
accurately, a Two-part model of crashes is used. This model comprises Probit regression for the first 
part and Poisson regression for the second part of the model. The former predicts the probability of 
zero versus non-zero crashes at a given intersection, and the latter model is applied to intersections 
with one or more than one crash. It was assumed that the crash data were not over-dispersed and 
the excess zeros assumption was addressed in the first-part of the modeling procedure. Figure 25 
depicts the framework of the Two-part model of crashes. The modeling results are outlined in 
Table 11. 

Figure 25: Two-part model tree diagram. 

4.5.3 General Discussion 

The student’s t-statistic measurement indicates that all variables are significant at the 90% confi-
dence interval. Looking at the first-part of the model, the downward parabola form of the Vehicle 
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Traffic variable demonstrates that the probability of crashes has a diminishing return to scale con-
sidering the average annual daily traffic as an input. This confirms our hypothesis that increasing 
the number of vehicles reduces the rate of crashes. The results also show that the probability of 
crashes starts declining beyond the vertex of a parabola, where the parabola crosses its axis of sym-
metry. In our specific case, the vertex point equals 13,861.25. This means the probability for a 
crash to occur begins to decline by increasing the AADT beyond the 13,861.25 value. Conges-
tion causes roads to operate at a fundamentally different level compared to pre-congestion traffic 
volumes. The SIC effect may be a result of the characteristics of highly congested roads. The 
same trend exists for the bicyclist traffic regressor. An increase in traffic of bicyclists beyond the 
1,314.22 vertex point decelerates the probability for a crash to occur. Bicyclists experience the SIN 
effect after such volumes have been reached. 

Looking at the second part of the model, like the first part, the downward parabola form of 
the Vehicle Traffic variable shows that the number of crashes has a diminishing return to scale 
considering the average annual daily traffic as an input. This is also true for the bicyclist traffic. 
Extracting the vertex points of both exogenous variables, the number of crashes starts decreasing 
when vehicle traffic and bicyclist traffic per intersection exceed 29,568 and 1,532 respectively. 

Table 11: Two-part model results—bike crashes 

Variable Part One Part Two 
Model Specification Y1 No Crash: 0, Crash: 1 Y2 Number of Crashes 
Description Coefficient t-test Coefficient t-test 
Vehicle Traffic 1.05 × 10−4 3.03 9.58 × 10−5 3.70 
(Vehicle Traffic)2 −3.82 × 10−9 -2.74 −1.62 × 10−9 -1.66 
Bicyclist Traffic 6.65 × 10−4 2.12 9.90 × 10−4 3.61 
(Bicyclist Traffic)2 −2.53 × 10−7 -1.91 −3.23 × 10−7 -2.57 
Constant −0.80 -3.57 -0.14 -0.75 
Number of observations 383 190 
Pseudo R2 0.03 0.352 

4.5.4 Sensitivity Analysis 

To quantify the association between number of crashes and interest variables, the elasticity of each 
independent variable was calculated for both the OLS and the Two-part model of crashes. The 
elasticity results are outlined in Table 12. By definition, the elasticity is the ratio of the percentage 
change in number of crashes to the percentage change in the interest variable. In line with the above 
hypotheses, both Vehicle Traffic and Bicyclist Traffic variables have an inelastic effect. This result 
is compatible among both the OLS and the Two-part models. The magnitude of effect, however, is 
varied. 

• Vehicle Traffic: A 1% increase in the average annual daily motor vehicle traffic increases 
the probability of crashes by 0.14% and the number of crashes, given there is a crash, by 
0.80%. 
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• Bicyclist Traffic: A 1% increase in the average daily bicyclist traffic increases the probability 
of crashes by 0.09% and the number of crashes, given there is a crash, by 0.50%. 

To segments of data are used in order to compare the elasticities of the Two-Part model with 
the OLS model. One set of OLS elasticities is based on the entire test dataset and includes obser-
vations with zero crashes. The second set of elasticity values for the OLS model are calculated for 
observations with more than zero crashes. Several comparisons can be made between the effects 
of motor vehicle and bicyclist traffic among the OLS and Two-Part models. 

In general, there are marginal differences between elasticity values in the OLS model while 
the Two-Part model indicates that vehicle and bicyclist traffic differ in their contribution to the 
probability and later the number of crashes. The OLS model elasticities that were calculated using 
the observations that contained one or more crashes can be compared to the second part of the Two-
Part model due to the modeling procedure. By screening out the observations with zero crashes in 
the OLS elasticity calculation, the respective elasticity values become closer in magnitude to the 
Poisson Model elasticity values. Nonetheless, the Two-Part model is the more reliable of the two 
models presented for analysis. It appears that once an intersection has been predicted to have a crash 
by the Probit model, the effect of motor vehicle traffic on the number of crashes is greater than the 
effect of bicyclist traffic. This would indicate that prescribing motor vehicle facility improvements 
would have a greater likelihood of reducing bicyclist-auto crashes than would bicyclist facility 
improvements. It cannot be said what this means for policy makers and practitioners due to the 
uncertain nature of predicting where crashes may occur. 

A key takeaway from the sensitivity analysis is that increasing the presence of motor vehi-
cle traffic has a greater impact on the number of crashes than bicyclist traffic as indicated by the 
Two-Part model. It may be justified by the positive correlation between the bicyclist demand and 
bicyclist facility, which may result in more awareness of drivers. 

Table 12: Elasticity of bicyclist-auto crashes with respect to motor vehicle and bicyclist traf-
fic. 

Variable OLS Regression Two-Part Model 
All Crashes Crashes >0 Part One: Probit Model Part Two: Poisson Model 

Vehicle Traffic 0.65 0.65 0.14 0.80 
Bicyclist Traffic 0.70 0.61 0.09 0.50 

4.5.5 Prediction Accuracy 

Out of 106 test data, 55 intersections were observed to have between one and 11 crashes over the 
14 year period. The first part of the model predicted the 51.8% of the crashes accurately with 
the probability of 50%. The accuracy of the model is slightly better than random with a pseudo R2 

value of 0.03. A low R2 value is acceptable in this case because bicyclist-auto crash occurrences are 
highly random events. The mean relative percentage error (MRPE) measurement (Equation 12) is 
used to measure the prediction accuracy of the second-part of the model. In this equation, Ci is the 
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observed number of crashes at intersection i, Ci 
′ is the predicted number of crashes at intersection 

i, and n stands for the number of observations. � � ∑ �1 
n �C 

′ − Cii × 100 (12) 
n Cii=1 

The MRPE results show that the second-part of the model predict the number of crashes with 
a 82.6% error on average. 

Figure 26 and Figure 27 graphically represent the prediction of crashes. These plots were gen-
erated by using the test dataset and applying the Two-part model to predict the number of bicyclist-
auto crashes across a range of bicyclist and vehicle traffic levels. These graphs can be used to 
assess the vehicle and bicyclist risk associated with an intersection of recorded traffic volumes. 

Figure 26: The contour plot of the predicted crashes 
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Figure 28 depicts the method used to determine if one or more crashes are estimated to occur 
at a given intersection. Intersections that were initially estimated to have a crash probability less 
than 0.5 were taken as zero-crash intersections while estimated probabilities greater than or equal 
to 0.5 were taken to be intersections with one or more crashes. Figure 29 represents the estimated 
probability for a bicyclist-auto crash to occur at every intersection within the test data set. The 
intersections with one or more estimated crashes were passed up to the second part of the Two-Part 
model. Figure 30 plots the estimated number of crashes (1 or greater) against the observed number 
of crashes for every intersection within the test data set. Intersections with one or two observed 
crashes tend to be overestimated while intersections that have been observed to be more dangerous 
are underestimated. 
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Figure 27: The contour plot of the rate of number of crashes to traffic volume 
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Figure 28: Two-part model estimated probability for a bicyclist-auto crash. 
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Figure 29: Two-part model estimated probability for a crash to occur against observed crashes 
with p=0.5 divider. 
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Figure 30: Two-part model estimated crashes, given there is a crash, against observed crashes 
with 45 degree divider. 

4.6 Conclusion 

The concept of SIN in transportation planning reflects that there is a non-linear statistical corre-
lation between the number of pedestrians and cyclists and the number of crashes. Studies used 
longitudinal and cross-sectional data at different level of aggregation to examine whether and to 
what extent the SIN phenomenon is legitimate. The results appear mixed. The current study is an 
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attempt to delve into this research realm by applying a two-part model of crashes on traffic data for 
489 intersections in the Minneapolis - St. Paul metropolitan area between 2000 and 2013. 

The data were randomly into two pieces to not only calibrate the model for number of crashes 
against the average daily vehicle traffic and the daily bicyclist traffic (DBT), but also to measure 
the accuracy of the model. To understand the association function between the number of crashes 
and both average daily vehicle traffic and the daily bicyclist traffic, the quadratic functional form 
of the interest variables was used in the model. This enables us to shed light on the accuracy of the 
SIN phenomenon and to quantify the safety returns to scale. 

Both ADT and DBT were found to have diminishing returns to scale. This accentuates the pos-
itive role of SIN. Increasing the number of vehicles and cyclists decelerates not only the probability 
of crashes, but the number of crashes as well. However, their impacts are unequal. Measuring the 
elasticity of the variables, it is found that a 1% increase in the average daily motor vehicle traffic 
increases the probability of crashes by 0.14% and the number of crashes by 0.80%. While, a 1% 
increase in the average daily bicyclist traffic increases the probability of crashes by 0.09% and the 
number of crashes by 0.50%. Additionally, the saturation point of the safety in numbers for bicy-
clists is markedly less than motor vehicles. Extracting the vertex point of the parabola functions 
reveals that the number of crashes starts decreasing when vehicle traffic and bicyclist traffic per 
intersection exceed 29,568 and 1,532, respectively. 

From the prediction side, this study indicates that unlike the emphasis on the effectiveness of 
ADT and DBT, these variables do not have a significant impact on describing the number of crashes. 
The results of the Nagelkerke Pseudo R2 demonstrate that ADT and DBT improve the estimate of 
probability of crashes by 3% compared with a null model and improve the estimate of the number 
of crashes by 35% compared with the null model. 

Because this study contemplated whether and to what extent the vehicle and bicyclist traffic 
affects the number of crashes, it provides insights for future research avenues. The following sug-
gestions are made for further research: 

• The use of additional road geometry features, such as signalization and the number of ap-
proach lanes, may improve the model, which could in getting a more accurate safety in num-
bers impact. 

• By accounting for variables that may influence vehicle and bicyclist traffic, it may be possible 
explain a greater percentage of the variation in the number of crashes for a given intersection 
configuration and activity level. 

• One caveat with the bicyclist-auto crash dataset is that bicyclists tend to report only the more 
severe crashes. This means the crash records underreport the actual number of crashes that 
occur on a yearly basis which masks the true risk level at an intersection. The prevailing 
limitation to this and other bicyclist behavior studies is the lack of consistent bicyclist TMC 
data collected annually. 
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