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Abstract 
 

 

Collision efficiency values are calculated for both slightly deformable drops and 

spherical drops (as applied to raindrop growth).  The calculation of these values is 

important in performing population dynamics modeling to determine drop size 

distributions occurring in various applications, such as in raindrop formation.  The results 

presented here for slightly deformable drops, for small Reynolds numbers and Marangoni 

numbers, subjected to combined gravitational and thermocapillary driving forces, show 

variations in collision efficiency values with changing values of the parameter 𝑁𝑉, the 

ratio of the isolated gravitational drop velocity to that of the isolated thermocapillary drop 

velocity, 𝜇̂, the drop-to-medium viscosity ratio, and 𝑘̂, the drop-to-medium thermal 

conductivity ratio.  Namely, increases in 𝜇̂ and 𝑘̂ lead to significant decreases in the 

collision efficiency values calculated at the same value of 𝑁𝑉 and the same value of 𝑘, the 

drop size ratio.  While for spherical drops, as applied to raindrop growth, it is shown, for 

small Reynolds numbers, that the inclusion of combinations of accurately calculated 

Maxwell slip and retarded or unretarded van der Waals forces increases the collision 

efficiency values calculated for certain drop sizes and drop size ratios.  Lubrication 

forces, hydrodynamic forces, internal drop circulation, weight, and buoyancy are also 

included in the calculations, so that the resulting collision efficiencies are that much more 

indicative of the natural process of raindrop growth.  
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Nomenclature 

𝑎1  Radius of smaller drop 

 

𝑎2  Radius of larger drop 

 

𝐴  Hamaker constant 

 

𝑏  A parameter having the same order of magnitude as the dimple radius 

 

𝐶𝑎  Capillary number 

 

𝑑∞
∗   Critical offset between two interacting drops 

 

𝐸0  Collision efficiency for spherical drops without interparticle forces 

 

𝐸12  Collision efficiency 

 

𝐹  Force 

 

𝑔  Gravitational acceleration 

 

𝑔̂  Gravity vector 

 

𝐺 Mobility function for an equal-and-opposite force parallel to the line-of 

centers of the drops (Rother, Zinchenko, and Davis, 1997, [33]) 

 

ℎ  Film thickness between two interacting drops 

 

𝑘  Drop size ratio 

 

𝑘𝑑  Drop thermal conductivity 

 

𝑘𝑒  External fluid medium thermal conductivity 

 

𝑘̂  Drop-to-medium thermal conductivity ratio 

 

𝐿 Mobility function for gravitational motion parallel to the line-of-centers of 

the drops 

 

𝐿𝑀 Mobility function for thermocapillary motion parallel to the line-of-centers 

of the drops 
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𝑚2  Mass of the larger drop 

 

𝑀 Mobility function for gravitational motion perpendicular to the line-of-

centers of the drops 

 

𝑀𝑀 Mobility function for thermocapillary motion perpendicular to the line-of-

centers of the drops 

 

𝑀𝑎  Marangoni number 

 

𝑁𝐹 Term allowing for combination of gravitational and thermocapillary 

driving forces 

 

𝑁𝑉  Ratio of gravitational-to-thermocapillary relative drop velocities 

 

𝑝  Pressure 

 

𝑄12  Interparticle force 

 

𝑟  Position vector 

 

𝑟̂  Position vector 

 

𝑅  Reduced radius 

 

𝑅𝑒  Reynolds number 

 

𝑠  Dimensionless drop separation 

 

𝑆𝑡  Stokes number 

 

𝑡  Time 

 

𝑇𝑖𝑗  Resistance functions 

 

∇𝑇, ∇𝑇∞ Temperature gradient 

 

𝑢  Velocity 

 

𝑉1 Velocity of drop 1 

 

𝑉2 Velocity of drop 2 

 

𝑉𝐺,12
(0)

  Gravitational relative drop velocity 
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𝑉𝑀,12
(0)

  Thermocapillary relative drop velocity 

 

𝛼𝐺   Gravitational driving force 

𝛼𝑀  Thermocapillary driving force 

 

𝛽(𝑡) Angular component of combined gravitational-thermocapillary driving 

force 

 

𝛽0  Initial angle between two interacting drops 

 

𝛽𝑐  Critical angle calculated for two interacting drops 

 

𝛿  Non-dimensional Hamaker parameter 

 

𝜁  A term included in 𝛽(𝑡) that accounts for 𝑀 and 𝑀𝑀 

 

𝜃  New angle between two interacting drops   

 

𝜃0  Initial angle between two interacting drops 

 

𝜆𝐿  Mean free path of air 

 

Λ𝑖𝑗  Resistance functions 

 

𝜇̂  Drop-to-medium viscosity ratio 

 

𝜇𝑑  Drop viscosity 

 

𝜇𝑒  External fluid medium viscosity 

 

𝜉  Gap distance between two interacting drops 

 

𝜌𝑑 , 𝜌′  Density of fluid composing drops 

 

𝜌𝑒 , 𝜌  Density of external fluid medium surrounding drops 

 

𝛾, 𝜎  Interfacial tension 

 

Φ12,𝑟𝑒𝑡  Dimensionless interparticle potential for retarded van der Waals forces 

 

Φ12,𝑢𝑛𝑟𝑒𝑡 Dimensionless interparticle potential for unretarded van der Waals forces 



1 

 

Chapter 1 

Introduction 

The calculation of collision efficiency values for the interactions of drops has 

been studied in much detail over the last fifty to sixty years.  As these values play critical 

roles in determining, for example, size distributions used for modeling raindrop growth in 

atmospheric models, it is important that the accuracy of such calculations is as great as 

possible, to ensure that the models, as nearly as possible, predict physical reality.  The 

goals of the following chapters are threefold: to present some historical context of the 

work done to the present on both slightly deformable drops and spherical drops, to 

present modified theoretical frameworks to calculate collision efficiency values, and 

finally, to present the results obtained through the newly developed theory.  Chapter 2 

focuses on slightly deformable drops, while Chapter 3 shifts to spherical drops and 

applications to raindrop growth.  Both chapters discuss the calculation of collision 

efficiencies for their respective scenarios. 
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Chapter 2 

Collision Efficiency Calculations: 

Slightly Deformable Drops 

Studies of drop interactions and coalescence are numerous.  Up to the present, 

several theoretical studies have been conducted in an effort to calculate collision 

efficiencies for droplet-droplet interactions due to a gravitational driving force, a 

thermocapillary driving force, a combined gravitational and thermocapillary driving 

force, and others as well, such as Brownian motion.  Work by Zhang, Wang, and Davis 

(1993, [49]) studied the scenario of a combined gravitational-thermocapillary driving 

force for spherical drops, introducing a parameter 𝑁𝑉, the ratio of the gravitational 

relative drop velocity to the thermocapillary relative drop velocity, thereby representing 

the dominating driving force for the system interaction.  They were able to show that 

when the driving forces were oppositely aligned, a collision-forbidden region existed in 

which coalescence would not occur after the drops had reached a critical size.  Rother, 

Zinchenko, and Davis (1997, [33]) and later, Rother and Davis (1999, [30]), presented 

collision efficiency calculations for slightly deformable drops interacting due to solely 

gravitational and solely thermocapillary driving forces, respectively.  Rother and Davis 

(2005, [32]) also studied the interactions of drops and bubbles due to a combination of 

thermocapillary and gravitational driving forces, while allowing for large deformations in 

the surfaces of the drops and bubbles.  Finally, Rother and Davis (2001, [31]) 
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investigated the interactions of slightly deformable drops in different flows, while 

including unretarded van der Waals forces.  Thus, it is only natural that this work should 

be extended to deal with the combined gravitational and thermocapillary driving forces 

acting on slightly deformable drops, and thus, is the subject of this chapter. 

Several other papers have focused on different aspects relating to droplet 

interactions.  Janssen and Anderson (2011, [15]) examined, broadly, the work completed 

in many areas of study related to drop interactions.  As experimental results can be 

difficult to obtain, a number of papers deal mainly with theoretical computations.  

Bazhlekov, Chesters, and van de Vosse (2000a, [2]) were able to develop an explicit 

numerical scheme to study the dynamics of the thin film between two drops in close 

approach for different drop-to-medium viscosity ratios.  Their results were found to be 

comparable to those of Rother, Zinchenko, and Davis (1997, [33]).  Bazhlekov, van de 

Vosse, and Chesters (2000b, [3]) also investigated rim and nose rupture for two 

interacting drops.  Other numerical work, focusing on boundary-integral algorithms, has 

been completed by Zinchenko, Rother, and Davis (1997, [52]) and Rother, Zinchenko, 

and Davis (2002, [34]). 

Also included in theoretical computational work is population dynamics 

modeling.  Ismail and Loewenberg (2004, [14]) performed population dynamics 

modeling to study the drop size distributions generated for different flows and driving 

forces but did not include drop deformation.  Work by Wang and Davis (1993, [39]) 

studied the coalescence of drops through population dynamics modeling, resulting from 

Brownian motion, gravity, and thermocapillary driving forces, separately.  Nas and 
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Tryggvason (2003, [22]) studied, numerically, the interactions of deformable drops and 

bubbles due to a thermocapillary driving force. 

While the present paper deals with surfactant-free drops, Rother (2009, [28]) has 

studied the effects of surfactants on the interactions of spherical drops moving due to a 

thermocapillary driving force.  Rother (2007, [27]) has also studied how surfactants affect 

the coalescence of deformable drops moving due to a thermocapillary driving force and a 

combined gravitational-thermocapillary driving force (Rother, 2013, [29]). 

Experimental work has been performed, none the less, by several authors.  

Fortelný and Jůza (2014, [9]) studied drop coalescence in a flow for both monodispersed 

and polydispersed systems and found that coalescence decreases for polydispersed drop 

systems.  Fortelný and Jůza (2015, [10]) also studied experimentally how the fluid 

medium surrounding two drops can impact the collision efficiency calculations.  

Experimental work was conducted by Kang et al. (2006, [17]) to study thermocapillary 

and buoyancy effects on interactions of different-sized drops.  Young, Goldstein, and 

Block (1959, [45]) studied how temperature can affect the movement of bubbles.  Zhang, 

Duan, and Kang (2016, [48]) used a holographic method to experimentally study the 

motion of drops due to a thermocapillary driving force.  Finally, experimental work by 

Dai et al. (2016, [6]) studied paraffin oil drops moving due to a thermocapillary driving 

force. 

Theoretical work related to the topic of collision efficiency calculations can be 

grouped into two major categories: work concerned with gravitational motion and work 

concerned with thermocapillary motion.  Gravitational motion studies are numerous.  
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Yiantsios and Davis (1991, [44]) investigated the interactions of drops subjected to a 

gravitational driving force, as well as accounting for the effects of van der Waals forces.  

Zhang and Davis (1991, [46]) studied the impacts of gravitational and Brownian motion 

driving forces on the coalescence of spherical drops, while Wang and Davis (1996, [40]) 

studied the effects of combining these two driving forces.   Baldessari, Homsy, and Leal 

(2007, [1]) studied the film drainage between two equal-sized drops for small capillary 

numbers.  Finally, Ramirez, Zinchenko, Loewenberg, and Davis (1999, [25]) looked at 

the effects of Brownian motion and convection on the flotation of spherical particles, 

while also accounting for van der Waals forces.   

The other major category, that of thermocapillary motion, also includes numerous 

studies.  Berejnov, Lavrenteva, and Nir (2001, [4]) studied thermocapillary interactions 

of deformable drops of equal and different sizes.  Zhang and Davis (1992, [47]) studied 

the calculation of collision efficiencies for spherical drops moving due to a 

thermocapillary driving force.  Keh and Chen (1992, [18]) studied the thermocapillary 

motion of spherical drops and bubbles in lines of different lengths having various 

properties.  Zhou and Davis (1996, [50]) investigated, for deformable drops, 

thermocapillary motion and the effects of changing the values of the drop size ratio, the 

capillary number, and the thermal conductivity ratio.  Berejnov, Leshanksy, Lavrenteva, 

and Nir (2002, [5]) studied thermocapillary motion of both spherical and deformable 

drops using asymptotic and boundary-integral methods.  Mahesri, Haj-Hariri, and Borhan 

(2014, [21]) investigated deformable drops moving due to a thermocapillary driving force 

inside of an insulated cylinder.  Xie et al. (2016, [43]) studied deformable drops moving 
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due to a thermocapillary driving force.  Both the finite difference method and lattice 

Boltzmann method were used.  Finally, Wozniak (1991, [42]) studied thermocapillary 

drop interactions for situations where gravitational forces are negligible. 

An important motivating study for the work presented here was presented by 

Zinchenko and Davis (2005, [51]) on the development of a multipole-accelerated 

algorithm for performing calculations for the interactions of slightly deformable drops.  

Two of the major assumptions employed in the calculations and present theory are that of 

local axisymmetry in the gap region between two drops in close approach and neglecting 

the pumping flow effect.  The pumping flow effect is simply the effect experienced when 

two slightly deformable drops are in apparent contact.  As the drops move relative to one 

another, the driving force pushing the drops together displaces liquid from the gap region 

between the drops.  This results in liquid being squeezed out from between the drops and, 

therefore, a pressure reduction.  This in turn has the opposite effect of then causing liquid 

to enter the gap region to balance the displacement.  This pumping effect inhibits 

coalescence and decreases collision efficiencies.  The assumption for this work is that 

since the drops are in apparent contact for a very limited amount of time, the pumping 

flow effect will not significantly impact collision efficiency calculations.  Previous work 

regarding the gap region between two spherical drops was conducted by Davis, 

Schonberg, and Rallison (1989, [8]).  Zinchenko and Davis (2005, [51]) were able to 

verify that these assumptions are valid for the system considered in this study, and that, in 

particular, previous work, utilizing leading-order asymptotic calculations, was valid for 

𝐶𝑎 ≪ 1 and 𝜇̂ = 𝑂(1). 
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2.1 Problem Statement and Formulation 

The problem of calculating collision efficiencies for two interacting drops has 

been solved, presently, for the case of combined gravitational and thermocapillary 

driving forces, as well as for the inclusion of van der Waals forces and slight drop 

deformation.  Therefore, the present problem is complicated by several factors not 

previously considered in similar studies.  The Appendix includes a brief discussion of the 

dimensionless thin-film equations, presented in previous studies (Rother, Zinchenko, and 

Davis, 1997, [33]; Rother and Davis, 1999, [30]; Zinchenko and Davis, 2005, [51]), 

governing the inner region of close-approach of the two interacting drops and will not be 

discussed further here.  Figure 2.1 shows the interaction of two slightly deformable drops 

moving due to a combined gravitational-thermocapillary driving force.  It should be 

noted that the temperature gradient can be aligned parallel in the same direction, or 

parallel in the opposite direction, of the applied gravitational field. 
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Figure 2.1 Interaction of two slightly deformable drops subjected to a combined gravitational-

thermocapillary driving force.  Note that the temperature gradient can be aligned in the same or 

opposite direction of the downward-pointing gravity field (Stark and Rother, 2016, [36]). 

At the low Reynolds numbers considered, the Stokes equations are linear and 

allow for some simplifications to be made when solving for the forces acting on the 

drops.  By including the deformation of the drops, hydrodynamic forces between the 

drops, interparticle forces, and the combined thermocapillary and gravitational motion of 

the drops, collision efficiency values can be calculated.  In order to calculate the collision 

efficiency values, it is necessary to determine 𝛽𝑐, or the critical angle between the two 

drops that will lead to a horizontal offset just resulting in coalescence.  When 𝛽𝑐 is known 

for a certain set of parameters, the collision efficiency can be calculated from the 

following (Rother, Zinchenko, and Davis, 1997, [33]): 

𝐸12 = (sin2 𝛽𝑐)𝐸0. (2.1) 
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𝐸0 in (2.1) represents the collision efficiency calculated for spherical drops in the absence 

of interparticle forces and is calculated through the evaluation of the following integral 

(Zhang, Wang, and Davis, 1993, [49]): 

𝐸0 = exp (2 ∫
(𝐿 − 𝑀) + (

1
𝑁𝑉

) (𝐿𝑀 − 𝑀𝑀)

𝑠 [(
1

𝑁𝑉
) 𝐿𝑀 + 𝐿]

∞

2

𝑑𝑠) . (2.2) 

The modifications that were made to account for the combined driving forces and the 

angular dependence of the problem are presented henceforth. 

First, it is necessary to define the parameters used in this study.  The key 

parameters include the following: the size ratio of the smaller drop to that of the larger 

drop 𝑘 =
𝑎1

𝑎2
, the drop-to-medium viscosity ratio 𝜇̂ =

𝜇𝑑

𝜇𝑒
, the drop-to-medium thermal 

conductivity ratio 𝑘̂ =
𝑘𝑑

𝑘𝑒
, and the ratio of the relative drop velocities due to gravitational 

and thermocapillary driving forces, respectively, 𝑁𝑉 = ±
𝑉𝐺,12

0

𝑉𝑀,12
0 .  Here, the ± symbol 

indicates that the gravitational and thermocapillary driving forces can be aligned in the 

same direction (+) or aligned in opposing directions (−).  𝑁𝑉 can also be defined in 

terms of various parameters as follows (Zhang, Wang, and Davis, 1993, [49]): 

𝑁𝑉 = ±
(𝜇̂ + 1)(𝑘̂ + 2)|𝜌′ − 𝜌|(𝑎1 + 𝑎2)𝑔

3 |(
𝜕𝛾
𝜕𝑇

) ∇𝑇∞|
. (2.3) 

In (2.3), 𝜇̂ is the drop-to-medium viscosity ratio, 𝑘̂ is the drop-to-medium thermal 

conductivity ratio, 𝜌′ is the drop fluid density, 𝜌 is the surrounding medium density, 𝑎1 

and 𝑎2 are the drop radii, 𝑔 is the gravity vector, 
𝜕𝛾

𝜕𝑇
 is the interfacial tension change with 
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temperature, and ∇𝑇∞ is the temperature gradient present far from the drops.  Finally, the 

Hamaker parameter, 𝛿, is also of importance, where 

𝛿 =
𝜋2

3

𝐴𝜎2

(Δ𝜌𝑔)3

1

𝑅8
 . (2.4) 

As stated previously, it was necessary to modify the governing thin-film equations for the 

inner region (see the Appendix for a further discussion) in order to account for the 

combined gravitational-thermocapillary driving force.  To do this, the equations were 

made non-dimensional using the following term that includes the parameter 𝑏, which is 

of the same order of magnitude as that of the dimple radius, and 𝜎, which is the 

interfacial tension: 

𝜋𝑏2𝜎

𝑅
= Δ𝜌𝑔𝑅3. (2.5) 

Here, 𝑅, the reduced radius, is defined as follows: 

𝑅 =
𝑎1𝑎2

𝑎1 + 𝑎2
. (2.6) 

The main differences appear in the integral force balance, which is shown below in (2.7): 

∫ (𝑝 −
𝛿

ℎ3
) 𝑟𝑑𝑟 = [𝛼𝐺 ± 𝑁𝐹𝛼𝑀] cos 𝛽(𝑡) .

∞

0

(2.7) 

𝑁𝐹 is defined as 

𝑁𝐹 = ±
(𝜇̂ + 1)(𝑘̂ + 2)(1 + 𝑘)2

3𝑘𝑁𝑉
. (2.8) 

The 𝑁𝐹 term is necessary in order to combine the two driving forces, namely the 

gravitational and thermocapillary driving forces, 𝛼𝐺  and 𝛼𝑀, respectively.  The 

gravitational and thermocapillary driving forces are defined as follows: 
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𝛼𝐺 =
4𝜋(1 − 𝑘2)(1 + 𝑘)2

3𝑘2
lim
𝜉→0

𝐿

𝐺
(2.9) 

and 

𝛼𝑀 =
4𝜋(1 − 𝑘2)

(𝜇̂ + 1)(𝑘̂ + 2)𝑘
lim
𝜉→0

𝐿𝑀

𝐺
, (2.10) 

respectively.  These two terms, 𝛼𝐺  and 𝛼𝑀, include the mobility functions for motion 

parallel to the line-of-centers of the two interacting drops.  𝛽(𝑡) accounts for the time-

dependence of the angular component of the driving force and is defined as follows: 

𝛽(𝑡) = 2 arctan [tan (
𝛽0

2
) exp (𝜁𝐶𝑎

1
2𝑡)] . (2.11) 

Finally, 𝜁 includes the mobility functions for motion perpendicular to the line-of-centers 

of the two interacting drops and is defined as follows: 

𝜁 =
2𝜇̂

3(1 + 𝑘) √
2𝜋(1 − 𝑘2)(𝜇̂ + 1)

𝜇̂ +
2
3

lim
𝜉→0

(𝑀 ±
1

𝑁𝑉
𝑀𝑀) . (2.12) 

The computer code used to calculate the critical angles was modified to account for these 

changes to the integral force balance.  This computer code is available upon request. 

2.2 Results and Discussion 

In order to study the effects of various parameter values on the collision 

efficiencies calculated, a parameter-space investigation was conducted.  The parameters 

modified included 𝜇̂, 𝑘̂, and 𝑁𝑉.  Figure 2.2 and Figure 2.3 show collision efficiencies 

calculated for both spherical drops and slightly deformable drops for negative and 

positive values of 𝑁𝑉, respectively.  The following combinations of 𝜇̂ and 𝑘̂ were used: 
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𝜇̂ = 𝑘̂ = 1, 𝜇̂ = 𝑘̂ = 2, and 𝜇̂ = 𝑘̂ = 5.  The range of 𝑁𝑉 values used was -20 to 20.  

Finally, the spherical drop results, from work completed by Zhang, Wang, and Davis 

(1993, [49]), are shown as dashed lines, while the slight-deformation results are shown as 

solid lines. 

 
Figure 2.2 Collision efficiencies for spherical drops (Zhang, Wang, and Davis, 1993, [49]) and 

slightly deformable drops for 𝑘 = 0.5 and 𝛿 = 0.0001 and for different values of 𝑁𝑉, 𝜇̂, and 𝑘̂. 
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Figure 2.3 Collision efficiencies for spherical drops (Zhang, Wang, and Davis, 1993, [49]) and 

slightly deformable drops for 𝑘 = 0.5 and 𝛿 = 0.0001 and for different values of 𝑁𝑉, 𝜇̂, and 𝑘̂. 

As stated previously, the ratio, 𝑁𝑉, represents the relative contributions of 

gravitational-to-thermocapillary driving forces, respectively.  Also, negative values of 𝑁𝑉 

indicate that these two driving forces are opposed, or directed in opposite directions, 

while positive values of 𝑁𝑉 indicate that the two driving forces are aligned in the same 

direction. 

The general trends observed in Figure 2.2 and Figure 2.3 are that as the drop-to-

medium viscosity ratio and the drop-to-medium thermal conductivity ratio increase in 

magnitude, the effect of drop deformation becomes much more pronounced and apparent, 

as deviations from the spherical drop results, and the collision efficiency values decrease 

significantly. 
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Figure 2.4 Collision efficiencies for spherical drops (Zhang, Wang, and Davis, 1993, [49]) and 

slightly deformable drops for different values of 𝑁𝑉 and 𝑘 and 𝜇̂ = 𝑘̂ = 1.  𝛿 = 0.01 for 𝑁𝑉 = 5 

and 𝛿 = 1 for 𝑁𝑉 = −5. 

Finally, Figure 2.4 presents collision efficiency values calculated for different 

drop size ratios, 𝑘, at constant values of 𝑁𝑉.  The curves for 𝑁𝑉 = 0 and 𝑁𝑉 = ±∞ are 

presented as references.  Collision efficiencies were calculated for slightly deformable 

drops for both 𝑁𝑉 = −5 and 𝑁𝑉 = 5.  When 𝑁𝑉 is positive, and the driving forces are 

aligned in the same direction, the effects of drop deformation are observable.  When the 

value of the Hamaker parameter, 𝛿, is 𝑂(1), deviation from the spherical drop results is 

essentially non-existent for 𝑁𝑉 = −5.  Additional curves, at other values of 𝑁𝑉, may help 

to support these observations.



15 

 

Chapter 3 

Collision Efficiency Calculations: 

Spherical Drops (Raindrop Growth) 

Chapter 2 presented theory and collision efficiency calculations for drops when 

allowing for small deformations to occur on the surfaces of the drops.  The allowance for 

slight deformation of the drops increases the complexity of the problem.  The aim of 

Chapter 3 is to move from a purely theoretical discussion to one of more theory and 

application.  Atmospheric modeling is a very important tool that allows for the prediction 

of atmospheric phenomena, such as that of raindrop growth.  The goal of the present 

work is to calculate collision efficiency values for water drops in air and compare the 

results with those of three different journal articles, namely: Klett and Davis (1973, [19]), 

Pinsky et al. (2001, [24]), and Wang et al. (2005, [41]). 

Much work has been done in the past to study raindrop growth and the 

development of raindrop size distributions in the atmosphere.  Past work has assumed 

that the drops are solid spheres.  Hocking (1959, [12]) investigated the calculation of 

collision efficiency values for water drops in air having maximum radii of 30 𝜇𝑚 and 

determined that drops having radii less than or equal to 18 𝜇𝑚 would not collide.  Davis 

and Sartor (1967, [7]) calculated collision efficiency values and showed that drops having 

radii less than 19 𝜇𝑚 will, in fact, interact and collide.  Hocking and Jonas (1970, [13]) 

investigated the significance of the gap size cutoff, 𝜖, used to determine if two drops 
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have, in fact, collided.  They found that using an incorrect value for 𝜖 could result in 

lower-than-actual collision efficiencies.  No attractive forces, such as van der Waals 

forces, were included in the calculations.  This paper also noted the importance of finding 

a way to account for the fact that the gap between two drops may be smaller than the 

mean free path of air molecules.  This is something that is accurately accounted for in the 

present results, where the mean free path of air molecules is assumed to be 𝜆𝐿 ≈ 0.1 𝜇𝑚.  

Jonas (1972, [16]) calculated collision efficiencies for water drops in air, and by 

modifying earlier results that accounted for the boundary conditions when the gap 

between the drops was on the order of, or smaller than, the mean free path of air 

molecules, he found that using a gap value of approximately 1.3 times the mean free path 

of air increased the collision efficiencies calculated versus those calculated by Hocking 

and Jonas (1970, [13]). 

Klett and Davis (1973, [19]) extended much of the previous work completed to 

that point to drops of larger sizes, namely, up to drop radii of 70 𝜇𝑚.  They used a 

modified superposition method to calculate the forces on the drops.  Lin and Lee (1975, 

[20]) studied linear collision efficiency calculations for water drops in air using the 

superposition method.  It was found that the size of the drops relative to one another can 

greatly affect the collision efficiency value for an interaction.  Schlamp, Grover, 

Pruppacher, and Hamielec (1976, [35]) found that collision efficiency values calculated 

for electrically charged water drops in air, subjected to an electric field, will be greater 

than when no electric charge or electric field is present.  Hall (1980, [11]) found that the 

inclusion of ice in models will have an effect on the collision efficiency values 
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calculated, as well.  Rogers and Davis (1990, [26]) performed population dynamics 

modeling and investigated the effects of including combinations of slip boundary 

conditions and van der Waals forces on the collision efficiency values calculated and 

found that values increased.  It should be noted that the calculation of the slip conditions 

was not exact, as is the case in the present work. 

Pinsky, Khain, and Shapiro (2001, [24]) expanded the range of collision 

efficiency calculations by including drops with maximum radii of 300 𝜇𝑚 and maximum 

Reynolds number values of 100.  They also found that the height in the atmosphere at 

which drop interactions occur will greatly impact collision efficiency values.  Wang et al. 

(2005, [41]) modified the superposition method that was extensively used in early models 

for water drop growth in air.  They were able to reduce the errors found in earlier 

calculations by better accounting for boundary conditions.  Vohl et al. (2007, [38]) 

performed experiments for drops having radii up to 170 𝜇𝑚 and were able to generate 

large tables of collision efficiency values for different drop size ratios.  Finally, Pinsky, 

Khain, and Krugliak (2008, [23]) investigated the effects of turbulence on the collision 

efficiency values calculated for water drops in air. 

The significance of the calculations and results presented henceforth are that the 

collision efficiencies are calculated for spherical, liquid drops while accounting for the 

following: combinations of Maxwell slip and van der Waals forces (calculations are 

included for both retarded and unretarded van der Waals forces), rather than each case 

individually.  The necessary allowances are also made to account for the weight of the 

drops, buoyant forces, hydrodynamic interactions between the drops, lubrication forces 
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when the drops are in close approach, and internal drop circulation.  The computer code 

used to calculate the critical offset between the drops was modified accordingly to study 

the different combinations of Maxwell slip and van der Waals forces. 

3.1 Problem Description and Formulation 

As was done in Chapter 2, two unequal-size drops moving in relative motion to 

one another are considered.  Here it is further assumed that the drops are composed of 

water dispersed in air.  Figure 3.1 shows the two drops falling under a downward-

pointing gravitational field. 

 

Figure 3.1 Interaction of two spherical liquid drops subjected to a gravitational driving force 

(Stark and Rother, 2017, [37]). 

Important dimensionless parameters considered in this chapter are the following: the drop 

size ratio 𝑘 =
𝑎1

𝑎2
, the drop-to-medium viscosity ratio 𝜇̂ =

𝜇𝑑

𝜇𝑒
, and the collision efficiency 
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𝐸12 = (
𝑑∞

∗

𝑎1+𝑎2
)

2

, which depends on the drop radii and the critical offset, 𝑑∞
∗ , calculated in 

order for the drops to just make contact.  In subsequent calculations, 𝑑∞
∗  is scaled by the 

radius of the larger drop, 𝑎2.  The drops are now considered spheres, whereas the drops in 

Chapter 2 were allowed to deform slightly.  It is also important to note that the Reynolds 

number was assumed to be small but non-zero (0.01 < 𝑅𝑒 < 0.3).  Over the range of 

drop radii considered (maximum radius of 30 𝜇𝑚), the Stokes number is always larger 

than the Reynolds number (1 < 𝑆𝑡 < 100).  This makes the water – air system different 

because a low Reynolds number does not necessarily mean that the drop inertia is 

negligible, as was considered in Chapter 2.   Due to the possibility of significant drop 

inertia, the force balance that must be solved does not equal zero, and, therefore, the 

resulting velocity equations are nonlinear.  The equations that result and must be solved 

are shown below in (3.1) and (3.2) (Stark and Rother, 2017, [37]).  Expressions for the 

calculation of both retarded and unretarded van der Waals forces are also given below in 

(3.4) and (3.5), respectively (Stark and Rother, 2017, [37]). 

𝑘2𝑆𝑡
𝑑𝑉1

𝑑𝑡
= 𝑘2 (

𝜇̂ +
2
3

𝜇̂ + 1
) 𝑔̂ − [Λ11(𝑉1 − 𝑉2)∥ + Λ12𝑉2

∥ + 𝑇11(𝑉1 − 𝑉2)⊥ + 𝑇12𝑉2
⊥] (3.1) 

𝑆𝑡
𝑑𝑉2

𝑑𝑡
= 𝑘2 (

𝜇̂ +
2
3

𝜇̂ + 1
) 𝑔̂ − [Λ21(𝑉1 − 𝑉2)∥ + Λ22𝑉2

∥ + 𝑇21(𝑉1 − 𝑉2)⊥ + 𝑇22𝑉2
⊥] (3.2) 

In (3.1) and (3.2), 𝑆𝑡 represents the Stokes number and is defined as follows (Stark and 

Rother, 2017, [37]): 
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𝑆𝑡 =
𝑚2

𝑉2
0

𝑡𝑠

6𝜋𝜇𝑒𝑎2𝑉2
0 =

4

81
(

𝜇̂ + 1

𝜇̂ +
2
3

) (
𝜌𝑑|𝜌𝑑 − 𝜌𝑒|𝑔

𝜇𝑒
2

) 𝑎2
3. (3.3) 

Also, in (3.1) and (3.2), Λ𝑖𝑗 and 𝑇𝑖𝑗 are resistance functions. 

𝐹𝑚𝑜𝑙,𝑖 = ±
𝑘(1 − 𝑘2)

2
(

𝜇̂ +
2
3

𝜇̂ + 1
)

1

𝑄12

𝑑Φ12,𝑟𝑒𝑡

𝑑𝑟
𝑟̂ (3.4) 

𝐹𝑚𝑜𝑙,𝑖 = ±
𝑘(1 − 𝑘2)

2
(

𝜇̂ +
2
3

𝜇̂ + 1
)

1

𝑄12

𝑑Φ12,𝑢𝑛𝑟𝑒𝑡

𝑑𝑟
𝑟̂ (3.5) 

In (3.4) and (3.5), 𝑄12 is defined as follows (Stark and Rother, 2017, [37]): 

𝑄12 =
2𝜋

3
𝑘(1 − 𝑘2)

|𝜌𝑑 − 𝜌𝑒|𝑔𝑎2
4

𝐴
. (3.6) 

Also, in (3.4) and (3.5), 
𝑑Φ12,𝑟𝑒𝑡

𝑑𝑟
 and 

𝑑Φ12,𝑢𝑛𝑟𝑒𝑡

𝑑𝑟
 are the dimensionless interparticle 

potentials for retarded and unretarded van der Waals forces, respectively.  In (3.6), 𝐴 is 

the Hamaker constant. 

3.2 Results and Discussion 

The first results presented in Figure 3.2 show how collision efficiencies change 

for varying larger drop radii, 𝑎2, at a constant drop size ratio of 𝑘 = 0.5.  Drop radii cover 

the range of 2 𝜇𝑚 to 50 𝜇𝑚.  The smallest collision efficiency values were calculated 

when no van der Waals forces were included.  On the other hand, a combination of 

Maxwell slip and unretarded van der Waals forces produced the largest collision 
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efficiency values, as would be expected.  The most realistic curve to note is that for the 

combination of Maxwell slip and retarded van der Waals forces, which falls just below 

the curve for Maxwell slip and unretarded van der Waals forces. 

 

Figure 3.2 Collision efficiencies calculated for spherical liquid drops for different larger drop 

radii and a constant drop size ratio of 𝑘 = 0.5.  The collision efficiency data point for 𝑎2 = 2 𝜇𝑚 

was calculated by M. A. Rother (Stark and Rother, 2017, [37]). 

Now that it was shown how collision efficiencies vary with the larger drop radius, 

results for different size ratios for specific larger drop radii are presented in Figure 3.3. 
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Figure 3.3 Collision efficiencies calculated for spherical liquid drops over a range of drop size 

ratios, 𝑘, for different values of the larger drop radius, 𝑎2. 

The important feature to note in Figure 3.3 is that the effects of van der Waals forces on 

calculated collision efficiency values are dependent on the drop sizes.  For smaller drops, 

the interparticle forces are important, and it can be seen that collision efficiency values 

increase with the inclusion of van der Waals forces.  At drop sizes of 30 𝜇𝑚 and larger, 

inertial effects begin to dominate, whereas the effects of Maxwell slip and combinations 

of retarded and unretarded van der Waals forces diminish.  The final three figures serve 

as comparisons between the current calculations and previous studies investigating 

raindrop growth. 

Figure 3.4 shows data from a study performed by Klett and Davis in 1973 [19], 

for small Reynolds number values.  The method of solution employed by Klett and Davis 
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was that of superposition.  The use of this method does not properly account for 

lubrication forces in the gap region between two drops when they are nearly touching.  

This tends to result in higher-than-predicted collision efficiency values for some drop 

sizes.  Their data was in fairly close agreement over the range of size ratios of 𝑘 = 0.5 to 

𝑘 = 0.98 when the current calculations included a combination of Maxwell slip and 

retarded van der Waals forces.  At smaller values of 𝑘, Klett and Davis underpredicted 

the collision efficiency values. 

 

Figure 3.4 Comparison with data produced by Klett and Davis (1973, [19]) for water drops in air.  

■, x, and + represent their data for larger drop radii of 10 𝜇𝑚, 20 𝜇𝑚, and 30 𝜇𝑚, respectively. 

The next comparison made was to data generated by a study conducted by Pinsky 

et al. in 2001 [24].  Again, a superposition method was used to solve the force balance on 

the drops, and, therefore, does not properly account for lubrication forces between the 
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drops.  Figure 3.5 shows the results from their 2001 study and the present results for 

larger drop radii of 20 𝜇𝑚 and 30 𝜇𝑚 for different drop size ratios, 𝑘.  As with the data 

produced by Klett and Davis (1973, [19]), the data generated by Pinsky et al. (2001, [24]) 

shows an overestimation of the collision efficiency values for the larger drop radius of 30 

𝜇𝑚.  At the smaller drop size ratios, their data shows larger underestimations of the 

collision efficiency values at both larger drop radii of 20 𝜇𝑚 and 30 𝜇𝑚. 

 

Figure 3.5 Comparison with data produced by Pinsky et al. (2001, [24]) for water drops in air.  x 

and + represent their data for larger drop radii of 20 𝜇𝑚 and 30 𝜇𝑚, respectively. 

The third and final study that was used for comparison with the present data was 

that of Wang et al. (2005, [41]) and is shown in Figure 3.6.  Wang et al. (2005, [41]) were 

able to improve upon the typical superposition method used previously by better 

accounting for no-slip boundary conditions at the surfaces of the drops.  The previous 
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studies did not ensure these boundary conditions were satisfied at all points during the 

movement and interaction of the drops.  It is interesting to note that the data produced by 

Wang et al. (2005, [41]) was significantly lower than the calculated results from the 

present work for a larger drop radius of 10 𝜇𝑚.  The normal trend of larger collision 

efficiencies at larger drop sizes holds true for this case as well. 

 

Figure 3.6 Comparison with data produced by Wang et al. (2005, [41]) for water drops in air.  ■, 

x, and + represent their data for larger drop radii of 10 𝜇𝑚, 20 𝜇𝑚, and 30 𝜇𝑚, respectively. 
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Chapter 4 

Conclusions 

The research presented here has shown improvements made to both work dealing 

with slightly deformable drops and spherical drops, in the case of modeling raindrop 

growth.  Through the inclusion of both gravitational and thermocapillary driving forces, it 

was possible to show that when small deformations of interacting drops are included in 

calculations for collision efficiency values, the deformations become important at 

different values of the drop-to-medium viscosity ratio and the drop-to-medium thermal 

conductivity ratio and at different values of 𝑁𝑉.  By making allowances for small 

deformations of the drops, the collision efficiency values are lower when compared to the 

spherical drop results, possibly due to a pumping flow effect experienced by the drops as 

they are in close approach. 

The second half of the work presented looked at collision efficiency calculations 

for spherical liquid drops, as applied to raindrop growth.  Several earlier studies have 

looked at various aspects of calculating these collision efficiency values for solid spheres.  

The present work sought to carry out calculations that were as comprehensive as possible 

when it came to accounting for items in the overall force balance for the two interacting, 

liquid drops.  This meant that the following were accounted for: Maxwell slip, van der 

Waals forces, lubrication forces, buoyancy, the weight of the drops, internal drop 

circulation, and hydrodynamic forces between the drops.  Comparisons were then made 

with data generated by three previous studies.  Over the range of drop sizes studied, the 
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previous studies seem to have overestimated the collision efficiency values by not 

including various components in the force balance that were included in the present work. 

Future work should include detailed calculations performed for systems with 

practical applications.  For example, the work completed for raindrop growth, when 

Maxwell slip and retarded van der Waals forces were included, could be incorporated 

into an existing atmospheric model to verify that the more comprehensive calculations 

better predict the formation of raindrops in air.
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Appendix 

The governing equations for the inner region where two drops are nearly 

touching, namely the thin-film equations, are presented here in dimensionless form 

(Rother, Zinchenko, and Davis, 1997, [33]) with the modifications discussed in Chapter 

2.  These equations are presented for completeness. 

Normal Stress Balance 

𝑝 −
𝛿

ℎ3
= 2 −

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕ℎ

𝜕𝑟
) (𝐴. 1) 

Momentum Balance 

𝑓 = −
ℎ

2

𝜕𝑝

𝜕𝑟
(𝐴. 2) 

Local Boundary Integral 

𝑓(𝑟) = 4 ∫ 𝜙(𝑟′, 𝑟)
∞

0

[
𝑢

𝑟′2
−

1

𝑟′

𝜕𝑢

𝜕𝑟′
−

𝜕2𝑢

𝜕𝑟′2] 𝑑𝑟′ (𝐴. 3) 

Mass Continuity 

𝜕ℎ

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟ℎ𝑢) = 0 (𝐴. 4) 

Integral Force Balance 

∫ (𝑝 −
𝛿

ℎ3
) 𝑟𝑑𝑟

∞

0

= [𝛼𝐺 ± 𝑁𝐹𝛼𝑀] cos 𝛽(𝑡) (𝐴. 5) 

 

 

 



34 

 

𝑁𝐹 was previously defined as 

𝑁𝐹 = ±
(𝜇̂ + 1)(𝑘̂ + 2)(1 + 𝑘)2

3𝑘𝑁𝑉
, (𝐴. 6) 

where 𝑁𝑉 = ±
𝑉𝐺,12

(0)

𝑉𝑀,12
(0) , 𝑘 =

𝑎1

𝑎2
, 𝑘̂ =

𝑘𝑑

𝑘𝑒
, and 𝜇̂ =

𝜇𝑑

𝜇𝑒
. 


