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Abstract 

Alzheimer’s disease (AD) is the most prevalent age-related dementia and will place 

an increasingly demanding burden on our healthcare system as the population ages. It has 

been firmly established that high plasma levels of high-density lipoprotein (HDL) protect 

against cardiovascular disease and accumulating evidence indicates that the beneficial role 

of HDL extends to the central nervous system. There are several important biological 

mechanisms that regulate HDL generation and metabolism/function. One is through the 

cholesteryl ester transfer protein (CETP), which transports cholesterol esters and 

triglycerides between different lipoprotein particles. Loss-of-function mutations in CETP 

are associated with better cognition in aging. To investigate the role of CETP in AD, human 

CETP transgenic mice were crossed with an Alzheimer’s mouse model, followed by 

biochemical and behavioral analyses. The results showed that CETP-induced modest 

decrease in plasma HDL levels was insufficient to affect brain amyloid pathology, 

neuroinflammation, or memory function. Next, to explore the therapeutic potential of a 

cardiovascular protective, HDL-mimetic-peptide called D-apoJ[113-122], AD mice were 

treated with the peptide. This treatment robustly reduced brain amyloid pathology and 

improved memory function in AD mice. Further analyses showed that D-apoJ[113-122] 

exerted its beneficial effects through reduction of cerebral vascular amyloid deposition and 

clearance of brain amyloid to plasma. Finally, prenyltransferase-deficient mice were used 

to investigate the role of protein prenylation in synaptic function. Prenylation is an 

important posttranslational lipid modification process that attaches isoprenoids (the 

intermediates in the cholesterol biosynthesis pathway) to target proteins. 
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Electrophysiological/histochemical experiments showed that systemic or forebrain-

specific deficiency of one particular prenyltransferase, geranylgeranyltransferase-1, caused 

marked impairment in hippocampal synaptic plasticity and decrease in neuronal dendritic 

spine density. Further analyses indicated that reduction of prenylation of certain small 

GTPases, which rely on prenylation for proper cellular localization and function, underlies 

the detrimental effects in these mice, as observed in aged mouse brains. These results 

corroborate the critical role of protein prenylation in synaptic function during development 

and in the adult brain. Taken together, findings from this research provide novel insights 

into the role of HDL and related pathways in the pathogenesis of AD, and offer new 

avenues to develop effective therapies for AD. 
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CHAPTER 1 – LITERATURE REVIEW 

Overview of Alzheimer’s disease: 

Alzheimer’s disease (AD),  the most common neurodegenerative disease 

(Alzheimer's Association 2017), is often associated with impaired memory and other 

neurological deficits. The prevalence of AD is increasing as the global population ages. 

AD was first described in 1906, when Dr. Alois Alzheimer described unusual pathological 

features that were later described as amyloid plaques and neurofibrillary tangles. These 

became widely accepted as the major pathological hallmarks of AD. Clinically, AD is 

characterized by progressive cognitive impairment, and is confirmed by the presence of 

plaques and tangles in autopsied brain. 

A particular focus has been devoted to the development and clearance of amyloid 

plaques that are comprised of small amyloid β (Aβ) peptides that aggregate into insoluble 

plaques that damage the surrounding tissue. There has been intense study into Aβ 

formation, aggregation, and clearance as key points for disease intervention. This line of 

thinking resulted from the amyloid cascade hypothesis that emphasizes the role of Aβ in 

AD pathogenesis (Hardy and Higgins 1992; Hardy and Selkoe 2002). Aβ is derived from 

the abnormal processing of the amyloid precursor protein (APP) by membrane secretase 

activity (Kang et al., 1987). The two primary secretases in the amyloidogenic pathway 

include β-secretase 1 (BACE1) and γ-secretase. γ-Secretase consists of at least four 

subunits: presenilin, nicastrin, anterior pharynx-defective 1, and presenilin enhancer 2 

(Kaether, Haass, and Steiner 2006). The Aβ fragments formed from β- and γ- secretase 
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activity on APP are highly toxic, resulting in neuronal cell death (O’Brien and Wong 2011). 

However, memory impairments associated with AD begin prior to the accumulation of 

plaques and cell death (Haass and Selkoe 2007; Ashe and Zahs 2010). Additional evidence 

shows that the level of extracellular soluble Aβ fragments directly correlate with cognitive 

decline (Selkoe et al., 2002), and hypothesize that soluble Aβ is responsible for the onset 

of AD symptoms. 

AD symptoms begin with the dysfunction of cholinergic and glutamatergic 

synapses in the hippocampus and neocortex before neuronal degeneration (Selkoe et al., 

2002). Recent evidence reports that this synaptic dysfunction is caused by soluble 

oligomeric Aβ (Haass and Selkoe 2007; Ashe and Zahs 2010). It has been shown that 

memory and cognitive deficits correlate better with soluble cortical Aβ concentration 

(Selkoe et al., 2002) and tau tangles load (Nelson et al., 2013) than senile (insoluble) 

plaques. Electrophysiological studies in young APP transgenic (tg) mice have revealed 

significant hippocampal synaptic deficits well before the development of microscopically 

detectable Aβ deposits (Jacobsen et al., 2006; Hsai et al., 1999; Chapman et al., 1999). 

However, the cellular and molecular mechanisms underlying synaptic dysfunction caused 

by Aβ oligomers and tau tangles are not fully understood. Additional pathological findings 

in AD will be described later in this chapter. 

 Familial vs sporadic Alzheimer’s disease: 

There are two forms of AD which are commonly referred to as familial and sporadic  

(Mayeux and Stern 2012). Familial AD is caused by heritable mutations in one of several 
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well characterized genes responsible for increased amyloid accumulation such as the APP, 

presenilin-1 (PS1) and presenilin-2 (PS2) (Waring and Rosenberg 2008) and is also 

referred to as early onset AD. Early onset AD symptoms begin before age 65. The average 

age for early onset symptoms to appear is around 55 years of age (Koedam et al., 2010). 

Typically, patients with familial forms of AD have a higher Aβ42/40 ratio, indicating a 

larger accumulation of the more toxic Aβ42 species relative to total amyloid burden. In a 

late onset AD patient, symptoms appear after age 65 (average age 75) with Aβ40 as the 

most prevalent species of the peptide (Koedam et al., 2010). Overall, mutations that lead 

to familial AD are relatively rare in the general population and, therefore, represent 

approximately 1-5% of the total AD patient population (Alzheimer's Association 2017).  

Age is the biggest risk factor for developing AD (Alzheimer’s Association 2017), 

with half of all people over 85 developing the disease (Hebert et al., 2003). One of the 

major genetic risk factors in late-onset AD is the apolipoprotein E4 (apoE4) isoform. A 

single copy increases one’s risk of AD by three times, and two copies of apoE4 increases 

the overall risk by 15 times (Saunders et al., 1993). The apoE4 allele is found in about 15% 

of the general population, but that frequency is up to 50% in AD patients, indicating a 

strong link between apoE genotype and AD risk (Saunders et al., 1993). ApoE4 is also a 

major risk factor for many negative cardiovascular outcomes, indicating there may be a 

substantial biological link between these two fields (Mahley and Rall 2000).  
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Pathological hallmarks of Alzheimer’s disease: 

A small amount of Aβ production is normal in all mammalian brains (Haass and 

Selkoe 1993), which is derived from secretase cleavage of the parent protein, APP 

(Thinakaran and Koo 2008; Haass et al., 2012). Aβ peptides aggregate in the brains of pre-

AD patients to form senile plaques that are spherical extracellular lesions. These diffuse 

senile plaques are one of the earliest pathological markers and precede cognitive 

impairment (Jack et al., 2010; Mann et al., 1988). Aβ continues to accumulate with aging 

primarily in the posterior cingulate, followed by the lateral temporal lobe, and finally the 

frontal lobe. (Jack et al., 2010).  

Interestingly, plaque pathology is not unique to AD (Selkoe et al., 1987) and, 

therefore, Aβ plaques alone are not sufficient to diagnose a patient with AD. Co-lesions 

with neurofibrillary tangles, age of symptom onset, and cognitive assessments are required 

for a typical AD diagnosis. Aβ production is increased in response to oxidative stress 

(Castellani et al., 2006) and Aβ’s clearance is slowed with age (Patterson et al., 2015) and 

in patients with AD (Selkoe 2001; Tanzi et al., 2004; Mawuenyega et al., 2010). Several 

key enzymes are responsible for the degradation of Aβ, such as neprilysin (NEP) (Iwata et 

al., 2000, 2001) and insulin degrading enzyme (IDE) (Farris et al., 2003). The net Aβ levels 

in the brain are a result of the balance between production and clearance and several novel 

drug development projects have aimed at altering that balance to favor decreasing the Aβ 

burden in AD brain (Orgogozo et al., 2003). 
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Under normal conditions, tau is a microtubule-associated protein that is important 

for stabilizing neuronal axons and the cell’s cytoskeletal features. In AD, 

misfolded/hyperphosphorylated tau forms the core of intracellular neurofibrillary tangles 

(Grundke-Iqbal et al., 1986; Wood et al., 1986). Biochemical changes in tau levels and 

phosphorylation occur after Aβ levels increase, but prior to initial synapse and neuron loss 

(Gómez-Isla et al., 1997; Iqbal and Grundke-Iqbal 2002) although causative factors have 

not been fully elucidated (de Calignon et al., 2009). High cerebrospinal fluid (CSF) levels 

of tau have been associated with a quicker disease progression from mild cognitive 

impairment (MCI) to AD (Blom et al., 2009). Furthermore, in AD patients, high tau levels 

are associated with faster cognitive decline and higher overall mortality (Sämgård et al., 

2010; Wallin et al., 2009). Similar disease progression patterns are seen in patients with 

higher levels of phosphorylated tau (p-tau) (Sämgård et al., 2010; Blom et al., 2009). Taken 

together, there is a need to better understand AD development in order to find the critical 

tipping points where treatments can still be effective.  

Aβ peptide is capable of forming deposits outside of the brain parenchyma. One 

major site of such deposits is the vessel walls of brain capillaries in a condition known as 

cerebral amyloid angiopathy (CAA). These vascular deposits consist primarily of Aβ40 

and accumulate in approximately 80% of AD patients (Serrano-Pozo et al., 2011). Cortical 

capillaries and small arterioles are most commonly affected by CAA and result in 

diminished vascular efficiency (Olichney et al., 2000). There have been several studies that 

found a positive correlation between cognitive decline in AD with post-mortem CAA 

levels (Pfeifer et al., 2002; Arvanitakis et al., 2011; Greenberg et al., 2004). 
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Aβ and tau mediated neuronal injury occurs before cognitive and structural damage 

(Jack et al., 2010). Localized neuronal and microglial injury are associated with early senile 

lesions (Probst et al., 1987). Such injuries ‘activate’ microglia cells that are found at the 

core of early plaques (Eikelenboom et al., 2010). Accumulating information suggests that 

inflammation plays a key role in early AD pathogenesis (Heneka et al., 2015) and could be 

an important mechanism underlying AD symptoms.  

Amyloid precursor protein trafficking and processing: 

APP trafficking and processing are modulated by a number of mechanisms (Small 

and Gandy 2006; Haass et al., 2012; Cam and Bu 2006). One of the mechanisms is cell 

membrane fluidity, regulated mainly by the cholesterol content. While the non-

amyloidogenic cleavage of APP by -secretase occurs in cholesterol-poor and 

phospholipid-rich domains, the amyloidogenic cleavages by - and -secretases are 

preferred in the cholesterol-rich domains (lipid rafts) (Wolozin 2001). Another controlling 

mechanism for APP processing is the distinct localization of secretases. -Secretase 

activity is located primarily at the cell surface, whereas - and -secretase activities are 

found mainly in membranous compartments (e.g., endosomes) inside the cell (Cam and Bu 

2006; Haass et al., 2012; Small and Gandy 2006). Modulation of APP processing has for 

many years been a main biochemical target for the development of drugs for the treatment 

of AD. The goal is to favor the production of non-amyloidogenic fragments resulting from 

cleavage of APP by -secretase over amyloidogenic Aβ that is produced by -secretase  

(Chow et al., 2010).  
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FDA-approved treatments to delay symptoms of Alzheimer’s disease: 

Over the last three decades, several drugs have been approved by the FDA for the 

symptomatic treatment of AD. Importantly, none of these drugs are capable of delaying or 

preventing AD progression. Currently approved drugs fall into two categories, namely 

acetylcholinesterase inhibitors or NMDAR antagonists (Table 1.1). Donepezil, 

galantamine, rivastigmine, and tacrine are all acetylcholinesterase inhibitors that work to 

preserve the limited amount of the neurotransmitter acetylcholine in the brains of AD 

patients (Raskind et al., 2000; Burns et al., 1999; Camps and Muñoz-Torrero 2002). 

Acetylcholine is reduced as the neurons releasing the neurotransmitters slowly die due to 

Aβ-induced toxicity (Whitehouse et al., 1981, 1982; Wong et al., 1999). Inhibiting 

acetylcholine breakdown works to temporarily ‘boost’ the signal that is released from the 

remaining neurons. However, as more neurons continue to die while a patient’s AD 

progresses, these drugs becomes less and less effective at masking symptoms (Sun et al., 

2008). Memantine is an NMDA receptor antagonist that blocks the excitotoxicity that is 

seen in moderate to severe AD (Rogawski and Wenk 2003). Blocking excitotoxicity helps 

to prevent the emergence of hallucinations and other behavioral symptoms of AD, although 

the efficacy is lower than originally thought (Gauthier et al., 2008; Winblad et al., 2007).  
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Table 1.1 - List of currently approved Alzheimer’s disease drugs: 

Name Year Approved Targeted System Conditions Stage of AD 

Donepezil 1996 Acetylcholinesterase 

inhibitor 

Alzheimer's 

disease 

Mild, moderate, 

severe 

Galantamine 2004 Acetylcholinesterase 

inhibitor 

Alzheimer’s 

disease 

Mild to moderate 

Rivastigmine 2000 Acetylcholinesterase 

inhibitor 

Alzheimer's 

disease 

Parkinson’s 

disease 

dementia 

Mild to moderate 

Tacrine 1994 -2013 

(discontinued) 

Acetylcholinesterase 

inhibitor 

Alzheimer's 

disease 

NA 

Memantine 2003 NMDAR antagonist Alzheimer's 

disease 

Moderate to severe 

Transgenic mouse models of Alzheimer’s disease: 

Transgenic animal models of any disease state attempt to recreate key pathological 

hallmarks of the human-form of the disease. In transgenic mouse models, this is typically 

achieved via overexpression of inserted genetic mutations observed in familial cases of 

AD. This allows researchers to identify important disease mechanisms and define targets 

for drug development against the human disease. AD transgenic mouse models tend to fall 

into one of three major categories – modeling Aβ plaque formation, Tau hyper-

phosphorylation, and a combination of these two key AD hallmarks. Depending on the 

mutations/copy number involved, each mouse model shows pathological features at 

different ages and to varying intensity. Additionally, other secondary characteristics such 

as synaptic loss, neuroinflammation, and cognitive deficits are often detectable in 

transgenic mouse models of AD.  

The first two major transgenic mouse models of AD were produced in the mid-

1990s. The PDAPP(line 109) was produced by inserting the human APP gene encoding an 
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APP mutation, V717F (Indiana) under a platelet-derived growth factor β (PDGF-β) 

promoter. The PDGF-β promoter is expressed in brain, fat, lung and thyroid (Fagerberg et 

al., 2014). These mice express three splicing variants of human APP (695, 751, and 770) 

(Games et al., 1995) which may better recapitulate relevant pathologies seen in human 

forms of AD. The PDAPP mouse model of AD exhibits strong Aβ deposition around 4 

months old (mo) and cognitive impairments at 6 mo (Games et al., 1995) (Table 1.2). 

The next major transgenic mouse model of AD was the Tg2576 model that 

overexpressed a human double mutation of APP (APP K670N/M671L (Swedish)) under 

the hamper prion protein promoter. This transgenic mouse line expresses APP isoform 695 

developing extensive amyloid pathology and cognitive deficits at older ages (Hsiao et al., 

1996) relative to PDAPP (Table 1.2). The slower onset of disease may better model AD 

as the disease’s greatest risk factor is aging.  

 In the early 2000’s, another aggressive mouse model of AD was developed that 

combined multiple familial mutations. The APP/PS1 mouse model combines the same 

Swedish mutation seen in Tg2576, but adds an additional PS1 mutation first observed in 

two families with early-onset familial AD (Perez-Tur et al., 1995). These two transgenes 

are integrated together under the control of the mouse prion promoter (Jankowsky et al., 

2001). The PS1 mutation is missing exon 9 (ΔE9) from mRNA transcripts, and therefore, 

mice with this mutation produce more Aβ42, which is known to aggregate more 

aggressively than other common Aβ species (Jarrett & Lansbury, 1993). The APP/PS1 line 

forms plaque pathology around 6 mo and behavioral deficits by 7-9 mo (Table 1.2) 
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 The 3xTg mouse line attempted to recreate both pathological features of AD 

(plaques and tangles) into one mouse model. The 3xTg line gets its name from combining 

three familial AD mutations (APP KM670/671NL Swedish, MAPT P301L, and PSEN1 

M146V) (Oddo et al., 2003). The Microtubule-associated protein tau (MAPT) mutation 

P301L within exon 10 causes accelerated formation of paired helical filaments seen in AD 

(Barghorn et al., 2000). Therefore, these mice present both plaque and tangle pathology 

starting around 4 mo (Table 1.2). As seen in human AD progression, hyperphosphorylated 

tau aggregates are detected in the hippocampus after amyloid deposits are already 

established.  

 Next, to investigate the role of tau hyperphosphorylation alone, a mouse model was 

made using the same MAPT P301L mutation as in the 3xTg line, but absent of all plaque-

forming mutations. Regulation of this inserted MAPT overexpression is under the neuron-

specific mouse Thy1 promoter (Terwel et al., 2005). After mice have reached ~8 mo, tau 

tangles begin to form primarily in the brainstem and spinal cord (Table 1.2). Tangles 

continue to accumulate to a maximum of 12 mo, when affected mice die prematurely. 

Therefore, this mouse model is not ideal for extensive long-term age-related pathologies. 

Additionally, chronic drug treatments would have to be planned to start/end at younger 

ages than would be required of most other AD models.  

 The 5xFAD (Tg 6779) mouse model is the one that exhibits extremely aggressive 

AD-related phenotypes at a young age (Table 1.2). Genetically, this mouse was produced 

with five early-onset familial AD mutations (APP KM670/671NL (Swedish), APP I716V 
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(Florida), APP V717I (London), PSEN1 M146L (A>C), PSEN1 L286V). Statistically 

speaking, it would be highly improbable for any individual to possess all five mutations 

that are expressed in these mice. However, they are still a useful tool to study plaque 

formation on accelerated timelines. Additionally mouse lines with medium (Tg7031) and 

low (Tg 7092) expression levels were also developed which show the same pathological 

hallmarks but at a delayed rate of onset (Oakley et al., 2006). Importantly, these mice have 

been crossed with targeted replacement apoE2 (E2FAD), apoE3 (E3FAD), and apoE4 

(E4FAD) mice to study the interplay between plaque formation and its dependency and 

susceptibility to different apoE genotypes (Youmans et al., 2012). Note that apoE4 is 

highly associated with sporadic onset of AD and all mouse models referenced thus far have 

focused on familial mutations.  

Table 1.2 - Abbreviated list of commercially available mouse models of Alzheimer’s 

disease: 

 
Mouse 

Line 

Genes Expressed Plaque 

Formation 

Tangle 

Pathology 

Cognitive 

Impairment 

Synaptic 

Loss 

Source 

Reference 

PDAPP APP V717F (Indiana) 6 mo NA 3-9 mo <6 mo (Games et 

al., 1995) 

Tg2576 APP KM670/671NL 

(Swedish) 

12 mo NA 6 mo 4.5 mo  (Hsiao et 

al., 1996) 

APP/PS1 APP KM670/671NL 

(Swedish), PSEN1: 

deltaE9 

6 mo NA 8 mo 4 mo  (Jankowsky 

et al., 2001) 

3x Tg APP KM670/671NL 

(Swedish), MAPT 

P301L, PSEN1 M146V 

6 mo 12 mo 4 mo NA  (Oddo et 

al., 2003) 

Tau 

P301L 

MAPT P301L NA 8 mo 6 mo NA  (Terwel et 

al., 2005) 

5xFAD APP KM670/671NL 

(Swedish), APP I716V 

(Florida), APP V717I 

(London), PSEN1 

M146L (A>C), PSEN1 

L286V 

1.5 mo NA 4-5 mo 4-5 mo  (Oakley et 

al., 2006) 
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Connections between Alzheimer’s disease, lipoproteins, and cardiovascular disease 

(Hottman et al., 2014):  

Lipoproteins, as the name implies, are made of a combination of several types of 

lipids and proteins that form a hydrophobic core and a hydrophilic shell (Rosenson et al., 

2011). They are formed in extracellular space and circulate as soluble subcellular-sized 

particles in body fluids. The main function of lipoproteins is facilitating the delivery and 

clearance of lipids and lipid-soluble or associating molecules throughout the body. The 

hydrophobic core contains neutral lipids, predominantly triglycerides (TG) and cholesterol 

esters (CE). The hydrophilic shell consists of primarily phospholipids (PL), unesterified 

free cholesterol (FC), and various apolipoproteins, which mediate interactions with a 

variety of other molecules including enzymes, transporters, and receptors through a 

dynamic process. One critically important molecule in a variety of cellular functions is 

cholesterol. FC is synthesized in the mevalonate pathway. There are several other 

compounds produced in the mevalonate pathway such as heme A, dolichol, and 

ubiquinone. It is also important to note that several key hormones such as progesterone, 

aldosterone, and corticosterone are further products of mevalonate pathway (Fig. 1.1). 

Lipoproteins are separated and categorized based on their density into six sub-fractions 

(from low to high-density): chylomicrons, very-low density lipoprotein (VLDL), 

intermediate density lipoprotein (IDL), low-density lipoprotein (LDL), high-density 

lipoprotein (HDL), and lipoprotein (a) (LP(a)) (Nikolic et al., 2013). Low HDL-C and high 

LDL-C levels are strongly implicated in cardiovascular disease (Stampfer et al., 1991).  
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Fig. 1.1 – The mevalonate pathway. HMG-CoA reductase is a rate-limiting enzyme in the mevalonate 

pathway. Statins inhibit the activity of HMG-CoA reductase and limit the production of isoprenoid 

intermediates and cholesterol. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) 

serve as lipid donors for protein prenylation. They are also both important precursors to cholesterol. FPP is 

a major branching point in the cholesterol synthesis pathway. It is a precursor to all protein prenylation but 

also dolichol, heme, ubiquinone, squalene which eventually leads to cholesterol. 

Several lines of evidence suggest that AD and cardiovascular disease share 

common risk factors and pathogenic mechanisms. Recent reports correlate low levels of 

HDL with the onset of cognitive decline in AD patients (Merched et al., 2000). 

Additionally, elevated HDL has been associated with healthy aging. Interestingly, AD 

patients with high levels of HDL exhibit less severe AD-related symptoms than patients 

with lower HDL levels (Merched et al., 2000). Several genetic and environmental factors 

contribute to HDL levels and function. Of interest, apolipoprotein (apo) E4 carriers have a 

higher incidence of hypercholesterolemia and atherosclerosis (Corder et al., 1993). 

Additionally, the apoE4 allele is present in nearly half of AD patients (Corder et al., 1993). 
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These patients have elevated low-density lipoproteins (LDL) cholesterol, increasing the 

risk of developing coronary artery disease (CAD) and exacerbated levels of Aβ. 

Experimentally, diet-induced hypercholesterolemia causes Aβ deposits in the brain of 

rabbits (Sparks et al., 1994) and accelerates cerebral Aβ deposition in APP transgenic mice 

(Refolo et al., 2000; Levin-Allerhand et al., 2002; Shie et al., 2002). Finally, our previous 

research has shown that diet-induced and LDL receptor deficiency-induced 

hypercholesterolemia exacerbates amyloid pathology and memory deficits in a transgenic 

mouse model of AD (Li et al., 2003; Cao et al., 2007). 

In humans, cholesteryl ester transfer protein (CETP) activity mediates the transfer 

of cholesteryl esters from HDL to other lipoproteins, resulting in reduced HDL-cholesterol 

levels. Recent genomics studies have identified several mutations within the CETP gene. 

Mutations that resulted in reduced CETP activity have been associated with elevated 

plasma HDL-cholesterol levels and linked to healthy aging (Nir Barzilai et al., 2003). 

Interestingly, mice do not have CETP or an analogous protein (Guyard-Dangremont et al., 

1998; Haa and Barter 1982). Transgenic expression of CETP in mice lowers HDL-

cholesterol levels (Jiang et al., 1992). 

Apolipoprotein A-I (apoA-I) is a 243-residue protein primarily produced in the liver 

and intestine. ApoA-I is a core protein component of plasma HDL-cholesterol and 

determines the function of HDL. Strong evidence establishes that plasma apoA-I/HDL 

inversely correlate with the risk of cardiovascular disease (Davidson and Toth 2007). AD 

patients exhibit reduced plasma apoA-I (Johansson et al., 2017), and reduced plasma apoA-
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I is highly correlated with AD symptom severity (Merched et al., 2000). Therefore, raising 

HDL levels or improving HDL function is becoming an attractive therapeutic target for 

both cardiovascular disease and AD. We have recently shown that the overexpression of 

apoA-I in a mouse model of AD doubled plasma HDL-cholesterol levels (Lewis et al., 

2010). This increase in apoA-I/HDL resulted in reduced neuroinflammation and CAA 

without lowering total Aβ deposition (Lewis et al., 2010). CAA is caused by local Aβ 

deposition in cerebral vessels which reduces nutrient delivery to the brain. Increased CAA 

resulted in reduced spatial learning and exacerbated memory deficits. Conversely, 

decreasing apoA-I results in exacerbated AD pathology (Lefterov et al., 2010). Clinically, 

statins are used to decrease plasma LDL cholesterol and have been associated with a 

reduced risk of developing AD (Jick et al., 2000). Together, these results strongly implicate 

the importance of cholesterol in the pathogenesis of AD.  

Role of high-density lipoprotein in Alzheimer’s disease (Hottman et al., 2014): 

High-density lipoprotein metabolism in the systemic circulation: 

Lipoproteins may be characterized by their size, density, electrophoretic mobility, 

and composition. The most commonly used classification of lipoproteins is by density. Due 

to the dynamic nature of the lipoproteins, each class of lipoproteins can be divided into 

several subclasses. Specifically, HDL has a density of 1.063 – 1.210 g/mL and size of 

approximately 7-20 nm. They are formed both in the systemic circulation and in the brain. 

Plasma HDL has been studied extensively because of its well-established protective role 

in the cardiovascular system. Recent studies strongly suggest that the benefits of HDL 
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extend to the central nervous system (CNS). Mounting evidence indicates that HDL 

modulates cognitive function in aging and age-related neurodegenerative disorders. 

Although HDL is often referred to as HDL cholesterol (HDL-C), apoA-I is the 

major protein component of HDL in the plasma and determines most of its functions 

(Segrest et al., 2000). The lipid-associating domain (residues 44-243) of human apoA-I 

contains tandem repeats of amphipathic -helixes (Segrest et al., 1992). HDL biogenesis 

starts with the interaction between lipid-poor apoA-I and ATP-binding cassette transporter 

A1 (ABCA1) on the cell membrane of peripheral tissues, resulting in the formation of 

nascent discoidal HDL particles from cell membrane-derived PL and FC (Oram and 

Heinecke 2005). Of note, other apolipoproteins can also act as lipid acceptors for ABCA1. 

Importantly, this is the first step of RCT, a process that removes excess cholesterol from 

peripheral tissues to the liver for excretion in the bile. Once the discoidal particles reach 

plasma, apoA-I activates lecithin cholesterol acyltransferase (LCAT), forming mature, 

spherical, CE-rich HDL particles (Fig. 1.2). 
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Fig. 1.2 – Schematic of HDL metabolism in the systemic circulation. Formation of the nascent discoidal 

HDL through apoA-I and ABCA1 is the first step in reverse cholesterol transport (RCT), a process that 

removes excess cholesterol from peripheral tissues to the liver for excretion. In the plasma, apoA-I activates 

LCAT, which converts discoidal HDL to mature, spherical, CE-rich HDL particles. HDL interacts with other 

lipoprotein particles and cells through multiple receptors, transporters, and enzymes. Mature HDL removes 

cholesterol from peripheral cells through other ABC transporters such as ABCG1. Lipid-rich HDL selectively 

delivers CE to hepatocytes and steroidogenic cells through SR-B1. HDL-bound CETP mediates the exchange 

of CE from HDL to non-HDL particles and the transfer of TG from TG-rich lipoproteins to HDL. 

In the plasma, HDL interacts with cells and other lipoprotein particles through 

multiple receptors, transporters, and enzymes. Mature HDL can remove cholesterol from 

peripheral cells through other ABC transporters ABCG1/ABCG4, further promoting RCT. 

Lipid-rich HDL selectively delivers CE to hepatocytes and steroidogenic cells through 

scavenge receptor B1 (SR-B1), regenerating lipid-poor apoA-I/HDL particles for further 

interaction with ABCA1. HDL-bound CETP mediates the exchange of CE from HDL to 

non-HDL particles and the transfer of TG from TG-rich lipoproteins to HDL, resulting in 
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decrease of HDL-C levels. Thus, CETP inhibitors have been developed to raise HDL levels 

(discussed below). Other major HDL-interacting proteins include phospholipid transfer 

protein (PLTP), endothelial lipase, and hepatic lipase (Vance and Vance 2008).  

It is well established that plasma levels of apoA-I/HDL are negatively correlated 

with the incidence of coronary heart disease in humans (Davidson and Toth 2007). The 

mechanisms by which apoA-I/HDL protects against atherosclerosis are not fully 

understood at present. One of the major mechanisms is related to the role of apoA-I/HDL 

in RCT (Oram and Heinecke 2005). The initial cholesterol efflux involving the interaction 

of apoA-I and ABCA1 is a critical step in the RCT. Mutations/polymorphisms on ABCA1 

cause a significant reduction in HDL levels (familial hypoalphalipoproteinemia), to the 

point of near absence as reported in patients with Tangier disease (Oram and Heinecke 

2005).  

In addition to its role in RCT, apoA-I/HDL exerts a wide range of other functions 

including anti-oxidation (Navab et al., 2000), anti-inflammation (Cockerill et al., 1995), 

pro-endothelial function (O’Connell and Genest 2001), anti-thrombosis  (Barter et al., 

2004), and modulation of immune function (Barter et al., 2004). The multi-functionality of 

HDL contributes to its cardioprotective role. With the advance of modern technologies, 

recent proteomic and lipidomic analyses have revealed that approximately 188 proteins 

and over 200 lipid species are associated with plasma HDL (Toth et al., 2013). In addition, 

microRNAs (miRNAs) have also been found in human plasma HDL, and remarkably, HDL 

could deliver miRNAs to recipient cells through the SR-B1-depedent pathway  (Vickers et 
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al., 2011). Clearly, the complexity of HDL composition and function presents both the 

challenge and opportunity to develop HDL-based biomarkers and therapies for a number 

of diseases.  

High-density lipoprotein metabolism in the central nervous system: 

While lipoprotein metabolism in the systemic circulation has been studied 

extensively, interest in lipoprotein metabolism in the brain has only increased in recent 

years because of connections between apoE and the development of several neurological 

disorders. The brain is highly enriched in cholesterol and relies on de novo synthesis since 

cholesterol does not cross the blood-brain barrier (BBB)(Zhang & Liu, 2015). The CNS 

contains ~25% of total body cholesterol despite the fact that the brain accounts for only 

2% of total body mass (Dietschy and Turley 2001). In adults, the rate of cholesterol 

synthesis exceeds the need for forming new structures. One of the excretory pathways 

involves the formation of 24S-hydroxycholesterol that crosses the BBB into the plasma 

(Dietschy and Turley 2001).  

The major apolipoprotein in the brain is apoE, which is primarily produced by glial 

cells. In humans, there are three isoforms of apoE coded by three alleles: APOE-2, APOE-

3, and APOE-4, with an allele frequency of 7%, 78%, and 15%, respectively (Strittmatter 

and Roses 1996). ApoE has received tremendous attention due to its genetic association 

with AD. While the APOE-2 allele confers some protection against AD  (Corder et al., 

1994), the APOE-4 allele is associated with an increased risk of AD (Corder et al., 1993; 

Poirier et al., 1993). The brain also expresses lipoprotein receptors (e.g., LDLR, LRP, and 
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SR-B1), enzymes (e.g., LCAT and lipases), transfer proteins (e.g., PLTP and CETP), and 

ABC transporters (e.g., ABCA1 and ABCG1), although the presence of CETP in the brain 

is controversial (Albers et al., 1992; Demeester et al., 2000; Yamada et al., 1995). Because 

these proteins have well-established roles in cholesterol metabolism in the periphery, they 

are thought to play similar functions in the brain (Fig. 1.3).  

 

Fig. 1.3 – Schematic of HDL metabolism in the brain. Similar to the peripheral tissues, the brain expresses 

the various lipoprotein receptors (e.g., LDLR, LRP, and SR-B1), enzymes (e.g., LCAT and lipases), transfer 

proteins (e.g., PLTP and CETP), and ABC transporters (e.g., ABCA1 and ABCG1), although the presence 

of CETP in the brain is controversial. ApoE synthesized primarily by glia and apoA-I from the blood generate 

HDL particles and mediate cholesterol efflux through interactions with ABCA1 and ABCG1. LCAT converts 

the discoidal HDL to mature HDL particles. The HDL particles are remodeled by the interactions of apoE 

and apoA-I with various lipoprotein receptors on neurons and glia. 

HDL-like lipoprotein particles are found in the CSF and contain mainly apoE and 

apoA-I (Koch et al., 2001; Ladu et al., 2000). While the source of apoE is clearly from glia 

as plasma apoE cannot cross the BBB (Linton et al., 1991), the origin of apoA-I in the CSF 

is uncertain. It is generally thought that the brain does not produce apoA-I and that apoA-

I in the brain comes from the circulation (Dietschy and Turley 2001). However, porcine 
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cerebral endothelial cells have been shown to produce apoA-I (Möckel et al., 1994). 

Notably, the concentration of apoA-I in the CSF is comparable to that of apoE (Koch et 

al., 2001). In addition, plasma and CSF HDL cholesterol and apoA-I levels are correlated, 

suggesting that plasma apoA-I/HDL levels can influence brain apoA-I/HDL levels (Fagan 

et al., 2000). While the role of apoE in brain cholesterol metabolism and other pathways is 

well established (Yu, Youmans, and LaDu 2010), the neurobiological role of apoA-I has 

not been well studied. Experimental evidence has shown that rat astrocytes interact with 

both human apoE and apoA-I and generate HDL-like particles with distinct properties: 

apoE-HDL particles are cholesterol-rich whereas apoA-I-HDL particles are phospholipid-

rich (Ito et al., 1999). Human CSF lipoproteins are capable of inducing a significant 

cholesterol efflux from rat astrocytes (Demeester et al., 2000). The efflux ability of CSF 

lipoproteins is correlated more with the concentration of apoA-I in the CSF than that of 

apoE (Demeester et al., 2000). Also, exogenous human apoA-I is able to initiate a signal 

transduction pathway of intracellular cholesterol trafficking involving the activation of 

protein kinase C (PKC) in rat astrocytes for HDL biogenesis (Ito et al., 2002; Ito et al., 

2004). In addition, apoA-I and apoE-containing HDL in the CSF go through different 

remodeling in response to traumatic brain injury in human (Kay et al., 2003). These 

findings, together with other evidence discussed below, suggest that apoA-I-containing 

HDL may have important functions in the brain under physiological and pathological 

conditions. 
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High-density lipoprotein and age-related cognitive decline: 

While many genetic and environmental factors contribute to the healthy aging 

process, recent studies indicate that HDL may play a significant role in maintaining 

cognitive function during aging. A study with a group of 139 centenarians (Ashkenazi Jews 

older than 95 years) showed that plasma HDL levels were high and positively correlated 

with cognitive function (Atzmon et al., 2002). Consistent with the HDL levels, increased 

plasma apoA-I and decreased plasma triglyceride levels were also correlated with a 

significantly superior cognitive function. Another study in 158 Ashkenazi Jews with 

exceptional longevity (average age 99 years) also found that high levels of HDL were 

associated with less age-related cognitive impairment and improved memory (Barzilai et 

al., 2006). In agreement, the Leiden 85-plus study with 561 subjects also reported that low 

HDL was associated with cognitive impairment independent of atherosclerotic disease 

(Van Exel et al., 2002). A recent population-based study, the Longitudinal Aging Study 

Amsterdam, further demonstrated that high HDL was associated with better memory 

performance in people aged 65 years and older (van den Kommer et al., 2012). 

Consistently, low HDL levels have been associated with poor memory and decline in 

memory in middle-aged adults and cognitively normal elderly individuals in the Whitehall 

II study and the Sydney Memory and Aging study, respectively (Singh-Manoux et al., 

2008; Song et al., 2012). These findings underscore the protective effects of increased 

plasma HDL and its role in maintaining superior cognition in aging. 
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Notably, the genotype of apoE, known as a major genetic determinant for AD, also 

affects cognitive decline in normal aging. Carriers of the APOE-4 allele showed decline 

in memory before the age of 60 years and exhibited greater acceleration than non-carriers  

(Caselli et al., 2009). A recent study also showed that aging individuals without dementia, 

but with possession of the APOE-4 allele have a higher rate of cognitive decline in the 

ninth decade of life  (Schiepers et al., 2012). It is also worth noting that carriers of APOE-

4 have a proatherogenic lipid profile with lower HDL and higher VLDL and TG levels in 

the plasma than non-carriers. A recent study suggests that the high lipid affinity of apoE4 

is responsible for such a lipid profile (Hui Li et al., 2013). These findings suggest that 

besides the direct influence of apoE4 on brain function, systemic effects of apoE4 may also 

contribute to the compromised cognitive performance in carriers. 

In addition to the APOE-4 allele, recent gene association studies provided further 

evidence for the beneficial effects of HDL and/or apoA-I on cognitive decline in aging. 

Functional polymorphisms in the gene for CETP, which cause lower levels of CETP and 

higher levels of HDL, are associated with slower cognitive decline in aging (Barzilai et al., 

2006; Sanders et al., 2010; Izaks et al., 2012), although some inconsistency exists (Yu et 

al., 2012). Furthermore, genetic variants in apoC-III, which cause lower levels of 

triglycerides and higher levels of HDL, are associated with exceptional longevity (Atzmon 

et al., 2006) and cardioprotection  (Pollin et al., 2008; Jørgensen et al., 2014; Crosby et al., 

2014), whereas the apoC-III variants with opposite effects are associated with impaired 

cognition (Smith et al., 2009). Whole-genome sequence-based analysis suggests that 

common variation contributes more to heritability of HDL levels than rare variation  
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(Morrison et al., 2013). Whether all HDL-regulating genetic variations affect cognitive 

function awaits further investigation.  

High-density lipoprotein and Alzheimer’s disease: 

The pathogenesis of AD, particularly the sporadic form of AD, is not fully 

understood. While aging itself is the biggest risk factor for AD, the APOE-4 allele is a 

major genetic risk factor for sporadic AD (Corder et al., 1993) and the role of apoE in AD 

has been well studied. In addition to APOE, recent large genome-wide association studies 

have identified over 20 loci that contribute to the risk of sporadic AD (reviewed in  

(Rosenthal and Kamboh 2014; Reitz 2012)). Several loci, such as CLU (clusterin or apoJ) 

and ABCA7, are closely involved in the cholesterol metabolism pathway. However, both 

clusterin and ABCA7 also have roles in the innate immunity. Whether CLU and ABCA7 

variants associated with the AD risk influence brain or plasma HDL levels or functions is 

unknown.  

Clinical studies in different ethnic populations have shown that high levels of 

plasma HDL were associated with a decreased risk for AD, although there have been a few 

exceptions (Launer et al., 2001; Reitz et al., 2004; Vollbach et al., 2005). An early study 

with a group of 45 Japanese patients with AD found that plasma levels of apoA-I and apoA-

II were markedly decreased compared to 79 controls (Kawano et al., 1995). Consistently, 

a study with a cohort of 98 French AD patients and 59 controls showed that decreased HDL 

cholesterol and serum apoA-I concentrations were highly correlated with the severity of 

AD (Merched et al., 2000). Another study with 334 elderly French subjects found that high 



25 
 

HDL cholesterol levels were associated with a significantly decreased risk of AD (Bonarek 

et al., 2000). Furthermore, the Honolulu-Asia aging study with 929 men indicated that the 

levels of apoA-I and HDL cholesterol were inversely associated with the risk of AD 

(Saczynski et al., 2007). More recently, the Manhattan cognitive study with 1,130 

individuals also showed that high levels of HDL cholesterol were associated with a 

decreased risk of both probable and possible AD (Reitz et al., 2010). Consistently, the 

InChianti study with 1,051 Italians older than 65 years of age reported that low HDL 

cholesterol levels were associated with dementia (Zuliani et al., 2010). In addition, another 

recent study with 664 subjects from the Sydney Memory and Aging study reported that 

elderly individuals with MCI had abnormal plasma levels of HDL-associated 

apolipoproteins. MCI subjects had lower levels of apoA-I, apoA-II and apoH, and higher 

level of apoE and apoJ. Lower apoA-I, apoA-II and apoH levels increased the risk of 

cognitive decline over two years. Intriguingly, among the apolipoproteins, apoA-I was the 

most significant predictor of cognitive decline (Song et al., 2012).  

Further support for a protective role of HDL in AD comes from studies in animal 

models. Generally, mice are not the ideal animal model for studying human lipoprotein 

metabolism and AD due to physiological differences between the species. However, many 

different transgenic mouse models have been developed to mimic relevant human 

physiology (Laferla and Green 2017; Getz and Reardon 2012). Multiple laboratories have 

consistently shown that genetic and pharmacological manipulation of important players in 

HDL biogenesis-related pathways, such as ABCA1 and liver X receptors (LXR), modifies 

the development of AD-like pathology and cognitive impairment in mouse models of AD 
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(Burns et al., 2006; Fitz et al., 2010; Donkin et al., 2010; Jiang et al., 2008; Hirsch-

Reinshagen et al., 2005; Koldamova et al., 2005; Koldamova et al., 2005; Riddell et al., 

2007; Vanmierlo et al., 2011; Wahrle et al., 2005; Zelcer et al., 2007; Wesson et al., 2011). 

Furthermore, genetic overexpression of human apoA-I and accompanied increase of 

functional HDL prevented the development of age-related cognitive deficits in the 

APP/PS1 mouse model of AD (Lewis et al., 2010). Consistently, lack of apoA-I 

exacerbated cognitive deficits in APP/PS1 mice (Lefterov et al., 2010). Intriguingly, 

genetic manipulation of apoA-I does not affect total brain parenchymal Aβ deposition 

(Fagan et al., 2004; Lewis et al., 2010; Lefterov et al., 2010) but significantly changes the 

dynamics of cerebrovascular Aβ deposition; apoA-I overexpression attenuates whereas 

apoA-I deficiency exacerbates CAA in AD mice (Lefterov et al., 2010; Lewis et al., 2010). 

Notably, HDL deficiency could be particularly detrimental in APOE-4 carriers as a recent 

study showed that ABCA1 deficiency worsened AD-like cognitive impairment and Aβ 

deposition in human apoE4 but not in apoE3-targeted replacement mice. In apoE4 mice, 

plasma HDL and Aβ levels were significantly decreased and the plasma HDL level was 

negatively correlated with amyloid plaques in the brain, suggesting a role of plasma HDL 

in Aβ clearance (Fitz et al., 2012). Taken together, these findings provide compelling 

evidence that HDL and associated apolipoproteins play a pivotal role in modulating the 

pathogenesis of AD. 
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Potential mechanisms by which high-density lipoprotein modulates cognitive 

function: 

Although the evidence for the protective role of HDL in cognition is substantial, 

the underlying mechanisms by which HDL modulates cognitive function are poorly 

understood. Clearly, multiple functions of HDL are involved under different conditions. 

To simplify the discussion, AD is used to illustrate potential mechanisms of action for 

apoA-I to modulate the disease process (Fig. 1.4). Since the systemic effects of HDL are 

well established (Davidson and Toth 2007) and the cerebrovascular function of HDL in 

AD has been summarized recently by an excellent review (Stukas et al., 2014), this section 

focuses on the potential direct role of apoA-I in the brain.  
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Fig. 1.4 – Schematic of potential mechanisms by which apoA-I and HDL modulates AD pathogenesis. 

ApoA-I is hypothesized to act on 5 major pathways to exert its neuroprotective effects pertinent to AD. (1) 

Cholesterol efflux pathway. ApoA-I in the brain promotes the cellular cholesterol efflux through ABCA1 

and forms HDL-like particles. These particles are cleared by interacting with receptors such as SR-B1 by 

cells in the brain or through the BBB to peripheral circulation. (2) APP trafficking and processing pathway. 

ApoA-I-mediated changes in membrane fluidity may enhance α-secretase cleavage of APP at the cell 

membrane. Also, apoA-I binds to the extracellular domain of APP, which may prevent APP from undergoing 

the endocytic process, thereby inhibiting the access of β- and γ-secretases to get access to APP and reducing 

the generation of Aβ. (3) Aβ clearance pathway. ApoA-I binds to Aβ and inhibits Aβ aggregation. ApoA-

I/HDL in the brain can mediate the clearance of Aβ by local cells (e.g., astrocytes and microglia) through the 

scavenger receptor (e.g., SR-B1) and/or by crossing the BBB to the systemic circulation. (4) Anti-oxidation 

and anti-inflammation. ApoA-I/HDL possesses anti-oxidant and anti-inflammatory properties that are 

neuroprotective. (5) Signal transduction and synaptic plasticity. ApoA-I/HDL activates several kinases and 

increase the level of cAMP directly or indirectly through ABCA1 or SR-B1. These molecules play important 

roles in signaling pathways pertinent to synaptic function and memory formation.  

Cholesterol efflux pathways: It has been shown in vitro and in vivo that, as in the 

periphery, apoA-I in the brain promotes the cellular cholesterol efflux through ABCA1 and 

forms discoidal HDL-like particles (Ito et al., 1999; Wahrle et al., 2004). With the 
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activation of LCAT by apoA-I, FC is converted to CE, resulting in the formation of 

spheroidal HDL-like particles. These particles are cleared by interacting with receptors 

such as SR-B1 by cells in the brain or through the BBB to peripheral circulation 

(Panzenboeck 2002). These particles also function to deliver cholesterol to sites for growth 

or recovery from traumatic brain injuries (Kay et al., 2003). While it is true that most 

apolipoproteins can act as cholesterol acceptors in ABCA1-mediated cholesterol efflux, 

they exhibit differential efficacy and produce particles with distinct properties (Ito et al., 

1999). It has also been shown that apoA-I in the CSF is more efficient than apoE for 

mediating cholesterol efflux (Demeester et al., 2000). 

Amyloid precursor protein trafficking and processing pathways: ApoA-I/HDL in 

the brain may affect the APP processing pathways through both of the following 

mechanisms: a) apoA-I mediates efficient cellular cholesterol efflux (Demeester et al., 

2000) the resultant increase in membrane fluidity could enhance α-secretase cleavage of 

APP at the cell membrane and b) apoA-I binds to APP at the cell surface (Koldamova et 

al., 2001); thereby it may prevent APP from undergoing the endocytic process, which is 

necessary for - and -secretases to get access to APP. Thus, the final consequence of these 

effects would be less generation of A. 

Amyloid β clearance pathways: Overproduction of Aβ in the brain causes familial 

AD, but impaired Aβ clearance from the brain is implicated in sporadic AD (Scheuner et 

al., 1996; Castellano et al., 2011; Mawuenyega et al., 2010). ApoA-I binds to A and 

inhibits A aggregation and cytotoxicity in vitro (Koldamova et al., 2001). In addition, the 
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binding affinity of human apoA-I for A is higher than that of human apoE (Koldamova 

et al., 2001). Therefore, the apoA-I/HDL in the brain is expected to be more effective in 

binding A and mediates the clearance of A by local cells (e.g., astrocytes and microglia) 

through the scavenger receptor (e.g., SR-B1) and/or by crossing the BBB to the systemic 

circulation (Sagare et al., 2012). Supporting this notion, studies in  APP/PS1 mice have 

demonstrated that lack of apoA-I exacerbates whereas overexpression of human A-I 

ameliorates cerebrovascular deposition of Aβ (Lefterov et al., 2010; Lewis et al., 2010). 

Additionally, a recent study has shown that apoE has minimal direct interaction with Aβ 

and competes with Aβ for the same clearance pathways within the brain (Verghese et al., 

2013). These intriguing results suggest that upregulation of apoA-I and/or inhibition of 

apoE competition with Aβ for cellular uptake in the brain might be an effective means to 

enhance Aβ clearance.  

Anti-oxidation and anti-inflammation pathways: Oxidative stress and inflammation 

contribute to the etiology of AD (Keeney et al., 2013; Schrag et al., 2013; Wyss-Coray and 

Rogers 2012). Anti-oxidant and anti-inflammatory properties of apoA-I/HDL have been 

shown to play significant roles in protecting against cardiovascular disease (Barter et al., 

2004). These same mechanisms may play a significant role in neuroprotection. Previous 

studies support this hypothesis: a) the level of CSF apoA-I is increased significantly after 

infection in macaques (Saito et al., 1997); b) CSF apoA-I-containing lipoproteins remodel 

after traumatic brain injury in humans (Kay et al., 2003); c) reconstituted human apoA-I-

containing HDL reduces neuronal damage in rat models of stroke, via an anti-oxidative 

mechanism (Paternò et al., 2004); d) an apoA-I mimetic peptide inhibits inflammation in 
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the brain and improves cognitive performance in mice (Buga et al., 2006; Handattu et al., 

2009); and e) overexpression of human apoA-I attenuates neuroinflammation in AD mice 

(Lewis et al., 2010).  

Signal transduction and synaptic plasticity related to high-density lipoprotein: A-

induced synaptic dysfunction is thought to be the underlying cause for cognitive 

impairment in AD (Selkoe et al., 2002). Importantly, diminished  synaptic plasticity is 

thought to represent early events in AD progression (Selkoe et al., 2002). ApoA-I/HDL has 

been shown to activate several kinases (e.g. PKA, PKC, PI3K, MAPK, and Akt) and 

increase the level of cAMP directly or indirectly through ABCA1 or SR-B1 in peripheral 

cells and in astrocytes (Haidar et al., 2004; J. Ito et al., 2004; Mineo et al., 2003; Yamauchi 

et al., 2003). These molecules play important roles in signaling pathways pertinent to 

synaptic function and memory formation. ApoA-I may directly modulate synaptic 

plasticity through interactions with these signaling molecules.  

Potential of high-density lipoprotein–enhancing pharmacotherapies to improve 

cognitive function: 

All five currently available FDA approved therapies for AD treat symptomatic 

aspects of the disease and not the underlying dysfunctions. Fortunately, there are several 

novel mechanisms, targets, and compounds aimed at reducing Aβ burden and preventing 

AD progression.  
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Compelling evidence indicates that functional HDL is crucial for the protection of 

cardiovascular, cerebrovascular, and cognitive functions. Thus, therapeutic approaches that 

enhance HDL functions will benefit both peripheral and central nervous systems. Although 

exercise, diet and other lifestyle measures are the most favorable ways to raise HDL levels, 

adherence to these measures might be difficult. Furthermore, there are genetic conditions 

in which lifestyle change alone may not be sufficient to modulate the level and function of 

HDL. In these scenarios, therapeutic intervention is needed. This section summarizes 

HDL-enhancing pharmacotherapies currently available or under investigation.  

Niacin and niacin receptor agonists: Niacin, also known as vitamin B3 or nicotinic 

acid, is an important precursor for the coenzymes NAD and NADP, which are essential for 

proper tissue catabolism and anabolism. GPR109A (PUMA-G/HM74A) was identified as 

the receptor for niacin  (Tunaru et al., 2003). GRP109A is a G-protein coupled receptor 

expressed in adipocytes, spleen, and immune cells. When activated, GRP109A reduces 

intracellular cAMP and inhibits lipolysis.  

Niacin has been used for over 50 years to raise HDL-C levels (Carlson 2005). At 

present, niacin is the most effective HDL-raising agent available clinically. It also lowers 

the level of TG, lipoprotein (a), and LDL-C (Toth et al., 2013). A recent clinical trial (AIM-

HIGH; Clinicaltrials.gov NCT00120289) showed that in patients with cardiovascular 

disease and low HDL-C levels, treatment with extended-release niacin, 1500 to 2000 mg 

per day, significantly increased HDL-C (25%) while decreasing TG (29%) and LDL-C 

(16%) (McBride 2011). Further analysis also showed that niacin treatment modestly 
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increased apoA-1 (7%), decreased apoB (13%), decreased the apoB/apoA-I ratio (19%), 

and decreased Lipoprotein (a) (21%) (Albers et al., 2013). However, these favorable 

changes in lipoprotein profiles did not lead to the reduction of cardiovascular events 

(Boden et al., 2011). It is worth noting that the patients in this trial were receiving intensive 

statin therapy and their baseline LDL-C was very low (74 mg/dL)  (McBride 2011). Thus, 

it is possible that no additional benefits from niacin treatment can be achieved in patients 

with very low LDL-C levels. This possibility is supported by another recent clinical trial 

(HPS2-THRIVE ClinicalTrials.gov Identifier: NCT00461630) (Haynes et al., 2013). In 

this study, participants were treated with extended-release niacin combined with 

laropiprant, a prostaglandin-D2 receptor-1 inhibitor, to alleviate niacin-induced facial 

flushing. Subgroup analysis from this study showed that in participants with LDL-C lower 

than 78mg/dL no benefit was found with niacin/laropiprant treatment, but in participants 

with LDL-C higher than 78 mg/dL benefit was observed with the treatment  (Haynes et al., 

2013). It is worth noting that the formulation of niacin influences the side effects of niacin. 

Standard immediate-release niacin causes a high frequency of flushing and long-acting 

niacin causes less flushing but increases the risk of hepatotoxicity, whereas extended-

release niacin causes fewer of both types of adverse effects (McKenney 2003). Thus, a 

proper formulation of niacin should be selected to reduce potential side effects of long-

term use of niacin.  

In addition to niacin, synthetic GRP109A agonists, such as MK-1903, have been 

developed. MK-1903 has been evaluated in phase I and II studies to treat dyslipidemia. 

MK-1903 treatment produced a significant decrease in plasma free fatty acids. However, 
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MK-1903 had a smaller effect on serum lipid levels compared with niacin, suggesting that 

niacin may act on a GRP109A-independent pathway (Boatman et al., 2012). Further studies 

in animal models and humans confirmed that GPR109A receptor does not mediate niacin’s 

lipid efficacy (Lauring et al., 2012), opening the door for identifying new molecular target 

(s) of niacin and developing novel approaches to raise HDL. 

Peroxisome proliferator-activated receptor α agonists – fibrates: There are four 

commonly prescribed drugs in the fibrate family: bezafibrate, ciprofibrate, gemfibrozil, 

and fenofibrate. Fibrates mainly work by activating the peroxisome proliferator-activated 

receptor α (PPARα). Activation of PPARα induces the transcription of genes that promote 

lipoprotein lipolysis, decrease TG production, facilitate LDL clearance, reduce CE and TG 

exchange between VLDL and HDL, and increase HDL/apoA-I production (Staels et al., 

1998). Thus, fibrates are used in patients with low HDL-C or high TG levels. However, 

mixed results have been reported from clinical trials with fibrates for cardiovascular 

diseases (reviewed in  (Toth et al., 2013)). Post hoc analyses of multiple trials suggest that 

fibrates produce significant benefits only in subgroups of patients with low HDL-C and 

high TG levels. Interestingly, in a group of 22 elderly hypertriglyceridemia patients, 600mg 

of gemfibrozil daily resulted in a significant decrease in serum TG levels. Patients treated 

with gemfibrozil maintained better cerebral perfusion and scored better on cognitive 

performance measures than untreated controls (Rogers et al., 1989). Cognitive benefits of 

fibrates needs to be confirmed in further clinical studies.  
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In addition, fibrates are commonly used in combination therapy with statins. It is 

important to note that the combination of gemfibrozil and statin significantly increases the 

risk of rhabdomyolysis (Pierce et al., 1990; Staffa et al., 2002), due to partial inhibition of 

gemfibrozil on the metabolism of statins  (Prueksaritanont et al., 2002). In contrast to 

gemfibrozil, fenofibrate does not increase the concentrations of statins  (Bergman et al., 

2004). The combination of fenofibrate and statin has been used in large, long-term clinical 

trials and there was no evidence for an increased risk of myositis or rhabdomyolysis 

compared to statin monotherapy (Ginsberg et al., 2010; Farnier et al., 2011). A recent meta-

analysis on the safety of the co-administration of statin with fenofibrate also concluded that 

statin-fenofibrate combination therapy was tolerated as well as statin monotherapy  (Guo 

et al., 2012). 

Statin monotherapy: Atorvastatin is a commonly prescribed 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor to treat hypercholesterolemia 

and interest arose when long-term statin use was thought to be protective against AD  

(Shepardson et al., 2011). However, the LEADe trial (ClinicalTrials.gov Identifier: 

NCT00024531) recruited 641 patients with mild to moderate AD and tested to see if there 

was any cognitive benefit to an 18 month treatment with 80mg/day atorvastatin (Jones et 

al., 2008). Unfortunately, there was no cognitive benefit in mild to moderate AD patients 

who were randomized to atorvastatin (Feldman et al., 2010). However, smaller scale future 

studies did report positive effects on cerebral blood flow in patients taking atorvastatin  (Xu 

et al., 2008). It is possible that early interventions would be more beneficial in preventing 

initial cognitive decline in patients at risk for developing AD.  
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Similar to atorvastatin, simvastatin is an HMG-CoA reductase inhibitor to treat 

hypercholesterolemia and was FDA approved in 1991 (Cechinel-Filho 2012). Original 

excitement around statins in AD arose from a six-month clinical trial conducted in 

Germany, which reported that simvastatin treatment lowered Aβ CSF levels in AD patients 

(Simons et al., 2002; Locatelli et al., 2002). However, additional small-scale follow-up 

studies have been less clear  (Hoglund et al., 2005). In 2003, a 406 patient multicenter study 

was performed to evaluate if simvastatin was able to slow AD progression. The CLASP 

trial (ClinicalTrials.gov Identifier: NCT00053599) reported expected changes in 

cholesterol levels, but did not alter cognitive function or cognitive decline  (Sano et al., 

2011). However, it has been speculated that while simvastatin is incapable of restoring 

memory function, it may be protective if started prior to AD symptom onset. To address 

this question, the multicenter SIMaMCI (Clinical Trials.gov NCT00842920) study 

recruited 445 patients with memory impairment, but without diagnosed AD. The SIMaMCI 

study plans to determine if simvastatin can delay the time until patients convert from MCI 

to AD. The study is set to run through 2019 and is expected to provide crucial insight into 

mechanisms underlying dementia conversion.  

Apolipoprotein A-1 infusion: The strong negative correlation between plasma 

apoA-I levels and cardiovascular disease and consistent experimental results in animal 

models have led to direct infusion of apoA-I in human clinical trials. Nissen et al., infused 

human patients with a recombinant apoA-IMilano, a form of apoA-I that is associated with 

lower risk for cardiovascular disease (Franceschini et al., 1980), and observed a significant 

regression of coronary atherosclerosis (Nissen et al., 2003). Another group performed a 
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randomized human trial to test the infusion of apoA-I incorporated into recombinant HDL 

(rHDL). The study determined that short-term infusion of rHDL produced a significant 

reduction of atheroma volume and improved plaque characterization index and coronary 

score (Tardif et al., 2007). More evidence of atheroprotection was obtained with the 

infusion of apoA-I or apoA-IMilano in both animal models and human clinical trials. 

Remarkably, a single infusion was shown to be enough to significantly reduce 

atherosclerosis and infer positive effects on plaque characterization (Tardif 2010). 

Additionally, researchers infused rabbits with either lipid free apoA-I or apoA-I in rHDL. 

The infusions markedly inhibited vascular inflammation in the rabbits (Patel et al., 2010). 

A recent study showed that infusion of apoA-I produced an increase in cholesterol efflux 

from macrophages, favorably remodeled HDL and reduced cytokine secretion in both 

rabbits and human blood (Diditchenko et al., 2013). 

Whether apoA-I infusion has any effect on cognition has not been investigated. As 

discussed in previous sections, low levels of apoA-I have been associated with poor 

cognitive function in aging and in neurodegenerative diseases. Experimentally, apoA-I 

overexpression in the periphery was shown to reduce neuroinflammation, attenuate 

cerebral amyloid angiopathy and inhibit cognitive decline in a mouse model of AD  (Lewis 

et al., 2010). Thus, a beneficial effect of apoA-I infusion on cognitive function is an 

intriguing possibility.  

Apolipoprotein A-I and high-density lipoprotein mimetic peptides: A major 

obstacle in the path of using native apoA-I as therapeutics is its lack of oral bioavailability. 
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Additional concern stems from the high cost and relative difficulty of mass-producing full-

length apoA-I. Thus, the development of orally bioavailable small peptides, which retain 

the atheroprotective effects of apoA-I, was a highly enticing prospect. These small peptides 

are described as apoA-I mimetics. The general design of the apoA-I mimetics is an 

amphipathic peptide, which adopts an alpha helical secondary structure similar to that seen 

in the full-length apoA-I (Segrest et al., 1992). Mimetics can be synthesized from D-amino 

acids and thus have higher oral bioavailability. Of note, in addition to apoA-I mimetics, 

peptides derived from other HDL-associated apolipoproteins including apoE and apoJ have 

also been created. Readers interested in gaining a more comprehensive understanding of 

HDL mimetic peptides are encouraged to refer to excellent recent reviews (Getz et al., 

2010; Leman et al., 2014). 

Research into the development of apoA-I mimetic peptides began in an effort to 

design therapeutics for atherosclerosis. In line with that goal, a number of mimetic peptides 

were created and tested for therapeutic benefit in mice and cell culture. In order to preserve 

lipid-binding and anti-atherosclerotic activity, an 18 amino acid peptide was designed 

without sequence homology to apoA-I, but remaining structurally similar. The peptide, 

called 18A, formed an amphipathic alpha helical secondary structure and was shown to 

have a similar lipid-binding capacity as full-length apoA-I (Anantharamaiah et al., 1985).  

Modifications were made to 18A, wherein a number of non-polar residues were 

replaced with phenylalanines (F) in an attempt to bolster its atheroprotective affects, and 

the most successful of these modified peptides was 4F (Datta et al., 2001). The oral 
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bioavailability of 4F in the plasma was quite low, however, and so its enantiomer, D-4F, 

was created and shown to remain in the plasma for much longer after oral gavage (Navab 

et al., 2005). The atheroprotective and anti-inflammatory efficacy of 4F has been described 

in vitro, in animal models and in human clinical trials. D-4F has been shown to inhibit 

atherosclerotic lesion development and also to reduce inflammation in mice and rabbits 

(Navab et al., 2005; Van Lenten et al., 2007). The D-4F peptide promotes RCT, induces 

functional changes in macrophage activity, and reduces lipid oxidation in vascular plaques 

(Smythies et al., 2010; Navab et al., 2005). Furthermore, a single dose of D-4F was well 

tolerated and improved the HDL anti-inflammatory profile of human patients with 

cardiovascular disease (Bloedon et al., 2008). These data make further studies on D-4F a 

particularly intriguing objective.  

Due to the known correlation between vascular risk factors and cognitive decline, 

HDL mimetic peptides have been tested for efficacy in improving mental health. In fact, 

D-4F has been shown to have effects on cognitive capacity. In LDL receptor-null mice, D-

4F was shown to reduce inflammation in the vasculature of the brain and improve cognitive 

performance without influencing plasma lipid levels (Buga et al., 2006). Additionally, D-

4F in combination with pravastatin was shown to inhibit Aβ plaque formation and improve 

cognitive function by inducing an anti-inflammatory effect in the brain without affecting 

plasma HDL-C levels (Handattu et al., 2009), suggesting that D-4F improves the quality 

not the quantity of HDL and/or directly modulate disease-related processes in the brain. 
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Cholesteryl ester transport protein inhibitors: Based on several lines of evidence 

that CETP deficiency/inhibition is associated with an elevated level of HDL and a 

decreased risk for cardiovascular disease, CETP inhibitors have been developed and tested 

in clinical trials. Torcetrapib was the first CETP inhibitor tested. In ILLUMINATE trial 

(ClinicalTrials.gov Identifier: NCT00134264) (Barter et al., 2007), torcetrapib 

significantly increased the level of HDL-C in treated patients but failed to show a clinical 

benefit. In fact, torcetrapib was associated with an increase in cardiovascular events due to 

unexpected off-target adverse effects resulting in hypertension. Dalcetrapib was the second 

CETP inhibitor to undergo clinical trials. In the dal-OUTCOMES trial (ClinicalTrials.gov 

identifier NCT00658515) (Schwartz et al., 2012), dalcetrapib successfully increased HDL-

C levels but did not reduce recurrent cardiovascular events. Dalcetrapib was safe and the 

reason for its failure is not clear. It has been suggested that dalcetrapib-induced increase in 

HDL-C levels might not have been sufficient or it was not accompanied by an enhancement 

of the protective properties of HDL (Rader and deGoma 2014; Toth et al., 2013). Two new 

CETP inhibitors, anacetrapib and evacetrapib, are much more potent than dalcetrapib and 

do not have the off-target adverse effects of torcetrapib (Gotto and Moon 2012; Nicholls 

et al., 2011). However, similar to the dal-OUTCOMES trial, outcomes from the 

ACCELERATE evacetrapib trial (ClinicalTrials.gov Identifier: NCT01687998) were 

disappointing. Evacetrapib successfully elevated HDL and reduced LDL, but these changes 

did not result in a significantly reduction in the incidence of cardiovascular events 

compared to placebo among patients with high-risk vascular disease  (Riesmeyer et al., 

2017; Eyvazian and Frishman 2017). Encouragingly, the anacetrapib REVEAL trail 



41 
 

(ClinicalTrials.gov Identifier: NCT01252953) met its primary endpoint of significantly 

reducing major coronary events compared to placebo (Landray 2017). Full results will be 

available later in 2017. Additionally, the DEFINE trial (ClinicalTrials.gov Identifier: 

NCT00685776) is a smaller scale trial with anacetrapib aimed at ensuring there are no 

adverse cardiovascular events that were seen with torcetrapib and full results will be 

available later in 2017. Interim analysis showed similar findings to the larger REVEAL 

trial (ClinicalTrials.gov Identifier: NCT01252953)  (Brinton et al., 2015).  

Reverse cholesterol transport enhancers – liver X receptor agonists and retinoid X 

receptor agonists: As RCT is thought to be the most relevant cardioprotective mechanism 

mediated by HDL, much effort has been made to develop agents that promote RCT. Liver 

X receptors (LXRα and LXRß) are oxysterol activated nuclear receptors. Together with 

retinoid X receptors (RXRs), LXRs regulate the expression of a variety of target genes that 

control lipid and glucose homeostasis, steroidogenesis and inflammatory responses. 

Activation of LXRs has been shown to promote RCT though ABCA1 and ABCG1 and 

increase intestinal HDL generation (Costet et al., 2000; Brunham et al., 2006).  

Several synthetic LXR agonists, including T0901317, GW3965 and LXR-623, are 

currently undergoing experimental testing for the treatment of dyslipidemia and 

atherosclerosis. Recently, accumulating preclinical evidence indicates the therapeutic 

potential of LXR agonists for AD. Studies in multiple laboratories have shown that LXR 

agonists improve cognitive functions either with or without reducing Aβ levels in the brain 

of AD mice (Donkin et al., 2010; Fitz et al., 2010; Jiang et al., 2008; Riddell et al., 2007; 
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Vanmierlo et al., 2011; Wesson et al., 2011). Specifically, in the APP23 mouse model of 

AD, T0901317 treatment ameliorated amyloid pathology and memory deficits (Fitz et al., 

2010). It was shown that T0901317 treatment resulted in a decrease in Aβ levels in the 

interstitial fluid of the hippocampus, supporting the role of LXR agonists in facilitating Aβ 

clearance. In vitro experiments demonstrated that ABCA1 was essential for lipidation of 

apoE and mediated the effects of T0901317 on Aβ degradation by microglia (Fitz et al., 

2010). The specific role of ABCA1 in mediating benefits of LXR agonists in AD mice was 

further confirmed by another study with GW3965 in the APP/PS1 mouse model of AD 

(Donkin et al., 2010). These findings indicate that LXR agonists exert neurological benefits 

through the ABCA1/apoE-HDL pathway. Interestingly, a recent study showed that 

GW3965 treatment dramatically increased the level of apoA-I in the brain of APP/PS1 

mice independent of ABCA1 (Stukas et al., 2012). Therefore, increase of apoA-I/HDL may 

also contribute to the beneficial effects of LXR agonists in AD mice. 

 In addition to LXR agonists, emerging evidence indicates that RXR agonists may 

also possess a therapeutic potential for AD. In a highly publicized report, acute treatment 

with a RXR agonist, bexarotene, a drug currently approved for the treatment of cutaneous 

T-cell lymphoma, rapidly and dramatically decreased Aβ levels/plaques in the brain of AD 

mice (Cramer et al., 2012). Bexarotene treatment lowered soluble Aβ levels in mouse 

interstitial fluid by 25% within 24 hours and reduced Aβ plaque area by more than 50% 

within 72 hours. It was shown that bexarotene increased Aβ clearance via an apoE-

dependent mechanism as the treatment promoted the expression of apoE, ABCA1, and 

ABCG1 in the brain. Remarkably, bexarotene rescued cognitive function in a mouse model 
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of AD after as few as 7 days of treatment (Cramer et al., 2012). However, the effectiveness 

of bexarotene in AD mice has been questioned by subsequent studies as the reduction of 

Aβ plaques in treated mice could not be reproduced (Tesseur et al., 2013; Veeraraghavalu 

et al., 2013; Price et al., 2013; Fitz et al., 2013). The discrepancy observed in these studies 

might result from differences in drug formulations and mouse models (Landreth et al., 

2013). Nevertheless, some studies replicated the decrease in soluble Aβ levels (Fitz et al., 

2013; Veeraraghavalu et al., 2013) and the improvement of cognitive function (Fitz et al., 

2013; Tesseur et al., 2013) in bexarotene-treated AD mice. Importantly, bexarotene 

increased Aβ clearance and rescued cognitive function in APP/PS1 mice expressing either 

human apoE3 or apoE4 isoform (Fitz et al., 2013). In contrast, a more recent study did not 

find any changes in Aβ plaques or cognitive deficits in bexarotene-treated APP/PS1 mice  

(LaClair et al., 2013). Thus, further studies are required to clarify the effects of bexarotene 

on AD-related processes.  

Apolipoprotein A-1 upregulators – RVX-208: RVX-208 is a novel small molecule 

that stimulates apoA-I gene expression leading to an increase in HDL levels and 

functionality (Bailey et al., 2010). Recent studies showed that RVX-208 is a specific 

inhibitor for BET bromodomains that regulate expression of a variety of genes including 

apoA-I (McLure et al., 2013; Picaud et al., 2013). Early testing in African green monkeys 

demonstrated that a 63-day RVX-208 treatment markedly increased serum apoA-I (60%) 

and HDL-C levels (97%), accompanied by the enhancement of ABCA1, ABCG1, and SR-

B1-mediated cholesterol efflux (Bailey et al., 2010).  
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Positive results from animal models and early human clinical trials have led to 

further human clinical trials. The Phase IIb SUSTAIN trial (ClinicalTrials.gov Identifier: 

NCT01423188) was designed to evaluate the lipid efficacy, safety and tolerability of RVX-

208, and the ASSURE trial (ClinicalTrials.gov Identifier: NCT01067820) was designed to 

evaluate the effect of RVX-208 on atherosclerotic plaque burden using intravascular 

ultrasound (IVUS) imaging (Nicholls et al., 2012). Findings from these clinical trials 

suggest that RVX-208 has the potential for the treatment of cardiovascular disease. 

In addition, RVX-208 may also have a therapeutic potential for diabetes and AD. 

A Phase II clinical trial of RVX-208 in pre-diabetic patients is ongoing (ClinicalTrials.gov 

Identifier: NCT01728467). On AD, a pilot Phase Ia study showed a trend of increase in the 

level of Aβ40 in the plasma of patients treated with RVX-208 for 7 days compared to 

controls (Resverlogix 2008)(http://www.resverlogix.com/upload/latest_news/81/01/2008-

11-10_alzheimers_program_final.pdf). This preliminary result was confirmed in a more 

recent Phase II ASSERT trial (ClinicalTrials.gov Identifier: NCT01058018), in which 12-

week treatment with RVX-208 significantly increased the plasma Aβ40 level compared to 

baseline or the level of placebo-treated controls (Resverlogix 2011) 

(http://www.resverlogix.com/media/press-release.html?id=451). These intriguing 

observations are consistent with the findings from genetic upregulation of apoA-I in AD 

mice (Lewis et al., 2010) and support the notion that elevating apoA-I levels in the systemic 

circulation enhances Aβ clearance from the brain. Further clinical trials of RXV-208 in AD 

or pre-AD patients will be needed to determine whether RVX-208 can modulate the 

progression of AD. 

http://www.resverlogix.com/upload/latest_news/81/01/2008-11-10_alzheimers_program_final.pdf
http://www.resverlogix.com/upload/latest_news/81/01/2008-11-10_alzheimers_program_final.pdf
http://www.resverlogix.com/media/press-release.html?id=451
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Protein prenylation in relation to synaptic function (Hottman & Li, 2014): 

Isoprenoids and protein prenylation: 

As noted previously, cholesterol shares a synthesis pathway with several other 

important biological processes. One such pathway includes the production of intermediary 

isoprenoids, which can also be pharmacologically manipulated with statins. In particular, 

the isoprenoid farnesyl-pyrophosphate (FPP) is a major branching point in the mevalonate 

pathway between further isoprenoid/prenylation targets and cholesterol synthesis. Levels 

of FPP and geranylgeranyl pyrophosphate (GGPP) are elevated in AD patients indicating 

a ‘back up’ in the normal synthesis pathway (Eckert et al., 2009). Indeed, alteration of 

protein prenylation has been implicated in many types of cancers (Sebti & Hamilton, 2000; 

Whyte et al., 1997) and viral infection (Ye et al., 2003).  

Many proteins undergo posttranslational modifications that allow for proper protein 

folding, trafficking, and function (Krishna and Wold 1993). These modifications often 

include the addition of functional groups such as phosphates, lipids and carbohydrates. The 

functions of proteins are regulated by posttranslational modifications. One type of lipid 

posttranslational modifications is prenylation (Lane and Beese 2006). Prenylation refers to 

the addition of short-chain lipid molecules called isoprenoids to the C-terminus of target 

proteins. Isoprenoids are short-chain lipid molecules formed in the mevalonate pathway 

for cholesterol biosynthesis (Goldstein and Brown 1990) (Fig. 1.5). These lipid 

attachments facilitate the anchoring of proteins to the cell membrane and mediate protein-

protein interactions. Prenylated proteins are involved in regulating a variety of cellular 
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functions including synaptic plasticity and in the pathogenesis of a number of diseases 

including AD.  

 

Fig. 1.5 – The mevalonate pathway focusing on isoprenoids. HMG-CoA reductase is a rate-limiting 

enzyme in the mevalonate pathway. Statins inhibit the activity of HMG-CoA reductase and limit the 

production of isoprenoid intermediates and cholesterol. Farnesyl pyrophosphate (FPP) and geranylgeranyl 

pyrophosphate (GGPP) serve as lipid donors for protein prenylation. Farnesyl transferase inhibitors (FTIs) 

and geranylgeranyl transferase-1 inhibitors (GGTIs) block protein farnesylation and geranylgeranylation, 

respectively. 

The 15-carbon isoprenoid, FPP, is a major branching point in the mevalonate 

pathway that is commonly associated with cholesterol synthesis. FPP serves as a substrate 

for several enzymes, including squalene synthase (SS), farnesyl transferase (FT), and 

GGPP synthase (GGPPS) that produces the 20-carbon GGPP. FPP is also a precursor for 
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the synthesis of long-chain isoprenoids such as dolichol, ubiquinone (coenzyme Q), and 

heme. FPP and GGPP serve as lipid donors for protein prenylation. 

During protein farnesylation and geranylgeranylation, collectively called protein 

prenylation, FPP and GGPP are covalently attached to the C-terminus of target proteins, 

respectively (Lane and Beese 2006). Farnesylation is catalyzed by protein farnesyl 

transferase (FT) and occurs on cysteine residues present in tetrapeptide recognition 

sequences (CAAX, in which C is cysteine, A is an aliphatic amino acid and X is variable) 

located at the C-termini of their target protein substrates. In contrast, geranylgeranylation 

is catalyzed by two different protein geranylgeranyl transferases. Geranylgeranyl 

transferase-1 (GGT-1) acts on substrates that contain C-terminal tetrapeptide sequences 

similar to but distinct from FT substrates, whereas geranylgeranyl transferase-2 (GGT-2 or 

RabGGT) recognizes more structurally complex sequences and exclusively prenylates Rab 

proteins  (Lane and Beese 2006; Leung et al., 2006). Protein prenylation is an important 

posttranslational modification that allows proteins to anchor to the cell membrane or other 

subcellular locations and mediates protein-protein interactions (McTaggart 2006). 

Statins are drugs commonly used to regulate blood cholesterol levels. Stains work 

by inhibiting HMG-CoA reductase, a rate-limiting step in the mevalonate pathway for 

cholesterol biosynthesis that converts of acetyl-CoA to mevalonate (Fig. 1.2 and 1.5). 

Inhibition of HMG-CoA reductase results in a decreased level of FPP and GGPP, and thus, 

may lead to decreased farnesylation and geranylgeranylation of proteins  (Liao 2002; 

Vaughan 2003). As such, it is difficult to dissect the roles of farnesylation and 
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geranylgeranylation using statins. To this end, drugs have been developed to specifically 

target FT and GGT-1 (Berndt et al., 2011). Farnesyl transferase inhibitors (FTIs) and 

geranylgeranyl transferase-1 inhibitors (GGTIs) are powerful tools for studying the 

function of specific prenylation pathways. These drugs are currently under investigation 

for the treatment of cancers and other disorders  (Li et al., 2012). 

Over 100 proteins are known to undergo prenylation (McTaggart 2006; Berndt et 

al., 2011). They include heterotrimeric G protein subunits and nuclear lamins but the 

largest and most extensively studied group is the Ras superfamily of small GTPases.  

Ras superfamily of small GTPases: 

The Ras GTPase superfamily consists of over 150 known members, divided 

between five major subfamilies: Ras, Rho, Rab, Arf/Sar and Ran (Rodriguez-Viciana et 

al., 2004). Specific small GTPases regulate a number of effector proteins and may have 

different final intracellular locations, and in some cases, differential prenylation can affect 

the subcellular distribution and function of small GTPases (Du et al.,1999; Liu et al., 2000).  

In general, small GTPases act as molecular switches that are activated, or ‘turned 

on’ by guanine nucleotide exchange factors (GEFs) and inhibited, or ‘turned off’ by 

GTPase-activating proteins (GAPs) (Klooster 2007; Tolias and Duman 2011). GEFs 

promote the dissociation of guanosine diphosphate (GDP) from small GTPases (Schmidt 

et al., 2002). This dissociation step allows the exchange of GDP for guanosine triphosphate 

(GTP). A small GTPase is considered ‘active’ when GTP is bound. Antagonistically, GAPs 

enhance the rate of the weak intrinsic GTP hydrolysis activity of small GTPases (Bernards 
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and Settleman 2004). Small GTPases depend on prenylation for proper cellular localization 

and function (McTaggart 2006). Inhibiting small GTPase prenylation affects many cellular 

functions such as cytoskeletal stability and the efficiency of vesicular transport (Ridley 

2001). More recent studies have also revealed that the interplay between small GTPase 

GEFs and GAPs regulates spine morphogenesis and synapse development (Kiraly et al., 

2010). Interestingly, GGT-1 itself has been shown to have a direct role in neuromuscular 

junction formation and maintenance by controlling acetyl choline receptor rearrangement 

during development (Luo et al., 2003). In addition to morphological changes, small 

GTPases are involved in multiple signaling pathways that regulate synaptic plasticity (Ye 

and Carew 2010). 

Synaptic plasticity:  

In its most general definition, synaptic plasticity is the strengthening or weakening 

of the synapse between two neurons over time (Hughes 1958). Synaptic plasticity has many 

underlying mechanisms, including pre-synaptic changes regulating the amount of 

neurotransmitter released, and post-synaptic changes such as the incorporation of new 

neurotransmitter receptors (Gerrow and Triller 2010). In general, both the strengthening 

and weakening of a synapse depends on calcium uptake. Two major molecular mechanisms 

of synaptic plasticity in the hippocampus include the regulation and activity of N-methyl 

D-aspartate (NMDA) and α-amino-3-hydroxy-5methyl-4-isoxazolepropionic acid 

(AMPA) glutamate receptors (Shi et al., 1999) (Fig. 1.6).  
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Fig. 1.6 – Schematic diagram of a synapse. At resting membrane potentials, NMDA receptors are blocked 

by Mg2+. Low intracellular concentrations of Ca2+ prevent the autophosphorylation of Ca2+/calmodulin-

dependent protein kinase (CaMKII). B) Post-synaptic depolarization pushes the Mg2+ out of the NMDA 

channel pore, allowing Ca2+ to enter the cell. Glutamate (Glu) from the pre-synaptic cell binds to AMPA and 

NMDA receptors to depolarize the post-synaptic cell. The rise in intracellular Ca2+ promotes CaMKII 

autophosphorylation. Once phosphorylated, CaMKII phosphorylates AMPA subunits to enhance their 

conductance. CaMKII also promotes the exocytosis of receptor containing vesicles and thereby increases the 

presence of receptors at the synapse. Furthermore, CaMKII activates RasGEFs (guanine exchange factors) 

and promotes the turnover of inactive Ras-GDP to active Ras-GTP. Downstream signaling cascades include 

mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and 

phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT). When activated (phosphorylated), ERK and AKT 

facilitate exocytosis of glutamate receptors during synaptic plasticity. In addition, neuronal activity activates 

Rho GTPases. Active (GTP-bound) Rac1/Cdc42 enhance while RhoA inhibits synapse/spine formation. 

Notably, before NMDA receptors open their ion channel, glutamate must be present 

at the receptor while the post-synaptic cell is depolarized  (Dingledine et al., 1999). This is 

due to a magnesium block in the NMDA channel pore that must be expelled by a reduction 

in the voltage across the post-synaptic cell membrane (Nowak et al., 1984). Once open, 

NMDA channels allow for calcium to rush into the cell and trigger downstream signaling 
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cascades that alter the synaptic strength between the two cells  (Nowak et al., 1984; 

Premkumar and Auerbach 1996). These NMDA receptors act as a ‘coincidence detector’ 

because two events need to occur within a narrow temporal window to allow calcium to 

flow into the post-synaptic cell (Caporale and Dan 2008).  

Calcium influx from NMDA receptors is necessary for the activation of 

Ca2+/calmodulin-dependent protein kinase II (CaMKII)  (Lisman 1994). The activation of 

NMDA receptors is a mechanism to transfer the information of mutual depolarization 

across the synapse. If the two cells continue to fire strongly together, their synapses will 

strengthen over time by the addition of AMPA and NMDA receptors to the post-synaptic 

cell membrane, or phosphorylation of the subunits of existing AMPA and NMDA receptors 

in the membrane (Barria et al., 1997; Mammen et al., 1997). The changes in synaptic 

potentiation exist in equilibrium, and therefore, AMPA and NMDA receptors can be 

removed/dephosphorylated from synapses.  

Synaptic plasticity can be divided into two major categories, short-term plasticity, 

and long-term plasticity. Long-term plasticity can be further separated into long-term 

depression (LTD), early long-term potentiation (E-LTP), and late long-term potentiation 

(L-LTP)  (Sweatt 1999; Kandel 2001; Malenka and Bear 2004). LTD is the weakening of 

synaptic strength over time, often by removal or dephosphorylating of post-synaptic 

receptors. E-LTP is the enhancement of synaptic strength that is not dependent on protein 

synthesis. L-LTP has the longest lasting effects, and is dependent on synthesis of new 

proteins in response to increased synaptic activity. Small GTPases are involved in 
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regulating multiple aspects of synaptic plasticity and the following sections will briefly 

discuss the roles of Ras and Rho subfamilies of proteins in synaptic function. 

Ras and synaptic plasticity: 

Ras subfamily GTPases were originally studied for their role in oncogenesis. 

Constitutively active mutations in Ras small GTPases occur in 8% to 93% of cancers 

depending on the tumor type (Bos 1989). This underscores the importance of proper 

regulation of small GTPases. Normally, Ras small GTPases play crucial roles in regulating 

cell proliferation, differentiation, cell survival, and memory formation  (Konstantinopoulos 

et al., 2007; Ye and Carew 2010). The well-known members of Ras subfamily of small 

GTPases include H-Ras, K-Ras, and N-Ras. Ras small GTPases primarily undergo 

farnesylation but some of them can also undergo geranylgeranylation. For example, while 

H-Ras is exclusively farnesylated, K-Ras and N-Ras can be geranylgeranylated when 

farnesyltransferase is inhibited  (Liu et al., 2010). Major downstream signaling cascades of 

Ras include mitogen-activated protein kinases (MAPK), such as extracellular signal-

regulated kinase (ERK), and phosphoinositide 3-kinase (PI3K), which regulate glutamate 

receptor trafficking during synaptic plasticity (Fig. 1.6) (Ye and Carew 2010; Stornetta and 

Zhu 2010).  

Several lines of evidence indicate that H-Ras plays a negative role in regulating 

synaptic plasticity and memory function. In a mouse model of neurofibromatosis type 1 

mental retardation, which is characterized by the hyperactivity of Ras, learning/memory 

and synaptic function are severely impaired  (Costa et al., 2002; Li et al., 2005). Treatment 
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with an FTI or a statin rescues hyperactive Ras-induced synaptic and memory impairment  

(Costa et al., 2002; Li et al., 2005). Similarly, H-Ras overexpression negatively affects the 

NMDA receptor transmission by decreasing the level of tyrosine phosphorylation of the 

NMDA receptor NR2A subunit  (Thornton et al., 2003). In contrast, mice deficient in H-

Ras expression display enhanced tyrosine phosphorylation of NMDA receptors and 

NMDA receptor-mediated hippocampal LTP  (Manabe et al., 2000). These data support 

the role of Ras small GTPases in regulating NMDA receptor dependent synaptic plasticity.  

Rho and synaptic plasticity: 

The Rho subfamily of GTPases primarily undergoes geranylgeranylation, although 

some are exclusively farnesylated (e.g., RhoE). Others, such as RhoB, can be either 

farnesylated or geranylgeranylated (Adamson et al., 1992; Baron et al., 2000). 

Interestingly, geranylgeranylated and farnesylated RhoB exhibit distinct and opposite 

functions. Geranylgeranylated RhoB inhibits cell growth, whereas farnesylated RhoB 

promotes cell growth and transformation (Du et al., 1999; Liu et al., 2000). However, for 

some Rho GTPases, although their functions depend on being prenylated, either 

geranylgeranylated or farnesylated form works equally. For example, RhoA is exclusively 

geranylgeranylated under physiological conditions; when RhoA is mutated to become 

susceptible to farnesylation, the farnesylated RhoA shows similar subcellular location and 

functions as the geranylgeranylated RhoA  (Solski et al., 2002). 

The Rho subfamily of GTPases is one of the major regulators in synaptic plasticity, 

both in dendrite morphogenesis and stability as well as in growth cone motility (Govek et 
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al., 2011; Newey et al., 2005; Tolias and Duman 2011). Rho proteins are well documented 

for their role in the regulation of actin rearrangement in neuronal cytoskeletons. 

Specifically, three major Rho proteins, RhoA, Rac1, and Cdc42, regulate neuronal 

structures and synaptic connectivity  (Newey et al., 2005; Govek et al., 2011; Tolias and 

Duman 2011) . When activated by GEFs, Rho small GTPases interact with effector 

proteins, initiating signaling cascades that control actin cytoskeletal rearrangement, 

microtubule rearrangement, transcription, membrane trafficking, and act as key regulators 

of dendritic growth and spine morphogenesis  (Govek et al., 2011; Newey et al., 2005; 

Tolias and Duman 2011) (Fig. 1.6).  

The interaction between the Rho GTPases determines the complexity of the 

dendritic tree and the formation of spines. RhoA, Rac1, and Cdc42 play differential roles 

in regulating dendritic growth and spine formation. Activation of Rac1 and Cdc42 

promotes dendritic branching/remodeling and spine formation, whereas activation of RhoA 

exhibits opposite function, reducing dendritic growth/complexity and spine density/length 

(Newey et al., 2005). Rac1 is highly expressed in the hippocampus of adult mice  (Tejada-

Simona et al., 2006). The hippocampus is well known for its synaptic plasticity and its 

importance in developing associative memories  (Gruart et al., 2006; Kandel 2001). Rac1 

plays an important role in the formation of neuronal synapses at their correct locations. 

Specifically, in vitro studies show that NMDA receptor activation induces membrane 

translocation and activation of Rac1 in the CA1 region of the hippocampus  (Tejada-

Simona et al., 2006). Activation of tyrosine kinase receptor B (TrkB) by brain-derived 

neurotropic factor (BDNF) leads to the activation of Rac1 and induces changes in cellular 
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morphology  (Miyamoto et al., 2006). Notably, BDNF-dependent dendritic morphogenesis 

requires the activation of GGT-1, the enzyme that catalyzes the geranylgeranylation of 

Rac1 and other Rho proteins  (Zhou et al., 2008). In addition, TrkB is physically associated 

with GGT-1 and neuronal activity enhances this association and GGT-1 activity, further 

promoting dendritic spine morphogenesis (Zhou et al., 2008). Conversely, activation of 

RhoA inhibits dendritic growth and spine formation in multiple model systems  (Newey et 

al., 2005). The negative role of RhoA on dendritic growth and spine morphogenesis is 

partly mediated by the RhoA effector Rho-kinase (ROCK)  (Nakayama et al., 2000). 

Specific inhibitors of ROCK can block active RhoA-induced dendritic simplification  

(Nakayama et al., 2000). The balance between the positive and negative effects of 

Rac1/Cdc42 and RhoA guarantees the proper development of dendrites and dendritic 

spines that are important postsynaptic structures regulating synaptic plasticity.  

Implications of protein prenylation in Alzheimer’s disease: 

In the brain of AD patients, Aβ accumulates as the disease progresses. The 

structural integrity of synapses degrades rapidly during β-amyloidosis (Klyubin et al., 

2012), with the longer amyloidogenic Aβ42 being more potent than Aβ40 in disrupting 

synaptic plasticity (Nomura et al., 2012). One of the mechanisms by which Aβ impairs 

synaptic function is by promoting endocytosis of NMDA receptors and thereby reducing 

the presence of NMDA receptors at the cell surface (Snyder et al., 2005). Importantly, the 

impairment of synaptic function in the hippocampus occurs prior to the appearance of 

insoluble amyloid plaques and neuronal cell death (Selkoe et al., 2002). However, 
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inhibition of Aβ-producing enzymes under normal conditions results in abnormalities in 

synaptic function (Wang et al., 2012). These findings suggest that Aβ itself may have 

normal physiological functions which are disrupted by abnormal accumulation of Aβ 

during AD pathology.  

Emerging evidence indicates that isoprenoids/protein prenylation and small 

GTPases affect multiple aspects of AD (Fig. 1.7) (Cole and Vassar 2006; Hooff et al., 

2010). 

 

Fig. 1.7 – Schematic diagram of interplay between prenylated proteins and AD pathology.  

For example, statin-induced depletion of isoprenoids leads to reduced levels of 

protein prenylation and promotes non-amyloidogenic processing of APP and reduces the 

production of Aβ  (Pedrini et al., 2005; Cole et al., 2005; Ostrowski et al., 2007; Zhou et 

al., 2008). Interestingly, while geranylgeranylated RhoA-mediated activation of ROCK 

increases Aβ secretion via modulation of γ-secretase (Zhou et al., 2003), specific inhibition 
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of farnesylated RhoB/ROCK pathway promotes α-secretase activity (Pedrini et al., 2005). 

Of note, although inhibitors of ROCK reduce total Aβ secretion, targeting ROCK by 

expression of dominant-negative or constitutively active ROCK mutants failed to modulate 

Aβ secretion (Leuchtenberger et al., 2006). Additional in vitro experiments show that 

statin-induced low isoprenoid conditions cause the accumulation of intracellular APP, the 

C-terminal fragment of APP produced by β-secretase cleavage (β-CTF), and Aβ, which 

can be rescued by GGPP supplementation, suggesting the involvement of 

geranylgeranylated target proteins  (Cole et al., 2005). The study also shows that low 

isoprenoid levels inhibit the trafficking of APP through the secretory pathway (Cole et al., 

2005). A more recent study further demonstrates that low isoprenoid conditions induced 

by physiologically relevant doses of statins preferentially inhibit the geranylgeranylation 

of Rab family proteins involved in vesicle trafficking and thereby affects the trafficking 

and intracellular localization of APP (Ostrowski et al., 2007). Inhibition of Rac also 

regulates APP expression and processing (Wang et al., 2009; Boo et al., 2008). In contrast, 

supplementation of FPP and/or GGPP stimulates the production of Aβ (Zhou et al., 2008, 

2003; Kukar et al., 2005).  

Intriguingly, the interplay between isoprenoids/prenylated proteins and APP/Aβ 

metabolism appears to be reciprocal. It has been shown that Aβ and other APP cleavage 

products such as APP intracellular domain (AICD) may directly regulate the activities of 

the enzymes in the mevalonate pathway thereby changing the levels of isoprenoids and 

other lipids  (Grimm et al., 2005, 2012). Consistent with these findings, the levels of FPP 

and GGPP are elevated in the brains of patients with AD (Eckert et al., 2009), suggesting 
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that the abundance of prenylated proteins could be increased in AD brains. Indeed, the level 

of Ras (both cytosolic and membrane/prenylated fractions) in the brain is increased in the 

early stage of AD (Gärtner et al., 1995, 1999), suggest that upregulation of Ras may play 

an important role in the pathogenic cascade leading to AD. Aβ causes cellular dislocation 

and dysfunction of Rac and its effector protein PAK (Zhao et al., 2006; Ma et al., 2008). 

Also, the level of prenylated RhoA is increased in Aβ-treated neuroblastoma cells and in 

the neurons surrounding Aβ plaques in AD mice (Petratos et al., 2008). Conversely, a 

recent study shows that a toxic level of oligomeric Aβ42 inhibits protein prenylation 

(Mohamed et al., 2012).  

In addition to APP/Aβ metabolism, prenylation/GTPases have been shown to be 

involved in other aspects of AD pathology. For instance, inhibition of prenylation of Rho 

GTPases leads to attenuation of Aβ-induced neuroinflammation (Cordle and Landreth 

2005; Cordle et al., 2005). Limiting the availability of isoprenoids for prenylation has been 

shown to protect neurons from Aβ-induced apoptosis via activating pro-survival signaling 

pathways (Johnson-anuna et al., 2005; Franke et al., 2007; Cespedes-Rubio et al., 2010). 

Activation of the prenylated protein Rac1 has been shown to contribute to increased 

oxidative stress in AD (Lee et al., 2002; Chéret et al., 2008). Inhibition of Rho prenylation 

decreases total and phosphorylated tau levels (Hamano et al., 2012). We and others have 

also shown that manipulation of isoprenoid and protein prenylation levels modulates 

synaptic plasticity and cognitive function in animal models (Mans et al., 2010, 2012; Li et 

al., 2006; Ye and Carew 2010; Costa et al., 2002). Intriguingly, inhibiting the level of 

FPP/farnesylation, but not GGPP/geranylgeranylation, enhances hippocampal synaptic 
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plasticity in brain slices of mature C57BL/6 mice (Mans et al., 2012; Parent et al., 2014). 

Consistent with these results, our most recent study indicates that haplodeficiency in 

farnesyl transferase, but not geranylgeranyl transferase-1, rescues cognitive function as 

well as attenuates Aβ-associated neuropathology and neuroinflammation in a mouse model 

of AD (Cheng et al., 2013a). Taken together, these findings strongly suggest that alteration 

of small GTPases is implicated in the pathogenesis of AD and that modulation of protein 

prenylation, in particular protein farnesylation, may present a potential therapeutic strategy 

for AD. 
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CHAPTER 2 – TRANSGENIC EXPRESSION OF CHOLESTERYL ESTER 

TRANSPORT PROTEIN DOES NOT AFFECT AMYLOID PATHOLOGY IN 

APP/PS1 MICE 

Introduction: 

AD is the most common form of age-related dementia (Alzheimer’s Association 

2017). AD is clinically diagnosed by progressive memory loss and biochemically 

characterized by amyloid deposits and neurofibrillary tangles. The importance of 

lipoprotein metabolism has been well established in the development and progression of 

AD (Vitali et al., 2014). In fact, apoE is the strongest genetic risk factor in the development 

of AD (Corder et al., 1993). Brain-derived apoE is secreted from astrocytes (Linton et al., 

1991) and forms particles similar to HDL particles in the plasma (Stukas et al., 2014).  

Several types of apolipoproteins are not able to cross from the periphery into the 

CNS. ApoA-I is not produced in the brain (Dietschy and Turley 2001) and is minimally 

capable of crossing into the CNS, possibly via SR-BI mediated transcytosis (Rigotti et al., 

1997) or choroid plexis (Stukas et al., 2014). Other important apolipoproteins detected in 

the CNS include apoJ, apoA-II, apoA-IV, apoD, and apoH (Thanopoulou et al., 2010). The 

general structure of lipoprotein particles includes a hydrophobic core surrounded by a 

hydrophilic shell. The hydrophobic core contains neutral, non-polar lipids, predominantly 

TG and CE. The hydrophilic shell consists of primarily PL, unesterified FC, and various 

apos, which mediate interactions with a variety of other molecules including enzymes, 

transporters, and receptors through a dynamic process.  
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HDL, often known as the “good cholesterol”, is widely known to be cardio-

protective  (Barter et al., 2004) and emerging evidence to the cognitive benefits of HDL 

are currently being described (Hottman et al., 2014; Lewis et al., 2010). HDL-like particles 

in the CSF are formed from brain-derived apoE primarily secreted by astrocytes and 

microglia. Newly transcribed and secreted apoE forms discoidal particles that are lipidated 

though several enzymatic steps to form mature, spherical HDL-like particles. One major 

protein responsible for the lipidation of apoE containing particles is the ABCA1. ABCA1 

interacts with poorly lipidated apoE on the surface of astrocytes to form HDL-like particles  

(Hirsch-Reinshagen et al., 2004; Wahrle et al., 2004). This process is known as RCT and 

is important in cholesterol homeostasis in the brain and periphery.  

The brain contains roughly 25% of the body’s total cholesterol (Dietschy and 

Turley 2004). Cholesterol is unable to cross the BBB. Therefore, all cholesterol found in 

the brain is synthesized by astrocytes and oligodendrocytes and is isolated from peripheral 

cholesterol reserves. Excess cholesterol in the brain can be metabolized by cytochromes 

P450 (cyp) 46A1 to form 24s-hydroxycholesterol which can be effluxed through the BBB 

into the periphery  (Dietschy and Turley 2001; Panzenboeck 2002).  

LCAT is a major enzyme responsible for the production of cholesteryl and 

oxysterol esters in plasma (Rousset et al., 2011). LCAT is primarily produced peripherally 

in the liver but is also produced in a smaller amount by astrocytes in the CNS (Hirsch-

Reinshagen et al., 2009). Recent literature reports that the genetic deletion of LCAT from 

mice does not impair amyloid metabolism in APP/PS1 mice (Stukas et al., 2014).  
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CETP also plays an important role in lipoprotein remodeling in the plasma and 

CNS. CETP functions to convert HDL to other, lower density, lipoproteins – effectively 

lowering protective levels of HDL and aiding in the formation of lower density fractions 

that have been linked to several cardiac and neurological diseases and complications 

(Barkowski and Frishman 2008). CETP has been isolated from human CSF, which is 

thought to have a similar function in the CNS as in the periphery. Interestingly, mice lack 

a CETP gene. This results in a preservation of the HDL fraction since endogenous CETP 

in humans facilitates the transport of cholesteryl esters and triglycerides between 

lipoproteins. Our previous research has shown that elevated HDL cholesterol levels 

improve cognitive learning and memory in an AD mouse model (Lewis et al., 2010). 

Conversely, genetically reduced HDL cholesterol levels drastically decreased cognitive 

performance in mice (Lefterov et al., 2010).  

The role of CETP in AD is not known. To address the question of whether CETP 

expression affects Aβ levels, we crossed CETP-expressing transgenic mice with the 

APP/PS1 model of AD and generated the triple transgenic APP/PS1/CETP mice. We found 

that the presence of CETP reduced the level of HDL-C but did not significantly affect the 

soluble and aggregated Aβ levels or plaque load in the cortex and hippocampus in the 

APP/PS1 mice at 6 and 9 mo. Consistently, expression of CETP did not exacerbate 

cognitive deficits in APP/PS1 mice. These results suggest that CETP expression itself or 

CETP-induced lowering of HDL-C is not sufficient to influence β-amyloidogenesis and 

cognitive function in APP/PS1 mice at young ages (6-9 mo). 
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Materials and methods: 

Animals:  

APPPS1 double transgenic mice (B6C3-Tg (APPswe, PSEN1dE9) 85Dbo/J; stock 

number 004462 (Jankowsky et al., 2004)) on a mixed genetic background (B6xC3H) were 

crossed with mice expressing CETP under its endogenous promotor ((C57BL/6J x 

CBA/J)F1; backcrossed to C57BL/6 for at least ten generations; stock number 003904 

(Jiang et al., 1992); The Jackson Laboratory (Bar Harbor, ME)). Littermate controls were 

used for all genotype comparisons. All transgenes are kept heterozygotic. Genotypes of the 

mice were determined by PCR analysis of genomic DNA from tail biopsies with gene-

specific primers. All animal procedures used for this study were prospectively reviewed 

and approved by the Institutional Animal Care and Use Committee of the University of 

Minnesota. 

Blood collection and brain tissue preparation:  

The mice were deeply anesthetized using Ketamine/Xylazine. Blood was collected 

using heparin rinsed syringes via from cardiac puncture. Following perfusion with ice-cold 

PBS, brains were cut sagittally into left and right hemispheres. The left hemisphere was 

fixed in 4% paraformaldehyde for histological analysis. Cortical and hippocampal regions 

were separated from the right hemisphere and snap-frozen in liquid nitrogen and stored at 

-80 °C for biochemical analysis. 
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Cholesterol and paraoxonase analysis:  

Fresh plasma was separated from whole blood via centrifugation at 3k rpm for 10 

min at 4°C. Total plasma was treated with HDL cholesterol reagent (Pontine Scientific) to 

separate HDL-cholesterol from non-HDL-cholesterol. Total cholesterol and HDL-

cholesterol fractions were then measured by the Infinity™ Cholesterol Liquid Stable 

Reagent (Thermo Scientific, Middletown, VA) as described previously (Cheng et al., 

2013b; Cao et al., 2007; Li et al., 2006; Cao et al., 2006). 

Brain amyloid β enzyme-linked immunosorbent assay: 

Brain homogenates were prepared as we described previously (Cao et al., 2007; 

Lewis et al., 2010). Commercial ELISA kits (Invitrogen) were used to measure Aβ40 and 

Aβ42 levels in carbonate-soluble and -insoluble (guanidine-soluble) fractions according to 

the manufacturer's protocol.  

Immunohistochemical analysis and quantification of amyloid β deposition: 

Protocols for immunohistochemical (IHC) analysis have been previously described 

(Cao et al., 2007; Billings et al., 2005; Lewis et al., 2010). Briefly, 4% paraformaldehyde 

fixed tissues were sectioned at 50 µm using a vibratome (Leica Microsystems Inc). Tissue 

sections were stored in PBS with 0.01% sodium azide at 4 °C. Tissue sections were 

subjected to free-floating immunostaining using the ABC kit (Vector Laboratories, 

Burlingame, CA) to detect Aβ, activated microglia, and activated astrocytes. The primary 

antibody 6E10 (signet) was used for assessing Aβ deposition, IBA-1 antibody (Wako) for 
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determining activated microglia, and GFAP antibody (Millipore) for assessing activated 

astrocytes. Immunoreactivity of Aβ, IBA-1, and GFAP in the cortex and hippocampus of 

mouse brains were quantified using a histomorphometry system (Image-Pro Plus, 

MediaCybernetics, Rockville, MD). 

Behavioral assessment: 

Several AD-related behavioral functions were assessed in the mice. The testing 

schedule included open field (days 1-3), the elevated plus-maze for anxiety levels (days 4-

5), and spatial learning in the Morris water maze (days 6-11). All equipment and software 

were purchased from SD Instruments (San Diego). All testing procedures have been 

previously described  (Li et al., 2006; Cao et al., 2007; Lewis et al., 2010; Cheng et al., 

2013b). 

Briefly, the Morris water maze tests the special learning and memory systems of a 

mouse. A round basin is filled with water and surrounded with extra-maze visual cues for 

orientation. The acquisition of the spatial task consists of placing the mice next to and 

facing the wall successively in the north, east, south, and west quadrants. An escape 

platform is hidden 0.5cm below the water level in the middle of the northeast quadrant. In 

each trial, the mouse is allowed to swim until it finds the hidden platform, or until 60 s 

have elapsed, whichever occurs first. If the mouse failed to find the hidden platform within 

60 s, the mouse was guided to the platform. The mice remained on the platform for 15 s 

before being partially dried and returned to their home cage. The escape latency and swim 

path were recorded by the ANYMAZE system (San Diego Instruments, San Diego) for 
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four trials daily over 5 days. The probe trial was performed on the 6th day of behavioral 

assessments. The probe trial was conducted by removing the platform and placing the 

mouse in the north quadrant as previously described. The time spent in the previously 

correct (target) quadrant and previous platform location crossovers were measured in a 

single 60 s trial. Following the probe trial, the visible acuity of the mice was tested. The 

escape platform was lifted to 1cm above the water level and shifted to the southwestern 

quadrant. A visible marker was added to the escape platform as a viewing aid. This visual 

trial was used to evaluate the visual acuity of the mice.  

Statistical analysis: 

Data are expressed as means ± S.E. Comparison of different genotype groups was 

performed by Student's t test and repeated measures of analysis of variance. p < 0.05 was 

considered statistically significant. 

Results: 

CETP transgenic expression has no negative effects during development or 

postnatal body weight gain:  

Our breeding strategy crossed APP/PS1 mice with CETP mice to produce four 

genotypes: Wild Type (WT), CETP, APP/PS1, APP/PS1/CETP. Each genotype has an 

expected occurrence of 25% of total mice. Our breeding strategy did not yield a genotype 

distribution that was significantly different from expected (χ2 = 0.82; p = 0.84) (Fig. 2.1). 

These data provide evidence that there are no negative developmental consequences in 
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mice expressing CETP, which ensures that any differences seen between CETP expressing 

and non-CETP expressing mice are not linked to developmental differences. We also did 

not observe any decrease in body weight due to CETP expression (Fig. 2.2). This is an 

indication that the health of the mice is similar across genotypes.  

 
Fig. 2.1 – CETP tg expression does not alter the survival rate of mice. Genotype was determined from 

tail biopsy via PCR with genotype specific primers. n = 23-34 mice per group. 

 

Fig. 2.2 – CETP tg expression did not perturb body weight. Body weight data was collected from 9 mo 

mice prior to dissection. n = 9-15 mice per group.  
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CETP expression leads to reduced levels of total cholesterol and HDL cholesterol:  

 We analyzed the plasma total and HDL cholesterol levels in the four genotypes. As 

hypothesized, CETP tg expression in CETP and APP/PS1/CETP mice decreased the total 

plasma cholesterol level by roughly 30% compared to non-CETP expressing mice (Fig. 

2.3a). These results provide evidence that human CETP expressing in a mouse is still 

enzymatically active on mouse lipoproteins. TC is reduced because mice carry a majority 

of their FC in the HDL fraction (Yin et al., 2012) and CETP activity has a net transfer from 

HDL to lower density lipoprotein fractions. This characterization of CETP expressing mice 

helps establish them as a more humanized mouse model for future cholesterol research. 

Interestingly, APPPS1 had 20% higher TC than WT.  

Among human patients with AD, there exists a strong inverse correlation between 

HDL-cholesterol levels and cognitive impairment. Therefore, in our next experiment we 

isolated the HDL-cholesterol fraction from the non-HDL-cholesterol to better understand 

the role HDL plays in AD. Similar to the total plasma cholesterol changes we detected, 

CETP expressing in CETP and APP/PS1/CETP mice caused a decrease in HDL-C levels 

by ~ 25% compared to non-CETP expressing littermate controls (Fig. 2.3b). Again, similar 

to the TC analysis, APP/PS1 mice had a 20% higher HDL-cholesterol concentration than 

WT. The HDL-C/TC plasma ratio did no change (Fig. 2.3c) One plausible explanation for 

the increase in TC and HDL-C could be an upregulation of RCT proteins and other HDL 

precursors to combat AD progression in these mice.  
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Fig. 2.3 – Transgenic expression of CETP significantly reduces total cholesterol and high-density 

lipoprotein cholesterol levels. A) Total cholesterol and B) HDL-C quantification from plasma of dissected 

9 mo mice. C) HDL-C/Total Cholesterol ratio is unchanged. n=12 mice per genotype (6 male and 6 female). 

* p < 0.05. ** p < 0.01. 
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Expression of CETP did not affect HDL-associated paraoxonase 1 activity:  

One major protective effect of HDL is in its anti-atherosclerotic and anti-

inflammation functions. These functions are partially performed though the enzymatic 

breakdown of oxidized-lipids via paraoxonase 1 (PON1) activity. To study one aspect of 

HDL’s anti-inflammation functions in AD, we determined the enzymatic activity of PON1 

as a measure of the plasmas anti-inflammation capability. Lower PON1 activity results in 

reduced detoxification, and therefore, is presumed to be less capable of protecting against 

inflammation. The results showed that all genotypes had similar PON1 activity (Fig. 2.4), 

indicating that there is no reduction in the anti-inflammation properties of HDL in CETP 

expressing mice compared to their non-CETP expressing littermate controls. PON1 is 

associated with HDL particles and thus a decrease in HDL was expected to have a decrease 

in the PON1 enzymatic activity (Garin et al., 2006). However, it is possible that the PON1 

assay was insufficiently sensitive to detect a decrease in PON1 activity or there was a 

compensatory increase of PON1 activity with reduced HDL levels in CETP-expressing 

mice.  
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Fig. 2.4 – Transgenic expression of CETP does not reduce high-density lipoprotein associated 

paraoxonase 1 activity. PON1 enzymatic activity from HDL fraction quantification of 9 mo mice. n = 12 

mice per genotype (6 male and 6 female). 

CETP expression has no effect on Aβ levels and deposition in APP/PS1 mice:  

Previous literature demonstrates the importance of HDL-cholesterol concentration 

on amyloidogenesis in mouse models of AD. Low HDL-cholesterol accelerates Aβ plaque 

formation and elevated HDL-cholesterol slows disease progression. We observed a 25% 

decrease in HDL-cholesterol in our CETP expressing mice. To quantify the effects of the 

25% reduction in HDL-cholesterol on Aβ levels in these mice, hippocampus and cortical 

brain tissue samples were prepared from 6 mo and 9 mo APP/PS1 and APP/PS1/CETP 

mice. These samples were analyzed by Aβ40 and Aβ42 ELISA kits to quantify the 

concentrations of Aβ in each brain region. Normally, these APP/PS1 transgenic mice start 

to form plaque pathology around 5-6 mo. Therefore, we quantified Aβ concentrations in 6 

mo mice to determine if there was an accelerated onset of plaque pathology in mice with 
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low HDL-cholesterol (Fig. 2.5). Interestingly, there was no statistical difference between 

APP/PS1 and APP/PS1/CETP in either cortical or hippocampal brain regions. These data 

suggest that the decrease in HDL-cholesterol induced by the CETP transgene in mice was 

insufficient to accelerate Aβ level accumulation.  

 

Fig. 2.5 – Transgenic expression of CETP does not change Aβ level in cortex or hippocampus of 6 

month old mice A) Carbonate soluble and B) insoluble (guanidine soluble) amyloid in cortex. C) Carbonate 

soluble and D) insoluble (guanidine soluble) amyloid in hippocampus. n = 8 per group. 

Next, we studied 9 mo cohort of APP/PS1/CETP and APP/PS1 mice to determine 

if there was any changes in disease progression with chronically reduced HDL-cholesterol 

(Fig. 2.6). Consistent with the 6 mo cohort, there was no statistical difference between 

APP/PS1 and APP/PS1/CETP in either cortical or hippocampal brain regions. 
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Interestingly, we observed a ~15% increase in insoluble Aβ 42 in APPPS1/CETP mice 

compared to APPPS1 littermate controls. Although this increase was not statistically 

significant, the trend of increase in soluble Aβ in older APP/PS1/CETP mice suggests that 

the effects of sustained decrease in HDL-cholesterol levels may be manifested during 

aging.  

 

Fig. 2.6 – Transgenic expression of CETP does not change Aβ level in cortex or hippocampus of 9 

month old mice. A) Carbonate soluble and B) insoluble (guanidine soluble) amyloid in cortex. C) Carbonate 

soluble and D) insoluble (guanidine soluble) amyloid in hippocampus. n = 10 per group. 

To determine the effects of CETP expression on Aβ pathology and 

neuroinflammation further, we quantified Aβ plaque deposition in APP/PS1/CETP versus 
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APP/PS1 mice by immunohistochemical analyses. All IHC results were collected from our 

9 mo cohort to better elucidate the chronic effects reduced HDL-cholesterol has on AD 

pathogenesis. We saw no significant difference in Aβ plaque IHC staining in the cortex or 

hippocampus between APPPS1 and APPPS1/CETP (Fig. 2.7a,b). These results are 

consistent with the ELISA data described in Fig. 2.6.  

 

Fig. 2.7 – CETP tg expression does not affect plaque deposition in 9 month old APP/PS1 mice. A) 
Representative images B) Quantification of immunohistochemical analysis comparing APP/PS1 and 

APP/PS1/CETP brain sections. n = 10 per group. 

CETP expression does not influence neuroinflammation: 

Astrocytes and microglia are important regulators of inflammation and neuronal 

health in the CNS. Astrocytes are known to upregulate glial fibrillary acidic protein 

(GFAP) in response to inflammatory stimuli (Oblinger and Singh 1993), such as Aβ 

deposition (Jantaratnotai et al., 2003; Damjanac et al., 2007). To determine the extent of 

astrocyte activation in response to Aβ deposition, we quantified the immunohistochemical 

staining of GFAP in our 9 mo cohort. There was no change between APP/PS1/CETP and 
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APP/PS1 littermate controls (Fig. 2.8). These results indicate that transgenic expression of 

CETP had no effect on the response of astrocytes to Aβ deposition. Both genotypes had on 

average ~2.5% of their total brain area stained positive for GFAP, indicating similar levels 

of activated astrocytes. To determine the response of microglia to Aβ deposition, we 

quantified IHC staining with IBA1. Consistently, there were no significant differences 

between CETP tg mice and their non-tg littermate controls (Fig. 2.8). These results indicate 

that CETP-induced changes in the cholesterol profile were not sufficient to influence the 

status of neuroinflammation.  

 

Fig. 2.8 – CETP tg expression does not affect neuroinflammation markers in 9 month old APP/PS1 

mice. A) Representative images B) Quantification of immunohistochemical analysis comparing APP/PS1 

and APP/PS1/CETP brain sections. n = 6 per group. 
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Cognitive decline is not exacerbated with cholesteryl ester transfer protein 

transgenic expression:  

We performed a series of behavioral assessments to determine whether CETP 

activity affects behavioral function including learning and memory compared to APP/PS1 

mice. The open field test was performed to determine if any differences in general 

locomotor activity levels or anxiety level in our mice existed. We did not observe any 

difference between the genotypes in the distance traveled (locomotor activity) with an 

average of 35.5 ± 2.0 meters traveled on day one, down to 25.0 ± 1.6 meters on day three 

of testing (Table 2.1) (n = 14-20 mice per genotype) or time spent in the center zone 

(anxiety) with an average of 9.6 ± 0.8s on day one, down to 5.2 ± 0.7s on day three of 

testing (Table 2.1). All genotypes had normal habituation patterns, exploring the open field 

space less with each successive trial.  

Table 2.1 – Locomotor activities of experimental mice in the open field test  

 Day 1 Day 2 Day 3 

 Distance 

(m) 

Time in 

Center (s) 

Distance 

(m) 

Time in 

Center (s) 

Distance 

(m) 

Time in 

Center (s) 

Wild Type 34.7 ± 3.0 10.8 ± 1.7 28.9 ± 2.7 8.6 ± 1.7 26.8 ± 3.3 6.6 ± 1.6 

CETP 31.5 ± 2.7 11.2 ± 2.0 29.4 ± 2.2 8.2 ± 0.9 23.9 ± 2.5 5.1 ± 1.2 

APP/PS1 37.4 ± 6.0 7.2 ± 1.3 27.9 ± 4.1 4.0 ± 0.9 22.8 ± 3.5 3.5 ± 1.3 

APP/PS1/CETP 39.4 ± 5.0 8.4 ± 1.6 32.7 ± 4.4 7.6 ± 1.6 26.1 ± 4.0 5.0 ± 1.3 

 



77 
 

Next, we performed the elevated plus maze test to measure anxiety. Mice that are 

less anxious will spend a larger proportion of their time in the open arms of the maze. We 

saw no differences between any genotypes in the elevated plus maze indicating equal 

anxiety levels among groups. The average time spent on the open arms was 50 ± 4.5s on 

day 1, down to 22.8 ± 2.6s on day three of testing (Table 2.2) (n = 14-20 mice per 

genotype). Similarly, all genotypes displayed normal habituation patterns after exploring 

the novel environment.  

Table 2.2 – Anxiety levels of experimental mice in the elevated plus maze test  

 Day 1 Day 2 

 Time in open arm (s) Time in open arm (s) 

Wild Type 48.2 ± 5.9 26.0 ± 3.8 

CETP 52.0 ± 7.1 25.1 ± 4.8 

APP/PS1 52.2 ± 11.6 20.8 ± 7.3 

APP/PS1/CETP 47.9 ± 12.9 17.7 ± 5.9 

The Morris water maze test was performed on the 9 mo cohort. As is expected, wild 

type mice readily learned to locate the hidden platform during the 5-day acquisition phase 

and APP/PS1 showed learning impairments (Fig. 2.9a). These two genotypes serve as 

control groups for the APP/PS1/CETP genotype mice. APP/PS1/CETP mice performed 

similarly to APP/PS1 mice indicating there was not a worsening of cognitive deficits with 

CETP expression. Next, to assess memory retention, the mice were subjected to a single 

probe trial 24 h later (Fig. 2.9b). WT and CETP mice had significantly more platform 
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crossovers than APP/PS1 and APP/PS1/CETP mice demonstrating memory deficits of 

mice with APP/PS1. Overall, these behavioral results demonstrate that the alterations to 

the cholesterol profiles elicited with CETP expression were not dramatic enough to 

exacerbate behavioral outcomes normally seen in APP/PS1 mice. Additionally, CETP 

expression alone, without APP/PS1 genotype, did not negatively impact the learning 

curves of mice compared their WT littermates.  

 
Fig. 2.9 – Mice expressing CETP perform similarly as their non-CETP expressing littermate controls. 

A) The acquisition phase and B) the retention phase of the Morris water maze. APP/PS1 mice showed 

learning and memory deficits compared to wild type controls. n = 14-20 per group.   
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Discussion: 

In the plasma, HDL interacts with cells and other lipoprotein particles through 

multiple receptors, transporters, and enzymes (Hottman et al., 2014). Previous animal 

studies suggests that overexpression of human apoA-I increases HDL levels and promotes 

cognitive function  (Lewis et al., 2010) whereas genetic deletion of apoA-I markedly 

decreases HDL levels and exacerbates cognitive deficits in APP/PS1 mice (Lefterov et al., 

2010). In the present study, we found that the addition of CETP to a mouse genome alters 

cholesterol profiles of mice by reducing the HDL-C levels. However, this reduction is not 

as drastic as the change seen in apoA-I knockout mice, and therefore, this genetic change 

does not seem to be sufficient to elicit other pathological or behavioral changes in mice. 

Future directions could include working with hamster or other animal models with 

cholesterol profiles more similar to those of humans (i.e. higher LDL-C and lower HDL-

C).  

CETP expression caused a modest alteration to the cholesterol profile. It is possible 

that if CETP expression elicited a more robust conversion of protective HDL to other non-

HDL cholesterol pools, the cognitive effects would be more apparent. Interestingly, there 

was a trending increase in insoluble Aβ levels in the 9 mo cohort. This trend might continue 

to widen with age to the point where the effect size would be significant at more advanced 

ages. It is also worth noting that soluble Aβ levels are an important marker for AD severity 

because they are generally regarded as more toxic than their insoluble plaque form (Larson 

& Lesné, 2012).  
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One important technical aspect to be cognizant of is the challenge in showing worse 

memory deficits when the learning ability is already impaired in APP/PS1 mice. The 

APP/PS1 mice at the age tested were already poor performers in the Morris water maze 

and found the target platform at near the rate of random chance; thus, worsening 

performance might require a more sensitive behavioral test such as the contextual fear 

conditioning or the Barnes maze test.  

Future directions include examining additional biomarkers such as CAA, which 

could give more complete insight into the pathological changes that occur with CETP tg 

expression. CAA levels could correlate more strongly with behavioral outcomes, even 

when plaque pathology is unchanged (Lewis et al., 2010). Additionally, a more sensitive 

assay such as the Barnes maze could help detect smaller cognitive differences in mice.  

Recently, there have been several CETP inhibitors tested in the cardiovascular field 

to increase HDL-cholesterol in patients. These class of drugs raised HDL by 44-133% 

depending on the particular compound and dose. However, these drugs have failed the 

development or clinical testing phase to date. The fact that dramatic increases in HDL do 

not confer the expected benefits demonstrates the amount of knowledge still to be attained 

in this field. This has led to recent discussions about the quantity vs quality of HDL 

(Tziomalos, 2016). In fact, a large scale clinical trial showed that HDL-C level and all-

cause mortality did not correlate linearly, instead, the lowest and highest HDL-C patients 

showed higher all-cause mortality than the more average patients (Bowe et al., 2016). 

Unfortunately, an agreed upon gold-standard biomarker for HDL functionality remains 
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elusive. Therefore, using HDL-C as an imperfect substitute may continue until such a 

biomarker is discovered.  

 Overall, this research suggests an incomplete understanding of the interplay 

between role of CETP activity, HDL effects, and AD pathogenesis. More data will need to 

be collected to further elucidate the potential mechanisms involved between cholesterol 

metabolism and AD pathology.  
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CHAPTER 3 – TREATMENT WITH A CLUSTERIN/APOJ PEPTIDE REDUCES 

AMYLOID PATHOLOGY AND RESCUES MEMORY FUNCTION IN APP/PS1 

MICE 

Introduction: 

AD is the most common progressive neurodegenerative disorder and poses an ever-

growing challenge to health care institutions and economic systems worldwide. In the 

United States, more than five million people are currently suffering from AD and this 

number is expected to continue rising due to our aging population (Alzheimer's 

Association, 2017). Currently, there is no effective treatment available to slow or reverse 

AD. This fact emphasizes the need to develop new therapeutic strategies to prevent or delay 

AD.  

A recent genome-wide association studies (GWAS) discovered that a single 

nucleotide polymorphism (SNP) within the gene of clusterin (CLU, also known as 

apolipoprotein J (apoJ)) is significantly associated with AD (Harold et al., 2009). The 

relationship between CLU polymorphisms and AD has been replicated by several 

independent research group (Carrasquillo et al., 2010; Corneveaux et al., 2010; Kamboha 

et al., 2012; Seshadri et al., 2010), making CLU one of the top-ranking genes associated 

with sporadic AD. ApoJ is a heterodimeric protein composed of α- and β-chains covalently 

linked by disulfide bonds (Murphy et al., 1988). Like apoE and other apolipoproteins, apoJ 

has multiple functions in the brain and periphery (Elliot et al., 2010). It is produced 

peripherally in the liver where it associates with HDL in the plasma, and in the brain it is 
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secreted primarily by glia, and is found in the CSF (Harr et al., 2002; Murphy et al., 1988; 

Pasinetti et al., 1994; Zwain et al., 1993; Saura et al., 2003). Interestingly, apoJ is more 

prominently expressed in the brain than in any other tissue (de Silva et al., 1990).  ApoJ 

also serves as a molecular chaperon mediating cellular stress response under various 

disease conditions (Elliot et al., 2010). Multiple lines of evidence indicate that apoJ may 

be involved in the pathogenesis of AD. ApoJ has a high binding affinity for Aβ and is found 

in amyloid plaques (Ghiso et al., 1993; Giannakopoulos et al., 1998). The level of apoJ is 

associated with AD progression in key brain regions such as the entorhinal cortex and 

hippocampus (May et al., 1990). Recent human studies also show that plasma levels of 

apoJ increases in AD patients and correlates with the severity of disease (Thambisetty et 

al., 2010; Schrijvers 2011). In vitro and in vivo studies demonstrate that apoJ inhibits Aβ 

aggregation (Matsubara et al., 1996; Narayan et al., 2012), enhances phagocytosis of Aβ 

aggregates (Bartl et al., 2001), and facilitates the clearance of Aβ across the BBB (Bell et 

al., 2007) as well as modulates inflammatory and immune functions (Tschopp and French 

1994). In addition, apoJ and apoE have been shown to work cooperatively to suppress Aβ 

levels and deposition in mouse models of AD (DeMattos et al., 2004). Taken together, 

previous findings strongly suggest that apoJ plays a protective role in the development of 

AD. Therefore, strategies that improve beneficial functions of apoJ could be effective in 

preventing and/or treating AD. One promising strategy is to use a small biologic, such as a 

peptide, to mimic the beneficial effects of full length apoJ, which is easier to synthesize 

and deliver. 
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In the search for a small peptide that mimics the function of apoJ, several sequences 

representing amphipathic helixes in the mature apoJ protein were synthesized (Navab et 

al., 2005). A leading peptide is the 10-amino acid chain corresponding to amino acid 

residues 113 to 122 in apoJ, called apoJ[113-122] peptide. This peptide has been found to 

effectively inhibit oxidized lipid-induced inflammatory reactions in vitro, strongly 

mimicking the effects of full length apoJ. To test the function of the peptide in vivo, D-

apoJ[113-122] peptide synthesized from all D-amino acids were used for oral 

administration to animals to avoid degradation in the digestive system. In apoE-deficient 

mice, a single oral dose of D-apoJ[113-122] peptide (100 μg) was able to rescue the anti-

inflammatory property of HDL in a few hours and promote cholesterol efflux from 

macrophages. In a 24 week follow-up study, atherosclerotic lesions were dramatically 

decreased in apoE-deficient mice treated with D-apoJ[113-122] peptide (50 μg/g diet) 

(Navab et al., 2005). In monkeys, oral D-apoJ[113-122] peptide treatment was found to 

reduce the levels of oxidized lipids and enhanced the anti-inflammatory property of HDL 

(Navab et al., 2005). A recent physicochemical study of D-apoJ[113-122] peptide further 

provides the structural basis for the anti-inflammatory and anti-atherogenic properties of 

this peptide (Mishra et al., 2011).  

However, whether the beneficial properties of D-apoJ[113-122] peptide can be 

harnessed to treat AD had not been explored. In the current study, we tested the therapeutic 

potential of D-apoJ[113-122] peptide to improve neuropathology and behavioral function 

in the APP/PS1 mouse model of AD. We found that APP/PS1 mice treated with D-

apoJ[113-122] peptide (20 mg/kg BW; daily intraperitoneal administration) for 3 mo had 
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a dramatically lower plaque burden at 9 mo compared to PBS treated littermates. The 

plasma levels of Aβ were elevated in D-apoJ[113-122] peptide treated mice, indicating an 

enhanced clearance of Aβ across the BBB. As a result, D-apoJ[113-122] peptide treated 

mice had significantly improved memory retention and lower CAA. Intriguingly, these 

beneficial outcomes were observed under the condition that D-apoJ[113-122] peptide itself 

had a limited penetration across the BBB in APP/PS1 mice. These findings suggest that 

the D-apoJ[113-122] peptide could potentially be an effective therapeutic agent for AD.  

Materials and methods: 

ApoJ[113-122] mimetic peptide: 

The apoJ[113-122] mimetic peptide is a 10 amino acid molecule [Ac-L-V-G-R-Q-

L-E-E-F-L-NH2], derived from the 113th-122nd amino acid sequence of the full length 

apoJ protein. D-apoJ[113-122] peptide was purchased from American Peptide Company 

[Product #: 332520. Lot # U01086A1] with all D-amino acids to reduce proteolytic 

degradation and improve half-life.  

Animals and treatment regimen: 

Breeders for APP/PS1 double transgenic mice (B6C3-Tg (APPswe, PSEN1dE9) 

85Dbo/J; stock number 004462) (Jankowsky et al., 2001) were purchased from The 

Jackson Laboratory (Bar Harbor, ME) and crossed with B6C3F1 mice to produce all 

experimental mice. All genotypes were determined via PCR amplification of genomic 

DNA using gene-specific primers.  
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D-apoJ[113-122] was dissolved in sterile PBS to a stock concentration of 5mg/mL 

(~4mM), rocked at room temperature (RT) for 3-4h until fully dissolved, aliquoted, and 

stored at -20°C. On the day of the injections, frozen D-apoJ[113-122] peptide stock was 

thawed and warmed to RT before injection. Mice received a daily intraperitoneal (IP) 

injection of D-apoJ[113-122] peptide (20 mg/kg BW), with a 25 gauge needle to the lower 

right side of the abdomen, starting at 6 mo of age. Mice were weighed weekly and injection 

volume was adjusted to ensure a consistent dose. All animal procedures used for this study 

were prospectively reviewed and approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Minnesota. 

Blood collection and brain tissue preparation: 

The mice were deeply anesthetized, and blood was collected by cardiac puncture 

with heparin coated needles. Next, the animal was perfused with ice-cold PB. Brains were 

removed and cut sagittally into left and right hemispheres. The left hemisphere was fixed 

in 4% paraformaldehyde and cut into 50 micron sections for histological analysis. The right 

hemisphere was further separated into cortical, hippocampal, and cerebellar regions then 

snap-frozen in liquid nitrogen and stored at -80°C for biochemical analysis. 

Brain amyloid β enzyme-linked immunosorbent assay and immunoblot analysis: 

Snap frozen brain samples were homogenized and processed as previously 

described (Lewis et al., 2010; Cao et al., 2007; Cheng et al., 2013a). Commercial ELISA 

kits (Life Technologies) were used to measure the soluble (carbonate-soluble) and 
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insoluble (guanidine-soluble) levels of Aβ40 and Aβ42 according to the manufacturer’s 

protocol. 

For immunoblot analysis, aliquots of brain homogenate were separated by SDS-

PAGE and blotted to nitrocellulose membranes. The membranes were incubated with 

specific primary antibodies against apoJ (Cat# AF2747, R&D Systems, Minneapolis, MN), 

and APP (Cat# 512700, Invitrogen, Carlsbad, CA; recognizes both full-length APP and the 

c-terminal fragments of APP). Primary antibody incubation was followed by an HRP-

conjugated secondary antibody incubation. Signal was detected by the ECL Plus Western 

Blotting System (GE Healthcare) and quantified by the ImageJ software. The blots were 

stripped and re-probed with anti-tubulin monoclonal antibody (Sigma) as a loading control.  

Cerebral amyloid angiopathy and amyloid β deposition analysis: 

Protocols for Congo red staining for cerebral amyloid angiopathy analysis have 

been described previously (Wilcock et al., 2006; Clement and Truong 2014). Briefly, fixed 

brain tissues were sectioned at 50 micron using a Vibratome (Leica Microsystems Inc). 

Tissue sections were stored at 4 °C in PBS with 0.01% sodium azide and incubated with 

0.2% Congo red solution for 30 minutes at RT. Excess Congo red stain was washed away 

with ethanol and sections were cover-slipped using the Permount mounting medium. The 

vessels were examined with a Nikon 55i Microscope with Transmitted Brightfield using a 

TRITC Cube (Excitation 528-553 Dichroic Mirror 565 Emission 590-650) and analyzed 

using Image-Pro Plus (MediaCybernetics, Rockville, MD).  
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The X-34 protocol for quantifying fibrillar amyloid deposits had been previously 

described (Styren et al., 2000). Tissue sections were stored at 4°C in PBS with 0.01% 

sodium azide and incubated with 10µM X-34 at RT. Excess X-34 was washed away with 

ethanol and sections were cover-slipped using permount. The vessels were examined with 

a Nikon 55i Microscope with Transmitted Brightfield using a DAPI Cube (Excitation 340-

380 Dichroic Mirror 400 Emission 435-485) and analyzed using Image-Pro Plus 

(MediaCybernetics, Rockville, MD).  

Behavioral assessment: 

Several AD-related behavioral functions were assessed to determine any rescue 

effects of D-apoJ[113-122] peptide. The testing schedule included the open field (days 1–

3) for habituation, the elevated plus-maze (days 4 and 5) for anxiety levels, and spatial 

learning in the Morris water maze (days 6–11). All equipment and software were purchased 

from SD Instruments (San Diego). All testing procedures have been described in detail 

previously (Li et al., 2006; Cao et al., 2007; Lewis et al., 2010).  

Briefly, the Morris water maze consists of a round basin filled with water in a room 

containing extra-maze visual cues for orientation. The acquisition phase consists of placing 

the mice next to the wall rotating between the north, east, south, and west positions. The 

escape platform was hidden 1cm below the water level. In each trial, the mouse was 

allowed to swim until it successfully found the hidden platform or until 60 seconds (s) had 

elapsed. The escape latency and swim path length were recorded by the ANYMAZE 

System (San Diego Instruments, San Diego), with four trials each day for five days. On the 
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sixth day of the Morris water maze, a probe trial was conducted by removing the platform 

and placing the mouse next the north wall. The time spent in the previously correct (target) 

quadrant was measured in a single 60-s trial. Each mouse’s visual acuity was assessed 

using a similar protocol with a visible escape platform lifted 1 cm above water level. 

Determination of D-apoJ[113-122] peptide concentration in plasma and brain: 

 Frozen brain and plasma tissue samples were collected 0, 1, 2, 4, and 6 hours after 

IP D-apoJ [113-122] peptide injection and shipped overnight on dry ice to Absorption 

Systems. The D-apoJ[113-122] peptide concentrations in the plasma and brain were 

determined  by a capillary LC-MS/MS  method established at Absorption Systems.  

Statistical analysis: 

Data are expressed as means ± standard error (SE). Comparison of different 

treatment/genotype groups was performed by Student’s t test and repeated measures of 

analysis of variance where appropriate. p < 0.05 was considered statistically significant. 

Results: 

Treatment with D-apoJ[113-122] peptide significantly reduced Aβ levels in the 

brain of APP/PS1 mice: 

To determine the effect of D-apoJ[113-122] peptide treatment on the levels of Aβ 

in APP/PS1 mice, brain cortical tissue homogenate was prepared for the measurements of 

Aβ40 and Aβ42 levels in carbonate soluble and guanidine soluble (insoluble) fractions 
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using commercial Aβ ELISA kits. The results showed that the levels of insoluble Aβ40 

and Aβ42 in the brain of D-apoJ[113-122] peptide treated mice were significantly lower 

compared to those of PBS-treated mice (Fig. 3.1). These results demonstrated that 

peripherally administered D-apoJ[113-122] peptide reduced the levels of aggregated Aβ in 

the brain. Interestingly, the level of soluble Aβ was not affected by the D-apoJ[113-122] 

peptide treatment, suggesting that the small soluble pool of Aβ maintains at an equilibrium 

level in the brain of APP/PS1 mice. Importantly, the total level of Aβ was robustly 

decreased in the brain of APP/PS1 mice treated with D-apoJ[113-122] peptide.  

 

Fig. 3.1 – D-apoJ[113-122] peptide treatment reduces brain Aβ levels in APP/PS1 mice. The levels of 

Aβ40 and Aβ42 in A) carbonate and B) guanidine soluble fractions of cerebral cortical samples from APP/PS1 

mice (n=9/group) were determined by ELISA. * p  < 0.05; ** p  < 0.01 
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Treatment with D-apoJ[113-122] peptide significantly reduced x-34 positive 

amyloid plaques in APP/PS1 mice: 

To further determine the effect of D-apoJ[113-122] peptide treatment on amyloid 

deposition in the brain, we conducted histochemical analysis with the dye X-34. X-34 is a 

lipophilic and fluorescent derivative of Congo red. X-34 is a histochemical stain that can 

detect pathological accumulation of fibrillary forms of amyloid in Alzheimer's disease 

(Styren et al., 2000). Similarly, in APP/PS1 mice, X-34 strongly stains amyloid plaques. 

We compared staining intensities between PBS and D-apoJ[113-122] peptide treated mice 

and detected a robust 42% decrease in X-34 stained area (Fig. 3.2). These data further 

demonstrate that insoluble Aβ levels are reduced by chronic treatment with the D-

apoJ[113-122] peptide. 

 
Fig. 3.2 – D-apoJ[113-122] peptide treatment reduces plaque pathology in APP/PS1 mice. A) 

Representative images of X-34 stained section. B) Quantification of the percent of the total cortical area 

stained by X-34, representing fibular Aβ (n=9/group). * p  < 0.05  
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Treatment with D-apoJ[113-122] peptide significantly reduced CAA in APP/PS1 

mice: 

Impaired clearance of Aβ from the brain is a key pathological driver of AD 

(Mawuenyega et al., 2010). CAA is defined by the deposition of Aβ in cerebrovascular 

walls, which impairs the function of cerebral vessels and impedes Aβ clearance, resulting 

in accumulation within the brain. APP/PS1 mice develop CAA as well as parenchymal Aβ 

deposition in the brain. To examine the effect of D-apoJ[113-122] peptide treatment on 

CAA in APP/PS1 mice, we conducted histochemical analysis with the dye Congo red. 

Congo red is a histochemical stain that can detect fibrillary amyloid deposition in the 

vasculature as well as in the parenchyma of  the brain. In APP/PS1 mice, Congo red 

strongly stains amyloid in cortical vasculature. We compared vascular staining intensities 

between PBS and D-apoJ[113-122] peptide treated mice and detected a dramatic 66.2% 

decrease in Congo red stained area (Fig. 3.3). These data strongly suggest that treatment 

with D-apoJ[113-122] peptide significantly improved cerebrovascular function in clearing 

Aβ through the vasculature in APP/PS1 mice.  

 
Fig. 3.3 – D-apoJ[113-122] peptide treatment reduces CAA in APP/PS1 mice. A) Representative images 

of Congo Red stained section. B) Quantification of the percent of the total vascular area stained by Congo 

red, representing CAA (n=9/group). * p < 0.05 
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Treatment with D-apoJ[113-122] peptide led to a significant increase in Aβ levels 

in the plasma: 

To investigate whether the robust reduction of cerebral Aβ deposition and CAA in 

D-apoJ[113-122] peptide treated APP/PS1 mice resulted from an increase in clearance of 

brain Aβ to plasma, we measured the levels of Aβ40 and Aβ42 in the plasma by ELISA. 

Indeed, the results showed that the plasma level of both Aβ40 and Aβ42 were significantly 

increased in mice treated with D-apoJ[113-122] peptide (Fig. 3.4). This finding clearly 

indicates that D-apoJ[113-122] peptide treatment increased the clearance of Aβ from the 

brain to the plasma, contributing to the reduced Aβ levels in the brain of these mice. 

Notably, the average level of Aβ increase in the plasma corresponds well with the average 

level of Aβ reduction in the brain of D-apoJ[113-122] peptide treated mice, suggesting a 

dynamic relationship between the two pools of Aβ. 

 

Fig. 3.4 – D-apoJ[113-122] peptide treatment leads to a significant increase in the levels of Aβ40 and 

Aβ42 in the plasma of APP/PS1 mice. The levels of Aβ40 and Aβ42 in plasma samples from APP/PS1 mice 

(n=9/group) were determined by ELISA. * p < 0.05. ** p < 0.01 
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 Treatment with D-apoJ[113-122] peptide significantly improved memory 

retention in APP/PS1 mice: 

Learning and memory deficits are a hallmark of AD and APP/PS1 mice exhibit age-

related learning and memory deficits. To determine the functional outcome of D-apoJ[113-

122] peptide treatment, we used the Morris water maze to assess the spatial learning and 

memory performance of APP/PS1 mice. The results showed that PBS-treated APP/PS1 

mice display memory deficits, as expected, and that treatment with D-apoJ[113-122] 

peptide rescued the memory deficits, particularly in the probe trial (Fig. 3.5), which tests 

for memory retention.  

 
Fig. 3.5 – D-apoJ[113-122] peptide treatment rescues memory deficits in APP/PS1 mice. Performance 

of APP/PS1 mice (n=8-9/group age=9 mo) in the Morris water maze test after 12 weeks of treatment with 

apoJ[113-122] peptide or PBS. Non-Tg mice were included as WT controls (n=15 age=10 mo). A) Escape 

latency during the acquisition phase. B) Probe trial entries into the previous platform location. * p < 0.05; ** 

p < 0.01 
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The level of endogenous full-length apoJ was increased in D-apoJ[113-122] 

peptide treated APP/PS1 mice: 

ApoJ has been shown to facilitate brain Aβ clearance across the blood brain barrier 

(Bell et al., 2006). This important role of apoJ is further supported by a recent report that a 

genetic deletion of apoJ shifts amyloid deposition from the brain into the vasculature, 

causing CAA (Wojtas et al., 2017). To examine whether D-apoJ[113-122] peptide 

treatment affects the level of endogenous full-length apoJ, brain tissue lysates were 

subjected to immunoblot analysis. The results showed that the level of apoJ was increased 

by 24% in D-apoJ[113-122] peptide treated APP/PS1 mice (Fig. 3.6). This increase of 

endogenous apoJ levels may have contributed to the reduction of CAA and increased 

clearance of Aβ from the brain to the plasma in these mice. 

 
Fig. 3.6 – Increase in endogenous apoJ protein with D-apoJ[113-122] peptide treatment. A) 

Representative immunoblots and B) quantification normalized to tubulin. (n=8-9 per group). * p < 0.05 
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APP expression and processing is not affected by D-apoJ[113-122] peptide 

treatment in APP/PS1 mice: 

To determine whether D-apoJ[113-122] peptide treatment influences the 

expression and processing of APP in APP/PS1 mice, brain tissue lysates were subjected to 

immunoblot analysis for full-length (fl) APP and the C-terminal fragments (CTFs) of APP 

produced from α- or β-secretase cleavage. The results showed that the level of fl-APP and 

CTFs of APP were not affected by the D-apoJ[113-122] peptide treatment, compared to 

those in PBS-treated APP/PS1 mice (Fig. 3.7). These results indicate that treatment with 

D-apoJ[113-122] peptide did not affect APP expression and processing in APP/PS1 mice, 

suggesting no changes in Aβ production in treated mice.  

 
Fig. 3.7 – D-apoJ[113-122] peptide treatment does not change tg expression of fl-APP and its cleavage 

product, CTF, in APP/PS1 mice. A) Representative fl-APP immunoblot and B) quantification normalized 

to tubulin. C) Representative CTF immunoblot and D) quantification normalized to tubulin. (n=8-9 per 

group). 
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Peripherally administered D-apoJ[113-122] peptide had limited brain penetrance in 

APP/PS1 mice: 

To address whether D-apoJ[113-122] peptide administered by IP injection crosses 

the BBB and enters the brain, plasma and brain tissue samples were collected across several 

time points after the last IP injection and submitted to Absorption Systems for the 

determination of D-apoJ[113-122] peptide concentrations. The results showed that the 

maximum concentrations of the peptide in plasma (~15,000 ng/ml) and brain (~50 ng/g) 

were reached 1 hr after injection (Fig. 3.8). The data indicated that less than 1% of D-

apoJ[113-122] peptide in the plasma entered the brain, suggesting that D-apoJ[113-122] 

does not need to be present in the brain in high concentration to exert the beneficial effects 

described above.  

 

Fig. 3.8 – Kinetics of D-apoJ[113-122] peptide in plasma and brain after IP injections. The 

concentrations of apoJ[113-122] were determined by capillary LC-MS/MS analysis. (n=2-3 mice per time-

point) 
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Discussion: 

The great unmet need for an effective AD treatment, in addition to the existing 

literature on the important role of apoJ in AD, has prompted us to investigate the 

therapeutic potential of D-apoJ[113-122] peptide, an apoJ mimetic peptide that has 

cardiovascular protective effects (Navab et al., 2005). Here we report that in the APP/PS1 

mouse model of AD, daily treatment with D-apoJ[113-122] peptide for 3 months results in 

a marked reduction of cerebral Aβ deposition and CAA, and importantly, led to a robust 

rescue of memory function. These convincing preclinical findings establish that D-

apoJ[113-122] peptide has the potential to serve as an effective therapeutic agent for AD. 

The exact mechanisms underlying the beneficial effects of D-apoJ[113-122] 

peptide treatment in APP/PS1 mice are not fully understood. However, our data strongly 

suggest that D-apoJ[113-122] peptide acts through the vasculature, promoting the 

clearance of Aβ from the brain to the periphery across the BBB. This notion is supported 

by the finding that there was a dramatic decrease in CAA in D-apoJ[113-122] peptide 

treated mice. CAA is the accumulation of Aβ (primarily Aβ40) (Agyare et al., 2013) in the 

cerebral vasculature which limits normal vascular function and can lead to cognitive 

decline. CAA is considered a prime cause of intracerebral hemorrhages, often with a lethal 

outcome in the elderly (Greenberg 1998). CAA can disturb the trafficking of Aβ out of the 

brain and in that way potentiate Aβ aggregation into neuritic plaques (Weller et al., 2008). 

Therefore, the reduction in CAA may be an important mechanism by which D-apoJ[113-
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122] peptide treatment lowered brain Aβ levels and rescued cognitive function in APP/PS1 

mice.  

In support of the role of D-apoJ[113-122] peptide in promoting clearance of brain 

Aβ to the periphery across the BBB, the plasma levels of Aβ were significantly increased 

and negatively correlated with the brain levels of Aβ in D-apoJ[113-122] peptide treated 

APP/PS1 mice. It is also plausible that D-apoJ[113-122] peptide binds and stabilizes 

soluble Aβ in the plasma, preventing its reuptake back into the brain. Such a mechanisms 

is often referred to as the ‘peripheral sink’ and has been proposed in anti-Aβ based 

immunotherapies (DeMattos et al., 2001), although other immunotherapies do not seem to 

involve the binding of soluble plasma Aβ (Sevigny et al., 2016). From the present study, it 

is unclear if the increase in plasma Aβ in D-apoJ[113-122] peptide treated APP/PS1 mice 

is a result of enhanced efflux from the brain or limited reuptake into the brain or both. 

Additionally, we found a significant increase in endogenous full-length apoJ protein in 

brains of D-apoJ[113-122] peptide treated mice which could facilitate the clearance of Aβ. 

A peripheral target for D-apoJ[113-122] peptide could best explain why the limited 

brain uptake of D-apoJ[113-122] peptide is not limiting the efficacy of the treatment. A 

peripheral site of action is more accessible to oral and IP injected D-apoJ[113-122] peptide. 

Another possibility is that D-apoJ[113-122] peptide modulates peripheral HDL function 

and enhances its anti-inflammatory properties for an extended period of time, even after 

D-apoJ[113-122] peptide has been cleared from the plasma. Previous studies reported that 

the anti-inflammatory properties of HDL from apoE-null mice given D-ApoJ[113–122] 
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peptide were significantly improved for at least 48 hours after a single oral dose (Navab et 

al., 2005). Similarly, the anti-inflammatory properties of HDL were improved for at least 

24h after a single D-apoJ[113-122] peptide injection in Cynomolgus monkeys. This 

indicates a sustained benefit of D-apoJ[113-122] peptide even after the drug has been 

cleared – easing limitations normally associated with short half-life drugs. Future studies 

may include a more detailed analysis of the anti-inflammatory properties of HDL in D-

apoJ[113-122] treated AD mice as a potential mechanism of its effect on behavioral 

outcomes.  

The important role of HDL in AD is exemplified by several large-scale human 

clinical studies, which found a strong positive correlation between HDL levels and 

cognitive performance in late-life, as well as an inverse correlation with both AD risk and 

severity (recently reviewed by (Hottman et al., 2014)). Importantly, all currently 

understood risk factors for AD have a connection to vascular function, from an 

epidemiological perspective (De la Torre, 2002; Iturria-Medina et al., 2016). A recent study 

found that a single intravenous injection of reconstituted HDL (rHDL) reduced the levels 

of amyloid in the brains of APP/PS1 mice (Robert et al., 2016). In addition, a 4-week 

administration of rHDL was found to increase the clearance of Aβ and to improve cognitive 

function in AD mice (Song et al., 2014). Thus, our findings on the beneficial functions of 

the D-apoJ[113-122] peptide in APP/PS1 mice fit within the current literature on the role 

of HDL and associated lipoproteins in AD. 
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Our results showed that D-apoJ[113-122] peptide is capable of crossing the BBB 

and mediating beneficial effects in the CNS, however, penetration is limited to ~1% of the 

amount seen in plasma. These data suggest the drug targets of D-apoJ[113-122] peptide 

may in fact be peripheral or mediated through a signaling cascade that is more readily able 

to cross into the CNS, such as through molecules on the blood side of the BBB. Future 

high-throughput screenings could be a better option for detecting drug/protein interactions. 

It is important to note that even with very limited brain penetrance, D-apoJ[113-122] 

treatment led to drastic improvements in pathology and behavioral outcomes in APP/PS1 

mice.  

Future studies may focus on elucidating the cellular and molecular mechanisms 

mediating the effects of D-apoJ[113-122] peptide on Aβ efflux from the brain to the 

periphery. Several transporters/receptors at the BBB are known to be important in the net 

efflux of Aβ: PGP (Lam et al., 2001), ABCB1 (Zhang et al., 2013), BCRP/ABCG2 (Zhang 

et al., 2013), LRP1 (Deane et al., 2009), and RAGE (Deane et al., 2009). Other proteins 

are also involved in regulating Aβ transport across the BBB, including sLRP1 (Deane et 

al., 2009; Sagare et al., 2010), albumin (Biere et al., 1996), apoE (Martel et al., 1997), apoJ 

(Calero et al., 2000), transthyretin (TTR) (Sousa et al., 2007), and α2- macroglobulin 

(α2M) (Narita et al., 1997). Identification of the exact molecular pathways through which 

D-apoJ[113-122] peptide operates will allow more precise drug targeting in the future.  

In conclusion, the present study provides preclinical evidence that treatment with 

the D-apoJ[113-122] peptide through peripheral administration markedly reduced amyloid 
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pathology and rescued cognitive function in APP/PS1 mice, most likely through the 

attenuation of CAA and the increase of Aβ clearance from brain to plasma. These findings 

strongly suggest that D-apoJ[113-122] peptide could be a potential therapeutic agent to 

mitigate cognitive impairment and amyloid pathology in AD.  
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CHAPTER 4 – SYSTEMIC OR FOREBRAIN NEURON SPECIFIC DEFICIENCY 

OF GERANYLGERANYLTRANSFERASE-1 IMPAIRS SYNAPTIC PLASTICITY 

AND REDUCES DENDRITIC SPINE DENSITY 

Introduction: 

Proteins can undergo several different types of posttranslational modifications 

which result in proper tertiary structure, function, and subcellular location (Krishna and 

Wold 1993). One important posttranslational modification is prenylation, (Lane and Beese 

2006) which is the process of adding short-chain lipid molecules (isoprenoids) to target 

proteins via an irreversible covalent bond. Isoprenoids are intermediates in the 

mevalonate/cholesterol biosynthesis pathway (Goldstein and Brown 1990) (Fig. 4.1). 

 

Fig. 4.1 – Isoprenoid synthesis and protein prenylation pathways.  
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The two major isoprenoids are the 15-carbon FPP and the 20-carbon GGPP. FPP 

and GGPP are substrates of FT and GGT, which respectively, catalyze the attachment of 

farnesyl or geranylgeranyl group to target proteins with the CAAX motif (McTaggart 

2006). A third prenyltransferase, geranylgeranyl tranfersase-2 (RabGGT), also uses GGPP 

as its substrate to prenylate target proteins. Over 100 proteins are known to undergo 

prenylation, included heterotrimeric G-protein subunits and nuclear lamins (McTaggart 

2006; Berndt et al., 2011), but notably the largest and most well studied group of prenylated 

proteins is the Ras superfamily of small GTPases such as Ras, Rho, and Rab proteins. 

These small GTPases serve as molecular switches and regulate a plethora of cellular 

processes and functions, including dendritic spine morphogenesis and synaptic plasticity 

(Hottman and Li 2014). The importance of protein prenylation is further underscored by 

the findings that germline deletion of FT or GGT is embryonically lethal (Sjogren et al., 

2007; Mijimolle et al., 2005), and dysregulation of prenylated proteins causes cancers and 

a number of other diseases including cardiovascular and cerebrovascular diseases, bone 

diseases, progeria, and potentially neurodegenerative diseases such as AD (McTaggart 

2006; Li et al., 2012; Gao et al., 2016).  

We previously reported that haplodeficiency of either GGT or FT reduced Aβ 

accumulation in a transgenic mouse model of AD (Cheng et al., 2013b). However, only FT 

haplodeficiency rescued cognitive function in these animals. GGT haplodeficiency 

similarly reduced amyloid plaques and reduced neuroinflammation, but was not sufficient 

to rescue memory function of the animals. As geranylgeranylaed Rho family proteins are 

crucial in synapse/spine formation and remodeling (Tolias and Duman 2011), we 
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hypothesized that GGT deficiency might have detrimental effects that could neutralize the 

benefits of attenuated AD-related neuropathology. The current study was undertaken to 

address the impact of GGT deficiency on dendritic spine density and synaptic plasticity, 

the cellular basis of learning and memory formation (McGaugh 2000). Our results showed 

that either germline GGT haplodeficiency or forebrain neuron-specific GGT deficiency 

reduced the magnitude of hippocampal LTP and decreased the dendritic spine density of 

cortical neurons in mice. These findings corroborate the pivotal role of GGT in the 

development and maintenance of neurophysiological function of the brain.  

Materials and methods: 

Animals: 

Germline/systemic GGT-haplodeficient (GGT+/-) mice have been described 

previously (Liu et al., 2010; Cheng et al., 2013a). The forebrain neuron-specific GGT 

deficient mice were generated by breeding the GGT floxed (GGTf/f) mice (Sjogren et al., 

2007) with a αCaMKII promote-driven Cre recombinase (Cre+) mice (Tsien et al., 1996). 

Further interbreeding of resulting siblings with genotypes of GGTf/+Cre+ and GGTf/+Cre- 

produced GGTf/fCre+ and GGTf/fCre- (wild-type, WT) mice, which were used in this study. 

All genotypes were determined using DNA extracted from tail biopsies and amplified via 

PCR using gene-specific primers. The average mouse age was 8-12 mo and both male and 

female were used. Littermate controls were used whenever possible. All animal procedures 

in this study were prospectively reviewed and approved by the Institutional Animal Care 

and Use Committee (IACUC) of the University of Minnesota. 
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Electrophysiology: 

Mice were anesthetized using isoflurane which was confirmed with a foot pinch to 

be followed by decapitation as previously described (Parent et al., 2014). Briefly, brains 

were collected and cooled in “cutting solution” containing (mM): 2.5 KCl, 1.25 NaH2PO4, 

25 NaHCO3, 0.5 CaCl2, 7 MgCl2, 7 Dextrose, and 240 sucrose (Sigma). Transverse 

hippocampal slices (400µm) were prepared using a vibratome (Leica) while immersed in 

ice cold cutting solution. Cut sections were allowed to recover for 1 to 4 h in artificial 

cerebrospinal fluid (aCSF) containing (mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 

NaHCO3, 2 CaCl2, 1 MgCl2, and 25 dextrose (pH 7.4) with constant bubbling of 95% 

O2/5% CO2.  

After recovery, slices were placed into the recording chamber (Automate Scientific, 

Berkeley, CA) with aCSF flowing at approximately 1.5 ml/min at 28-30C. A presynaptic 

stimulation was delivered to the CA3/CA1 boundary of the hippocampus using a bipolar 

tungsten-stimulating electrode (FHC) driven by A365R constant-current stimulus isolators 

(World Precision Instruments, Sarasota, FL). Stimulation intensity was adjusted up to a 

maximum of 95µA. Recording electrodes were carefully placed in the CA1 of the 

hippocampus. Evoked field excitatory post-synaptic potentials (fEPSPs) were recorded 

with pulled borosilicate glass micropipettes filled with aCSF using a two channel 700B 

multiclamp amplifier, 1440A Digidata DA/AD converter, and pClamp data acquisition 

software (Molecular Devices, Sunnyvale, CA). The stimulation intensity was adjusted to 

elicit a fEPSP response of 0.6–0.8 mV for 20 minutes to produce a stable baseline. Once a 
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sufficiently stable baseline was established, LTP was induced using two theta burst 

stimulations with a 20 second interval. The fEPSP slope recordings from the 35-40 minute 

post-induction time points were normalized to the baseline fEPSP slope values and 

compared between groups. External noise was reduced via a faraday cage, aluminum 

shielding, with a 50/60 Hz noise canceling Humbug hardware (Quest Scientific, North 

Vancouver, BC, Canada). Basal paired-pulse facilitation (PPF) was analyzed during the 

baseline recordings of LTP experiments. Two stimulations were given in a quick 30ms 

succession and the amplitudes for each fEPSP were recorded and a ratio of these 

amplitudes yielded the basal PPF ratio which was compared between groups.  

Input/Output (I/O) curves were generated from similarly prepared slices. Slices 

were subjected to 5 stimulations per intensity ranging from 0µA up to 150µA in 10µA 

intervals. The fEPSP magnitudes were averaged for each stimulation intensity then 

compared across groups using a repeated measures ANOVA.  

Tissue collection and preparation: 

Tissue collection protocols were followed as previously mentioned (Cheng et al., 

2013a). Briefly, mice were deeply anesthetized and blood was collected by cardiac 

puncture with heparinized needles. Following perfusion with ice-cold PBS, brain 

hemispheres were removed and fixed in 4% paraformaldehyde or snap frozen in liquid 

nitrogen. Brain homogenates were prepared as we described previously (Cao et al., 2007; 

Lewis et al., 2010).  
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Immunoblot analysis: 

For immunoblot analysis, equal aliquots of membrane and cytosolic fractions were 

separated by SDS-PAGE and transferred to PVDF membranes. The membranes were 

incubated with primary antibodies (all from Santa Cruz Biotechnology, Dallas, TX) against 

the following: RhoA (26C4, sc-418), Rac1 (C-14, sc-217), H-RAS (C-20, sc-520), and 

Calnexin (H-70, sc-11397). Overnight primary antibody incubation was followed by 

incubation with HRP-conjugated secondary antibodies. Signal was detected by the ECL 

Plus Western Blotting System (GE Healthcare) and quantified using ImageJ software. For 

confirmation of membrane and cytosolic fractionation, the blots were stripped and re-

probed with antibodies against a membrane protein, calnexin (sc-11397), and a cytosolic 

protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (V-18, sc-20357), 

respectively. 

 Golgi staining and analysis of dendritic spine density: 

Based on a previous method (Dumanis et al., 2009), mice brains were freshly 

dissected and processed for Golgi staining using the FD Rapid GolgiStainTM kit (Cat. #: 

PK401A, FD NeuroTechnologies, Inc.). Golgi staining followed all manufactures’ 

instructions. Bright-field microscopy images (100x) were taken of pyramidal neurons in 

cortical layers II/III. Spine linear density was measured using Image Pro Plus software. 

Fifteen neurons were randomly selected from each animal and five apical oblique (AO) 

and five basal shaft (BS) dendrites were chosen from tertiary dendritic segments of each 

neuron. Spine densities were quantified and compared across groups.  
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Preparation of membrane and cytosolic fractions: 

Cortical samples were homogenized in an ice cold, low osmotic lysis buffer 

containing 5 mMTris-HCL (pH 7.4), 2mM EDTA, 1x protease inhibitors (Roche Applied 

Science, Indianapolis, IN), and 1x phosphatase inhibitor cocktail (Sigma-Aldrich, St. 

Louis, MO). Homogenates were centrifuged at 1500 x g for 15 min at 4°C to remove tissue 

debris. The clear supernatant was transferred to a new tube and further centrifuged at 

100,000 x g for 60 min at 4°C in a Beckman Coulter OptimaTM MAX-XP Tabletop 

Ultracentrifuge. The resulting supernatant was collected as the cytosolic fraction without 

disturbing the pellet. The pellet was washed twice with lysis buffer by centrifugation at 

100,000 x g for 15 min at 4°C. Finally, the pellet was resuspended in lysis buffer of original 

volume and this fraction was used as the membrane fraction. 

Statistical analysis: 

All data are expressed as means ± standard errors of the means (SE). Comparison 

of different genotype groups was performed by Student's t test and repeated measures 

analysis of variance (ANOVA). p < 0.05 was considered statistically significant. Both male 

and female mice were included in the study. Littermates were used whenever possible. 

Investigators were blinded to genotypes of the mice during the experiments.  
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Results: 

Hippocampal synaptic plasticity is impaired in GGT haplodeficient mice: 

Our previous work demonstrated that compared to WT, GGT haplodeficient 

(GGT+/-) mice express ~50% GGT protein content (Cheng et al., 2013b). GGT activity 

and prenylation of Rho GTPases has a major effect on synaptic turnover and stability 

(Newey et al., 2005; Kiraly et al., 2010). To assess the impact of GGT haplodeficiency on 

neuroplasticity, we performed a series of electrophysiological experiments at the 

hippocampal Schaffer collateral-CA1 synapses in acute brain slices.  

First, the basal synaptic transmission was measured by compilation of I/O curves  

(Carvalho and Buonomano 2009) (Fig. 4.2a), which shows the fEPSP amplitude 

responding to increasing stimulus intensities. There was a trend decrease (but did not reach 

statistical significance by repeated measures ANOVA) in the average fEPSP amplitudes 

for a given stimulation intensity in GGT+/- mice compared to their WT littermates. This 

result indicates that there is no significant reduction in basal signal propagation in the brain 

of GGT+/- mice.  

Next, the short-term presynaptic plasticity was measured by examining the PPF 

ratios, which tests the ability of two successive stimuli to elicit an increased post-synaptic 

response. The mechanisms underlying PPF are exclusively pre-synaptic (Isaac et al., 1998). 

PPF is a function of presynaptic release probability due to increased presynaptic Ca2+ 

concentration leading to a greater release of the excitatory neurotransmitter, glutamate, to 

the post-synaptic cell  (Dudel and Kuffler 1961; Del Castillo and Katz 1954; Zucker and 
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Regehr 2002). The results showed that the basal PPF at a 30ms inter-stimulus interval was 

significantly reduced in GGT+/- mice compared to WT littermates (Fig. 4.2b). This finding 

suggests that GGT haplodeficiency causes a decrease in synaptic vesicle release probability 

from the pre-synaptic terminals. 

Finally, the magnitude of LTP was measured. LTP in the hippocampus is thought 

to be the cellular mechanism underlying learning and memory and is defined as the long-

lasting increase in signal transmission between two neurons (Fitzjohn et al., 2001; 

Collingride and Bliss 1993). The results showed that the magnitude of was severely 

reduced in GGT+/- mice compared to their wild-type littermates (Fig. 4.2c and 4.2d). 

Taken together, these electrophysiological data demonstrate that germ-line GGT 

haplodeficiency impairs both presynaptic and postsynaptic plasticity. 
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Fig. 4.2 – Short- and long-term synaptic plasticity is impaired in GGT+/- mice. A) Input/Output (I/O) 

curves. The field excitatory post-synaptic potentials (fESPS) were recorded and averaged from 5 stimulations 

per intensity ranging from 0µA up to 150µA in 10µA intervals in hippocampal slices from GGT+/- and WT 

mice (n = 15-25 slices/5 mice per genotype). B) Paired-pulse facilitation (PPF) ratios. Basal PPF responses 

were quantified from baseline recordings during LTP experiments in hippocampal slices frm GGT+/- and 

WT mice (n = 21 slices/5-7 mice per genotype). Two stimulations were performed in a quick 30ms 

succession. The amplitudes for each fESPS were recorded and the PPF ratio was expressed as the ratio of the 

responses from the stimulations. C) and D) Long-term potentiation (LTP). Following a 20-min stable 

baseline, the LTP was induced by a theta burst stimulation (TBS) protocol with a 20 second interval and the 

fESPS recorded. The magnitude of LTP was expressed as the slopes of the rising phase of the fEPSPs 

normalized to baseline in hippocampal slices from GGT+/- and WT mice (n = 24-32 slices/9-10 mice per 

genotype. The LTP magnitude of the last 5 minutes (35-40 minute post-induction) was averaged for each 

genotype of mice. *P < 0.05; *** P < 0.001. 
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Dendritic spine density of cortical neurons is markedly reduced in GGT 

haplodeficient mice: 

Following the electrophysiological experiments, we attempted to explore the 

cellular and structural basis for the reduced synaptic plasticity observed in GGT+/- mice. 

Small GTPases that are geranylgeranylated by GGT play critical roles in regulating 

dendritic spine formation/pruning (Tolias and Duman 2011; Yuan et al., 2015). Therefore, 

we used a Golgi staining method and quantified dendritic spine density in cortical neurons. 

The results showed that there was a substantial decrease in both apical and basal dendritic 

spine counts in GGT+/- mice compared to WT littermate controls, indicating impaired 

spine genesis and/or reduced basal synaptic stability in GGT+/- mice (Fig. 4.3). Since spine 

formation correlates with long-term synaptic plasticity and memory  (M Segal 2005), our 

results strongly suggest that the reductions in synaptic plasticity in GGT+/- mice are a 

result of decreases in dendritic spine genesis or stability.   
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Fig. 4.3 – Dendritic spine density is decreased in pyramidal neurons in cortical layers II/III of GGT+/- 

mice. A) Representative images of dendrites in Golgi-stained brain sections from GGT+/- and WT mice (n=4 

mice/genotype). B) Average spine densities on apical oblique and basal shaft dendrites of pyramidal neurons 

(n = 75 apical or basal dendritic segments/15 neurons per mouse). *** P < 0.001.  

Membrane association of geranylgeranylation-targeted small GTPases is reduced 

in forebrain neuron-specific GGT deficient mice: 

The well-known targets of GGT are the Rho family of small GTPases, including 

Rac1 and RhoA which play pivotal roles in dendritic morphogenesis and synaptic plasticity 

(Kimberly and Duman 2011; Newey et al., 2005). These proteins are extensively 

geranylgeranylated by GGT under normal physiological conditions and this lipid 

modification is required for their proper membrane association and function. To determine 

the impact of neuron-specific GGT deletion on cellular location of small GTPases in the 

brain of GGTf/fCre+ mice, the tissue lysate of cerebral cortex was subjected to subcellular 

fractionation by ultracentrifugation, followed by immunoblot analysis of Rac1, RhoA, and 

H-Ras. The results showed that the levels of membrane-associated (geranylgeranylated) 
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Rac1 and RhoA were significantly reduced, while their levels in cytosolic (un-

geranylgeranylated) fractions increased in GGTf/fCre+ mice compared to GGTf/fCre- 

littlemates (Fig. 4.4). Importantly, the cellular distribution of H-Ras, an exclusively 

farnesylated small GTPase (Zhang and Casey 1996), was unaffected (Fig. 4.4), indicating 

that the specific deletion of GGT only reduced geranylgeranylation of target proteins not 

farnesylation of other proteins. In addition, these findings validated that the reduction of 

protein geranylgeranylation could be readily detected in the tissue lysate of the cerebral 

cortex even though only neuronal GGT was deleted in GGTf/fCre+ mice. As 

geranylgeranylation plays a critical role in the cellular trafficking and function of Rac1 and 

RhoA, reduced geranylgeranylation of these small GTPases most likely underlies the 

impairment of dendritic spine genesis and synaptic plasticity in GGT-deficient mice.  

 
Fig. 4.4 – Subcellular distribution of selected small GTPases is disrupted in the brain of GGTf/fCre+ 

mice. Forebrain tissue homogenates from GGTf/fCre+ and GGTf/fCre- mice were subjected to 

ultracentrifugation for the preparation of membrane (Mem) and cytosolic (Cyt) fractions (n = 3 

mice/genotype). A) Representative images from immunoblot analyses for Rac1, RhoA, and H-Ras. Calnexin 

and GAPDH were used as markers for membrane-associated and cytosolic proteins, respectively. B) 

Densitometric quantification of immunoblot analysis, showing relative distribution of each protein in the 

membrane (prenylated) and cytosolic (unprenylated) fraction. **P < 0.01.  
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The magnitude of hippocampal long-term potentiation is modestly reduced in 

forebrain neuron-specific GGT deficient mice: 

To avoid any potential influence of germ-line GGT haplodeficiency during 

embryonic development and to determine the specific role of neuronal GGT in adult brain, 

we generated forebrain neuron-specific GGT knockout (GGTf/fCre+) mice and their WT 

littermates (GGTf/fCre-) by crossbreeding GGTf/f mice with CaMKIIα-Cre mice (Tsien et 

al., 1996). Since CaMKIIα-Cre is only expressed in neurons of the adult forebrain, the 

essential function of GGT during embryonic development is preserved in these mice. 

GGTf/fCre+ mice were subjected to the same sets of electrophysiological experiments as in 

GGT+/- mice.  

The results from the I/O curves showed there was no difference in the average 

fEPSP amplitudes for a given stimulation intensity in the brain slices of GGTf/fCre+ mice 

compared to their GGTf/fCre- littermates (Fig. 4.5a). Similar I/O responses observed in 

GGTf/fCre+ and GGTf/fCre- indicate that forebrain neuron-specific GGT deficiency does 

not affect basal transmission.  

Similarly, comparison of PPF ratios showed no significant differences between 

GGTf/fCre+ mice and GGTf/fCre- littermates (Fig. 4.5b). These results suggest that 

GGTf/fCre+ mice do not exhibit a decrease in the probability of synaptic vesicle release 

from the pre-synaptic terminal. Therefore, it appears that forebrain neuron-specific GGT 

deficiency does not significantly affect presynaptic plasticity, unlike the situation in 

GGT+/- mice, in which presynaptic plasticity was compromised.  
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In the experiments for long-term synaptic plasticity, we found that the magnitude 

of LTP was reduced in GGTf/fCre+ mice compared to GGTf/fCre- littermates (Fig. 4.5c 

and 4.5d). Interestingly, the reduction in the magnitude of LTP in GGTf/fCre+ mice was 

less severe than that in GGT+/- mice, relative to their respective WT littermate controls. 

These results suggest that the normal level of GGT in both neurons and non-neuronal cells 

is important in maintaining long-term synaptic plasticity.  

 
Fig. 4.5 – Long-term synaptic plasticity is impaired in GGTf/fCre+ mice. A) Input/output (I/O) curves. 

The field excitatory post-synaptic potentials (fEPSPs) were recorded and averaged from 5 stimulations per 

intensity ranging from 0µA up to 150µA in 10µA intervals in hippocampal slices from GGT f/fCre+ and 

GGTf/fCre- mice (n = 17-19 slices/4 mice per genotype). B) Paired-pulse facilitation (PPF) ratios. Basal PPF 

responses were quantified from baseline recordings during LTP experiments in hippocampal slices from 

GGTf/fCre+ and GGTf/fCre- mice (n = 17-20 slices/9 mice per genotype). Two stimulations were performed 

in a quick 30ms succession. The amplitudes for each fEPSPs were recorded and the PPF ratio was expressed 

as the ratio of the responses from the stimulations. C) and D) Long-term potentiation (LTP). Following a 20-

min stable baseline, the LTP was induced by a theta burst stimulation (TBS) protocol with a 20-sec interval 

and the fEPSPs recorded. The magnitude of LTP was expressed as the slopes of the rising phase of the fEPSPs 

normalized to baseline in hippocampal slices from GGTf/fCre+ and GGTf/fCre- mice (n = 18-24 slices/10 

mice per genotype. The LTP magnitude of the last 5 minutes (35-40 minute post-induction) was averaged for 

each genotype of mice. *P < 0.05.  
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Dendritic spine densities in cortical neurons are reduced in forebrain neuron-

specific GTT deficient mice: 

To address whether the changes in dendritic spine densities underlie the reduced 

LTP magnitude in GGTf/fCre+ mice, we quantified tertiary apical and basal dendrites from 

cortical neurons. We found that both apical and basal dendritic spine counts were decreased 

in cortical neurons from GGTf/fCre+ mice compared to GGTf/fCre- littermates, indicating 

the importance of neuronal GGT for maintaining normal dendritic spine densities (Fig. 

4.6). Consistent with the reduction in the magnitude of LTP, the reduction of dendritic 

spine densities in GGTf/fCre+ mice was to a lesser degree than that in GGT+/- mice, relative 

to their respective WT littermate controls. These results further suggest that the normal 

level of GGT in both neurons and non-neuronal cells is crucial to maintain dendritic spine 

density and synaptic plasticity.  

 
Fig. 4.6 – Dendritic spine density is decreased in pyramidal neurons in cortical layers II/III of 

GGTf/fCre+ mice. A) Representative images of dendrites in Golgi-stained brain sections from GGTf/fCre+ 

and GGTf/fCre- mice (n=3-4 mice/genotype). B) Average spine densities on apical oblique and basal shaft 

dendrites of pyramidal neurons (n = 75 apical or basal dendritic segments/15 neurons per mouse). * P < 0.05. 
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Discussion:  

The role of GGT in the nervous system has been explored previously. Gao et al has 

concisely summarized recent findings on the role of GGT-mediated prenylation in the brain 

(Gao et al., 2016). However, the majority of the previous studies used the pharmacological 

approaches to manipulate the activity of GGT. While statins and GGT inhibitors are 

valuable pharmacological tools to probe prenylation pathways, there are limitations. Statins 

inhibit the activity of HMG-CoA reductase and thus decease the production of isoprenoids 

instead of directly inhibiting the activity of a specific prenyltransferase. Statin-induced 

limitation of isoprenoids (FPP and GGPP) could affect both farnesylation and 

geranylgeranylation by all prenyltransferases rather than GGT alone. In addition, 

prenylation-independent effects of isoprenoids and cholesterol further complicate the 

impact of treatment with statins. Although synthetic inhibitors targeting GGT have 

facilitated some of the experiments, potential side effects and the poor blood-brain barrier 

permeability limit the application of these inhibitors for long-term studies in vivo. Here we 

took the genetic approach and generated conditional forebrain neuron-specific GGT 

deficient mice, as well as using germline GGT haplodeficient mice, to better understand 

the role of GGT in synaptic function.  

We found that there were no significant changes in basal synaptic transmission in 

either GGT+/- or GGTf/fCre+ mice, evidenced by similar I/O curves from different 

genotypes. These results indicate that these mice similar post-synaptic responses compared 

to WT mice (Campanac and Debanne 2008; Marder 2004; Staff and Spruston 2003; 
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Daoudal and Debanne 2003; Carvalho and Buonomano 2009). In the experiments 

measuring the presynaptic short-term plasticity, we found that hippocampal PPF ratios 

were reduced in GGT+/- mice, but not in GGTf/fCre+ mice. Changes in PPF ratio indicate 

a reduced ability for presynaptic neurons to release neurotransmitter to the post-synaptic 

cell. PPF changes are exclusively pre-synaptic and can be caused by several mechanisms 

(Del Castillo and Katz 1954; Dudel and Kuffler 1961; Zucker and Regehr 2002), such as 

increased Ca2+ sequestration, misaligned cytoskeletal features that reduce the efficiency of 

vesicle release, or increased inhibitor signaling from GABAergic neurons. It is not clear 

which mechanisms were responsible for the reduced PPF ratios in GGT+/- mice. 

Interestingly, such deficits in PPF did not occur in GGTf/fCre+ mice, suggesting that the 

changes in short-term plasticity might be a result of altered neuronal development caused 

by a systemic/germline reduction of GGT in GGT+/- mice. This notion is supported by the 

importance of GGT during early development as a complete KO is embryonic lethal (Liu 

et al., 2010; Sjogren et al., 2007).  

The induction and maintenance of LTP in the hippocampus is widely considered to 

be the cellular/synaptic correlate of learning and memory (McGaugh 2000). We found that 

the magnitude of LTP was reduced in both GGT+/- and GGTf/fCre+ mice, indicating the 

importance of both systemic and neuronal GGT in long-term synaptic plasticity. 

Intriguingly, the deficit in LTP was more severe in GGT+/- mice than that in GGTf/fCre+ 

mice compared to their respective WT littermates. This observation further suggests the 

critical role of normal GGT levels during early development and for synaptic function in 

mature brain. Germline haplodeficiency of GGT led to a significant reduction in both short-
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term and long-term synaptic plasticity. Our results corroborate some of the previous 

findings using GGT inhibitors. It has been shown that while acute treatment with a GGT 

inhibitor in hippocampal slices from WT mice does not affect the induction and 

maintenance of LTP  (Kotti et al., 2008; Mans et al., 2012), long-term treatment with a 

GGT inhibitor reduces the magnitude of LTP (Kotti et al., 2008).  

Compelling evidence shows that dendritic spines are morphological building blocks of 

long-term plasticity and memory (Segal 2005, 2017). Our study showed that dendritic spine 

densities in cortical neurons were significantly reduced in both GGT+/- and GGTf/fCre+ 

mice. Consistent with our results from LTP experiments, the reduction of dendritic spine 

density was more marked in GGT+/- mice than in GGTf/fCre+ mice compared to their 

respective WT littermate controls. Our results from these mice are also in line with previous 

findings from studies using pharmacological and transgenic approaches. Using an inhibitor 

of GGT in vitro and transgenic expression of a dominant-negative mutant GGT in vivo, 

Luo et al reported that GGT might be a signaling molecule itself and GGT-mediated protein 

prenylation could play an important role in regulating neuromuscular synapse formation 

and/or maintenance (Luo et al., 2003). Subsequent studies showed that activation of GGT 

is required for activity- and BDNF–dependent dendritic morphogenesis and 

synaptogenesis in cultured hippocampal neurons and cerebellar Purkinje cells (Zhou et al., 

2008; Wu et al., Luo 2010; Li et al., 2013). Further, inhibition of GGT activity by lateral 

ventricular injection of a GGT inhibitor was found to decrease dendritic spine density in 

the hippocampus of treated mice (Yuan et al., 2015). Others have also identified GGT as a 

significant player in the regulation of neurite/dendritic outgrowth and synaptic markers 
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(Samuel et al., 2014; Li et al., 2016; Moutinho et al., 2016). However, not all results are 

consistent. For example, Samuel et al have shown that inhibition of geranylgeranylation 

increases neurite branching in cultured neurons (Samuel et al., 2014). Li et al recently 

reported that protein prenylation acts as an endogenous brake on axonal growth (Li et al., 

2016). Through high-throughput drug screening, they identified statins as the most 

effective molecules to enhance neurite outgrowth of different types of neurons in culture 

and demonstrated that inhibition of protein prenylation accounted for the statin-induced 

increase in axonal growth. They further showed that the expression level of GGT, but not 

FT, was elevated in motor neurons of patients with early-onset ALS, suggesting that protein 

prenylation inhibitors might have therapeutic potential to accelerate neuronal regeneration. 

It is worth noting that this elevation of GGT expression only occurs under the pathological 

condition of early-onset ALS and specifically in motor neurons (Li et al., 2016). Thus, 

inhibition of GGT in motor neurons of early-onset cases of ALS to normal level of GGT 

could be beneficial. However, here we show that under physiological conditions, 

germline/systemic or forebrain neuron-specific reduction of GGT results in detrimental 

effects on synaptic plasticity and dendritic spine density. These findings indicate that a 

proper level of GGT expression/activity is required for normal structure and function of 

neurons during development and in mature brain.  

It is well known that Rho GTPases are major regulators of synaptic plasticity, 

dendritic growth, and spine morphogenesis (Kimberly and Duman 2011; Newey et al., 

2005; Govek et al., 2011). These small GTPases primarily undergoes geranylgeranylation 

for their proper cellular localization and interactions with their downstream effector 
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proteins. In particular, the role of major Rho proteins, such as Rac1 and RhoA, in neuronal 

structure and function has been extensively studied (Kimberly and Duman 2011; Newey et 

al., 2005). Activation of Rac1 promotes dendritic arborization, remodeling, and synapse 

formation, whereas activation of RhoA exhibits opposite functions, reducing dendritic 

complexity and spine density (Newey et al., 2005). Thus, Rac1 and RhoA have a crucial 

checks-and-balances role to ensure the plasticity of dendritic structure and function. Our 

study provides evidence that GGT deficiency in neurons caused a significant reduction in 

the membrane association (geranylgeranylation) of Rac1 and RhoA in the brain of 

GGTf/fCre+ mice. Such inadequate geranylgeranylation-induced improper localization of 

Rac1 and RhoA which is expected to impair their interactions with effector proteins and 

disrupt the balance of their functions, causing dendritic spine destabilization. Indeed, the 

critical role of prenylated Rac1 in dendritic morphogenesis has been shown previously, in 

which deletion or mutation of the geranylgeranylation site in Rac1 fails to mediate the 

beneficial effects of GGT overexpression on dendritic arborization in cultured neurons 

(Zhou et al., 2008). Using a similar approach, another study reported that expression of a 

non-prenylated Rac1 led to abnormal cell morphology and neurite initiation because of 

aberrant activation of cytosolic signaling pathways (Reddy et al., 2015). Therefore, 

reduction of dendritic spine density and synaptic plasticity in GGT-deficient mice most 

likely result from inadequate geranylgeranylation and dysfunction of these Rho proteins. 

Interestingly, a recent study found that GGT activity and protein/gene expression levels 

were significantly decreased in the brain of aged mice compared to the brain of young mice 

(Afshordel et al., 2014). Consistently, membrane-associated (geranylgeranylated) RhoA 
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and Rac1 levels were reduced in the aged mouse brains. These findings suggest that 

GGT/protein geranylgeranylation may play an important role in brain aging and that GGT-

deficient mice may serve as a model of accelerated brain aging. Clearly, GGT target 

proteins are not limited to Rac1 and RhoA. To fully assess the scope of geranylgeranylated 

proteins affected by GGT deficiency, an unbiased prenylomic analysis will be required. 

Currently such a prenylomic approach has been applied for studies in vitro and is actively 

pursued for studies in vivo (Palsuledesai et al., 2016).  

The present study demonstrates that germline/systemic or forebrain neuron specific 

deficiency of GGT reduces dendritic spine density and impairs synaptic plasticity in the 

brain of young adult mice, concurrently with reduced geranylgeranylation of Rho proteins. 

These results closely resemble changes found in the brain of aged mice, suggesting an 

important role of GGT and its target proteins in normal brain aging. While the use of GGT 

inhibitors could be beneficial under pathological conditions with over activation or 

upregulation of GGT, our findings caution potential detrimental effects on synaptic 

function from the chronic use of GGT inhibitors.  
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CONCLUDING REMARKS AND PERSPECTIVES: 

In the past 20 years, much progress has been made on understanding the symptoms, 

etiology and pathogenic mechanisms of AD. However, to date there is no effective 

prevention or treatment for this debilitating disease. It is clear that cognitive impairment is 

the earliest symptom in AD. Compelling evidence suggests that HDL could be a viable 

target for developing therapeutic strategies to mitigate cognitive deficits in AD. However, 

several important issues need to be addressed. First, the level of plasma HDL-C does not 

always represent the level and function of HDL. The concentration of apoA-I is a more 

accurate measurement of HDL levels. Second, not all HDL is equal. It has been shown that 

HDL can be anti-inflammatory or pro-inflammatory  (Navab et al., 2005). This may explain 

some of the discrepancies regarding the association of HDL levels with disease status in 

clinical studies. Thus, in addition to the quantity of HDL, a reliable and practical assay 

needs to be developed to measure the quality of HDL. Third, it is not clear if apoA-I has to 

be present in the brain to exert beneficial effects. Further studies are needed to dissect 

systemic and local effects of apoA-I/HDL on cognitive function. Lastly, the exact 

mechanism of action for HDL to modulate cognitive function has not been elucidated. 

Since HDL is a modifiable target, more studies are urgently needed in this regard. A small 

increase in functional HDL levels may have a profound capacity to prevent, delay and/or 

halt the progression of the diseases.  

To address these gaps in the current literature, the present dissertation showed that 

CETP tg expression was able to modify the cholesterol profiles in mice. This modest 
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reduction of HDL-C levels in CETP tg mice did not affect the HDL’s anti-oxidative 

properties as measured by PON1 activity. Additionally, CETP tg expressing had no 

significant effect on brain amyloid pathology in 6 (plaque formation onset) or 9 mo (plaque 

accumulation). Taken together, the modest changes to cholesterol profiles did not result in 

a significant change in cognitive function in AD mice co-expressing CETP. However, the 

present dissertation research showed that peripheral administration of an apoJ/clusterin 

mimetic, D-apoJ[113-122], robustly reduced brain amyloid plaque pathology by either 

increasing brain Aβ clearance or reducing brain Aβ reuptake from the plasma. Indeed, 

plasma amyloid levels were twice as high in D-apoJ[113-122]-treated AD mice. 

Additionally, D-apoJ[113-122] treatment dramatically reduced CAA, which could be a 

major mechanism involved in the improved behavioral outcomes in treated mice. Overall, 

these data suggest that apo/HDL mimetic peptides are a promising therapeutic agent for 

AD. 

Protein prenylation is a critical lipid posttranslational modification of many 

important proteins. Particularly, it plays a key role in determining the cellular localization 

and functions of small GTPases. Small GTPases control signaling pathways that regulate 

a plethora of cellular functions including synaptic plasticity, and dysregulation or 

dysfunction of small GTPases leads to different types of disorders. Emerging evidence 

indicates that protein prenylation plays an important role in the development of AD. 

However, clinical trials using statins in patients with AD have not shown consistent 

benefits (Shepardson et al., 2011). While differences in the blood-brain barrier 

permeability and the dose of statins, the population of subjects, and the stage of the disease 
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at which statins are administered could all contribute to the discrepancies in clinical 

outcomes, one critical missing point is the fact that statins inhibit the production of FPP 

and GGPP simultaneously  (Eckert et al., 2009) and thus may affect both farnesylation and 

geranylgeranylation pathways. Importantly, farnesylated and geranylgeranylated proteins 

are involved in regulating distinct cellular functions (Klooster 2007). Recent studies from 

our laboratory have demonstrated that specific inhibition of protein farnesylation but not 

geranylgeranylation enhances synaptic and cognitive function as well as reduces AD 

pathology (Cheng et al., 2013a), suggesting the potential of FTIs as therapeutic agents for 

AD. Findings from the present dissertation showed that inhibition of protein 

geranylgeranylation has negative effects on synaptic plasticity and dendritic spine density, 

further supporting the differential roles of two protein prenylation pathways in brain 

function and cautioning the use of general protein prenylation inhibitors for AD. 

Our society is aging at an unprecedented pace, mainly due to longer life spans and 

the aging of the baby boomer generation. Aging itself remains the strongest risk factor for 

AD. Thus, the increasingly aged population will inevitably have a large impact on health 

care systems and national economies along with emotional and financial burden on the 

patients and their families. Consequently, therapeutic interventions aimed to increase the 

quality of life at advanced age are in high demand, both at the level of individuals and 

society. Safe and effective HDL-enhancing therapies may fulfil this demand. Additionally, 

further studies are needed to elucidate the role of protein prenylation, in particular 

farnesylation, on the onset and progression of AD. Until then, FTIs developed originally 

for the treatment of cancers may translate well to the treatment of AD.  
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