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Abstract 

 Extra- and intracellular stimuli results in gene expression changes by controlling 

transcription factor activity. Transcription factors are at the hub of cellular signaling and 

are responsible for controlling virtually all cellular processes by binding DNA to directly 

modulate gene expression. Because transcription factors control many cell decisions 

based on cellular pathway signaling, aberrant transcription factor activity is involved in 

many human diseases, making them interesting targets for drug discovery. With the 

exception of nuclear receptors, which are the only class of transcription factors known to 

contain ligand-binding domains, there are no FDA approved drugs directly targeting 

transcription factors. Historically, transcription factors have been referred to as 

‘undruggable’ protein targets. This is likely due to the difficulty in developing small 

molecules toward transcription factors because they typically contain no enzymatic 

activity, lack ligand binding pockets, and have non-discrete tertiary structure. Thus, 

directly targeting transcription factors with small molecules must occur at protein-protein 

or DNA-binding interfaces, which contain shallow binding pockets over large surface 

areas. 

 One strategy to overcome the difficulty in directly targeting transcription factors 

at protein-protein and DNA-binding interfaces with small molecules is through targeting 

nucleophilic amino acids within protein or DNA binding surfaces. This thesis describes 

efforts in developing cysteine reactive small molecules for direct targeting of 

transcription factors. Small molecule probes containing a cysteine reactive group(s) were 

developed, which were inspired by natural products. Chapter 2 discusses the design and 

synthesis of bis-electrophile probes based on the pseudoguaianolide natural product 

helenalin to target the transcription factor p65 of the NF-κB (p50/p65) heterodimer. 

Chapter 3 describes the synthesis and testing of additional helenalin-based inhibitors 

containing a single Michael acceptor for targeted inhibition of the NF-κB pathway. 

Chapter 6 explores small molecule probes that contain a chlorohydrin for covalent 

inhibition of the androgen receptor N-terminal domain for castration resistant prostate 

cancer inhibition. 
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Other projects discussed in this thesis relate to the development of cysteine 

reactive probes for target identification studies. Chapter 4 communicates the synthesis of 

cysteine reactive probes based on the sesquiterpene lactone natural product parthenolide 

and their ability to target leukemic stem cells versus healthy bone marrow cells. Chapter 

5 presents the synthesis of parthenolide-based alkyne probes for target identification 

studies in primary human AML cells via pulldown and LC-MS/MS proteomic analysis. 

Chapter 7 examines the Nicholas reaction and its application toward the attachment of 

terminal alkynes to complex small molecules. 
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1.1 Overview of Transcription Factors 

All intracellular signaling pathways converge to transcription factor modulation, 

which controls gene expression depending on stimuli. Eukaryotic and prokaryotic cells 

rely on transcription factors (TFs) to communicate external and internal signals to 

undergo all processes such as cell growth, division, differentiation, apoptosis, adhesion, 

energy regulation, metabolism, and immunity. Studying TFs is paramount to 

understanding how information encoded in DNA becomes a living organism and how it 

relates to development and disease.   

Sequence specific TFs directly bind unique DNA response elements associated 

with a subset of genes and induce or repress gene transcription through recruitment of co-

activators/repressors and chromatin remodeling proteins. During induction, general TFs 

and RNA polymerase II (pol II) (Figure 1.1) are recruited to the promoter region. 

Response elements are upstream sites from the start of genes (within promoter or 

enhancer regions) and contain a specific DNA sequence. Binding of TFs to enhancer or 

promoter regions significantly upregulates transcription by interacting with the initiation 

complex at the promoter region of genes. 

In humans, six general TFs form the initiation complex with RNA pol II before 

the start of transcription (TFIIA, -B, -D, -E, -F, and –H).
1
 General TFs bind to promoter 

sites of all genes and are required for starting transcription by RNA pol II.
2
 Additionally, 

a large complex of 20-30 proteins referred to as the Mediator complex is required to start 

gene transcription.
3
 The Mediator complex consists of many structural proteins that 

bridge the interactions between TF complexes located at enhancer regions and initiation 

complex at the promoter region.
4
 Enhancer regions are typically thousands of base pairs 

away from promoter regions and physically interact by bending DNA to bring the regions 

into proximity (referred to as ‘looping’).
5
 As an extreme example, in mice the sonic 

hedgehog (ssh) gene promoter is over 1 Mb away from the enhancer region.
6
 The 

components and functional properties of Mediator change depending on TF interactions 
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and activation.
7
 The initiator complex only has a basal level of transcription until 

sequence specific TFs bind to DNA and increase expression.
8
 

A single TF can be responsible for the expression of hundreds of genes; however, 

these genes are not expressed simultaneously upon activation. For instance, the Nuclear 

Factor κB (NF-κB) modulates over 600 genes but binds to only a subset of gene 

promoters and enhancers based on stimuli and post-translational modifications.
9
 

Activation of the androgen receptor (AR) with synthetic testosterone in prostate cancer 

cells causes different levels of transcriptional activation or repression of hundreds of 

genes, including upregulation of the Inhibitor of κB α (IκBα) gene and down regulation 

of the myc and IL-6 receptor genes.
10

 Furthermore, during the course of the induction 

genes were activated or repressed over different time periods. 

Genes can have multiple promoter and enhancer binding sites for the same or 

different TFs.
11

 Different TFs often interact in a cooperative manner to increase or 

decrease gene transcription. One example of this occurs at the enhancer region of the 

Interferon-β (IFN-β) gene where the NF-κB heterodimer and activating transcription 

factor 2 (ATF-2)/c-Jun heterodimer, along with multiple co-activators, are required for 

transcription upon viral infection.
12

 In a separate example, the TNF-α gene is controlled 

by multiple TFs including NF-κB and c-Jun. However, in this case NF-κB and c-Jun 

activate transcription separately and no synergistic interactions were observed.
13

 

Promoter and enhancer sites for the same TF can have different DNA sequences that can 

distort protein binding surfaces in unique ways, which are recognized by separate co-

activators or repressors.
14
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Figure 1.1.1. General activation of the transcriptional machinery. TFs bind to DNA response elements 

within promoter and enhancer regions and then recruit co-activators, which stimulate chromatin remodeling 

and post-translationally modify TFs.  Co-activators also interact with the Mediator complex and Initiation 

complex to begin transcription with RNA Pol II. 
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Various cellular signals and interactions fine tune TF activity in a variety of ways 

to achieve unique gene expression profiles (Figure 1.1.2). Regulation of gene 

transcription is differentiated by binding affinity to specific DNA sequences within 

promoter and enhancer regions, post-translational modifications, and recruitment of co-

activators/repressors. Differences in binding affinity between TFs and promoter/enhancer 

regions are taken advantage of to express specific genes by regulation of TF 

concentrations in the nucleus. For instance, the TF family signal transducers and 

activators of transcription (STATs) generally reside in the cytoplasm until activation 

through tyrosine phosphorylation. Phosphorylation of STATs causes a change in 

conformation, leading to dimerization and translocation to the nucleus.
15

 Another 

example includes the masking of the nuclear location sequence (NLS) of the NF-κB 

heterodimer by IκBα, therefore blocking nuclear translocation. When IκBα is 

phosphorylated and subsequently targeted for degradation, the NF-κB heterodimer 

translocates to the nucleus.
16

 Controlling the concentration of TFs in the nucleus 

determines the activation of high or low affinity promoter and enhancer sites. 

Many examples of post-translational modifications made to TFs have been 

characterized and are often necessary for full activation of gene transcription.
17

 Post-

translational modifications predominantly involve acetylation of lysine residues or 

phosphorylation of tyrosine, serine, and threonine residues. Post-translational 

modifications directly affect TF binding affinity for DNA through conformational 

changes, or through recruitment of other regulatory proteins. Other modifications such as 

methylation and oxidation also regulate many TFs. For instance, hypoxia-induced factor 

1α (HIF-1α) regulation involves oxidation of two proline residues (Pro402 and Pro564), 

which target it for degradation under normoxic cellular conditions.
18

 Regulation of TFs 

via direct methylation has not been well studied compared to other well-known post-

translational modifications, but within the past decade many examples of lysine and 

arginine methylations have been characterized for many signaling proteins including 

TFs.
19

 For example, methylation of Lys218 and Lys221 on p65 increases gene 
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transcription.
20

 Arginine methylation has been shown to positively regulate several other 

TFs as well.
21

 

Acetylation and phosphorylation sites can be recognized by co-activators, which 

are necessary for full transcriptional activity. Three common co-activators that ultimately 

form two heterodimers, the p300/CREB binding protein (CBP) dimer and p300/CREB 

binding protein association factor (PCAF) dimer, directly bind to many TFs, and also 

contain acetyl transferase activity resulting in direct chromatin remodeling and TF 

acetylation.
22

 Two other co-activators that form a heterodimer, p160 and steroid receptor 

co-activators (SRCs), interact directly with a host of TFs including activating protein-1 

(AP-1), Smad3, NF-κB, E2F1, retinoblastoma tumor suppressor (Rb), and p53.
23

 

Post-translational modifications can also act as negative regulators and recruit 

repressors to inhibit transcription. Co-repressors can recruit histone deacetylases 

(HDACs) and DNA methyl transferases (DMTs) resulting in chromatin repackaging and 

transcriptional repression. For example, two co-repressors silencing mediator for retinoid 

and thyroid hormone receptor (SMRT) and nuclear co-repressor (N-CoR) both bind to 

nuclear receptors to inhibit gene transcription.
24

 SMRT has also been shown to undergo 

many post-translational modifications after activation of the NF-κB and mitogen 

activated protein kinase (MAPK) pathways.
25

  Variations in co-activator and repressor 

recruitment to post-translational modification sites fine tune the gene expression profile 

of a TF based on cellular stimuli. 

In summary, general TFs bind to all transcribed genes at promoter regions and are 

required for the start of transcription by RNA pol II. Activated sequence specific TFs 

bind to promoter and enhancer sites by recognizing specific DNA sequences and cause 

bending of the DNA (e.g. looping) to directly interact with Mediator and the Initiation 

complex to upregulate gene transcription. Extracellular and intracellular signals activate 

TFs in a variety of different ways leading to gene expression. After activation of a TF, 

many interactions regulate their activity including the enhancer/promoter DNA sequence, 
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other TFs, co-activators/repressors, and post-translational modifications. TFs can also act 

as transcriptional repressors depending on cellular stimuli. 

 

Figure 1.1.2. Mechanisms of transcriptional activation. 

A. Phosphorylation can induce dimerization, causing translocation of TFs to the nucleus. B. Post-

translational modifications (PTMs) such as phosphorylation can induce nuclear translocation of TFs. C. 

Ligands can induce conformational changes to TFs and cause nuclear translocation. This occurs 

predominantly with nuclear receptors. D. Inhibitory proteins can withhold TFs in the cytosol until a signal 

transduction pathway leads to PTMs and subsequent degradation, thereby releasing the TF to translocate to 

the nucleus. E. PTMs can target TFs to be degraded until a stimulus inhibits this process and allows TFs to 

accumulate and translocate to the nucleus. 
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1.2 Structural Features of Transcription Factors 

Using data from several available databases, it has been estimated that there are 

3,268 TFs coded in the human genome based on similarity to known DNA-binding 

motifs.
26

 These TF DNA-binding domains (DBDs) are classified into ten superclasses 

and further divided into families and subfamilies. The ten superclasses are (1) basic, (2) 

zinc-coordinating, (3) helix-turn-helix, (4) other α-helical DNA-binding, (5) α-Helices 

exposed by β-structures, (6) immunoglobulin fold, (7) β-hairpin exposed by an α/β-

scaffold, (8) β-sheet binding to DNA, (9) β-barrel DNA-binding, and (10) yet undefined 

DBDs. From these ten superclasses there are 112 family classifications and over 300 

subfamilies to further categorize TFs. For example, there are seven classes within the 

immunoglobin fold superclass, which are the rel homology, STAT, p53, runt, T-box, 

NDT80, and grainyhead domains. The rel homology domain is further broken down into 

five families including NF-κB related TFs. An organized list and classification of all 

human TFs and their mouse orthologs can be found using TFClass, which is a free 

database of TFs published online. Characterized DNA-binding consensus sequences for 

each TF  can also be found at this website.
27

  

Most sequence specific TFs bind to DNA through recognition of nucleotide bases 

in the major groove of the double helix. Many crystal structures of TFs, or truncated 

DBDs of TFs, have been reported showing how the tertiary structure of the DBD can 

recognize and differentiate between specific DNA sequences. Three examples including 

the c-Fos/c-Jun heterodimer
28

 as a basic domain example, estrogen receptor homodimer
29

 

as an example of a zinc-coordinating domain, and p50/p65 heterodimer
30

 as an 

immunoglobulin domain example are shown in Figure 1.2.1. The basic (Figure 1.2.1A) 

and zinc-coordinating (Figure 1.2.1B) domains use α-helical structures for DNA 

recognition compared to the p50/p65 heterodimer, which uses an unstructured loop 

region. Interestingly, the p50/p65 heterodimer binding affinity to its consensus sequence 

is higher than many eukaryotic TFs. The range of dissociation constants (Kd) measured 

for the p50/p65 heterodimer to its consensus sequence is 10
-13 

to 10
-10

 M, while most 

other TFs have Kd’s typically between 10
-9

 to 10
-3

.
31

 This has been attributed to the large 
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surface area of the heterodimer protein-protein interaction and its contribution to binding 

cooperativity between the two TFs to the major grooves of the DNA helix. 

 

Figure 1.2.1. Three examples of common TFs bound to DNA. A. Estrogen Receptor (ER) DBD as an 

example of a zinc-coordinating domain. B. c-Fos/c-Jun heterodimer as an example of a basic domain. C. 

The NF-κB (p50/p65) heterodimer as an immunoglobulin domain example. 
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A second structural feature present in most TFs is the transcription activation 

domain or transactivation domain (TAD), which is necessary to upregulate gene 

expression via direct or indirect interactions with the initiation complex. The TADs of 

TFs have been demonstrated to directly interact with many co-activators, general TFs, 

and Mediator proteins of the initiation complex.
32

 TADs are capable of interacting with 

multiple proteins at once and are subject to post-translational modification, which 

contribute to tightly regulated gene transcription.
33

 Eukaryotic TADs are classified into 

three general groups based on amino acid composition. There are TADS rich in acidic 

amino acids, glutamine residues, or proline residues.
32a

 However, this classification 

doesn’t allude to general protein interaction types among the transcriptional machinery.  

Other protein-protein interactions are also essential to TF regulation and function. 

Many TFs exist as homo and heterodimers within cells and often can dimerize with 

multiple TFs or related proteins. For example, the Rel/NF-κB family of transcription 

factors (p65/RelA, p50, RelB, p100/p52, and c-Rel) can dimerize to different extents with 

each other in a hetero- or homodimeric fashion.
34

 Because all TFs contain unique DBDs 

that recognize specific consensus sequences, variation in dimerization leads to 

differential gene transcription. Interestingly, only p65, RelB, and c-Rel contain TADs, 

which directly lead to transcriptional activation whereas p50 and p52 do not. However, 

p50 homodimers utilize other protein-protein interactions to activate transcription.
35

 In 

unstimulated cells p50 and p52 homodimers can also serve as transcriptional repressors 

through association with histone deacetylase 1 (HDAC1).
36

 

 In summary, TFs contain a DBD and multiple binding surfaces for protein-protein 

interactions such as the NLS and TADs. Many TFs form dimers in a homodimeric or 

heterodimeric fashion with each other. DBDs recognize consensus sequences through 

interactions of amino acids and nucleobases primarily in the major groove of the DNA 

double helix. Upon binding to DNA, TFs can undergo conformational changes to be 

recognized by specific regulatory proteins. Many amino acid residues within these 

protein-protein interfaces and DBDs are subject to post-translational modifications by 
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regulatory proteins. TFs can be controlled spatially and temporally to give precise gene 

products depending on all of the stimuli exerted on the cell.  

Thus far TF structure and function have been broadly discussed. The focus for the 

rest of the introduction will be on two signaling pathways and their TFs, the NF-κB and 

androgen receptor pathways. How each of these subfamilies of TFs relates to human 

disease and ways to target them for inhibition utilizing small molecules will be discussed. 

Additionally, approaches for development of small molecule inhibitors towards TFs will 

be presented. 

 

1.3 Overview of the NF-κB Pathway 

The NF-κB/Rel transcription factor family is responsible for propagating immune, 

inflammatory, and stress-related responses within cells. Furthermore, the NF-κB pathway 

is also deeply involved with differentiation, cell growth, and apoptosis. There is a 

canonical
37

 and non-canonical
38

 NF-κB pathway, which activate separate transcription 

factors depending on stimuli. Activation of the canonical pathway predominantly 

involves the p50/p65 heterodimer, and activation of the non-canonical pathway 

predominantly involves the p100/p52 (aka NF-κB2) and RelB heterodimer. A fifth 

transcription factor c-Rel dimerizes with p50; however, it is only expressed in 

hematopoietic tissue.
39

 All NF-κB transcription factors are related by a conserved Rel 

homology domain, which is necessary for DNA-binding, dimerization with other Rel 

transcription factors, and IκB binding. 

Activation of the canonical NF-κB pathway can occur through a variety of signals 

including bacterial
40

 and viral
41

 components, lipopolysaccharides (LPS),
42

 interleukins 

(IL-1α/β,
43

 IL-2,
44

 IL-12,
45

 IL-15,
46

 IL-17,
47

 and IL-18
48

), tumor necrosis factor α (TNF-

α),
43c

 ultraviolet irradiation,
49

 increase in reactive oxygen species (ROS), and many other 

small molecules and signals that cause cellular stress.
50

 All known NF-κB stimuli result 
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in activation of the canonical pathway, however, only some activate the non-canonical 

pathway concurrently.
51

  

 

1.3.1 The Canonical NF-κB Pathway 

The canonical NF-κB pathway (Figure 1.3.1) begins with the activation of the 

Inhibitor of κB kinase (IKK) complex via phosphorylation by upstream kinases. The IKK 

complex consists of two kinases, IKKα and IKKβ, and a regulatory unit NF-κB essential 

modulator (NEMO, aka IKKγ).
52

 However, only IKKβ and NEMO are required for 

activation of the canonical pathway.
53

 Activation of the IKK complex can occur with 

phosphorylation of IKKβ. The ubiquitin-dependent kinase TGFβ-activating kinase 1 

(TAK1) is an essential part of a larger complex that is necessary for phosphorylation of 

Ser177 and Ser181 in the activation loop of IKKβ after certain stimuli.
54

 Although NF-

κB inducing kinase (NIK) is required for non-canonical NF-κB activation (involving 

IKKα) it is also capable of phosphorylating IKKβ for canonical activation.
53a

 A third 

kinase shown to phosphorylate IKKβ during TNF-α induction of the NF-κB pathway is 

Mitogen-activated extracellular-signal induced kinase kinase 3 (MEKK3).
55

 

Phosphorylation of Tyr188 and Tyr199 within the IKKβ activation loop by c-Src upon 

stimulation also leads to activation of the NF-κB pathway in A549 lung cancer cells.
56

 

Activation of the IKK complex can also occur via trans-autophosphorylation.
57

 

Oligomerization of the IKK complex is suggested to be necessary for trans-

autophosphorylation by bringing kinase domains in proximity to each other inducing full 

activation.
58

 Activation of the NF-κB pathway was induced in experiments where 

oligomerization of the IKK complex was forced by chemical modification.
59

 

After phosphorylation of the IKKβ activation loop, K63-linked, non-degradative 

ubiquitination of NEMO is also required for full activation of the IKK complex 

involving.
60

 There are still many mechanistic questions pertaining to how ubiquitination 

regulates the IKK complex; however, multiple lysine sites near the N-terminus zinc-

finger motif of NEMO have been suggested to be ubiquitinated leading to activation.
61
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Phosphorylation and sumoylation of NEMO have also been shown to affect the 

regulation of the IKK complex under certain situations.
62

 All of the post-translational 

modifications that NEMO undergoes underscore its importance in regulation of the NF-

κB pathway, despite not containing a catalytic function. 

Once fully activated, the IKK complex targets IκBα for degradation by 

phosphorylating two proximal residues, Ser32 and Ser36.
52a

 Prior to targeted degradation, 

IκBα is responsible for inhibiting the NF-κB heterodimer in the cytosol from 

translocating into the nucleus by masking the nuclear location sequence (NLS) on p65.
16, 

63
 Upon phosphorylation, IκBα is poly-ubiquitinated at Lys21 and Lys22 and degraded by 

the 26S proteasome, thus releasing the NF-κB heterodimer into the nucleus to bind to κB 

response elements.
64
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Figure 1.3.1. The canonical NF-κB signal transduction pathway. Many extracellular and intracellular 

signals lead to activation of the canonical NF-κB pathway, which begins by phosphorylation of IKKβ and 

non-degradative ubiquitination of NEMO. Both are part of the IKK complex, which phosphorylate IκBα 

upon activation and targets it for 26S proteasome degradation via phosphorylation of Ser32 and Ser36. 

IκBα inhibits the NF-κB (p50/p65) heterodimer from translocating to the nucleus until activation of the 

pathway. Upon release from IκBα, the p50/p65 heterodimer translocates to the nucleus to bind to κB sites 

causing increased gene transcription. P = phosphorylation, Ub (blue) is non-degradative ubiquitination, Ub 

(black) is degradative ubiquitination, Ac = acetylation. 

 

Post-translational modifications including phosphorylation and acetylation of p65 

further modulate its transcriptional activity after the NF-κB heterodimer is released from 

IκBα. Figure 1.3.2 shows all of the phosphorylation and acetylation sites that have been 

characterized on p65. Protein Kinase A (PKA) and mitogen- and stress-activated protein 
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kinase 1/2 (MSK 1/2) stimulates transcriptional activity by phosphorylating Ser276 on 

p65. Phosphorylation of Ser276 is necessary for interactions with co-activators CBP and 

p300.
65

  

Other phosphorylation sites on p65 that have been identified are Ser529 by casein 

kinase II (CK-II) after IL-1 or TNFα treatment
66

 and Ser536 by IKKβ.
67

  Stimulation with 

TNF-α has been proposed to cause NF-κB-activating kinase (NAK) in complex with 

NAK associated protein 1 (NAP1) to phosphorylate the IKK complex and Ser536 on 

p65.
68

  Phosphorylation of p65 at the C-terminus by glycogen synthase kinase 3β 

(GSK3β) has also been demonstrated to be important in NF-κB transcriptional 

activation.
69

 On the other hand, phosphorylation of p65 at Ser468 by GSK3β was shown 

to negatively regulate transcription.
70

 This discrepancy in regulation by GSK3β may be 

due to the different cell types used in each study. Mouse embryonic fibroblasts were used 

in the previously mentioned study where activation of p65 was observed and HeLa cells 

were used where inactivation was observed.  

The NF-κB pathway can be differentially activated and expressed across multiple 

cell types. Protein Kinase C ζ (PKCζ) was determined to phosphorylate Ser311 on p65 

when stimulated with TNF-α and IL-6, which is largely required for transcriptional 

activation in mouse lung cells but not B-cells or embryonic fibroblasts.
71

 Compared to the 

above mentioned kinases, which phosphorylate p65 after IκB degradation, Ribosomal S6 

Kinase 1 (RSK 1) is activated directly by the transcription factor p53. Phosphorylation of 

p65 by RSK1 at Ser536 is independent of IKK complex activation or degradation of 

IκB.
72

 Therefore, direct phosphorylation of p65 reduces the affinity of IκBα for the NF-

κB heterodimer, thus releasing it from the cytosol. 

Phosphorylation plays an important role in activation before and after p65 

translocates into the nucleus. Some phosphorylations by kinases are not necessary for 

gene transcription but are implicated in modulating which genes are chosen to be 

transcribed. Phosphorylation of p65 can have different effects on gene transcription 

depending on cell type presumably through differentiated co-activator expression and 
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recruitment. Many phosphorylation sites serve as signals for the recruitment of other 

regulatory proteins to further modulate p65 transcriptional activity. 

 

 

Figure 1.3.2. Characterized phosphorylation and acetylation sites on p65. P = phosphorylation, Ac = 

acetylation, NLS = nuclear translocation sequence, NES = nuclear exportation sequence. 

 

Phosphorylation of p65 enhances transcriptional activity by recruiting histone 

acetyltransferases (HATs), which typically target DNA-bound histones and lysine 

residues on TFs. Acetylation of p65 at Lys218, Lys221, and Lys310 by p300/CBP affects 

its transcriptional activity and cellular localization.
73

 When Lys218 and Lys221 are 

acetylated DNA binding is enhanced and nuclear export via IκBα is inhibited.
74

 

Transcription of the IκB gene by NF-κB driven activation acts as a negative feedback 

loop by removing the p50/p65 heterodimer from the nucleus after de novo synthesis.
75

 

Acetylation of Lys310 on p65 recruits transcriptional activators including bromodomain-

containing protein 4 (Brd4) and is required for full transcriptional activity.
76

 Negative 

regulation of p65 transcription can also occur after acetylation of Lys122 and Lys123 

mediated by the p300/PCAF heterodimer (both residues are near the DNA-binding 

domain of p65).
77

 When these two lysine residues are acetylated, p65 DNA-binding 

affinity is reduced allowing for IκBα to remove it from the nucleus. Additional 

acetylation sites at Lys314 and Lys315 on DNA-bound p65 regulate transcriptional 

activity at specific κB promoter sites.
78
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Acetylation of p65 is a reversible process via histone deacetylase (HDAC) 

interactions. After the NF-κB heterodimer is directly deacetylated by HDAC3, it is 

shuttled from the nucleus to the cytosol, inactivating the transcription factor. However, 

HDACs 1, 2, 4, 5, or 6 do not directly deacetylate the NF-κB heterodimer.
73

 It has been 

shown that HDAC 1 directly interacts with p65 to regulate histone acetylation at κB sites 

to repress gene expression, but doesn’t have deacetylase activity towards p65.
79

 The 

Class III HDAC Sirt1 regulates many TFs including the p65 subunit by deacetylating 

Lys310 causing transcriptional repression.
80

 

 

1.3.2 The Non-canonical NF-κB Pathway 

The non-canonical NF-κB pathway (Figure 1.3.3) begins with the essential 

activity of the NF-κB inducing kinase (NIK).
81

 Once NIK becomes catalytically active, it 

then phosphorylates Ser176 within the activation loop of IKKα.
82

 IKKβ and NEMO are 

not necessary for non-canonical NF-κB activation.
83

 The requirement of NIK for p100 

processing is not only because of IKKα phosphorylation but also formation of a complex 

that directs IKKα to p100.
84

  After induction, IKKα phosphorylates p100 at Ser866 and 

Ser870 near the C-terminus, which recruits an E3 ubiquitin ligase complex to ubiquitinate 

K856, targeting p100 for 26S proteasome processing.
85

 The C-terminus ankrin repeats of 

p100 inhibit translocation of its heterodimeric partner RelB into the nucleus.
86

 These 

ankrin repeats are selectively degraded to give the active transcription factor p52 

allowing translocation of the p52/RelB heterodimer into the nucleus to bind κB target 

genes.
87
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Figure 1.3.3. Non-canonical NF-κB Signaling. Upon activation, NIK phosphorylates IKKα of the IKK 

complex, which phosphorylates p100 at Ser866 and Ser870. Phosphorylation of p100 causes ubiquitination 

and subsequent 26S proteasome processing to p52. p100 inhibits RelB translocation to the nucleus via C-

terminal ankrin repeats until cleavage occurs after processing. The p52/RelB heterodimer translocates to 

the nucleus to bind to κB sites increasing gene transcription. P = phosphorylation, Ac = acetylation, Ub = 

degradative ubiquitination. 

 

Interestingly, de novo protein synthesis is also required for non-canonical 

activation.
88

 The activation of the canonical pathway expresses proteins directly involved 

in stabilization of NIK activity and protein synthesis of the precursor p100. Under normal 
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conditions NIK is present in the cytosol at low levels due to constant degradation via 

ubiquitination.
89

 Key players in the regulation of NIK levels are tumor necrosis factor 

receptor associated factor 2/3 (TRAF2/3) and cellular inhibitor of apoptosis 1/2 

(cIAP1/2). TRAF2/3 binds to NIK and directs its ubiquitination by cIAP1/2 targeting it 

for degradation.
90

 Upon a receptor stimulus, TRAF2/3 gets recruited to the activated 

receptors and then degraded leaving NIK to accumulate in the cytosol.
91

 Additionally, 

activation of the canonical NF-κB pathway causes direct expression of p100, which is 

necessary for non-canonical activation as well.
87-88

 

Activation kinetics of the NF-κB non-canonical pathway is generally much slower 

compared to the canonical pathway.
85b, 92

 Degradation of p100 to the transcription factor 

p52 occurs over the time scale of hours compared to IκB degradation in the canonical 

NF-κB pathway, which occurs in minutes.
93

 Additionally, stimulation of the non-

canonical NF-κB pathway results in a prolonged activation of p52/RelB compared to the 

activation of the canonical pathway, which is transient.
51

 

There is significant overlap between canonical and non-canonical activation.
93

 All 

stimuli that activate the non-canonical pathway also activate the canonical pathway.
51

 

Furthermore, activation of the non-canonical pathway is dependent on protein expression 

of canonical NF-κB driven genes.
87-88

 Overlap of the canonical and non-canonical NF-κB 

pathways also occurs at the transcription factor level. For instance, the non-canonical 

proteins p100 and RelB can serve as negative regulators of the canonical pathway.
94

 

Alternatively, p65 can suppress RelB activity via dimerization in the nucleus when 

stimulated with TNF-α.
95

 

 

1.3.3 Involvement of the NF-κB Pathway in Human Disease 

 As the key intracellular regulator of the immune and stress-related responses, the 

NF-κB pathway is involved in immunity and inflammatory diseases. Knockouts or 

conditional knockouts of various genes involved in the NF-κB pathway have 

demonstrated its importance in development and disease states.
96

 Knockouts of p65 and 
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IKKβ results in prenatal lethality
97

 whereas other gene deletions and mutations result in 

immunodeficiencies.
96

 Deletion of p65 in mice can be partially rescued with a liver 

transplant or an additional deletion of the TNF receptor gene.
98

 Rare genetic disorders in 

humans involving the NF-κB pathway also result in immune disorders.
99

 On the other 

hand, hyperactivation of the NF-κB pathway results in auto-immune and cardiovascular 

diseases, as well as the development and progression of cancers. 

 Increased NF-κB activation has been implicated in a variety of autoimmune 

diseases including rheumatoid arthritis,
100

 type 1 diabetes mellitus,
101

 inflammatory 

bowel disease,
102

 and multiple sclerosis.
103

 Surprisingly, there are no selective NF-κB 

inhibitors approved for treatment of these diseases.
104

 Oxidative stress, chronic 

inflammation, and activation of the immune system are major contributors to 

atherogenesis as well.
105

 It has been established that activation of the NF-κB pathway 

within endothelial and immune response cells plays a crucial role in the development of 

plaques leading to atherosclerosis.
106

 Plaque formation within blood vessels leads to a 

higher risk of myocardial infarctions, brain aneurisms, and other complications resulting 

from blood clots.
107

 Within vascular tissue where plaque deposits have occurred, NF-κB 

related gene expression is significantly up-regulated compared to normal tissues, and 

animal models suggest that inhibition of the NF-κB pathway can reduce inflammation 

and atherosclerosis.
108

 

 Inflammation and immunity also play important roles in cancer development and 

progression. The NF-κB pathway is aberrantly regulated in many types of cancers 

including lymphoma, leukemia, glioblastoma, pancreatic, epithelial, lung, prostate, and 

liver tumors.
109

 Chronic inflammation increases the likelihood of cancer development as 

evidenced by inflammation associated colon cancer in transgenic mouse models,
110

 v-rel 

induction of lymphoma and leukemia in chickens
111

, and increased cancer risk associated 

with viral, bacterial, and chronic inflammatory diseases.
112

 Furthermore, inflammation in 

the tumor microenvironment contributes to proliferation, angiogenesis, and 

metastasis.
109,113

  The NF-κB pathway is a major factor in maintaining the cancer stem 

cell population in a variety of cancers.
114

 Cancer stem cells are a quiescent and drug-
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resistant sub-population of tumor cells, which are responsible for relapse.
115

 It is clear 

that the NF-κB pathway plays an important role in tumorigenesis and progression of 

cancer, inflammatory diseases, and immune related disorders making it an important 

target for inhibitor discovery. 

 

1.4 Overview of Androgen Receptor Signaling 

 Nuclear receptors (NRs) are the only family of TFs that contain a ligand binding 

domain (LBD) allowing for direct binding to endogenous small molecule ligands. There 

are six subfamilies of NRs: (1) Thyroid hormone receptor-like, (2) Retinoid X receptor-

like, (3) Estrogen receptor-like, (4) Nerve growth factor IB-like, (5) Steroidogenic factor-

like, and (6) Germ cell nuclear factor-like receptors.
116

 Many of the NRs are orphan 

receptors or bind general types of molecules such as xenobiotics or fatty acids. The 

androgen receptor (AR) is part of the Estrogen receptor-like family, and has two 

endogenous ligands (Figure 1.4.1), testosterone (1.1) and 5-α-dihydrotestosterone (DHT, 

1.2)). 

 

 

Figure 1.4.1. Testosterone (1.1) and 5α-dihydrotestosterone (DHT, 1.2) are endogenous agonists of AR. 

 

AR has four domains (Figure 1.4.2): The N-terminal transactivation domain 

(NTD), DNA-binding domain (DBD), a hinge region, and ligand-binding domain 

(LBD).
117

 The NTD is intrinsically disordered. There are two activation function regions 

(AF-1 and AF-2) in AR.
118

 AF-1 is located in the NTD, and AF-2 is located in the LBD. 
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There are two transactivation units (Tau) within AF-1, referred to as Tau-1 and Tau-5, 

which are responsible for interactions with co-activators for transcriptional activity.
119

 

Deletion of AF-1 eliminates AR activation, and deletion of AR-2 significantly attenuates 

transcriptional activation.
120

 Expression of the truncated N-terminal AF-1 region results 

in constitutive transcriptional activity.
120a

  The hinge region is a flexible segment that 

connects the LBD and DBD.
121

 The NLS sequence is at the end of the DBD and spans 

into the hinge region.
122

 

 

 

Figure 1.4.2. Structural Features of the Androgen Receptor (AR). There are four domains in AR: N-

terminal domain (NTD), DNA-binding domain (DBD), the hinge region, and ligand-binding domain 

(LBD). The NTD contains activation function-1 (AF-1), which has two transactivation units (Tau1 and 

Tau5) responsible for co-activator/repressor interactions. The nuclear location sequence is within the hinge 

region and spans into the LBD. The LBD contains activation function-2 (AF-2), which is also responsible 

for interactions with co-activators/repressors. 

 

1.4.1 The Androgen Receptor Signaling Pathway 

Multiple heat shock proteins (Hsp) and other regulatory proteins bind to AR in the 

cytoplasm before activation including Hsp90, 70, 56, and p23 (Figure 1.4.2).
123

 Hsp90 

binds to the LBD of AR sequestering it in the cytosol.
124

 The heat shock family of 

proteins is usually thought of as chaperones that target a host of unfolded proteins; 

however, in NR signaling they play an important role in signaling mechanisms. Hsp90 

contributes to the stability of the tertiary structure of the unbound LBD of AR and is 

required for binding of testosterone or DHT.
125

  Along with several adapter proteins, 

Hsp70 and Hsp56 are required to initially interact with AR, which then facilitates the 
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binding of Hsp90.
126

 After Hsp90 is bound to AR, Hsp70 and Hsp56 dissociate from the 

complex and AR adopts a ligand-binding conformation with Hsp90 and p23.
127

 The 

Hsp90/p23 complex with AR is then competent to bind androgens.
128

 

Binding of an androgen to the AR complex induces a conformational change in 

AR, which dissociates the Hsp90/p23 complex. Upon agonist binding, the NTD of AR, 

which is largely responsible for interacting with co-activators, also binds to the AF-2 

region of the LBD in an intramolecular fashion.
120b, 129

 The two sequences largely 

responsible for this intramolecular interaction are 
23

FQNLF
27

 and 
433

WHTLF
437

 within 

the NTD.
130

 Interestingly, co-activators found to interact with AR also contain a similar 

motif suggesting that competition might occur for binding to the AF-2 region.
131

  This 

intramolecular interaction stabilizes the ligand bound state, causes homodimerization of 

AR, and exposes the NLS and TADs for transcriptional regulation by co-activators and 

repressors.
132

 Dimerized AR translocate to the nucleus to bind AR response elements and 

begin gene transcription.
133
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Figure 1.4.3. Androgen Receptor (AR) Signaling Pathway. A complex involving Hsp70 and Hsp56 

facilitate binding of Hsp90 and p23 to AR, which maintains a ligand-binding competent state. Upon 

binding of ligand AR changes conformation and releases the Hsp90/p23 complex, dimerizes and 

translocates to the nucleus to bind to AR response elements. 

 

AR interacts with many co-activators after DNA-binding. Over 200 co-activators 

have been described to interact with all NRs.
134

 Only representative examples that 

interact with AR will be discussed here. Three proteins that are part of the p160 co-

activator family, steroid receptor co-activators 1-3 (SRC1-3), bind to AR. These three co-

activators were among the first to be discovered and are necessary for further recruitment 
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of chromatin remodeling proteins to TFs.
135

 All SRCs interact primarily with the NTD, 

but they have also been demonstrated to interact with AF-2 within the LBD as well.
136

 

Although SRC1 and 2 have weak acetyltransferase activity (SRC3 does not), these 

proteins serve as ligand-dependent scaffolding proteins for other HATs to bind AR and 

have not been demonstrated to acetylate AR.
136a

 The ubiquitous co-activators that interact 

with many TFs, p300/CBP and PCAF, acetylate Lys630, Lys632, and Lys633 within the 

NLS of AR.
137

 Another co-activator found to acetylate AR within the hinge region is Tat 

interacting protein 60 (Tip60).
138

 The co-activator acetyltransferase-arrest defect 1 

(ARD1) has been shown to acetylate AR at Lys618, which contributes directly to Hsp90 

dissociation upon ligand binding.
139

 

Eighteen phosphorylation sites have been reported for AR and have recently been 

reviewed.
140

 Constitutive phosphorylation of AR has been found to occur prior to 

activation with ligand at Ser94 and Ser650; however, the role of these phosphorylations is 

unclear and doesn’t affect AR activity significantly.
141

 The phosphorylation sites occur at 

serine, threonine, and tyrosine residues spanning from the NTD to the LBD. Most of the 

phosphorylation sites occur within AF-1 or AF-2. Although phosphorylation doesn’t 

globally affect the transcriptional activity of AR, certain phosphorylation sites play a role 

in differentiating between gene expression profiles.
142

 For example, phosphorylation of 

Ser81 by cyclin-dependent kinase 9 (CDK 9) causes differences in transcriptional 

activation of target genes compared to a S81A mutant of AR.
143

 Other phosphorylation 

sites contribute to differences in transcriptional activation programs as well.
140

 

 

1.4.2 Targeting Androgen Receptor Signaling in Prostate Cancer 

 The AR signaling pathway is an important mechanism for prostate cancer 

proliferation and survival. Prostate cancer is initially treated with androgen deprivation 

therapy as a means to limit AR signaling activation. After a mean time of 2-3 years, 

castration resistant prostate cancer inevitably develops.
144

 Castration resistant prostate 

cancer occurs through several mechanisms resulting in continued activation of the AR 
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signaling pathway despite androgen deprivation. These mechanisms include increasing 

agonist sensitivity, reduction of metabolic enzymes that degrade androgens, production of 

androgens within the tumor environment, mutations resulting in activation via other small 

molecule binders such as other endogenous steroids or antagonists, ligand independent 

activation, and upregulation of other signaling pathways.
145

  

Several FDA approved drugs for castration resistant prostate cancer target the 

synthesis of androgens or the LBD of AR. Abiraterone acetate (1.3) inhibits the synthesis 

of androgens and acts as an antagonist to the AR receptor; however this therapy is very 

limited due to the resistance mechanisms mentioned above, which inevitably lead to 

tumor progression and death after beginning treatment.
146

 Enzalutamide (1.4) binds to the 

LBD of AR antagonizing nuclear translocation into the nucleus,
147

 but, resistance still 

prevails over this drug as well.
148

 Interestingly, a single point mutation (F876L) has 

recently been found in a prostate cancer mouse model after treatment with enzalutamide 

switching the drug from an antagonist to an agonist of AR.
149

 

 

 

Figure 1.4.4. FDA approved drugs for the treatment of castration resistant prostate cancer. Abiraterone 

acetate (1.3) inhibits the synthesis of androgens and acts as an antagonist of AR. Enzalutamide (1.4) is an 

antagonist and inhibits nuclear translocation of AR. 

 

A major contributor to castration resistant AR signaling is the formation of splice 

variants of AR without the LBD, resulting in ligand-independent constitutive activity.
150

 

These findings have turned attention to identifying inhibitors of the NTD of AR, which is 
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necessary for transcriptional activation. The natural product EPI-001 (Figure 1.4.5, 1.5) 

was isolated from the marine sponge Geodia lindgreni, which produced this natural 

product after exposure to bisphenol A waste, and was found to inhibit the NTD of AR 

presumably through a covalent modification.
151

 Later, studies identified a diastereomer of 

EPI-001, EPI-002 (1.6), to be slightly more active compared to the three other possible 

diastereomers.
152

 The reactive chloro hydrin group is necessary for EPI-001/002 activity 

and was found to covalently modify the NTD of AR, thereby inhibiting gene 

transcription. In a separate study, it was shown that EPI-001 is generally reactive towards 

biological thiols in buffer at physiological pH, suggesting other proteins may be targets 

for covalent modification by EPI compounds.
153

 

 

Figure 1.4.5. Structures of EPI-001 (1.5) and EPI-002 (1.6). EPI-001/002 inhibits AR by interacting with 

the NTD. EPI-002 is an isomer of EPI-001 found to be more potent than the three other possible isomers. 

 

1.5 Why Develop Inhibitors Toward Transcription Factors? 

TFs are commonly shown in simplistic form at the end of cellular pathways 

binding to DNA resulting in gene transcription; however, this process alone is subject to 

significant regulation. TFs have been under explored compared to other types of 

regulatory proteins. Despite finding thousands of TF genes after sequencing the human 

genome, under 100 TFs have been experimentally verified for DNA-binding and 

regulatory function.
154

 From these characterized TFs, very few have been extensively 

studied in humans. Therefore, continuing research on TFs is important for a greater 

understanding of cellular signaling pathways and how it relates to human diseases. 
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To study TFs in depth requires specific inhibitors that target the regulatory 

processes involved in transcription including post-translational modifications, protein-

protein interactions, and DNA-binding events. Specific small molecule probes targeting 

these regulatory events will provide insight into how dysregulation of TFs contribute to 

cancer and other human diseases. Furthermore, development of tool compounds towards 

inhibition of TFs could lead to discovery of new therapeutics. 

Historically, TFs were labeled as ‘undruggable’ molecules for several reasons.
155

 

With the exception of nuclear receptors, TFs lack binding sites for endogenous small 

molecule ligands, which limits starting points for inhibitor discovery. Additionally, TFs 

have non-discrete tertiary structure making crystallization difficult for structural studies 

and for screening of small molecule binders. Despite limited structural data, in silico 

screening campaigns based on crystal structures and homology models have been an 

important method as a starting point for the discovery of small molecule inhibitors. 

Because TFs lack both enzymatic activity and endogenous small molecule 

binding sites, the development of small molecule inhibitors towards TFs must target 

protein-protein interfaces or DBDs that are required for activity. Protein-protein 

interactions usually involve large surface areas (750-10,000 Å
2
 for protein-protein 

interactions compared to 100-600 Å
2
 for small molecule binding sites)

156
 containing 

shallow, flexible clefts instead of discrete binding pockets, which make them difficult to 

inhibit with potent and selective small molecules.
157

 Similarly, DBDs have large surface 

areas lacking binding sites with undefined, flexible structure until bound to DNA.
158

 

Multiple advantages could be realized by specifically targeting TFs with small 

molecule inhibitors. TFs are the last step of activation in most signal transduction 

pathways and often serve as a central hub for input from multiple stimuli, limiting the 

cells ability to upregulate other proteins to circumvent inhibition.
159

 This is evident by the 

fact that multiple types of stimuli lead to activation of a common TF.  
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Development of small molecules towards TFs will increase the overall diversity 

of the druggable landscape. TFs make up approximately 14% of all coded proteins yet no 

drugs directly targeting TFs outside of inhibitors of NRs, which bind to the LBDs, have 

been FDA approved.
154

 Continuing to identify new targetable TFs will lead to treatments 

that will target multiple hallmarks of cancer growth potentially reducing resistance and 

relapse in cancer patients. Additionally, TFs are also dysregulated in many other non-

cancer related diseases including cardiovascular diseases, autoimmunity, chronic 

inflammation, acute lung injury, myocardial ischemia reperfusion injury, 

neurodegenerative diseases, and many others.
104-105, 160

 Developing inhibitors towards 

TFs can provide an opportunity to treat these diseases as well. 

 

1.5.1 Indirect Inhibition of Transcription Factor Activity 

The difficulty of developing selective and potent inhibitors towards TFs has 

placed focus on the development of small molecule inhibitors towards kinases and other 

regulatory proteins involved in human disease (Figure 1.5.1).
159a, 161

 These approaches 

have led to many success stories and are viable strategies for treatments of a multitude of 

diseases. However, it has become evident that in many cases targeting these proteins 

leads to resistance, reducing the efficacy of these drugs. Additionally, targeting upstream 

proteins in a signal transduction pathway complicates the study of direct effects resulting 

from inactivation of the pathway. 

There have been hundreds of inhibitors demonstrated to decrease NF-κB pathway 

activation, but many of these small molecules target upstream kinases or regulatory 

proteins that indirectly modulate NF-κB activity.
162

 Other inhibitors target upstream 

canonical NF-κB proteins. Many of these upstream proteins overlap with other signal 

transduction pathways limiting studies focused on specific NF-κB control of 

transcription. Targeting redundant signaling proteins allow for resistance to therapeutics 

to occur.
163

 Furthermore, overlap with other important cellular processes can lead to 



30 

 

unwanted effects and toxicity to normal, healthy cells from a therapeutic stand point. 

Since DNA-binding by TFs is the last crucial step in every signal transduction pathway 

targeting TFs may offer a means to avoid unwanted inhibition of other cellular processes 

and limit off-target affects. Therefore, targeting the p50/p65 heterodimer may lead to 

specific inhibition of this pathway with limited effects on other cellular processes. 

 

 

Figure 1.5.1. Indirect methods to modulate TF activity. A. Antagonists of receptor activation. B. Inhibition 

of kinase activity. C. Disruption of protein-protein interactions between regulatory proteins and TFs. D. 

Targeting of chromatin remodeling proteins. E. Small molecule DNA binders that inhibit TF DNA-binding. 

 

Kinase inhibitors approved for cancer treatment inevitably fail due to resistance 

through a variety of mechanisms such as single point mutations within ligand binding 

pockets or deletion of LBDs resulting in constitutive activity.
163a

 For instance, the fusion 

protein Breakpoint Cluster Region-Abelson (BCR-ABL) kinase is responsible for 

progression of chronic myeloid leukemia (CML) in the majority of patients with this 
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disease. The FDA approved drug Imatinib (Figure 1.5.2, 1.7) targets BCR-ABL in 

patients expressing this fusion protein.
164

 Treatment with Imatinib initially results in 

progression-free survival; notwithstanding, progression occurs in almost all patients due 

to mutations.
165

 Additionally, redundant signal transduction pathways can circumvent 

inhibition of kinases or receptors through increased or modified activity of other 

proteins.
163b

 Inhibition of epidermal growth factor receptor (EGFR) can be overcome 

through a variety of mechanisms including upregulation of other tyrosine kinase 

receptors such as c-Met, which activate signal transduction pathways independent of 

ligand activation.
166

 

 

Figure 1.5.2. Imatinib (1.7) is an FDA approved drug for the treatment for patients with CML containing a 

fusion protein BCR-ABL. 

 

Other indirect approaches have been undertaken to inhibit or modify TF activity. 

These approaches include inhibition of regulatory proteins that directly modify or bind to 

TFs.
159b, 167

 As an example of indirectly targeting a protein-protein interaction involving a 

TF, many inhibitors have been designed to target mouse double-minute 2 (MDM2), a 

regulatory protein that interacts with the tumor suppressor TF p53.
168

 MDM2 has E3 

ligase activity and ubiquitinates p53 targeting it for degradation. In cancer cells with WT 

p53, MDM2 has increased activity towards p53 degradation causing aberrant cell 

proliferation.
169

 Small molecule inhibitors block the protein-protein interaction between 

MDM2 and p53 allowing p53 to bind DNA and induce apoptosis in cancer cells. 

However, clinical trials and in vivo studies have shown that these inhibitors lack the 

ability to reduce tumor size over time, cause toxicity to normal cells, and select for p53 

mutants that are resistant to MDM2 inhibition. 
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Another indirect way to control TF activity is inhibition of chromatin modifying 

proteins (i.e. HDACs, HATs, methyl transferases, and ATP-dependent remodeling 

proteins).
170

 HDACs are predominantly responsible for removal of acetyl groups on 

histone lysine residues to repackage DNA in nucleosomes, typically associated with gene 

silencing. In contrast, HATs transfer acetyl groups to histone lysine residues and TFs, and 

are generally associated with unpacking DNA for transcriptional activation. Methyl 

transferases methylate lysine residues and DNA cytosine bases, which typically results in 

gene repression. ATP-dependent chromatin remodeling proteins rearrange histone 

organization in response to different stimuli. Dysregulation of these enzymes frequently 

occurs in cancerous cells, usually involving increased expression of oncogenes and 

decreased expression of tumor suppressor genes. Therefore, targeting these enzymes for 

inhibition has many consequences on transcriptional regulation. 

Two pan HDAC inhibitors are FDA approved for treatment of refractory 

cutaneous T cell lymphoma and peripheral T cell lymphoma, suberanilohydroxamic acid 

(SAHA, a.k.a. vorinostat, Figure 1.5.3, 1.8) and romidepsin (1.9).
171

 Both inhibit HDACs 

by chelating to bound zinc in the enzyme active site, which is necessary for deacetylase 

activity. The limitation of both of these drugs is due to their lack of specificity against 

cancer cells over healthy cells.
172

 Both compounds are non-specific because they 

generally chelate zinc found in many enzyme active sites causing toxicity. Efforts are 

ongoing to selectively target HDACs to increase selectivity towards cancer cells over 

normal healthy cells. 

 

Figure 1.5.3. FDA approved pan-HDAC inhibitors. 
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In addition to toxicity effects due to lack of specificity, resistant mechanisms also 

occur to overcome HDAC inhibition in cancer cells.
173

 A variety of TFs rely on HDAC 

activity to decrease transcription and therefore inhibition of HDACs paradoxically 

increase activation of pathways involved in cell survival and growth including the NF-κB 

and STAT pathways.
174

 Consequently, activation of these pathways can overcome 

general inhibition of HDACs and drive cancer proliferation. 

DNA-binding small molecules are another indirect way to inhibit gene 

transcription of TFs.
175

 By binding to DNA these small molecules can either sterically 

block TF binding or distort the helical structure of DNA making consensus sequences 

unrecognizable to TFs.
176

 DNA-binding pyrole-imidzole (Py-Im) polyamides are able to 

read and bind to specific sequences of DNA based on minor groove interactions with 

nucleobases.
177

 Many DNA-binding Py-Im polyamides have been developed including 

the targeted inhibition of HIF-1α binding to the VEGF promoter and occupation of κB 

sites recognized by the NF-κB (p50/p65) heterodimer.
178

 Inhibition of DNA-binding 

interactions of TFs using DNA-targeting Py-Im polyamides have become useful 

biochemical probes and is a promising approach for future clinical applications. 

 

1.6 Direct Small Molecule Inhibitors of Transcription Factors 

The indirect approaches to modify TF activity mentioned above have provided 

valuable information pertaining to TF function, but, also mentioned above, each approach 

has their own limitations and advantages. Targeting TFs directly with small molecules 

may address these issues.  

Over the past two decades there have been multiple examples of targeting protein-

protein or protein-DNA binding surfaces on TFs using small molecules despite the 

challenges associated with direct inhibition. Several excellent reviews covering small 

molecule inhibitors as recently as 2013 have summarized these efforts.
155b, 158a, 179

 Many 
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inhibitors of protein-protein interfaces on TFs have also been reviewed.
159a, 167b

 

Therefore, this section will focus on recent advances towards the development of small 

molecule inhibitors that have been shown to directly bind to protein-DNA interfaces of 

TFs. Select historical examples will also be discussed because of their relevance to the 

research contributing to this thesis. 

 

1.6.1 Small Molecules Targeting Protein-DNA Interfaces of Transcription Factors 

 Historically, small molecule inhibitors targeting the DBD of TFs have been 

limited. DBDs of TFs are large, flexible protein surfaces, which lack deep hydrophobic 

pockets.
158

 Today this remains to be a challenge, but several recent examples have 

demonstrated the feasibility of such an endeavor. Targeting DBDs has several 

advantages. First, DBDs of activating TFs are rarely mutated and unlikely to gain 

resistance due to their requirement for recognition of specific DNA sequences and 

transcriptional regulation.
180

 Many TFs are downstream regulators and central hubs of 

multiple signal transduction pathways. Several classes of TFs have been found to be 

necessary drivers of cancer development and progression making them ideal targets for 

treatment. The dependence for survival of cancer cells on idiosyncratic TF activation 

could offer selectivity over healthy cells and make it unlikely for redundant mechanisms 

to impart resistance.  

Helenalin (1.10) is a pseudoguaianolide natural product isolated from the Arnica 

plant family and was one of the first natural products to be characterized as a direct DBD 

inhibitor.
181

 Helenalin features two potential Michael acceptors, an α-methylene-γ-

lactone and cyclopentenone, which are responsible for its anti-inflammatory and anti-

proliferative properties.
182

 Several studies have shown that both Michael acceptors react 

with biological thiols at different rates depending on the nucleophile.
183

 Merfort and co-

workers discovered in 1998 that helenalin targets the DBD of p65, part of the NF-κB 

heterodimer, thereby sterically blocking DNA-binding.
184

 Furthermore, it was 

demonstrated that helenalin alkylates Cys38 that is within the DBD of p65 and necessary 
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for DNA sequence recognition.
185

 Using additional analogues, it was suggested that the 

cysteine reactivity was predominantly from hetero-Michael addition to the exocyclic 

methylene butyrolactone.
183c

 An additional Cys120 is found to be 7.7 Å away from 

Cys38, and in a later study it was hypothesized using computational methods that a 

second Michael addition could occur between Cys120 and the endocyclic enone because 

of the ideal distance between the two Michael acceptors of helenalin.
186

 However, the 

double Michael addition event has never been demonstrated experimentally. 

 

Figure 1.6.1. Helenalin (1.10) is a pseudoguaianolide that contains two Michael acceptors, an α-methylene-

γ-lactone and cyclopentenone. Helenalin has been demonstrated to covalently modify Cys38 within the 

DBD of p65, blocking DNA-binding. Computational studies have suggested that a second Michael addition 

could occur with Cys120 and the cyclopentenone. 

 

Many inhibitors of STAT3 target protein-protein interfaces responsible for 

binding to kinases or dimerization.
187

 However, recent reports demonstrate that targeting 

the DBD of STATs is also possible with small molecules. An in silico screening 

approach was used to identify small molecule inhibitors of the STAT3 DBD.
188

  The lead 

compound 1.11 had an IC50 of ~14 μM in a 48 h luciferase reporter assay and time-

dependent inhibition (t1/2~30 h). This study showed direct binding to the DBD of STAT3; 



36 

 

however, inhibition of STAT1 and additional off-target affects led to a follow-up SAR 

study. Testing of additional analogues uncovered 1.12 and 1.13 having reduced IC50 

values between 8.8 and 12.6 μM and t1/2 values of 12.7 and 49.9 h respectively.
189

 These 

analogues were found to directly target the STAT3 DBD over STAT1 and eliminated off-

target alkylating affects. In a mouse xenograft model with A549 cells 1.11 reduced tumor 

size and metastases with no toxicity effects. Additionally, in tumor tissue STAT3 target 

gene transcription was reduced versus vehicle control. 

 

Figure 1.6.2. STAT DBD inhibitors. 1.11 was initially identified from an in silico screen. 1.12 and 1.13 

were found to be more potent than the initial hit compound identified from a previous compound screen 

against the DBD of STAT. 

 

Many examples of direct inhibition of c-myc with small molecules have been 

reported over the past decade.
190

 An alternative approach to inhibiting c-myc is through 

transcriptional regulation by targeting an unconventional TF non-metastatic 23-H2 

(NM23-H2) that controls c-myc gene transcription. The c-myc promoter contains G-rich 

regions, which form G-quadruplexes, and plays an important role in gene expression.
191

  

NM23-H2 has DNA binding activity that specifically recognizes G-quadruplexes and 

resolves their formation; therefore, playing an important role in the expression of c-

myc.
192

 In cancer cells it has been determined that NM23-H2 is overexpressed causing 

increased expression of c-myc, driving proliferation and cell survival. Inhibition of 

NM23-H2 might serve as a way to down regulate c-myc causing apoptosis in cancer 

cells.
193
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In a recent study, screening of a small molecule library revealed a low micromolar 

inhibitor of the DNA-NM23-H2 interaction.
194

 Further experiments showed that 

inhibition of DNA-binding of NM23-H2 was due to direct interaction with its DBD and 

not binding to G-quadruplexes using a variety of functional binding assays. The most 

potent inhibitor 1.14 maintained activity in HeLa cells and demonstrated knockdown of 

mRNA transcription and protein expression of c-myc at low micromolar concentrations, 

agreeing with previous binding assays. It was also discovered that inhibiting NM23-H2 

resulted in increased or decreased regulation of a variety of other genes involved in 

cancer survival. 

 

Figure 1.6.3. Small molecule inhibitor of NM32-H2. 1.14 was shown to bind to the DBD of NM32-H2, an 

unconventional transcription factor that binds to G-quadruplexes and controls the transcription of c-myc.  

 

Small molecule inhibitors of the Kruppel-like Factor 10 (KLF10) DBD were 

discovered using an in silico screening approach based on homology modeling.
195

 KLF10 

is a TF important in T regulatory cell differentiation that is driven by TGF-β1 signaling, 

and is therefore an interesting therapeutic target for diseases involving 

immunosuppression.
196

 After identifying over 700 potential small molecule inhibitors 

with an in silico screen, 40 compounds were tested for inhibition of KLF10 transcription 

via a luciferase reporter assay. Of these 40 compounds, two had greater than 50% 

reduction in transcriptional activity (1.15 and 1.16). Derivatives based on scaffolds of 

1.15 and 1.16 identified two additional inhibitors 1.17 and 1.18. Direct binding to the 

DBD of KLF10 was confirmed with electric mobility shift assays (EMSAs). Compound 

1.17 reduced DNA-binding by 45% and 1.18 reduced DNA-binding by 83% compared to 

a compound-free control. These inhibitors serve as first in-class inhibitors for KLF-10 
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opening the door for future SAR optimization and drugging other members of the KLF 

family of TFs. 

 

Figure 1.6.4. Small molecule inhibitors of KLF10. 

 

Several inhibitors targeting AR have been discussed in section 1.4.2 of this 

introduction that bind to the LBD or NTD of AR. Abiraterone acetate (1.3) and 

enzalutamide (1.4) are FDA approved drugs for castration resistant prostate cancer but 

treatment eventually leads to resistance. EPI-001 (1.5) and related derivatives target the 

NTD. In an alternative approach, small molecules were discovered to target the DBD of 

AR. 

Using crystal structure data of the DBD of AR, an in silico screen was used to 

identify lead compounds for testing of AR DNA-binding activity.
197

 Three compounds 

were identified and chosen for further testing. Compounds 1.19, 1.20 and 1.21 were 

shown to reduce AR transcriptional activity in a luciferase assay with IC50 values of 2.36 

μM, 0.340 μM, and 0.194 μM respectively; compared to enzalutamide, which had an IC50 

of 0.314 μM. Interestingly, 1.20 did not inhibit similar NRs including estrogen receptor, 

glucocorticoid receptor, and progesterone receptor, whereas enzalutamide and 1.19 

inhibited ER at similar concentrations. Interestingly, in a luciferase reporter assay 1.19 

and 1.20 still inhibited DNA-binding of the splice variant AR-V7 lacking the LBD 

compared to enzalutamide, which displayed no activity. Xenograft mouse models using 
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LnCaP cells demonstrated a significant reduction in tumor growth with similar activity to 

enzalutamide in the same mouse model. 

 

 Figure 1.6.5. Inhibitors of the AR DBD.  

 

From these examples it has become evident that targeting DBDs with small 

molecules is a viable strategy for TF inhibition.  On rare occasions, discovery of small 

molecules that target DBDs come from natural products, but more commonly lead 

compounds have been found via in silico screening approaches using homology modeling 

or crystal structure data of TFs. This is most likely because of limited starting points for 

small molecule inhibitors of DBDs, which have large surface areas, lack deep binding 

pockets, and have non-discrete tertiary structure.  

Many of the small molecule inhibitors discussed here have low micromolar 

inhibition of DNA-binding. This may not be ideal for drug candidates due to a lack of 

potency, but, these molecules serve as probes for biological experiments and starting 

points for the discovery of more potent inhibitors. In some instances, inhibitors of DBDs 

have been shown to act via a covalent mechanism of action and could be a valuable 

strategy to gain potency and specificity. Furthermore, covalent mechanism of actions 

could be useful for biochemical studies of TFs such as pulldowns, labeling experiments, 

and competitive binding assays. Continuing to discover small molecule inhibitors of TF 
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DBDs will expand the druggable landscape and may lead to better targeted therapy for a 

variety of diseases, including cancer. 

 

1.7 Preface to this Thesis 

 The following chapters describe the development of cysteine reactive small 

molecule probes for protein target identification studies and targeting transcription 

factors. Chapter 2 reports the synthesis and biological evaluation of cysteine reactive 

probes inspired by the natural product helenalin, building upon the previous work 

described in 1.6.1. The thiol reactivity of the α-methylene-γ-butyrolactone present on the 

synthetic helenalin-based analogues was used to demonstrate that our probes have the 

same mechanism of action as helenalin. Chapter 3 discusses the synthesis of additional 

helenalin-based small molecule probes. The synthesized derivatives were designed to 

explore how each Michael acceptor on our synthetic probes affect inhibition of the NF-

κB pathway. Chapter 4 describes the synthesis and biological testing of semi-synthetic 

derivatives from the natural product parthenolide. Several analogues of parthenolide are 

shown to target the cancer stem cell population (CD34
+
CD38

-
) of a model AML cancer 

cell line while not having toxic properties to normal, healthy primary bone marrow cells. 

The topic of Chapter 5 entails efforts to identify putative protein targets of the natural 

product parthenolide in human primary AML cells using a LC-MS/MS approach. Chapter 

6 communicates the biological evaluation of an alkyne probe, EPI-054, based on EPI-001 

as discussed in 1.4.2 of the introduction and progress towards the identification of its 

protein targets within the cell proteome. Chapter 7 describes the application of the 

Nicholas reaction for the attachment of propargyl groups to hydroxyl, thiol, phenol, 

amine, and carboxylic acid groups on both amino acids and complex small molecules. 
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Chapter 2 

TARGETING NF-κB p65 WITH A HELENALIN INSPIRED BIS-

ELECTROPHILE 
 

Adapted with Permission from: 

Widen, J.C.; Kempema, A.M.; Villalta, P.W.; Harki, D.A. Targeting NF-κB p65 with a 

Helenalin Inspired Bis-electrophile. ACS Chem. Biol. ASAP, DOI: 

10.1021/acschembio.6b00751. © American Chemical Society 

 

This work was in collaboration with Dr. Aaron M. Kempema, Dr. Peter W. Villalta, and 

Professor Daniel A. Harki. Dr. Aaron M. Kempema assisted with aspects of the synthesis 

of the helenalin-based probes discussed below. Dr. Peter W. Villalta trained and assisted 

with operation of the LC-MS/MS. John Widen designed and synthesized the small 

molecules presented in this work and conducted all experiments including the NF-κB 

luciferase assay, in-gel fluorescence labeling, pulldown experiments, and p65 labeling 

experiments. 
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2.1 Introduction 

Aberrant activation of canonical p50/p65 NF-κB transcription factors and 

concomitant expression of their target genes has been implicated in a spectrum of human 

diseases, including chronic inflammatory disease, atherosclerosis, arthritis, and cancer.
198

 

Consequently, interventional strategies to regulate canonical NF-κB signaling may be 

broadly useful for multiple therapeutic indications.
199

 Accordingly, significant research 

efforts have been devoted towards the discovery of inhibitors of canonical p50/p65 NF-

κB signaling with the targeting of upstream kinases that facilitate p50/p65 activation (via 

release from its repressor protein, IκBα) being the prominent strategy.
162, 200

 However, 

most of these enzymes have degenerate activities with other cellular processes, and 

therefore, their inhibition as a strategy to regulate canonical NF-κB signaling results in 

off-target effects.
162

 Targeting the most downstream proteins in the canonical NF-κB 

signaling pathway, the p50/p65 transcription factor heterodimer itself, would ablate such 

specificity issues. 

Chemical modulation of transcription factor-DNA interfaces has shown promise 

as a strategy to regulate aberrant transcription factor signaling. Pyrrole-imidazole 

polyamides that target the DNA minor groove with sequence specificity and disrupt 

transcription factor-DNA binding have demonstrated promising utilities in both cell 

culture and animal models, including modulation of canonical NF-κB signaling.
178b, 201

 

Conversely, targeting transcription factors with protein-binding small molecules has 

proven more problematic, which has been attributed to the typical shallow ligand binding 

pockets and non-discrete protein tertiary structure, which result in weak binding by 

putative inhibitors.
155b, 158a

 Irreversible covalent binding by inhibitors to nucleophilic 

amino acids on transcription factors may provide another strategy for transcriptional 

regulation via direct protein binding provided the amino acids that are covalently 

modified are intolerant of chemical modification (e.g., chemical modification prevents 

DNA binding and/or transcriptional activation).
199b
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Many sesquiterpene lactone (SL) natural products are known modulators of NF-

κB signaling.
182c, 202

 In particular, helenalin (Figure 2.1.1A), a SL isolable from some 

Arnica and Helenium species,
181, 203

 has provided inspiration for the rational design of 

transcription factor-targeting NF-κB inhibitors that disrupt DNA binding. The medicinal 

properties of helenalin have been known for over a century,
204

 which are structurally 

endowed, in part, by its α-methylene-γ-butyrolactone; a moiety found in scores of 

bioactive natural products.
205

 Exocyclic methylene butyrolactones undergo hetero-

Michael addition with biological thiols to form covalent adducts. Helenalin also contains 

an endocyclic α,β-unsaturated ketone (cyclopentenone) that can also undergo hetero-

Michael addition with thiols. Removal of one of the two Michael acceptors of helenalin, 

such as reduction of the cyclopentenone (yielding 2,3-dihydrohelenalin) or α-methylene-

γ-butyrolactone (yielding 11,13-dihydrohelenalin; plenolin), significantly diminishes 

cytotoxicity in comparison to the parent natural product.
182b, 206

 Reduction of both 

Michael acceptors on helenalin ablates all activity.
206b, 206c

 The cyclopentenone and α-

methylene-γ-butyrolactone of helenalin can engage biological thiols, such as glutathione 

and cysteine, yielding covalent adducts.
182a, 183a

 Previous studies by Merfort and 

colleagues have shown that helenalin covalently targets Cys38 of NF-κB p65,
183c, 184

 

which is positioned at the DNA-binding interface upon heterodimerization with p50 and 

DNA engagement (Figure 2.1.1B).
31a

 Alkylation of p65 by helenalin sterically prevents 

DNA binding of the p50/p65 heterodimer and inhibits its transcriptional activation.
186

 

Interestingly, molecular modeling of helenalin enabled the hypothesis that it may engage 

in tandem hetero-Michael additions with Cys38 and Cys120, which are 7.7 Å apart when 

bound to DNA;
207,185

 however, the lack of sensitivity of helenalin to a Cys120Ser 

mutation has drawn this crosslinking model into question.
182c, 186

 Nonetheless, the non-

disulfide, nucleophilic cysteines, Cys38 and Cys120, located at the p65 DNA-binding 

interface constitute unique structural features of p65 that lends itself towards the 

development of covalent chemical modulators. Furthermore, previous studies from other 

groups have demonstrated covalent engagement of p65 Cys38 with diverse small 

molecules,
199b, 208

 as well as covalent targeting of p65 Cys120.
209
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Figure 2.1.1. A. Structure of the sesquiterpene lactone helenalin and the design of helenalin mimics that 

contain both electrophiles found in the parent natural product. The secondary alcohol is amenable to 

chemical modifications to install reporter tags, such as alkynes. Based on two reported crystal structures of 

helenalin, the distance between the two electrophilic carbons (red asterisks) is 6.2-6.4 Å.
210

 B. X-ray crystal 

structure of the NF-κB p50-p65 heterodimer bound to DNA (pdb 1VKX).
33

 Notably, p65 cysteine residues 

38 and 120 are adjacent in the DNA-binding interface (7.7 Å S-S distance, depicted with dashed line). 

 

We hypothesized that chemical probes containing two structurally similar, 

electrophilic heterocycles configured in comparable chemical space as that of helenalin 

may recapitulate the interesting biological activity of the parent natural product. A similar 

strategy has been recently implemented for regulation of the Keap1/Nrf2/ARE 

pathway.
211

 Consequently, we devised a strategy to develop structurally simplified 

helenalin analogues that could be amenable to structure-activity relationship studies, 

serve as suitable chemical mimics of the parent natural product, and yield powerful 

chemical biology tools for specificity studies and target annotation by protein pulldown-

mass spectrometry analysis. Our design would also enable rapid syntheses of analogues 

in comparison to the parent natural product, which required lengthy total syntheses.
212

 

Herein, we report the design, synthesis, and characterization of simplified helenalin 
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analogues and their utilization in cell culture to target p65 of the canonical NF-κB 

signaling pathway. 

 

2.2 Design and Synthesis of Simplified Helenalin Analogues 

The probe design was based on retaining both the cyclopentenone and α-

methylene-γ-butyrolactone of helenalin, which are required for covalent reactivity at 

Cys38 and Cys120 of p65, but structurally simplifying the central 7-membered ring 

whereas the two above-mentioned ring systems would be tethered in only one position 

(Figure 2.1.1A). In support of this design, computational modeling of 2.6a and 2.6b 

predicted distances between the electrophilic carbons (analogous to the electrophilic 

carbons of helenalin denoted in Figure 2.1.1A) on both simplified analogues to be 6.2 Å, 

which is comparable to those distances measured from published x-ray crystal structures 

of helenalin (6.2-6.4 Å; Figure 2.2.1 for modeling data).
210

 Additionally, the calculated 

distances between the analogous electrophilic carbons on alkynylated probes 2.1a and 

2.1b was similar (2.1a: 6.1 Å; 2.1b: 5.4 Å). An additional consideration in our design 

was the utility of the diastereoselective, Barbier-type, aldehyde allylation chemistry 

developed by Hodgson and coworkers for synthesizing β-substituted α-methylene-γ-

butyrolactones.
213
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Figure 2.2.1. The measured distances between the two electrophilic carbons of helenalin and probes 2.1a, 

2.2b, 2.6a, and 2.6b. Molecular modeling and structure minimization was performed with Maestro 

(Schrödinger, Inc., version 10.2.010). All ab initio equilibrium conformer minimizations were calculated 

with Jaguar (version 8.0) using the Density Functional Theory (DFT) B3LYP method and 6-31G** basis 

set in the gas phase (maximum iterations set to 48; calculation speed was set to ‘accurate’). The distances 

between the two electrophilic carbons were measured after minimization of each structure. A. Measured 

distance between both electrophilic carbons from a published crystal structure of helenalin.
210a

 B. Measured 

distance between both electrophilic carbons from a second published crystal structure of helenalin.
210b

 C. 

The predicted distance between the two electrophilic carbons of a minimized helenalin structure, which is 

in close agreement with A and B. Minimized structures and measured distances between electrophilic 

carbons for probes 2.6a (D), 2.6b (E), 2.1a (F), and 2.1b (G).  

 

Accordingly, we devised the 5-step racemic synthesis of structurally simplified 

helenalin probe 2.1a/b shown in Scheme 2.2.1. The known, racemic cyclopentanone rac-

2.2
214

 was oxidized to the α,β-unsaturated ketone 3 using IBX in moderate yield.
215

 β-

keto ester 2.3 was reduced to the diol with LiAlH4, and then subsequently oxidized to the 

desired aldehyde 2.4 with PCC in a 40% yield over the two steps. Notably, aldehyde 2.4 

is volatile and unstable and must be used immediately following careful purification and 

isolation. The α-(bromo)methyl unsaturated furanone 2.5 was synthesized in one step 

from α-methylene-γ-butyrolactone by a known procedure.
213, 216

 With building blocks 2.4 
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and 2.5 in-hand, the diastereoselective Barbier coupling (vide supra) was performed, 

which resulted in inseparable diastereomers 2.6a* and 2.6b*. Only one diastereomer was 

observed in the Barbier coupling with respect to β-substitution of α-methylene-γ-

butyrolactone ring in accord with literature precedence of a 6-membered transition state. 

However, metal-catalyzed allylation of aldehyde 2.4, bearing a stereogenic center, occurs 

without facial selectivity, yielding diastereomeric products 2.6a* and 2.6b* that are 

racemic. Coupling the inseparable mixture of 2.6a* and 2.6b* with 4-pentynoic acid and 

DCC yielded racemic 2.1a and 2.1b that were separable on silica gel. The overall yield 

for the synthesis of 2.1a and 2.1b was 13% (5 steps). 

 

 
 

Scheme 2.2.1. Racemic synthesis of bifunctional helenalin mimics and their alkyne analogues.
a 

a
Reagents and Conditions: (a) IBX, DMSO, 75 °C, 66%; (b) (i) LiAlH4, Et2O 0 °C; (ii) PCC, CH2Cl2, RT, 

40% (2 steps); (c) Zn
0
, NH4Cl (aq.), DMF, RT, 60%; (d) 4-pentynoic acid, DCC, DMAP, CH2Cl2, 40 °C, 

80% (separable diastereomers). *Denotes 2.6a and 2.6b prepared from racemic starting materials. 

 

A stereoselective synthesis of 2.6a was also developed to deliver a simplified 

helenalin probe with the appropriate overall stereochemistry as that found in helenalin 

and to overcome our inability to separate diastereomers 2.6a* and 2.6b* from the Barbier 
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coupling in the racemic synthesis. Since our stereoselective synthesis would employ a 

different aldehyde coupling partner, an opportunity to separate the diastereomers 

resulting from the Barbier coupling would exist. Our synthesis began with the 

stereoselective introduction of the quaternary methyl group, yielding (S)-2.2, using an 

established protocol for the stereoselective methylation of 1,3-ketoesters (Scheme 

2.2.2).
217

 Accordingly, 1,3-ketoester 2.7 was condensed with L-tert-butylvaline to obtain 

enamine 2.8 in 75% yield. Enamine 2.8 was deprotonated with LDA in toluene at –78 °C, 

and then two equivalents of THF were added, followed by the addition of excess CH3I at 

the same temperature. After formation of the quaternary center, the crude product was 

isolated and the resulting Schiff base was hydrolyzed with aqueous HCl to obtain (S)-2.2 

in 53% yield and 93:7 er (85% ee) by chiral-GC analysis. Cyclopentanone (S)-2.2 was 

then converted to the TBS-protected enol ether, followed by 2-electron reduction of the 

ester to aldehyde 2.9 using DIBAL-H in 27% yield (two steps). Notably, addition of the 

TBS protecting group resulted in a non-volatile and stable aldehyde 2.9 in comparison to 

2.4. Aldehyde 2.9 was then subjected to the aforementioned Barbier conditions with 2.5 

to obtain diastereomers 2.10a and 2.10b in 1:1 dr (64% yield) that were separable by 

silica gel chromatography. Diastereomers 2.10a and 2.10b were oxidized separately to 

their corresponding cyclopentenones under catalytic Saegusa-Ito oxidation conditions
218

 

in DMSO under 1 atm of O2 in 46% yield (for 2.6a, 93:7 er) and 56% yield (for 2.6b, 

91:9 er). It is noteworthy that 2.10a, 2.10b, 2.6a, and 2.6b should not be dried under high 

vacuum because of their propensity to decompose (drying under low vacuum for a short 

period of time is recommended). Enantiomerically pure 2.6a and 2.6b were synthesized 

in six steps in 3% and 4% overall yields, respectively. 
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Scheme 2.2.2. Enantioselective synthesis of 2.6a and 2.6b.
a
  

a
Reagents and Conditions: (a) L-Valine tert-butyl ester, BF3·OEt, PhH, reflux (Dean-Stark), 75%; (b) (i) 

LDA, toluene, THF (2 eq.), -78 °C; MeI; (ii) 3M HCl (aq.), THF, RT, 53% (2 steps), 93:7 er; (c) (i) 

LiHMDS, THF; TBSCl, -78 °C to RT; (ii) DIBAL-H, CH2Cl2, -78 °C, 27% (2 steps); (d) 2.5, Zn
0
, NH4Cl 

(aq.), DMF, RT, 64% (separable diastereomers); (e) Pd(OAc)2, O2 (1 atm), DMSO, 46% (2.6a, 93:7 er), 

56% (2.6b, 91:9 er). 

 

2.3 Stereochemical Determination of Simplified Helenalin Probes 

The Barbier coupling utilized for the synthesis of our molecular probes resulted in 

a highly stereocontrolled β-substitution of the butyrolactone ring. However, the lack of 

facial selectivity for aldehyde allylation resulted in diastereomers with respect to the 

quaternary center on the cyclopentanone ring and secondary alcohol. To unambiguously 

assign the stereochemistry of our probes by x-ray crystallography, we esterified 

diastereomer 2.10b from the enantioselective synthesis with 4-bromobenzoic acid, a 

moiety that bears a heavy atom for determination of absolute configuration (Scheme 

2.3.1). Deprotection of the silyl enol ether to the ketone using TFA in DCM afforded 

2.11, which was crystallized and the x-ray structure solved (Scheme 2.3.1). Based on this 

information, diagnostic 
1
H NMR coupling constants, and the known, absolute 

configuration of 2.9, we unambiguously assigned the structures of our chemical probes. 
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Scheme 2.3.1. Synthesis and x-ray crystal structure of 2.11

a
  

a
Reagents and Conditions: (a) 4-bromobenzoic acid, 4-DMAP, DCC, DCM, 40 °C (99%) (b) TFA, DCM, 

RT (53%). Right: ORTEPII plot of the x-ray diffraction data of 2.11. 

 

 

2.4 Simplified Helenalin Probes Inhibit NF-κB Signaling in Cell Culture 

Simplified helenalin analogues 2.6a and 2.6b and alkynylated probes 2.1a and 

2.1b were screened for inhibitory activity towards canonical p50/p65 NF-κB signaling 

with a cellular luciferase assay (Figure 2.4.1).
219

 Helenalin was utilized as a benchmark 

and exhibited low micromolar inhibition of induced NF-κB signaling (53.7 ± 14.1% NF-

κB activity at 2.5 μM). In comparison, alkyne-functionalized probes 2.1a and 2.1b were 

comparably active at 5 μM (54.4 ± 16.7% and 52.9 ± 7.1% NF-κB activity, respectively). 

Notably, 2.1a elicits more cellular cytotoxicity (64.5 ± 3.0% cell viability) during this 8-

hour assay compared to 2.1b (97.8 ± 15.1 % cell viability) at 10 μM treatment. Cellular 

cytotoxicity for 2.1a at 20 μM treatment was comparable to that observed at 10 μM, 

whereas cellular viability was >80% for all other doses of all compounds shown in 

Figure 2.4.1 (refer to Figure 2.4.2 for cellular viability data). Intriguingly, 

enantiomerically pure 2.6b, the diastereomer with the ‘incorrect’ stereochemistry with 

respect to helenalin, has approximately 6-fold more NF-κB inhibitory activity at 25 μM 

compared to 2.6a, the enantiomerically pure ‘correct’ diastereomer from the Barbier 

coupling (2.6b: 14.5 ± 7.4% NF-κB activity; 2.6a: 88.8 ± 4.9% NF-κB activity). 

Furthermore, 2.6b achieves the same NF-κB inhibitory activity as helenalin at only a 4-
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fold higher dose (2.6b: 51.6 ± 16.6% NF-κB activity at 10 μM; helenalin: 53.7 ± 14.1% 

NF-κB activity at 2.5 μM). These data suggests the stereochemistries of our helenalin 

analogues are important with respect to cellular potency. The observation that 2.1a and 

2.1b are equivalently potent in this assay hints at the possibility that 2.6a may have poor 

uptake properties or may be poorly retained in cells; however, no data currently exists to 

support this proposal. 

 

 
 
Figure 2.4.1. NF-κB-luciferase inhibition assay in A549 cells. Compounds were dosed to A549 cells 

containing a stably transfected NF-κB luciferase reporter construct and stimulated with TNF-α for eight 

hours (except for non-induced control, Non-Ind). Luminescence was normalized to the no compound 

induced (Ind) control and plotted as % NF-κB luciferase activity. Mean ± standard deviation values are 

shown (n ≥ 3 biological replicates). Compound-mediated toxicity to A549 cells was measured concurrently 

(Figure 2.4.2) and no significant toxicity was observed under these assay conditions. 
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Figure 2.4.2. Alamar Blue cytotoxicity analysis of A549 NF-κB-luciferase cells treated with compounds at 

varying concentrations. All compounds maintained greater than 80% cell viability throughout the assay 

with the exception of 2.1a at 20 and 10 μM where a cell viability greater than 60% was achieved. All wells 

were normalized to non-treated (1% v/v DMSO) control wells. 

 

2.5 Simplified Helenalin Probes Covalently Bind Proteins in Cell Culture 

To qualitatively assess the protein-binding properties of our probes in cell culture, 

we performed protein labeling studies in HeLa cells. Alkyne-functionalized 2.1a and 2.1b 

were dosed separately to HeLa cells for one hour, cells were then lysed and the lysate 

cleared, and then protein-probe adducts were labeled with tetramethylrhodamine-azide 

(TAMRA-N3) via a copper mediated [3+2] Huisgen reaction (click chemistry).
220

 

Protein-2.1a/2.1b-TAMRA adducts were separated by denaturing PAGE and 

fluorescence visualization of TAMRA (Figure 2.5.1). To demonstrate uniform protein 

labeling, total proteins were also imaged. Both 2.1a and 2.1b labeled multiple proteins in 

a concentration dependent manner (Figure 2.5.1). Gratifyingly, protein bands at 

approximately 65 kDa were observed for both 2.1a and 2.1b, which would be expected 

for targeting NF-κB p65. Off-target binding by 2.1a and 2.1b, which is evident by the 
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multiple protein bands observed in our qualitative analysis, was observed and was 

certainly anticipated given the designed probes are bis-electrophiles. However, the 

distinct labeling patterns of 2.1a and 2.1b further reinforce the relevance of the 

stereochemistry of our probes with respect to protein targeting. Probe 2.1a (which 

contains the correct stereochemistry with respect to helenalin) qualitatively labels more 

proteins compared to 2.1b by visualization of the intense bands seen at 50 and 10 μM. 

Additionally, pre-treatment of cells with helenalin prior to labeling studies with 2.1a 

competes away protein binding properties by 2.1a, suggesting that our designed probe 

mimics the proteome reactivity properties of the parent natural product (Figure 2.5.2). 

 

 
 

Figure 2.5.1. Proteome labeling of 2.1a and 2.1b in HeLa cells. Compounds were dosed to HeLa cells at 

the concentrations shown, the cells were lysed, and then TAMRA-N3 was conjugated to 2.1a and 2.1b via 

azide-alkyne click chemistry. Proteins were separated by denaturing PAGE and gels were imaged for 

TAMRA fluorescence. Total proteins were then visualized by staining with Oriole
®
 fluorescent protein 

stain followed by gel imaging. 

 



54 

 

 
Figure 2.5.2. The natural product helenalin is able to compete away labeling of 2.1a in a concentration 

dependent manner. Helenalin was dosed to live HeLa cells at the respective concentrations 30 min prior to 

dosing 2.1a at 20 μM, which was incubated for an additional 30 min. The cells were lysed and TAMRA-N3 

was conjugated to 2.1a via azide-alkyne click chemistry. Proteins were separated by denaturing PAGE and 

gels were imaged for TAMRA fluorescence. Total proteins were then visualized by staining with Oriole® 

fluorescent protein stain followed by gel imaging to show equal protein loading in all lanes. 

 

2.6 Helenalin and Simplified Helenalin Probes Covalently Label Cys38 of 

Recombinant p65 

Previous studies with wild-type p65 and CysSer mutant p65 proteins have 

demonstrated that helenalin covalently targets Cys38.
186

 To evaluate if helenalin mimics 

2.1a and 2.1b also target Cys38, recombinant human p65 was incubated with 2.1a and 

2.1b, proteins were digested, and LC-MS/MS was performed to identify adducted thiols 

(Figure 2.6.1-2.6.5). The predicted trypsin digestion of p65 proximal to Cys38 yields 

C
38

EGR
41

 or Y
36

KCEGR
41

 if the cleavage site closest to Cys38 is missed. Searching for 

the exact masses of the probes as a cysteine modification found the expected probe-

peptide adducts for helenalin (Y
36

KCEGR
41 

adduct), 2.1a (C
38

EGR
41 

adduct)
 
and 2.1b 

(C
38

EGR
41 

adduct). Analysis of the MS
2
 data for studies with 2.1a and 2.1b and 

recombinant p65 consistently revealed a fragment that was cleaved at the secondary 
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hydroxyl group, which demonstrates the α-methylene-γ-butyrolactone was reacting with 

Cys38 (Figure 2.6.1 and Figures 2.6.2-2.6.3). On the other hand, no fragments were 

found to support reactivity at the endocyclic enones of 2.1a and 2.1b, although such 

adducts might be reversible and unstable to digestion and MS analysis. Our reactivity 

data is consistent with previous reports demonstrating that α-methylene-γ-butyrolactones 

form irreversible hetero-Michael addition adducts with cysteines.
183a, 184

 Interestingly, 

attempts to identify Cys38 adducts for 2.6a and 2.6b were unsuccessful, although adducts 

to a surface cysteine on p65, Cys105, was observed (Figure 2.6.5). Cys105 adducts were 

not found in experiments with 2.1a, 2.1b, or helenalin. The biological significance of 

labeling Cys105 on p65 remains unclear. 

 

 
 

Figure 2.6.1. Annotation of compound binding sites on p65. Helenalin, 2.1a and 2.1b were incubated 

separately with recombinant human p65 in 1X PBS buffer for 1 hr. Proteins were digested with trypsin and 

peptides analyzed by LC-MS/MS. Peptide-probe adducts were identified by extracting the theoretical mass 

from the total ion chromatogram and then analysis of the MS
2
 fragmentation pattern. Helenalin, 2.1a and 

2.1b all bound Cys38 as expected. The MS
2
 Fragment 1 (shown on the bottom left) was detected after 

dosing 2.1a and 2.1b indicating that covalent adducts are forming at the exocyclic methylene 

butyrolactone. 
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Figure 2.6.2. The extracted ion chromatogram (EIC) from the total ion chromatogram (TIC) is shown 

above with the MS
2
 fragmentation data of 2.1a covalently attached to the C

38
EGR

41
 adduct of Cys38 within 

the p65 DNA binding pocket. This is the predicted peptide-probe adduct as shown above after trypsin 

digestion. Fragment 1 identified in the MS
2
 data suggests that Cys38 is reacting with the exocyclic 

methylene butyrolactone of 2.1a. 
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Figure 2.6.3. The extracted ion chromatogram (EIC) from the total ion chromatogram (TIC) is shown 

above with the MS
2
 fragmentation data of 2.1b covalently attached to the C

38
EGR

41
 adduct of Cys38 within 

the p65 DNA binding pocket. This is the predicted peptide-probe adduct as shown above after trypsin 

digestion. Fragment 1 identified in the MS
2
 data suggests that Cys38 is reacting with the exocyclic 

methylene butyrolactone of 2.1b. 
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Figure 2.6.4. The extracted ion current (EIC) from the total ion chromatogram (TIC) is shown above with 

the MS
2
 fragmentation data of helenalin covalently attached to the Y

36
KCEGR

41
 adduct of Cys38 within 

the p65 DNA binding pocket. This is the predicted peptide-probe adduct as shown above after trypsin 

digestion, missing one cut site after the lysine residue. 
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Figure 2.6.5. The extracted ion current (EIC) from the total ion chromatogram (TIC) is shown above with 

the MS
2
 fragmentation data of 2.6a. The same retention time and fragmentation data was observed with 

derivative 2.6b as well. Both compounds covalently attached to surface exposed Cys105. After trypsin 

digestion the predicted peptide is D
97

GFYEAELCPDR
108

. 

 

2.7 Simplified Helenalin Probes Covalently Target p65 in Cell Culture
  

After determining that simplified helenalin probes 2.1a and 2.1b can inhibit 

canonical NF-κB signaling in cell culture, covalently label cellular proteins, and target 

Cys38 of recombinant p65, we turned our attention to evaluating if 2.1a and 2.1b can 

directly bind p65 in cell culture and avoid other well-established canonical NF-κB 

signaling enzymes. Accordingly, 2.1a and 2.1b were dosed to HeLa cells at 50 μM and 

incubated for 30 minutes. Cells were then harvested, washed extensively to remove 

unincorporated probe, and then lysed by sonication. Protein-2.1a/2.1b adducts were then 

labeled with biotin-azide (biotin-N3) via a copper mediated [3+2] Huisgen reaction (click 

chemistry).
220

 Protein-2.1a/2.1b-biotin adducts were enriched with a monomeric avidin 

column and separated by denaturing PAGE. Protein-2.1a/2.1b-biotin adducts were 

transferred to a membrane and then incubated with primary antibodies for p65 (primary 

target), IκBα (p50/p65 repressor protein; for specificity assessment), p50 (forms 

transcription factor heterodimer with p65; for specificity assessment), and IKKα/β 
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(upstream kinases that contribute to activation of the NF-κB signaling pathway; for 

specificity assessment; antibody recognizes both proteins). To our delight, simplified 

helenalin probes 2.1a and 2.1b successfully pulled down p65 from live HeLa cells, but 

does not target IκB, p50, or IKKα/β (Figure 2.7.1). The negative control demonstrates no 

proteins are pulled down in the absence of probes and the input lysates show that all 

proteins being evaluated are present in the input lysate (prior to monomeric avidin 

isolation of protein-2.1a/2.1b-biotin adducts). Furthermore, a head-to-head comparison of 

the ability of 2.1a and 2.1b to target p65 reveals comparable efficiencies (Figure 2.7.1C).   

 We also wanted to determine if 2.6a and 2.6b could compete away binding of 

alkyne probes 2.1a and 2.1b in live cells; especially since p65 adducts were not observed 

with 2.6a and 2.6b by MS analysis. To this end, 2.6a and 2.6b were dosed to HeLa cells 

at 50 μM for 20 minutes prior to dosing 2.1a or 2.1b. Interestingly, 2.6b was able to 

completely block labeling and pulldown by both 2.1a and 2.1b, whereas 2.6a exhibited 

only partial activity at the same concentration (Figure 2.7.1). These data suggest that 

2.6a and 2.6b target Cys38 on p65. Additionally, the difference in efficiencies between 

the two compounds is consistent with the cellular reporter data (Figure 2.4.1), in which 

2.6a was dramatically less potent than 2.6b for inhibition of canonical NF-κB signaling. 
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Figure 2.7.1. Immunodetection of NF-κB signaling pathway proteins for covalent binding by 2.1a and 

2.1b. Compounds were dosed to HeLa cells at the concentrations shown, the cells were lysed, and then 

Biotin-N3 was conjugated to 2.1a and 2.1b via azide-alkyne click chemistry. Protein-2.1a/2.1b adducts 

were isolated on monomeric avidin resin and identified by Western blotting with the antibodies shown. 

Notably, IKKα/β is recognized with the same antibody. (A & B) 2.1a (for A) and 2.1b (for B) label p65, 

but not other NF-κB pathway proteins, as shown in pulldown experiments. Competition experiments were 

performed by pre-treating cells with 2.6a and 2.6b 20 min before addition of 2.1a (for A) or 2.1b (for B). 

(C) Head-to-head comparison of labeling efficiency of 2.1a and 2.1b. Input lysate is the crude protein 

products before monomeric avidin enrichment. 

 

2.8 Conclusion 

 We have developed simplified helenalin probes that target Cys38 of NF-κB p65 

by a covalent mechanism of action. Our chemical probes are easily accessed in 6 

synthetic steps (to probes 2.1a and 2.1b) and contain an alkyne handle for imaging and 

protein pulldown applications. Simplified helenalin probes 2.1a and 2.1b inhibit induced, 

canonical NF-κB signaling in a cellular reporter assay with low micromolar efficiencies 

and selectively engage p65 over other well-established proteins whose targeting by small 
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molecules affects canonical NF-κB signaling; namely, IκBα, p50, and IKKα/β. The 

strategy of covalent targeting of solvent accessible, nucleophilic amino acids at key 

transcription factor interfaces, such as the DNA-binding cleft for p65 in this work, 

represents a viable strategy to rationally design small molecule transcription factor 

binders with biochemical utilities for transcriptional control of aberrant gene expression 

in human diseases. Current efforts are focused on improving the specificities and 

potencies of the first-generation helenalin-based probes reported in this work, with a 

particular focus on the size and rigidity of the moieties that mimic the central 7-

membered ring of helenalin. 

 

2.9 Materials and Methods 

Unless otherwise noted, reactions were performed in flame-dried glassware under 

a nitrogen or argon atmosphere and stirred with a Teflon-coated magnetic stir bar. Liquid 

reagents and solvents were transferred via syringe and cannula using standard techniques. 

Reaction solvents dichloromethane (DCM), N,N-dimethylformamide (DMF), 

tetrahydrofuran (THF) and diethyl ether (Et2O) were dried by passage over a column of 

activated alumina using a solvent purification system (MBraun). All other chemicals 

were used as received unless otherwise noted. Helenalin was purchased from Enzo Life 

Sciences and purified by SiO2 flash column chromatography before use in biological 

assays. The molarities of n-butyllithium solutions were determined by titration against 

diphenylacetic acid as an indicator (average of three determinations). Reaction 

temperatures above 23 °C refer to oil bath temperature, which was controlled by a 

temperature modulator. Reaction progress was monitored by thin layer chromatography 

using EMD Chemicals Silica Gel 60 F254 glass plates (250 μm thickness) and visualized 

by UV irradiation (at 254 nm) and/or KMnO4 stain. Silica gel chromatography was 

performed on a Teledyne-Isco Combiflash Rf-200 instrument utilizing Redisep Rf High 

Performance silica gel columns (Teledyne-Isco) or flash column chromatography was 

performed using SiliCycle silica gel (32-63 μm particle size, 60 Å pore size). 
1
H NMR 

(500 MHz), 
13

C NMR (125 MHz), and 
19

F NMR (470 MHz) spectra were recorded on a 
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Bruker Avance NMR spectrometer. 
1
H and 

13
C chemical shifts (δ) are reported relative to 

the solvent signal, CHCl3 (δ = 7.26 for 
1
H NMR and δ = 77.00 for 

13
C NMR). Some 

spectra contain TMS (0.05% v/v). All NMR spectra were obtained at room temperature 

unless otherwise specified. High resolution mass spectral data were obtained at the 

Analytical Biochemistry Core Facility of the University of Minnesota Masonic Cancer 

Center on an LTQ OrbiTrap Velos Mass Spectrometer (Thermo Fisher). 

The purity of all compounds tested in biological assays were checked via 

analytical HPLC analysis on an Agilent 1200 series instrument equipped with a diode 

array detector (wavelength monitored = 215 nm) and a Zorbax SBC18 column (4.6 x 150 

mm, 5 μm, Agilent Technologies). All compounds tested in biological assays were >95% 

pure by HPLC. Information regarding the HPLC method and purity traces can be found 

in Section 2.11 of this chapter. 

Enantiopurity of (S)- 2.2 was determined by chiral-GC/MS using an Agilent 

7200B GC/Q-TOF with an Agilent J&W CycloSil-B GC column (30 m x 0.25 mm, 0.25 

µm film). The injector port was set at 250 °C and the column flow (helium gas) at 1.0 

mL/min. The temperature method began at 35 °C and increased to 180 °C (8 °C/min) 

over 18.1 min. The mass spectrometer electron ionization source temperature was set to 

250 °C for detection. Area under the peak for each enantiomer was used to determine the 

enantiopurity; reported as enantiomeric ratio (er). The enantiopurity of other compounds 

was determined using normal phase chiral-HPLC or 
19

F analysis after derivatization with 

(S)-(−)-α-methoxy-α-(trifluoromethyl)phenylacetic acid ((S)-MTPA). Information 

regarding these two methods can be found in Section 2.12. 

 

 

Ethyl 1-methyl-2-oxocyclopent-3-enecarboxylate (2.3).
214

  To a stirred solution of rac-

2.2 (1.00 g, 5.88 mmol) in DMSO (20 mL) was added 4.11 g (14.7 mmol) of IBX
221

 and 
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the solution was heated to 85 °C for 18 h. The reaction was cooled to 0 °C and aqueous 

NaHCO3 (sat’d, 40 mL) was added slowly. The reaction was filtered to remove IBX 

decomposition products. The solution was extracted with Et2O (30 mL, 3X), and the 

organic layer was dried over Na2SO4, and concentrated in vacuo. The crude mixture was 

SiO2 purified with EtOAc (10-30%) in hexanes to afford 2.3 (0.52 g, 53% yield) as a 

slightly tinted yellow oil. 
1
H NMR (CDCl3): 7.76-7.71 (m, 1H), 6.19-6.15 (m, 1 H), 4.14 

(q, J = 7.2 Hz, 2 H), 3.25 (d, J = 19.1 Hz, 1 H), 2.53 (d, J = 19.2 Hz, 1 H), 1.39 (s, 3H), 

1.21 (t, J = 7.2 Hz, 3H) ppm. 
13

C NMR (CDCl3): 206.9, 171.7, 163.2, 131.8, 61.7, 53.5, 

42.9, 20.8, 14.2 ppm HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C9H12O3: 169.0859, found 

169.0855. 

 

 

5-(Hydroxymethyl)-5-methylcyclopent-2-enol. To a stirred suspension of LiAlH4 (0.66 g, 

17 mmol) in EtO2 (25 mL) at 0 °C was added 2.3 (0.75 g, 4.4 mmol) in EtO2 (6 mL) 

dropwise. The reaction was stirred at 0 °C for 2 h. The reaction was carefully quenched 

with H2O (1 mL), then aqueous NaOH (10%, 0.5 mL), and finally H2O (2 mL) and stirred 

overnight. The reaction was then filtered through celite, and the filtrate was concentrated 

in vacuo. The crude mixture was SiO2 purified with EtOAc (30-100%) in hexanes to 

afford a clear oil (0.46 g, 80% yield). 
1
H NMR analysis was consistent with that reported 

previously.
222

 

 

 

1-Methyl-2-oxocyclopent-3-enecarbaldehyde (2.4). The diol product (0.31 g, 2.3 mmol) 

from above was dissolved in DCM (20 mL) at room temperature and stirred. PCC (1.51 

g, 7.03 mmol) was added in 3 equivalent portions over 4 h while stirring.  This reaction 
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was not kept under an inert atmosphere. The reaction was vacuum filtered through celite. 

The resulting solution was carefully concentrated on a rotary evaporator (no water bath at 

150 torr) until only a small amount of solution remained. This solution was introduced 

onto a silica column (1 in. diameter, 4 in. length) and quickly purified (10% Et2O in 

pentanes). The fractions containing the desired compound were collected and 

concentrated carefully (as described above) to afford a volatile, clear oil 2.4 (0.16 g, 55% 

yield). Note: Concentration until no residual solvent is left will result in loss of product 

and decreased yields; do not use high vacuum to dry product. After isolation, the product 

was used immediately in the next reaction. If stored at -20° C in DCM the compound 

degrades in the span of 24 h. 
1
H NMR (CDCl3): 9.43 (s, 1H), 7.82-7.77 (m, 1H), 6.16-

6.12 (m, 1H), 3.37 (dt, J = 19.4, 2.5 Hz, 1H), 2.41 (dt, J = 19.4, 2.3 Hz, 1H), 1.45 (s, 3H) 

ppm. 
13

C NMR (CDCl3): 206.0, 198.1, 164.4, 132.0, 60.6, 37.4, 18.2 ppm. HRMS-ESI
+
 

(m/z): calc’d [M+H]
+
 for C7H8O2: 125.0597, found 125.0594. 

 

 

Rac-(R)-4-((S)-Hydroxy((R)-1-methyl-2-oxocyclopent-3-en-1-yl)methyl)-3-

methylenedihydrofuran-2(3H)-one (2.6a*) and rac-(S)-4-((R)-hydroxy((R)-1-methyl-2-

oxocyclopent-3-en-1-yl)methyl)-3-methylenedihydrofuran-2(3H)-one (2.6b*). 

Compounds 2.4 (69 mg, 0.56 mmol) and 2.5
213, 216

 (55 mg, 0.84 mmol) were combined in 

a round bottom containing DMF (3 mL) and a stir bar. Activated Zn
0
 (109 mg, 1.68 

mmol) was added to the stirring solution. Zn
0
 was freshly activated before each reaction 

by stirring in aqueous HCl (4M) for 15 min, and then filtered, washed with H2O (200 mL, 

3X), MeOH (200 mL), EtOAc (200 mL), Et2O (100 mL), and dried under high vacuum 

for at least 1 h. Aqueous NH4Cl (sat’d, 1 drop) was added to the solution. The reaction 

was degassed and backfilled with Ar (g) 3X and then allowed to stir at RT for 16 h. The 

reaction was quenched with H2O (15 mL) and extracted with Et2O (20 mL, 3X) then 
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dried over Na2SO4, and concentrated in vacuo to a crude oil. The crude oil was SiO2 

purified with EtOAc (0 to 70%) in hexanes to give 74 mg (60% yield) of a clear oil 

containing 2.6a* and 2.6b* that was an inseparable mixture of diastereomers. The NMR 

characterization data for the separated, enantiomerically enriched compounds are below. 

See the Section 2.11 for methodology used for enantiopurity analysis of synthesized 

compounds. For 2.6a*, a modest chiral induction was observed in the Barbier coupling 

reaction in a 32:68 dr for the resulting esterified, (S)-MTPA analogues by 
19

F NMR. For 

2.6b*, no chiral induction was observed, as evidenced by the 1:1 er by chiral-HPLC 

analysis. 

 

 

Rac-(S)-((R)-1-Methyl-2-oxocyclopent-3-en-1-yl)((R)-4-methylene-5-

oxotetrahydrofuran-3-yl)methyl pent-4-ynoate (2.1a) and rac-(R)-((R)-1-methyl-2-

oxocyclopent-3-en-1-yl)((S)-4-methylene-5-oxotetrahydrofuran-3-yl)methyl pent-4-

ynoate (2.1b) – The previously isolated mixture of 2.6a* and 2.6b* (14 mg, 0.06 mmol) 

were dissolved in DCM (5 mL), then 4-pentynoic acid (12 mg, 0.13 mmol) was added to 

this solution. 4-DMAP (31 mg, 0.25 mmol) was then added followed by DCC (39 mg, 

0.19 mmol). The reaction was heated to 40 °C for 4 h. The reaction was quenched with 

H2O (5 mL) and extracted with DCM (10 mL, 3X). The organic layer was dried over 

Na2SO4, filtered, and concentrated in vacuo to afford a crude oil. The crude product was 

SiO2 purified with EtOAc (0-70%) in hexanes to afford two white solids with an overall 

yield of 15 mg (80% yield, 1:1 ratio of 2.1a:2.1b). 2.1a:
1
H NMR (CDCl3): 7.73-7.68 (m, 

1H), 6.38 (s, 1H), 6.19-6.14 (m, 1H), 5.72 (s, 1H), 5.17 (d, J = 4.9 Hz, 1H), 4.36 (dd, J = 

9.5, 7.6 1H), 4.27 (dd, J = 9.6, 2.8 Hz, 1H), 3.60-3.52 (m, 1H), 2.97 (dt, J = 19.0, 2.4 Hz, 

1H), 2.49-2.33 (m, 5H),  1.95 (t, J = 2.3 Hz, 1H), 1.20 (s, 3H)  ppm. 
13

C NMR (CDCl3): 
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210.1, 170.4, 169.8, 163.2, 134.5, 132.0, 125.4, 82.0, 77.0, 69.9, 69.3, 49.8, 40.8, 40.2, 

33.2, 20.3, 14.1 ppm. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C18H20O3: 303.1227, found 

303.1222. 

2.1b: 
1
H NMR (CDCl3): 7.76-7.72 (m, 1H), 6.28 (s, 1H), 6.26-6.20 (m, 1H), 5.56 (s, 1H), 

5.10 (d, J = 6.3 Hz, 1H), 4.30-4.27 (m, 2H), 3.56-3.50 (m, 1H), 2.92 (dt, J = 19.8, 2.4 Hz, 

1H), 2.54-2.42 (m, 5H), 1.98 (t, J = 2.4 Hz, 1H), 1.19 (s, 3H)  ppm. 
13

C NMR (CDCl3): 

209.8, 169.9, 168.8, 162.4, 133.5, 132.4, 124.3, 81.0, 76.8, 69.0, 68.5, 48.4, 40.2, 38.5, 

32.4, 21.6, 13.2 ppm. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C18H20O3: 303.1227, found 

303.1222. 

 

 

(S)-2-((1-(tert-Butoxy)-3-methyl-1-oxobutan-2-yl)amino)cyclopent-1-ene-1-carboxylate 

(2.8) – The synthetic procedure was adapted from that previously reported.
217

  To remove 

the salt of L-valine tert-butyl ester hydrochloride, the material was dissolved in EtOAc 

(100 mL), and aqueous NaOH (0.5 M, 100 mL) was added and stirred for 10 minutes. 

The material was extracted with EtOAc (100 mL, 3X), washed with brine (15 mL, 1X), 

dried over Na2SO4, concentrated in vacuo to a clear oil, and then immediately used. To a 

stirred solution of 2.7 (2.99 g, 19.1 mmol) and L-valine tert-butyl ester (4.31 g, 24.9 

mmol) in benzene (50 mL) was added BF3·OEt2 (1.18 mL, 9.55 mmol). The reaction 

mixture was refluxed with a Dean-Stark trap for 24 h. The reaction was allowed to cool 

to RT and quenched with aqueous NaHCO3 (sat’d, 50 mL) and then extracted with Et2O 

(50 mL, 3X), washed with brine (10 mL, 1X), and dried over Na2SO4. The organic layer 

was concentrated in vacuo. The crude product was SiO2 purified with EtOAc (0-5%) in 

hexanes to afford 2.8 (4.46 g, 75%) as a white solid. 
1
H NMR (500 MHz):  7.63 (bs, 1H), 

4.22-2.11 (m, 2H), 3.64 (dd, J = 10.0, 5.5 Hz, 1H), 2.52 (t, J = 7.1 Hz, 2H), 2.47 (t, J = 

7.6 Hz, 2H), 2.17-2.06 (m, 1H), 1.81 (p, J = 7.4 Hz, 2H), 1.46 (s, 9H), 1.27 (t, J = 7.1 Hz, 
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3H), 0.98 (app t, 6H) ppm. 
13

C NMR (125 MHz): 171.3, 168.2, 163.1, 94.7, 81.6, 63.9, 

58.6, 32.3, 31.8, 29.3, 28.0, 20.9, 19.2, 17.8, 14.8. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for 

C17H29NO4: 312.2169, found 312.2163. 

 

 

Ethyl (S)-1-methyl-2-oxocyclopentane-1-carboxylate ((S)-2.2). Stereoselective 

methylation was adapted from that previously reported.
217

 n-BuLi in hexanes (2.0 M 

solution, 3.56 mL, 7.13 mmol) was added to a solution of DIPA (1.00 mL, 7.13 mmol) at 

–78 °C in anhydrous toluene (30 mL) and the reaction was warmed to 0 °C and stirred for 

30 min. The reaction mixture was cooled to –78 °C and 2.8 (1.85 g, 5.94 mmol) in 

anhydrous toluene (10 mL) was added dropwise and stirred for 1 h. THF (0.96 mL, 11 

mmol) was added to the reaction and stirred for 2 h. MeI (1.85 mL, 29.7 mmol) was 

added and the reaction was stirred at –78 °C for 16 hours. The reaction was then 

quenched with aqueous NH4Cl (sat’d, 50 mL) and extracted with Et2O (30 mL, 3X), 

washed with brine (15 mL, 1X), dried over Na2SO4, and concentrated in vacuo.  The 

crude products were then dissolved in THF (50 mL) and aqueous HCl (3M, 50 mL) was 

added and stirred at RT for 6 hours. The reaction was extracted with Et2O (50 mL, 3X), 

washed with water (10 mL, 1X), then brine (15 mL, 1X), and dried over Na2SO4. The 

solvent was concentrated in vacuo. The crude mixture was SiO2 purified with EtOAc 

(0%-20%) in hexanes to afford (S)-2.2 as a colorless oil (0.54 g, 53%, 93:7 er by chiral-

GCMS). NMR characterization was consistent with previously reported data for this 

compound.
214a
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Ethyl (S)-2-((tert-butyldimethylsilyl)oxy)-1-methylcyclopent-2-ene-1-carboxylate. 

LiHMDS solution in THF (1 M solution, 4.20 mL, 4.19 mmol) was added to anhydrous 

THF (30 mL) at –78 °C.  Next, a solution of 2.9 (0.59 g, 3.5 mmol) in THF (5 mL) was 

added dropwise and stirred for 1 hr at –78 °C. A solution of TBSCl (1.05 g, 6.98 mmol) 

in THF (10 mL) was then added dropwise at –78 °C and then the reaction was allowed to 

slowly come to RT and stirred for 16 h. The reaction mixture was quenched with aqueous 

NH4Cl (sat’d, 30 mL) and extracted with Et2O (30 mL, 3X). The organic layer was 

washed with brine (15 mL, 1X), and dried over Na2SO4, and concentrated in vacuo. The 

crude material was SiO2 purified with EtOAc (0 to 10%) in hexanes, resulting in a clear 

oil (0.78 g, 79% yield). 
1
H NMR (500 MHz):  4.61 (t, J = 2.2 Hz, 1H), 4.12 (q, J = 7.2 

Hz, 2H), 2.40-2.29 (m, 2H) 2.29-2.19 (m, 1H), 1.77-1.67 (m, 1H), 1.72 (m, 1H), 1.30 (s, 

3H), 1.24 (t, J = 7.1 Hz, 3H), 0.90 (s, 9H), 0.16 (s, 3H), 0.15 (s, 3H). 
13

C NMR (125 

MHz): 176.1, 156.2, 101.2, 60.5, 54.3, 35.3, 26.2, 25.5, 21.3, 18.0, 14.2, -5.0, -5.2  ppm. 

HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C15H28O3Si: 285.1881, found 285.1883. 

 

 

(S)-2-((tert-Butyldimethylsilyl)oxy)-1-methylcyclopent-2-enecarbaldehyde (2.9). To a 

solution of anhydrous DCM (20 mL) was added the silyl enol ether from the above 

reaction (0.91 g, 3.19 mmol) and the resulting solution was cooled to –78 °C. A solution 

of DIBAL-H in DCM (1M, 3.19 mL, 3.19 mmol) was added dropwise to the reaction 

mixture and stirred for 4 h at –78 °C. The reaction was then carefully quenched with H2O 

(1 mL), aqueous NaOH (0.5M, ~0.1 mL) was added, and then an additional aliquot of 

H2O (1 mL). The reaction was gravity filtered through qualitative filter paper, washed 

with brine (10 mL, 1X), dried over Na2SO4, and concentrated in vacuo. The crude 
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product was SiO2 purified with EtOAc (0-5%) in hexanes to afford a clear oil (0.29 g, 

38% yield). 
1
H NMR (500 MHz):  9.53 (s, 1H), 4.75 (t, J = 2.3 Hz, 1H), 2.34-2.25 (m, 

3H), 1.72 – 1.60 (m, 1H), 1.20 (s, 3H), 0.90 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H) ppm. 
13

C 

NMR (125 MHz): 202.5, 154.2, 103.2, 59.3, 30.7, 26.0, , 25.5, 18.0, 17.6, -4.9, -5.0; 

impurities at 25.7, -3.6 ppm. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C13H24O2Si: 

241.1618, found 241.1616. 

 

 

 

 (R)-4-((S)-((R)-2-((tert-Butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-

yl)(hydroxy)methyl)-3-methylenedihydrofuran-2(3H)-one (2.10a) and (S)-4-((R)-((R)-2-

((tert-Butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-yl)(hydroxy)methyl)-3-

methylenedihydrofuran-2(3H)-one (2.10b). To a solution of DMF (3 mL), 2.9 (0.29 g, 

1.2 mmol) and 2.5
213, 216

 (0.32 g, 1.8 mmol) was added powdered Zn
0

 (0.32 g, 4.8 mmol, 

activated as described for 2.6a*/2.6b*). Aqueous NH4Cl (sat’d, one drop) was added and 

the reaction was degassed and backfilled with Ar (g) (3X). The reaction was then stirred 

at RT for 16 h. The reaction mixture was quenched with H2O (15 mL) and extracted with 

Et2O (15 mL, 3X). The organic layer was washed with H2O (10 mL, 1X) and then brine 

(10mL, 1X). The subsequent organic layer was dried over Na2SO4 and concentrated in 

vacuo. The crude mixture was SiO2 purified with an isocratic eluent system EtOAc (20%) 

in hexanes to afford the separated diastereomers 2.10a and 2.10b as white solids (0.41 g, 

64% yield, 1:1 dr) Note: 2.10a/2.10b will polymerize when concentrated and/or the silyl 

enol ether will be deprotected if allowed to sit at RT as a solid for an extended period of 

time. To avoid this, do not dry under high vacuum, and after concentration with a low 

vacuum pump immediately take 2.10a and 2.10b on to the next reaction. 2.10a: 
1
H NMR 

(500 MHz): 6.42 (d, J = 1.6 Hz, 1H), 5.91 (d, J = 1.0 Hz, 1H), 4.66 (t, J = 2.4 Hz, 1H), 
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4.22 (dd, J = 9.2, 4.1 Hz, 1H), 4.22 (dd, J = 9.2, 4.1 Hz, 1H), 3.62 (dd, J = 6.6, 4.1 Hz, 

1H), 3.29-3.22 (m, 1H), 2.27-2.19 (m, 2H), 2.17-2.08 (m, 1H), 2.0 (d, J = 4.2 Hz, 1H), 

1.62-1.51 (m, 1H), 1.10 (s, 3H), 0.93 (s, 9H), 0.20 (s, 3H), 0.17 (s, 3H) ppm. 
13

C NMR 

(125 MHz): 170.8, 156.9, 135.0, 126.2, 102.0, 76.1, 70.3, 51.9, 41.3, 31.1, 25.7, 25.4, 

21.8, 18.0, -4.6, -5.3 ppm. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C18H30O4Si: 339.1986, 

found 339.1982.  

2.10b: 
1
H NMR (500 MHz): 6.40 (d, J = 1.1 Hz, 1H), 6.01 (s, 1H), 4.62 (t, J = 2.3 Hz, 

1H), 4.24 (dd, J = 9.4, 3.1 Hz, 1H), 4.24 (dd, J = 9.4, 5.3 Hz, 1H), 3.64 (dd, J = 8.6, 3.7 

Hz, 1H), 3.23 – 3.16 (m, 1H), 2.51 (d, J = 3.7 Hz, 1H), 2.30–2.12 (m, 2H), 2.07–1.99 (m, 

1H), 1.63–1.55 (m, 1H), 1.20 (s, 3H), 0.94 (s, 9H), 0.22 (s, 3H), 0.18 (s, 3H) ppm. 
13

C 

NMR 170.9, 157.4, 135.7, 126.0, 101.9, 77.4, 68.9, 51.3, 42.4, 30.7, 25.8, 25.6, 22.7, 

18.0, -4.4, -5.5 (125 MHz). HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C18H30O4Si: 339.1986, 

found 339.1978. 

 

 

(R)-4-((S)-Hydroxy((R)-1-methyl-2-oxocyclopent-3-en-1-yl)methyl)-3-

methylenedihydrofuran-2(3H)-one (2.6a). 2.10a (22 mg, 0.074 mmol) was dissolved in 

DMSO (2 mL) and Pd(OAc)2 (7.0 mg, 0.013 mmol) was added. The reaction was placed 

under 1 atm of O2 (g) and stirred at RT for 24 h. The reaction mixture was quenched with 

H2O (10 mL) and extracted with Et2O (15 mL, 3X). The organic layer was washed with 

H2O (10 mL, 1X), then brine (10mL, 1X), dried over Na2SO4, and concentrated in vacuo. 

The crude mixture was SiO2 purified with EtOAc (0-80%) in hexanes to afford 2.6a (10 

mg, 46% yield, 93:7 er), as a clear oil. 
1
H NMR (500 MHz): 7.78–7.72 (m, 1H), 6.46 (d, 

J = 2.1 Hz, 1H), 6.20–6.16 (m, 1H), 5.81 (d, J = 1.9 Hz, 1H), 4.43 (dd, J = 9.4, 7.7 Hz, 

1H), 4.24 (dd, J = 9.4, 3.1 Hz, 1H), 3.97 (d, J = 5.7 Hz, 1H), 3.35–3.29 (m, 1H), 3.10 

(app dt, J = 18.9, 2.5 Hz, 1H), 2.35 (app dt, J = 18.9, 2.8 Hz, 1H), 1.14 (s, 3H) ppm. 
13

C 
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NMR (125 MHz): 213.0, 170.3, 164.3, 134.6, 132.0, 126.3, 75.9, 69.9, 51.4, 41.4, 39.5, 

21.1 ppm. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H14O4: 223.0965, found 223.0963. 

 

 

(S)-4-((R)-Hydroxy((R)-1-methyl-2-oxocyclopent-3-en-1-yl)methyl)-3-

methylenedihydrofuran-2(3H)-one (2.6b). 2.10b (12 mg, 0.04 mmol) was dissolved in 

DMSO (2 mL) and Pd(OAc)2 (1.00 mg, 0.004 mmol) was added. The reaction was placed 

under 1 atm of O2 (g) and stirred at RT for 24 h. The reaction mixture was quenched with 

H2O (10 mL) and extracted with Et2O (15 mL, 3X). The organic layer was washed with 

H2O (10 mL, 1X) and then brine (10 mL, 1X). The subsequent organic layer was dried 

over Na2SO4 and concentrated in vacuo. The crude mixture was SiO2 purified with 

EtOAc (0-80%) in hexanes to afford 2.6b (4.0 mg, 56% yield, 91:9 er) as a clear oil. 
1
H 

NMR (500 MHz): 7.77–7.73 (m, 1H), 6.39 (d, J = 2.7 Hz, 1H), 6.24–6.16 (m, 1H), 5.98 

(d, J = 2.3 Hz, 1H), 4.32–4.23 (m, 1H), 4.15 (dd, J = 9.4, 5.2 Hz, 1H), 3.77 (dd, J = 7.9, 

2.6 Hz, 1H), 3.45 (d, J = 2.8 Hz, 1H), 3.41-3.32 (m, 1H), 2.87 (dt, J = 19.5, 2.5 Hz, 1H), 

2.44 (dt, J = 19.4, 2.4 Hz, 1H), 1.26 (s, 3H). 
13

C NMR (125 MHz): 213.8, 170.4, 163.8, 

134.9, 132.7, 126.4, 75.4, 68.5, 49.9, 42.0, 41.1, 20.8 ppm. HRMS-ESI
+
 (m/z): calc’d 

[M+H]
+
 for C12H14O4: 223.0965, found 223.0963. 
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Rac-(R)-((R)-2-((tert-Butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-yl)((S)-4-

methylene-5-oxotetrahydrofuran-3-yl)methyl 4-bromobenzoate. 2.10b (0.150 g, 0.443 

mmol) was dissolved in DCM (4 mL). Next 4-DMAP (0.325 g, 2.66 mmol) and 4-

bromobenzoic acid (0.445 g, 2.22 mmol) was added, followed by DCC (0.457 g, 2.22 

mmol). The reaction was was heated to 40 °C for 16 h. The reaction was allowed to cool 

to RT and quenched with H2O (5 mL). The mixture was extracted with DCM (20 mL, 

3X). The organic layer was dried over Na2SO4 and concentrated in vacuo. The crude 

reaction product was SiO2 purified with EtOAc (0-20%) in hexanes. The reaction 

afforded 0.180 g (99% yield) of a white solid. 
1
H NMR (500 MHz): 7.89-7.82 (m, 2H), 

7.63-7.56 (m, 2H), 6.12 (d, J = 2.5 Hz, 1H), 5.51 (d, J = 2.1 Hz, 1H), 5.11 (d, J = 7.5 Hz, 

1H), 4.71 (t, J = 2.3 Hz, 1H), 4.46 (dd, J = 9.5, 3.8 Hz, 1H), 4.34 (dd, J = 9.5, 7.9 Hz, 

1H), 3.50–3.41 (m, 1H), 2.38-2.21 (m, 3H), 1.84-1.74 (m, 1H), 1.14 (s, 3H), 0.96 (s, 9H), 

0.23 (s, 3H), 0.19 (s, 3H) ppm. 
13

C NMR (125 MHz): 170.1, 165.1, 155.8, 134.9, 132.0, 

131.0, 128.7, 128.5, 125.2, 102.8, 79.5, 69.7, 51.5, 40.3, 30.5, 26.1, 25.7, 24.3, 18.1, 4.4, 

5.4, impurity at 53.4 ppm. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C25H33BrO5Si: 

521.1353, found 521.1331. 
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Rac-(R)-((R)-1-Methyl-2-oxocyclopentyl)((S)-4-methylene-5-oxotetrahydrofuran-3-

yl)methyl 4-bromobenzoate (2.11) –The 4-bromo benzoate silyl enol ether (0.180 g, 

0.035 mmol) from the previous reaction was dissolved in DCM (2 mL) and TFA (200 

μL) was added to the reaction at RT. The reaction was stirred for 1 h, then quenched with 

aqueous NaHCO3 (sat’d, 10 mL) and extracted with DCM (10 mL, 3X). The organic 

layer was dried over Na2SO4 and concentrated in vacuo. The crude product was SiO2 

purified with EtOAc (0-40%) in hexanes to afford a white solid (0.100 g, 53% yield).
 1

H 

NMR (500 MHz): 7.83-74 (m, 2H), 7.62-7.54 (m, 2H), 6.14 (d, J = 2.4 Hz, 1H), 5.53 (d, 

J = 1.7 Hz, 1H), 5.19 (d, J = 6.7 Hz, 1H), 4.47-4.35 (m, 2H), 3.87-3.81 (m, 1H), 2.52-

2.42 (m, 1H), 2.33-2.21 (m, 1H), 2.15-2.07 (m, 1H), 2.05-1.88 (m, 3H), 1.17 (s, 3H) ppm. 

13
C NMR (125 MHz): 220.0, 169.7, 164.8, 134.2, 132.1, 131.0, 128.9, 128.1, 126.0, 78.5, 

69.8, 51.4, 39.9, 38.8, 34.2, 20.2, 18.6  ppm. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for 

C19H19BrO5: 407.0489, found 407.0471. 

 

Cell Culture 

All cell lines were maintained in a humidified 5% CO2 environment at 37 °C in 

tissue culture flasks (Corning) under normoxic conditions. Adherent cells were 

dissociated using Trypsin-EDTA solution (0.25%, Gibco). A549-NF-κB luciferase cells 

were cultured in DMEM media supplemented with 10% v/v FBS, penicillin (100 

I.U./mL), streptomycin (100 μg/mL), and hygromycin (plasmid selection reagent, 100 

μg/mL).
219

 HeLa were cultured in MEM media (Cellgro) supplemented with 10% FBS 

(Gibco), penicillin (100 I.U./mL, ATCC), and streptomycin (100 g/mL, ATCC). 
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A549-Luciferase NF-κB reporter assay  

The NF-κB-luciferase assay in stably transfected A549 cells was conducted 

according to a previously described protocol.
219

 The protocol for this assay is as follows: 

A549-NF-κB luciferase cells (Panomics, RC0002) were seeded (5,000 cells/mL) with cell 

culture media (50 μL/well) in 96-well white plates with clear bottoms for measurement of 

luminescence signal. In parallel, 96-well clear plate with flat-bottoms were seeded at the 

same density and volume to determine cell viability. Cells were seeded 16-24 h prior to 

running the assay. Media used in this assay did not contain hygromycin (luciferase gene 

selection reagent). Compounds were serially diluted in cell culture media and cells were 

treated with compound or blank media containing 1 v/v % DMSO (50 μL, total volume in 

wells equals 100 μL). Media used for serial dilutions contained 1 v/v % DMSO with the 

exception of the first 1:100 dilutions from DMSO stock solutions. This was done to 

maintain the same DMSO concentration across all treated and control wells (0.5 v/v %). 

After treating cells with compound for 30 min, TNF-α diluted in 1X PBS was 

added to wells treated with compound and the induced control wells without compound 

(10 μL, 15 ng/mL final concentration). The non-induced control wells and wells without 

cells received 1X PBS (10 μL). Cells were incubated for 7 h at 37 °C under normoxic 

conditions in a cell incubator. AlamarBlue™ (Invitrogen) was added to plates used for 

measuring cell viability 2-3 h prior to measuring luciferase activity. After 7 h, Bright-Glo 

luciferin reagent (Promega) was added to each well (100 μL) and luminescence was 

immediately measured using a BioTek Synergy H1 microplate reader. Cell viability was 

obtained by measuring absorbance (560 nm) using the same plate reader. Measuring 

AlamarBlue™ at 560 nm yields a quantitative measure of cell viability by evaluating the 

ability of metabolically active cells (which are proportional to the number of living cells) 

to convert reasurin (non-fluorescent dye) to red-fluorescent resorufin. Background 

luminescence from reagents (no cell controls) were subtracted from all other wells. All 

luminescence signal was normalized to the induced, no compound control wells after 

background subtraction. The same calculations were completed for cell viability 

measurements. Each experiment was performed in at least biological triplicate with three 
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technical replicates per experiment. Mean activity values were obtained by averaging 

biological replicates and standard errors were calculated by propagating standard 

deviations from each biological replicate. Statistical analysis was performed using 

Microsoft Excel and GraphPad Prism (v. 5.0). 

 

Labeling in HeLa Cell Culture 

HeLa cells were grown to 90% confluency in a 75 cm
2
 culture flask. The culture 

flasks were dosed with the respective probe concentrations or a DMSO control and 

incubated for 1 h at 37 °C under normoxic conditions. The cells were detached with non-

enzymatic cell dissociation solution (Life Technologies) and washed with cold 1X PBS 

buffer (10 mL, 3X). The cells were pelleted after each suspension for five minutes at 

1000 rpm. After the last wash the cells were suspended in cold 1X PBS buffer (1 mL) 

containing Complete EDTA-Free Protease Cocktail (Promega). The cells were lysed via 

sonication with a Vibra Cell VCX 750 (750 W, 20 kHz, 120 V) at 40% power for 30 

seconds, while on ice. The lysates were stored at –80 °C until further use. 

 Lysate was allowed to thaw and kept on ice. The protein concentration was 

measured via BCA analysis (Pierce BCA Protein Assay Kit, Thermo Scientific) and all 

lysates were normalized to the sample with the lowest concentration. Click reagents were 

added to each sample (1 µL CuSO4, 100 mM stock in ddH2O; 1 µL TBTA, 20 mM stock 

in DMSO; 0.5 µL TAMRA-N3
223

, 40 mM stock in DMSO; 2 µL TCEP, 100 mM in 

ddH2O) and allowed to react for 3 h at room temperature. LDS 4X Sample Buffer (8 μL, 

NuPAGE) and of 10X Sample Reducing Agent (2 μL, NuPAGE) was then added to each 

sample and heated to 90 °C for five minutes before being pipetted into a 15-well 

NuPAGE Novex 4-12% polyacrylamide bis-tris gel and separated with electrophoresis 

(180V, 54 min) in NuPAGE MES SDS running buffer (1X). Gels were imaged using a 

TyphoonFLA7000 gel imager (General Electric). Images were analyzed using 

ImageQuant TL v7.0 software. 
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Pulldown Experiments  

HeLa cells were allowed to grow to 90% confluency in a 150 cm
2
 flask under 

normoxic conditions at 37 °C in a humidified CO2 incubator. The media was replaced 

with 20 mL of fresh media and the competition compounds 2.6a, 2.6b, or a DMSO 

control was dosed to achieve the final concentration (50 μM, DMSO concentration 

<0.05%) in each flask and incubated for 20 min. Alkyne probes 2.1a or 2.1b were dosed 

at 50 μM and incubated for an additional 30 min. After incubation, the media was 

removed and the cells were washed with cold 1X PBS (10 mL). The cells were then 

dissociated from the flask using non-enzymatic dissociation media (4 mL, Life 

Technologies). The cells were collected in 1X PBS (8 mL) and centrifuged (1000 rpm, 5 

min, RT) in a conical tube. The cells were washed with cold 1X PBS (10 mL) and 

centrifuged again. The cells were then taken up in 1X PBS (2.5 mL) containing protease 

inhibitor (Complete EDTA-free protease inhibitor cocktail, Life Technologies). The cells 

were lysed via sonication with a Vibra Cell VCX 750 (750 W, 20 kHz, 120 V) at 40% 

power for 30 seconds, while on ice. The lysates were stored at –80 °C until further use. 

 After thawing, the samples were centrifuged at 4000 RPM for 20 min at 0 °C to 

clear the lysate. The samples were transferred to clean conical tubes and 200 μL of 10 

w/v% SDS in ddH2O were added and heated to 65 °C for 10 minutes. The protein 

concentration of each sample was measured via BCA analysis (Pierce BCA Protein 

Assay Kit, Thermo Scientific) and all lysates were normalized to the sample with the 

lowest concentration (between 1.0 to 1.6 mg/mL). Click reagents were added (10 µL 

CuSO4, 100 mM stock in ddH2O; 20 µL TBTA, 20 mM stock in DMSO; 20 µL Biotin-

N3, 20 mM stock in DMSO [Sigma-Aldrich 762024; CAS: 875770-34-6]; 10 µL TCEP, 

100 mM in ddH2O) and allowed to react for 3 h at room temperature. After incubation 15 

μL of each sample was collected and saved for the input lysate control. 

 The samples were then separated on a monomeric avidin column according to the 

manufacturer’s instructions (Pierce) at 4 °C. The biotinylated samples were eluted using 

the regeneration buffer (0.1 M HCl glycine buffer, pH 2.8) Note: biotinylated samples did 

not elute using the elution biotin buffer. After the samples are collected they were 
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concentrated using a 10 kDa molecular weight cut-off filter  (Amicon) and diluted with 

ddH2O (20 mL, 2X) and then finally concentrated to ~500 μL. The samples were 

collected and concentrated to dryness in a SpeedVac for 10 h at RT. These samples were 

then dissolved in ddH2O (20 μL), 10X reducing agent (2 μL, NuPAGE), and 4X sample 

buffer (10 μL, NuPAGE) and vortexed. Sample buffer and reducing agent was added to 

the input lysates in the same fashion and all samples were heated to 90 °C for five 

minutes before pipetting 15 μL of each sample into a 15-well NuPAGE Novex 4-12% 

polyacrylamide bis-tris gel and separated with electrophoresis (180V, 54 min) in 

NuPAGE MES SDS running buffer (1X). The samples were separated and transferred 

(30 V, 1 h, RT) in 1X TBE buffer to a PVDF membrane (Immobilon-FL) for Western 

blot analysis. Membranes were incubated with the respective primary antibodies (p65, 

Santa Cruz, sc-372; p50, Santa Cruz sc-8414; IκB, Santa Cruz sc-371; IKKα/β, Santa 

Cruz sc-7607) with a 1:1,000 dilution in 0.5% non-fat milk (BioRad) in 1X PBS (10 mL) 

overnight at 4 °C. Secondary HRP-conjugated antibodies (anti-rabbit poly-HRP, Pierce 

cat # 32260; secondary anti-mouse, Novex HRP cat # A16072) were added to 0.5% non-

fat milk (BioRad) in 1X PBS (10 mL) at a 1:5,000 dilution for 1 h at RT. Membranes 

were washed in ddH2O between each incubation (30 mL for 1 min, 5X). Super Signal 

West Dura Extended Duration Luminol/Enhancer Solution (1 mL) and Stable Peroxide 

Buffer (1 mL) were added to the top of the membrane and imaged with a Li-COR 

Odyssey Fc imaging system. After each antibody was detected the membrane was 

stripped with Restore PLUS Western Blot Stripping Buffer (Thermo), washed with ddH-

2O for 30 min, and blocked over night at 4 °C in 0.5% w/v non-fat dry milk (BioRad) in 

1X PBS before incubating with the next antibody. 

 

Labeling Recombinant Human p65  

Recombinant human p65 in buffer (this clone has five point mutations compared 

to the p65 sequence listed under accession no. AAA36408: L159V, P180S, F309S, 

A439V and V462M, Active Motif) was placed in an Eppendorf tube (3 μL, 100 ng/ μL) 

with ddH2O (6 μL) and incubated with 100 μM of helenalin, 2.6a, 2.6b, 2.1a, or 2.1b for 
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1 h at RT. LDS 4X Sample Buffer (4 μL, NuPAGE) and 10X Sample Reducing Agent (1 

μL, NuPAGE) was then added to each sample and heated to 90 °C for five minutes 

before being pipetted into a 15-well NuPAGE Novex 4-12% polyacrylamide bis-tris gel 

and run into the top of the gel with electrophoresis (180V, 5 min) in NuPAGE MES SDS 

running buffer (1X). The top of each well where the protein was located was excised and 

placed into an Eppendorf tube. 

The gel pieces were then processed by in-gel trypsin digestion according to a 

previously reported protocol.
224

 The peptides were desalted using a P10 C18 Zip-Tip 

(Millipore). Samples were dried with a SpeedVac for 3 h at RT and the dried peptides 

were dissolved in 95:5 H2O:MeCN 0.1% formic acid solution (12 μL) for HPLC- ESI
+
-

MS/MS analysis. 

HPLC-ESI
+
-MS/MS analyses of tryptic peptides were conducted using an 

OrbiTrap Fusion mass spectrometer (Thermo Scientific) equipped with a Dionex 

Ultimate UHPLC pump (Thermo Scientific), a nanospray source, and Xcalibur 3.0.63 

software for instrument control. Peptide mixtures were directly injected onto a 

nanoHPLC column (75 μm i.d., 10 cm packed bed, 15 μm orifice) created by hand 

packing a commercially purchased fused-silica emitter (New Objective) with Zorbax SB-

C18 5 μm separation media (Agilent). The gradient program started from 0-17 min at 2% 

MeCN:H2O (1% formic acid) with a flow rate of 0.3 μL/min, followed by a linear 

increase to 30% MeCN:H2O (1% formic acid) from 17-80 min, followed by a linear 

increase to 80% MeCN:H2O (1% formic acid) from 80-91 min. Finally, the column was 

equilibrated with 2% MeCN:H2O (1% formic acid) from 91-99 min with a flow rate of 

0.9 μL/min. Liquid chromatography was carried out at an ambient temperature. The mass 

spectrometer was calibrated prior to each analysis, and the spray voltage was adjusted to 

ensure a stable spray. The MS tune parameters were as follows: spray voltage of 2.460 

kV, capillary temperature of 300 °C, and an S-lens RF level of 60%. MS/MS spectra 

were collected using simultaneous data-dependent scanning and target mass analysis, in 

which one full scan mass spectrum is acquired in the OrbiTrap detector (R = 120,000, 

scan range 320-2000 m/z), followed by a target list analyzing masses corresponding to 
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expected theoretical probe-peptide adducts (343.6443, 489.2235, 640.8083, 770.8567, 

229.4320, 326.4848, 427.5413, 514.2402, 923.7783, 693.0855, 569.7730, 383.6574, 

529.2365, 353.1601, 680.8214, 454.2167 m/z), followed by 12 data-dependent MS/MS 

spectra acquired with the OrbiTrap detector (R = 15,000) with charge states 2-7, dynamic 

exclusion after one detection for 20 s, an intensity threshold of 5.0 x 10
4
, and a mass 

tolerance of 10.00 ppm. The method uses an isolation width of 1.6 m/z, maximum 

injection time of 150 ms, 40% HCD collision energy, and 1 AGC microscan. Spectral 

data were analyzed using Proteomic Discoverer software package (v1.4.0.288, Thermo 

Fisher). Data was processed using the SEQUEST v.27 algorithm.
225

 Peptide spectra were 

searched against the UniProt Human Protein Database. Helenalin (+262.1205 Da), 2.6a 

and 2.6b (+222.0892), 2.1a and 2.1b (+302.3260 Da), and/or cysteine 

carboxamidomethylation (+57.0215 Da) was set as a dynamic modification. Precursor 

mass tolerance was set to 10 ppm within the calculated mass, and fragment ion mass 

tolerance was set to 10 mmu of their monoisotopic mass. Probe-peptide adducts found 

using the Proteome Discoverer software were further scrutinized by manually extracting 

the mass using the Xcalibur software from the total ion chromatogram. The MS
2
 

fragmentation data were analyzed manually to confirm the identity of probe-peptide 

adducts. 

 

2.10 Spectral Data 
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2.11 HPLC Chromatograms (Purity Analysis) of Tested Compounds 

 

General Protocol for HPLC Analysis of Synthesized Compounds  

DMSO stock solutions of newly synthesized molecules were dissolved in 

methanol and distilled and deionized water (ddH2O) containing trifluoroacetic acid (TFA, 

0.1% v/v) and analyzed on an Agilent 1200 series instrument equipped with a diode array 

detector and Zorbax SB-C18 column (4.6 x 150 mm, 3.5 μm, Agilent Technologies). The 

analysis method (1 mL/min flow rate) starts with an isocratic eluent system of 10% 

MeCN in ddH2O from 0-2 minutes (both containing 0.1% TFA) followed by a linear 

gradient of 10% to 85% MeCN in ddH2O from 2-24 minutes, followed by 85% to 95% 

MeCN in ddH2O from 24-26 minutes, and finally an isocratic eluent system of 95% 

MeCN in ddH2O from 26-30 minutes. Wavelengths monitored = 215 nm. 
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Preparation of Stock Solutions  

Compound stock solutions were prepared in DMSO (40 mM to 100 mM 

concentrations) and stored at -20 °C when not in use. Compound purities were assessed 

frequently by analytical reverse-phase HPLC analysis and fresh solutions were prepared 

as needed. 

 

 

2.6a HPLC (98.4% pure): 
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2.6b HPLC (>99% pure): 

 

2.1a HPLC (>99% pure): 
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2.1b HPLC (96.4% pure): 

 

 

2.12 Enantiopurity Analysis of Synthesized Compounds 

During enantiopurity analysis via chiral-HPLC 2.6a/2.6a* was not separable; therefore, 

2.6a* and 2.6a were esterified with (S)-MTPA to determine enantiopurity with 
19

F NMR. 

 

 

 

 

 

General Procedure for Esterification: 2.6a* or 2.6a  

(1-5 mg scale) was dissolved in DCM (2 mL), then 4-DMAP (5 equiv) and (S)-MTPA (4 

equiv) were added. DCC (5 equiv) was added last and the reaction was heated to 40 °C. 

Reaction progress was monitored by TLC and allowed to react until starting material was 
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no longer visible, typically after 16 h. The reaction mixture was allowed to cool to RT 

and pipetted onto a SiliCycle glass backed extra hard layer prep TLC plate (particle size: 

60 Å, plate size: 20x20 cm, thickness: 1000 μm, indicator F-254) and purified with a 70% 

ethyl acetate in hexanes eluent system. After the eluent reached the top of the plate, the 

plate was allowed to dry and the silica where the product was contained was scraped off 

(Rf =  0.6) and washed through filter paper with ethyl acetate (30 mL, 5X). The organic 

layer was concentrated in vacuo and then the purified compound was dissolved in CDCl3 

(0.6 mL). 

 

19
F NMR (CDCl3) of 2.6a*-(S)-MTPA derivative (32:68 dr): 
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19
F NMR (CDCl3) of 2.6a-(S)-MTPA derivative (7:93 dr): 

 

 

 

General Protocol for Chiral HPLC Analysis. DMSO stock solutions of newly 

synthesized molecules were dissolved in 1:1 i-PrOH:hexanes. A normal phase Chiralcel
®

 

OJ column (250 x 4.6 mm, 3 μm) was used for the separation. The analysis method used 

a 1 mL/min flow rate and isocratic 15% i-PrOH in hexanes eluent system for 45 minutes. 

Wavelength monitored = 215 nm. Enantioenriched derivatives were compared to their 

respective racemic derivatives and enantiopurity was determined by integrating peak area 

under the curve. 
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Comparison of chiral HPLC traces for 2.6b* and 2.6b. The top trace shows the separation 

of 2.6b* (1:1 er) and the bottom trace is the enantiomerically enriched 2.6b (91:9 er). 
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2.13. X-ray Crystallography Data for 2.11 
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Crystal growth conditions 

Compound 2.11 was dissolved in a 1:1 mixture of ethyl acetate and methanol and 

allowed to slowly evaporate (cap loosely on) in a 1.5 dram vial over a 48 h period. 

 

Data collection 

A crystal (approximate dimensions 0.280 x 0.180 x 0.120 mm3) was placed onto 

the tip of a 0.1 mm diameter glass capillary and mounted on a Bruker-AXS Venture 

PHOTON-II diffractometer for a data collection at 123(2) K.
226

 A preliminary set of cell 

constants was calculated from reflections harvested from three sets of frames. These 

initial sets of frames were oriented such that orthogonal wedges of reciprocal space were 

surveyed. This produced an initial orientation matrix determined from 210 reflections. 

The data collection was carried out using CuKα radiation (parabolic mirrors) with a 

frame time of 2, 4, or 8 seconds and a detector distance of 4.0 cm. A strategy program 

was used to assure complete coverage of all unique data to a resolution of 0.80 Å. All 

major sections of frames were collected with 0.80º steps in ω or ϕ at different detector 

positions in 2θ. The intensity data were corrected for absorption and decay (SADABS).
227

 

Final cell constants were calculated from 2980 strong reflections from the actual data 

collection after integration (SAINT).
228

 Please refer to Table 1 for additional crystal and 

refinement information.  

 

Structure solution and refinement 

The structure was solved using SHELXT-2014/5 (Sheldrick 2014) and refined 

using SHELXL-2014/6 (Sheldrick, 2014).
227

 The space group P-1 was determined based 

on systematic absences and intensity statistics. A direct-methods solution was calculated 

which provided most non-hydrogen atoms from the E-map. Full-matrix least 

squares/difference Fourier cycles were performed, which located the remaining non-
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hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement 

parameters. All hydrogen atoms were placed in ideal positions and refined as riding 

atoms with relative isotropic displacement parameters. The final full matrix least squares 

refinement converged to R1 = 0.0277 and wR2 = 0.0730 (F
2
, obs. Data).  

Data collection and structure solution were conducted at the X-Ray 

Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of 

Minnesota. All calculations were performed using Pentium computers using the current 

SHELXTL suite of programs. Victor G. Young, Jr. is gratefully acknowledged for 

solving the structure. The Bruker-AXS D8 Venture diffractometer was purchased through 

a grant from NSF/MRI (#1229400) and the University of Minnesota. Additional 

information pertaining to the crystal structure data and crystallographic information file 

(CIF) can be found in the supporting information of the original publication.
229

 The 

structure will be uploaded to the Cambridge Structural Database (CSD). 
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Table 2.13.1.  Crystal data and structure refinement for 2.11.  

________________________________________________________________________ 

Identification code  16045A 

Empirical formula  C19H19BrO5 

Formula weight  407.25 

Temperature  123(2) K 

Wavelength  1.54178 Å 

Crystal system  triclinic 

Space group  P -1 

Unit cell dimensions  a = 6.8412(4) Å α = 94.527(2)° 

 b = 9.1081(6) Å β = 101.197(2)° 

 c = 15.4906(9) Å γ = 110.280(2)° 

Volume 876.87(9) Å3 

Z 2 

Density (calculated) 1.542 Mg/m3 

Absorption coefficient 3.431 mm-1 

F(000) 416 

Crystal color, morphology colorless, Block 

Crystal size 0.280 x 0.180 x 0.120 mm3 

Theta range for data collection 2.945 to 74.595° 

Index ranges -8 ≤ h ≤ 8, -11 ≤ k ≤ 11, -19 ≤ l ≤ 19 

Reflections collected 18642 

Independent reflections 3575 [R(int) = 0.0336] 

Observed reflections 3460 

Completeness to theta = 67.679°  99.7%  

Absorption correction multi-scan 

Max. and min. transmission 0.7538 and 0.5639 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3575 / 2 / 237 

Goodness-of-fit on F2 1.113 

Final R indices [I>2sigma(I)]  R1 = 0.0277, wR2 = 0.0730 

R indices (all data) R1 = 0.0284, wR2 = 0.0736  

Extinction coefficient n/a 

Largest diff. peak and hole 0.598 and -0.697 e.Å-3 
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Chapter 3 

 

SYNTHESIS AND BIOCHEMICAL EVALUATION OF BIS-MICHAEL 

ACCEPTOR INHIBITORS OF THE NF-κB PATHWAY BASED ON THE 

NATURAL PRODUCT HELENALIN 

 

 

This work was performed in collaboration with Dr. Aaron M Kempema, Jordan W. Baur, 

Tenley J. Brown, Jacob T. Edwards, Hannah M. Skopec, and Professor Daniel A. Harki. 

 

 

John Widen designed and synthesized the helenalin-based derivatives, completed the 

NMR studies, and conducted the NF-κB-luciferase assay on all compounds presented in 

this work. All authors assisted with aspects of the synthesis of the analogues contributing 

to this work. 
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3.1 Introduction 

 

The NF-κB pathway regulates the immune and inflammatory response within 

cells.
96, 230

 When the NF-κB pathway is hyper-activated, it can lead to tumorigenesis and 

progression of cancer, coronary disease, and autoimmunity.
104, 106, 231

 Hundreds of small 

molecules have been reported that inhibit the NF-κB pathway, but many target up-stream 

regulatory proteins that overlap with other cellular pathways.
162, 232

 This leads to off-

target effects and limits the ability to study specific NF-κB processes using small 

molecule probes. Targeting the furthest downstream protein in the pathway, the p65 

transcription factor of the NF-κB (p50/p65) heterodimer, could potentially avoid these 

off-target effects and lead to specific NF-κB pathway inhibitors. 

Targeting transcription factors with small molecule inhibitors remains a 

challenging endeavor.
155a

 This is because transcription factors typically have shallow 

ligand binding surfaces and non-discrete tertiary structures.
155b, 158a

 Nevertheless, over the 

past two decades, researchers have discovered some small molecule inhibitors that 

directly bind to transcription factor protein binding surfaces or DNA-binding 

domains.
155b, 158a

 One strategy that has shown promise for probe and inhibitor discovery is 

utilizing thiol reactive small molecules that covalently attach to solvent exposed cysteines 

within the DNA-binding domain, sterically blocking DNA recognition and transcriptional 

activity.
185, 189

 

Helenalin is a pseudoguaianolide isolated from plants in the Arnica and Helenium 

genera with a 5-7-5 fused ring system.
181, 203

 Helenalin contains two Michael acceptors 

(Figure 3.1.1), an α-methylene-γ-butyrolactone and cyclopentenone, which are 6.2-6.4 Å 

apart based on two reported crystal structures.
210

 The exocyclic methylene has been 

demonstrated to alkylate Cys38 within the DNA binding pocket of p65.
184

 Based on a 

crystal structure of the p50/p65 heterodimer bound to DNA, Cys38 is 7.8 Å away from 

Cys120.
30

 Computational studies have suggested that a second Michael addition is 

possible between the endocyclic enone with Cys120, but this has not been empirically 

validated.
186

 Additionally, a mutant of p65 containing a Cys120Ser mutation is still 
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sensitive to inhibition by helenalin, suggesting that Cys120 is not the primary cysteine 

targeted by helenalin.
182c, 186

  

 

 

Figure 3.1.1. Helenalin is a pseudoguaianolide natural product with two Michael acceptors, which are 6.2-

6.4 Å apart (distance between carbons with red asterisks), based on two reported crystal structures.
210

 

Helenalin-based analogues 3.1a and 3.1b were synthesized and shown to mimic the biological activity of 

helenalin.
229

 Simplified helenalin derivatives 3.1a and 3.1b were previously described in Chapter 2 of this 

thesis as compounds 2.6a and 2.6b respectively. 

 

Recently, our group synthesized structurally simplified helenalin-based small 

molecules (3.1a and 3.1b) containing bis-Michael acceptors.
229

 The simplified helenalin 

derivatives 3.1a and 3.1b were previously shown in Chapter 2 of this thesis as 

compounds 2.6a and 2.6b respectively. The helenalin-based probes were shown to inhibit 

the NF-κB pathway and alkylate Cys38 within the DNA binding pocket of p65. However, 

it is still unclear how the endocyclic enone and exocyclic methylene butyrolactone 

contribute separately to the mechanism of action of the simplified helenalin probes. 

Previous studies suggest that helenalin derivatives without the exocyclic methylene 

butyrolactone lose much of their activity compared to helenalin.
206a

 Direct comparison of 

reduced helenalin-based derivatives only differing in their number of Michael acceptors, 

as well as the different diastereomers resulting from reduction of the exocyclic methylene 

has not been evaluated for inhibition of the NF-κB pathway. This is especially important 

because differences in stereochemistry of previously synthesized helenalin-based 

analogues have a direct effect on inhibition of p65.
229

 

To determine the general thiol reactivity of the α-methylene-γ-butyrolactone and 

endocyclic enone, compounds 3.1a and 3.1b were reacted with cysteamine in DMSO-d6 
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and monitored by 
1
H NMR.

233
 The results of these studies led us to pursue how each 

Michael acceptor present on 3.1a and 3.1b affects inhibition of the NF-κB pathway in 

correlation to its thiol reactivity. Thus, a small molecule library of helenalin-based 

analogues was synthesized containing only one Michael acceptor and evaluated for 

inhibition of the NF-κB pathway in a cellular reporter assay. 

 

3.2 Monitoring Cysteamine Reactivity of 3.1a and 3.1b with 
1
H NMR 

 Endocyclic enones that undergo a hetero-Michael addition reaction with cysteines 

are typically reversible at physiological pH.
183a

 Alternatively, hetero-Michael additions to 

exocyclic methylene butyrolactones are irreversible at physiological pH in most 

cases.
183b, 183c

 Evaluation of the reversibility of both Michael acceptors present on 3.1a 

and 3.1b was conducted using a previously reported procedure for small molecules 

containing bis-Michael acceptors.
233

 Both compounds were reacted with cysteamine in 

DMSO-d6 and monitored using 
1
H NMR to follow the reactivity and reversibility of both 

Michael acceptors. The chemical assignments of protons H3 and H4 are based on previous 

shift assignments of exocyclic methylene butyrolactones.
183a, 234

 

 Addition of one equivalent of cysteamine to a solution with 3.1a resulted in 

disappearance of signal corresponding to the two exocyclic methylene protons (peaks 3 

and 4, Figure 3.2.1). Both signals from the exocyclic methylene protons were below 50% 

of the original signal within 10 min of cysteamine addition. Within 20 min, the exocyclic 

methylene completely reacted with cysteamine. Comparing integrations with the TMS 

internal standard revealed that the signal from both of the endocyclic enone protons 

initially decreased within the first ten minutes of the reaction but then increased in signal 

as the signal from the exocyclic methylene protons continued to decrease. This suggests 

that cysteamine could be reacting at both Michael acceptors simultaneously, but the 

hetero-Michael addition with the endocyclic enone is quickly reversible (faster than the 

NMR measurement time scale) compared to the largely irreversible hetero-Michael 
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addition to the exocyclic methylene, resulting in a permanent decrease in signal from the 

exocyclic methylene protons. 

 After addition to the exocyclic methylene of 3.1a, additional equivalents of 

cysteamine was added until signal from the endocyclic enone decreased to near 

undetectable levels, which required a total of four equivalents. Addition of cysteamine 

past four equivalents did not cause further reduction in signal of the endocyclic enone 

protons. To determine the reversibility of the hetero-Michael addition of cysteamine to 

the endocyclic enone, the reaction was then diluted 1:10 in CDCl3, which induces retro 

hetero-Michael addition because of the decrease in solvent polarity and increased 

solubility of cysteamine.
233b

 Upon dilution of the reaction mixture in CDCl3, the 

endocyclic enone signals (normalized across NMR acquisitions using a TMS internal 

standard) increased approximately 6-fold, but not the exocyclic methylene signals, 

indicating that the hetero-Michael addition to the endocyclic enone is reversible and 

addition to the exocyclic methylene is not. 
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Figure 3.2.1. Reaction between cysteamine and 3.1a monitored by 
1
H NMR (DMSO-d6). The signals 

corresponding to the exocyclic methylene protons 3 and 4 were undetectable after 20 min. After addition of 

cysteamine in 1 eq aliquots, the endocyclic enone peaks 1 and 2 were consumed after a total of 4 eq were 

added. Upon dilution in CDCl3 (1:10), peaks 1 and 2 increase in signal relative to the tetramethylsilane 

(TMS) internal standard by approximately 6-fold, indicating addition of cysteamine to the endocyclic 

enone is reversible, whereas addition to the exocyclic methylene is not, as evidenced by the absence of 

peaks 3 and 4 after dilution. Peaks 1 and 2 correspond to endocyclic enone protons H1 and H2. Peaks 3 and 

4 correspond to the exocyclic methylene protons H3 and H4. 
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The same thiol reactivity and reversibility experiment was carried out for 

helenalin mimic 3.1b, which yielded similar results (Figure 3.2.2). After addition of one 

equivalent of cysteamine, the exocyclic methylene proton signals decreased to below 

detection limits within 20 min. Near complete disappearance of the endocyclic enone 

proton signals occurred after a total of four equivalents of cysteamine were added to the 

reaction. Upon a 1:10 dilution in CDCl3, the endocyclic proton signals (normalized across 

NMR acquisitions using a TMS internal standard) increased by approximately 7-fold 

compared to the spectra obtained prior to dilution, but the exocyclic methylene proton 

signals did not, again reinforcing that hetero-Michael addition of cysteamine to the 

endocyclic enone is reversible, whereas addition of cysteamine to the exocyclic 

methylene is irreversible. 
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Figure 3.2.1. Reaction between cysteamine and 3.1b monitored by 
1
H NMR (DMSO-d6). The signals 

corresponding to the exocyclic methylene protons 3 and 4 were undetectable after 20 min. After addition of 

cysteamine in 1 eq aliquots, the endocyclic enone peaks 1 and 2 were consumed after a total of 4 eq were 

added to the reaction. Upon dilution in CDCl3 (1:10), peaks 1 and 2 increase in signal relative to the 

tetramethylsilane (TMS) internal standard by approximately 7-fold, indicating addition of cysteamine to the 

endocyclic enone is reversible, whereas addition to the exocyclic methylene is not, as evidenced by the 

absence of peaks 3 and 4 after dilution. Peaks 1 and 2 correspond to olefin protons H1 and H2. Peaks 3 and 

4 correspond to the exocyclic methylene protons H3 and H4. 
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The irreversible addition of cysteamine to the exocyclic methylene of helenalin-

based probes 3.1a and 3.1b agrees with previous reports of thiol addition to α-methylene-

γ-butyrolactones.
183a

 Comparatively, addition to the endocyclic enone is reversible, which 

is also in agreement with previous reports.
181b,181c,233

 This thiol reactivity data suggests 

that the endocyclic enone may play a role in the NF-κB inhibitory properties of 3.1a and 

3.1b because of its propensity to undergo a hetero-Michael addition in the presence of 

cysteamine after reaction of the exocyclic methylene. There is a possibility that 

cysteamine is reacting with the endocyclic enone and exocyclic methylene concurrently, 

but the reversibility of the hetero-Michael addition with the endocyclic enone and 

irreversible hetero-Michael addition to the α-methylene-γ-butyrolactone leads to 

formation of a single cysteamine adduct at the α-methylene-γ-butyrolactone by Le 

Châtelier's principle.  

Helenalin-based probes 3.1a and 3.1b have been demonstrated to directly interact 

at the DNA-binding surface of p65 containing Cys38 and Cys120, two solvent exposed 

cysteines important for DNA-binding interactions.
31a, 229

 Small molecules containing an 

α-methylene-γ-butyrolactone typically react with many proteins containing solvent 

exposed cysteines, which can lead to off-target toxicity. Because the endocyclic enone 

undergoes a reversible hetero-Michael addition with cysteamine, removal of the α-

methylene-γ-butyrolactone but leaving the cyclopentenone intact could lead to an 

inhibitor of the NF-κB pathway that forms a reversible covalent bond to p65. Thus, 

helenalin-based probes were designed containing only the endocyclic enone as the sole 

Michael acceptor. 

 

3.3 Reduction of Simplified Helenalin Intermediates 

To determine how both Michael acceptors contribute to the inhibition of the NF-

κB pathway, a synthesis was designed to differentiate the Michael acceptors from a 

common intermediate. Initial attempts to selectively reduce the exocyclic methylene over 

the cyclopentenone starting from the previously synthesized simplified helenalin probes 
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3.1a/b
229

 resulted in non-selective reduction of both Michael acceptors or decomposition 

(Scheme 3.3.1A). Utilizing boron or aluminum derived hydride sources for selective 

reduction of the exocyclic methylene over the cyclopentenone were unsuccessful because 

of the compounds’ inherent base-sensitive nature. Short reaction times (1-10 min) under 

1 atm of H2 or utilizing ammonium formate as the source of hydrogen in the presence of 

Pd/C were unsuccessful.
235

 Because selectively reducing the exocyclic methylene over 

the cyclopentenone was unfruitful, a synthetic strategy was developed to install the 

endocyclic enone after reduction of the exocyclic methylene.  

Intermediates 3.2 and 3.3 were previously synthesized containing a tert-butyl 

dimethyl silyl enol ether to protect the ketone.
229

 This approach would allow for 

installation of the endocyclic enone via a Saegusa-Ito oxidation after reduction of the 

exocyclic methylene (see Section 3.9 for improved synthesis of 3.2 and 3.3).
218

 

Hydrogenation of 3.2 and 3.3 with PtO2 under 1 atm of H2 for 30 minutes was successful 

at reducing the exocyclic methylene of diastereomers 3.2 and 3.3 in the presence of the 

silyl enol ether (Scheme 3.3.1B). Hydrogenation of 3.2 resulted in an inseparable mixture 

of 3.4 and 3.5 in 78% overall yield in a 3:2 dr favoring the cis-methyl product. 

Interestingly, an isomerized product 3.6 was also isolated in 20% yield. This compound 

likely arises due to the Pt center forming a complex with the resulting enolate of the 

lactone ring (after delivering one hydride to the exocyclic methylene), which enables a β-

hydride elimination, and gives the less reactive quaternary olefin.
236

 The other silyl enol 

ether diastereomer 3.3 was subjected to the same reducing conditions and resulted in two 

separable diastereomers 3.7 and 3.8 with a 9:1 dr favoring the cis-methyl group (89% 

overall yield). The isomerized product was surprisingly not observed in this reaction, 

although β-hydride elimination is theoretically possible. This is especially interesting 

considering the preferred diastereomer 3.7 requires hydride addition and complexation to 

the top face of the exocyclic methylene, resulting in the required position for β-hydride 

elimination. 
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Scheme 3.3.1. A. Attempts to selectively reduce helenalin-based analogues 3.1a/b resulted in complete 

reduction of both α,β-unsaturated carbonyls or degradation products. B. Reduction of the exocyclic 

methylene of silyl enol ether derivatives 3.2 and 3.3.
a
 

a
Reagents and Conditions: (a) PtO2, 1 atm H2, 78% for 3.4(cis):3.5(trans), 3:2 dr (inseparable); 20% for 

3.6; 89% for separable compounds 3.7(cis):3.8(trans), 9:1 dr (separable). 

 

3.4 Synthesis of Reduced Simplified Helenalin Analogues 

The mixture of diastereomers 3.4 and 3.5, the isomerized product 3.6, and the 

separated diastereomers 3.7 and 3.8 were all further derivatized, either by deprotection in 

the presence of TFA, resulting in compounds without Michael acceptors, or subjected to 

Saegusa-Ito oxidation conditions to install the endocyclic enone as the single Michael 

acceptor (Scheme 3.4.1). Deprotecting the mixture of diastereomers 3.4 and 3.5 with 

TFA over 15 minutes resulted in two separable diastereomers 3.9 and 3.10 in a 3:2 dr and 

76% overall yield. Intermediates 3.4 and 3.5 were reacted as a mixture with Pd(OAc)2 in 

DMSO under 1 atm of O2 for 48 hours and again resulted in two separable diastereomers 

3.11 and 3.12 in a 3:2 dr and 85% overall yield. The isomerized product 3.6 was also 
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subjected to deprotection and Saegusa-Ito oxidation to give 3.13 and 3.14 in 71% and 

35% yield respectively. Intermediates 3.7 and 3.8 were deprotected to give 3.15 and 3.16 

in 84% and 86% yield respectively. Exposing 3.7 and 3.8 to the Saegusa-Ito oxidation 

conditions gave enones 3.17 and 3.18 in modest yields (22% and 55% yield respectively). 

Intermediates 3.2 and 3.3 were deprotected to obtain 3.19 and 3.20 in 79% and 36% yield 

respectively, which lack the endocyclic enone but maintains the exocyclic methylene 

butyrolactone Michael acceptor. 

 

Scheme 3.4.1. Deprotection and Saegusa oxidation of silyl enol ethers for synthesis of helenalin-based 

analogues.
a
 

a
Reagents and Conditions: (a) Pd(OAc)2, DMSO, 1 atm O2, 85% yield for 3.11(cis):3.12(trans), 3:2 dr 

(separable), 31% for 3.14, 22% for 3.17, 55% for 3.18; (b) TFA, DCM, 76% for 3.9(cis):3.10(trans), 3:2 dr 

(separable), 71% for 3.13, 84% for 3.15, 86% for 3.16, 79% for 3.19, 36% for 3.20. *Represents carbon 

center with cis or trans stereochemistry. 
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 Previously, esterifying the simplified helenalin analogues 3.1a/b with 4-pentynoic 

acid caused an increased in the inhibition of the NF-κB pathway in a cellular reporter 

assay.
229

 To determine if esterifying a reduced analogue containing only an endocyclic 

enone would lead to more potent inhibition of the NF-κB pathway, 3.17 was esterified 

with 4-pentynoic acid (Scheme 3.4.2). The esterified derivative 3.21 was synthesized 

using DCC as the coupling reagent, resulting in a 32% yield. 

 

 

Scheme 3.4.2. Esterification of 3.17.
a
 

a
Reagents and Conditions: (a) DCC, 4-DMAP, 4-pentynoic acid, 40 °C, 16 h, 32%. 

 

3.5 Stereochemical Determination of Reduced Simplified Helenalin Analogues 

The stereochemistry of 3.2 and 3.3 were previously defined;
229

 however, the 

stereochemistry of the methyl group resulting from reduction with PtO2 needed to be 

determined for each derivative. Attempts to define the stereochemistry of the reduced 

methyl group using the TBS protected derivatives (3.4, 3.5, 3.7, and 3.8) were 

unsuccessful because of instability over the course of the NOESY experiments and 

interference of signals from the silyl tert-butyl and methyl groups. Therefore, analogues 

3.9–3.11, 3.15, and 3.16 were used to define the stereochemistry of the reduced methyl 

group of each analogue. Diagnostic NOE correlations are shown in Figure 3.5.1. 

Derivative 3.9 displayed an NOE correlation between the reduced methyl 

substituent and the proton geminal to the secondary hydroxyl group, compared to 

compound 3.10 that showed an NOE correlation between the β-lactone proton and the 

methyl group, suggesting both substituents are on the same face of the lactone ring. 
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Based on these correlations, the methyl substituent of 3.9 was assigned cis to the lactone 

ring stereocenter and the methyl substituent of 3.10 was determined to be in the trans 

configuration. The stereochemistry of 3.11 was also determined by a distinct NOE 

correlation between the reduced methyl group and the proton geminal to the hydroxyl 

group. 

The stereochemistry of the reduced derivatives synthesized from silyl enol ether 

3.3 was determined using fully reduced compounds 3.15 and 3.16.  The stereochemistry 

of 3.15 was assigned cis to the lactone ring based on an NOE between the reduced methyl 

group and the proton geminal to the hydroxyl group. For compound 3.16, NOE 

correlations between the methyl group and β-lactone proton, as well as an NOE 

correlation between the α-lactone proton and proton geminal to the hydroxyl group led to 

assigning the methyl group trans to the lactone ring stereocenter. 

 

 

Figure 3.5.1. Stereochemical determination of reduced simplified helenalin-based analogues using 

NOESY. Diagnostic NOE correlations are shown above with the calculated percent NOE normalized from 

the total irradiation signal. The stereochemistry of compounds not shown above was deduced based on 

common intermediates. 
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3.6 Evaluation of reduced simplified helenalin analogues for NF-κB inhibition  

All of the synthesized reduced helenalin-based analogues were screened for NF-

κB inhibitory activity to determine the contribution of each Michael acceptor to inhibition 

of the NF-κB pathway. A549 cells with a stably transfected NF-κB luciferase gene was 

used to determine inhibitory activity (Table 3.6.1).
219

 As expected, all fully reduced 

compounds containing no Michael acceptors did not significantly inhibit activation of the 

NF-κB pathway at 250 μM, the highest concentration tested. Cells dosed with 250 μM of 

3.9 and 3.10 had 86 ± 1% and 96 ± 5% signal from NF-κB activation remaining 

respectively compared to the no compound, induced control. Cells dosed with 3.15 and 

3.16 at 250 μM had 99 ± 8% and 79 ± 6% NF-κB activation remaining respectively. The 

isomerized product 3.13 without the endocyclic enone displayed little inhibitory activity 

as well when dosed at 250 μM and 100 μM (78 ± 5% and 84 ± 1% respectively). 

Compounds containing the endocyclic enone but not the exocyclic methylene had 

only slightly improved activity compared to the fully reduced analogues. Cells dosed at 

100 μM with 3.11 and 3.12 reduced NF-κB activation to 85 ± 3% and 69 ± 4% 

respectively, and 3.11 displayed inhibition at 250 μM (50 ± 5% NF-κB activity). 

Similarly, dosing cells with 250 μM of 3.12 resulted in 34 ± 4% activity remaining. 

Derivatives 3.17 and 3.18 had little inhibitory activity against the NF-κB pathway at 100 

μM (86 ± 12% and 83 ± 8% NF-κB activation respectively). At 250 μM, 3.17 showed 

little inhibition (78 ± 9%) similar to 3.18 (63 ± 4% activity remaining). Altogether, the 

stereochemistry of the reduced methyl group seemed to have little effect on the inhibitory 

activity of compounds 3.11-3.12 and 3.17-3.18 containing the endocyclic enone. Cells 

dosed with isomerize product 3.14 containing the endocyclic enone, had 43 ± 4% and 73 

± 3% luciferase activity at 250 μM and 100 μM respectively. 

Analogues only containing an endocyclic enone displayed weak activity at high 

micromolar concentrations compared to the two derivatives with the exocyclic methylene 

intact but with no endocyclic enone. At 50 μM, 3.19 and 3.20 showed complete inhibition 

of the NF-κB pathway with only 12 ± 1% and 11 ± 2% luciferase activity remaining. 

Dosing 3.19 and 3.20 at 20 μM reduced NF-κB activity to 42 ± 2% and 43 ± 1% 
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respectively. All cells maintained a cell viability ≥ 80% throughout the 8 h assay (right 

side of Table 3.6.1). 

 

 

Table 3.6.1. Inhibition of NF-κB luciferase activity in A549 cells by synthesized compounds. Values are 

the mean ± S.D. (n ≥ 3) and were normalized to a 1% v/v DMSO, induced control.
 a

Inhibition data was 

obtained from ref. 229. 

 

 

 

 

 

 

 

 

 

 

 

Screening these compounds for inhibitory activity towards the NF-κB pathway 

showed that analogues without either Michael acceptor are inactive. Furthermore, 

analogues containing only the endocyclic enone (3.11-3.12, 3.14, and 3.17-3.18) had little 

activity, except at 250 μM and 100 μM. Despite limited inhibitory activity, these 

derivatives still demonstrate that the endocyclic enone contributes somewhat to inhibition 

against the NF-κB pathway. Interestingly, 3.21, which has the same stereochemistry as 

Compound 
NF-κB Activity ± S.D. (%)  Cell Viability ± S.D. (%) 

250 μM 100 μM 50 μM  250 μM 100 μM 50 μM 

3.9 86 ± 1 91 ± 3 -  94 ± 1 113 ± 25 - 

3.10 86 ± 5 97 ± 8 -  96 ± 5 99 ± 8 - 

3.11 50 ± 5 85 ± 3 92 ± 6  88 ± 3 96 ± 3 102 ± 2 

3.12 34 ± 4 69 ± 4 93 ± 11  109 ± 5 111 ± 14 105 ± 6 

3.13 78 ± 5 84 ± 1 -  103 ± 5 102 ± 5 - 

3.14 43 ± 4 73 ± 3 -  89 ± 6 98 ± 8 - 

3.15 99 ± 8 99 ± 7 -  99 ± 1 95 ± 11 - 

3.16 79 ± 6 82 ± 2 -  103 ± 4 102 ± 3 - 

3.17 78 ± 9 86 ± 12 95 ± 5  104 ± 7 96 ± 11 95 ± 3 

3.18 63 ± 4 83 ± 8 88 ± 6  97 ± 5 93 ± 17 96 ± 8 

3.21 23 ± 4 62 ± 2 76 ± 1  80 ± 3 84 ± 2 97 ± 3 

Compound 50 μM 20 μM 10 μM  50 μM 20 μM 10 μM 

3.19 12 ± 1 42 ± 2 69 ± 2  70 ± 6 87 ± 14 93 ± 6 

3.20 11 ± 2 43 ± 1 71 ± 2  67 ± 6 86 ± 4 90 ± 5 

3.1b
a
 - 7 ± 1 16 ± 8  - 90 ± 17 112 ± 25 
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3.15 but esterified with 5-pentynoic acid at the secondary hydroxyl group, has increased 

activity compared to the non-esterified derivatives, where only 23 ± 4% and 62 ± 2% NF-

κB activity is left at 250 μM and 100 μM respectively. This may be due to the decreased 

polarity of the compound compared to non-esterified derivatives resulting in better cell 

penetration. 

 

3.7 Conclusion 

In conclusion, thiol reactivity studies demonstrated that cysteamine forms an 

irreversible bond with the exocyclic methylene of compounds 3.1a/b, compared to a 

reversible bond with the endocyclic enone. Analogues were synthesized that 

differentiated between the NF-κB inhibitory contributions of the two Michael acceptors 

on 3.1a/b. Because selective reduction of an exocyclic methylene lactone over a 

cyclopentenone was not possible, a new method was developed to reduce an exocyclic 

methylene in the presence of a silyl protected ketone, which served as a latent enone 

using a Saegusa-Ito oxidation. This method produced a variety of analogues for testing in 

a NF-κB luciferase reporter assay. Complete reduction of the two Michael acceptors 

abolished all inhibitory activity in the NF-κB luciferase assay. Reducing the exocyclic 

methylene to a methyl group decreased activity significantly, whereas removal of the 

endocyclic enone had little effect on inhibition of the NF-κB pathway. The 

stereochemistry of the reduced methyl group did not significantly affect activity between 

analogues. This suggests that the endocyclic enone is not sufficient for significant 

inhibition of the NF-κB pathway, despite the endocyclic enones of 3.1a/b being reactive 

towards cysteamine. The reversibility of the hetero-Michael addition between thiols and 

the endocyclic enone could play a key role in the reduction of inhibitory activity. 

 

 

 



124 

 

3.8 Experimental 

General Methods and Materials 

Unless otherwise noted, reactions were performed in flame-dried glassware under 

a nitrogen or argon atmosphere and stirred with a Teflon-coated magnetic stir bar. Liquid 

reagents and solvents were transferred via syringe and cannula using standard techniques. 

Reaction solvents dichloromethane (DCM), N,N-dimethylformamide (DMF), 

tetrahydrofuran (THF) and diethyl ether (Et2O) were dried by passage over a column of 

activated alumina using a solvent purification system (MBraun). All other chemicals 

were used as received unless otherwise noted. Reaction temperatures above 23 °C refer to 

oil bath temperature, which was controlled by a temperature modulator. Reaction 

progress was monitored by thin layer chromatography using EMD Chemicals Silica Gel 

60 F254 glass plates (250 μm thickness) and visualized by UV irradiation (at 254 nm) 

and/or KMnO4 stain. Silica gel chromatography was performed on a Teledyne-Isco 

Combiflash Rf-200 instrument utilizing Redisep Rf High Performance silica gel columns 

(Teledyne-Isco) or flash column chromatography was performed using SiliCycle silica 

gel (32-63 μm particle size, 60 Å pore size). 
1
H NMR (400, 500, or 600 MHz) and 

13
C 

NMR (100, 125, 150 MHz) spectra were recorded at room temperature on a Bruker NMR 

spectrometer. 
1
H and 

13
C chemical shifts (δ) are reported relative to the solvent signal, 

CHCl3 (δ = 7.26 for 
1
H NMR and δ = 77.00 for 

13
C NMR). Some spectra contain TMS 

(0.05% v/v). High resolution mass spectral data were obtained at the Analytical 

Biochemistry Core Facility of the Masonic Cancer Center on an LTQ OrbiTrap Velos 

Mass Spectrometer (Thermo Fisher). 

The purity of all UV active compounds tested in biological assays were analyzed 

via analytical HPLC analysis on an Agilent 1200 series instrument equipped with a diode 

array detector (wavelength monitored = 215 nm) and a Zorbax SBC18 column (4.6 x 150 

mm, 5 μm, Agilent Technologies). All compounds tested in biological assays were >95% 

pure by HPLC. See Section 3.11 for compound purities. 
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General Procedures 

 

General Procedure A: Reduction of the exocyclic methylene butyrolactone. The 

substrate was dissolved in EtOAc, PtO2 was added, and the reaction was stirred at RT. 

The reaction flask was degassed (3X) and backfilled with H2 (1 atm) and then allowed to 

react for 30 minutes. The reaction flask was then degassed (3 min, 1X) and backfilled to 

the open air. The suspension was filtered through celite and rinsed with EtOAc (3X, 10 

mL). The resulting solution was concentrated in vacuo.  

 

General Procedure B: Deprotection of the silyl enol ether. The substrate was dissolved 

in DCM and stirred. The reaction was not anhydrous or kept under an inert atmosphere. 

TFA was added to the reaction and stirred for 15 minutes at RT. The reaction was 

quenched with aqueous NaHCO3 (sat’d, 20 mL) and extracted with DCM (3X). The 

resulting organic layer was dried over Na2SO4 and concentrated in vacuo. 

 

General Procedure C: Saegusa-Ito oxidation. The substrate was dissolved in DMSO and 

Pd(OAc)2 was added. The reaction was degassed and backfilled with O2 (1X, 1 atm). The 

reaction was stirred for 48 hrs at RT. Then, water (40 mL) was added to the reaction and 

extracted with EtOAc (3X, 20 mL). The resulting organic layer was washed with H2O 

(1X, 15 mL) and brine (1X, 10 mL). The organic layer was dried over Na2SO4 and 

concentrated in vacuo. 
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(3S,4R)-4-((S)-((R)-2-((tert-butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-

yl)(hydroxy)methyl)-3-methyldihydrofuran-2(3H)-one (3.4), (3R,4R)-4-((S)-((R)-2-

((tert-butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-yl)(hydroxy)methyl)-3-

methyldihydrofuran-2(3H)-one (3.5), and 4-((S)-((R)-2-((tert-butyldimethylsilyl)oxy)-1-

methylcyclopent-2-en-1-yl)(hydroxy)methyl)-3-methylfuran-2(5H)-one (3.6). Followed 

General Procedure A: Compound 3.2 (100 mg, 0.295 mmol); EtOAc (5 mL); PtO2 (7 

mg, 0.030 mmol). The crude product was SiO2 (deactivated with 1% TEA) purified with 

EtOAc (0-25%) in hexanes to give an inseparable mixture of diastereomers 3.4 and 3.5 

(78 mg, 78% yield) and the isomerized product 3.6 (20 mg, 20% yield). 

Data for 3.4 (major diastereomer, 3:2 dr): 
1
H NMR (500 MHz, CDCl3): δ 4.64 (t, J = 2.4 

Hz, 1H)*, 4.29 (dd, J = 8.8, 7.6 Hz, 1H), 4.07 (dd, J = 11.3, 8.8 Hz, 1H), 3.62 (dd, J = 

9.9, 3.9 Hz, 1H), 2.82 – 2.74 (m, 1H), 2.73 – 2.66 (m, 1H)*, 2.30 – 2.21 (m, 1H), 2.21 – 

2.13 (m, 1H)*, 1.97 (d, J = 4.0 Hz, 1H), 1.95 – 1.87 (m, 1H)*, 1.60 – 1.48 (m, 1H)*, 1.34 

(d, J = 7.6 Hz, 3H)*, 1.01 (s, 3H), 0.93 (s, 9H)*, 0.21 (s, 3H)*, 0.18 (s, 3H)*. 
13

C NMR 

(125 MHz, CDCl3): δ 180.2, 156.9, 101.6, 73.2, 68.6, 51.7, 42.8, 37.9, 29.4, 25.56*, 

25.53*, 22.1, 17.9, 10.4, -4.65*, -5.32*.*Overlapping signals for diastereomers. 

Data for 3.5 (minor diastereomer): 
1
H NMR (500 MHz, CDCl3): δ 4.66 (t, J = 2.4 Hz, 

1H)*, 4.36 (app t, J = 8.7 Hz, 1H), 4.01 (app t, J = 8.8 Hz, 1H), 3.57 (dd, J = 6.1, 4.2 Hz, 

1H), 2.73 – 2.66 (m, 1H)*, 2.41 – 2.32 (m, 1H), 2.30 – 2.21 (m, 1H)*, 2.21 – 2.13 (m, 

1H)*, 2.03 (d, J = 4.3 Hz, 1H), 2.01 – 1.94 (m, 1H)*, 1.60 – 1.48 (m, 1H)*, 1.36 (d, J = 

7.4 Hz, 3H)*, 1.06 (s, 3H), 0.93 (s, 9H)*, 0.21 (s, 3H)*, 0.18 (s, 3H)*. 
13

C NMR (125 

MHz, CDCl3): δ 180.3, 156.7, 101.9, 76.9, 70.3, 51.8, 45.0, 36.7, 30.0, 25.62*, 25.54*, 

22.3, 18.0, 16.9, -4.69*, -5.33*. *Overlapping signals for diastereomers. HRMS-ESI
+
 

(m/z): calc’d [M+H]
+
 for C18H32O4Si 341.2143 , found 341.2133. 
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Data for 3.6: 
1
H NMR (500 MHz, CDCl3): δ 4.91 (dq, J = 17.2, 1.9 Hz, 1H), 4.82 – 4.75 

(m, 1H), 4.72 (d, J = 4.3 Hz, 1H), 4.70 (t, J = 2.4 Hz, 1H), 2.39 (d, J = 4.4 Hz, 1H), 2.29 

– 2.20 (m, 1H), 2.18 – 2.11 (m, 1H), 2.00 – 1.92 (m, 1H), 1.87 (t, J = 2.0 Hz, 3H), 1.56 – 

1.48 (m, 1H), 1.08 (s, 3H), 0.96 (s, 9H), 0.23 (s, 3H), 0.20 (s, 3H). 
13

C NMR (125 MHz, 

CDCl3): δ 175.0, 159.4, 155.9, 125.3, 102.6, 77.3, 76.8, 71.8, 70.2, 52.4, 30.1, 25.6, 25.4, 

21.8, 18.0, 9.7, -4.6, -5.4. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C18H30O4Si 339.1986, 

found 339.1980. 

 

 

(3R,4S)-4-((R)-((R)-2-((tert-butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-

yl)(hydroxy)methyl)-3-methyldihydrofuran-2(3H)-one (3.7) and (3S,4S)-4-((R)-((R)-2-

((tert-butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-yl)(hydroxy)methyl)-3-

methyldihydrofuran-2(3H)-one (3.8). Followed General Procedure A: Compound 3.3 

(50 mg, 0.148 mmol); EtOAc (5 mL); PtO2 (4 mg, 0.015 mmol). The crude product was 

SiO2 purified with EtOAc (0-25%) in hexanes to give separable diastereomers 3.7 (40 

mg) and 3.8 (4 mg) with an 89% overall yield (9:1 dr). 

Data for 3.7 (major diastereomer, contains <5% of minor diastereomer): 
1
H NMR (500 

MHz, CDCl3): δ 4.58 (t, J = 2.4 Hz, 1H), 4.30 – 4.23 (m, 1H), 4.03 (dd, J = 11.2, 9.0 Hz, 

1H), 3.73 (dd, J = 9.7, 2.6 Hz, 1H), 3.09 (d, J = 3.1 Hz, 1H), 2.81 – 2.70 (m, 2H), 2.30 – 

2.21 (m, 1H), 2.21 – 2.12 (m, 1H), 1.73 – 1.63 (m, 1H), 1.54 – 1.46 (m, 1H), 1.32 (d, J = 

6.9 Hz, 3H), 1.14 (s, 3H), 0.93 (s, 9H), 0.22 (d, J = 1.9 Hz, 3H), 0.17 (s, 3H). 
13

C NMR 

(125 MHz, CDCl3): δ 180.4, 158.6, 101.2, 75.6, 68.1, 49.8, 43.1, 37.5, 31.6, 25.6, 25.5, 

19.7, 18.0, 10.2, -4.4, -5.6. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C18H32O4Si 341.2143 , 

found 341.2139. 

Data for 3.8 (minor diastereomer): 
1
H NMR (500 MHz, CDCl3): δ 4.59 (t, J = 2.4 Hz, 

1H), 4.32 (dd, J = 9.2, 8.3 Hz, 1H), 3.95 (app t, J = 9.1 Hz, 1H), 3.65 (dd, J = 7.4, 3.5 Hz, 
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1H), 2.74 (d, J = 3.6 Hz, 1H), 2.73 – 2.65 (m, 1H), 2.41 – 2.31 (m, 1H), 2.30 – 2.21 (m, 

1H), 2.21 – 2.12 (m, 1H), 1.83 – 1.74 (m, 1H), 1.59 – 1.51 (m, 1H), 1.38 (d, J = 7.2 Hz, 

3H), 1.13 (s, 3H), 0.93 (s, 9H), 0.21 (s, 3H), 0.18 (s, 3H). Impurities: 1.56 (H2O). 
13

C 

NMR (125 MHz, CDCl3): δ 180.2, 158.3, 101.1, 80.0, 69.9, 50.7, 45.9, 38.0, 31.7, 25.7, 

25.5, 20.5, 18.0, 17.0, -4.4, -5.5. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C18H32O4Si 

341.2143, found 341.2137. 

 

 

(3S,4R)-4-((S)-hydroxy((R)-1-methyl-2-oxocyclopentyl)methyl)-3-methyldihydrofuran-

2(3H)-one (3.9) and (3R,4R)-4-((S)-hydroxy((R)-1-methyl-2-oxocyclopentyl)methyl)-3-

methyldihydrofuran-2(3H)-one (3.10). Followed General Procedure B: Mixture of 

diastereomers 3.4 and 3.5 (78 mg, 0.288 mmol); DCM (5 mL); TFA (0.1 mL). The crude 

product was SiO2 purified with EtOAc (0-50%) in hexanes to give separable 

diastereomers 3.9 (25 mg) and 3.10 (14 mg) with a 76% overall yield (3:2 dr). 

Data for 3.9 (major diastereomer): 
1
H NMR (500 MHz, CDCl3): δ 4.30 (dd, J = 8.9, 7.6 

Hz, 1H), 4.06 (dd, J = 11.1, 8.8 Hz, 1H), 3.97 (dd, J = 9.7, 3.8 Hz, 1H), 2.82 – 2.69 (m, 

2H), 2.48 – 2.40 (m, 1H), 2.29 – 2.21 (m, 1H), 2.20 – 2.12 (m, 1H), 2.12 – 2.07 (m, 1H), 

2.07 – 2.01 (m, 1H), 1.95 – 1.83 (m, 1H), 1.75 – 1.68 (m, 1H), 1.32 (d, J = 7.2 Hz, 3H), 

0.91 (s, 3H). Impurities: 1.56 (H2O).  
13

C NMR (125 MHz, CDCl3): δ 222.7, 179.5, 72.2, 

68.0, 54.0, 42.8, 37.6, 37.4, 30.2, 18.8, 18.3, 10.5. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for 

C12H18O4 227.1278, found 227.1270. 

Data for 3.10 (minor diastereomer): 
1
H NMR (500 MHz, CDCl3): δ 4.39 (app t, J = 8.8 

Hz, 1H), 4.00 (dd, J = 9.1, 8.1 Hz, 1H), 3.90 (t, J = 4.7 Hz, 1H), 2.77 – 2.65 (m, 1H), 

2.45 – 2.34 (m, 2H), 2.32 – 2.23 (m, 1H), 2.20 – 2.09 (m, 1H), 2.07 – 1.99 (m, 1H), 1.93 

– 1.81 (m, 1H), 1.74 – 1.67 (m, 1H), 1.35 (d, J = 7.3 Hz, 3H), 0.95 (s, 3H). 
13

C NMR 
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(125 MHz, CDCl3): δ 222.9, 179.8, 75.5, 69.8, 54.0, 44.9, 37.7, 36.5, 30.5, 19.3, 18.4, 

16.8. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H18O4 227.1278, found 227.1271. 

 

 

(3S,4R)-4-((S)-hydroxy((R)-1-methyl-2-oxocyclopent-3-en-1-yl)methyl)-3-

methyldihydrofuran-2(3H)-one (3.11) and (3R,4R)-4-((S)-hydroxy((R)-1-methyl-2-

oxocyclopent-3-en-1-yl)methyl)-3-methyldihydrofuran-2(3H)-one (3.12). Followed 

General Procedure C: Mixture of diastereomers 3.4 and 3.5 (8 mg, 0.022 mmol); 

Pd(OAc)2 (3 mg, 0.011 mmol); DMSO (2 mL). The crude product was purified using a 

SiliCycle glass backed extra hard layer prep TLC plate (particle size: 60 Å, plate size: 

20x20 cm, thickness: 1000 μm, indicator F-254) with an EtOAc (70%) in hexanes eluent 

system to give the separated diastereomers 3.11 (3 mg) and 3.12 (2 mg) in a 3:2 dr and 

85% overall yield. 

Data for 3.11 (major diastereomer): 
1
H NMR (500 MHz, CDCl3): δ 7.80 – 7.76 (m, 1H), 

6.20 – 6.15 (m, 1H), 4.28 (dd, J = 8.8, 7.5 Hz, 1H), 4.10 (dd, J = 11.1, 8.8 Hz, 1H), 4.01 

– 3.95 (m, 1H), 2.90 (dt, J = 18.9, 2.5 Hz, 1H), 2.81 – 2.70 (m, 2H), 2.45 – 2.37 (m, 1H), 

2.14 (d, J = 6.1 Hz, 1H), 1.34 (d, J = 7.3 Hz, 3H), 1.07 (s, 3H). Impurities: 1.56 (H2O). 

13
C NMR (125 MHz, CDCl3): δ 213.7, 179.3, 164.3, 132.2, 72.7, 68.0, 51.5, 43.6, 38.8, 

37.6, 21.2, 10.6. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H16O4 225.1121, found 

225.1113. 

Data for 3.12 (minor diastereomer): 
1
H NMR (500 MHz, CDCl3): δ 7.80 – 7.77 (m, 1H), 

6.21 – 6.17 (m, 1H), 4.37 (app t, J = 8.8 Hz, 1H), 4.03 (app t, J = 8.9 Hz, 1H), 3.94 (t, J = 

5.6 Hz, 1H), 2.99 (dt, J = 18.7, 2.5 Hz, 1H), 2.77 – 2.68 (m, 1H), 2.48 – 2.36 (m, 2H), 

2.18 (d, J = 6.1 Hz, 1H), 1.35 (d, J = 7.2 Hz, 3H), 1.09 (s, 3H). Impurities: 1.56 (H2O), 

1.26 and 0.86 (grease). 
13

C NMR (125 MHz, CDCl3): δ 213.8, 179.7, 164.6, 132.4, 74.7, 
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69.6, 51.6, 45.3, 39.1, 36.0, 21.5, 16.8. Impurities: 29.9 (grease). HRMS-ESI
+
 (m/z) 

calc’d [M+H]
+
 for C12H16O4 225.1121, found 225.1113. 

 

 

4-((S)-hydroxy((R)-1-methyl-2-oxocyclopentyl)methyl)-3-methylfuran-2(5H)-one (3.13). 

Followed General Procedure B: Compound 3.6 (11 mg, 0.033 mmol); DCM (3 mL); 

TFA (0.1 mL). The crude product was SiO2 purified with EtOAc (0-80%) in hexanes to 

give 13 (5 mg, 71% yield) as a white solid. 
1
H NMR (500 MHz, CDCl3): δ 5.00 (bs, 1H), 

4.90 (dq, J = 17.5, 2.0 Hz, 1H), 4.73 – 4.66 (m, 1H), 2.50 – 2.45 (m, 1H), 2.43 (dt, J = 

8.3, 1.8 Hz, 1H), 2.32 – 2.23 (m, 1H), 2.23 – 2.13 (m, 1H), 2.10 – 2.01 (m, 1H), 1.94 – 

1.81 (m, 1H), 1.89 (t, J = 2.0 Hz, 3H), 1.68 – 1.62 (m, 1H), 0.95 (s, 3H). 
13

C NMR (125 

MHz, CDCl3): δ 222.0, 174.6, 157.9, 125.5, 70.5, 70.1, 53.9, 38.0, 30.3, 19.4, 18.4, 9.7. 

HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H16O4 225.1121, found 225.1115. 

 

 

4-((S)-hydroxy((R)-1-methyl-2-oxocyclopent-3-en-1-yl)methyl)-3-methylfuran-2(5H)-

one (3.14). Followed General Procedure C: Compound 3.6 (31 mg, 0.092 mmol); 

Pd(OAc)2 (10 mg, 0.046 mmol); DMSO (2 mL). The crude product was SiO2 purified 

with EtOAc (0-70%) in hexanes to give 14 (7 mg, 35% yield) as a white solid. 
1
H NMR 

(500 MHz, CDCl3): δ 7.80 – 7.75 (m, 1H), 6.26 – 6.21 (m, 1H), 5.04 (d, J = 5.6 Hz, 1H), 

4.95 – 4.88 (m, 1H), 4.69 – 4.62 (m, 1H), 2.93 (dt, J = 18.5, 2.5 Hz, 1H), 2.60 (d, J = 5.7 

Hz, 1H), 2.41 – 2.34 (m, 1H), 1.93 (t, J = 2.0 Hz, 3H), 1.08 (s, 3H). Impurities: 1.26 and 

0.86 (grease) 
13

C NMR (125 MHz, CDCl3): δ 212.6, 174.4, 164.3, 157.4, 132.3, 126.2, 
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70.4, 69.8, 51.1, 38.7, 21.6, 9.6. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H14O4 

223.0965, found 223.0958. 

 

 

(3R,4S)-4-((R)-hydroxy((R)-1-methyl-2-oxocyclopentyl)methyl)-3-methyldihydrofuran-

2(3H)-one (3.15). Followed General Procedure B: Compound 7 (21 mg, 0.062 mmol); 

DCM (3 mL); TFA (0.1 mL). The crude product was SiO2 purified with EtOAc (0-50%) 

in hexanes to give 15 (12 mg, 84% yield) as a white solid. 
1
H NMR (500 MHz, CDCl3): δ 

4.47 (s, 1H), 4.19 (t, J = 8.0 Hz, 1H), 3.95 (t, J = 9.9 Hz, 1H), 3.75 (d, J = 9.1 Hz, 1H), 

2.87 – 2.75 (m, 2H), 2.49 (dd, J = 19.6, 8.7 Hz, 1H), 2.30 – 2.18 (m, 1H), 2.08 – 1.99 (m, 

1H), 1.99 – 1.87 (m, 1H), 1.72 – 1.59 (m, 2H), 1.34 (d, J = 6.7 Hz, 3H), 1.14 (s, 3H). 

Impurities: 1.56 (H2O), 1.26 and 0.86 (grease) 
13

C NMR (125 MHz, CDCl3): δ 225.8, 

179.8, 73.0, 67.4, 50.4, 41.9, 37.1, 37.0, 34.0, 18.7, 15.0, 10.2. HRMS-ESI
+
 (m/z): calc’d 

[M+H]
+
 for C12H18O4 227.1278, found 227.1270. 

 

 

(3S,4S)-4-((R)-hydroxy((R)-1-methyl-2-oxocyclopentyl)methyl)-3-methyldihydrofuran-

2(3H)-one (3.16). Followed General Procedure B: Compound 3.8 (6 mg, 0.002 mmol); 

DCM (3 mL); TFA (0.1 mL). The crude product was SiO2 purified with EtOAc (0-40%) 

in hexanes to give 3.16 (4 mg, 86% yield) as a white solid. 
1
H NMR (500 MHz, CDCl3): 

δ 4.25 (bs, 1H), 4.20 (t, J = 8.7 Hz, 1H), 3.84 (t, J = 9.1 Hz, 1H), 3.61 (d, J = 7.2 Hz, 1H), 

2.70 – 2.59 (m, 1H), 2.41 (dd, J = 19.5, 8.6 Hz, 1H), 2.33 – 2.22 (m, 1H), 2.22 – 2.09 (m, 

1H), 2.02 – 1.77 (m, 2H), 1.69 – 1.55 (m, 2H), 1.34 (d, J = 7.1 Hz, 3H), 1.06 (s, 3H). 
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Impurities: 1.56 (H2O), 1.26 and 0.86 (grease). 
13

C NMR (125 MHz, CDCl3): δ 225.4, 

179.8, 72.1, 68.7, 51.1, 45.3, 37.9, 37.0, 34.1, 18.6, 16.8, 15.2. Impurities: 29.8 (grease). 

HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H18O4 227.1278, found 227.1270. 

 

 

(3R,4S)-4-((R)-hydroxy((R)-1-methyl-2-oxocyclopent-3-en-1-yl)methyl)-3-

methyldihydrofuran-2(3H)-one (3.17). Followed General Procedure C: Compound 3.7 

(27 mg, 0.080 mmol); Pd(OAc)2 (9 mg, 0.040 mmol); DMSO (4 mL). The crude product 

was SiO2 purified with EtOAc (0-100%) in hexanes to give 17 (4 mg, 22% yield). 
1
H 

NMR (500 MHz, CDCl3): δ 7.78 – 7.70 (m, 1H), 6.23 – 6.17 (m, 1H), 4.14 – 4.06 (m, 

1H), 4.02 – 3.95 (m, 2H), 3.78 (d, J = 9.3 Hz, 1H), 2.87 – 2.74 (m, 2H), 2.58 – 2.49 (m, 

1H), 2.43 – 2.33 (m, 1H), 1.33 (d, J = 6.0 Hz, 3H), 1.24 (s, 3H). Impurities: 1.56 (H2O). 

13
C NMR (125 MHz, CDCl3): δ 214.8, 179.6, 163.6, 132.1, 72.0, 67.5, 48.7, 42.8, 40.4, 

37.2, 19.1, 10.1. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H16O4 225.1121, found 

225.1114. 

 

 

(3S,4S)-4-((R)-hydroxy((R)-1-methyl-2-oxocyclopent-3-en-1-yl)methyl)-3-

methyldihydrofuran-2(3H)-one (3.18). Follows General Procedure C: Compound 3.8 

(21 mg, 0.063 mmol); Pd(OAc)2 (7 mg, 0.031 mmol); DMSO (4 mL). The crude product 

was SiO2 purified with EtOAc (0-100%) in hexanes to give 3.18 (8 mg, 55% yield). 
1
H 

NMR (500 MHz, CDCl3): δ 7.77 – 7.72 (m, 1H), 6.22 – 6.16 (m, 1H), 4.20 (app t, J = 8.7 

Hz, 1H), 3.91 (app t, J = 10.2 Hz, 1H), 3.74 – 3.68 (m, 2H), 2.76 – 2.68 (m, 1H), 2.66 – 
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2.59 (m, 1H), 2.46 – 2.38 (m, 1H), 2.36 – 2.28 (m, 1H), 1.40 (d, J = 6.9 Hz, 3H), 1.23 (s, 

3H). Impurities: 1.56 (H2O). 
13

C NMR (125 MHz, CDCl3): δ 214.4, 179.5, 163.6, 132.3, 

76.2, 69.1, 49.7, 45.9, 40.5, 37.8, 19.5, 16.8. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for 

C12H16O4 225.1121, found 225.1115. 

 

 

(S)-4-((R)-hydroxy((R)-1-methyl-2-oxocyclopentyl)methyl)-3-methylenedihydrofuran-

2(3H)-one (3.19). Followed General Procedure B: 3.3 (20 mg, 0.059 mmol); DCM (1 

mL); TFA (0.1 mL). The crude product was SiO2 purified with EtOAc (0-70%) in 

hexanes to give 3.19 (10 mg) in 79% yield. 
1
H NMR (500 MHz, CDCl3): δ 6.39 (dd, J = 

2.8, 1.1 Hz, 1H), 6.15 (dd, J = 2.5, 1.1 Hz, 1H), 4.37 (d, J = 1.5 Hz, 1H), 4.33 (app t, J = 

8.5 Hz, 1H), 4.09 (dd, J = 9.1, 6.6 Hz, 1H), 3.78 (dd, J = 8.3, 1.5 Hz, 1H), 3.40 – 3.34 (m, 

1H), 2.52 – 2.42 (m, 1H), 2.30 – 2.19 (m, 1H), 2.08 – 2.00 (m, 1H), 1.98 – 1.88 (m, 1H), 

1.88 – 1.80 (m, 1H), 1.78 – 1.71 (m, 1H), 1.15 (s, 3H). Impurities: 1.56 (H2O), 1.26 and 

0.86 (grease). 
13

C NMR (125 MHz, CDCl3): δ 224.9, 170.5, 135.0, 126.4, 76.1, 67.6, 

51.2, 41.8, 37.2, 34.8, 18.7, 15.8. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C12H16O4 

225.1121, found 225.1115. 

 

 

(R)-4-((S)-hydroxy((R)-1-methyl-2-oxocyclopentyl)methyl)-3-methylenedihydrofuran-

2(3H)-one (3.20). Followed General Procedure B: 2 (20 mg, 0.059 mmol); DCM (1 

mL); TFA (0.1 mL). The crude product was SiO2 purified with EtOAc (0-70%) in 

hexanes to give 20 (5 mg) in 36% yield. 
1
H NMR (500 MHz, CDCl3): δ 6.44 – 6.42 (m, 
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1H), 5.88 – 5.86 (m, 1H), 4.41 (dd, J = 9.3, 7.8 Hz, 1H), 4.19 (dd, J = 9.3, 3.9 Hz, 1H), 

3.94 – 3.89 (m, 1H), 3.28 – 3.21 (m, 1H), 2.45 – 2.29 (m, 3H), 2.23 – 2.13 (m, 1H), 2.07 

– 1.98 (m, 1H), 1.92 – 1.80 (m, 1H), 1.76 – 1.69 (m, 1H), 1.01 (s, 3H). Impurities: 1.56 

(H2O), 1.26 and 0.86 (grease). 
13

C NMR (125 MHz, CDCl3): δ 222.3, 170.4, 134.6, 

126.5, 75.5, 69.6, 53.8, 41.6, 38.0, 30.9, 19.5, 18.6. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 

for C12H16O4 225.1121, found 225.1114. 

 

 

(R)-((R)-1-methyl-2-oxocyclopent-3-en-1-yl)((3S,4R)-4-methyl-5-oxotetrahydrofuran-3-

yl)methyl pent-4-ynoate (3.21). Compound 3.17 (15 mg, 0.065 mmol) was dissolved in 

DCM (3 mL). Then, 4-pentyonic acid (19 mg, 0.194 mmol) and 4-DMAP (24 mg, 0.194 

mmol) were added, followed by addition of EDCI (37 mg, 0.194 mmol). The reaction 

was heated to 40 °C for 16 h. The reaction was quenced with H2O (5 mL), extracted with 

DCM (3X, 10 mL), and the organic layer was concentrated in vacuo. The crude product 

was SiO2 purified with EtOAc (0-60%) in hexanes to give 3.21 (6 mg) in 32% yield. 
1
H 

NMR (500 MHz, CDCl3): δ 7.78 – 7.71 (m, 1H), 6.26 – 6.12 (m, 1H), 5.38 (d, J = 10.2 

Hz, 1H), 4.02 – 3.88 (m, 2H), 3.03 – 2.92 (m, 1H), 2.86 (m, 1H), 2.71 – 2.45 (m, 5H), 

2.46 – 2.31 (m, 1H), 2.00 (t, J = 2.5 Hz, 1H), 1.18 (d, J = 7.5 Hz, 3H), 1.15 (s, 3H). 

Impurity: 1.56 (H2O).
13

C NMR (125 MHz, CDCl3): δ 210.1, 178.8, 171.0, 163.1, 132.9, 

82.2, 73.9, 69.7, 67.8, 50.3, 42.3, 39.9, 37.4, 33.7, 23.1, 14.7, 10.6. Impurity: 29.9 

(‘grease’). HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C17H20O5 305.1384, found 305.1374. 
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Stereochemical determination by NOESY 

The stereochemistry assignments for newly synthesized compounds were made 

using NOESY experiments with a Bruker Avance 500 MHz NMR. All samples were run 

at RT. All protons were assigned using COSY, HMBC, and HSQC prior to assigning 

stereochemistry based on NOE correlations. All NOE signals are normalized to the 

respective excitation signal to obtain percent NOE. The silyl enol ethers were not well 

suited for stereochemical determination because of their instability in solvent over the 

course of the 2D experiments and signal interference from the silyl methyl and tert-butyl 

protons. 

All protons found to have diagnostic NOE correlations were predicted to be 

within a distance of 4 Å based on computationally minimized structures. All ab initio 

minimizations were completed using Jaguar (version 8.0) within Maestro (Schrödinger, 

Inc., version 10.2.010). All equilibrium conformer minimizations were calculated using 

the B3LYP method with the 6-31G** basis set in the gas phase (maximum iterations set 

to 48, calculation speed set to ‘accurate’). 

 

NF-κB Luciferase Reporter Assay  

Compounds were tested for inhibition of the NF-κB pathway in stably transfected A549 

cells containing an NF-κB driven luciferase gene as previously described.
219,237

 

Additional details for this assay are also described in Chapter 2 of this thesis. 

 

3.9 Improved synthesis of 3.2 and 3.3 

 The synthesis of 3.2 and 3.3 has been previously reported but involves a reduction 

of the ester 3.22 to aldehyde 3.24 in the presence of 1 equivalent of DIBAL-H, which 

gave poor yields because of over-reduction to the alcohol 3.23. To improve the overall 

yield of the synthesis of 3.2 and 3.3, a two step procedure was used to first reduce 3.22 to 
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the alcohol 3.23 with 2 equivalents of DIBAL-H (96% yield), and then oxidize to the 

aldehyde 3.24 using a Pfitzner-Moffatt oxidation (91% yield, Scheme 3.9.1). 

 

 

Scheme 3.9.1. Synthesis of Intermediates 3.23 and 3.24. This is an improved synthesis of 3.2 and 3.3 from 

a previously reported synthesis from our lab.
229, a

 
a
Reagents and Conditions: (a) 2 equiv. DIBAL-H, THF, –78 °C, 4 h. (b) 1:1 DMSO:DCM, DCC, H3PO4, 

RT, 16 h. 

 

 

(2-((tert-butyldimethylsilyl)oxy)-1-methylcyclopent-2-en-1-yl)methanol (3.23). Starting 

material 3.22 (0.75 g, 2.6 mmol) was dissolved in THF (20 mL) and cooled to –78 °C. 

Then, DIBAL-H (5.2 mL, 5.2 mmol) was added dropwise at the same temperature and 

allowed to stir for 4 h. The reaction was quenched at –78 °C with H2O (0.5 mL) and 

stirred for 5 min. Then, aqueous NaOH (0.5M, 0.5 mL) was added followed by addition 

H2O (2 mL). The reaction mixture was allowed to warm to RT and then the precipitate 

was filtered. The resulting solution was concentrated in vacuo and SiO2 purified with 

EtOAc (0-50%) in hexanes to give 3.23 (0.61 g, 96% yield). 
1
H NMR (500 MHz, 

CDCl3): δ 4.60 (t, J = 2.4 Hz, 1H), 3.49 (dd, J = 10.5, 5.6 Hz, 1H), 3.39 (dd, J = 10.5, 6.6 

Hz, 1H), 2.22 – 2.16 (m, 2H), 1.93 – 1.86 (m, 1H), 1.68 – 1.64 (m, 1H), 1.63 – 1.56 (m, 
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1H), 1.04 (s, 3H), 0.93 (s, 9H), 0.19 (s, 3H), 0.17 (s, 3H). Impurities: 5.33 (DCM), 1.56 

(H2O). 
13

C NMR (125 MHz, CDCl3): δ 157.4, 100.9, 69.3, 48.6, 32.2, 25.6, 25.4, 21.0, 

18.0, -4.7, -5.2. HRMS-ESI
+
 (m/z): calc’d [M+H]

+
 for C13H26O2Si 243.1775 , found 

243.1170. 

 

 

2-((tert-butyldimethylsilyl)oxy)-1-methylcyclopent-2-ene-1-carbaldehyde (3.24). 

Intermediate 3.23 (0.43 g, 1.8 mmol) was dissolved in a solution of DCM (3 mL) and 

DMSO (3 mL). Then, DCC (1.1 g, 5.3 mmol) was added followed by addition of H3PO4 

(0.1 mL, 0.9 mmol). The reaction mixture was stirred for 16 h at RT. The reaction was 

quenched with H2O (20 mL) and extracted with Et2O (3X, 20 mL). The combined 

organic layer was washed with H2O (10 mL), then brine (10 mL), and then concentrated 

in vacuo. The crude product was SiO2 purified with EtOAc (0-10%) in hexanes to give 

3.24 (0.40 g, 91% yield). This compound has been characterized previously. 

 

 

 

3.10 Spectral Data 
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3.11. HPLC Purity Analysis of Synthesized Compounds 

 

General Protocol for HPLC Analysis of Synthesized Compounds  

DMSO stock solutions of newly synthesized molecules were dissolved in 

methanol and distilled and deionized water (ddH2O) and analyzed on an Agilent 1200 

series instrument equipped with a diode array detector and Zorbax SB-C18 column (4.6 x 

150 mm, 5 μm, Agilent Technologies). The analysis method (1 mL/min flow rate) starts 

with an isocratic eluent system of 10% MeCN in ddH2O from 0-2 minutes followed by a 

linear gradient of 10% to 85% MeCN in ddH2O from 2-24 minutes, followed by 85% to 

95% MeCN in ddH2O from 24-26 minutes, and finally an isocratic eluent system of 95% 

MeCN in ddH2O from 26-30 minutes. No TFA was added to the eluent solvents. 

Wavelengths monitored = 215 nm.  

Preparation of Stock Solutions  

Compound stock solutions were prepared in DMSO (40 mM to 100 mM 

concentrations) and stored at -20 °C when not in use. Compound purities were assessed 

frequently by analytical reverse-phase HPLC analysis and fresh solutions were prepared 

as needed. 
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Table 3.11.1. Compound Purity by HPLC. All compounds were tested for purity by HPLC with the 

exception of 3.9, 3.10, 3.15, and 3.16 due to their lack of UV absorbance. These compounds were 

determined to be ≥ 95% pure by 
1
NMR analysis. 

Compound RT (min) HPLC Purity (%) 

3.11 9.0 96 

3.12 9.1 >99 

3.13 11.4 >99 

3.14 9.9 >99 

3.17 7.7 >99 

3.18 8.0 >99 

3.19 9.7 >99 

3.20 9.6 >99 

3.21 15.7 >99 
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Chapter 4 

 

SYNTHESIS AND ANTILEUKEMIC ACTIVITIES OF C1-C10-MODIFIED 

PARTHENOLIDE ANALOGUES 
 

Adapted with Permission from: 

Kempema, A.M.; Widen, J.C.; Hexum, J.K.; Andrews, T.E.; Wang, D.; Rathe, S.K.; 

Meece, F.A.; Noble, K.E.; Sachs, Z.; Largaespada, D.A.; Harki, D.A. Bioorg. Med. 

Chem. 2015, 23, 4737-4745. 

 

This work was performed in collaboration with Dr. Aaron M. Kempema, Joseph 

K. Hexum, Timothy E. Andrews, Dr. Dan Wang, Dr. Susan K. Rathe, Dr. Frederick A. 

Meece, Klara E. Noble, Professor Zohar Sachs, Professor David A. Largaespada, and 

Professor Daniel A. Harki. Compounds were synthesized or purified after purchase by 

Aaron Kempema, John Widen, Timothy Andrews, Dan Wang, or Fred Meece. Klara 

Noble and Zohar Sachs trained me on the clonal growth assay.  Sue Rathe conducted 

growth inhibitory assays on leukemic mouse cell lines. Aaron Kempema, Joseph Hexum, 

Timothy Andrews, Dan Wang assisted with growth inhibitory assays on human cancer 

cells lines. Joseph Hexum assisted with the intracellular ROS production assay. John 

Widen conducted the flow cytometry assays, assisted with growth inhibition assays on 

human cells lines, conducted the clonal growth assays, and assisted with the intracellular 

ROS production assay. 
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4.1 Introduction 

Sesquiterpene lactones (SL) are a diverse family of plant-derived natural products 

with utilities in treating inflammatory diseases and cancer.
182c, 238

  Parthenolide (PTL, 

4.1) is a well-studied SL derived from the feverfew plant Tanacetum parthenium,
239

 

bearing broad-spectrum anti-proliferative activities to a variety of cancer types through 

multiple mechanisms of inhibition.
240

 The seminal discovery that PTL induces apoptosis 

in acute myeloid leukemia (AML) stem and progenitor cells without exhibiting 

comparable toxicity to healthy hematopoietic stem cells (HSCs) has anointed PTL as the 

prototypical member of next-generation therapies for eradicating leukemic stem cells 

(LSCs).
241

 AML growth is hierarchical and originates from LSCs.
242

 Therefore, small 

molecules that eliminate LSCs are expected to confer more durable and potentially 

curative therapies.
243

 In addition to its anti-leukemic activity, PTL has been explored as a 

potential therapeutic for a spectrum of indications.
244

 

  Chemical optimizations of PTL have been required to optimize the natural 

product for in vivo applications. A Phase I dose escalation trial of feverfew extract failed 

to achieve measurable levels of PTL in serum and oral dosing (40 mg/kg) of PTL in 

mice yielded approximately 200 nM concentrations in serum, which is not sufficient to 

confer anti-proliferative activity.
245

 Conversion of PTL to prodrug dimethylamino-

parthenolide fumarate, DMAPT (or LC-1, 4.2), increased water solubility by ~1000-fold 

and yielded an analogue with substantially improved pharmacokinetic parameters (mice: 

Cmax = 25 μM, t1/2 = 0.6 hr; canine: Cmax = 61 μM, t1/2 = 1.9 hr) with oral dosing (100 

mg/kg).
246

 Hetero-Michael addition of aliphatic amines to natural products and synthetic 

analogues bearing α-methylene-γ-butyrolactones has constituted a modular strategy to 

enhance water solubility through prodrug formation.
247

 Semisynthetic modifications to 

PTL outside of the α-methylene-γ-butyrolactone warhead, however, are significantly less 

developed. Acid-catalyzed conversion of PTL to 5-7-5 guaianolide, Micheliolide (4.3), 

has been achieved, yielding a derivative with anti-proliferative activity comparable to its 

predecessor.
247c, 248

 Photochemical isomerization of the C1-C10 olefin of PTL has also 

been reported, yielding cis-olefin 4.4.
249

 Allylic oxidation of the C1-C10 vinyl methyl 
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group of PTL results in formation of another natural product, Melampomagnolide B 

(MelB, 4.5), which exhibits comparable anti-proliferative activity as PTL, but contains 

an allylic alcohol, which is useful for further transformations (e.g., synthesis of affinity 

pulldown reagents and O-functionalized analogues).
250

 Recently, the Fasan laboratory has 

utilized P450 enzymes to oxygenate proximal to the C1-C10 olefin of PTL, yielding 

alcohols at C9 and C14, which were subsequently esterified with substituted benzoic 

acids to yield PTL analogues with anti-leukemic activities.
251

  

In this study, we examined the necessity of the PTL C1-C10 olefin and its 

tolerance to structural modification with respect to sustained anti-proliferative activities 

to cancer cells through the synthesis and biochemical screening of C1-C10 modified PTL 

analogues. Included among our small library of compounds are established PTL 

analogues, such as Micheliolide (4.3), cis-PTL (4.4), and MelB (4.5), as well as 

additional mechanistic probes, such as 4.6 (reduced C1-C10 olefin) and 4.7 

(cyclopropanated C1-C10 olefin). Interestingly, cyclopropanated analogue 4.7 was found 

to exhibit similar anti-proliferative activity to cancer cells as PTL, but conferred less 

toxicity to healthy bone marrow and more potently induced cellular reactive oxygen 

species (ROS), which is known to promote cell death to AML stem cells and other cancer 

cells.
252
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Figure 4.1.1. Structures of PTL and DMAPT, C1-C10 modified PTL analogues 4.3-4.4, MelB, 4.5 and 

4.6-4.8), and control compounds for biochemical assays (4.9 and CTL, 4.10). 

 

4.2 Design and synthesis of PTL analogues 

A small library of C1-C10 olefin modified PTL analogues and control 

compounds were synthesized or purchased commercially (Figure 4.1.1). Previous studies 

have found that the C1-C10 olefin of PTL can participate in electrophilic transannular 

cyclizations with the C4-C5 epoxide under Brønsted or Lewis acid conditions to yield 

guaianolide analogues.
249a

 Therefore, we synthesized reduced analogue 4.6 to eliminate 

any potential for acid instability. The exocyclic methylene on the α-methylene-γ-

butyrolactone of PTL was transiently protected by dimethylamine addition to yield 

dimethylamino-PTL, which was not converted to the fumarate salt for this application 
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(Scheme 4.2.1). Hydrogenation of dimethylamino-PTL free base with PtO2 catalyst at 50 

psi H2 resulted in facial selective reduction (~15:1).  The exocyclic methylene was 

deprotected under Hofmann elimination conditions (excess MeI, THF, H2O)
247b, 253

 to 

yield 4.6 in 32% yield (over three steps). The stereochemistry of the methyl group was 

assigned by X-ray crystallography (see Section 4.12 for crystal structure data). 

 

 

Scheme 4.2.1. Synthesis of C1-C10 reduced PTL analogues.
a
  

a
Reagents and Conditions: a) NHMe2, MeOH; Pt2O, H2 (50 psi), EtOAc; MeI, THF, H2O, 45 °C, 32% (3 

steps); b) Zn(CH2I)2, DME, CH2Cl2, 41%; c) NHMe2, MeOH; fumaric acid, 85%. 

 

Cyclopropanes are unique ring systems with significant sp
2
-character, thereby 

mimicking the electronics of double bonds.
254

 Such modifications can be valuable for 

increasing the stability of a drug candidate. In the case of PTL, replacement of the C4-C5 

epoxide with a cyclopropane significantly enhanced plasma half-life (t1/2 = 13.9 hr versus 

1.6 hr for PTL; testing in mouse plasma).
255

  To further probe the role of the C1-C10 

olefin in PTL with a structurally analogous mimetic, we synthesized C1-C10-

cyclopropanated 4.7. Utilizing the Furukawa modification (ZnEt2) to the classical 

Simmons-Smith reaction,
256

 PTL was treated with pre-formed Zn(CH2I)2 in a solution of 

DME and CH2Cl2, which yielded (1S,10R) 4.7 in 41% yield following silica gel 

chromatography (Scheme 4.2.1). Interestingly, no attack to the exocyclic olefin was 
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observed, with the remaining mass balance consisting of mostly unreacted PTL. The 

structure of 4.7 was assigned by X-ray crystallography (Figure 4.2.1). As expected, the 

solid-state structure of cyclopropane 4.7 was highly similar to a recently reported PTL X-

ray structure)
255

 with a root-mean-square deviation of 0.167 Å (Figure 4.2.1; alignment 

of structures provided below in Section 4.12, Figure 4.12.1). Recognizing that 4.7 may 

suffer from poor aqueous solubility akin to PTL, we synthesized dimethylamine 

congener 4.8, which was converted to the fumarate salt for consistency with DMAPT 

(4.2).
246b

 PTL and Costunolide (CTL, 4.10) were purchased from commercial vendors 

and the remaining analogues in our library (4.3, MelB (4.5), and 4.6) were synthesized as 

previously reported.
246b, 247c-g, 248a, 249a, 250a-d

 The structure of synthesized Micheliolide 

(4.3) was verified by X-ray crystallography (Section 4.12) and compared to a previous 

report.
257

 

 

Figure 4.2.1. X-ray crystal structures.  (A) PTL
246b

 and (B) cyclopropane 4.7 adopt similar conformations 

in the solid-state. Root-mean-square deviation between the two structures is 0.167 Å. 
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4.3 Lipophilicity Analyses 

The distribution coefficients (LogD) of select C1-C10 PTL analogues were 

assessed through calculated and measured analyses (Table 4.3.1). Calculated LogD 

values were less predictive in comparison to experimentally derived measurements for 

PTL (cLogD7.4 = 3.07 versus LogD7.4  = 1.79) and cis-PTL isomer 4.4 (cLogD7.4 = 3.07 

versus LogD7.4  = 2.00), whereas calculated and measured values were generally 

consistent for the remaining analogues (Table 4.3.1). Both reduction and 

cyclopropanation of the C1-C10 olefin increased the overall lipophilicity of the PTL 

skeleton (LogD7.4  = 2.30 for 4.6 and LogD7.4  = 2.29 for 4.7). CTL, which contains a C4-

C5 olefin in place of the epoxide in PTL, was substantially more lipophilic (LogD7.4  = 

2.90 for CTL versus LogD7.4  = 1.79 for PTL). The distribution coefficients of 

dimethylamine fumarate salts of PTL and 4.7, analogues DMAPT and 4.8, respectively, 

were not measured because their calculated LogD values (cLogD7.4 = 0.50, DMAPT; 

cLogD7.4 = 0.56, 5) were outside the measurable range of the assay (1-5 units). 

 

Table 4.3.1. Calculated LogD values (cLogD7.4; MarvinSketch) and measured LogD values (LogD7.4; 

Sirius Analytical, average of two measurements) at pH 7.4 for select C1-C10 PTL analogues. 

Compound cLogD7.4 LogD7.4 

PTL (4.1) 3.07 1.79 

4.3 1.97 2.18 

4.4 3.07 2.00 

4.6 3.48 2.30 

4.7 3.16 2.29 

CTL (4.10) 4.22 2.90 
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4.4 Cellular Cytotoxicity Screening 

All compounds were screened for anti-proliferative activity against 7 cell lines 

representing blood lineage cancers (HL-60 and CCRF-CEM) and solid tumors (U-87 

MG, GBM6, MCF-7, DU-145, and NCI/ADR-RES). An established drug-resistant tumor 

cell line, NCI/ADR-RES, was included in our screen to determine if PTL and related 

analogues possess activity against cancer cell lines with high P-glycoprotein 

expression.
258

 Clinically used chemotherapeutic drugs gemcitabine and doxorubicin are 

inactive (IC50 > 500 μM) against NCI/ADR-RES cells,
237

 and cancer stem cells (CSCs) 

are known to have high expression levels of drug efflux machinery.
259

 Additionally, we 

included the GBM6 glioblastoma multiforme (GBM) cell line in our primary screen 

because it possesses a CD133
+
 population of cells,

260
 which is a frequently used marker 

of GBM stem cells.
261

  

Screening of PTL and related analogues revealed broad-spectrum, low-

micromolar IC50 growth inhibitory activity to all cancer cell lines regardless of 

modification to the C1-C10 olefin (Table 4.4.1). In contrast, 4.9, which bears a reduced 

exocyclic methylene on the α-methylene-γ-butyrolactone, was found to be completely 

inactive against all cell lines examined (IC50  > 500 μM). These data are consistent with 

previous reports,
246b, 262

 and reinforce the necessity of the α-methylene-γ-butyrolactone 

for anti-proliferative activity of molecules of this class.
182c, 205, 247b, 247e

 CTL was found to 

be equipotent to the C1-C10 modified analogues, suggesting the C4-C5 epoxide is non-

essential for activity, which is also consistent with a previous report.
255

 All compounds 

except for exocyclic methylene-reduced 4.9 were active against drug-resistant NCI/ADR-

RES cells (IC50 range: 9.4 – 22.0 μM). 
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Table 4.4.1. Growth inhibitory activities (IC50) of PTL, C1-C10-modified PTL analogues, and related 

probes to cell lines: HL-60 (acute promyelocytic leukemia), CCRF-CEM (acute lymphoblastic leukemia), 

U-87 MG (glioblastoma multiforme), GBM6 (glioblastoma multiforme), MCF-7 (breast adenocarcinoma), 

DU-145 (prostate cancer), and NCI/ADR-RES (ovarian cancer; adriamycin-resistant), IC50 values are mean 

± S.D. in μM (n ≥ 3 analyses).
 a

Obtained previously.
219, 237

 
b
Slightly lower than previously reported (57.6 

µM).
237

 

 

Compound HL-60 CCRF-CEM U-87 MG GBM6 MCF-7 DU-145 

NCI/ADR-

RES 

PTL (4.1) 9.3 ± 3.8a 4.7 ± 1.6 8.8 ± 2.1a 3.4 ± 1.1a 9.7 ± 2.8 8.9 ± 4.6a 11.4 ± 2.4b 

LC-1 (4.2) 7.1 ± 0.4 1.9 ± 0.4 8.8 ± 1.9a 3.5 ± 1.1a 10.4 ± 1.2 8.4 ± 4.5 12.3 ± 2.7 

4.3 9.2 ± 2.2 2.7 ± 1.1 17.8 ± 5.0 8.5 ± 0.7 9.6 ± 1.0 14.8 ± 4.0 22.0 ± 5.3 

4.4 8.0 ± 1.1 2.2 ± 1.0 9.1 ± 4.4 3.3 ± 0.8 7.5 ± 0.8 6.0 ± 4.2 9.4 ± 2.1 

MelB (4.5) 7.5 ± 3.0 5.5 ± 1.2 16.3 ± 6.8 4.5 ± 1.9 9.5 ± 1.9 14.3 ± 5.9 15.0 ± 4.9 

4.6 9.0 ± 2.1 2.5 ± 2.1 7.5 ± 0.4 2.0 ± 0.3 20.1 ± 1.3 5.5 ± 1.5 15.6 ± 3.1 

4.7 4.4 ± 1.3 2.0 ± 0.6 11.6 ± 1.4 2.3 ± 0.5 14.1 ± 1.0 14.8 ± 6.7 12.0 ± 2.5 

4.8 6.5 ± 2.7 2.9 ± 0.6 10.5 ± 0.9 3.2 ± 0.7 16.9 ± 2.0 13.3 ± 2.2 11.7 ± 3.1 

4.9 >500 >500 >500 >500 >500 >500 >500 

CTL (4.10) 13.0 ± 0.2 2.3 ± 0.2 9.6 ± 0.8 7.0 ± 1.8 17.5 ± 3.7 7.7 ± 2.8 17.1 ± 0.9 

 

4.5 Bone Marrow Toxicity Studies 

The CD34
+
CD38

-
 bone marrow (BM) immunophenotype is enriched for self-

renewing stem cells.
263

 Previous studies have demonstrated that PTL is non-toxic to total 

BM and CD34
+
CD38

-
 BM cells when dosed at 5 μM for 18 hrs.

241
 To assess BM toxicity 

of the synthesized C1-C10 PTL analogues in comparison to PTL, we performed flow 

cytometry assays with human BM cells and measured cellular viability by flow cytometry 

using markers for apoptosis (Annexin V) and necrosis (7-AAD). Since PTL has been 

shown to elicit some overall BM toxicity at a dose of 7.5 μM for 18 hrs,
241

 we elected to 

utilize a slightly higher dose to exacerbate the toxicity of PTL so that analogues with less 

toxicity to BM in comparison to PTL could be measured. Doxorubicin (DOX) was 

included as a positive control since it is known to elicit BM toxicity.
264

 The mean overall 
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viability of the BM specimen utilized in our study was 78% (Figure 4.5.1A) and 94% for 

the CD34
+
CD38

-
 population (Figure 4.5.1B). Treatment with 0.5 μM DOX for 12 hr 

resulted in a 56% reduction in total BM viability and an 85% reduction in the primitive 

CD34
+
CD38

-
 BM population (Figure 4.5.1). PTL treatment at 25 μM resulted in a 48% 

reduction in total BM viability, whereas C1-C10 modified PTL analogues 4.3, MelB, and 

4.7, as well as control analogue, CTL, were less toxic (range: 22-26% average reduction 

of total BM viable cells). PTL was found to elicit no significant toxicity to primitive 

CD34
+
CD38

-
 BM cells at 25 μM dose and the C1-C10 PTL analogues were similarly 

non-toxic at the same concentration (Figure 4.5.1B). Therefore, modification to the C1-

C10 olefin of PTL significantly lowers its overall toxicity to BM cells. However, the 

observed toxicity of PTL to total BM would be expected to be transient since little cell 

death was measured in the CD34
+
CD38

-
 BM population upon PTL treatment, which is 

responsible for BM clonal growth.
263

 Studies in our group using PTL prodrug, DMAPT, 

have revealed no measurable toxicity to mice upon continuous oral dosing (100 mg/kg, 

daily) for over four weeks.
262b
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Figure 4.5.1. Toxicity of PTL and analogues to human bone marrow cells. BM was dosed with DOX (0.5 

μM), and PTL (4.1), 4.3, MelB (4.5), 4.7, and CTL (4.10) (25 μM) for 12 h. Cellular viability was then 

measured by flow cytometry and viable cells (%) were those not stained by Annexin V (apoptosis) and 7-

AAD (necrosis) reagents. (A) Viability of the total bone marrow cell population and (B) viability of the 

CD34
+
CD38

-
 population. Data is the mean (n ≥ 3 analyses) ± S.D. *p = 0.05, **p ≤ 0.01, ***p ≤ 0.001 in 

comparison to untreated control. 

 

4.6 Inhibition of Drug-resistant AML and Toxicity to LSCs 

Given the selectivity of our compounds for inhibiting growth of blood lineage 

cancer cells (e.g., HL-60 and CCRF-CEM, Table 4.6.1) and their lack of toxicity to 

healthy BM (Figure 4.5.1), we focused subsequent efforts on characterizing the anti-

leukemic activities of our molecules. Four murine AML cell lines were utilized for our 

initial screen (Table 4.6.1). B117P and B140P are murine cell lines isolated from the 

BXH-2 mice strain that spontaneously develops AML due to the presence of a murine 

leukemia virus.
265

 These cells are sensitive to cytarabine (AraC), which is used in 
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standard-of-care AML therapy. Continual low dosing of B117P and B140P with 

cytarabine resulted in cytarabine-resistant cell lines B117H and B140H, respectively.
266

 

Cytarabine resistance is conferred in B117H and B140H by loss-of-function mutations in 

the deoxycytidine kinase gene Dck, which inhibits intracellular metabolism of cytarabine 

to its 5’-monophosphate.
267

 PTL and C1-C10-modified analogues 4.3, MelB, and 4.7, 

and control analogue CTL all inhibited the growth of this panel of cell lines with low 

micromolar activity (IC50 range: 1.1 – 13.5 μM). No loss in potency was observed 

between cytarabine-sensitive (parental) cell lines B117P and B140P and cytarabine-

resistant lines B117H and B140H for any of the molecules tested. These data suggest that 

PTL analogues have the potential to sustain anti-proliferative activities to AML cell lines 

that become sensitive to cytarabine. 

Table 4.6.1. Growth inhibitory activities (IC50) of PTL, C1-C10-modified PTL analogues, and related 

probes to murine AML cell lines B117P, B117H, B140P, and B140H. IC50 values are mean ± S.D. in μM 

(n ≥ 3 analyses).  

 

Compound B117P B117H B140P B140H 

PTL (4.1) 1.1 ± 0.2 4.7 ± 1.6 5.8 ± 2.3 3.4 ± 1.1 

4.3 6.4 ± 1.0 8.8 ± 1.7 10.0 ± 0.4 9.3 ± 1.5 

MelB (4.5) 2.1 ± 0.8 2.5 ± 1.0 2.9 ± 1.0 2.2 ± 0.7 

4.7 2.9 ± 0.6 6.4 ± 2.1 13.5 ± 2.3 5.9 ± 2.4 

CTL (4.10) 3.5 ± 0.4 4.8 ± 0.7 3.6 ± 1.2 2.8 ± 0.7 

 

PTL is known to eradicate LSCs,
241

 and therefore, we investigated if the C1-C10-

modified PTL analogues could inhibit LSCs with similar potency as the parent natural 

product. We utilized an engineered leukemia cell line, TEX, for these assays. TEX cells 

are derived from lineage depleted (Lin
-
) human cord blood cells transduced with the 

fusion gene TLS-ERG. TEX cells effectively mimic human AML by maintaining the 

potential for multi-lineage differentiation through their heterogeneous population of cells 

with hierarchical growth properties. A large population of primitive CD34
+
 cells are 
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present in the TEX model system, which has also been utilized in high-throughput 

screening for small molecule inhibitors of LSCs.
268

 Screening of PTL and related 

analogues (4.3, MelB, 4.7, and CTL) revealed broad-spectrum inhibitory activity (IC50 

range: 2.7 – 6.8 μM) by metabolic viability staining following 48 hr treatment (Table 

4.6.2). 

Table 4.6.2. Growth inhibitory activities (IC50) of PTL, C1-C10-modified PTL analogues, and related 

probes to TEX cells. IC50 values are mean ± S.D. in μM (n ≥ 3 analyses). 

 

Compound TEX 

PTL (4.1) 2.8 ± 0.2 

4.3 2.7 ± 0.4 

MelB (4.5) 6.8 ± 2.3 

4.7 3.8 ± 0.2 

CTL (4.10) 4.9 ± 0.4 

 

Analysis of the LSC-enriched CD34
+
CD38

-
 population of TEX cells treated with 

25 μM PTL, 1, MelB, and CTL for 12 hr revealed a nearly complete reduction in cellular 

viability by flow cytometry analysis (cell viability range:  1–10%, Figure 4.6.1), with the 

majority of cells staining positive for 7-AAD, indicating necrotic cell death. Treatment of 

cells with 15 μM PTL analogues yielded slightly higher amounts of viable cells (cell 

viability range: 10–25%) with no statistical significant differences in potencies between 

the analogues tested. A relatively low dose of DOX (0.5 μM) was sufficient to reduce the 

viability of CD34
+
CD38

-
 TEX cells to 6%. Consequently, all of the PTL analogues 

tested were able to induce cell death in the LSC-enriched CD34
+
CD38

-
 population of 

TEX cells.  
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Figure 4.6.1. Cellular viability (%) of CD34
+
CD38

-
 TEX cells treated with DOX (2.5, 0.5, 0.05 μM) and 

PTL, 4.3, MelB, 4.7, CTL (25, 15, 2.5 μM). Viable cells were those not stained by Annexin V (apoptosis) 

and 7-AAD (necrosis) markers. Values are mean ± S.D. (n ≥ 5 analyses). * p = 0.05, ** p ≤ 0.01, *** p ≤ 

0.001 in comparison to untreated control. 

 

To corroborate that the observed inhibition of primitive CD34
+
CD38

- 
TEX cells 

also affects the LSC population, we performed methylcellulose clonal growth assays of 

TEX cells in the presence of our compounds. As previously mentioned, AML is 

characterized by hierarchical growth properties that originate from LSCs,
242

 and 

therefore, small molecule inhibition of LSCs will prevent clonal growth of cells in 

methylcellulose. Control (DMSO) treated TEX cells yield on average 20.8 clones per 

assay (Table 4.6.3). Treatment with PTL or analogues 4.3, MelB, 4.7, or CTL all 

potently inhibit clonal outgrowth of TEX cells at 15 μM dose, with PTL and 4.3 yielding 

no measurable clones. Decreasing the dosage to 2.5 μM with the same compounds also 

elicits inhibition of TEX clonal growth (range: 2.6 – 7.0 clone average). DOX and AraC 

were both able to inhibit TEX clonal growth in our assay, with 0.5 μM treatment of both 

compounds completely inhibiting cell growth. Taken together, these data demonstrate 

PTL and related analogues are proficient at inhibiting LSCs, which is likely mediated 

through their common pharmacophore, the α-methylene-γ-butyrolactone. 
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Table 4.6.3. Clonal growth assay with TEX cells. TEX cells were plated 6,000 cells/well and dosed with 

DMSO (0.05%, control wells) or compounds at the concentrations noted. Values are the mean number of 

colonies ± S.D. (3 biological replicates) observed after 11 d growth on methylcellulose. N.D., clonal 

growth not detected. p ≤ 0.001 in comparison to DMSO control for all samples, except 4.7 at 2.5 μM (p ≤ 

0.01).  

 

 
Colonies ± S.D. 

Compound 2.5 μM 15 μM 

PTL (4.1) 2.6 ± 2.7 N.D. 

4.3 4.2 ± 2.5 N.D. 

MelB (4.5) 5.3 ± 1.6 0.1 ± 0.3 

4.7 7.0 ± 5.1 0.6 ± 0.9 

CTL (4.10) 6.9 ± 3.6 5.6 ± 4.7 

 
0.1 μM 0.5 μM 

DOX 0.7 ± 1.3 N.D. 

AraC 2.6 ± 1.0 N.D. 

DMSO 20.8 ± 9.0 

 

4.7 Induction of Reactive Oxygen Species 

The mechanism by which PTL eradicates cancer cell viability is an area of 

substantial debate. PTL has been shown to affect a variety of cellular processes, 

including (among many others) inhibition of NF-B signaling and microtubule 

detyrosination, reduction in DNA methylation, and induction of cellular ROS (reviewed 

in
182c, 239-240, 268b, 269

). Multiple studies have implicated ROS induction as a mechanism of 

PTL-mediated cancer cell death. 
252c, 252f, 252i, 252j

 Consequently, we measured changes in 

intracellular ROS in TEX cells resulting from treatment with PTL, CTL, 4.3, MelB, and 

4.7 to rank order the pharmacological utility of our compounds. Treatment of TEX cells 

with hydrogen peroxide results in a 3.1-fold induction of intracellular ROS after 30 min, 

which is consistent with a previous study where a similar induction of ROS was 

measured by flow cytometry in HL-60 cells.
270

 Dosage of TEX cells with 4.3 (2.9-fold), 
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4.7 (2.6-fold), and CTL (2.2-fold) all substantially induced ROS levels at 100 μM dose in 

comparison to untreated control (Figure 4.7.1). PTL induced ROS as well, but to a lower 

level (1.6-fold). No observable induction of ROS was detected with MelB at either 

concentration tested. Decreasing the concentration of compounds to 25 μM also resulted 

in a significant induction of ROS levels for 4.3 (1.7-fold) and 4.7 (1.6-fold). 

Consequently, these data suggest that 4.3 and 4.7 more potently induce ROS than parent 

natural product, PTL. 

 

Figure 4.7.1. Intracellular ROS induction by PTL and analogues. TEX cells were treated with 100 μM 

hydrogen peroxide (H) and PTL, CTL, 4.3, MelB, and 4.7 (100, 25 μM) and ROS activity was measured 

by flow cytometry using CellROX Green reagent. The median fluorescence intensity (MFI) of each sample 

was normalized to the untreated control (U) and averaged. Values are mean MFI ± S.D. (n ≥ 3 analyses). *p 

= 0.05, **p ≤ .01, ***p ≤ 0.001 in comparison to untreated control. 

 

4.8 Conclusions 

A small library of C1-C10 PTL analogues was synthesized and evaluated for anti-

proliferative activity to cancer cells, toxicity to healthy BM, ability to inhibit drug-

resistant AML and target LSCs, and proficiency at inducing intracellular ROS. All 

compounds with the exception of 4.9 were capable of inducing cancer cell death with low 

micromolar potency. However, Micheliolide (4.3) and cyclopropane 4.7 were found to 

inhibit the growth of drug-resistant AML and eliminate LSCs similarly to PTL (4.1), but 
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offer the advantages of being less toxic to healthy BM and more potently activating ROS 

in AML cells than PTL. Additionally, elaboration of 4.7 to its dimethylamine congener 

4.8 provided an analogous prodrug to DMAPT (LC-1). Given the continued interest in 

PTL, highlighted by its first total synthesis,
244

 and the rekindled popularity of covalent 

drugs in general,
271

 C1-C10 modifications such as cyclopropanation may be useful for 

optimizing PTL and related germacranolides for therapeutic applications. 

 

4.9 Experimental 

LogD measurements 

Calculated LogD values were obtained using MarvinSketch (ChemAxon). 

cLogD7.4 was calculated using 0.1 mol/dm
3
 electrolyte concentrations (Cl

-
, Na

+
, K

+
) at 

pH 7.4. Experimental LogD7.4 measurements were performed by Sirius Analytical. The 

LogD7.4 of each sample was determined using the LDA (liquid-liquid distribution 

chromatography) method. The data is the average of two measurements.  

 

Preparation of stock solutions 

Compound stock solutions were prepared in DMSO (20-100 mM concentrations) 

and stored at -20 °C when not in use. Compound purities were assessed frequently by 

analytical reverse-phase HPLC analysis and fresh solutions were prepared as needed. 

Cell culture 

All cell lines were maintained in a humidified 5% CO2 environment at 37 °C in 

tissue culture flasks (Corning) under normoxic conditions. Adherent cells were 

dissociated using either Trypsin-EDTA solution (0.25%, Gibco) or TrypLE Express 

solution (Invitrogen). HL-60, CCRF-CEM, U-87 MG, GBM6, DU-145, and NCI/ADR-

RES cells were cultured as described previously.
219, 237, 262b

 MCF-7 cells (ATCC, HTB-

22) were cultured in MEM media (Cellgro) supplemented with 10% FBS (Gibco), bovine 
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insulin (0.01 mg/mL, Sigma), penicillin (100 I.U./mL, ATCC), and streptomycin (100 

µg/mL, ATCC). TEX cells
268a, 272

 were cultured in IMDM containing L-glutamine 

(Cellgro) supplemented with 15% FBS (Gibco), Stem Cell Factor (20 ng/mL, 

PeproTech), Interleukin-3 (2 ng/mL, PeproTech), penicillin (100 I.U./mL, ATCC), and 

streptomycin (100 µg/mL, ATCC). 

Human cancer cell line cytotoxicity assays 

Alamar blue cellular cytotoxicity assays and data analyses were performed as 

previously described.
219, 237, 262b

 Suspension cell lines (HL-60, CCRF-CEM and TEX
268a, 

272
) were seeded at a density of 10,000 cells/well in media (50 µL) and adherent cell lines 

(U-87 MG, GBM6, MCF-7, DU-145, and NCI/ADR-RES) were seeded at a density of 

5,000 cells/well in media (50 µL) 24 h prior to treatment with compounds in 96-well 

plates (Costar 3595, Corning, Inc.). IC50 values (n ≥ 3 biological replicates) are the mean 

± S.D. 

Murine cytotoxicity assay 

Cell culture and cytotoxicity assays with murine cell lines B117P, B117H, B140P, 

and B140H were performed as previously described.
266b, 267

 Cells were seeded at a 

density of 25,000, 28,000, 36,000 and 44,000 cells/well for B117P, B117H, B140P, and 

B140H cell lines, respectively, in media (200 µL) in 96-well plates (Costar 3596, 

Corning, Inc.). Assays were conducted in biological triplicate and IC50 values are the 

mean ± S.D. 

Bone marrow cell culture 

Frozen human mononuclear bone marrow cells were purchased from AllCells 

(Cat. #ABM011F). These bone marrow cells were from two donors (#5630 [Lot 

#BM4565] and #4887 [Lot #BM4118]). The cells were thawed according to vendor 

instructions and then cultured in StemSpan SFEM (STEMCELL Technologies, Inc.) 

media supplemented with StemSpan CC100 cytokine cocktail (STEMCELL 
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Technologies, Inc.) in a humidified 5% CO2 environment at 37 °C in tissue culture flasks 

(Corning) under normoxic conditions. 

Flow cytometry analysis of cytotoxicity in bone marrow and TEX cells 

 Human bone marrow or TEX cells were plated in their respective media at 1 x 10
6
 

cells/mL (1 mL/well) in a 24-well plate format (Corning). Cells were dosed with 

compounds or 1% DMSO/media and incubated for 12 h at 37 °C, 20% O2, and 5% CO2. 

The final DMSO concentration was 0.03% (v/v) per well. After 12 h of incubation, each 

sample was transferred into FACS tubes and centrifuged for 5 min at 800 rpm. The 

supernatant was decanted and each sample was washed with cold 1X PBS (1 mL) and 

centrifuged again. After centrifugation, the supernatant was decanted and the samples 

were stained with Brilliant Violet 421 mouse anti-human CD34 (BD Biosciences [Cat. 

#562577]; 5 μL/sample) and APC mouse anti-human CD38 (BD Biosciences [Cat. 

#555462]; 20 μL/sample) antibodies in FACS buffer (1X PBS, 2% FBS, 0.1% sodium 

azide; 100 μL total volume/sample) for 10 minutes at 4 °C. The cells were then diluted 

with FACS buffer (1 mL) and centrifuged. The supernatant was decanted and stained 

with Annexin V-FITC (BD Biosciences [Cat. #556420]; 5 μL/sample) and 7-AAD 

(eBioscience [Cat. #00-6993-50]; 5 μL/sample) in FACS buffer (100 μL total 

volume/sample) for 10 minutes at room temperature in the dark. The samples were 

diluted with FACS buffer (300 μL), and kept on ice during analysis by flow cytometry 

using a BD Biosciences LSR II flow cytometer. Greater than 5 x 10
4
 events were 

measured for each sample during analysis. All antibodies and stains were stored at 4 °C 

in the dark. After data collection, each sample was processed using FlowJo (Tree Star; v 

7.6.5). The cell viability is expressed as a mean of 3-5 biological replicates ± S.D. 

Statistical significance was determined using unpaired t-tests (GraphPad Prism v. 5.0). 

An example of the data processing is shown below. 

Figure 4.9.1 is a graphical representation of the work-up process completed for 

all presented samples starting from the initial forward scatter (FSC-A) vs. side scatter 

(SSC-A) dot plot. Following data collection each sample was processed with FlowJo 

(Tree Star; v 7.6.5). A primary gate was used before further data processing to eliminate 
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cell debris from the analysis of apoptotic and necrotic cells in a forward scatter (FSC-A) 

vs. side scatter (SSC-A) dot plot. After the primary gate was in place the stains were 

compensated using single stain samples compared to a non-stain control and isotype 

controls for the CD34 and CD38 stains. OneComp eBeads (CD34) and UltraComp 

eBeads (CD38) were used for positive compensation controls (eBioscience). 

Fluorescence minus one (FMO) controls were used to verify proper compensation of the 

samples. Gating of the CD34 and CD38 population was completed by comparing non-

stain and isotype controls to positive control populations. The CD34
+
CD38

-
 population 

was then gated for Annexin V and 7-AAD to obtain cell viability.  The percentage of 

cells within the Annexin V and 7-AAD negative quadrant was used for comparison of 

cell viability between samples (lower left quadrant). Cells that stained positive for 

Annexin V, 7-AAD, or both were considered to be apoptotic or necrotic. Below is an 

example of gating analysis of cell viability after dosing 15 μM PTL to TEX cells and 

gating for the CD34
+
CD38

-
 population. 

 

 

 

Figure 4.9.1. Example of processing to obtain cell death percentages for the CD34
+
CD38

-
 population of 

TEX cells after flow cytometry analysis. 
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Colony growth assay 

TEX cells were added to Methocult H4230 (STEMCELL Technologies Inc.) 

supplemented with penicillin (100 I.U./mL, ATCC) and streptomycin (100 µg/mL, 

ATCC) at a final cell density of 1.2 x 10
4
 cells/mL. Compounds were diluted in TEX cell 

media and dosed to each cell suspension to obtain the respective concentration. Each 

sample was vortexed vigorously to evenly distribute the cells before and after compound 

dosing. Each sample (1.5 mL) was plated into three wells (0.5 mL/well, three technical 

replicates) of a 24-well plate (Corning) and incubated under normoxic conditions at 37 

°C, 5% CO2 for 11 days before scoring colonies. Colonies were counted for each well at 

10X magnification with a light microscope by two people independently and averaged for 

each sample. The data is the mean number of colonies for three biological replicate ± 

S.D. Statistical significance was determined using unpaired t-tests (GraphPad Prism v. 

5.0). 

ROS Assay 

 TEX cells were seeded in 24-well plates at 5 × 10
5
 cells/mL/well and incubated 

overnight at 37°C and 5% CO2. The cells were then treated with compounds (25 and 100 

µM), including H2O2 (100 µM; positive control). Immediately after treatment with 

compounds, CellROX Green (Invitrogen) reagent was added to the appropriate samples 

at a final concentration of 5 μM. The cells were then incubated for 30 minutes at 37°C 

and 5% CO2. Following incubation, the samples were transferred to 5 mL FACS tubes 

and washed with FACS buffer (3 mL, 2X). The samples were run using a BD 

Biosciences LSR II flow cytometer and 5 x 10
4
 events were recorded for each sample. 

Flow cytometry data was analyzed using FlowJo software (Tree Star; version 7.6.5). 

Samples were run in quadruplicate with the exception of H2O2 (triplicate data). Median 

fluorescence intensity (MFI) values were obtained for each sample and were normalized 

to the untreated control. Data are shown as mean MFI value ± S.D. Statistical 

significance was determined using unpaired t-tests (GraphPad Prism v. 5.0). 

The data for the TEX ROS assays were worked up using FlowJo (Tree Star; 
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version 7.6.5) following acquisition. A scatter gate was first set using the FSC-A vs. 

SSC-A dot plot. This subpopulation was then gated for singlets (doublet exclusion) using 

the FSC-A vs. FSC-W (width parameter) dot plot. Finally, a CellROX Green histogram 

was prepared from the singlet population. Shown below is a representative analysis using 

one of the 100 μM PTL-treated samples: 

 

Figure 4.9.2. Graphical representation of processing to obtain total intracellular ROS within TEX cells 

after flow cytometry analysis. 

 

General synthesis information 

Chemical reagents were typically purchased from Sigma-Aldrich and used 

without additional purification unless noted. Bulk solvents were from Fisher Scientific. 

PTL (4.1) was purchased from Enzo Life Sciences and CTL (4.10) was purchased from 

Santa Cruz Biotechnology. Previously reported analogues DMAPT (4.2), MelB (4.5), 

4.3, 4.4 and 4.10 were synthesized as described.
246b, 247c-g, 248a, 249a, 250a-d

 The structure of 

4.3 was further confirmed by small molecule X-ray crystallography (SI; CCDC 1033012) 

and compared to the previous report.
257

 Tetrahydrofuran (THF) was rendered anhydrous 

by passing through the resin column of a solvent purification system (MBraun). 

Reactions were performed under an atmosphere of dry N2 unless noted. Silica gel 

chromatography was performed on a Teledyne-Isco Combiflash Rf-200 instrument 

utilizing Redisep Rf Gold High Performance silica gel columns (Teledyne-Isco). 

Analytical HPLC analysis was performed on an Agilent 1200 series instrument equipped 

with a diode array detector and a Zorbax SB-C18 column (4.6 x 150 mm, 3.5 μm, Agilent 

Technologies). The method started with 10% CH3CN (with 0.1% trifluoroacetic acid 
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(TFA)) in H2O (0.1% TFA). The 10% CH3CN (with 0.1% TFA) was increased to 85% 

over 22 minutes, and then increased to 95% CH3CN (with 0.1% TFA) over 2 more 

minutes. Nuclear magnetic resonance (NMR) spectroscopy was employed by using either 

a Bruker Avance (400 MHz for 
1
H; 100 MHz for 

13
C) or Bruker Ascend (500 MHz for 

1
H; 125 MHz for 

13
C) NMR operating at ambient temperature. Chemical shifts are 

reported in parts per million and normalized to internal solvent peaks or 

tetramethylsilane. High-resolution masses were obtained from the University of 

Minnesota Department of Chemistry Mass Spectrometry lab, employing a Bruker 

BioTOF II instrument. 

 

 

C1-C10 Reduced (4.6). To a stirred solution of PTL (4.1) (0.050 g, 0.201 mmol) in 

MeOH (2 mL) was added dimethylamine (2.0 M in MeOH, 1 mL). The reaction was 

allowed to stir at RT overnight and then concentrated in vacuo. The crude material was 

used without further purification. The residual material was dissolved in EtOAc (3 mL) 

and PtO2 (0.005 g, 0.022 mmol) was added. The reaction mixture was degassed, then 

shaken for 8 hr in a Parr shaker under an atmosphere of H2 (50 psi). The mixture was 

then degassed, filtered through celite, and concentrated in vacuo. The crude material was 

taken on to the next step without further purification. The reaction mixture was dissolved 

in THF (3 mL) and iodomethane was added in excess (0.10 mL, 1.60 mmol). The 

reaction was allowed to stir at RT for 2 h. The solvent and excess iodomethane were 

removed in vacuo resulting in a white solid. Water (10 mL) was added and the reaction 

was heated to 45 °C. Complete solvation of the yellowish material resulted within 

minutes of heating. The reaction was allowed to stir with heating for 3 h, and then solvent 

was removed in vacuo. Aqueous NaHCO3 (sat’d, 5 mL) was added to the reaction 

mixture, and the product was extracted with DCM (3 x 20 mL). The combined organic 
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layers were washed with brine (20 mL), and dried with Na2SO4. The reaction was 

purified by flash chromatography over SiO2 (10%-50% ethyl acetate in hexanes gradient) 

to yield 4.6 as a white solid (0.014 g, 32 %). 
1
H NMR (CDCl3, 500 MHz):  6.24 (d, J = 

2.8 Hz 1H), 5.53 (d, J = 2.4 Hz, 1H), 3.84 (t, J  = 7.6 Hz, 1H), 3.10 (d, J = 7.6 Hz, 1H), 

2.99-2.94 (m, 1H), 2.20-2.14 (m, 2H), 1.81-1.75 (m, 2H), 1.75-1.56 (m, 2H), 1.51 (s, 

3H), 1.51-1.40 (m, 2H), 1.26 (m, 2H), 1.17-1.14 (m, 2H), 0.93 (d, J = 4.8 Hz, 3H). 
13

C 

NMR (CDCl3, 125 MHz): 169.7, 139.5, 119.7, 81.0, 66.4, 61.3, 43.9, 36.7, 36.1, 30.1, 

27.9, 24.7, 21.3, 20.6, 19.2. HRMS (ESI
+
) m/z calc’d for [C18H22O3+Na]

+
 273.1467; 

found 273.1470. The structure of 4.6 was further confirmed by small molecule X-ray 

crystallography (SI; CCDC 1033013). 

 

 

Cyclopropane (4.7). A 0.20 M solution of Zn(CH2I)2·DME complex was made in the 

following manner: To a stirred solution of diethyl zinc (1.0 M solution in hexanes, 4.0 

mL, 4.00 mmol) in CH2Cl2 (20 mL) and DME (0.50 mL) at 0 °C was added 

diiodomethane (0.80 mL, 9.92 mmol) under N2. The mixture was stirred for 10 minutes. 

PTL (4.1) (0.090 g, 0.36 mmol) in CH2Cl2 (3 mL) was added dropwise over 10 min to 

the (CH2I)2·DME complex at 0 °C. The reaction was allowed to warm to RT over 12 h. 

The reaction was quenched with aqueous NH4Cl (sat’d, 5 mL) and extracted with CH2Cl2 

(3 x 20 mL). The combined organic layers were washed with aqueous NaHCO3 (sat’d, 20 

mL), brine (20 mL), dried over Na2SO4 and concentrated in vacuo. The crude mixture 

was purified using silica gel chromatography (gradient 10-30% EtOAc in hexanes over 

15 min) to yield 4.7 (0.036 g, 40%) as a colorless oil and recovered PTL (4.1) (0.037 g, 

41%). 
1
H NMR (400 MHz, CDCl3) δ: 6.28 (d, J = 3.7 Hz, 1H), 5.57 (d, J = 3.3 Hz, 1H), 

3.96 (t, J = 9.1 Hz, 1H), 2.98 (d, J = 9.0 Hz, 1H), 2.67 (m, 1H), 2.39 (dd, J = 8.0 Hz, J = 
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14.7 Hz, 1H), 2.19 (dd, J = 2.3 Hz, J = 8.3 Hz, 1H), 1.95 (m, 2H), 1.70 (m, 1H), 1.40 (s, 

3H), 1.28 (m, 2H), 1.09 (s, 3H), 0.85 (dd, J = 11.1 Hz, J = 14.7,  1H), 0.64 (td, J = 6.0 

Hz, J = 9.5 Hz, 1H), 0.39 (dd, J = 4.3 Hz, J = 9.4 Hz, 1H), -0.08 (dd, J = 4.6 Hz, J = 5.6 

Hz, 1H).
 13

C NMR (100 MHz, CDCl3) δ: 169.4, 139.9, 120.5, 82.7, 65.5, 60.6, 48.0, 42.3, 

38.4, 25.7, 24.5, 22.3, 20.4, 18.8, 18.5, 17.1.  HRMS (ESI
+
) m/z calc’d for 

[C16H22O3+Na]
+
 285.1467; found 285.1470. The structure of 4.7 was further confirmed 

by small molecule X-ray crystallography (SI; CCDC 1033014). 

 

 

 Cyclopropyl-PTL Dimethylamine Fumarate (4.8). To a stirred solution of 4.7 (0.009 g, 

0.034 mmol) in MeOH (2 mL) was added dimethylamine (2.0 M in MeOH, 1.5 mL). The 

reaction was stirred for 12 h at RT. The reaction mixture was concentrated in vacuo 

purified by silica gel chromatography (gradient 0% - 50% EtOAc in hexanes over 10 

min, then gradient 0%-25% MeOH in CH2Cl2 over 10 min) to yield the dimethylamino 

product as a white solid (0.009 g). To a stirred solution of this product in THF (5 mL) 

was added fumaric acid (0.0034 g, 0.029 mmol). A white precipitate was observed after 

stirring overnight at RT.  The reaction mixture was concentrated in vacuo to give the 

fumarate salt 4.8 as white solid (0.0124 g, 85%). 
1
H NMR (DMSO-d6, 400 MHz):  6.61 

(s, 2H), 4.09 (t, J = 9.5 Hz, 1H), 3.04 (d, J = 9.2 Hz, 1H), 2.64 (m, 3H), 2.24 (s, 6H), 2.14 

(m, 2H), 2.05 (m, 1H), 1.78 (m, 2H), 1.59 (m, 1H), 1.31 (s, 3H), 1.19 (m, 2H), 1.02 (s, 

3H), 0.74 (m, 2H), 0.28 (dd, J = 3.8 Hz, J = 9.2 Hz, 1H), -0.18 (t, J = 4.8 Hz, 1H). 
13

C 

NMR (DMSO-d6, 100 MHz): 176.6, 166.1, 134.1, 81.8, 64.3, 60.3, 57.2, 47.4, 45.6, 45.3, 

41.7, 38.0, 24.2, 24.0, 21.6, 20.1, 18.4, 18.3, 16.7. HRMS (ESI
+
) m/z calc’d for 

[C18H30NO3+H]
+
 308.2226; found 308.2216. 
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4.10 Spectral Data 
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4.11 HPLC Chromatograms of Synthesized Compounds 

General Protocol for HPLC Analysis of Synthesized Compounds  

DMSO stock solutions of newly synthesized molecules were dissolved in distilled 

and deionized water (ddH2O) containing trifluoroacetic acid (TFA, 0.1% v/v) and 

analyzed on an Agilent 1200 series instrument equipped with a diode array detector and 

Zorbax SB-C18 column (4.6 x 150 mm, 3.5 μm, Agilent Technologies). The analysis 

method (1 mL/min flow rate) involved isocratic 10% MeCN in ddH2O (both containing 

0.1% TFA; 0 to 2 mins) followed by linear gradients of 10% to 85% MeCN in ddH2O 2 

to 24 mins followed by 85% to 95% MeCN in ddH2O (both containing 0.1% TFA; 24 to 

26 mins). Wavelengths monitored = 215 nm. HPLC chromatograms are not displayed for 

DMAPT (LC-1, 4.2), 4.8 and 4.9 because of poor 215 nm absorbance. 

 

PTL (4.1) HPLC (>99% pure): 
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MelB (4.5) HPLC (97.7% pure): 

 

 

CTL (4.10) HPLC (96.7% pure): 
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4.3 HPLC (94.5% pure): 

 

 

4.4 HPLC (97.9% pure): 
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4.6 HPLC (95.9% pure): 

 

 

4.7 HPLC (97.5% pure): 
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4.12 Data and Analysis of X-ray Structures 

X-ray Structure Information for Micheliolide (4.3) 

 

Data collection 

 A crystal (approximate dimensions 0.50 x 0.08 x 0.04 mm
3
) was placed onto the 

tip of a 0.1 mm diameter glass capillary and mounted on a Bruker APEX-II CCD 

diffractometer for a data collection at 173(2) K.
226

 A preliminary set of cell constants was 

calculated from reflections harvested from four sets of 20 frames. These initial sets of 

frames were oriented such that orthogonal wedges of reciprocal space were surveyed. 

This produced initial orientation matrices determined from 755 reflections. The data 

collection was carried out using MoK radiation (graphite monochromator) with a frame 

time of120 seconds and a detector distance of 6.0 cm. A randomly oriented region of 

reciprocal space was surveyed to the extent of one sphere and to a resolution of 0.77 Å. 

Four major sections of frames were collected with 0.50º steps in  at four different  

settings and a detector position of -28º in 2. The intensity data were corrected for 

absorption and decay (SADABS).
273

 Final cell constants were calculated from 2972 

strong reflections from the actual data collection after integration (SAINT).
274

 

 

Structure solution and refinement 

 The structure was solved using SHELXS-97 (Sheldrick, 2008/4) and refined using 

SHELXL-97 (Sheldrick, 2008/4).
227

 The space group C2221 was determined based on 

systematic absences and intensity statistics.  A direct-methods solution was calculated 

which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / 

difference Fourier cycles were performed which located the remaining non-hydrogen 
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atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. 

All hydrogen atoms were placed in ideal positions and refined as riding atoms with 

relative isotropic displacement parameters. The final full matrix least squares refinement 

converged to R1 = 0.0373 and wR2 = 0.1008 (F
2
, all data). 

 

Structure description 

 The structure is the one suggested. The data merged as though the structure was 

centrosymmetric since absolute configuration could not be determined experimentally for 

lack of a heavy atom. In the case the Flack parameter is meaningless and the enantiomer 

was chosen based on known chiral centers: these are C4-R, C5-S, C6-S, and C7-S.

 Data collection and structure solution were conducted at the X-Ray 

Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of 

Minnesota. All calculations were performed using Pentium computers using the current 

SHELXTL suite of programs. Additional crystallographic information, including the 

crystallographic information file (CIF), can be found in the supporting information of the 

original publication.
275

 This structure has also been deposited to the Cambridge Structural 

Database (CSD) under the Cambridge Crystallographic Database Center (CCDC) 

identifier: 1033012.  
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Thermal ellipsoid drawing of 4.3 
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Crystallographic information for 4.3 

Table 4.12.1.  Crystal data and structure refinement for 4.3. 

________________________________________________________________________ 

Identification code  11143a 

Empirical formula  C15 H20 O3 

Formula weight  248.31 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P2221 

Unit cell dimensions a = 7.4777(9) Å α = 90° 

 b = 15.4839(18) Å β  = 90° 

 c = 22.319(3) Å γ  = 90° 

Volume 2584.2(5) Å
3
 

Z 8 

Density (calculated) 1.276 Mg/m
3
 

Absorption coefficient 0.087 mm-1 

F(000) 1072 

Crystal color, morphology Colorless, Needle 

Crystal size 0.50 x 0.08 x 0.04 mm
3
 

Theta range for data collection 2.63 to 27.52° 

Index ranges 0 ≤ h ≤ 9,0 ≤ k ≤  19,0 ≤ l ≤ 29 

Reflections collected 7790 

Independent reflections 1458 [R(int) = 0.0779] 

Observed reflections 1475 

Completeness to theta = 27.52° 99.6%  

Absorption correction Multi-scan 

Max. and min. transmission 0.9965 and 0.9576 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 1686 / 0 / 166 

Goodness-of-fit on F2 1.042 

Final R indices [I>2sigma(I)] R1 = 0.0373, wR2 = 0.0958 
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X-ray Structure Information for 4.6 

 

Data collection 

 A crystal (approximate dimensions 0.45x 0.45 x 0.05mm
3
) was placed onto the tip of 

a 0.1 mm diameter glass capillary and mounted on a CCD area detector diffractometer for 

a data collection at 123(2) K.
276

 A preliminary set of cell constants was calculated from 

reflections harvested from four sets of 30 frames. These initial sets of frames were 

oriented such that orthogonal wedges of reciprocal space were surveyed. This produced 

initial orientation matrices determined from 109 reflections. The data collection was 

carried out using MoKα radiation (graphite monochromator) with a frame time of 90 

seconds and a detector distance of 4.8 cm. A randomly oriented region of reciprocal 

space was surveyed to the extent of one sphere and to a resolution of 0.84 Å. Four major 

sections of frames were collected with 0.30º steps in  at four different  settings and a 

detector position of -28º in 2θ. The intensity data were corrected for absorption and decay 

(SADABS).
273

 Final cell constants were calculated from 2976 strong reflections from the 

actual data collection after integration (SAINT).
228

 

 

Structure solution and refinement 

 The structure was solved using Bruker SHELXTL and refined using Bruker 

SHELXTL.
277

 The space group P212121 was determined based on systematic absences 

and intensity statistics.  A direct-methods solution was calculated which provided most 

non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles 

were performed which located the remaining non-hydrogen atoms. All non-hydrogen 

atoms were refined with anisotropic displacement parameters. All hydrogen atoms were 

placed in ideal positions and refined as riding atoms with relative isotropic displacement 
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parameters. The final full matrix least squares refinement converged to R1 = 0.0668 and 

wR2 = 0.1839 (F
2
, all data). 

 

Structure description 

 The structure is the one suggested. The chiralities of the following atoms are: C4-R, 

C5-R, C6-S, C7-S, and C10-R. While there is no question about the accuracy of the 

structure, the very thin specimen provided only data of moderate quality. The correct 

enantiomer was set by known chiral centers. The data were merged as though the data 

were centrosymmetric according to IUCr guidelines. The Flack X parameter is 

understood to be meaningless in this situation. 

 Data collection and structure solution were conducted at the X-Ray Crystallographic 

Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All 

calculations were performed using Pentium computers using the current SHELXTL suite 

of programs. Additional crystallographic information, including the CIF, can be found in 

the supporting information of the original publication.
275

 This structure has also been 

deposited to the CSD under the CCDC identifier: 1033013. 
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Thermal Ellipsoid Drawing of 4.6 
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Crystallographic information for 4.6 

Table 4.12.2.  Crystal data and structure refinement for 4.6. 

______________________________________________________________________________ 

Identification code  10067a 

Empirical formula  C15 H22 O3 

Formula weight  250.33 

Temperature  123(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 6.3639(19) Å α = 90° 

 b = 7.595(2) Å β  = 90° 

 c = 28.621(8) Å γ  = 90° 

Volume 1383.3(7) Å
3
 

Z 4 

Density (calculated) 1.202 Mg/m
3
 

Absorption coefficient 0.082 mm-1 

F(000) 544 

Crystal color, morphology Colorless, Plate 

Crystal size 0.45 x 0.45 x 0.05 mm
3
 

Theta range for data collection 1.42 to 25.07° 

Index ranges 0 ≤ h ≤ 7,0 ≤ k ≤  9,0 ≤ l ≤ 34 

Reflections collected 7790 

Independent reflections 1458 [R(int) = 0.0779] 

Observed reflections 1195 

Completeness to theta = 25.07° 99.7%  

Absorption correction Multi-scan 

Max. and min. transmission 0.9959 and 0.9640 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 1458 / 0 / 165 

Goodness-of-fit on F2 1.195 

Final R indices [I>2sigma(I)] R1 = 0.0668, wR2 = 0.1777 

R indices (all data) R1 = 0.0807, wR2 = 0.1839 

Absolute structure parameter -4(4) 

Largest diff. peak and hole 0.301 and -0.286 e.Å-3
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X-ray Structure Information for 4.7 

 

Data collection  

 A crystal (approximate dimensions 0.45x 0.40 x 0.05mm3) was placed onto the tip of 

a 0.1 mm diameter glass capillary and mounted on a CCD area detector diffractometer for 

a data collection at 123(2) K.
276

 A preliminary set of cell constants was calculated from 

reflections harvested from three sets of 20 frames. These initial sets of frames were 

oriented such that orthogonal wedges of reciprocal space were surveyed. This produced 

initial orientation matrices determined from 61 reflections.  The data collection was 

carried out using MoKα radiation (graphite monochromator) with a frame time of 60 

seconds and a detector distance of 4.8 cm. A randomly oriented region of reciprocal 

space was surveyed to the extent of one sphere and to a resolution of 0.77 Å. Four major 

sections of frames were collected with 0.30º steps in ω at four different ϕ settings and a 

detector position of -28º in 2θ. The intensity data were corrected for absorption and decay 

(SADABS).
273

 Final cell constants were calculated from 2944 strong reflections from the 

actual data collection after integration (SAINT).
278

 

 

Structure solution and refinement 

 The structure was solved using Bruker SHELXTL and refined using Bruker 

SHELXTL.
277

 The space group P21 was determined based on systematic absences and 

intensity statistics. A direct-methods solution was calculated which provided most non-

hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles 

were performed which located the remaining non-hydrogen atoms. All non-hydrogen 

atoms were refined with anisotropic displacement parameters. All hydrogen atoms were 
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placed in ideal positions and refined as riding atoms with relative isotropic displacement 

parameters. The final full matrix least squares refinement converged to R1 = 0.0496 and 

wR2 = 0.1335 (F2, all data). 

 

Structure description 

 The structure is the one suggested. There are two identical, unique molecules per 

asymmetric unit with Z’=2. The chirality is as follows: C4-R, C5-R, C6-S, and C7-S. The 

CheckCIF program made no assignment at C1 due to its geometry. There is only slight 

pseudo-symmetry between the two unique molecules resulting in a pseudo 21 relationship 

along an irrational axis in the monoclinic setting.  

 Data collection and structure solution were conducted at the X-Ray Crystallographic 

Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All 

calculations were performed using Pentium computers using the current SHELXTL suite 

of programs. Additional crystallographic information, including the CIF, can be found in 

the supporting information of the original publication.
275

 This structure has also been 

deposited to the CSD under the CCDC identifier: 1033014. 
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Thermal Ellipsoid Drawing of 4.7 
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Crystallographic information for 4.7 

Table 4.12.3.  Crystal data and structure refinement for 4.7. 

______________________________________________________________________________ 

Identification code  10191a 

Empirical formula  C16 H22 O3 

Formula weight  262.34 

Temperature  123(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 11.106(2) Å α  = 90° 

 b = 7.9397(16) Å β = 104.024(2)° 

 c = 16.668(3) Å γ = 90° 

Volume 1426.0(5) Å
3
 

Z 4 

Density (calculated) 1.222 Mg/m
3
 

Absorption coefficient 0.083 mm
-1

 

F(000) 568 

Crystal color, morphology Colorless, Plate 

Crystal size 0.45 x 0.40 x 0.05 mm
3
 

Theta range for data collection 1.26 to 27.47° 

Index ranges -14 ≤ h ≤ 13,0 ≤ k ≤ 10,0 ≤ l ≤ 21 

Reflections collected 12785 

Independent reflections 3465 [R(int) = 0.0291] 

Observed reflections 3001 

Completeness to theta = 27.47° 98.9%  

Absorption correction Multi-scan 

Max. and min. transmission 0.9959 and 0.9637 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 3465 / 1 / 347 

Goodness-of-fit on F2 1.046 

Final R indices [I>2sigma(I)] R1 = 0.0496, wR2 = 0.1256 

R indices (all data) R1 = 0.0599, wR2 = 0.1335 

Absolute structure parameter 0.1(15) 

Largest diff. peak and hole 0.621 and -0.368 e.Å
-3 
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Figure 4.12.1. Alignment of the x-ray structures of PTL (4.1, red)
255

 and 4.7 (blue) using UCSF Chimera. 

Root-mean-square deviation was 0.167 Å (all non-hydrogen atoms). The X-ray structures of 4.7 and PTL 

(4.1) were analyzed for root-mean-square deviation (RMSD) and graphics were rendered using UCSF 

Chimera.
279

 Thermal ellipsoids were drawn at the 50% probability level. RMSD was calculated for all non-

hydrogen atoms.   
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Chapter 5 

 

IDENTIFICATION OF PUTATIVE PARTHENOLIDE PROTEIN TARGETS IN 

ACUTE MYELOID LEUKEMIA CELLS 

 

 

This work was performed in collaboration with Dr. Dan Wang, Dr. Morito Kurata, 

Professor David A. Largaespada, and Professor Daniel A. Harki. Dan Wang completed 

the synthesis of parthenolide-based probes 5.3 and 5.4, growth inhibition assays in HL-60 

cells, and assisted with method development for pulldown of the putative targets of the 

parthenolide-based probes. The pulldown method reported in this chapter was based on a 

previously developed method published in Dan Wang’s M.S. thesis.
280

 Morito Kurata 

assisted with the CRISPR/Cas9 studies described in Section 5.6. 
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5.1 Introduction 

 

Leukemia stem cells (LSCs) have been characterized as a sub-population of cells 

within the tumor hierarchy that have quiescent, self-renewing, and drug resistant 

properties.
281

 Using fluorescence activated cell sorting (FACS) of cells labeled with 

fluorescent antibodies  it was discovered that normal hematopoietic stem cells and LSCs 

have a combination of cell surface markers that allowed for identification and enrichment 

from healthy bone marrow and bulk cancer cells.
242a, 282

 Clonal in vivo repopulation 

assays were developed to show that CD34
+
CD38

-
 cells could give rise to growth and 

maintenance of a new tumor when serially transplanted into non-obese diabetic/severe 

combined immunodeficiency disease (NOD/SCID) mice.
283

 Similar studies showed that 

CD34
+
CD38

+
 cells also have the ability to maintain tumor growth and stem cell 

properties in over half of the leukemic samples injected into mice.
284

 

The current standard of care for acute myeloid leukemia (AML) has not changed 

considerably in the past four decades and consists of taking two chemotherapeutic agents 

over the course of ten days: a DNA intercalator/topoisomerase inhibitor (daunorubicin or 

idarubicin) and a DNA synthesis inhibitor, cytarabine (Ara-c).
285

 In younger patients, 

bone marrow transplants can be successful in preventing relapse after chemotherapy due 

to the immunologic antileukemic graft-versus-leukemia effect,
286

 which is currently not a 

well understood process. However, the more common population that is diagnosed with 

AML (average age at diagnoses is 65) are typically not bone marrow transplant 

candidates due to their advanced age.
287

 The standard chemotherapeutics for AML 

therapy work well at eradicating the majority of the tumor and cause complete remission 

in most patients under the age of 60, but after remission is achieved, relapse typically 

occurs within 1-3 years.
288

 Relapse has been contributed to the LSC population that is 

able to avoid eradication by therapeutic treatments, which target rapidly dividing cells, by 

becoming dormant, gaining further mutations, and changing protein expression and 

pathway activation.
281a

 The ability of LSCs to avoid chemotherapy makes it difficult to 

design therapeutics that eliminate the LSC population, and currently no FDA approved 

drugs or clinical trial candidates have been shown to do so.
285
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Few small molecules exist that have been found to eradicate LSCs. This may be 

due to the lack of understanding of the cellular pathways and gene products that are 

required for cancer stem cell maintenance and survival. However, a sesquiterpene lactone 

natural product isolated from the plant Tanacetum parthenium, parthenolide (PTL, 5.1) 

and other similar analogues have been shown to eradicate LSCs while being non-

cytotoxic to normal bone marrow cells.
153, 241, 262b, 275

 PTL contains an α-methylene-γ-

lactone, which undergoes hetero-Michael addition with solvent exposed cysteines within 

a cell and is responsible for much of its biological activity. When the α-methylene is 

reduced to a methyl group, anti-proliferative activity is lost.
246b, 247b, 247e, 250a, 289

 Because 

α-methylene-γ-butyrolactones are very reactive towards cysteines, many targets have 

been identified related to its biological activity including IKKβ
250a

 and p65
290

 of the NF-

κB pathway, as well as proteins related to oxidative stress.
252i

 Yet, all of these protein 

targets identified have not been definitively linked to LSC survival and fitness. 

Furthermore, the PTL-based probe used in previous target identification studies includes 

a large linker attached to a biotin, which can change biological function and reactivity 

due to its size and hydrophobicity compared to the small parent compound.
291

  

The objective of this study is to synthesize a minimalistic PTL-based probe 

containing a terminal alkyne to avoid off-target effects from adding large molecules (e.g., 

dyes or biotin) to the parent compound that could affect its original biological activity. 

Conducting target identification studies in primary human AML cells containing a large 

population of CD34
+
 cells with the PTL-based probes will enable the identification of 

putative protein targets that are important to LSC survival. Identifying proteins 

responsible for LSC maintenance and survival would be beneficial toward the 

development of curative therapies for AML. 

PTL is an ideal molecule to identify protein targets associated with LSC survival 

because it is known to target LSCs while sparing healthy bone marrow cells. 

Additionally, PTL has an irreversible covalent mechanism of action, allowing for 

covalent attachment to protein targets without the need for the incorporation of a light 

activated group, such as a benzophenone or diazirine for covalent protein engagement.
292

 

Attachment of a terminal alkyne via a small carbon linker enables the ligation of biotin 
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for enrichment after covalent bonds to target proteins are made using the copper-

catalyzed [3+2] Huisgen reaction (click chemistry).
220

 The advent of click chemistry 

allows for the elimination of large, bulky linkers and the design of small molecules with 

little perturbation compared to the parent small molecule.  

To design a minimalistic PTL-based probe for target identification studies, we 

took a semi-synthetic approach starting from the natural product itself. The alkyne was 

attached to the allylic hydroxyl group of Melampomagnolide B (MelB, 5.2), which was 

synthesized by an allylic oxidation of PTL.
293

  We reduced the exocyclic methylene to a 

methyl group, which is responsible for PTL’s biological activity, to serve as a negative 

control for our target identification studies. This negative control can eliminate protein 

targets found that may have binding affinity to the non-functional probe but are not 

related to the parent compound’s biological activity. By designing a functional and non-

functional probe we sought to identify protein targets by dosing them to human primary 

AML cells and an LSC model cell line, TEX,
272

 that contain a large population of CD34
+
 

cells. After dosing our compounds we used monomeric avidin to enrich for proteins 

covalently modified by our probe, trypsin digested the enriched proteins, and used LC-

MS/MS to identify putative protein targets. We prioritized the putative protein targets 

based on the frequency of identification in six replicates of the functional and negative 

control samples. 

 

5.2 Semi-synthesis of PTL-based Functional and Non-functional Probes 

The parthenolide-based functional alkyne probe 5.3 was synthesized in two steps 

and the non-functional probe 5.4 in three steps (Scheme 5.2.1) starting from PTL. A 

known allylic oxidation procedure was used to produce MelB.
293

 After installing the 

allylic hydroxyl group handle, 4-pentynoic acid was coupled with MelB using EDCI in 

the presence of 4-DMAP to produce 5.3 in 82% yield. The non-functional alkyne probe 

5.4 was synthesized in a similar fashion. First, PTL was reduced with Pd/C and H2.
247e

 

The crude mixture from this reaction was taken on and subjected to the same allylic 

oxidation conditions as mentioned for the synthesis of MelB using selenium dioxide and 

tert-butylperoxide to produce 5.5 in 61% yield over two steps. Finally, 4-pentynoic acid 
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was coupled to 5.6 in the same fashion as 5.3 to obtain our desired non-functional alkyne 

probe 5.4 in 53% yield. 

 

Scheme 5.2.1. Synthesis of functional and non-functional PTL-based alkyne probes.
a
  

a
Reagents and Conditions: (a) Ref. 246e, crude product taken on to next step; (b) Ref. 292, 74% for MelB 

(5.2), 61% (2 steps from PTL) for 5.6; (c) (i) EDCI, 4-DMAP, DCM, 82% for 5.3, 53% for 5.4. 
 

 

5.3 Cytotoxicity of Functional and Non-Functional Alkyne Probes in HL-60  

As a model cancer cell line for AML we chose HL-60 to determine the cytotoxic 

effects of both synthesized alkyne probes (Figure 5.3.1). As expected, 5.3 maintains a 

low micromolar IC50 value of 7.5 ± 1.2 μM in a 48 h cytotoxicity assay compared to 5.4, 

which has minimal cytotoxic effects below 500 μM. PTL, MelB, and other published 

PTL analogues maintain low micromolar IC50 values similar to 5.3 in HL-60 cells 

demonstrating that the alkyne tag is not affecting the activity compared to the parent 

compound, PTL.
275
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Figure 5.3.1. 48 h cytotoxicity dose response curves for probes 5.3 and 5.4 in HL-60 cells as a model AML 

cell line. 5.3 has similar activity to PTL, MelB, and other PTL-based analogues.
275

 Probe 5.4, which does 

not contain a Michael acceptor, is minimally cytotoxic below 500 μM. IC50 values are the average of n ≥ 3 

replicates ± S.D. Solid line = curve fit for 5.3, dashed line = curve fit for 5.4. 

 

5.4 Flow Cytometry Analysis of Primary AML Samples  

Three separate primary human AML samples were chosen from the Leukemia 

MDS Tissue Bank at the University of Minnesota. Leukemic cells were isolated from 

each patient at the time of diagnosis (before treatment) and maintained in liquid nitrogen. 

FACS was used to determine the expression levels of the cell surface markers CD34 and 

CD38 for each patient sample (Figure 5.4.1A). Additionally, the CD34 and CD38 cell 

population in TEX cells was determined for comparison to the primary AML cells 

(Figure 5.4.1B). Cells with high expression levels of CD34 have previously been 

identified as an indication of LSCs;
283a, 284

 therefore, it is desirable to have a high CD34 

population in the primary human leukemia samples for the identification of PTL probe 

protein targets that could be related to LSC survival. It has also been shown that cells 

with low CD38 expression levels also have LSC properties.
283a

 Prior to the pulldown 

experiments, the primary human leukemia samples were tested for their CD34 and CD38 

expression levels to ensure that the samples contained an LSC population as a model 

system for identification of putative LSC-related protein targets. 

The sample from Patient 1 contained a 57% CD34
+ 

cell population but only 6% 

of those were CD38
-
. Patient 2 had a 52% CD34

+
 population and a 47% CD38

-
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population. Patient 3 contained the largest CD34
+
 population at 88% but only 8% of 

those were CD38
-
. All three patients contained a majority of a CD34

+
 cell population 

while only Patient 2 had a substantial CD34
+
CD38

-
 population. These results indicated 

that all three patient samples contain high levels of cells known to possibly confer LSCs 

for identification of PTL probe-protein targets that could be related to LSC survival. 

Three different patients were used for the target identification experiments to more 

broadly cover the proteome landscape as protein expression of leukemic cells in 

individual patients can be vastly different.
294

 

 

 
Figure 5.4.1. A. Human primary AML samples were characterized using Brilliant Violet 421 anti-CD34 

and Allophycocyanin (APC) anti-CD38 cell surface markers and analyzed with FACS. All patients used in 

the pulldown studies had >50% CD34
+
 population while Patient 2 had >46 % CD34

+
CD38

-
 population. 

Samples from Patient 1 and Patient 3 contained 6-8 % CD34
+
CD38

-
 population.  B. TEX cells have been 

used as a model system for LSCs and were characterized in the same manner as primary human AML 

samples. 86% of TEX
272

 cells have high expression of CD34 and 88% of cells have high expression of 

CD38, comparable to the three AML samples. 
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 The TEX cell line is an engineered leukemia cell line derived from lineage 

depleted (lin
-
) human cord blood cells transduced with the fusion gene TLS-ERG that 

mimic the hierarchical growth properties of human primary AML cells.
272

 TEX cells 

were determined to have a large CD34
+
 cell population (86%), similar to the three 

primary human AML samples tested (Figure 5.4.1B). A high CD38
+
 population was also 

found in the TEX cell line. Altogether, the TEX cells display similar CD34 and CD38 

populations compared to the three primary human AML samples tested. Primary human 

AML cells typically are not able to be cultured for long periods of time, are limited in 

samples, and are highly variable between patients.
294-295

 As an alternative to primary 

human samples, it would be desirable to have a LSC cancer cell line model that would 

contain the same putative LSC target proteins as primary human cells for follow-up 

studies. Since the primary human AML cells and TEX cells have similar CD34 and 

CD38 expression levels and the TEX cell line has been demonstrated to have LSC 

properties, a pulldown experiment was also conducted in TEX cells for comparison to the 

primary human AML samples. 

 

5.5 Pulldown in Primary AML Cells.  

Four pulldown experiments were conducted in three different human primary 

AML samples (two pulldowns were done with two separate samples from Patient 2). 

Two additional pulldown experiments were done in TEX cells for comparison to the 

human primary AML samples. The functional probe 5.3 or the non-functional probe 5.4 

was dosed to primary AML or TEX cells for two hours. The cells were lysed and then 

biotin-azide was attached to the probe-protein adducts using a copper-mediated Huisgen 

[3+2] cycloaddition (click chemistry).
220, 296

 The biotinylated probe-protein adducts were 

enriched using a monomeric avidin column. The enriched samples were then digested 

with trypsin and processed for proteomic analysis. All samples were analyzed with LC-

MS/MS and putative protein targets were identified from peptide fragmentation data at 

the Taplin Mass Spectrometry Facility, Harvard School of Medicine (contracted work). 

 The overall number of proteins identified in each sample and patient information 

is in Table 5.5.1. In each case, the numbers of unique proteins identified were higher in 
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the functional samples versus the non-functional samples. The high number of protein 

hits from the non-functional sample can be attributed to non-specific binding of protein to 

the monomeric avidin column during probe-protein enrichment or binding to the non-

functional probe 5.4.  The functional protein targets range was 776-1721 while the non-

functional protein targets range was 94-1658. The number of identified protein targets is 

comparable between the primary human AML samples and TEX cells. 

Table 5.5.1. Primary AML samples from three patients and TEX cells were used for pulldown and 

identification of target proteins using probes 5.3 (functional) and 5.4 (non-functional). All primary human 

samples were collected from patients at the time of diagnosis prior to therapy. Two separate samples were 

completed for Patient 2 for a total of four independent pulldown experiments. The total number of proteins 

identified by at least two peptides is displayed for each replicate. 

 

Patient 
Functional (5.3) 

proteins identified 

Non-functional (5.4) 

proteins identified 
Cytogenetics Blast (%) 

1 1668 1658 Normal 87 

2-1 1609 1577 
Del(11) 88 

2-2 807 569 

3 776 94 Normal 60 

TEX 1721 485 - - 

TEX 1317 128 - - 

 

The goal of this pulldown study is to identify putative protein targets in AML 

cells that could be responsible for maintenance and survival of LSCs. Given the large 

number of putative targets identified in the functional probe samples, identified protein 

targets were categorized based on the frequency of the protein hit occurring in the 

functional samples versus the non-functional, negative control samples. Prioritization was 

given to samples that were not identified in any non-functional samples but identified in 

multiple functional samples. For instance, one high priority protein, bifunctional 

aminoacyl-tRNA synthetase (gene name: SYEP), was identified in all four functional 

samples and none of the non-functional negative controls. The number of proteins 

identified in each category can be seen in Table 5.5.2.  

There were an additional ten protein targets identified in three of the four 

functional samples and not found in any of the non-functional samples. Other categories 

that include proteins that were also found in at least one non-functional sample have > 20 
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proteins for the primary human AML samples. Between the two pulldowns conducted in 

TEX cells, 176 protein targets were identified in both functional samples but not the non-

functional samples. Notably, 21 proteins were identified in at least three functional 

primary human AML samples and one of the functional TEX samples, while two proteins 

were found in three functional primary human AML samples and both functional TEX 

samples. 

Table 5.5.2. Identified protein targets were prioritized by comparing the proteins found in the functional 

pulldown with 5.3 to the pulldown with the negative control compound 5.4. Protein targets identified in 3-4 

functional pulldowns but not in any negative control pulldowns were considered to be high priority targets 

while proteins found in any negative control samples were low priority. 

 

Primary AML 
Number of 

proteins 

Identified 

 
TEX 

Number of 

proteins 

Identified 
4 Functional/ 0 Non-Functional 1  2 Functional/0 Non-Functional 176 

4 Functional/ 2 Non-Functional 25  2 Functional/ 1 Non-Functional 2 

4 Functional/ 3 Non-Functional 62  1 Functional/ 0 Non-Functional 184 

4 Functional/ 4 Non-Functional 25 
 Targets found in primary AML 

and TEX 

Number of 

proteins 

3 Functional/ 0 Non-Functional 10  3 Primary AML/1 TEX 21 

3 Functional/ 1 Non-Functional 51  3 Primary AML/2 TEX 2 

3 Functional/ 2 Non-Functional 222    

3 Functional/ 3 Non-Functional 122    

2 Functional/ 0 Non-Functional 60    

 

 

 The eleven high priority protein targets identified in at least three functional AML 

samples but not in any of the non-functional samples are listed with the associated gene 

name and function in Table 5.5.3. The target genes were identified with a minimum of 

three unique peptides with a Z-score greater than 2.0, which considers the quality of the 

fragmentation data for each identified peptide. All of the high priority proteins contain at 

least one cysteine according to sequence data found in the Uniprot database. However, 

there is no information correlating covalent cysteine modification to inhibitory effects for 
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any of the 11 proteins. Many of the identified protein targets are not well characterized. 

None of the identified protein targets have been related to maintenance of LSCs to date, 

but several protein targets have been suggested to be important in cancer cell regulation. 

Table 5.5.3. List of identified protein targets that were found in 3-4 functional samples and not any non-

functional, negative control samples. Each gene name is associated with a function, Z-score, and unique 

peptides found. 
a
Indicates protein identified in both functional TEX samples. 

 

Gene Name Function 
Average 

Z-score 

# of unique 

peptides 

SYEP glutamate and proline  tRNA transferase 2.74 4 

DDX46 ATP-dependent RNA helicase (probable) 2.77 3 

DHB11 Hydroxysteroid (17-β) dehydrogenase 11 3.05 6 

F120A
a
 

Fam120A, Oxidative Stress-associated Src activator 

(OSSA) 
3.01 4 

FAS Fatty acid synthase 3.21 3 

HNRL1 
Heterogeneous Nuclear Ribonucleoprotein U-like 1, basic 

transcriptional regulator, mRNA processing 
3.12 3 

MCM6
a
 

Minichromosome maintenance complex component 6, part 

of MCM complex for helicase activity 
2.60 3 

MTCH2 Mitochondria Carrier 2 2.58 3 

MYADM Myeloid-associated differentiation Marker 3.69 3 

PSMD6 Regulatory proteasome subunit 2.85 4 

SMHD1 Scaffolding protein for methylation of CpG islands of DNA 2.34 3 

 

 Several proteins that were identified are not likely to be good target proteins for 

inhibition of LSC survival, tumorigenesis, or cancer progression. The FAS gene encodes 

for fatty acid synthase, which is involved in catabolism of fatty acids.
297

 The HNRL1 

gene encodes for heterogeneous nuclear ribonucleoprotein U-like protein 1, which is 

involved in general gene regulation and processing of mRNA.
298

  It was originally 

identified as a target of the early adenovirus E1B-55 kDa protein during infection.
299

 The 

MCM6 gene produces the protein minichromosome maintenance complex component 6, 

which is a part of the helicase complex during replicative DNA transcription.
300

 The 

MTCH2 gene encodes for mitochondrial carrier homolog 2, which is a mitochondria 

membrane-associated protein.
301

 This protein has been found to positively affect 
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apoptosis by recruiting the pro-apoptotic regulator BH3-interacting domain (BID) death 

agonist.
302

 MTCH2 has also been implicated in maintaining the normal hematopoietic 

stem cell population.
303

 The gene SMHD1 encodes for structural maintenance of 

chromosomes flexible hinge domain-containing protein 1. This protein is involved in 

silencing of the X chromosome in female development, and serves as a scaffolding 

protein for DNA methyl transferases (DMTs).
304

 The gene DDX46 encodes for ATP-

dependent RNA helicase, which is involved in general processing of mRNA.
305

 Based on 

the known functions of these six proteins it is unlikely that they are involved in LSC 

survival or a driver of leukemia progression. 

 Shifting focus to the remaining five proteins, several have interesting functions. 

PSMD6 encodes for a regulatory subunit of the 26s proteasome, which is involved in 

processing and degradation of proteins within cells. Many inhibitors targeting the 26s 

proteasome have been discovered and some have been FDA approved for treatment of 

multiple myeloma (MM).
306

 Targeting the 26s proteasome has been found to be most 

efficacious for treatment of MM due to sensitivity to antigen processing.
307

 Patients with 

MM treated with a proteasome inhibitor eventually leads to drug resistance and relapse of 

the disease.
308

 This suggests that targeting the proteasome is not likely to be linked to 

cancer stem cell survival. 

 The SYEP gene encodes for a glutamate and proline tRNA transferase (glutamyl-

prolyl-tRNA-synthetase, EPRS).
309

 This enzyme is part of the multisynthetase complex 

responsible for attaching amino acids to tRNA for protein synthesis. EPRS also has a 

separate function involving repressing the translation of mRNA involved in the pro-

inflammatory response.
310

 Interferon-γ (IFN-γ) has been shown to stimulate the 

dissociation of EPRS from the multisynthetase complex to form an IFN-γ-activated 

inhibitor of translation (GAIT) complex.
311

 The GAIT complex is responsible for 

inhibiting the translation of inflammatory response genes.
312

 The negative regulatory 

effect on the inflammation process makes this protein undesirable as an anti-cancer 

target. 

The MYADM gene expresses myeloid-associated differentiation marker. As the 

name suggests, this protein is upregulated during myeloid-associated differentiation of 
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hematopoietic progenitor cells.
313

 Although this protein may serve as a useful marker for 

differentiation in normal and leukemic cells, targeting this protein would not be 

beneficial in eradicating LSCs. The DHB11 gene encodes for estradiol 17-β-

dehydrogenase 11, which is involved in androgen metabolism.
314

 Its role in LSC survival 

is currently unclear. 

The F120A gene encodes for constitutive coactivator or PPAR-γ-like protein 1, 

also known as oxidative stress-associate Src activation protein (OSSA). This protein was 

found in three of the four functional samples from primary human AML cells and both 

functional TEX samples, but not in any non-functional samples. The OSSA protein was 

first identified as an RNA binding protein and later was shown to play an important role 

in regulation of oxidative stress.
315

 It has been demonstrated that OSSA binds directly to 

Src family kinases upon an increase in oxidative stress.
316

 Activation of kinases including 

phosphatidylinositol-3 kinase (PI3K) activates cancer cell survival pathways.  Regulation 

of oxidative stress has been shown to be a key regulator of LSC survival and 

maintenance.
243b, 252d

 Furthermore, it has been demonstrated that PTL and related 

analogues induce oxidative stress intracellularly.
275, 317

 The role of OSSA in the 

regulation of oxidative stress and cancer cell survival and the known effects of PTL and 

related compounds make OSSA an interesting protein target for further validation studies. 

 

5.6 Progress toward Validation of F120A/OSSA as a Key Regulator of LSC Survival 

Attempts to knockdown the F120A gene in TEX cells have been unsuccessful 

thus far. Transfection of plasmids containing the CRISPR/Cas9 system with several 

different guide-RNAs using electroporation or transfection reagents has not been able to 

modify the F120A gene.
318

 Retroviral transduction of plasmids containing CRIPSR/Cas9 

was also unsuccessful.
272, 319

 The inability to transfect plasmids into TEX cells is most 

likely because of their small size and sensitivity to transfection reagents. 

Due to the difficulty in transducing plasmids into TEX cells, attention was turned 

to HEK293 cells because of their propensity to accept foreign plasmids. Knockout of the 

F120A gene in HEK293 cells was demonstrated using the CRISPR/Cas9 system (Figure 
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5.6.1).  Two guide-RNA constructs were chosen containing a PAM (Protospacer 

Adjacent Motif) sequence for directed gene modification (Figure 5.6.1A). Both plasmids 

were transduced into HEK293 cells and cells containing plasmid were selected with 

puromycin. After selection for cells containing the plasmid, doxycycline was used to 

induce the CRISPR/Cas9 system. The cells were tested for F120A protein via Western 

blot. The F120A gene was successfully knocked out in HEK293 cells by Western blotting 

for F120A compared to the parental control and a β-actin loading control (Figure 

5.6.1B). Both guide-RNA sequences accomplished the knockout with and without 

doxycycline induction. Gene modification can occur without doxycyclin induction 

because of a baseline expression of the Cas9 protein with the guide-RNA sequence in 

some cell lines.  

Next, a surveyor nuclease assay was conducted to validate that the CRISPR/Cas9 

system made modifications to the F120A gene (Figure 5.6.1C).
320

 The surveyor nuclease 

assay uses an endonuclease derived from celery (Cel-I) that recognizes single base 

mismatches, small insertions, or deletions within DNA.
321

 The CRISPR/Cas9 system 

makes modifications to the gene of interest that result in base pair mismatches or 

deletions that can be detected by the Cel-I endonuclease. After detection of the 

mismatched base pairs, the Cel-I enzyme cleaves the DNA. The DNA fragments resulting 

from the cleavage by Cel-I can be compared to the parent gene DNA to detect mutation 

sites. Mutations were detected in exon 2 of the F120A gene where the guide-RNAs were 

designed to modify the gene compared to the parental HEK293 cellular DNA (Figure 

5.6.1C). The F120A gene was spliced in one site generating two DNA strands (indicated 

by arrows) compared to the single band corresponding to the unmodified F120A gene 

from parental HEK293 cells (identified by asterisks). This suggests both CRISPR/Cas9 

systems modified the F120A gene, agreeing with the Western blot results. 
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Figure 5.6.1. A. The sequences for both guide-RNAs are displayed with the PAM sequence highlighted in 

red. B. F120A was successfully knocked out in HEK293 using doxycycline inducible CRISPR/Cas9 

plasmids containing two separate guide-RNA sequences. The knockout occurred successfully with and 

without doxycycline as seen in the Western blot compared to the parental HEK293 cell line.  C. The 

surveyor nuclease assay shows that the CRISPR/Cas9 system was successfully expressed and made 

modifications to the cellular DNA within the F120A gene. The Cel-I endonuclease cleaved the F120A gene 

at the site of modification generating two strands of DNA compared to the single strand of DNA from the 

parental HEK293 cells. *Indicates the full length DNA of the unmodified F120A gene. Arrows indicate 

two DNA strands generated after cleavage by Cel-I. 

 

5.7 Additional Identified Protein Targets from Pulldown Studies 

 Other proteins identified and categorized from the pulldown studies in primary 

human AML cells and TEX cells are listed below. Each identified putative target is 

categorized based on the frequency of identification in the functional and non-functional 

samples. These proteins may be relevant targets for LSC survival and maintenance but 

require further validation as potential PTL targets. 

Proteins founds in 4 functional and 2 non-functional samples: APEX1_HUMAN, 

FKBP5_HUMAN, FUMH_HUMAN, H2B1B_HUMAN, HNRPF_HUMAN, 

HNRPL_HUMAN, HNRPQ_HUMAN, ILEU_HUMAN, IMMT_HUMAN, 

LMNA_HUMAN, MOES_HUMAN, NONO_HUMAN, NOP56_HUMAN, 

PERI_HUMAN, PGK1_HUMAN, PRDX6_HUMAN, PRKDC_HUMAN, 

PROF1_HUMAN, RL3_HUMAN, RS15A_HUMAN, RS3A_HUMAN, RS6_HUMAN, 

SF3B1_HUMAN, TERA_HUMAN, XRCC5_HUMAN 
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Proteins found in 4 functional and 3 non-functional samples: 1433Z_HUMAN, 

LDHA_HUMAN, RS14_HUMAN, ANXA1_HUMAN, LDHB_HUMAN, 

RS20_HUMAN, ATPA_HUMAN, LMNB1_HUMAN, RS3_HUMAN, 

CAH2_HUMAN, LPPRC_HUMAN, RSMB_HUMAN, COF1_HUMAN, 

LRRF1_HUMAN, SMD3_HUMAN, COR1A_HUMAN, MATR3_HUMAN, 

SRSF3_HUMAN, EFTU_HUMAN, MDHM_HUMAN, TAGL2_HUMAN, 

ETFA_HUMAN, MYH9_HUMAN, TKT_HUMAN, FLNA_HUMAN, 

MYL6_HUMAN, TOP2B_HUMAN, GLU2B_HUMAN, NUCL_HUMA, 

TPIS_HUMAN, GRP75_HUMAN, PCBP1_HUMAN, UGGG1_HUMAN, 

GSTP1_HUMAN, PDIA1_HUMAN, VIME_HUMAN, H2B1C_HUMAN, 

PDIA3_HUMAN, HBA_HUMAN, PERM_HUMAN, HBB_HUMAN, PPIA_HUMAN, 

HNRCL_HUMAN, PPIB_HUMAN, HNRH1_HUMAN, PRDX1_HUMAN, 

HNRPC_HUMAN, PRDX5_HUMAN,  HNRPM_HUMAN, PTBP1_HUMAN, 

HNRPU_HUMAN, RA1L2_HUMAN, HS90A_HUMAN, RAB10_HUMAN, 

IDHP_HUMAN, RL9_HUMAN, IF5A1_HUMAN, ROA2_HUMAN, KPYM_HUMAN, 

ROA3_HUMAN, LBR_HUMAN, RPN1_HUMAN  

Proteins found in 4 functional and 4 non-functional samples: ACTA_HUMAN, 

ACTB_HUMAN, AHNK_HUMAN, ATPB_HUMAN, EF1A1_HUMAN, 

ENOA_HUMAN, FABP5_HUMAN, G3P_HUMAN, GDIR2_HUMAN, 

GRP78_HUMAN, H2A1A_HUMAN, H31T_HUMAN, H4_HUMAN, 

HNRPK_HUMAN, HS71L_HUMAN, HSP7C_HUMAN, ODO2_HUMAN, 

PRDX2_HUMAN, PRDX3_HUMAN, RL40_HUMAN, RS7_HUMAN, 

SFPQ_HUMAN, SRSF1_HUMAN, TBA1A_HUMAN,THIO_HUMAN 

Proteins found in 3 functional and 1 non-functional samples: ACSL1_HUMAN, 

ADT2_HUMAN, AL9A1_HUMAN, ANM1_HUMAN, AP1G1_HUMAN, 

ARP3_HUMAN, AT2A3_HUMAN, CAB39_HUMAN, COPG1_HUMAN, 

CRKL_HUMAN, CSK_HUMAN, DCPS_HUMAN, DDB1_HUMAN, 

DDX21_HUMAN, DYHC1_HUMAN, EIF3L_HUMAN, HACD3_HUMAN, 

HSP76_HUMAN, HXK1_HUMAN, KCAB2_HUMAN, LKHA4_HUMAN, 

M2OM_HUMAN, MAOM_HUMAN, MAP4_HUMAN, MBOA7_HUMAN, 
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MET7A_HUMAN, MYH11_HUMAN, MYO1G_HUMAN, PP1A_HUMAN, 

PSB6_HUMAN, PSMD3_HUMAN, QOR_HUMAN, RAB3D_HUMAN, 

RB33B_HUMAN, RBM39_HUMAN, RECQ1_HUMAN, RHG01_HUMAN, 

RL18A_HUMAN, RS21_HUMAN, SC11A_HUMAN, SERA_HUMAN, 

SMCA2_HUMAN, STT3A_HUMAN, SYDC_HUMAN, SYG_HUMAN, 

SYTC_HUMAN, THAS_HUMAN, UN13D_HUMAN, USO1_HUMAN, 

XPO2_HUMAN, XPP1_HUMAN 

Proteins found in 3 functional and 2 non-functional samples: 1433E_HUMAN, 

LEG1_HUMAN, 1433F_HUMAN, LMAN2_HUMAN, 2AAA_HUMAN, 

MCM5_HUMAN, 6PGD_HUMAN, ML12A_HUMAN, AATM_HUMAN, 

MNDA_HUMAN, ACADM_HUMAN, MPCP_HUMAN, ACADV_HUMAN, 

MYH10_HUMAN, ACLY_HUMAN, NB5R3_HUMAN, ACPH_HUMAN, 

NOP58_HUMAN, ACTN1_HUMAN, NPM_HUMAN, ACTN4_HUMAN, 

NUP50_HUMAN, ADDA_HUMAN, OST48_HUMAN, ADDG_HUMAN, 

PA2G4_HUMAN, ADT1_HUMAN, PDC6I_HUMAN, AIFM1_HUMAN, 

PLEC_HUMAN, ALDOC_HUMAN, PM14_HUMAN, AMPB_HUMAN, 

PNPH_HUMAN, ANXA4_HUMAN, PO210_HUMAN, ANXA5_HUMAN, 

PPAC_HUMAN, ANXA6_HUMAN, PRAF3_HUMAN, AP1B1_HUMAN, 

PRP19_HUMAN, APMAP_HUMAN, PRP8_HUMAN, APT_HUMAN, 

PRS10_HUMAN, ARC1B_HUMAN, PSA1_HUMAN, ARF6_HUMAN, 

PSA3_HUMAN, ARK72_HUMAN, PSA4_HUMAN, ARL8B_HUMAN, 

PSA5_HUMAN, ARP2_HUMAN, PSA7_HUMAN, ARPC2_HUMAN, 

PSA7L_HUMAN, ARPC3_HUMAN, PSB3_HUMAN, ARPC4_HUMAN, 

PSB4_HUMAN, ASC_HUMAN, PSD11_HUMAN, ATG3_HUMAN, PSIP1_HUMAN, 

ATIF1_HUMAN, PTN6_HUMAN, B3AT_HUMAN, PTPRC_HUMAN, 

ATG3_HUMAN, PYGB_HUMAN, ATIF1_HUMAN, PYGL_HUMAN, 

B3AT_HUMAN, QCR1_HUMAN, BUB3_HUMAN, QCR7_HUMAN, 

C1TC_HUMAN, RAB14_HUMAN, CAN1_HUMAN, RAB2A_HUMAN, 

CAND1_HUMAN, RALY_HUMAN, CAP1_HUMAN, RINI_HUMAN, 

CAPG_HUMAN, RL15_HUMAN, CAPZB_HUMAN, RL22_HUMAN, 

CATA_HUMAN, RL23_HUMAN, CAZA1_HUMAN, RL7_HUMAN, 
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CBX3_HUMAN, RLA0_HUMAN, CH60_HUMAN, RLA0L_HUMAN, 

CISY_HUMAN, ROA1_HUMAN, CLH1_HUMAN, RPN2_HUMAN, 

CLIC1_HUMAN, RS15A_HUMAN, COPA_HUMAN, RS2_HUMAN, 

COPB_HUMAN, RS28_HUMAN, COPB2_HUMAN, RS8_HUMAN, COPD_HUMAN, 

RS9_HUMAN, COR1C_HUMAN, RTCB_HUMAN, COTL1_HUMAN, 

RUVB2_HUMAN, COX2_HUMAN,  S10A4_HUMAN, CPSF5_HUMAN, 

SAHH_HUMAN, CPT1A_HUMAN, SAMH1_HUMAN, CPZIP_HUMAN, 

SAR1A_HUMAN, CREG1_HUMAN, SC22B_HUMAN, CYTB_HUMAN, 

SC31A_HUMAN, DBNL_HUMAN, SEPT7_HUMAN, DBPA_HUMAN, 

SEPT9_HUMAN, DCXR_HUMAN, SF3B3_HUMAN, DDX17_HUMAN, 

SND1_HUMAN, DDX3X_HUMAN, SP16H_HUMAN, DECR_HUMAN, 

SYIC_HUMAN, DHX15_HUMAN, SYWC_HUMAN, DHX9_HUMAN, 

TBB3_HUMAN, DOCK2_HUMAN, TCPA_HUMAN, DPYL2_HUMAN, 

TCPB_HUMAN, DX39A_HUMAN, TCPD_HUMAN, DX39B_HUMAN, 

TCPE_HUMAN, ECH1_HUMAN, TCPG_HUMAN, ECP_HUMAN, TCPH_HUMAN, 

EIF3A_HUMAN, TCPQ_HUMAN, ENPL_HUMAN, TLN1_HUMAN, 

ERLN1_HUMAN, TMEDA_HUMAN, ESTD_HUMAN, TOP2A_HUMAN, 

ESYT1_HUMAN, TPP1_HUMAN, ESYT2_HUMAN, TRA2B_HUMAN, 

EZRI_HUMAN, TRAP1_HUMAN, FLNB_HUMAN, U2AF2_HUMAN, 

G6PI_HUMAN, U520_HUMAN, GBB1_HUMAN , U5S1_HUMAN, GBLP_HUMAN, 

UB2L3_HUMAN, GDIA_HUMAN, UBA1_HUMAN, GDIB_HUMAN, 

UGPA_HUMAN, GELS_HUMAN, URP2_HUMAN, GLYM_HUMAN, 

VAPA_HUMAN, GNAI1_HUMAN, VATA_HUMAN, GNAI2_HUMAN, 

VATB2_HUMAN, GSHR_HUMAN, VDAC1_HUMAN, GSTK1_HUMAN, 

VDAC2_HUMAN, H90B2_HUMAN, VDAC3_HUMAN, H90B3_HUMAN, 

VPS35_HUMAN, HCDH_HUMAN , WDR1_HUMAN, HCLS1_HUMAN, 

XPO1_HUMAN, HMGA1_HUMAN, XRCC6_HUMAN, HNRPR_HUMAN, 

HPRT_HUMAN, HS90B_HUMAN, HSP71_HUMAN, HSP72_HUMAN, 

HSP74_HUMAN, HYOU1_HUMAN, I2BP2_HUMAN, IDHC_HUMAN, 

IF4A1_HUMAN, IF4A3_HUMAN, IQGA1_HUMAN, IQGA2_HUMAN, 

K6PL_HUMAN, K6PP_HUMAN, KAD2_HUMAN, LA_HUMAN, LAP2B_HUMAN  
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Proteins found in 3 functional and 3 non-functional samples: 1433T_HUMAN, 

ACINU_HUMAN, AINX_HUMAN, ALDOA_HUMAN, ARF1_HUMAN, 

ASAH1_HUMAN, AT5F1_HUMAN, ATP5I_HUMAN, ATPA_HUMAN, 

AT5F1_HUMAN, ATP5I_HUMAN, C1QBP_HUMAN, CAH1_HUMAN, 

CALR_HUMAN, CALX_HUMAN, CATC_HUMAN, CHM4B_HUMAN, 

COX5B_HUMAN, CPNS1_HUMAN, DHB4_HUMAN, DHE3_HUMAN, 

DKC1_HUMAN, DLDH_HUMAN, ECHA_HUMAN, ECHB_HUMAN, 

ECHM_HUMAN, EF1G_HUMAN, EF2_HUMAN, ELAV1_HUMAN, 

ERP29_HUMAN, F13A_HUMAN, FUBP1_HUMAN, FUBP2_HUMAN, 

GANAB_HUMAN, GGH_HUMAN, H11_HUMAN, H12_HUMAN, H1X_HUMAN, 

H2A1B_HUMAN, H2AY_HUMAN, HBD_HUMAN, HCD2_HUMAN, 

HCFC1_HUMAN, HDGF_HUMAN, HGB1A_HUMAN, HMGB1_HUMAN, 

HMGB2_HUMAN, HNRDL_HUMAN, HNRH3_HUMAN, HNRL1_HUMAN, 

HNRPD_HUMAN, HP1B3_HUMAN, ILF2_HUMAN, ILF3_HUMAN, 

IMB1_HUMAN, K1967_HUMAN, LAP2A_HUMAN, LASP1_HUMAN, 

LYSC_HUMAN, MTPN_HUMAN, NDUS3_HUMAN, NNTM_HUMAN, 

NUMA1_HUMAN, ODPB_HUMAN, PAIRB_HUMAN, PARK7_HUMAN, 

PARP1_HUMAN, PCBP2_HUMAN, PDIA4_HUMAN, PDIA6_HUMAN, 

PEBP1_HUMAN, PGAM1_HUMAN, PHB_HUMAN, PHB2_HUMAN, 

PLSL_HUMAN, PSA2_HUMAN, PSA6_HUMAN, QCR2_HUMAN, 

RAB7A_HUMAN, RAC2_HUMAN, RAP1A_HUMAN, RB11A_HUMAN, 

RBMX_HUMAN, RL11_HUMAN, RL13_HUMAN, RL23A_HUMAN, 

RL27_HUMAN, RL31_HUMAN, RL35A_HUMAN, RL38_HUMAN, RL7A_HUMAN, 

RL8_HUMAN, ROA0_HUMAN, RS13_HUMAN, RS19_HUMAN, RS25_HUMAN, 

RS4X_HUMAN, RSSA_HUMAN, RTN4_HUMAN, RUVB1_HUMAN, 

SARNP_HUMAN, SARNP_HUMAN, SARNP_HUMAN, SEPT2_HUMAN, 

SF01_HUMAN, SF3A1_HUMAN, SMD2_HUMAN, SSBP_HUMAN, 

SSRD_HUMAN, TADBP_HUMAN, TALDO_HUMAN, TBB1_HUMAN, 

TBB4A_HUMAN, TBB5_HUMAN, TCP4_HUMAN, TCPZ_HUMAN, 

THOC4_HUMAN, TIF1B_HUMAN, TR150_HUMAN, UCRIL_HUMAN 
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Proteins found in 2 functional TEX and 2-3 functional AML samples: 

MCM6_HUMAN, FAS_HUMAN, F120A_HUMAN, TEBP_HUMAN, 

TCTP_HUMAN, SHIP1_HUMAN, S10AB_HUMAN, RAD50_HUMAN, 

PRS6B_HUMAN, OXSR1_HUMAN, MAVS_HUMAN, IF2P_HUMAN, 

HS105_HUMAN, HN1L_HUMAN, FUBP3_HUMAN, DOK3_HUMAN, 

D6RBZ0_HUMAN, CYC_HUMAN, CHCH3_HUMAN, ARI1A_HUMAN, 

AP3D1_HUMAN 

Proteins found in 2 functional and no non-functional TEX samples: 

1433B_HUMAN, AT5EL_HUMAN, CSTFT_HUMAN, ETFB_HUMAN, 

1433E_HUMAN, AT5F1_HUMAN, CTF8A_HUMAN, EVL_HUMAN, 

1433G_HUMAN, ATF1_HUMAN, CWC15_HUMAN, EWS_HUMAN, 

1433T_HUMAN, ATOX1_HUMAN, CX7A2_HUMAN, F10A1_HUMAN, 

1433Z_HUMAN, ATP5H_HUMAN, CYBP_HUMAN, F136A_HUMAN, 

2B13_HUMAN, B4DY08_HUMAN, CYC_HUMAN, F192A_HUMAN, 

2B18_HUMAN, BACH_HUMAN, D6RBZ0_HUMAN, F195B_HUMAN, 

2B1B_HUMAN, BAF_HUMAN, D6RI10_HUMAN, F207A_HUMAN, 

3BP1_HUMAN, BAP18_HUMAN, DAZP1_HUMAN, FA32A_HUMAN, 

4F2_HUMAN, BASI_HUMAN, DBNL_HUMAN, FCL_HUMAN, 6PGL_HUMAN, 

BCCIP_HUMAN, DC1L1_HUMAN, FEN1_HUMAN, AAAT_HUMAN, 

BCLF1_HUMAN, DCTN1_HUMAN, FIS1_HUMAN, AAMDC_HUMAN, 

BLVRB_HUMAN, DCTN2_HUMAN, FKB1A_HUMAN, AATM_HUMAN, 

BOLA1_HUMAN, DD19A_HUMAN, FKBP4_HUMAN, ACO13_HUMAN, 

BRD4_HUMAN,, DDX1_HUMAN, FSCN1_HUMAN, ACON_HUMAN, 

C1TC_HUMAN, DDX21_HUMAN, FUBP3_HUMAN, ACPH_HUMAN, 

CAF17_HUMAN, DDX42_HUMAN, FUMH_HUMAN, AHSA1_HUMAN, 

CALX_HUMAN, DDX5_HUMAN, FYB_HUMAN, AIMP1_HUMAN, 

CAP1_HUMAN, DDX6_HUMAN, G3BP1_HUMAN, AIP_HUMAN, CAPG_HUMAN, 

DHE3_HUMAN, G3BP2_HUMAN, AK1A1_HUMAN, CAPR1_HUMAN, 

DHRS4_HUMAN, G6PI_HUMAN, ALDOC_HUMAN, CAPZB_HUMAN, 

DHX15_HUMAN, GBRL2_HUMAN, ALDR_HUMAN, CAZA1_HUMAN, 

DNJB1_HUMAN, GDIA_HUMAN, AMPN_HUMAN, CBX3_HUMAN, 
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DNMT1_HUMAN, GDIB_HUMAN, AMPL_HUMAN, CBX5_HUMAN, 

DOPD_HUMAN, GDIR1_HUMAN, AN32A_HUMAN, CC124_HUMAN, 

DPYL2_HUMAN, GGCT_HUMAN, ANX11_HUMAN, CCAR1_HUMAN, 

DRA_HUMAN, GL1AD_HUMAN, ANXA1_HUMAN, CD109_HUMAN, 

E9PAU2_HUMAN, GLO2_HUMAN, APEX1_HUMAN, CD2A1_HUMAN, 

ECHA_HUMAN, GLOD4_HUMAN, ARF1_HUMAN, CD97_HUMAN, 

EF1D_HUMAN, GLRX5_HUMAN, ARFG2_HUMAN, CDC37_HUMAN, 

EF1G_HUMAN, GLU2B_HUMAN, ARI1A_HUMAN, CDK12_HUMAN, 

EF2_HUMAN , GLYG_HUMAN, ARL3_HUMAN, CELF2_HUMAN, 

EFHD2_HUMAN, GMFB_HUMAN, ARP5L_HUMAN, CGBP1_HUMAN, 

EGLN_HUMAN, GMFG_HUMAN, ARPC3_HUMAN, CHCH3_HUMAN, 

EIF1B_HUMAN, GNAI2_HUMAN, ARPC5_HUMAN, CHM4B_HUMAN, 

EIF3C_HUMAN, GPX1_HUMAN, ASC_HUMAN, CHSP1_HUMAN, 

EIF3H_HUMAN, GRB2_HUMAN, ASHWN_HUMAN, CI078_HUMAN, 

ELOB_HUMAN, GRHPR_HUMAN, CISY_HUMAN, ELYS_HUMAN, 

GRPE1_HUMAN, CKS1_HUMAN, EMSA1_HUMAN, GSTO1_HUMAN, 

CLIC1_HUMAN, ERLN2_HUMAN, GSTP1_HUMAN, CN166_HUMAN, 

ESYT1_HUMAN, CNDP2_HUMAN, CNN2_HUMAN, COA4_HUMAN, 

COR1A_HUMAN, COTL1_HUMAN, COX5A_HUMAN, CPIN1_HUMAN, 

CPNE1_HUMAN, CPSF5_HUMAN, CREB1_HUMAN, CRKL_HUMAN, 

CSRP1_HUMAN, CSTF2_HUMAN  

  

5.8. Conclusion 

 Protein target identification studies were conducted in primary human AML cells 

and TEX cells containing high levels of CD34
+
 positive cells (indicative of LSCs) with a 

novel PTL-based alkyne probe. PTL has been shown to selectively eradicate LSCs while 

being non-toxic to healthy hematopoietic stem cells. The designed PTL-based alkyne 

probe, which maintains low micromolar growth inhibition against leukemia cells, could 

be used to identify putative targets responsible for the ability of PTL to target LSCs. 

These pulldown studies revealed that F120A/OSSA is a putative target of PTL and may 
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be responsible for LSC survival and maintenance because of its role in the regulation of 

oxidative stress. PTL and similar analogues have been shown to modulate ROS levels 

and cause oxidative stress intracellularly. LSCs have been shown to be sensitive to ROS 

levels and targeting proteins involved in regulation of oxidative stress could prove to be 

valuable targets for the inhibition of LSC survival and tumor relapse. 

 Further validation of F120A/OSSA as a target of PTL and a necessary protein for 

LSC survival and maintenance needs to be completed. Validation can be done by 

Western blot analysis of F120A after pulldown with the PTL-based alkyne probe 5.4 and 

demonstrating that PTL is also able to compete away this interaction in cells. Genetic 

modification experiments to the F120A gene in relevant LSC models will also be needed 

to show that F120A is necessary for LSC survival. This work is currently in progress. 

 

5.9 Experimental  

Unless otherwise noted, all reactions were performed in flame-dried glassware 

sealed with rubber septa under a nitrogen or argon atmosphere and the reaction mixture 

stirred with a Teflon-coated magnetic stir bar. Commercial grade reagents (Aldrich, 

Acros, Enzo Life Sciences, and Alfa Aesar) were used without further purification unless 

otherwise noted.  Liquid reagents and solvents were transferred via syringe and cannula 

using standard techniques. The reaction solvent dichloromethane (DCM) was dried by 

passage over a column of activated alumina using a solvent purification system 

(MBraun). Reaction temperatures above 23 °C refer to oil bath temperature, which was 

controlled by a temperature modulator. Reaction progress was monitored by thin layer 

chromatography using EMD Chemicals Silica Gel 60 F254 glass plates (250 μm 

thickness) and visualized by UV irradiation (at 254 nm) and/or KMnO4 stain. Silica gel 

chromatography was performed on a Teledyne-Isco Combiflash Rf-200 instrument 

utilizing Redisep Rf High Performance silica gel columns (Teledyne-Isco) or flash 

column chromatography was performed using SiliCycle silica gel (32-63 μm particle 

size, 60 Å pore size). 
1
H NMR (400 or 500 MHz) and 

13
C NMR (100 or 125 MHz) 

spectra were recorded on a Bruker NMR spectrometer. 
1
H and 

13
C chemical shifts (δ) are 

reported relative to the solvent signal, CHCl3 (δ = 7.26 for 
1
H NMR and δ = 77.00 for 

13
C 
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NMR). Some spectra contain 0.5% v/v TMS. All NMR spectra were obtained at room 

temperature. High resolution mass spectral data were obtained from the Masonic Cancer 

Center Mass Spectrometry Facility on an LTQ OrbiTrap Velos Mass Spectrometer 

(Thermo Fisher) or at the University of Minnesota mass spectrometry lab with a BioTOF 

II Mass Spectrometer (Bruker). References located after compound names refer to 

literature protocols for the preparation and characterization of these or similar compounds 

by comparable methods. 

Compounds with absorbance properties at or above 215 nm that were used in 

biological assays were tested for purity using analytical HPLC analysis on an Agilent 

1200 series instrument equipped with a diode array detector (wavelength monitored = 

215 nm) and a Zorbax SBC18 column (4.6 x 150 mm, 5 μm, Agilent Technologies). All 

compounds tested in biological assays were > 95% pure by HPLC. Compounds that do 

not have sufficient absorbance at 215 nm or above are shown to be pure by 
1
H NMR 

analysis. 

 

 

MelB-functional alkyne probe (5.3) – MelB
293

 (50.0 mg, 0.189 mmol) was dissolved in 

DCM (10 mL). Then, 4-pentynoic acid (21.0 mg, 0.208 mmol) and 4-DMAP (16.0 mg, 

0.095 mmol) were added at RT. Finally, EDCI (39.9 mg, 0.208 mmol) was added to the 

solution and the reaction was allowed to stir for 24 hr at RT. The reaction was quenched 

with H2O (20 mL) and extracted with DCM (20 mL, 3X). The organic layer was dried 

over Na2SO4, filtered and concentrated in vacuo. The resulting crude oil was SiO2 

purified with a gradient of 0 to 20% ethyl acetate in hexanes to afford 53.4 mg as a white 

solid in 82% yield. 
1
H NMR (CDCl3, 400 MHz): 6.26 (d, J = 3.5 Hz, 1H), 5.71 (t, J = 8.1 

Hz, 1H), 5.55 (d, J = 3.2 Hz, 1H), 4.72 (d, J = 12.4 Hz, 1H), 4.49 (d, J = 12.4 Hz, 1H), 

3.85 (t, J = 9.3 Hz, 1H), 2.86 (m, 2H), 2.54 (m, 4H), 2.30 (m, 6H), 1.98 (t, J = 2.4 Hz, 
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1H), 1.76 (m, 1H), 1.55 (s, 3H), 1.11 (t, J = 12.4 Hz, 1H) ppm. 
13

C NMR (CDCl3, 100 

MHz): 171.5, 169.3, 138.7, 134.8, 130.9, 120.3, 82.3, 81.0, 69.2, 67.0, 63.3, 59.9, 42.7, 

36.6, 33.3, 25.7, 24.4, 23.8, 18.0, 14.4 ppm. HRMS (ESI
+
) m/z calc'd for [C20H24O5+Na]

+
 

367.1521; found 367.1537 ppm. 

 

 

11,13-dihydroparthenolide (5.5) – Parthenolide (132 mg, 0.534 mmol) was dissolved in 

EtOH (15 mL) and the reaction was degassed and backfilled with H2 (1 atm) 3X and 

allowed to stir at RT for 6 h. The reaction mixture was filtered through celite and 

concentrated in vacuo. The crude mixture was taken on to the next step without further 

purification. This compound has been previously synthesized and characterized.
247e

 

 

 

11,13-dihydroMelB (5.6) – Crude 11,13-dihydroparthenolide (5.5) (134 mg, 0.534 

mmol) was dissolved in DCM (15 mL). Next, SeO2 (65.1 mg, 0.587 mmol) and tBuOOH 

(0.5 mL, 3 mmol, 5M solution in decanes) was added at RT.
293

 The reaction was refluxed 

for 4 h. The reaction mixture was allowed to cool, quenched with H2O (30 mL), and 

extracted with DCM (30 mL, 3X). The organic layer was dried over Na2SO4 and 

concentrated in vacuo. The crude material was SiO2 purified with a gradient of 0 to 60% 

ethyl acetate in hexanes to yield the desired product (86 mg, 61%, over 2 steps) as a 

white solid.
 1

H NMR (CDCl3, 500 MHz): 5.62 (t, J = 8.2 Hz, 1H), 4.13 – 4.01 (m, 2H), 

3.83 (t, J = 9.5 Hz, 1H), 2.75 (d, J = 9.4 Hz, 1H), 2.47 – 2.37 (m, 1H), 2.37 – 2.09 (m, 

7H), 1.95 – 1.84 (m, 1H), 1.62 – 1.56 (m, 1H), 1.54 (s, 3H), 1.25 (d, J = 6.9 Hz, 3H), 1.11 

– 1.01 (m, 1H) ppm. 
13

C NMR (CDCl3, 100 MHz): 178.0, 139.8, 127.0, 81.2, 65.6, 63.6, 
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60.0, 46.4, 41.5, 37.0, 26.7, 24.2, 23.6, 17.9, 13.0 ppm. HRMS (ESI
+
) m/z calc’d for 

[C15H22O4+H]
+
 267.1591; found 267.1588. 

 

 

11,13-dihydroMelB-nonfunctional alkyne probe (5.6): Compound 5.5 (6.2 mg, 0.02 

mmol), pentynoic acid (2.6 mg, 0.03 mmol), and 4-DMAP (2.8 mg, 0.02 mmol) were 

added to a stirred solution of DCM (5 mL) at RT. Then, EDCI (4.9 mg, 0.3 mmol) was 

added to the reaction and stirred for 24 h at RT. The reaction was quenched with H2O (20 

mL) and extracted with DCM (20 mL, 3X). The organic layer was dried over Na2SO4 and 

concentrated in vacuo. The crude material was SiO2 purified with a gradient of 0 to 40% 

ethyl acetate in hexanes to yield the desired product (4.8 mg, 53%) as a white solid. 
1
H 

NMR (CDCl3, 400 MHz):  5.67 (t, J = 8.1 Hz, 1H), 4.71 (d, J = 12.5 Hz, 1H), 4.46 (d, J 

= 12.5 Hz, 1H), 3.83 (t, J = 9.5 Hz, 1H), 2.75 (d, J = 9.4 Hz, 1H), 2.55 (m, 5H), 2.30 (m, 

6H), 1.98 (t, J = 2.5 Hz, 1H), 1.91 (m, 1H), 1.60 (m, 1H), 1.55 (s, 3H), 1.29 (d, J = 6.9 

Hz, 3H), 1.08 (t, J = 12.8 Hz, 1H) ppm. 
13

C NMR (CDCl3, 100 MHz): 177.7, 171.4, 

135.0, 130.1, 82.3, 81.0, 69.2, 66.4, 63.5, 59.8, 46.3, 41.5, 36.8, 33.4, 26.7, 24.3, 23.7, 

17.9, 14.4, 13.1 ppm. HRMS (ESI
+
) m/z calc’d for [C20H26O5+K]

+
 385.1417; found 

385.1412. 

 

Cell Culture  

All cell lines were maintained in a humidified 5% CO2 environment at 37 °C in 

tissue culture flasks (Corning) under normoxic conditions. Adherent cells were 

dissociated using Trypsin-EDTA solution (0.25%, Gibco).  Primary human AML cells 

were cultured in Isocove’s Modified Dubelco’s Media (IMDM) media that contained 2% 

BSA, 10 μg/mL insulin, 200 μg/mL transferrin, 40 μg/mL low density lipoproteins, 50 
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μM 2-mercaptoethanol, 100 I.U./mL penicillin, and 100 μg/mL streptomycin. TEX cells 

were cultured in IMDM that contained 15% v/v FBS (Gibco), stem cell factor (SCF, 20 

ng/mL, PeproTech), IL-3 (2 ng/mL, PeproTech), penicillin (100 I.U./mL, ATCC), and 

streptomycin (100 μg/mL, ATCC). HL-60 cells were cultured in IMDM supplemented 

with 20% v/v FBS (Gibco), penicillin (100 I.U./mL, ATCC), and streptomycin (100 

μg/mL, ATCC). HEK293 cells were cultured in Eagle’s Minimum Essential Medium 

(EMEM) that contained 10% v/v FBS, penicillin (100 I.U./mL, ATCC), and streptomycin 

(100 μg/mL, ATCC). 

 

Human cancer cell line cytotoxicity assays 

Alamar blue cellular cytotoxicity assays and data analyses were performed as 

previously described.
219, 237

 HL-60 cells were seeded at a density of 10,000 cells/well in 

media (50 μL) in 96-well plates (Costar 3595, Corning, Inc.). IC50 values (n ≥ 3 

biological replicates) are the mean ± SD. 

 

Flow Cytometry Analysis  

Primary human AML cells from each patient were plated in media at 10
6
 cells/mL 

(1 mL/well) in a 24-well plate (Corning) in conjunction with each pulldown experiment. 

After allowing the cells to incubate overnight, each sample was transferred into FACS 

tubes and centrifuged for 5 min at 800 rpm. The supernatant was decanted and each 

sample was washed with cold 1X PBS (1 mL) and centrifuged again. After 

centrifugation, the supernatant was decanted and the samples were stained with Brilliant 

Violet 421 mouse anti-human CD34 (BD Biosciences, 5 μL/sample) and APC mouse 

anti-human CD38 (BD Biosciences, 20 μL/sample) antibodies in FACS buffer (1X PBS, 

2% FBS, 0.1% sodium azide; 100 μL total volume/sample) for 10 minutes at 4 °C. The 

cells were then diluted with FACS buffer (1 mL) and centrifuged. The supernatant was 

decanted and stained with Annexin V-FITC (BD Biosciences, 5 μL/sample) and 7-AAD 

(eBioscience, 5 μL/sample) in FACS buffer (100 μL total volume/sample) for 10 minutes 

at room temperature in the dark in order to gate the live cell population. The samples 
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were diluted with FACS buffer (300 μL), and kept on ice during analysis by flow 

cytometry using a BD Biosciences LSR II flow cytometer. Greater than 50,000 events 

were measured for each sample during analysis. All antibodies and stains were stored at 4 

°C in the dark when not in use. After data collection, each sample was processed using 

FlowJo (Tree Star; v 7.6.5). Data was processed according to a previously published 

protocol.
275

 

 

Protein Identification in Primary Human AML cells 

Each primary cell aliquot was kept in N2 (l) in 5% DMSO/IMDM media after 

collection from each patient until it was thawed over 2-4 min in a 37 °C water incubator 

and then diluted with IMDM media (10 mL) in a canonical tube before centrifuging at 

300 RPM for 5 min. The supernatant was decanted off and the cell pellet was suspended 

to have a concentration of 10
6
 cells/mL in IMDM media and placed (20 mL) in a 150 cm

2
 

flask under normoxic conditions at 37 °C in a humidified CO2 incubator overnight. 

Alkyne probes 5.3 or 5.4 were dosed to separate flasks at 50 μM and incubated for 2 h. 

After incubation, the cells were centrifuged at 300 RPM for 5 min and the media was 

decanted. The cells were washed once with 1X PBS buffer at 4 °C and centrifuged 300 

RPM for 5 min. The supernatant was decanted and RIPA buffer ((Thermo Fisher, 1 mL) 

containing Complete EDTA-free protease inhibitor cocktail (Life Technologies)) was 

added to the cells and mixed via pipetting continuously (20X) and then lightly vortexed. 

The cells were incubated at 4 °C for 1 hour and then mixed via pipetting again. The cells 

were incubated for an additional 15 minutes at 4 °C then centrifuged at 4 °C at 4000 rpm 

for 20 minutes. The supernatant was isolated and protein concentration was determined 

(Pierce BCA Protein Assay Kit, Thermo Scientific). The protein concentrations were in 

the range between 1.5-2.0 mg/mL of lysate. The lysates were either stored overnight at -

80 °C before further use or used immediately. 

 After thawing, click reagents were added to the lysates (20 µL CuSO4, 50 mM 

stock in H2O; 20 µL TBTA, 10 mM stock in DMSO; 40 µL Biotin-N3, 20 mM stock in 

DMSO [Sigma-Aldrich 762024; CAS: 875770-34-6]; 40 µL sodium ascorbate, 100 mM 

in H2O) and allowed to react for 2 h at room temperature. 
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 The samples were then separated on a monomeric avidin column according to the 

manufacturer’s instructions (Pierce) at RT. After the enriched protein samples were 

collected they were concentrated using a 3 kDa molecular weight cut-off filter (Amicon) 

and diluted with ddH2O (20 mL, 2X) and then finally concentrated to ~500 μL. Protein 

was precipitated from these proteins by adding 13 M trichloroacetic acid (TCA) in 

ddH2O to a final concentration in the lysate of 1.3 M. The samples were incubated at -20 

°C for 6 h. The samples were then centrifuged at 15,000 RPM for 10 min at 4 °C. The 

pellets were washed with -20 °C acetone (500 μL) and centrifuged at the same speed, 

time, and temperature (2X). The samples were then dried in a SpeedVac for 3 h and kept 

at -20 °C until further analysis. The samples were shipped overnight for LC-MS/MS and 

proteomic analysis at the Taplin Mass Spectrometry Facility at the Harvard Medical 

School (contracted work; Boston, MA). 

 

CRISPR/Cas9 Knockout of F120A in HEK293 Cells 

Two CRISPR/Cas9 plasmids containing separate guide RNA sequences (plasmid 

1: 5’-GAGAAGCACTGCCCGAGCGCTGG-3’; plasmid 2: 5’-CAGAGCATTGAGGAT 

CACCATTCAGG-3’) were generated and transduced into HEK293 cells as previously 

described.
322

 Cells containing the transfected plasmid were then selected using 

puromycin (1 µg/mL in cell media) by dosing to the cell media for three passages. After 

selection, the CRISPR/Cas9 system was induced with doxycycline (5 µg/mL in cell 

media) for two weeks. The expression of FAM120A (Pierce, Cat# PA5-31766) was 

followed via Western blot analysis and β-actin (Sigma Aldrich, Cat# A1978) was used as 

the gel-loading control. Western blot analysis was carried out as previously described.
229

 

The surveyor nuclease (Cel-1) assay was carried out as previously described.
320

 

 

 

5.9 Spectral Data 
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5.11 HPLC Chromatograms of Synthesized Compounds 

 

General Protocol for HPLC Analysis of Synthesized Compounds. DMSO stock 

solutions of newly synthesized molecules were dissolved in 1:1 solution of methanol and 

distilled and deionized water (ddH2O) containing trifluoroacetic acid (TFA, 0.1% v/v) 

and analyzed on an Agilent 1200 series instrument equipped with a diode array detector 

and Zorbax SB-C18 column (4.6 x 150 mm, 5 μm, Agilent Technologies). The analysis 

method (1 mL/min flow rate) starts with an eluent system of 10% MeCN in ddH2O from 

0-2 minutes (both containing 0.1% TFA) followed by a linear gradient of 10% to 85% 

MeCN in ddH2O from 2-24 minutes, followed by 85% to 95% MeCN in ddH2O from 24-

26 minutes, and finally an isocratic eluent system of 95% MeCN in ddH2O from 26-30 

minutes. Wavelengths monitored = 215 nm. 

 

Preparation of Stock Solutions. Compound stock solutions were prepared in DMSO (40 

mM to 100 mM concentrations) and stored at -20 °C when not in use. Compound purities 

were assessed frequently by analytical reverse-phase HPLC analysis and fresh solutions 

were prepared as needed. Compound 5.4 was not UV active and therefore purity was 

determined to be ≥ 95% by 
1
NMR analysis. 
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Probe 5.3 HPLC (96.5% pure): 
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Chapter 6 

 

BIOCHEMICAL EVALUATION AND TARGET IDENTIFICAITON STUDIES 

OF EPI-002 AND EPI-054 

 

 

This work was performed in collaboration with Jordan Baur, Dr. Meixia Che, Mark 

Daniel, Professor Scott M. Dehm, and Professor Daniel A. Harki. Jordan Baur assisted 

with synthesis of the EPI analogues. Meixia Che and Mark Daniel assisted with aspects 

of biochemical evaluation of the synthetic EPI analogues. John Widen synthesized the 

presented compounds, conducted the cytotoxicity assays, and conducted the in-gel 

labeling assays. 
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6.1 Introduction 

 In the United States, prostate cancer is the most diagnosed form of malignancy 

among men and is estimated to account for more than 26,000 deaths in the United States 

in 2016; second most among all cancers.
323

 Based on the Cancer of the Prostate Strategic 

Urologic Research Endeavor (CaPSURE) database, 46% of men at the time of diagnoses 

with prostate cancer are younger than 65 years of age with the overall mean age at the 

time of diagnosis being 66 years of age.
324

 Among these patients, many are initially 

treated with surgical or chemical androgen deprivation therapy.
325

 Prostate cancer 

initially relies on endogenous androgens to activate the androgen receptor (AR) for 

growth and progression.
326

 Androgen deprivation therapy includes removal of the 

testicular tissue or treatment with luteinizing hormone-releasing agonists, which inhibits 

the testicles from releasing testosterone.
327

 This treatment is effective until the 

malignancy transforms to castration resistant prostate cancer (CRPC).
328

 

 CRPC becomes independent of hormone signaling and continues to progress in 

the absence of androgen in blood serum. Despite this independence of androgen 

production by the testes, CRPC still relies on AR signaling for progression. This is 

evident considering the efficacy of second generation AR antagonists abiraterone (6.1) 

and enzalutamide (6.2) against CRPC.
329

 Both compounds bind to the AR ligand-binding 

domain (LDB), but abiraterone also inhibits production of androgens via inhibition of the 

CYP17A enzyme. Eventually, both AR signaling antagonists lead to selection of resistant 

cancer through multiple mechanisms. Resistance to AR inhibition occurs by 

overexpression of AR, mutation to the AR ligand-binding domain (LBD) that converts 

antagonists to agonists, splice variants of AR conferring constitutive AR signaling, 

intratumor production of androgens, non-canonical activation of AR in the absence of 

ligand, and increased cytokine signaling.
145, 150

 Currently, a variety of AR antagonists are 

in clinical trials for the treatment of CRPC, but many of these therapeutics still target the 

LBD of AR or synthesis of androgens despite a wealth of data demonstrating that drug 

resistance to these inhibitors inevitably occurs in patients, ultimately leading to death.
330
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Studies have shown that truncations to AR yielding only the N-terminal domain 

(NTD) resulting in AR variants with constitutive signaling.
118, 331

 Similar splice variants 

containing only the NTD of AR have also been found in patients with CRPC.
332

 The 

NTD of AR is required for transcriptional activation, which contains an activation 

function 1 (AF 1) region and the DNA-binding domain (DBD).
333

 Currently, there are no 

FDA-approved treatment options for patients containing splice variants without the LBD 

of AR. One potential therapeutic, EPI-506 (structure has not been disclosed), which is a 

pro-drug of EPI-001 (6.3), is currently in clinical trials for CRPC.
334

 The natural product 

EPI-001 was isolated from the marine sponge Geodia lindgreni, most likely from 

contaminated water containing bisphenol A, a common industrial chemical used in 

plastics.
151

 Sadar and co-workers demonstrated that EPI-001 interacts with the NTD of 

AR inhibiting transcriptional activity independent of the LBD or non-canonical activation 

pathways. In vivo xenograft mouse models demonstrated tumor regression with no toxic 

effects to mice at a maximum dosage of 50 mg/kg. 

 EPI-001 has two racemic stereocenters and thus four possible stereoisomers exist 

for this racemic compound. Identification of EPI-001 as an AR NTD antagonist led to 

further work identifying EPI-002 (6.4) as the most active and least toxic stereoisomer in 

cell culture assays and in vivo.
152

 Testing of additional analogues suggested that the 

chlorohydrin of the EPI compounds were necessary for inhibition of AR transcription. 

Pulldown experiments using analogues of EPI-001 bearing a terminal alkyne 

demonstrated these compounds are able to undergo irreversible covalent interaction with 

the NTD of AR. The alkyne containing analogue EPI-054 (6.5) has the same 

stereochemistry as EPI-002 and was able to pulldown AR from live LnCaP cells. 

However, analysis of the enriched protein-EPI-biotin adducts via Western blot suggests 

that EPI-054 (and, generally, other EPI compounds) have additional protein targets other 

than AR.
152
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Figure 6.1.1. Abiraterone acetate (6.1) and Enzalutamide (6.2) are FDA approved drugs for CRPC. EPI-

001 (6.3) is a natural product that consists of four stereoisomers, which target the NTD of AR. EPI-002 

(6.4) is the most active and least toxic stereoisomer of EPI-001. EPI-054 (6.5) contains a propargyl group 

that enables ligation chemistry for biochemical studies. 

 

 In a separate study, EPI-001 was shown to have other potential mechanisms of 

inhibition within cells that is independent of AR activity.
153

 These studies demonstrate 

that EPI-001 inhibits expression of full length and truncated AR, and activates PPAR-γ 

signaling independent of AR. Furthermore, EPI-001 undergoes thiol addition with 

cysteamine at physiological pH and to a greater extent at pH of 9.4, raising the possibility 

that covalent modification of solvent exposed cysteines within the cell proteome could 

occur.  

Currently, no other protein targets of EPI derivatives have been reported. The goal 

of this study is to further evaluate the biological activity and identify other protein targets 

of EPI-002 within the cell proteome.  The derivative EPI-054 serves as a biological probe 

containing a terminal alkyne with the same stereochemistry as EPI-002. This study shows 

that EPI-054 maintains similar activity against LnCaP cells and decreases AR expression 



242 

 

compared to EPI-001 and EPI-002. Additionally, in-gel labeling studies demonstrate that 

EPI-054 labels other proteins besides AR within LnCaP cells. Ongoing experiments are 

being conducted to identify the protein targets of EPI-001 that could relate to its non-

specific activity against prostate cancer cells. This work could be important to enable 

further optimization of the compound to yield more specific and potent AR NTD 

inhibitors. 

 

6.2 Synthesis of EPI-002 and EPI-054 

The stereoselective synthesis of derivatives EPI-002 and EPI-0054 have been 

previously described.
335

 In this chapter, EPI-002 and EPI-054 are synthesized using 

different procedures in three linear steps starting from commercial materials. 

 The synthesis of EPI-002 begins by coupling Bisphenol A (6.6) with (S)-glycidol 

employing the Mitsunobu reaction to give mono-alkylated 6.7 in 49% yield (Scheme 

6.2.1A).  The phenol of intermediate 6.7 opens the epoxide of (R)-glycidol (6.10) in the 

presence of K2CO3 at 50 °C to give the diol 6.8 in 49% yield. The epoxide of 6.8 is 

opened with CeCl3 in refluxing MeCN to give EPI-002 (74% yield, overall yield over 

three steps is 18%). EPI-054 is synthesized using the same strategy, but (R)-glycidol is 

first coupled to propargyl bromide using a Williamson ether synthesis to give 6.11 (60% 

yield, Scheme 6.2.1B), which is then reacted with intermediate 6.7 to form the propargyl 

ether-epoxide 6.9 in 28% yield. Opening of the epoxide ring with CeCl3 produces EPI-

054 in 79% yield (11% overall yield over three steps). 



243 

 

 

Scheme 6.2.1. A. Synthesis of EPI-002 (6.4) and EPI-054 (6.5).
a
  

a
Reagents and Conditions: (a) (S)-glycidol, Ph3P, DIAD, THF, 49%; (b) NaH, DMF, (R)-glycidol (6.10) 

or 6.11, 80 °C, 49% for 6.8, 28% for 6.9; (c) CeCl3, MeCN, reflux, 74% for EPI-002 (6.4), 79% for EPI-

054 (6.5). B. Synthesis of propargyl (R)-glycidol precursor 6.11. (d) NaH, propargyl bromide, TBAI, THF, 

60% yield. 

 

6.3 Biological evaluation of EPI-002 and EPI-054 

To determine the effect of the propargyl group on EPI-054 compared to EPI-002, 

both compounds were tested for their cytotoxic properties against LnCaP cells. In a 48 h 

cytotoxicity assay with LnCaP cells (Table 6.3.1), EPI-002 has a high micromolar IC50 

value of 108 ± 5 μM. EPI-054 also has a high micromolar IC50 value of 61 ± 6 μM, 

approximately a 2-fold difference compared to EPI-002. 

Table 6.3.1. Cytotoxicity of EPI-002 and EPI-054 in LnCaP cells. Cells were dosed for 48 h and cell 

viability was indirectly determined by metabolic activity using Alamar Blue. IC50 values are Mean ± S.D. 

(n ≥ 3). 

 
Compound IC50 ± S.D. (μM) 

EPI-002 108 ± 5 μM 

EPI-054 61 ± 6 μM 

 

 

 The alkyne derivative EPI-054 was further tested for its effects on AR mRNA 

expression levels compared to that of EPI-001 (Figure 6.3.1). Both compounds were 

dosed to LnCaP cells at 50 μM for 16 h with or without 1 nM of dihydrotestosterone 

(DHT). The AR mRNA expression levels were determined using qRT-PCR. Dosing DHT 
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to LnCaP cells has a modest effect on AR mRNA expression levels compared to the non-

treated control. Co-dosing DHT with EPI-001 and EPI-054 should cause a further 

decrease in AR mRNA expression.
336

 EPI-001 and EPI-054 have similar inhibition of AR 

mRNA expression levels in the presence or absence of DHT, and suggests that EPI-001 

and EPI-054 inhibit AR mRNA expression indirectly of AR. Approximately a 50% 

reduction in AR mRNA levels occurs when EPI-001 and EPI-054 are dosed at 50 μM 

compared to the non-treated control. These data suggest that EPI-001 and EPI-054 have 

the same effect on AR expression levels and behave similarly in LnCaP cells. Thus, EPI-

054 serves as a probe mimic for EPI-002 for protein identification studies. 

 

 

Figure 6.3.1. Relative mRNA levels of AR were determined in LnCaP cells. EPI-001 and EPI-054 were 

dosed to LnCaP cells at 50 μM for 16 hours with or without dihydrotestosterone (1 nM). Expression levels 

were normalized to AR mRNA level of non-treated LnCaP cells and GAPDH mRNA control. Data shown 

is the mean relative mRNA level ± S.D. (n = 3). 

 

6.4 In-gel Fluorescent Labeling of EPI-054 in LnCaP Cells 

 EPI-054 has previously been reported to pull down AR in LnCaP cells. From this 

study, Western blot analysis of biotin labeled proteins used to identify AR also suggested 

that other proteins form covalent adducts with EPI-054.
152

 To confirm this result an in-gel 
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fluorescent labeling assay was used to demonstrate that EPI-054 labels multiple proteins 

within the LnCaP cell proteome. 

 EPI-054 was dosed to LnCaP cells at 50 μM for 36, 24, and 16 hours (Figure 

6.4.1). Previous reports suggest that 24 h exposure of EPI-054 is optimal. After dosing 

the cells for the time indicated the cells were lysed via three freeze thaw cycles and the 

lysate was cleared by centrifugation. Lysate protein concentrations were normalized to 

the lowest value and TAMRA-N3 was attached to the EPI-054-protein adducts with the 

copper catalyzed [3+2] Huisgen reaction (click chemistry).
220

 The proteins were 

separated with a denaturing PAGE gel and labeled proteins were visualized. The most 

significant labeling intensity was seen at the 24 h time point. After visualization of the 

labeled proteins, Oriole® total protein stain was use to show equal total protein 

concentration loading. Notably, at the 36 h time point the total protein is slightly reduced 

compared to other time points potentially because of premature cell death due to the long 

incubation time with EPI-054. The IC50 value of EPI-054 is 61 ± 6 μM, so presumably 

significant cell death would occur at 50 μM for 36 h. Therefore, 24 h incubation was 

determined to be optimal for labeling experiments. 

 

 



246 

 

 

Figure 6.4.1. In-gel fluorescence labeling of EPI-054 in LnCaP cells. Cells were dosed with 50 μM of EPI-

054 or a DMSO control for 36, 24, and 16 h. The cells were lysed and TAMRA-N3 was attached to the 

EPI-054-protein adducts for visualization. After visualization of labeled protein, the gel was stained with 

Oriole® total protein state to demonstrate equal protein loading. 

 

  After determining the optimal time for dosing, LnCaP cells were dosed with a 

DMSO control or EPI-054 at 100, 50, and 25 μM for 24 h (Figure 6.4.2). Cells were 

lysed and protein adducts were conjugated to TAMRA-N3 in the same manner as the 

previous labeling experiment (vide supra). The fluorescent signal for labeled proteins was 

strongest at 100 μM, but significant cell death occurred (50% cell viability detected with 

trypan blue) over the 24 h period. At 50 and 25 μM the same bands can still be visualized 

compared to the 100 μM dose, but less cytotoxicity was observed (80% cell viability 

detected with trypan blue). Because of the differences in cell viability, a 50 μM dose was 

chosen for target identification studies. 
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Figure 6.4.2. EPI054 was dosed to LnCaP cells at 100, 50, and 25 μM or a DMSO control for 24 hours. 

The cells were lysed and TAMRA-N3 was attached to the probe-protein adducts via click chemistry. After 

labeling visualization the gel was stained with Oriole total protein stain to demonstrate equal lane loading. 

 

6.5 Conclusion 

 EPI-002 and EPI-054 were synthesized and shown to be cytotoxic to LnCaP cells 

at high micromolar concentrations in a 48 h assay. Both compounds inhibit AR mRNA 

expression levels in LnCaP cells in the presence and absence of DHT suggesting that the 

decrease of AR mRNA expression is occurring indirectly of AR signaling inhibition. The 

in-gel fluorescence labeling experiments shows that EPI-054 interacts with many proteins 

within the LnCaP cell proteome and not just AR. Identifying protein targets using an LC-

MS/MS chemoproteomics platform could be useful for future development of EPI based 

compounds. Work is currently ongoing to identify the putative protein targets of EPI-002 

in LnCaP cells. 
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6.6 Experimental 

Unless otherwise noted, all reactions were performed in flame-dried glassware 

sealed with rubber septa under a nitrogen or argon atmosphere and the reaction mixture 

stirred with a Teflon-coated magnetic stir bar. Commercial grade reagents (Aldrich, 

Acros, Enzo Life Sciences, and Alfa Aesar) were used without further purification unless 

otherwise noted.  Liquid reagents and solvents were transferred via syringe and cannula 

using standard techniques. The reaction solvents tetrahydrofuran (THF) and 

dimethylformamide (DMF) were dried by passage over a column of activated alumina 

using a solvent purification system (MBraun). Reaction temperatures above 23 °C refer 

to oil bath temperature, which was controlled by a temperature modulator. Reaction 

progress was monitored by thin layer chromatography using EMD Chemicals Silica Gel 

60 F254 glass plates (250 μm thickness) and visualized by UV irradiation (at 254 nm) 

and/or KMnO4 stain. Silica gel chromatography was performed on a Teledyne-Isco 

Combiflash Rf-200 instrument utilizing Redisep Rf High Performance silica gel columns 

(Teledyne-Isco) or flash column chromatography was performed using SiliCycle silica 

gel (32-63 μm particle size, 60 Å pore size). All NMR spectra to identify compounds 

were obtained at room temperature and matched to previously reported data unless 

otherwise specified. References located after compound names refer to literature 

protocols for the preparation and characterization of these or similar compounds by 

comparable methods. 

Compounds with absorbance properties at or above 215 nm that were tested in 

biological assays were tested for purity using analytical HPLC analysis on an Agilent 

1200 series instrument equipped with a diode array detector (wavelength monitored = 

215 nm) and a Zorbax SBC18 column (4.6x150 mm, 5 μm, Agilent Technologies). All 

compounds tested in biological assays were > 95% pure by HPLC. 
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(R)-4-(2-(4-(oxiran-2-ylmethoxy)phenyl)propan-2-yl)phenol (6.7). Bisphenol A (6.6) 

(0.50 g, 2.20 mmol), Ph3P (0.86 g, 3.29 mmol), and (S)-glycidol (0.18 mL, 2.63 mmol) 

were dissolved in THF (40 mL). DIAD (0.65 mL, 3.29 mmol) was added drop wise at RT 

and the reaction was stirred for 16 h. The reaction was quenched with aqueous Na2S2O5 

(sat’d, 20 mL). The reaction was extracted with EtOAc (30 mL, 3X). The combined 

organic layer was washed with H2O (20 mL, 1X), brine (20 mL, 1X), and then dried over 

Na2SO4 and concentrated in vacuo. The crude product was SiO2 purified in DCM and 

EtOAc (0-10%) to afford 0.31 g in 49% yield. The spectral data for this compound 

matches  previously reported data.
335b

 

 

 

(R)-3-(4-(2-(4-(((R)-oxiran-2-yl)methoxy)phenyl)propan-2-yl)phenoxy)propane-1,2-diol 

(6.8). Compound 6.7 (0.23 g, 0.81 mmol) was dissolved in DMF (20 mL). Then, K2CO3 

(0.22 g, 1.62 mmol) and (R)-glycidol (6.10) (0.16 mL, 2.43 mmol) was added. The 

reaction was heated to 65 °C for 16 h. The reaction was allowed to cool to RT, quenched 

with H2O (25 mL), and extracted with EtOAc (25 mL, 3X). The organic layer was 

washed with H2O (20 mL) and brine (20 mL, 1X), then dried over Na2SO4 and 

concentrated in vacuo. The crude product was SiO2 purified in DCM and EtOAc (0-50%) 

to afford 0.14 g in 49% yield. The spectral data for this compound matches  previously 

reported data.
335b
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EPI-002 (6.4). The starting material 6.8 (0.14 g, 0.40 mmol) was dissolved in MeCN (5 

mL) and CeCl3·7H2O (0.37 g, 0.98 mmol) was added. The reaction was heated to reflux 

for 16 h and then allowed to cool to RT before adding H2O (25 mL). The reaction was 

extracted with EtOAc (20 mL, 3X). The organic layer was washed with H2O (20 mL) and 

brine (20 mL, 1X), dried over Na2SO4, and concentrated in vacuo. The crude product was 

SiO2 purified in DCM and MeOH (0-10%) to afford 0.11 g in 74% yield. The spectral 

data for this compound matches  previously reported data.
335b

 

 

 

(S)-2-((prop-2-yn-1-yloxy)methyl)oxirane (6.11). (R)-glycidol (0.45 mL, 6.75 mmol) 

was dissolved in THF (10 mL). The reaction was cooled to 0 °C and NaH (0.18 g, 7.43 

mmol) was added and allowed to stir for 20 min at the same temperature. tert-Butyl 

ammonium iodide (TBAI) (0.25 g, 0.67 mmol) was added, and then propargyl bromide 

(2.0 mL, 13.49 mmol, 80% by mass in toluene) was added dropwise. The reaction was 

allowed to come to RT and stirred for 4 h. The reaction was quenched with aqueous 

NH4Cl (sat’d, 10 mL), extracted with Et2O (20 mL, 3X), dried over Na2SO4, and 

concentrated in vacuo. The crude product was SiO2 purified in hexanes and EtOAc (0-

20%) to afford 0.46 g in 60% yield. The spectral data for this compound matches  

previously reported data.
337
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(R)-1-(4-(2-(4-(((R)-oxiran-2-yl)methoxy)phenyl)propan-2-yl)phenoxy)-3-(prop-2-

yn-1-yloxy)propan-2-ol (6.9). Compound 6.7 (1.03 g, 3.52 mmol) and 6.11 (1.01 g, 8.79 

mmol) were dissolved in DMF. K2CO3 (0.99 g, 7.03 mmol) was added and the reaction 

was heated to 65 °C for 16 h. The reaction was allowed to cool to RT and quenched with 

H2O (40 mL). The reaction was extracted with EtOAc (40 mL, 3X). The organic layer 

was washed with H2O (20 mL) and brine (20 mL, 1X), then dried over Na2SO4 and 

concentrated in vacuo. The crude product was SiO2 purified in hexanes and EtOAc (0-

40%) to afford 0.38 g in 28% yield. The spectral data for this compound matches  

previously reported data.
335a

 

 

 

EPI-054 (6.5). The starting material 6.9 (0.38 g, 1.06 mmol) was dissolved in MeCN (15 

mL) and CeCl3·7H2O (0.99 g, 2.65 mmol) was added. The reaction was heated to reflux 

for 16 h and then allowed to cool to RT before adding H2O (40 mL). The reaction was 

extracted with EtOAc (30 mL, 3X). The organic layer was washed with H2O (20 mL) and 

brine (20 mL, 1X), then dried over Na2SO4 and concentrated in vacuo. The crude product 

was SiO2 purified in hexanes and EtOAc (0-50%) to afford 0.33 g in 79% yield. The 

spectral data for this compound matches  previously reported data.
335a
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Cell Culture  

LnCaP cells were maintained in a humidified 5% CO2 environment at 37 °C in 

tissue culture flasks (Corning) under normoxic conditions and cultured in Roswell Park 

Memorial Institute (RPMI) 1640 media that contains 10% FBS, 100 I.U./mL penicillin, 

and 100 μg/mL streptomycin. Adherent cells were dissociated using Trypsin-EDTA 

solution (0.25%, Gibco).  

 

Human cancer cell line cytotoxicity assays 

Alamar blue cellular cytotoxicity assays and data analyses were performed as 

previously described.
219, 237

 LnCaP cells were seeded at a density of 5,000 cells/well in 

media (50 μL) in 96-well plates (Costar 3595, Corning, Inc.). 

 

Relative AR mRNA expression assay 

LnCaP cells were grown to 80% confluency in 10 cm cell plates and were dosed 

with DMSO, EPI-001, or EPI-054 at 50 μM with or without DHT (1 nM) for 16 h. After 

the incubation period total RNA isolated according and qRT-PCR was conducted for 

relative quantitation of AR mRNA expression levels according to a previously published 

procedure.
338

 The primers used for qRT-PCR are as follows, GAPDH-F: 5’-GAA GGT 

GAA GGT CGG AGT C-3’; GAPDH-R: 5’-GAA GAT GGT GAT GGG ATT TC-3’, 

AR-F 5’-TGG ATG GAT AGC TAC TCC GG-3’, AR-R: 5’-CCC AGA AGC TTC ATC 

TCC AC-3’. Expression levels were normalized to the non-treated control and GAPDH 

control gene. 

 

In-gel labeling assay 

LnCaP cells were grown in T-75 cm
2
 flasks to 90% confluency and dosed with 

DMSO or EPI-054 at the respective concentration for the time indicated. Cells were 

dissociated from the flask using trypsin-free EDTA buffer (Gibco) then washed with 1X 
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PBS (10 mL, 2X). Cells were centrifuged at 1000 rpm for 5 minutes between washes. 

The cells were suspended in 1X PBS containing EDTA-free protease inhibitor cocktail 

(Pierce) and lysed using three freeze thaw cycles. The freeze thaw cycles were conducted 

by snap freezing the samples in an acetone/dry ice bath for 5 minutes and then 

immediately transferring them to a 37 °C water bath until completely thawed (typically 3-

5 minutes). After the third freeze thaw cycle, the cells were kept at –80 °C until further 

use. 

 Cell lysates were allowed to thaw and lysates were cleared by centrifugation at 

4000 RPM for 20 minutes at RT. Lysates were processed and visualized according to a 

previously reported procedure.
229

 

 

6.7 HPLC Chromatograms of Synthesized Compounds 

 

General Protocol for HPLC Analysis of Synthesized Compounds 

DMSO stock solutions of newly synthesized molecules were dissolved in 1:1 

solution of methanol and distilled and deionized water (ddH2O) containing trifluoroacetic 

acid (TFA, 0.1% v/v) and analyzed on an Agilent 1200 series instrument equipped with a 

diode array detector and Zorbax SB-C18 column (4.6 x 150 mm, 5 μm, Agilent 

Technologies). The analysis method (1 mL/min flow rate) starts with an eluent system of 

10% MeCN in ddH2O from 0-2 minutes (both containing 0.1% TFA) followed by a linear 

gradient of 10% to 85% MeCN in ddH2O from 2-24 minutes, followed by 85% to 95% 

MeCN in ddH2O from 24-26 minutes, and finally an isocratic eluent system of 95% 

MeCN in ddH2O from 26-30 minutes. Wavelengths monitored = 215 nm. 

 

Preparation of Stock Solutions. Compound stock solutions were prepared in DMSO (40 

mM to 100 mM concentrations) and stored at -20 °C when not in use. Compound purities 

were assessed frequently by analytical reverse-phase HPLC analysis and fresh solutions 

were prepared as needed. 
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Probe EPI-002 (6.4) HPLC (>99% pure): 

 

 

Probe EPI-054 (6.5) HPLC (>99% pure): 
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Chapter 7 

 

ALKYNE LIGATION HANDLES: PROPARGYLATION OF HYDROXYL, 

SULFHYDRYL, AMINO, AND CARBOXYL GROUPS VIA THE NICHOLAS 

REACTION 

 

Adapted with Permission from: 

Wells, S.M.; Widen, J.C.; Harki, D.A.; Brummond, K.M. Org. Lett. 2016, 18, 4566-4569. 

 

 

This work was performed in collaboration with Dr. Sarah M. Wells, Professor Daniel A. 

Harki, and Professor Kay M. Brummond. Sarah Wells completed the reaction 

optimization studies in Table 7.2.1 and conducted the Nicholas reaction on substrates 

included in Table 7.3.1, Scheme 7.3.1, and Scheme 7.4.1. John Widen also synthesized 

analogues presented in Table 7.3.1, Scheme 7.3.1, and Scheme 7.4.1. 
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7.1 Introduction 

Widespread use of the Huisgen 1,3-dipolar cycloaddition between azides and 

alkynes to form 1,2,3-triazoles, a click reaction,
220, 296

 has led to increased interest in 

transformations used to synthesize and/or install alkynyl groups.
339

 Typically, when 

readying substrates for a click reaction, late-stage propargylation or 5-hexynoylation 

reactions of hydroxyl or amino groups are used to attach the desired alkynes.
339

  

Propargylation of a hydroxyl group is usually achieved by a Williamson ether synthesis 

under basic conditions where the corresponding alkoxide is reacted with propargyl 

bromide (Figure 7.1.1, eq 1). Src-directed probe 7.1 was prepared using this approach 

but required protection of the 3′- and 5′-hydroxyl groups and 6-amino group to avoid over 

propargylation.
340

 Propargylation has also been accomplished by converting a hydroxyl 

group into a leaving group (i.e., a mesylate) and replacing it with propargylamine.
341

 

Another commonly used protocol for installing an alkynyl group is a 

carbodiimide-mediated coupling reaction between 5-hexynoic acid and a hydroxyl or 

amino group (Figure 7.1.1, eq 2).
296a, 342

 The Duocarmycin probe 7.2 exemplifies a 

product obtained from an EDCI-mediated coupling reaction between a cyclic, secondary 

amino group and 5-hexynoic acid.
343

 While carbodiimide couplings offer non-basic, 

neutral conditions, they require expensive reagents and/or the tedious removal of urea-

related byproducts.  
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Figure 7.1.1. Synthetic methods for alkyne incorporation. 

 

Many other methods are available for the functionalization of a compound with an 

alkynyl group;
339, 344

 however, despite these options, challenges still arise when 

alkynylating functionally dense natural products and chemical probes for applications 

such as activity-based protein profiling
345

 for target identification.
346

 For example, during 

investigations to label two different sesquiterpene analogues with alkynyl groups (vide 

infra), these analogues were unstable to the basic conditions required for propargylation. 

Although the hexynoylation reaction could serve as an alternative for appendage of an 

alkyne ligation handle via an allylic ester linkage, concerns about the metabolic stability 

of ester-containing probes in cell culture lowered enthusiasm for this approach.
347
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Consequently, a method for propargylation of these sesquiterpene analogues and other 

biomechanistic probes under non-basic conditions was needed. 

We report our studies to establish the Nicholas reaction as an alternative protocol 

for the propargylation of high-value small molecules. The Nicholas reaction involves the 

addition of a nucleophile to the Co-stabilized propargylic carbocation 7.3, generated by 

treating the corresponding dicobalt hexacarbonyl complexed (Co2(CO)6)-propargyl 

alcohol with acid. Alkyne 7.4 is formed after oxidative decomplexation (Figure 1, eq 

3).
348

 While it is well-known that the Nicholas reaction can be used to effect 

propargylation reactions of heteronucleophiles, classical conditions require excess 

nucleophile relative to the cobalt−carbonyl complex, even as the solvent in some cases, 

limiting its utility in the preparation of alkyne ligation handles.
349

 Conditions where the 

nucleophile is the limiting reagent would expand the utility of this approach. 

 

7.2 Optimization of Nicholas Reaction Conditions 

To increase the efficiency of the Nicholas reaction, we began our investigations 

using molecularly complex alcohol 7.5 as the limiting reagent. Initially, a reaction was 

carried out with a 1:1.1:1.4 ratio of nucleophile 7.5/7.6a/BF3OEt2. However, these 

conditions led to a moderate yield of 40%, so we focused on using higher equivalents of 

7.6a and BF3OEt2. We varied the molar equivalencies of 7.6a and the Lewis acid 

(BF3OEt2) while keeping the order of addition constant. To reduce the likelihood of the 

alcohol and ester groups of 7.5 tying up the BF3OEt2, Co2(CO)6–propargyl alcohol 7.6a 

was added to BF3OEt2 to form the propargyl cation, followed by the addition of alcohol 

7.5. Using this addition order and a 1:2:2.5 molar ratio of alcohol 7.5/7.6a/ BF3OEt2, 

Co2(CO)6-propargyl ether 7.7 was obtained in 47% yield (Table 7.1, entry 1) after 

stirring 4.5 h at 0 °C. Increasing the equivalents of BF3OEt2 and 7.6a afforded 7.7 in 36% 

yield (entry 2). Adding alcohol 7.5 more slowly lowered the yield of 7.7 to 28% (entry 

3). 
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Table 7.2.1. Optimization of Nicholas Reaction with Alcohol 7.5 

 

 

entry 
equiv 

(7.5:7.6a:LA) 

order of 

addition 
temp (°C) time (h) yield (%) 

1
a
 1:2:2.5 LA, 7.6a, 7.5 0 4.5 47 

2 1:3:5 LA, 7.6a, 7.5 0 4 36 

3 1:2:2.5  LA, 7.6a, 7.5
c
 0 4 28 

4
a
 1:2:2.5 LA, 7.5, 7.6a 0 4.5 44 

5
b
 1:2:2.5 7.6a, 7.5, LA 0 4 55 

6 1:3:5 7.6a, 7.5, LA 0 5 22 

7
b
 1:2:2.5  7.6a, 7.5, LA

d 
0 3.5 60 

a
Dimerized product of 7.6a was isolated in 33-34% yield. 

b
Dimerized product of 

7.6a was isolated in 25-28% yield. 
c
Alcohol 7.5 was added dropwise over 5 min. 

d
Complex 7.6a was generated in situ from propargyl alcohol and Co2(CO)8. 

 

 

Due to these results, the order of addition was examined. Adding 7.5 to BF3OEt2 

prior to addition of 7.6a did not affect the yield of 7.7, obtained in 44% yield (entry 4). 

Next, 7.5 (1 equiv) and BF3OEt2 (2.5 equiv) were added sequentially to 7.6a (2 equiv), 

which increased the yield of 7.7 to 55% (entry 5). With this same order of addition, 

increasing the amount of 7.6a and BF3OEt2 lowered the yield of 7.7 to 22% (entry 6). 

For all of these examples, 7.6a was prepared, isolated, and purified by column 

chromatography before the reaction. Although this complex is stable to air and moisture, 

it was reasoned that forming 7.6a in situ may be advantageous.
349c

 To this end, 7.6a was 

formed in situ from propargyl alcohol and dicobalt octacarbonyl, followed by the 

sequential addition of 7.5 and BF3OEt2 to afford the highest yield of 7.7 (60%, entry 7). 

A final attempt to improve the reaction conditions by lowering the reaction temperature 

only resulted in decreased yields of 7.7. Reactions at –40 °C and –10 °C afforded 7.7 in 
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23 and 38% yield, respectively. Decomplexation of cobalt complex 7.7 was achieved 

using ceric ammonium nitrate (CAN) in acetone to readily afford alkyne 7.8 in 97% yield 

without the need for purification (Scheme 7.2.1). Use of N-methylmorpholine-N-oxide as 

an oxidant in this transformation resulted in decomposition of 7.7.
350

 

 

 

Scheme 7.2.1. Decomplexation of Co2(CO)6-alkyne 7.7. 

 

7.3 Application of the Optimized Nicholas Reaction Conditions to Amino Acids 

Next, the generality of these optimized reaction conditions was tested on 

hydroxyl-, sulfhydryl-, amino-, and carboxyl-containing amino acids: a class of 

compounds selected for their richness of functionality and the utility of propargylated 

peptides for biochemical applications.
296c, 339a, 351

 Unfortunately, when subjecting N-Boc-

L-serine methyl ester (7.9a) to the optimized reaction conditions, 7.10a was obtained in 

20% yield while 76% of the starting material 7.9a was recovered (Table 2, entry 1). 

Similarly, when N-Fmoc-L-serine methyl ester (7.9b) was subjected to the same 

conditions, 7.10b was isolated in 29% yield with 63% recovered 7.9b (entry 3). In both 

of these examples, 7.6a was fully consumed and the dimerized product of 7.6a was 

obtained, resulting from the propargylium cation reacting more readily with the hydroxyl 

group of 7.6a. To overcome this competing homodimerization reaction, Co2(CO)6-methyl 

propargyl ether 7.6b was examined.
348c

 Reaction of 7.9a with 7.6b afforded 7.10a in 97% 

yield (entry 2). The yield of 7.10b also increased significantly to 54% when using 7.6b 

(entry 4). Use of propargyl acetate for the synthesis of 7.10a and 7.10b gave yields 

comparable to those of 7.6a.  
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Next, we tested this method for the propargylation of cysteine thiols; a 

transformation typically accomplished using basic alkylation conditions.
220, 352

 Thiols 

react efficiently in the Nicholas reaction; however, application has been limited to the 

synthesis of sulfur-containing macrocycles.
348c, 353

 N-Acetyl- and N-Fmoc-L-cysteine 

ethyl ester (7.9c and 7.9d) were reacted with 7.6a, giving the corresponding Co2(CO)6-

alkynes 7.10c and 7.10d in high yields of 86 and 71% (entries 5 and 6). N-Fmoc cysteine 

7.9d was also reacted with 7.6b, which gave a comparable yield of 67% for 7.10d (entry 

7). 

To evaluate the phenolic side chain of tyrosine in the Nicholas reaction, N-Boc-L-

tyrosine methyl ester (7.9e) was reacted with 7.6a.
349a

 Two major products were 

observed; the desired product, 7.10e, was isolated in 45% yield (57% based on recovered 

7.9e) (entry 8), and an unstable byproduct was obtained in trace amounts. 
1
H NMR 

analysis of this byproduct revealed aromatic signals integrating for three protons, 

resulting from electrophilic aromatic substitution (7.19).
348c

 Because 7.9e was recovered 

along with complete consumption of 7.6a, 7.6b was tested. This reaction required a 

longer reaction time and did not improve the yield of 7.10e (23% yield, entry 9) due to 

Boc instability.
354

 When the N-Fmoc tyrosine ester 7.9f was reacted with complex 7.6a, 

7.10f was formed in 6% yield (56% based on recovered starting material) (entry 10). 

Employing 7.6b resulted in a significantly improved yield to 73% (entry 11). A 

byproduct, presumably formed by electrophilic aromatic substitution, was also observed 

by TLC for these reactions. 
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Table 7.3.1. Synthesis of alkyne modified amino acids (AA). 

 

entry AA-XH, 7.9 7.6
 time (h) 7.10, yield (%) 7.11, yield (%) 

1 

 

7.9a 

7.6a 1 7.10a, 20 

 

7.11a, 90 

2 7.9a 7.6b 1 7.10a, 97  

3 

 

7.9b 

7.6a 1 7.10b, 29 

 

7.11b, 90 

4 7.9b 7.6b 1 7.10b, 54  

5 

 

7.9c 

7.6a 2 7.10c, 86 

 

7.11c, 83 

6 

 

7.9d 

7.6a 0.75 7.10d, 71 

 

7.11d, 92 

7 7.9d 7.6b
c 2 7.10d, 67 

8 

  

7.9e 

7.6a 1 7.10e, 45 

 
 

7.11e, 75 

9 7.9e 7.6b 3 7.10e, 23 
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10 

 

7. 9f 

7.6a 1 7.10f, 6 

 

7.11f, 81 

11 7.9f 7.6b 1 7.10f, 73 

12 

 

7.9g 

7.6a 0.25 7.10g, 0 

 

7.11g
d 

  13 7.9g 7.6c 1.5 7.10g, 46 

14 

 

7.9h 

7.6c 1.5 7.10h, 59 

 

7.11h, 56 

15 

 

7.9i 

7.6a 2 7.10i, 60 

 

7.11i, 90 

16 7.9i 7.6c 2 7.10i, 18 

Nucleophilic group (-XH) of amino acid (AA) highlighted in red. 
a
Complexes 7.6a and 7.6b were 

formed in situ. 
b
BF3OEt2 is not used when using 7.6c. 

c
Use of isolated 7.6b gave highest yield. 

d
7.11g is unstable. 

 

Amino groups were tested by subjecting L-proline methyl ester (7.9g) to the 

Nicholas reaction with 7.6a. Consumption of 7.9g was observed by TLC within 15 min 

with no evidence of 7.10g (entry 12). We presume the BF3OEt2 coordinates with the 

nitrogen of proline. To circumvent this issue, the cationic propargylium ion was prepared 

as tetrafluoroborate salt 7.6c by reacting complex 7.6a with tetrafluoroboric acid in 

diethyl ether at 0 °C.
348b, 355

 Reaction of 7.6c with 7.9g in DCM at 0 °C afforded 

Co2(CO)6-alkyne 7.10g in 46% yield (entry 13). The primary amine of L-phenylalanine 

methyl ester (7.9h) also proved to be an effective nucleophile; when reacted with 7.6c, 

dialkylation afforded amine 7.10h in 59% yield (entry 14).  
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Carboxyl groups were also subjected to the Nicholas reaction conditions. Only a 

few examples of carboxyl groups serving as a nucleophile in the Nicholas reaction have 

been reported.
356

 Reaction of N-Bz-D-phenylalanine (7.9i) with 7.6a and BF3OEt2 

afforded Co2(CO)6-propargyl ester 7.10i in 60% yield (entry 15). Reaction of 7.9i with 

7.6c afforded a lower yield for 7.10i (18%, entry 16); thus, the utility of preformed 

propargylium salt is not necessarily general.  

Co2(CO)6-alkyne-modified amino acids 7.10a−i underwent oxidative 

decomplexation with CAN. Propargyl derivatives of serine, cysteine, tyrosine, and 

phenylalanine 7.11a−f,i were afforded in high yields (75−94%). A moderate yield of 56% 

was observed for the formation of dipropargylamine 7.11h (entry 14). Proline alkyne 

derivative 7.11g appeared to be unstable, permitting isolation and NMR characterization 

only once prior to decomposition (entry 12).  

To effect monoalkynylation of primary amines, an alternative tetrafluoroborate 

salt 7.12 was prepared from Co2(CO)6-2-methyl-3-butyn-2-ol (Scheme 7.3.1). Reaction 

of 7.12 with 7.9h afforded the monoalkynylated propargylamine 7.13 after oxidative 

decomplexation. 

 

 

Scheme 7.3.1. Reaction of 7.9h with BF4
-
 7.12. 
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7.4 Application of the Nicholas Reaction to Complex, Base-sensitive Small Molecules 

Finally, to show the synthetic utility of these conditions for base-sensitive, 

functionally dense molecules, we applied the Nicholas reaction conditions to two 

sesquiterpene analogues (Scheme 7.4.1). Base-sensitive guaianolide analogue 7.14, 

previously synthesized in the Brummond group,
237

 was reacted with 7.6a, formed in situ, 

and BF3OEt2 to give the Co2(CO)6-alkyne derivative in 46% yield. Reaction with CAN 

generated alkyne probe 7.15 in quantitative yield. 

 

 

Scheme 7.4.1. Synthesis of alkyne probes 7.15 and 7.17. 

 

Melampomagnolide B (MelB, 7.16) was used as a parthenolide mimic for 

conjugation to biotin via an ester linkage.
262a, 357

 However, these biotinylated compounds 

may have metabolic stability issues for in vivo biochemical experiments. Formation of 

the alternative ether linkage using the allylic alcohol handle has proven to be difficult; 

MelB is base-sensitive, and the allylic hydroxyl group was unreactive in our hands 

toward oxidation or bromination. Attempts to manipulate the allylic alcohol of MelB 

included use of PCC, PDC, Dess-Martin periodinane, and PBr3.  Reaction of MelB with 
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7.6a and BF3OEt2 afforded the corresponding Co2(CO)6-alkyne product after 1 h in 19% 

yield. A shortened reaction time of 10 min gave a 41% yield (45% yield based on 

recovered 7.16), suggesting the Co2(CO)6-alkyne product was unstable to the reaction 

conditions. Reacting 7.16 with 7.6b gave a 39% yield of the coupled product. Cobalt 

decomplexation afforded the MelB alkyne probe 7.17 in 94% yield. 

 

7.5 Conclusion 

The Nicholas reaction conditions described provide an acid-mediated alternative 

for propargylation of molecularly complex compounds. Reaction conditions were 

optimized for use of high-value nucleophiles as limiting reagents, a practice atypical for 

the Nicholas reaction. A number of functional groups acted as the nucleophilic species, 

including hydroxyl, sulfhydryl, carboxyl, and amino groups. For substrates that react 

slower than the competing dimerization of 7.6a, use of 7.6b improved yields. 

Propargylation of amino groups required the preparation of propargylium 

tetrafluoroborate salts. Mono- and dialkynylation of a primary amino group was achieved 

selectively depending on the steric nature of the propargylium ion. Bz, Cbz, Ac, and 

Fmoc amine protecting groups were all tolerated. Finally, these conditions provided an 

alternative propargylation strategy for base-sensitive sesquiterpene analogues. 

 

7.6 Experimental 

All commercially available compounds were used as received unless otherwise 

noted. Dichloromethane, diethyl ether, and tetrahydrofuran were purified by passing 

through alumina using a solvent purification system. Deuterated chloroform (CDCl3) was 

stored over 4 Å molecular sieves. BF3·OEt2 was used as received or redistilled under a 

nitrogen atmosphere. Dicobalt octacarbonyl (Co2(CO)8) was used as purchased and was 

stored at -20 ºC and opened only in a nitrogen filled glove box. Purification of 

compounds via manual flash column chromatography or with a CombiFlash Rf200 

instrument (Teledyne Isco) was performed using silica gel (40-63 μm particle size, 60 Å 

pore size) purchased from Sorbent Technologies or SiliCycle. TLC analyses were 
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performed on SiliCycle SiliaPlate G silica gel glass plates (250 μm thickness) or EMD 

Chemicals Silica Gel 60 F254 glass plates (250 μm thickness) and visualized by UV 

irradiation (at 254 nm) and KMnO4 stain. 
1
H NMR and 

13
C NMR spectra were recorded 

on Bruker Avance 300 MHz, 400 MHz, 500 MHz, or 600 MHz. Spectra were referenced 

to residual chloroform with or without 0.05% v/v TMS (7.26 ppm, 
1
H; 77.16 ppm, 

13
C). 

Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), bs (broad 

singlet), d (doublet), t (triplet), q (quartet), p (pentet), and m (multiplet). Coupling 

constants, J, are reported in hertz (Hz). All NMR spectra were obtained at room 

temperature.  IR spectra were obtained using a Nicolet Avatar E.S.P. 360 or a Perkin 

Elmer Spectrum 100 (NaCl plate) FT-IR. ESI mass spectrometry was performed on a 

Waters Q-TOF Ultima API, Micromass UK Limited or a Thermo Fisher OrbiTrap Velos 

high resolution mass spectrometer. 

 

General Procedures  

 

General Procedure A: Coordination of alkyne to cobalt carbonyl complex. A single-

necked, round-bottomed flask, equipped with a stir bar and a septum, was charged with 

dicobalt octacarbonyl (1 equiv) in a N2 filled glove box. The flask was transferred out of 

the glove box and the septum was pierced with a nitrogen inlet needle.  The flask was 

charged with dichloromethane, followed by the alkyne (1 equiv), dissolved in 

dichloromethane. The reaction stirred for 2 h, until evolution of CO gas, visible by small 

bubbles, was no longer observed. The contents were loaded directly onto a silica gel 

column for purification by flash column chromatography to afford the dicobalt 

hexacarbonyl complexed alkyne (Co2(CO)6-alkyne). 
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Dicobalt hexacarbonyl complexed propargyl alcohol (7.6a). Followed general procedure 

A: Dicobalt octacarbonyl (793 mg, 2.3 mmol, 1.3 equiv), dichloromethane (1.5 mL), 

propargyl alcohol (0.10 mL, 1.8 mmol, 1 equiv), dissolved in dichloromethane (2.5 mL). 

The reaction was stirred for 2 h. The silica gel flash column chromatography was run 

with a gradient of 10-20% ethyl acetate in hexanes to afford 615 mg of Co2(CO)6-

propargyl alcohol 7.6 in quantitative yield, as a dark red solid. 
1
H NMR (300 MHz, 

CDCl3) 6.08 (s, 1H), 4.81 (d, J = 6.0 Hz, 2H), 1.79 (t, J = 6.0 Hz, 1H) ppm. Melting 

Point: 48-52 °C. Rf = 0.28 (10% ethyl acetate in hexanes) Silica gel, visible (red). 

 

 

Dicobalt hexacarbonyl complexed 2-methyl-3-butyn-2-ol (7.18). Followed general 

procedure A: Dicobalt octacarbonyl (1.37 g, 4.0 mmol, 1.0 equiv), dichloromethane (15 

mL), 2-methyl-3-butyn-2-ol (344 mg, 4.0 mmol, 1 equiv), dissolved in dichloromethane 

(5 mL). The reaction was stirred for 2 h. The silica gel flash column chromatography was 

run with a gradient of 10-30% ethyl acetate in hexanes to afford 1.36 g of Co2(CO)6-2-

methyl-3-butyn-2-ol 7.18 in 92% yield, as a dark red solid. 
1
H NMR (300 MHz, CDCl3) 

6.03 (s, 1H), 1.71 (s, 1H), 1.59 (s, 6H) ppm. Impurities observed at 1.54, 1.27, 0.88 ppm. 

Melting Point: 37.9-40.1 °C. Rf = 0.26 (20% diethyl ether in hexanes) Silica gel, visible 

(red). 

 

 

Dicobalt hexacarbonyl complexed methyl propargyl ether (7.6b). Followed general 

procedure A: Dicobalt octacarbonyl (195 mg, 0.57 mmol, 1 equiv), dichloromethane (1.5 

mL), methyl propargyl ether (40 mg, 0.57 mmol, 1 equiv), dissolved in dichloromethane 

(3.0 mL). The reaction was stirred for 1.5 h. The silica gel flash column chromatography 

was run with a gradient of 0-2.5% diethyl ether in hexanes to afford 94 mg of Co2(CO)6-

methyl propargyl ether 7.6b in 45% yield, as a dark red oil. Drying under high vacuum 
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was not performed due to the volatility of the parent compound. 
1
H NMR (300 MHz, 

CDCl3) 6.06 (s, 1H), 4.60 (s, 2H), 3.49 (s, 3H) ppm. Rf = 0.59 (10% diethyl ether in 

hexanes) Silica gel, visible (red). 

 

 

General Procedure B: Formation of propargylium tetrafluoroborate salts. A flame-

dried 100 mL Schlenk flask equipped with a stir bar and septum was charged with either 

Co2(CO)6-propargyl alcohol 7.6a or Co2(CO)6-2-methyl-3-butyn-2-ol (7.18), dissolved in 

diethyl ether. The flask was cooled to -10 °C on an ice/acetone bath. Tetrafluoroboric 

acid (54% by weight solution in diethyl ether, 1.5 equiv) was added dropwise and the 

solution stirred for 2 h. Formation of a dark red precipitate was observed. The reaction 

was diluted with diethyl ether. The septum was replaced with a Schlenk filtration 

apparatus. The apparatus was inverted and partial vacuum was applied to separate the 

solid from the ether solution within the apparatus. The ether filtrate was removed via 

syringe and the crystals were dried under vacuum. The apparatus was transferred to the 

nitrogen filled glove box, where the crystals were isolated and stored.  

 

 

α-(Ethynyl)dicobalt hexacarbonyl carbonium tetrafluoroborate salt (7.6c).
358

 Follows 

General procedure B: Co2(CO)6-propargyl alcohol 7.6a (500 mg, 1.46 mmol, 1 equiv), 

diethyl ether (5 mL), tetrafluoroboric acid (356 mg of a 54% by weight solution in diethyl 

ether, 2.19 mmol, 1.5 equiv). The reaction was diluted with diethyl ether (20 mL) prior to 

filtration and drying which afforded 601 mg of salt 7.6c in 60% yield as a red solid. Due 

to sensitivity to water and air, the salt was stored in the glove box and used within 24 h of 

isolation for best results.  
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α-(Dimethylethynyl)dicobalt hexacarbonyl carbonium tetrafluoroborate salt (7.12). 

Follows General procedure B: Co2(CO)6-2-methyl-3-butyn-2-ol 7.18 (774 mg, 2.09 

mmol, 1 equiv), diethyl ether (10 mL), tetrafluoroboric acid (509 mg of a 54% by weight 

in diethyl ether, 3.14 mmol, 1.5 equiv). The reaction was diluted with diethyl ether (10 

mL) prior to filtration and drying which afforded 558 mg of salt 7.12 in 61% yield as a 

red solid. Due to sensitivity to water and air, the salt was stored in the glove box and used 

within 24 h of isolation for best results. 

 

General Procedure C: Nicholas Reaction Procedures 

 

 

General Procedure C1: Use of pre-made dicobalt hexacarbonyl complexed alkyne.  

A single-necked, round-bottomed flask equipped with a stir bar and a septum pierced 

with a needle was charged with dichloromethane (0.05 M), Co2(CO)6-propargyl alcohol 

7.6a or Co2(CO)6-methyl propargyl ether 7.6b (2 equiv), and the nucleophilic species (1 

equiv). The solution was cooled in an ice bath to 0 °C. Boron trifluoride diethyl etherate 

(2.5 equiv) was added dropwise and the reaction stirred until the nucleophile was fully 

consumed, or the reaction was no longer progressing, as determined by TLC. The 

reaction was quenched by the addition of saturated sodium bicarbonate. The mixture was 

transferred to a separatory funnel, the layers were separated and the aqueous layer was 

extracted with dichloromethane (3x). The combined organics were dried over magnesium 

sulfate, filtered, and concentrated under reduced pressure. The crude residue was purified 
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by silica gel flash column chromatography to afford the dicobalt hexacarbonyl 

complexed alkyne. 

 

 

General Procedure C2: In situ formation of dicobalt hexacarbonyl complexed 

alkyne. A single necked, round-bottomed flask, equipped with a stir bar and a septum 

was charged with dicobalt octacarbonyl (2 equiv) in a N2 filled glove box. The flask was 

transferred out of the glovebox and the septum was pierced with a nitrogen inlet needle. 

Either propargyl alcohol, methyl propargyl ether, or propargyl acetate (2 equiv), 

dissolved in dichloromethane (0.1 M), was added and the reaction stirred for 1.5 h until 

evolution of CO gas was no longer observed. The solution was cooled to 0 °C in an ice 

bath. The nucleophilic species (1 equiv) was dissolved in dichloromethane and added to 

the flask via syringe, followed by the dropwise addition of boron trifluoride diethyl 

etherate (2.5 equiv). The reaction stirred until the nucleophilic species was fully 

consumed, or the reaction was no longer progressing, as determined by TLC. The 

reaction was quenched by addition of saturated sodium bicarbonate. The mixture was 

transferred to a separatory funnel, the layers were separated, and the aqueous layer was 

extracted with dichloromethane (3X). The combined organic layers were dried over 

magnesium sulfate, filtered, and concentrated under reduced pressure rotary evaporation. 

The crude residue was purified by silica gel flash column chromatography to afford the 

dicobalt hexacarbonyl complexed alkyne. 
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General Procedure C3: Reaction of Tetrafluoroborate salts with nucleophiles. A 

single-necked, round-bottomed flask, equipped with a stir bar and a septum was charged 

with propargylium tetrafluoroborate salt 7.6c or 7.12 (1.3 equiv) in a nitrogen filled glove 

box. The flask was transferred out of the glove box and the septum was pierced with a 

nitrogen inlet needle. The flask was cooled to 0 °C in an ice and water bath. 

Dichloromethane was added followed by the amine nucleophile (1 equiv) dissolved in 

dichloromethane (0.05 M overall). The reaction stirred for 2 h or until complete as 

determined by TLC. The reaction was quenched by the addition of saturated sodium 

bicarbonate. The mixture was transferred to a separatory funnel; the layers were 

separated and the aqueous layer was extracted with dichloromethane (3x). The combined 

organics were dried over magnesium sulfate, filtered, and concentrated under reduced 

pressure rotary evaporation. The crude residue was purified by silica gel flash column 

chromatography to afford the dicobalt hexacarbonyl complexed alkyne. 

 

 

General Procedure D: Oxidative decomplexation of Co2(CO)6-alkynes. A single-

necked, round-bottomed flask, equipped with a stir bar and a septum pierced with a 

nitrogen inlet needle was charged with the dicobalt hexacarbonyl complexed alkyne (1 

equiv), dissolved in acetone (0.01 M).  The solution was cooled in an ice bath to 0° C. 

Ceric ammonium nitrate (5 equiv) was added to the flask in a single portion. The reaction 

stirred until complete as evidenced by TLC. The reaction was diluted with distilled water 

and diethyl ether. The mixture was transferred to a separatory funnel. The layers were 

separated and the aqueous layer was extracted with diethyl ether (3x). The combined 

organics were dried over magnesium sulfate, filtered, and concentrated under reduced 

pressure rotary evaporation. If necessary, the residue was purified by silica gel flash 

column chromatography to afford the alkyne. 
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Dicobalt hexacarbonyl complexed 3-methyl-5-(phenylethynyl)-4-(3-(prop-2-yn-1-

yloxy)butyl)dihydrofuran-2(3H)-one (7.7). Method A: Follows general procedure C1: 

Co2(CO)6-propargyl alcohol 7.6a (25 mg, 0.073 mmol, 2 equiv), alcohol 7.5 (10 mg, 

0.037 mmol, 1 equiv), dichloromethane (0.75 mL), and boron trifluoride diethyl etherate 

(12 µL, 0.93 mmol, 2.5 equiv) The reaction stirred for 4 h. The crude residue was 

purified by silica gel flash column chromatography (gradient of 5-10% ethyl 

acetate/hexanes) to afford 12 mg of 7 in 55% yield as a dark red/brown oil.  

Method B: Follows general procedure C2: propargyl alcohol (4 µL, 0.064 mmol, 2.2 

equiv), dichloromethane (0.36 mL), dicobalt octacarbonyl (20 mg, 0.058 mmol, 2 equiv), 

alcohol 5 (8 mg, 0.029 mmol, 1 equiv), dissolved in dichloromethane (0.25 mL), and 

boron trifluoride diethyl etherate (9 µL, 0.073 mmol, 2.5 equiv). The reaction stirred for 

3.5 h. The crude residue was purified by silica gel flash column chromatography 

(gradient of 5-10% ethyl acetate in hexanes) to afford 10 mg of 7 in 60% yield as a dark 

red/brown oil. The product was a 1:1 mixture of diastereomers that were inseparable by 

column chromatography. 
1
H NMR (500 MHz, CDCl3) 7.46-7.44 (m, 2H), 7.37-7.33 (m, 

3H), 6.01 (d, J = 4.5 Hz, 1 H), 4.79 (d, J = 9.0 Hz, 1H), 4.69 (dd, J = 13.0, 4.5 Hz, 1 H), 

4.51 (d, J = 13.0, 1H), 3.71-3.64 (m, 1H), 2.34-2.19 (m, 2H), 1.95-1.87 (m, 0.5H)*, 1.80-

1.61 (m, 3.5H), 1.33 (d, J = 6.8 Hz, 1.5H), 1.32 (d, J = 6.8 Hz, 1.5H)*, 1.24 (d, J = 3.6 

Hz, 1.5H), 1.23 (d, J = 6.3 Hz, 1.5H)* ppm.* Discernable signal for one of two 

diastereomers. 
13

C NMR (125 MHz, CDCl3) 199.8 (6C), 177.9, 131.9 (2C), 129.2, 128.5 

(2C), 121.9, 92.7, 87.9, 85.1, 75.2, 75.0*, 73.1, 71.3, 68.6, 51.2, 51.0*, 41.3, 34.5, 34.3*, 

27.8, 27.5*, 19.3, 14.6, 14.4* ppm. IR (thin film) 2971, 2934, 2094, 2052, 2022, 1784, 

1491, 1456, 1377, 1327, 1164, 1086, 992, 758, 691 cm
-1

. HRMS (FTMS + p ESI Full ms) 

[M+Na]
+ 

calc’d for C26H22O9Co2Na, 618.9820; found, 618.9807. Rf = 0.47 (20% ethyl 

acetate in hexanes) Silica gel, visible UV. 
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3-Methyl-5-(phenylethynyl)-4-(3-(prop-2-yn-1-yloxy)butyl)dihydrofuran-2(3H)-one 

(7.8).  Follows general procedure D: cobalt complex 7 (15 mg, 0.025 mmol, 1 equiv), 

acetone (3.0 mL), and ceric ammonium nitrate (69 mg, 0.13 mmol, 5 equiv) The reaction 

stirred for 30 min. The crude residue was purified by silica gel flash column 

chromatography (15% ethyl acetate in hexanes) to afford 8 mg of alkyne 7.8 in 97% yield 

as a clear oil. The product was a 1:1 mixture of diastereomers that were inseparable by 

column chromatography. 
1
H NMR (400 MHz, CDCl3) 7.46-7.43 (m, 2H), 7.36-7.33 (m, 

3H), 4.83 (d, J = 8.8 Hz, 1 H), 4.22 (dd, J = 15.6, 2.4 Hz, 0.5 H), 4.21 (dd, J = 15.6, 2.4 

Hz, 0.5 H)*, 4.122 (dd, J = 15.6, 2.4 Hz, 0.5H), 4.115 (dd, J = 15.6, 2.4 Hz, 0.5H)*, 3.74-

3.66 (m, 1H), 2.394 (t, J = 2.4 Hz, 0.5H), 2.387 (t, J = 2.4 Hz, 0.5H)*, 2.33-2.31 (m, 2H), 

1.92-1.83 (m, 0.5H)*, 1.77-1.67 (m 3.5H), 1.35 (d, J = 6.8 Hz, 1.5H), 1.34 (d, J = 6.8 Hz, 

1.5H)*, 1.19 (d, J = 6.0 Hz, 1.5H), 1.17 (d, J = 6.0 Hz, 1.5H)* ppm. 
13

C NMR (100 MHz, 

CDCl3) 177.9, 131.93 (2C), 131.91 (2C)*, 129.2, 128.6 (2C), 121.8, 87.9, 85.0, 80.4, 

74.1, 73.7, 73.1, 55.8, 55.7*, 51.0, 50.6*, 41.3, 34.2, 19.2, 14.7, 14.5* ppm.* Discernable 

signal for one of two diastereomers. IR (thin film) 3291, 2924, 2853, 2232, 1780, 1491, 

1457, 1166, 1076, 992, 759, 692 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for 

C20H23O3, 311.1642; found, 311.1631. Rf = 0.50 (30% ethyl acetate in hexanes) Silica 

gel, UV active. 

 

 

Co2(CO)6-N-[(1,1-dimethylethoxy)carbonyl]-O-(prop-2-yn-1-yl)serine methyl ester 

(7.10a). Method A. Follows general procedure C1: Co2(CO)6-propargyl alcohol 7.6a 
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(505 mg, 1.48 mmol), N-Boc-L-serine methyl ester 7.9a (150 mg, 0.74 mmol)
359

, 

dichloromethane (3 mL), and boron trifluoride diethyl etherate (230 µL, 1.85 mmol). The 

reaction stirred for 1 h. The crude residue was purified by silica gel flash column 

chromatography (gradient of 0-25% ethyl acetate in hexanes) to afford 78 mg of 7.10a in 

20% yield as a dark red/brown oil. 

Method B: Follows general procedure C2: Methyl propargyl ether (69.0 mg, 0.984 

mmol), dichloromethane (5 mL), dicobalt octacarbonyl (337 mg, 0.984 mmol), N-Boc-L-

serine methyl ester 7.9a (69.0 mg, 0.984 mmol), dissolved in dichloromethane (5 mL), 

and boron trifluoride diethyl etherate (152 µL, 1.230 mmol). The crude residue was 

purified by silica gel flash column chromatography (gradient of 10-25% ethyl acetate in 

hexanes) to afford 252.8 mg of 7.10a in 97% yield. 

Method C: Follows general procedure C2: Propargyl acetate (96.5 mg, 0.984 mmol), 

dichloromethane (5 mL), dicobalt octacarbonyl (337 mg, 0.984 mmol), N-Boc-L-serine 

methyl ester 7.9a (100.0 mg, 0.492 mmol), dissolved in dichloromethane (5 mL), and 

boron trifluoride diethyl etherate (150 µL, 1.230 mmol). The crude residue was purified 

by silica gel flash column chromatography (gradient of 10-25% ethyl acetate in hexanes) 

to afford 75.7 mg of 7.10a in 29% yield. 
1
H NMR (500 MHz, CDCl3) 6.02 (s, 1H), 5.35 

(d, J = 7.5 Hz, 1H), 4.64 (s, 2H), 4.49 (broad d, J = 8.5 Hz, 1H), 4.07 (d, J = 8.0 Hz, 1H), 

3.85 (d, J = 7.0 Hz, 1H), 3.74 (s, 3H), 1.45 (s, 9H) ppm. 
13

C NMR (125 MHz, CDCl3) 

199.3 (6C), 170.8, 155.5, 80.0, 72.0, 71.3, 71.0, 54.0, 52.5, 28.3 (3C), 27.3 ppm. IR (thin 

film) 3451, 2978, 2874, 2096, 2054, 2022, 1750, 1718, 1500, 1454, 1438, 1391, 1367, 

1347, 1298, 1248, 1207, 1165, 1110, 1062, 1021, 519, 494 cm
-1

. HRMS (FTMS + p ESI 

Full ms) [M+Na]
+
 calc’d for C18H19Co2NO11Na 565.9514 m/z; found 565.9500 m/z. Rf = 

0.50 (20% ethyl acetate in hexanes) Silica gel, visible UV. 
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N-[(1,1-dimethylethoxy)carbonyl]-O-(prop-2-yn-1-yl)serine methyl ester (7.11a). 

Follows general procedure D: cobalt complex 7.10a (68 mg, 0.13 mmol, 1 equiv), 

acetone (5 mL), and ceric ammonium nitrate (700 mg, 1.28 mmol, 10 equiv). The 

reaction stirred for 30 min. The crude residue was purified by silica gel flash column 

chromatography (gradient of 0-30% ethyl acetate in hexanes) to afford 28.3 mg of alkyne 

7.11a in 90% yield as a clear oil. 
1
H NMR (500 MHz, CDCl3) 5.35 (d, J = 8.0 Hz, 1H), 

4.45 (dd, J = 5.0, 3.0 Hz, 1H), 4.14 (d, J = 2.5 Hz, 2H), 4.08-3.85 (m, 1H), 3.77 (s, 3H), 

3.76 (m, 1H), 2.44 (t, J = 2.5 Hz, 1 H), 1.46 (s, 9H) ppm. 
13

C NMR (125 MHz, CDCl3) 

170.9, 155.5, 80.0, 78.8, 75.1, 69.7, 58.6, 53.8, 52.5, 28.3 (3C) ppm. IR (thin film) 3429, 

3297, 2951, 2922, 2851, 2341, 1748, 1717, 1501, 1462, 1440, 1388, 1366, 1300, 1248, 

1210, 1165, 1108, 1062, 1024 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+Na]
+
 calc’d for 

C12H19NO5Na 280.1155 m/z; found 280.1148 m/z. Rf = 0.31 (20% ethyl acetate in 

hexanes) Silica gel, potassium permanganate stain. 

 

 

Co2(CO)6-N-[((9H-fluoren-9-yl)methoxy)carbonyl]-O-(prop-2-yn-1-yl)serine methyl 

ester (7.10b). Method A. Follows general procedure C2: propargyl alcohol (65.7 mg, 

1.17 mmol), dichloromethane (10 mL), dicobalt octacarbonyl (400 mg, 1.17 mmol), N-

Fmoc-L-serine methyl ester 7.9b (200 mg, 0.59 mmol)
360

 and boron trifluoride diethyl 

etherate (200 µL, 1.46 mmol). The reaction stirred for 1 h. The crude residue was purified 

by silica gel flash column chromatography (gradient of 10-30% ethyl acetate in hexanes) 

to afford 114 mg of 7.10b in 29% yield as a dark red/brown sticky solid. 

Method B: Follows general procedure C2: Methyl propargyl ether (24.1 mg, 0.34 mmol), 

dichloromethane (5 mL), dicobalt octacarbonyl (117.4 mg, 0.34 mmol), N-Fmoc-L-serine 
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methyl ester 7.9b (58.6 mg, 0.172 mmol), dissolved in dichloromethane (0.4 mL), and 

boron trifluoride diethyl etherate (50 µL, 0.429 mmol). The crude residue was purified by 

silica gel flash column chromatography (gradient of 10-50% ethyl acetate in hexanes) to 

afford 61.9 mg of 7.10b in 54% yield. 

Method C: Follows general procedure C2: Propargyl acetate (57.4 mg, 0.586 mmol), 

dichloromethane (5 mL), dicobalt octacarbonyl (200.3 mg, 0.586 mmol), N-Fmoc-L-

serine methyl ester 7.9b (100.0 mg, 0.293 mmol), dissolved in dichloromethane (5 mL), 

and boron trifluoride diethyl etherate (90 µL, 0.73 mmol). The crude residue was purified 

by silica gel flash column chromatography (gradient of 10-25% ethyl acetate in hexanes) 

to afford 45.6 mg of 7.10b in 23% yield. 
1
H NMR (500 MHz, CDCl3) 7.77 (d, J = 7.5 Hz, 

2H), 7.60 (app t, J = 6.5 Hz, 2H), 7.41 (app t, J = 7.5 Hz, 2H), 7.32 (app t, J = 7.5 Hz, 

2H), 6.03 (s, 1H), 5.66 (d, J = 8.5 Hz, 1H), 4.66 (s, 2H), 4.59 (d, J = 8.0 Hz, 1H), 4.45-

4.41 (m, 1H), 4.34-4.30 (m, 1H), 4.25-4.23 (m, 1H), 4.13 (d, J = 9.0 Hz, 1H), 3.91 (br d, 

J = 3.5 Hz, 1H), 3.77 (s, 3H) ppm. 
13

C NMR (125 MHz, CDCl3) 199.4 (6C), 170.5, 

156.0, 143.9, 143.8, 141.3 (2C), 127.7 (2C), 127.07, 127.05, 125.23, 125.15, 120.0 (2C), 

90.2, 72.0, 71.2, 70.8, 67.3, 54.4, 52.7, 47.1 ppm. IR (thin film) 3450, 3069, 3038, 3016, 

2954, 2879, 2830, 2095, 2054, 2022, 1728, 1510, 1450, 1338, 1297, 1243, 1208, 1108, 

1085, 1059, 760, 741, 621, 519, 495 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+Na]
+
 

calc’d for C28H21Co2NO11Na 687.9657 m/z; found 687.9671 m/z. Rf = 0.41 (20% ethyl 

acetate in hexanes) Silica gel, visible UV. 

 

 

N-[((9H-fluoren-9-yl)methoxy)carbonyl]-O-(prop-2-yn-1-yl)serine methyl ester (7.11b). 

Follows general procedure D: cobalt complex 7.10b (41.1 mg, 0.06 mmol, 1 equiv), 

acetone (5 mL), and ceric ammonium nitrate (339 mg, 0.62 mmol). The reaction stirred 

for 30 min. The crude residue was purified by silica gel flash column chromatography 

(gradient of 0-40% ethyl acetate in hexanes) to afford 21 mg of alkyne 7.11b in 90% 
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yield as a clear oil. 
1
H NMR (500 MHz, CDCl3) 7.77 (d, J = 7.5 Hz, 2H), 7.62 (app t, J = 

7.0 Hz, 2H), 7.41 (app t, J = 7.5 Hz, 2H), 7.32 (app t, J = 7.0 Hz, 2H), 5.66 (d, J = 8.0 

Hz, 1H), 4.47-4.35 (m, 1H), 4.41 (m, 2H), 4.25 (t, J = 7.5 Hz, 1H), 4.17 (s, 2H), 4.01 (dd, 

J = 9.5, 3.0 Hz, 1H), 3.81 (dd, J = 9.5, 3.0 Hz, 1H), 3.80 (s, 3H), 2.44 (t, J = 2.0 Hz, 1H) 

ppm. 
13

C NMR (125 MHz, CDCl3) 170.6, 156.0, 143.9, 143.8, 141.31, 141.30, 127.7 

(2C), 127.1 (2C), 125.2, 125.1, 120.0 (2C), 78.8, 75.2, 69.5, 67.2, 58.6, 54.2, 52.7, 47.1 

ppm. IR (thin film) 3287, 3060, 3038, 3016, 2952, 2890, 2115, 1745, 1717, 1515, 1476, 

1465, 1450, 1341, 1298, 1240, 1210, 1106, 1084, 1059, 1032, 760, 741, 645, 621, 535 

cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+
 calc’d for C22H21Co2NO5 380.1493 m/z; 

found 380.1485 m/z. Rf = 0.22 (20% ethyl acetate in hexanes) Silica gel, visible UV. 

 

 

Dicobalt octacarbonyl complexed N-acetyl-S-(prop-2-yn-1-yl)cysteine ethyl ester (7.10c). 

Followed general procedure C2: Dicobalt octacarbonyl (107 mg, 0.31 mmol), propargyl 

alcohol (18 mg, 0.314 mmol) dissolved in dichloromethane (1.5 mL), N-acetyl-L-cysteine 

ethyl ester (7.9c) (30 mg, 0.16 mmol)
361

 in dichloromethane (1.5 mL), and BF3OEt2 (49 

µL, 0.39 mmol). The reaction was stirred for 2 h. The crude residue was purified by silica 

gel flash column chromatography (gradient of 10-30% ethyl acetate in hexanes) to yield 

70 mg of 7.10c in 86% yield, as a red oil. 
1
H NMR (300 MHz, CDCl3) 6.31 (d, J = 4.5 

Hz, 1H), 6.14 (s, 1H), 4.87-4.85 (m, 1H), 4.25-4.23 (m, 2H), 4.02-3.91 (m, 2H), 3.19 (dd, 

J = 13.5, 4.4 Hz, 1H), 3.06 (dd, J = 13.8, 4.7 Hz, 1H), 2.03 (s, 3H), 1.30 (t, J = 6.9 Hz, 

3H) ppm. 
13

C NMR (100 MHz, CDCl3) 199.5 (6 C), 170.8, 170.0, 92.0, 73.4, 62.2, 52.2, 

36.8, 34.7, 23.3, 14.3 ppm. IR (thin film) 3295, 2984, 2093, 2052, 2020, 1742, 1655, 

1543, 1374, 1208, 1032 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+Na]
+ 

calc’d for 

C16H15O9NCo2NaS, 537.9024; found, 537.9035. Rf = 0.55 (50% ethyl acetate in hexanes) 

Silica gel, visible UV. 
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N-acetyl-S-(prop-2-yn-1-yl)cysteine ethyl ester (7.11c). Followed general procedure D: 

dicobalt hexacarbonyl complexed alkyne 7.10c (23 mg, 0.045 mmol), acetone (4.0 mL), 

and ceric ammonium nitrate (99 mg, 0.18 mmol). The reaction was complete after 10 min 

of stirring. The work-up afforded 9 mg of alkyne 7.11c in 83% yield as a colorless oil. 

Further purification was not performed. 
1
H NMR (500 MHz, CDCl3) 6.42 (bs, 1H), 4.86 

(dt, J = 7.5, 5.0 Hz, 1H), 4.25 (q, J = 7.0 Hz, 2H), 3.31 (dd, J = 17.0, 2.5 Hz, 1H), 3.25-

3.21 (m, 2H), 3.14 (dd, J = 14.3, 5.3 Hz, 1H), 2.30 (t, J = 2.5 Hz, 1H), 2.08 (s, 3H), 1.31 

(t, J = 7.0 Hz, 3H) ppm. 
13

C NMR (125 MHz, CDCl3) 170.9, 170.3, 79.4, 72.1, 62.2, 

51.9, 33.9, 23.3, 20.0, 14.3 ppm. Impurity present at 29.8 ppm. IR (thin film) 3287, 2919, 

2850, 2361, 1739, 1660, 1539, 1374, 1213, 1028 cm
-1

. HRMS (FTMS + p ESI Full ms) 

[M+H]
+ 

calc’d for C10H16O3NS, 230.0845; found, 230.0846. Rf = 0.23 (50% ethyl acetate 

in hexanes) Silica gel, potassium permanganate. 

 

 

Dicobalt hexacarbonyl complexed N-(((9H-fluoren-9-yl)methoxy)carbonyl)-S-(prop-2-

yn-1-yl)-L-cysteine ethyl ester (7.10d). Method A: Followed general procedure C2: 

Dicobalt octacarbonyl (55 mg, 0.16 mmol), propargyl alcohol (9 mg, 0.16 mmol), 

dichloromethane (1.1 mL), N-Fmoc-L-cysteine ethyl ester (7.9d) (30 mg, 0.081 mmol) 

dissolved in dichloromethane (0.6 mL), and boron trifluoride diethyl etherate (25 µL, 

0.20 mmol). The reaction was stirred for 45 min. The crude residue was purified by silica 

gel flash column chromatography (gradient of 5-20% ethyl acetate in hexanes) to afford 

40 mg of 7.10d in 71% yield, as a red oil. 
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Method B: Followed general procedure C1: Co2(CO)6-methyl propargyl ether 7.6b (45 

mg, 0.13 mmol), dichloromethane (0.6 mL), N-Fmoc-L-cysteine ethyl ester (7.9d) (24 

mg, 0.063 mmol) dissolved in dichloromethane (0.6 mL), and boron trifluoride diethyl 

etherate (20 µL, 0.156 mmol). The reaction was stirred for 2 h. The crude residue was 

purified by silica gel flash column chromatography (gradient of 10-20% diethyl ether in 

hexanes) to afford 29 mg of 7.10d in 67% yield. 
1
H NMR (400 MHz, CDCl3) 7.77 (d, J = 

7.6 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H), 7.41 (app t, J = 7.6 Hz, 2H), 7.32 (app t, J = 7.6 

Hz, 2H), 6.13 (s, 1H), 5.66 (d, J = 7.6 Hz, 1H), 4.66 (dt, J = 7.6, 5.0 Hz, 1H), 4.44-4.35 

(m, 2H), 4.28-4.22 (m, 3H), 3.99 (s, 2H), 3.19 (dd, J = 14.0, 4.8 Hz, 1H), 3.09 (dd, J = 

14.0, 5.2 Hz, 1H), 1.32 (t, J = 7.2 Hz, 3H) ppm. 
13

C NMR (125 MHz, CDCl3) 199.5 (6 

C), 170.7, 155.9, 143.93, 143.86, 141.5 (2 C), 127.9 (2 C), 127.2 (2 C), 125.2 (2 C), 

120.2 (2 C), 92.1, 73.4, 67.5, 62.3, 53.9, 47.3, 36.9, 35.1, 14.3 ppm. IR (thin film) 3345, 

3070, 2923, 2094, 2053, 2023, 1726, 1507, 1450, 1339, 1204, 1052, 759, 741 cm
-1

. 

HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for C29H24O10NCo2S, 695.9779; found, 

695.9745. Rf = 0.36 (20% ethyl acetate in hexanes) Silica gel, visible UV. 

 

 

Ethyl N-(((9H-fluoren-9-yl)methoxy)carbonyl)-S-(prop-2-yn-1-yl)-L-cysteinate (7.11d). 

Followed general procedure D: Dicobalt hexacarbonyl complexed alkyne 7.10d (22 mg, 

0.032 mmol), acetone (3.5 mL), and ceric ammonium nitrate (69 mg, 0.13 mmol). The 

reaction was complete after 10 min of stirring. The work-up afforded 12 mg of alkyne 

7.11d in 92% yield as an off white oil. Further purification was not performed. 
1
H NMR 

(400 MHz, CDCl3) 7.77 (d, J = 7.4 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.41 (app t, J = 7.4 

Hz, 2H), 7.32 (app tt, J = 7.4, 1.2 Hz, 2H), 5.64 (d, J = 7.6 Hz, 1H), 4.65 (dt, J = 8.0, 5.2 

Hz, 1H), 4.46-4.38 (m, 2H), 4.28-4.23 (m, 3H), 3.32-3.22 (m, 2H), 3.22 (dd, J = 14.4, 4.8 

Hz, 1H), 3.14 (dd, J = 14.0, 5.6 Hz, 1H), 2.26 (t, J = 2.6 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H) 

ppm. 
13

C NMR (125 MHz, CDCl3) 170.8, 155.9, 144.0, 143.9, 141.5 (2 C), 127.9 (2 C), 

127.2 (2 C), 125.2 (2 C), 120.2 (2 C), 79.4, 72.1, 67.3, 62.2, 53.7, 47.3, 34.0, 20.1, 14.3 
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ppm. Trace impurity observed at 29.8 ppm. IR (thin film) 3291, 2924, 1723, 1517, 1450, 

1339, 1210, 1051, 760, 741 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for 

C23H24O4NS, 410.1421; found, 410.1424. Rf = 0.26 (20% ethyl acetate in hexanes) Silica 

gel, UV. 

 

 

Co2(CO)6-N-[(1,1-dimethylethoxy)carbonyl]-O-(prop-2-yn-1-yl)-L-tyrosine methyl ester 

(7.10e). Method A: Follows general procedure C2: propargyl alcohol (75.9 mg, 1.35 

mmol), dichloromethane (5 mL), dicobalt octacarbonyl (510 mg, 1.49 mmol), N-Boc-L-

tyrosine methyl ester 7.9e (200 mg, 0.68 mmol)
362

 and boron trifluoride diethyl etherate 

(210 µL, 1.70 mmol). The reaction stirred for 1 h. Both 7.10e and 7.19 were observed by 

TLC. The crude residue was purified by silica gel flash column chromatography (gradient 

of 10-40% ethyl acetate in hexanes) to afford 187 mg of 7.10e in 45% yield as a dark 

red/brown oil and no 7.19 was isolated. 

In a separate experiment, 7.10e was afforded in 32% yield and byproduct 7.19 was 

isolated in trace amounts. The 
1
H NMR of this sample of 7.19 is included in the Section 

7.7. Further characterization was not obtained due to small amounts. 

Method B: Follows general procedure C2: methyl propargyl ether (19 mg, 0.27 mmol), 

dichloromethane (2.0 mL), dicobalt octacarbonyl (93 mg, 0.27 mmol), N-Boc-L-tyrosine 

methyl ester 7.9e (40.0 mg, 0.135 mmol) and boron trifluoride diethyl etherate (42 µL, 

0.338 mmol). The reaction stirred for 3 h. Both 7.10e and 7.19 were observed by TLC. 

The crude residue was purified by silica gel flash column chromatography (gradient of 

15-30% ethyl acetate in hexanes) to afford 19 mg of 7.10e in 23% yield as a dark 

red/brown oil. Large amounts of baseline material was observed.  
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Data for 7.10e: 
1
H NMR (500 MHz, CDCl3): 7.05 (d, J = 7.0 Hz, 2H), 6.88 (d, J = 8.0 

Hz, 2H), 6.05 (s, 1H), 5.15 (s, 2H), 4.95 (bs, 1H), 4.55 (bs, 1H), 3.72 (s, 3H), 3.03 (m, 

2H), 1.42 (s, 9H) ppm. 
13

C NMR (125 MHz, CDCl3) 199.3 (6 C), 172.4, 157.3, 155.1, 

130.4 (2C), 128.6, 114.7 (2C), 89.5, 79.9, 71.7, 68.2, 54.5, 52.2, 37.5, 28.3 (3 C) ppm. 

Impurities seen at 129.7, 124.2, 28.8, 26.7. IR (thin film) 3445, 3368, 2979, 2956, 2929, 

2097, 2056, 1746, 1716, 1612, 1585, 1510, 1445, 1392, 1367, 1244, 1216, 1172, 1111, 

1059, 1018, 839, 779, 519, 497 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+Na]
+
 calc’d 

for C24H23Co2NO10Na 625.9878 m/z; found 625.9877 m/z. Rf = 0.44 (20% ethyl acetate 

in hexanes) Silica gel, visible, UV.  

Data for 7.19: 
1
H NMR (400 MHz, CDCl3) 6.95 (s, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.70-

6.62 (m, 1H), 6.07 (s, 1H), 4.91-4.87 (m, 1 H), 4.79-4.71 (m, 1H), 4.58-4.49 (m, 1H), 

4.10 (s, 1H), 3.72 (s, 3H), 3.08-2.92 (m, 2H), 1.43 (s, 9H) ppm. Rf = 0.26 (20% ethyl 

acetate in hexanes) Silica gel, visible UV. 

 

 

N-[(1,1-dimethylethoxy)carbonyl]-O-(prop-2-yn-1-yl)-L-tyrosine methyl ester (7.11e). 

Follows general procedure D: cobalt complex 7.10e (186 mg, 0.31 mmol, 1 equiv), 

acetone (10 mL), and ceric ammonium nitrate (1.7 g, 3.1 mmol, 10 equiv). The reaction 

stirred for 30 min. The crude residue was purified by silica gel flash column 

chromatography (gradient of 0-50% ethyl acetate in hexanes) to afford 73.4 mg of alkyne 

7.11e in 75% yield as a clear oil. 
1
H NMR (500 MHz, CDCl3) 7.05 (d, J = 8.5 Hz, 2H), 

6.90 (d, J = 8.5 Hz, 2H), 4.96 (br d, J = 8.0 Hz, 1H), 4.66 (d, J = 2.5 Hz, 2H), 4.59-4.49 

(m, 1H), 3.71 (s, 3H), 3.08-2.97 (m, 2H), 2.51 (t, J = 2.0 Hz, 1H), 1.41 (s, 9H) ppm. 
13

C 

NMR (125 MHz, CDCl3). 172.4, 156.7, 155.1, 130.3 (2C), 129.0, 115.0 (2C), 79.9, 78.6, 

75.5, 55.8, 54.5, 52.2, 37.5, 28.3 (3C) ppm. Impurities seen at 61.3, 37.7, 36.2, 19.6, 19.4, 

14.1. IR (thin film) 3368, 3288, 2977, 2956, 2929, 2868, 2121, 1743, 1712, 1611, 1586, 

1506, 1438, 1392, 1366, 1218, 1165, 1113, 1058, 1027, 924, 825, 644 cm
-1

. HRMS 
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(FTMS + p ESI Full ms) [M+H]
+
 calc’d for C18H24NO5 334.1649 m/z; found 334.1640 

m/z. Rf = 0.27 (20% ethyl acetate in hexanes) Silica gel, visible UV. 

 

Co2(CO)6-N-[((9H-fluoren-9-yl)methoxy)carbonyl]-O-(prop-2-yn-1-yl)-L-tyrosine 

methyl ester (7.10f). Method A. Follows general procedure C2: propargyl alcohol (27.0 

mg, 0.48 mmol), dichloromethane (5 mL), dicobalt octacarbonyl (164 mg, 0.48 mmol, 2 

equiv), N-Fmoc-L-tyrosine methyl ester 7.9f (100 mg, 0.24 mmol) and boron trifluoride 

diethyl etherate (74 µL, 0.60 mmol). The reaction stirred for 1 h. The crude residue was 

purified by silica gel flash column chromatography (gradient of 10-40% ethyl acetate in 

hexanes) to afford 22.3 mg of 7.10f in 6% yield as a dark red/brown sticky solid. 

Method B: Follows general procedure C2: Methyl propargyl ether (16.8 mg, 0.240 

mmol), dichloromethane (5 mL), dicobalt octacarbonyl (82.1 mg, 0.240 mmol), N-Fmoc-

L-tyrosine methyl ester 7.9f (50.0 mg, 0.120 mmol), dissolved in dichloromethane (5 

mL), and boron trifluoride diethyl etherate (40 µL, 0.300 mmol). The crude residue was 

purified by silica gel flash column chromatography (gradient of 10-50% ethyl acetate in 

hexanes) to afford 64.9 mg of 7.10f in 73% yield. 
1
H NMR (500 MHz, CDCl3) 7.78 (d, J 

= 7.5 Hz, 2H), 7.58 (s, 2H), 7.40-7.39 (m, 2H), 7.33-7.32 (m, 2H), 7.01 (d, J = 7.0 Hz, 

2H), 6.87 (d, J = 7.5 Hz, 2H), 6.05 (s, 1H), 5.23 (d, J = 7.5 Hz, 1H), 5.15 (s, 2H), 4.65 

(bs, 1H), 4.48-4.34 (m, 2H), 4.22 (bs, 1H), 3.75 (s, 3H), 3.08 (m, 2H) ppm. 
13

C NMR 

(125 MHz, CDCl3) 199.3 (6C), 171.9, 157.3, 155.5, 143.9, 143.8, 141.4 (2C), 130.4 (2C), 

128.3 , 127.7 (2C), 127.1 (2C), 125.1, 125.0, 120.0 (2C), 114.8 (2C), 89.4, 71.7, 68.2, 

66.9, 54.9, 52.4, 47.2, 37.3 ppm. IR (thin film) 3429, 3066, 3033, 2951, 2923, 2896, 

2852, 2096, 2054, 2022, 1724, 1610, 1583, 1510, 1449, 1347, 1242, 1213, 1177, 1033, 

757, 741, 518, 494 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+
 calc’d for 

C34H25Co2NO11 742.0164 m/z; found 742.0170 m/z. Rf = 0.50 (30% ethyl acetate in 

hexanes)
 
Silica gel, visible UV.
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N-[((9H-fluoren-9-yl)methoxy)carbonyl]-O-(prop-2-yn-1-yl)-L-tyrosine methyl ester 

(7.11f). Follows general procedure D: cobalt complex 7.10f (46.4 mg, 0.063 mmol), 

acetone (2 mL), and ceric ammonium nitrate (34.3 mg, 0.630 mmol). The reaction stirred 

for 30 min. The crude residue was purified by silica gel flash column chromatography 

(gradient of 0-50% ethyl acetate in hexanes) to afford 23.0 mg of alkyne 7.11f in 81% 

yield as a white solid. Melting Point: 94-95 °C. 
1
H NMR (500 MHz, CDCl3) 7.77 (d, J = 

7.5 Hz, 2H), 7.57 (app t, J = 7.0 Hz, 2H), 7.41 (app t, J = 7.0 Hz, 2H), 7.32 (app t, J = 7.0 

Hz, 2H), 7.01 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.0, 2H), 5.24 (d, J = 8.5 Hz, 1H), 4.66 (s, 

2H), 4.46 (dd, J =11.0, 7.0 Hz, 1H), 4.37-4.34 (m, 1H), 4.21 (t, J = 6.5, 1H), 3.74 (s, 3H), 

3.12-3.03 (m, 2H), 2.50 (s, 1H) ppm. 
13

C NMR (125 MHz, CDCl3) 171.9, 156.8, 155.5, 

143.9 (2C), 141.3 (2C), 130.4 (2C), 128.6, 127.7 (2C), 127.1 (2C), 125.1 (2C), 120.0 

(2C), 115.0 (2C), 78.2, 75.5, 66.9, 55.8, 54.8, 52.4, 47.2, 37.4 ppm. IR (thin film) 3286, 

2956, 2923, 2852, 2049, 2022, 1723, 1608, 1511, 1462, 1449, 1377, 1344, 1259, 1240, 

1218, 1177, 1108, 1051, 1026, 757, 741 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+
 

calc’d for C28H25NO5 456.1806 m/z; found 456.1793 m/z. Rf = 0.23 (30% ethyl acetate in 

hexanes) Silica gel, visible UV. 

 

 

Co2(CO)6-N-propargyl-L-proline methyl ester (7.10g). Follows general procedure C3: 

Tetrafluoroborate salt 6c (140 mg, 0.340 mmol), dichloromethane (5 mL), L-proline 

methyl ester 7.9g (57 mg, 0.442 mmol) dissolved in dichloromethane (1.8 mL). The 
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reaction stirred for 1.5 h. The crude residue was purified by silica gel flash column 

chromatography (gradient of 5-10% diethyl ether in hexanes) to afford 75 mg of cobalt 

complexed alkyne 7.10g in 46% yield as a red oil. 
1
H NMR (300 MHz, CDCl3) 6.05 (s, 

1H), 4.23 (d, J = 15.6 Hz, 1H), 3.97 (d, J = 15.3 Hz, 1H), 3.71 (s, 3H), 3.53 (dd, J = 8.1, 

5.1 Hz, 1H), 3.23-3.14 (m, 1H), 2.71 (q, J = 8.1 Hz, 1H), 2.13, 1.78 (m, 4H) ppm. 
13

C 

NMR (100 MHz, CDCl3) 199.9 (6C), 174.3, 91.8, 73.4, 64.2, 56.1, 52.8, 51.9, 29.4, 23.5 

ppm. IR (thin film) 2955, 2798, 2093, 2020, 1736, 1551, 1437, 1356, 1278, 1199, 1173 

cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for C15H14O8NCo2, 453.9378; 

found, 453.9361. Rf = 0.37 (20% diethyl ether in hexanes) Silica gel, UV, potassium 

permanganate. 

 

 

N-propargyl-L-proline methyl ester (7.11g). Followed general procedure D: Dicobalt 

hexacarbonyl complexed alkyne 7.10g (20 mg, 0.044 mmol), acetone (5.0 mL), and ceric 

ammonium nitrate (97 mg, 0.18 mmol). After 1 h of stirring, 7.10g remained, as 

evidenced by proton NMR. An additional amount of ceric ammonium nitrate (10 mg, 

0.018 mmol) was added and stirred for 20 min. The work-up afforded 5 mg of alkyne 

7.11g in 68% yield as a colorless oil. Further purification was not performed. 

Characterization via 
1
H NMR, 

13
C NMR, and HRMS was obtained; however, 7.11g 

appears to be unstable leading to decomposition and poor reproducibility of these data. 

1
H NMR (400 MHz, CDCl3) 3.74 (s, 3H), 3.61 (t, J = 2.4 Hz, 2H), 3.45 (dd, J = 8.8, 6.8 

Hz, 1H), 3.09-3.04 (m, 1H), 2.73 (td, J = 8.8, 7.6 Hz, 1H), 2.21 (t, J = 2.4 Hz, 1H), 2.19-

2.11 (m, 1H), 2.03-1.76 (m, 3H) ppm. 
13

C NMR (100 MHz, CDCl3) 174.3, 78.5, 73.3, 

62.7, 52.3, 52.2, 41.3, 29.8, 23.4 ppm. Impurity present at 30.5 ppm. HRMS (FTMS + p 

ESI Full ms) [M+H]
+ 

calc’d for C9H14O2N, 168.1019; found, 168.1013. 
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Bis(dicobalt hexacarbonyl) complexed N,N-di(prop-2-ynyl)-L-phenylalanine methyl ester 

(7.10h). Follows general procedure C3: Tetrafluoroborate salt 7.6c (46 mg, 0.11 mmol, 1 

equiv), dichloromethane (2 mL), L-phenyl alanine methyl ester 7.9h (20 mg, 0.11 mmol, 

1 equiv) dissolved in dichloromethane (0.3 mL). The reaction stirred for 1.5 h. The crude 

residue was purified by silica gel flash column chromatography (gradient of 2-20% 

diethyl either in hexanes) to afford 46 mg of cobalt complexed dialkyne 7.10h in 59% 

yield as a red oil. The yield was calculated using tetrafluoroborate salt 7.6c as the limiting 

reagent. 
1
H NMR (300 MHz, CDCl3) 7.31-7.22 (m, 3H), 7.17 (d, J = 7.2 Hz, 2H), 6.10 (s, 

2H), 4.41 (d, J = 15.9 Hz, 2H), 4.04-3.99 (m, 3H), 3.56 (s, 3H), 3.21 (t, J = 12.0 Hz, 1H), 

2.96-2.92 (m, 1H) ppm. 
13

C NMR (100 MHz, CDCl3) 199.7 (12C), 172.0, 137.3, 129.3 

(2C), 128.7 (2C), 126.9, 91.1 (2C), 73.8 (2C), 64.4, 55.1 (2C), 51.3, 36.5 ppm. IR (thin 

film) 2093, 3052, 2017, 1735, 1425, 1200, 1165 cm
-1

. HRMS (FTMS + p ESI Full ms) 

[M+H]
+ 

calc’d for C28H18O14NCo4, 827.8050; found, 827.8084. Rf = 0.48 (10% diethyl 

ether in hexanes) Silica gel, UV visible. 

 

 

N,N-di(prop-2-ynyl)-L-phenylalanine methyl ester (7.11h). Followed general procedure 

D: Dicobalt hexacarbonyl complexed dialkyne 7.10h (21 mg, 0.025 mmol, 1 equiv), 

acetone (4.0 mL), and ceric ammonium nitrate (111 mg, 0.20 mmol, 8 equiv). The 

reaction was complete after 20 min of stirring. The crude residue was purified using silica 

gel flash column chromatography (gradient of 15-30% diethyl ether in hexanes), which 

afforded 4 mg of alkyne 7.11h in 56% yield as an oil. 
1
H NMR (400 MHz, CDCl3) 7.30-

7.26 (m, 2H), 7.23-7.7.18 (m, 3H), 3.75 (t, J = 7.6 Hz, 1H), 3.68 (d, J = 2.4 Hz, 4H), 3.57 
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(s, 3H), 3.05 (d, J = 7.6 Hz, 2H), 2.25 (t, J = 2.4 Hz, 2H) ppm. 
13

C NMR (100 MHz, 

CDCl3) 172.1, 137.5, 129.3 (2 C), 128.6 (2 C), 126.8, 79.3 (2 C), 73.1 (2 C), 65.9, 51.5, 

40.1 (2 C), 36.5 ppm. IR (thin film) 3250, 2991, 2914, 2813, 2344, 1714, 1478, 1421, 

1347, 1199, 1153, 1112, 740, 692, 623 cm
-1

. HRMS  (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for C16H18O2N, 256.1332; found, 256.1335. Rf = 0.37 (20% diethyl ether in 

hexanes) Silica gel, UV, potassium permanganate. 

 

 

Dicobalt hexacarbonyl prop-2-yn-1-yl benzoylphenylalaninate complex (7.10i). Follows 

general procedure C2: propargyl alcohol (11 mg, 0.20 mmol), dichloromethane (1.1 mL), 

dicobalt octacarbonyl (69 mg, 0.20 mmol), N-benzoyl-D-phenylalanine (7.9i) (27 mg, 

0.10 mmol, 1 equiv), dissolved in dichloromethane (1.0 mL), and boron trifluoride 

diethyl etherate (32 µL, 0.26 mmol). The reaction stirred for 2 h. The crude residue was 

purified by silica gel flash column chromatography (10% ethyl acetate in hexanes) to 

afford 35 mg of 7.10i in 60% yield as a dark red oil. 
1
H NMR (400 MHz, CDCl3) 

7.72-7.70 (m, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.31-7.28 (m, 3H), 

7.17-7.15 (m, 2H), 6.55 (d, J = 7.2 Hz, 1H), 6.08 (s, 2H), 5.44 (d, J = 14.4 Hz, 1H), 5.24 

(d, J = 14.0 Hz, 1H), 5.18 (dt, J = 7.6, 5.6 Hz, 1H), 3.36 (dd, J = 14.0, 5.6 Hz, 1H), 3.27 

(dd, J = 14.0, 6.0 Hz, 1H) ppm. 
13

C NMR (125 MHz, CDCl3) 199.1 (6C), 171.5, 166.9, 

135.9, 134.0, 131.9, 129.5 (2C), 128.9 (2C), 128.8 (2C), 127.5, 127.2 (2C), 87.2, 72.4, 

66.8, 53.8, 38.0 ppm. IR (thin film) 3031, 2925, 2097, 2056, 2025, 1746, 1647, 1531, 

1487, 1178, 700 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+Na]
+ 

calc’d for 

C25H17O9NCo2, 615.9460; found, 615.9453. Rf = 0.34 (20% ethyl acetate in hexanes) 

Silica gel, visible UV. 
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Prop-2-yn-1-yl benzoylphenylalaninate (7.11i). Followed general procedure D: Dicobalt 

hexacarbonyl complexed alkyne 7.10i (20 mg, 0.034 mmol), acetone (2.5 mL), and ceric 

ammonium nitrate (75 mg, 0.138 mmol). The reaction was complete after 10 min of 

stirring. Reaction work up afforded 10 mg of pure alkyne 7.11i as a white sticky solid in 

90% yield. Purification by silica gel column was not performed. 
1
H NMR (400 MHz, 

CDCl3) 7.72-7.70 (m, 2H), 7.53-7.47 (m, 1H), 7.45-7.41 (m, 2H), 7.32-7.26 (m, 3H), 

7.19-7.17 (m, 2H), 6.53 (d, J = 7.6 Hz, 1H), 5.14 (dt, J = 7.6, 5.6 Hz, 1H), 4.82 (dd, J = 

15.6, 2.6 Hz, 1H), 4.73 (dd, J = 15.6, 2.6 Hz, 1H), 3.33 (dd, J = 13.8, 5.8 Hz, 1H), 3.27 

(dd, J = 13.8, 5.4 Hz, 1H), 2.54 (t, J = 2.4 Hz, 1H) ppm. Impurities seen at 1.43, 1.25, 

0.88 ppm. 
13

C NMR (125 MHz, CDCl3) 171.0, 167.0, 135.7, 134.0, 132.0, 129.6 (2C), 

128.83 (2C), 128.80 (2C), 127.5, 127.2 (2C), 75.8, 53.5, 53.0, 37.9, 29.8 ppm. IR (thin 

film) 3396, 3277, 3070, 2920, 2851, 2131, 1762, 1647, 1521, 1488, 1205, 1171 cm
-1

. 

HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for C19H17O3N, 308.1281; found, 

308.1282. Rf = 0.21 (20% ethyl acetate in hexanes) Silica gel, UV. 

 

 

Co2(CO)6-N-(1,1-dimethyl-3-propynyl)-L-phenylalanine methyl ester (7.20). Follows 

general procedure C3: Tetrafluoroborate salt 7.12 (77 mg, 0.18 mmol. 1.3 equiv), 

dichloromethane (2.5 mL), L-phenylalanine methyl ester 7.9h (24 mg, 0.14 mmol, 1 

equiv) dissolved in dichloromethane (0.5 mL). The reaction stirred for 40 min. The crude 

residue was purified by silica gel flash column chromatography (gradient of 5-20% 

diethyl either in hexanes) to afford 16 mg of cobalt complexed alkyne S7 in 23% yield as 

a red oil. 
1
H NMR (400 MHz, CDCl3) 7.29-7.17 (m, 5 H), 5.99 (s, 1H), 3.72 (dt, J = 7.6, 
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3.2 Hz, 1H), 3.62 (s, 3H), 2.92-2.81 (m, 2H), 1.90 (d, J = 8.4 Hz, 1H), 1.29 (s, 3H), 1.20 

(3H) ppm. 
13

C NMR (100 MHz, CDCl3) 200.1 (6C), 176.6, 137.6, 129.6 (2C), 128.4 

(2C), 126.8, 107.3, 72.2, 58.0, 56.7, 52.0, 41.9, 32.1, 30.9 ppm. IR (thin film) 2973, 2927, 

2092, 2050, 2019, 1739, 1455, 1194, 1172, 700 cm
-1

. HRMS (FTMS + p ESI Full ms) 

[M+H]
+ 

calc’d for C21H20O8NCo2, 531.9847; found, 531.9848. Rf = 0.35 (10% diethyl 

ether in hexanes) Silica gel, Visible, UV. 

 

 

N-(1,1-dimethyl-3-propynyl)-L-phenylalanine methyl ester (7.13). Followed general 

procedure D: Co2(CO)6-alkyne 7.20 (12 mg, 0.023 mmol), acetone (4.0 mL), and ceric 

ammonium nitrate (50 mg, 0.090 mmol). The reaction was complete after 20 min of 

stirring as indicated by consumption of S7, as evidenced by TLC. However, 7.13 was not 

visible by TLC until after the reaction work up. The crude residue was purified by silica 

gel flash column chromatography (10% diethyl ether in hexanes) which afforded 4 mg of 

alkyne 7.13 in 64% yield as an colorless oil. 
1
H NMR (400 MHz, CDCl3) 7.30-7.26 (m, 

2H), 7.23-7.19 (m, 3H), 3.73 (dd, J = 7.8, 6.4 Hz, 1H), 3.63 (s, 3H), 2.93 (dd, J =13.4, 6.4 

Hz, 1H), 2.84 (dd, J = 13.4, 7.8 Hz, 1H), 2.18 (s, 1H), 1.92 (bs, 1H), 1.31(s, 3H), 1.19 (s, 

3H) ppm. 
13

C NMR (100 MHz, CDCl3) 176.3, 137.5, 129.6 (2C), 128.4 (2C), 126.8, 88.5, 

70.1, 58.9, 51.7, 49.6, 41.4, 30.3, 29.6 ppm. IR (thin film) 3286, 3027, 2977, 2929, 2368, 

1736, 1458, 1438, 1196, 1171, 700 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d 

for C15H20O2N, 246.1489; found, 246.1478. Rf = 0.33 (20% diethyl ether in hexanes) 

Silica gel, UV, potassium permanganate. 
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Co2(CO)6-Ethyl N-(((9H-fluoren-9-yl)methoxy)carbonyl)-S-(1,1-dimethyl-3-propynyl)-

L-cysteinate (7.21). Follows general procedure C3: Tetrafluoroborate salt 7.12 (62 mg, 

0.14 mmol, 1.3 equiv), dichloromethane (1.5 mL), N-(((9H-fluoren-9-

yl)methoxy)carbonyl)-L-cysteine ethyl ester 7.9d (42 mg, 0.11 mmol, 1 equiv) dissolved 

in dichloromethane (0.8 mL). The reaction stirred for 2 h. The crude residue was purified 

by silica gel flash column chromatography (gradient of 15-30% diethyl ether in hexanes) 

to afford 42 mg of cobalt complexed alkyne 7.21 in 55% yield as a red oil. 
1
H NMR (400 

MHz, CDCl3) 7.77 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 

7.32 (t, J = 7.4 Hz, 2H), 6.23 (s, 1H), 5.59 (d, J = 7.6 Hz, 1H), 4.71-4.66 (m, 1H), 4.39 

(d, J = 7.2 Hz, 2H), 4.27-4.21 (m, 3H), 3.19-3.10 (m, 2H), 1.621 (s, 3H), 1.616 (s, 3H), 

1.30 (t, J = 7.2 Hz, 3H) ppm. 
13

C NMR (125 MHz, CDCl3) 199.8 (6C), 170.5, 155.8, 

144.0, 143.9, 141.5 (2C), 127.9 (2C), 127.2 (2C), 125.3 (2C), 120.2 (2C), 105.0, 73.1, 

67.4, 62.2, 53.6, 48.9, 47.3, 32.7 (2C), 32.4, 14.3 ppm. IR (thin film) 3338, 3070, 2979, 

2092, 2053, 2022, 1725, 1510, 1451, 1200, 1052, 759, 740 cm
-1

. HRMS (FTMS + p ESI 

Full ms) [M+NH4]
+ 

calc’d for C31H31O10N2SCo2, 741.0358; found, 741.0379. Rf = 0.18 

(20% diethyl ether in hexanes) Silica gel, visible, UV. 

 

 

N-(((9H-fluoren-9-yl)methoxy)carbonyl)-S-(1,1-dimethyl-3-propynyl)-L-cysteine ethyl 

ester (7.22). Followed general procedure D: Co2(CO)6-alkyne 7.22 (47 mg, 0.069 mmol), 

acetone (6.9 mL), and ceric ammonium nitrate (152 mg, 0.28 mmol). The reaction was 
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complete after 15 min of stirring. The crude residue was purified by silica gel flash 

column chromatography (20% diethyl ether in hexanes) which afforded 14 mg of alkyne 

7.22 in 46% yield as a colorless oil. 
1
H NMR (400 MHz, CDCl3) 7.77 (d, J = 7.6 Hz, 

2H), 7.63-7.58 (m, 2H), 7.40 (app t, J = 7.4 Hz, 2H), 7.30 (app t, J = 7.4 Hz, 2H), 5.65 (d, 

J = 8.0 Hz, 1H), 4.69 (dt, J = 8.0, 5.2 Hz, 1H), 4.44-4.37 (m, 2H), 4.27-4.21 (m, 3H), 

3.28-3.19 (m, 2H), 2.37 (s, 1H), 1.57 (s, 6H), 1.30 (t, J = 7.0 Hz, 3H) ppm. 
13

C NMR 

(100 MHz, CDCl3) 170.7, 155.9, 144.0, 143.9, 141.5, 141.4, 127.9 (2C), 127.2 (2C), 

125.3 (2C), 120.1 (2C), 87.8, 70.9, 67.3, 62.1, 53.6, 47.3, 38.7, 33.2, 30.79, 30.75, 14.3 

ppm. IR (thin film) 3292, 2976, 2925, 2365, 1719, 1509, 1449, 1339, 1208, 1051, 759, 

740 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for C25H28O4NS, 438.1734; 

found, 438.1725. Rf = 0.23 (30% diethyl ether in hexanes) Silica gel, UV, potassium 

permanganate. 

 

 

Dicobalt hexacarbonyl complexed 4-methoxy-3-methylene-9-phenyl-6-((prop-2-yn-1-

yloxy)methyl)-3a,5,7,9b-tetrahydroazuleno[4,5-b]furan-2,8(3H,4H)-dione (7.23). 

Follows general procedure C2: propargyl alcohol (5 mg, 0.091 mmol), dichloromethane 

(0.60 mL), dicobalt octacarbonyl (31 mg, 0.091 mmol), alcohol 7.14
363

 (16 mg, 0.045 

mmol), dissolved in dichloromethane (0.40 mL), and boron trifluoride diethyl etherate 

(15 µL, 0.11 mmol). The reaction was monitored by TLC and stirred for 2 h. The crude 

residue was purified by silica gel flash column chromatography (gradient of 10-30% 

ethyl acetate in hexanes) to afford 14 mg of 7.23 as a mixture of two diastereomers 

(2.1:1) in 46% yield as a dark red/brown oil. 
1
H NMR (400 MHz, CDCl3) 7.40-7.35 (m, 3 

H), 7.31-7.26 (m, 2 H), 6.34 (d, J = 3.6 Hz, 1 H)**, 6.24 (d, J = 3.2 Hz, 1 H)*, 6.09 (s, 1 

H), 5.86 (d, J = 3.2 Hz, 1 H)*, 5.78 (d, J = 9.6 Hz, 1 H)**, 5.47 (d, J = 3.2 Hz, 1 H)**, 

5.38 (d, J = 10.4 Hz, 1 H)*,   4.69 (d, J = 13.6 Hz, 2 H)*, 4.63 (d, J = 13.2 Hz, 2 H)**, 

4.33 (d, J = 12.4 Hz, 2 H)**, 4.25 (d, J = 12.8 Hz, 2 H)*, 4.10-4.05 (m, 1 H)**, 3.88-3.86 
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(m, 1 H)*, 3.51 (s, 3 H)*, 3.39 (s, 3H)**, 3.32-3.14 (m, 4 H), 2.52-2.41 (m, 1 H) ppm. 

13
C NMR (100 MHz, CDCl3) 201.4*(6C), 201.1** (6C), 199.6, 168.3**, 167.9*, 

162.2**, 161.5*, 144.0**, 143.0*, 137.2*, 135.0**, 134.4*, 133.6**, 131.6*, 130.72**, 

130.65*, 130.3**, 130.0*, 129.9**, 128.84**, 128.77*, 127.8**, 127.7*, 122.8**, 

122.2*, 90.7**, 90.6*, 81.8*, 75.7*, 74.7**, 73.6**, 73.4*, 73.3**, 71.9*, 71.6**, 

71.4**, 71.1*, 57.2**, 56.5*, 49.8*, 40.0**, 39.7*, 33.8**, 29.8**, 29.5* ppm. IR (thin 

film) 2927, 2829, 2372, 2093, 2051, 2022, 1773, 1702, 12.68, 1096, 1018, 697 cm
-1

. 

*Major diastereomer, **minor diastereomer. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for C30H23O11Co2, 676.9899; found, 676.9903. Rf = 0.26*, 0.22** (30% ethyl 

acetate/hexanes) Silica gel, Visible, UV.  

 

 

4-Methoxy-3-methylene-9-phenyl-6-((prop-2-yn-1-yloxy)methyl)-3a,5,7,9b-

tetrahydroazuleno[4,5-b]furan-2,8(3H,4H)-dione (7.15). Follows general procedure D: 

cobalt complex 7.23 (14 mg, 0.021 mmol, 1 equiv), acetone (1.5 mL), and ceric 

ammonium nitrate (68 mg, 0.12 mmol, 6 equiv). The reaction stirred for 15 min. The 

reaction afforded 9 mg of alkyne 7.15 as a mixture of two diastereomers (2.1:1) in 

quantitative yield as a colorless oil. The crude material was not purified further. 
1
H NMR 

(400 MHz, CDCl3) 7.38-7.35 (m, 3 H), 7.30-7.24 (m, 2 H), 6.36 (d, J = 3.2 Hz, 1 H)**, 

6.24 (d, J = 3.2 Hz, 1 H)*, 5.88 (d, J = 2.8 Hz, 1 H)*, 5.78 (d, J = 9.6 Hz, 1 H)**, 5.52 

(d, J = 3.2 Hz, 1 H)**, 5.38 (d, J = 10.4 Hz, 1 H)*, 4.23-4.16 (m, 4 H), 4.09-4.06 (m, 1 

H)**, 3.87-3.84 (m, 1 H)*, 3.51 (s, 3 H)*, 3.43 (s, 3 H)**, 3.38-3.12 (m, 4 H), 2.52-2.46 

(m, 2 H) ppm. 
13

C NMR (150 MHz, CDCl3) 201.5*, 201.3**, 168.3**, 167.9*, 161.9**, 

161.4*, 144.2**, 143.2*, 137.2*, 135.8**, 135.4*, 133.6**, 130.9*, 130.73**, 130.65*, 

129.93 (2C)*, 129.89 (2C)**, 129.7**, 128.9**, 128.8*, 127.80 (2C)**, 127.75 (2C)*, 

122.9**, 122.2*, 81.8*, 79.5*, 79.3*, 75.7*, 75.6**, 75.4*, 74.8**, 73.8**, 71.9**, 

71.5*, 57.8**, 57.4**, 57.2*, 56.5*, 49.8*, 49.7**, 40.0**, 39.7*, 30.0*, 29.7** ppm. 
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Minor impurities observed: 67.6, 34.2, 29.9, 24.0, 22.9, 14.3 ppm. *Major diastereomer, 

**minor diastereomer. IR (thin film) 3279, 2933, 2852, 2115, 1769, 1703, 1492, 1445, 

1269, 1134, 1095, 699 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for 

C24H23O5, 391.1540; found, 391.1525. Rf = 0.18 (40% ethyl acetate/hexanes) Silica gel, 

UV, potassium permanganate. 

 

 

Co2(CO)6-O-(prop-2-ynyl)-MelB (7.21). Method A: Follows general procedure C2: 

Propargyl alcohol (4 mg, 0.076 mmol), dichloromethane (0.5 mL), dicobalt octacarbonyl 

(26 mg, 0.076 mmol), Melampomagnolide B (MelB, 7.16)
250d

 (10 mg, 0.038 mmol), 

dissolved in dichloromethane (0.3 mL), and boron trifluoride diethyl etherate (12 µL, 

0.095 mmol). The reaction was quenched after 10 min of stirring despite a small amount 

of Mel B remaining in the reaction. The crude residue was purified by silica gel flash 

column chromatography (gradient of 10-20% ethyl acetate in hexanes) to afford 9 mg of 

7.21 in 41% yield as a dark red oil. 

Method B: Follows general procedure C2: Methyl propargyl ether (8 mg, 0.11 mmol), 

dichloromethane (0.8 mL), dicobalt octacarbonyl (39 mg, 0.11 mmol), Mel B (7.16) (15 

mg, 0.057 mmol), dissolved in dichloromethane (0.4 mL), and boron trifluoride diethyl 

etherate (18 µL, 0.14 mmol). The reaction was quenched after 40 min of stirring despite a 

small amount of Mel B remaining in the reaction. The crude residue was purified by 

silica gel flash column chromatography (gradient of 10-20% ethyl acetate in hexanes) to 

afford 13 mg of 7.24 in 39% yield. 
1
H NMR (400 MHz, CDCl3) 6.25 (s, 1H), 6.04 (s, 

1H), 5.67 (br s, 1H), 5.51 (s, 1H), 4.62 (d, J = 13.2 Hz, 1H), 4.53 (d, J = 12.8 Hz, 1H), 

4.25 (d, J = 11.2 Hz, 1H), 3.98 (d, J = 12.0 Hz, 1H), 3.86 (t, J = 9.6 Hz, 1H), 2.87-2.85 

(m, 2H), 2.43-2.31 (m, 4H), 2.22-2.15 (m, 2H), 1.67-1.64 (m, 1H), 1.55 (s, 3H), 1.12-

1.06 (m, 1H) ppm. 
13

C NMR (100 MHz, CDCl3) 199.6 (6C), 169.6, 139.1, 136.8, 129.4, 
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120.2, 91.1, 81.2, 73.8, 71.8, 70.3, 63.6, 60.2, 43.2, 36.9, 25.7, 24.3, 23.8, 18.1 ppm. IR 

(thin film) 2931, 2360, 2095, 2053, 2023, 1770, 1262, 1138, 1075, 995 cm
-1

. HRMS 

(FTMS + p ESI Full ms) [M+H]
+ 

calc’d for C24H23O10Co2, 588.9950; found, 588.9946. Rf 

= 0.19 (20% ethyl acetate in hexanes) Silica gel, visible, UV. 

 

 

O-(prop-2-ynyl)-Mel B (7.17). Followed general procedure B: Co2(CO)6-alkyne 7.24 (9 

mg, 0.015 mmol), acetone (1.5 mL), and ceric ammonium nitrate (34 mg, 0.061 mmol). 

The reaction was complete after 10 min of stirring. Reaction work up afforded 4 mg of 

pure alkyne 7.17 as a colorless oil in 94% yield. Further purification was not performed. 

1
H NMR (400 MHz, CDCl3) 6.24 (d, J = 3.6 Hz, 1H), 5.70-5.66 (m, 1H), 5.55 (d, J 

= 3.2 Hz, 1H), 4.18 (dd, J = 16.0, 2.4 Hz, 1H), 4.16 (d, J = 10.8 Hz, 1H), 4.08 (dd, J = 

16.0, 2.4 Hz, 1H), 3.90 (d, J = 11.6 Hz, 1H), 3.86 (t, J = 9.2 Hz, 1H), 2.96-2.82 (m, 1H), 

2.86 (d, J = 9.6 Hz, 1H), 2.53-2.45 (m, 1H), 2.44 (t, J = 2.4 Hz, 1H), 2.40-2.27 (m, 3H), 

2.22-2.14 (m, 2H), 1.68-1.62 (m, 1H), 1.55 (s, 3H), 1.14-1.07 (m, 1H) ppm. 
13

C NMR 

(125 MHz, CDCl3) 169.6, 139.2, 136.6, 130.4, 120.1, 81.3, 79.7, 74.8, 72.9, 63.6, 60.1, 

57.4, 43.1, 36.9, 25.9, 24.6, 23.9, 18.2 ppm. IR (thin film) 3274, 2921, 2850, 2112, 1764, 

1261, 1138, 1073, 993, 815 cm
-1

. HRMS (FTMS + p ESI Full ms) [M+H]
+ 

calc’d for 

C18H23O4, 303.1591; found, 303.1595. Rf = 0.20 (30% ethyl acetate in hexanes) Silica 

gel, UV, potassium permanganate. 
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