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Abstract 
 

Understanding the function-shape relationships of the primate masticatory 

apparatus has been a focus of anthropological research for many decades. One particular 

feature of the masticatory apparatus, mandibular symphyseal fusion, is investigated in 

this work because symphyseal fusion has the potential to provide important information 

on masticatory function and mandibular fragments are often preserved in the fossil 

record. Regardless of the attention this anatomical feature has received, a complete 

understanding of the underlying mechanisms driving the evolution of symphyseal fusion 

remains elusive. The research presented in this dissertation tackles this dilemma by 

investigating the functional, integrative, and ontogenetic elements of symphyseal fusion. 

Function and morphology are linked through innovative approaches using the burgeoning 

geometric morphometric toolkit to challenge previously held notions about mandibular 

symphyseal fusion and generate new hypotheses. Ultimately, this work acknowledges 

similar underlying mechanisms for symphyseal fusion in different primate lineages which 

were previously thought to be different, questions the utility of symphyseal fusion for 

reconstructing evolutionary relationships of primates, and finds potential evidence for the 

independent evolution of symphyseal fusion within the crown anthropoid clade. 
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1 Introduction 
 

 Primate craniofacial functional morphology has been a fruitful area of research 

for students of biological anthropology for many decades (e.g., Beecher, 1977; Bouvier, 

1986a,b; Cachel, 1984; DuBrul, 1977; DuBrul and Sicher, 1954; Hiiemae and Kay, 1972; 

Hylander, 1979b; Ravosa et al, 2000; Smith, 1978; Terhune et al., 2015; Vinyard et al., 

2008a; Walker and Murray, 1975). In particular, a significant focus has been placed on 

understanding how the function of the masticatory apparatus is reflected in cranial and 

mandibular form. Experimental research using electromyography and strain gauges in 

conjunction with theoretical hypotheses rooted in physics and Newtonian mechanics have 

provided a foundational understanding of how the skull, specifically the mandible, 

changes in size and shape in response to different loading regimes during food 

processing. The studies presented in this dissertation build on previous comparative 

analyses of functional morphology in unique and insightful ways by testing old 

hypotheses of craniomandibular form and generating new ones through the application of 

complex phenotypic descriptors of form and multivariate statistical methods. In 

particular, this work focuses on the appearance of an important feature in primate 

evolutionary history: the fusion or ossification of the mandibular symphysis. A brief 

overview of the general structure and function of the primate masticatory apparatus is 

pertinent for setting the stage for these analyses. 
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Figure 1.1: Features of the mandible demonstrated on a specimen of Pan troglodytes: posterior view 

(left), lateral view (right). 

 

1.1 OVERVIEW OF THE MASTICATORY APPARATUS 

1.1.1 Structure of the masticatory apparatus 

The primate head is comprised of multiple components that work together to 

process and ingest food. While the maxilla and mandible form the bony scaffolding of the 

masticatory apparatus due to the location of the dentition, other aspects of the cranium 

are important for the attachment of masticatory muscles and articulation of the mandible 

with the cranium. The mandible is composed of two main regions, the ramus and the 

corpus (Figure 1.1). Together these components make up the hemimandibles on each side 

of the jaw. The left and right corpora articulate anteriorly at the mandibular symphysis. 

Technically, the mandibular symphysis refers to the surfaces of the hemimandibles at the 

midline when they are unfused; however, it is commonly used to refer to the anterior 

region of the mandible beneath the lower central incisors (White et al., 2011). The shape, 

orientation, and structure of the symphysis vary by primate taxon or clade and are 

generally determined by masticatory function along with other factors (see Daegling, 
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2001). Typically, the most prominent features of the symphysis are two projections on 

the posterior surface, the superior and inferior transverse tori. Additionally, humans have 

a mental prominent on the inferior portion of the anterior surface. Primates exhibit 

variability in the degree of ossification of this joint, which is the main topic of this 

research. 

 

 

Figure 1.2 Diagram of a chimpanzee skull depicting the attachment sites of the temporalis (a), 

superficial (b: dashed line) and deep masseters (b: dotted line), lateral pterygoid (c: dotted line), and 

medial pterygoid muscles (c: dashed line). Arrows indicate the direction of muscle activity. 

 

Five muscles cause the primary movements of the mandible during mastication: 

temporalis, masseter, medial pterygoid, lateral pterygoid, and digastric. The temporalis, 

masseter, and medial pterygoid muscles create the largest forces during mastication. The 

temporalis muscle (Figure 1.2a) originates on the side of the neurocranium and inserts 

onto the coronoid process of the mandible. The fibers of the temporalis muscle are 

variably oriented with the anterior portion having vertical fibers anterior to the 

temporomandibular joint (TMJ) and the posterior portion having horizontal fibers behind 

the TMJ. The variability in fiber orientation allows the temporalis muscle to move the 

mandible in different directions. The entire muscle works to elevate (adduct) the 

mandible, whereas the anterior portion slightly protrudes and posterior portion retracts it. 
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The attachment of the temporalis muscle on the sides of the cranium can leave raised 

bony ridges called temporal lines, and when these converge at the midline of the cranium 

form a single, sagittal crest.  

The masseter muscle originates on the inferior aspect of the zygomatic bone and 

zygomatic arch and inserts onto the lateral aspect of the mandibular ramus and gonial 

angle. This muscle has both deep and superficial portions with differently oriented fibers 

(Figure 1.2b). The deep masseter, with transversely oriented muscle fibers, originates on 

the internal surface of the zygomatic arch and inserts on the lateral aspect of the 

ascending ramus. The superficial masseter has a more vertical and anterior orientation 

with an origination on the anteroinferior border of the zygomatic and insertion on the 

gonial angle. Together, these muscle parts work to elevate the mandible, but the deep 

portion also causes mediolateral translation (side-to-side) and superficial portion causes 

protrusion. 

The medial pterygoid muscle originates on the medial aspect of the lateral 

pterygoid plate and inserts on the medial aspect of the ramus and gonial angle to elevate 

the mandible and cause some mediolateral translation (Figure 1.2c). Together the medial 

pterygoid and masseter muscles form a sling around the gonial angle that, when fired 

together, strongly adduct the mandible with little mediolateral movement. 

The lateral pterygoid muscle originates from two locations but both insert onto the 

anterior surface of the condylar neck and fibrous capsule of the TMJ (Figure 1.2c). The 

inferior head is larger and originates on the lateral surface of the lateral pterygoid plate, 

and the superior head has an origin on the infratemporal surface and greater wing of the 

sphenoid. This muscle acts to protrude the mandible and stabilize the condyle in the TMJ.  
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The digastric muscle has two bodies connected by a tendon that runs through a 

connective tissue loop attached to the hyoid. The posterior body originates just medial to 

the mastoid process on the basicranium, and the anterior body inserts into the digastric 

fossa at the inferior, lingual aspect of the mandibular symphysis. When contracted, the 

digastric muscle is generally thought to depress and slightly retract the mandible if the 

infrahyoid muscles hold the hyoid bone in place. In addition, this muscle also raises the 

hyoid when the teeth are fixed in occlusion and the infrahyoid muscles are relaxed. Two 

other muscles, the geniohyoid and mylohyoid, similarly run from the base of the 

mandible to the hyoid and can potentially depress the mandible if the hyoid is stationary, 

but likely play a larger role in stabilizing the hyoid bone. For more detailed descriptions 

of the skeletal and muscular components of the masticatory apparatus, see White et al. 

(2011) and Hylander (2006). 

 

1.1.2 Jaw kinematics and chewing cycle 

Primates perform two main types of chewing: bilateral incision primarily with the 

anterior dentition (although canines and premolars can be used for this purpose) and 

unilateral mastication with the postcanine dentition. Both of these activities utilize 

different combinations of mandibular movements and muscle contractions that work to 

generate considerable forces at precise locations along the dental arcade; slight deviations 

from the intended chewing trajectory can be problematic. The left and right sides of the 

jaw mirror each other in activity for incision but act asymmetrically during unilateral 
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mastication. For the latter, it is important to consider the halves of the jaw separately, as 

either the working-side (chewing side) or balancing-side (non-chewing side).  

 

 

Figure 1.3: Diagram of the triplet organization of muscles and their force directions during the 

closing and power stroke stages of mastication. Black arrows represent the line of action for various 

masticatory muscles. Gray arrows represent movement of the mandible during each triplet. 

bs=balancing-side, ws=working-side, SM=superficial masseter, MP=medial pterygoid, PT=posterior 

temporalis (Modified from Ross and Iriarte-Diaz, 2014) 

 

Incision: Jaw movement during incision can be divided into three actions: opening, 

closing, and the power stroke (Hylander, 2006; Jankelson et al., 1953; Sheppard, 1964). 

Opening occurs through the depression of the mandible by the digastric muscles (and 

possibly mylohyoid and geniohyoid muscles) and anterior translation of the condyles by 

contractions of the inferior heads of the lateral pterygoid muscles. The closing stroke 

follows and is initiated bilaterally by the contraction of the jaw adductor muscles, 
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terminating when the anterior dentition contacts the food object. During the power stroke 

of incision, the mandibular incisors are elevated, through the food object, until they 

approach the apex of the maxillary incisors. At this point, the mandible is retracted to 

move the mandibular incisors along the lingual aspect of the maxillary incisors as they 

are elevated. All of the jaw adductor muscles contract more or less simultaneously and 

bilaterally during the incision power stroke (Hannam et al., 1977; Hylander and Johnson, 

1985; Moller, 1966). The lateral pterygoid muscles are also thought to be active during 

the power stroke to stabilize the TMJ (Hylander, 2006).  

Mastication: The jaw movements during mastication are partitioned into the same 

three stages as incision (Hiiemae and Kay, 1973; Hylander, 2006; Kay and Hiiemae, 

1974; Weijs, 1994). The combination of these three stages (opening, closing, and power 

stroke) constitutes a single chewing cycle during mastication. The number of chewing 

cycles in a sequence depends on the size and material properties of the food object. The 

opening stroke (or recovery stroke) abducts the jaw, brings the midline slightly to the 

balancing-side, and subsequently swings it back towards the working-side (Hiiemae and 

Kay, 1972; Weijs, 1994). This is achieved through the bilateral contraction of abductor 

jaw muscles and asymmetric contraction of the lateral pterygoid muscles with the activity 

of the working-side preceding the balancing-side (Hylander, 2006; Ross and Iriarte-Diaz, 

2014; Weijs, 1994).  

The closing stroke (or preparatory stroke) adducts the mandible, accompanied by 

anterior translation, and moves the working-side of the jaw first laterally then medially 

until the dentition contacts the food object. The adduction of the jaw into occlusion 

occurs in two steps. In the first step (triplet or diagonal I) the balancing-side superficial 
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masseter, balancing-side medial pterygoid, and working-side temporalis move the 

working-side of the jaw upward and laterally (Figure 1.3) (Hylander et al., 2005; Weijs, 

1994). The second step (triplet or diagonal II) activates the balancing-side temporalis, 

working-side superficial masseter, and working-side medial pterygoid muscles to bring 

the working-side jaw upward and medially until the teeth are in occlusion (Figure 1.3) 

(Hylander et al., 2005; Ross and Iriarte-Diaz, 2014; Weijs, 1994).  

The power stroke is divided into two phases and begins when the upper and lower 

dentition contact each other. During Phase I, the working-side dentition is moved 

upward, medially, and slightly anteriorly into centric occlusion. Conversely, the 

balancing-side dentition is moved upward, laterally, and slightly posteriorly (Hiiemae and 

Kay, 1972; 1973; Hylander, 2006; Kay and Hiiemae, 1974). The working-side dentition 

is moved out of occlusion during Phase II in a downward, medial, and anterior motion 

while maintaining occlusal contact (Hiiemae and Kay, 1972; 1973; Kay and Hiiemae, 

1974; Ross and Iriarte-Diaz, 2014). Alternatively, sometimes after Phase I, the jaw can 

abduct, and the dentition falls out of occlusion without the additional medial translation 

of Phase II (Hiiemae and Kay, 1972; 1973; Hylander, 2006). The adduction of the jaw 

until occlusion produces the highest amounts of muscle force during the chew cycle. The 

movements of the jaw and resulting muscle forces create stress and strain on certain 

aspects of the mandible during specific periods throughout the cycle. 

 While incisal activity certainly has an important role in food processing in 

primates, the analyses in this dissertation will focus on the relationship between unilateral 

mastication and mandibular symphyseal fusion. Greaves (1988; 1993) suggested that 

incision, particularly of small objects like seeds, may have played a role in the evolution 
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of mandibular symphyseal fusion in primates, but others have provided compelling 

arguments against this hypothesis (Ravosa and Hogue, 2004; Ravosa and Hylander, 

1993; 1994). Behavioral data indicate that the majority of primates with fused symphyses 

do not consume seeds or other small objects as a major part of their diet (see Fleagle, 

1988; Richard, 1985), and those that do often process small objects with the postcanine 

dentition (Happel, 1988; Hylander, 1975; Jolly, 1970). Additionally, there is little 

evidence from the fossil record to indicate that early anthropoids used incision to crush 

small seeds or objects (e.g., Kirk and Simons, 2001; Rosenberger, 1986; Simons and 

Rasmussen, 1996). Lastly, the presence of partial symphyseal fusion in primates with a 

tooth comb is problematic for hypotheses linking symphyseal fusion to incisal 

preparation of small, hard food objects (Ravosa and Hylander, 1994). Therefore, the 

following analyses will focus on the loading regimes and masticatory patterns employed 

during unilateral mastication to understand the evolution of mandibular symphyseal 

fusion in primates.  

    

1.2 METHODS OVERVIEW: GEOMETRIC MORPHOMETRICS 

Analyzing the size and shape of the mandible, and its associated components, is 

important for understanding the function of the masticatory apparatus. In the late 1980s 

and early 1990s, new methods for quantifying and analyzing shape were developed 

which helped to remedy some of the issues with traditional morphometrics. These new 

landmark-based methods (generally referred to as geometric morphometrics) relied on the 

use of two or three-dimensional landmarks quantified using Cartesian coordinates that 
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can be located at homologous locations across the data sample (see Bookstein, 1991; 

Rohlf and Marcus, 1993). The utilization of landmark coordinates, rather than linear 

distances or angles, as variables provides certain advantages including the preservation of 

the geometric properties of each specimen during statistical operations. This allows for 

the visualization of the shape change between two configurations through thin-plate 

splines and deformation grids. A visual representation of shape makes it possible to 

determine changes in spatial relationships among multiple variables rather than that 

having multiple linear measurements with no spatial orientation relative to one another. 

 

1.2.1 Procrustes superimposition 

The fundamental data used in a geometric morphometric analysis are a set of 

landmark configurations, one for each specimen or observation in the analysis. A 

landmark configuration consists of all of the coordinates of all of the landmarks 

measured. For example, a landmark configuration of 50 three-dimensional landmarks 

consists of 150 total coordinates. If the goal of geometric morphometric analyses is the 

study of shape, then all of the variance contained within raw landmark configurations that 

is unrelated to shape must first be removed. Kendall (1977) recognized shape as the 

information left over once variation due to location, scale, and rotational effects are 

removed. The most commonly used method to orient landmark configurations and 

remove extraneous information is a least-squares approach called Procrustes 

superimposition which minimizes the differences between configurations while 

maintaining their geometric properties (Gower, 1975; Rohlf and Slice, 1990). For most 
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analyses, including those presented here, the specific type of superimposition used is a 

generalized Procrustes analysis (GPA), which iteratively aligns more than two landmark 

configurations with the mean configuration (Gower, 1975; Rohlf and Slice, 1990; Slice, 

1996; 2001). There are three basic procedures for aligning configurations and generating 

shape variables. First, the centroids of each landmark configuration are translated to the 

origin to remove differences in location. The configurations are then scaled to a common 

unit size (a centroid size of one). At this point, each of the landmark configurations 

resides as a single point in preshape space (Rohlf, 1999; Slice et al., 1996). Lastly, the 

configurations are rotated iteratively based on a least-squares approximation to minimize 

the sum of squared Euclidean distances between homologous landmarks (Gower, 1975; 

Rohlf and Slice, 1990; Slice, 2001). The superimposed landmark configurations are now 

defined by shape coordinates, and the deviations of a specimen’s coordinates from the 

mean configuration (the average of all landmark configurations) are referred to as the 

Procrustes residuals (Slice et al., 1996). Lastly, the shortest distance between two 

landmark configurations (square root of the summed squared coordinate-wise 

differences) is typically called Procrustes distance (see Dryden and Mardia, 1998), and 

reflects the difference in shape of the landmark configurations (Kendall, 1984; Slice et 

al., 1996). 

After aligning the landmark configurations by GPA, the points representing each 

landmark configuration occupy the surface of a hyperhemisphere that approximates 

Kendall’s shape space (Rohlf, 1999; Slice, 2001). This space takes the form of a 

Riemannian manifold with kp-7 degrees of freedom for 3D landmarks, or kp-4 degrees of 

freedom for 2D landmarks, where k is the number of dimensions (2 or 3) and p is the 
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number of landmarks (Bookstein, 1991; Kendall, 1981; 1984; 1985; Mitteroecker and 

Huttegger, 2009; Slice, 2001). When the landmark configurations are not scaled to a 

common unit size in the Procrustes superimposition, the resulting space is referred to as 

form space (Dryden and Mardia, 1992; Goodall, 1991; Kendall, 1989; Rohlf, 1996). 

Statistical analyses can be carried out in form space or a variation of form space when 

both size and shape are important in the analysis (see Klingenberg, 2016; Mitteroecker et 

al., 2004a; 2005).  

Statistical analyses are often performed on the landmark configurations in shape 

space or in a linear Euclidean space tangent to the hyperhemisphere (typically 

constructed at the point of the mean configuration) (Rohlf, 1996; 1998; Slice, 2001). The 

Euclidean geometry of tangent space allows for meaningful interpretations of 

configurations or trajectories within the space (Huttegger and Mitteroecker, 2011; 

Mitteroecker and Gunz, 2009; Rohlf, 1996). However, when the variation in shape 

among configurations is small, it is possible to make a good linear approximation of the 

space for which standard multivariate methods are applicable (Kent, 1994; Rohlf, 1999). 

Marcus et al. (2000) demonstrated that the linear approximation of shape space by a 

Euclidean tangent space was sufficient for a variety of mammalian taxa. Therefore, it 

may be practical to determine whether the shape variation in one’s sample is sufficiently 

small for such an approximation, and this can be done by plotting Euclidean distances 

between all pairs of points in the tangent space against their Procrustes distances in shape 

space (Rohlf, 1999; 2002). An approximately linear relationship with a slope near 1 

demonstrates that shape variation is sufficiently small. When the variation among 

configurations is small, many prefer to apply the standard multivariate statistical analyses 
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to shape variables, ignoring the curvature of Kendall’s shape space since the relevant 

space closely approximates the linear tangent space (Rohlf, 1999; 2002).  

 

 

Figure 1.4: Depiction of symphyseal orientation of Cebus apella (left) and Propithecus verreauxi 

(right). Lateral views of the skulls are oriented based on the plane of the palate (black line). The 

symphyses for both specimens are outlined in black with the measurements of symphyseal height 

(dashed arrow) and symphyseal thickness (dotted arrow) as described by Ravosa (1991). 

 

1.2.2 Application of geometric morphometrics in this study 

 Geometric morphometric methods were chosen for this study because of the 

benefits provided through retention of geometric relationships among variables 

throughout the analysis. The vast majority of previous studies have relied on scaling 

relationships of linear measurements that have a theoretical functional relevance for 

interpreting mandibular functional morphology. Although these works are of fundamental 

importance, linear measurements are often unable to detect nuanced yet important 

changes in the shape or orientation of structures that might be functionally significant. 

One relevant example of this limitation is demonstrated by the shape and orientation of 

the mandibular symphysis in primates. Experimental studies have identified significant 

lateral transverse bending (or wishboning) during unilateral mastication where the 
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posterior aspects of the hemimandibles are pulled apart generating labial compression 

and lingual tension at the symphysis (Hylander, 1979a,b). The most efficient way to 

counter the stresses generated by this action is to increase the labiolingual thickness of 

the mandibular symphysis (Hylander, 1984; 1985; Vinyard and Ravosa, 1998). This is 

dependent in part, however, on the orientation of the mandibular symphysis. Anthropoids 

are generally known to have a more vertically oriented mandibular symphysis whereas 

strepsirrhines often have a more anteriorly inclined symphysis -- noting significant 

variation within each clade. Figure 1.4 demonstrates the orientation of the mandibular 

symphysis for an anthropoid (Cebus apella) and a strepsirrhine (Propithecus verreauxi). 

Many studies investigating the functional significance of the mandibular symphysis have 

used the measure of labiolingual thickness, described by Ravosa (1991) as the “greatest 

width measured orthogonal to symphyseal height,” as a proxy for the ability to resist 

wishboning stress generated at the symphysis (Figure 1.4). However, measuring 

labiolingual thickness could approximate resistance to different stresses depending on the 

orientation of the symphysis. If the symphysis is more vertically oriented (as in Cebus 

apella), labiolingual thickness would give an appropriate measure for resisting 

wishboning stress since labiolingual thickness is oriented more so in the anteroposterior 

plane. Conversely, the anteriorly inclined symphysis of Propithecus verreauxi aligns 

symphyseal height closer to the anteroposterior plane than labiolingual thickness. This 

would suggest that Ravosa’s (1991) measure of symphyseal height might provide a better 

indication of wishboning stress resistance than labiolingual thickness in Propithecus 

verreauxi. The application of geometric morphometric techniques remedies these 
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limitations by retaining the geometric shape and orientation of structures like the 

symphysis throughout the analysis. 

 There has been considerable debate concerning the appropriate metrics for 

studying interspecific scaling of biomechanical features of the masticatory apparatus. 

Some researchers have criticized the use of body mass or measures of overall size as 

“inappropriate” or “misleading” (e.g., Bouvier, 1986a; Hylander, 1985; 1988; 

Langenback and Weijs, 1990; Ravosa, 1990) for functional comparisons of craniofacial 

dimensions. Hylander (1985: 325) acknowledges the utility of body mass in allometric 

studies of limb morphology, but argues that “primates do not routinely transmit body 

weight or locomotor stress through their faces,” and suggests the use of moment arm 

approximations relative to bending moments on the mandible (e.g., mandibular arch 

length) as being more suitable for scaling analyses. However some researchers who have 

made this argument discuss their results in the context of body size when only comparing 

scaling dimensions within a functional complex and do not scale their metrics against an 

appropriate measure of overall size (e.g., Bouvier, 1986a,b; Ravosa, 1991, 1996). For 

example, in describing the scaling relationship of corpus height below M2 to palate 

length, Ravosa (1991) states that “larger-skulled” prosimians converge on the mandibular 

proportions of “similar-sized” anthropoids. Whereas palate length may be an appropriate 

dimension for interpreting biomechanical properties of the masticatory apparatus, it has 

not been shown in this analysis to appropriately reflect overall skull or body size, 

therefore making references to overall size inappropriate and contradictory to previous 

arguments. Smith (1993) clearly demonstrates the importance and utility of scaling 

measurements to both an overall size measure and another dimension within the same 
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functional system, but notes that interpretations must appropriately reflect what variables 

are scaled against. Whereas the latter may provide specific information on biomechanical 

adaptations, the former might provide information on how variables change with respect 

to the organism as a whole. 

 Some functional morphologists (see McNulty and Vinyard, 2015; Terhune et al., 

2015) have voiced concern about the application of geometric morphometrics for 

biomechanical analyses of the masticatory apparatus. These concerns stem primarily 

from the aggrandizement by practitioners of geometric morphometric methods of size 

removal accomplished through Procrustes superimposition; given the critical importance 

of “size” to analyses of function and adaptation, the removal of size from one’s data 

would seem to be contraindicated in biomechanical study. In fact, these types of 

questions can be addressed using geometric morphometric methods through multivariate 

regressions on centroid size or other variables (Klingenberg, 2016; Monteiro, 1999), 

utilizing the underappreciated Procrustes form space, or through a variety of other 

methods (e.g., Bookstein, 2015; Klingenberg, 1996; Mitteroecker et al., 2004). Likewise, 

the usage of centroid size in functional analyses has been scrutinized much the same way 

that body size was (McNulty and Vinyard, 2015; Vinyard, 2008). However, as argued by 

Smith (1993), functional analyses that utilize different scaling or size dimensions are 

necessary to understand the full adaptive context of morphology. The catch is that one 

needs to be mindful of the appropriate interpretations that can be made within each 

analysis.  Since primates transmit masticatory stress through the mandible from forces 

generated by muscles attached to the mandibular ramus and through tooth-tooth or tooth-

food interactions, centroid size of the mandible (or the natural logarithm of centroid size) 
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is an appropriate surrogate for the size of the masticatory apparatus, and used in the 

analyses presented here. 

 

1.3 IMPORTANCE OF RESEARCH ON MANDIBULAR SYMPHYSAL FUSION 

 Fusion of the mandibular symphysis has occurred numerous times throughout the 

evolutionary history of primates, although many clades that have independently evolved 

this feature have no living descendants. In the current distribution extant primates, 

symphyseal fusion is demonstrated by all anthropoids and some groups of strepsirrhines 

(e.g., indriids, Prolemur, and Hapalemur) while all other primate species retain the 

primitive configuration of two separate, unfused hemimandibles. As a confounding 

factor, the degree of symphyseal fusion varies in different clades: anthropoids have 

complete fusion whereas strepsirrhines only exhibit partial fusion. Additionally, 

anthropoids fuse early in ontogeny while strepsirrhines fuse during later stages of growth 

and development. These factors have led researchers to suggest that different mechanisms 

lead to symphyseal fusion in anthropoids in comparison to strepsirrhines (Ravosa, 1999; 

Ravosa and Hogue, 2004; Ravosa and Hylander, 1994). Nevertheless, symphyseal fusion 

is believed to be a response to adaptive shifts in masticatory loading regimes, and 

therefore provides information on masticatory adaptations in living and extinct primates. 

Additionally, some researchers have proposed that mandibular symphyseal fusion is a 

phylogenetically important feature in anthropoids and has been used to interpret 

evolutionary relationships of extinct stem and crown anthropoid taxa (Lockwood, 2007; 

Ravosa, 1999; Ravosa and Hogue, 2004; Scott et al., 2012a). 
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The research presented in this dissertation challenges previous ideas related to 

symphyseal fusion in primates by investigating the functional, integrative, and 

ontogenetic elements of fusion. In the first study, biomechanical data reflecting the 

loading regimes thought to underlie symphyseal fusion are leveraged to extract functional 

signals from mandibular landmark data with the goal of identifying the shape patterns 

associated with symphyseal fusion. This approach is particularly innovative for geometric 

morphometric studies, for which researchers typically try to append functional 

significance to distributions of shape variation, rather than exploiting functional data to 

extract directly relevant shape patterns. The second study evaluates previously untested 

hypotheses that purport to explain symphyseal fusion through broad, integrated changes 

in skull morphology. The last study presents the first comparative assessment of 

morphological variation associated with the ontogenetic timing of symphyseal fusion. 

Collectively, the results from these analyses contribute to new understandings of the 

functional underpinnings of symphyseal fusion in different primate lineages, and 

challenge the utility of symphyseal fusion for phylogenetic inference, thereby impacting 

how paleoanthropologists reconstruct the evolutionary relationships of extinct primates. 
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2 Function and fusion of the mandibular symphysis in 

living and extinct primates 

 

2.1 INTRODUCTION 

Mandibular symphyseal fusion is the ossification of the midline joint between the 

left and right halves of the mandible. Research on mammalian jaw morphology over the 

last century has acknowledged the variability of symphyseal structure and fusion in 

primates and across the mammalian clade (e.g., Beecher 1977; 1979; Geibel 1874-1883; 

Lonneberg, 1902; Martin, 1990; Scapino, 1965; 1981; Scott et al., 2012a,b; Szalazy and 

Delson, 1979; Tullberg, 1889; Weber, 1928). Although the degree of mandibular 

symphyseal fusion can change throughout the lifetime of an individual, the 

characterization of symphyseal fusion for a species is generally discussed in relation to 

the terminal state reached in adult forms: unfused, partially fused, and completely fused. 

In some cases, partial fusion has been divided into “simple partial fusion” and “complex 

partial fusion” which serves to demonstrate the continuous nature of this feature 

(Scapino, 1981; Scott et al., 2012b). Simple partial fusion is characterized by some 

ossification and simple rugosities while symphyses with complex fusion tend to have a 

greater degree of ossification and interlocking rugosities (Scapino, 1981; Scott et al., 

2012b). Mandibular symphyseal fusion is functionally significant because it is 

understood to be an adaptive response to changes in masticatory structure and function; 

however, researchers have attributed varying degrees of importance to symphyseal fusion 

for resolving phylogenetic relationships based on the clade in question and the degree of 
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ossification. Additionally, partial or complete fusion has evolved independently at least 

14 times throughout primate evolution and many more times across the mammalian clade 

(e.g., Crompton et al., 2010; Herring and Scapino, 1973; Ravosa and Hogue, 2004; 

Scapino, 1981; Scott et al., 2012a,b; Weijs and Dantuma, 1981; Weijs et al., 1989; 

Williams et al., 2007; 2008; 2009), calling into question its phylogenetic utility. In order 

to appropriately evaluate this feature in a phylogenetic context, it is important to 

understand the underlying mechanisms associated with fusion in different primate 

lineages. 

Two separate, unfused hemimandibles is the ancestral condition for primates and 

all mammals (see Ravosa and Hogue, 2004). Among living primates, all anthropoids 

exhibit complete fusion of the mandibular symphysis while most extant strepsirrhines and 

tarsiers retain a primitive, unfused mandibular symphysis (Figure 2.1). However, some 

extant strepsirrhines do exhibit a complex partial fusion (e.g., indriids and Prolemur) 

while others (primarily Hapalemur) have a simple form of partial fusion (Beecher, 1977; 

Scott et al., 2012b). Partial or complete symphyseal fusion has also evolved within a 

number of extinct primate groups including the omomyoids, adapoids, Malagasy 

subfossil lemurs, and stem anthropoids. The evolution of symphyseal fusion in 

anthropoids has been of particular interest over the last few decades in determining 

whether complete fusion is a homologous trait shared among platyrrhines and catarrhines 

or if it evolved independently in each lineage. The phylogenetic reconstructions of two 

extinct anthropoid taxa (i.e., oligopithecids and parapithecids) depend in part on the 

resolution of this question.  
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Figure 2.1: Phylogeny of extant primates showing the status of mandibular fusion in adult forms: 

unfused or simple partial fusion=open circles, complex partial fusion=gray circles, complete 

fusion=closed circles. Branch lengths are not to scale. 
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2.1.1 Masticatory activity and loading regimes 

Over the last few decades, Hylander and colleagues have constructed a body of 

experimental work to understand the basic functional underpinnings of primate 

mastication and the biomechanical factors driving mandibular symphyseal fusion in 

primates. Early work by Hylander (1977; 1979a; 1986) found that macaques and galagos 

exhibit similar amounts of peak working-side corpus strain during unilateral mastication, 

but only macaques have comparable amounts of balancing-side (BS) corpus strain. 

Therefore, macaques recruit greater balancing-side adductor muscle force than galagos, 

and as a result, different loading patterns are generated at the corpus and symphysis 

(Hylander, 1984). Since then, researchers have investigated the link between balancing-

side adductor muscle force recruitment and symphyseal fusion in primates, finding that 

all observed primates with complex partial and complete fusion recruit greater amounts 

of balancing-side muscle force (Hylander et al., 1992; 1998; 2000; 2004; 2005; 2011; 

Ross and Hylander, 2000; Vinyard et al., 2006; 2007; 2008), regardless of body size 

(Hylander et al., 1998). However, it is unclear whether the balancing-side muscle 

recruitment increases masticatory forces vertically, transversely (mediolateral), or both. 

Each muscle force direction would generate different stresses at the corpus and 

symphysis, and thus potentially affect mandibular morphology in different ways. 

 A greater recruitment of vertically oriented balancing-side muscle force would 

generate increased dorsoventral shear at the symphysis (Figure 2.2a) (Hylander, 1979a,b). 

During the power stroke of mastication, balancing-side jaw adductor activity elevates the 

balancing-side of the jaw while the working-side is held relatively stationary due to 

tooth-tooth or tooth-food contact which would create a shearing effect at the symphysis. 



23 

 

Dorsoventral shear is best countered by increasing the cross-sectional area of the 

symphysis, which is not dependent on the shape of the symphysis, or potentially by 

mandibular fusion (Hylander, 1984). Greater balancing-side vertical muscle force also 

increases parasagittal bending of the balancing-side corpus, which is best resisted by 

increasing corpus height. However, greater bite force on the working-side of the 

mandible generates direct dorsoventral shear of the working-side corpus posterior to the 

bite point (Hylander, 1984) which may confound interpretations of increased corpus 

height. However, corresponding changes in symphyseal dimensions would not be 

expected simply from larger working-side bite forces since forces are not transferred 

across the symphysis. 

 

 

 

 

Figure 2.2: Expected stress patterns at the symphysis due to dorsoventral shear (a), coronal bending 

associated with twisting of the corpora (b), and lateral transverse bending or wishboning (c). Muscle 

(m) and bite (b) forces are demonstrated with solid black arrows and predicted symphyseal stresses 

are shown by white arrows. Modified from Hylander, (1988). 
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 The corpora are twisted about the long axis during unilateral mastication (and 

incision) where the inferior corpus is everted and alveolar bone is inverted primarily from 

the muscle force resultant of the masseter muscle lateral to the mandible. This effect is 

exacerbated on the working-side of the jaw as the bite force has the opposite effect 

(Figure 2.2,b) (Hylander, 1979a,b; 1984).  The resulting axial torsion of the mandibular 

corpora also causes coronal bending of the symphysis with inferior tension and superior 

compression. The torsional loads experienced by the corpora are best countered by 

increasing buccolingual thickness, and coronal bending is most efficiently resisted 

through increasing the vertical depth of the symphysis (Hylander, 1979a,b; 1985). 

Recruitment of balancing-side muscle force that is transversely directed would 

generate greater wishboning (lateral transverse bending) stress at the symphysis by 

pulling the balancing-side of the jaw laterally while the bite force acts in the opposite 

direction causing labial compression and lingual tension at the symphysis (Figure 2.2c) 

(Hylander, 1979a,b). Increased labiolingual thickness of the symphysis, or possibly 

symphyseal fusion of the lingual portion of the symphysis, would best counteract 

increased wishboning (Hylander, 1984). Wishboning may also cause buccal compression 

and lingual tension along the corpus, resulting in a transversely thick mandibular corpus.  

Historically, researchers have argued that only crown anthropoids generate 

significant mediolateral jaw movement through the recruitment of balancing-side muscle 

force. This muscle activity would create significant wishboning stress and result in 

complete symphyseal fusion in this clade (Ravosa, 1999; Ravosa and Hogue, 2004). The 

partial or complete fusion of strepsirrhines and extinct primates outside of the crown 

anthropoid clade was instead attributed to recruiting vertically oriented balancing-side 
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muscle force to either maintain or increase bite force as a result of allometric constraints 

on muscle activity or dietary adaptations. Partial and complete fusion in non-anthropoid 

taxa has been seen as a response to dorsoventral shear created from recruiting vertically 

oriented balancing-side muscle force (Ravosa, 1999; Ravosa and Hogue, 2004).  

 Electromyography studies have additionally shown that extant primates with 

partial or complete fusion share peak muscle activity patterns during mastication that 

differ from primates with unfused symphyses (Hylander et al., 2000; 2002; 2004; 2005; 

2011; Ross and Hylander, 2000; Vinyard et al., 2006; 2007; 2008). During the closing 

stroke of the chew cycle, the masticatory muscles generally fire in two clusters: triplet I 

and triplet II (Hiiemae and Kay, 1972; 1973). The muscles in the first triplet (balancing-

side superficial masseter, balancing-side medial pterygoid, and working-side temporalis) 

work together to move the WS of the jaw laterally. Triplet II (working-side superficial 

masseter, working-side medial pterygoid, and balancing-side temporalis) brings the 

working-side of the jaw medially until the upper and lower dentition are in occlusion 

(Hiiemae and Kay, 1972; 1973). In this general model, studies have shown that primates 

with fused and unfused symphyses vary drastically in the peak activity timing of the 

balancing-side deep masseter muscle (and possibly balancing-side posterior temporalis 

muscle) (Hylander and Crompton 1986; Hylander and Johnson, 1994; Hylander et al., 

1987; 1992; 2000; 2002; 2004; Vinyard et al., 2006; 2008). The balancing-side deep 

masseter fires near the timing of triplet I in primates with unfused symphyses but at the 

end of triplet II in extant anthropoids and Propithecus (and presumably other indriids) as 

other muscle activity declines (Hylander et al., 2002; 2004; 2011; Vinyard et al., 2006; 

2008). Since the deep masseter muscle has a vertical and transverse orientation, the 
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delayed activity of the balancing-side component has been interpreted as creating 

transverse or mediolateral occlusal forces during the power stroke by pulling the 

balancing-side of the jaw laterally and generating wishboning stress at the symphysis. 

The delayed activity of the balancing-side deep masseter to create mediolateral 

movement of the jaw is referred to as the wishboning motor pattern (WMP) (Hylander 

and Johnson, 1994). This stress is not present (or at least not significant) in primates with 

unfused symphyses since the force of the balancing-side deep masseter is offset by other 

muscles firing around the same time (Hylander et al., 2000). Although only previously 

associated with anthropoids, the presence of the WMP in Propithecus suggests that this 

masticatory pattern is not confined to the crown anthropoid clade and has evolved 

convergently in other primate lineages. 

 

2.1.2 The function of mandibular symphyseal fusion 

Some researchers have argued that the degree of mandibular fusion is a 

proportional response to the stresses experienced at the mandibular symphysis during 

mastication (e.g., Ravosa and Hylander 1993; 1994). Hence, fusion has been considered 

an adaptation to strengthen the symphyseal region to prevent structural failure as forces 

are applied during different activities (Currey, 1984). Previous studies have supported 

this idea by demonstrating that mammals with fused symphyses recruit greater amounts 

of balancing-side muscle force and experience greater amounts of stress during 

mastication (Herring and Scapino, 1973; Huang et al., 1994; Hylander et al., 1992; 1998; 
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2000; 2004; 2005; 2011; Ross and Hylander, 2000; Vinyard et al., 2006; 2007; 2008; 

Weijs and Dantuma, 1981; Weijs et al., 1989).  

An alternative model proposes that the mandible fuses to stiffen the symphysis to 

resist deformation in response to applied forces, enabling the transfer of force across the 

bone. Studies that emphasize stiffness imply that the main function of bone is to remain 

rigid and not deform under load, with strength being of secondary importance (Currey, 

1984; Lieberman and Crompton, 2000). Some researchers initially argued that 

symphyseal fusion would provide stiffness to the mandible to transfer vertically oriented 

muscle force across the symphysis (Greaves, 1988; 1993; Scapino, 1981). However, 

Dessem (1985) showed that fused and unfused mandibles transfer vertically oriented 

forces equally well from balancing-side to working-side as fused mandibles. The 

ligamentous articulations in unfused strepsirrhine symphyses provide support for this 

interpretation, considering that the joint consists mostly of cruciate ligaments with a 

dorsoventral orientation that would provide stiffness in this plane (Beecher, 1977; but see 

Scapino, 1965). Other researchers subsequently emphasized the importance of 

symphyseal fusion for transferring muscle force from the balancing-side to working-side 

to aid in the transverse movement of the mandible (Crompton et al., 2008; Herring et al., 

2011; Lieberman and Crompton, 2000). Fused symphyses are more effective in 

transferring force in the transverse plane while an unfused symphysis allows for some 

independence of the hemimandibles and experiences less strain during mastication as 

stress dissipates in the symphyseal ligaments (Crompton et al., 2008; Herring and Mucci, 

1991; Lieberman and Crompton, 2000). Fusion would benefit mammals whose diets 

require a strong and efficient transverse component of intercuspal movement during 
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occlusion, but would not be necessary, or would be less advantageous, for mammals with 

primarily dorsally-oriented occlusal trajectories or teeth that require some degree of 

rotation during occlusion (Lieberman and Crompton, 2000). Consequently, bone would 

be deposited to resist the stresses generated at the symphysis due to the stiffness caused 

by fusion of the hemimandibles (Lieberman and Crompton, 2000).  

Lieberman and Crompton (2000) argue that this model is supported by 

comparative analyses of symphyseal fusion and occlusal orientation across several 

mammalian taxa. Generally, mammals with fused symphyses tend to have flatter occlusal 

surfaces which reflect the mediolateral direction of jaw movements during occlusion 

(Lieberman and Crompton, 2000). Additionally, goats and opossums, with unfused 

mandibles, have predominantly vertically-oriented tooth movements and maintain a 

nearly 1:1 working-side/balancing-side adductor muscle force ratio ― similar to 

macaques (Hylander et al., 1998; Lieberman and Crompton, 2000). This supports the idea 

that unfused symphyses transfer vertically-oriented muscle force as well as fused 

symphyses (Lieberman and Crompton, 2000).  

Ravosa and Hogue (2004), however, provide multiple arguments against the 

transverse stiffness model. In particular, they dismiss the assumptions that stiffness and 

rigidity are the primary function of bone, and that transverse muscle force can only be 

transferred adequately through a completely fused symphysis. However, Beecher’s 

(1977) analysis of symphyseal ligaments in strepsirrhines demonstrates that the ligaments 

present in unfused symphyses are oriented to transfer vertical rather than mediolateral 

muscle force. Cruciate ligaments oriented in the dorsoventral plane, commonly found in 

the unfused symphyses of strepsirrhines, reflect vertically oriented muscle force, whereas 
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transverse ligaments are associated with mediolateral muscle force and jaw movements 

but are only observed in indriids with partial fusion (Beecher, 1997). Lastly, Ravosa and 

Hogue (2004) additionally point to the lack of an explanation for partial fusion in the 

transverse stiffness model.  

These competing models for mandibular symphyseal fusion generate different 

predictions for symphyseal dimensions in fused and unfused mandibles. The stiffness 

model argues that fusion occurs primarily to create a rigid bony structure to transfer 

muscle force across the symphysis (Lieberman and Crompton, 2000). The lack of 

flexibility of the symphysis in transverse plane increases the wishboning stress produced 

at the lingual aspect of the symphysis, requiring a labiolingually thicker symphysis to 

accompany fusion (Lieberman and Crompton, 2000). In contrast, the strength model does 

not require correlated changes in the ossification and robusticity of the symphysis as 

fusion provides a strengthening of the symphysis against increased wishboning stress 

(Ravosa and Hogue, 2004). 

 

2.1.3 Symphyseal fusion in fossil lineages 

 Although mandibular symphyseal fusion has evolved independently in multiple 

primate lineages, some researchers have noted its importance in phylogenetic 

reconstruction, particularly near the base of the crown anthropoid clade (Kay et al., 1997; 

Lockwood, 2007; Ravosa, 1999; Ravosa and Hogue, 2004). The earliest basal 

anthropoids, including the eosimiids, exhibit the ancestral condition of having two 

separate, unfused hemimandibles (Beard et al., 1994; Fleagle, 1999; Kay et al., 1997; 
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Simons, 1992). A derived partially fused symphysis is present in some fossil taxa referred 

to Anthropoidea, including Catopithecus and Arsinoea, while others (e.g., parapithecids 

including Simonsius and Apidium) exhibit a state of complete symphyseal ossification 

with no sutural remnants (Kay et al., 1997; Ravosa, 1999; Simons, 1992). Putative fossil 

catarrhines (e.g., Aegyptopithecus and Propliopithecus) and platyrrhines (e.g., Branisella) 

also have completely fused symphyses along with all extant catarrhines and platyrrhines 

(Kay et al., 1997; Fleagle, 1999; Ravosa, 1999).  

   

 
Figure 2.3: Two models for the evolution of complete symphyseal fusion (noted by gray stars) in 

anthropoids. Modified from Ravosa (1999) 

 

Those who support the use of symphyseal fusion as an important character in 

phylogenetic reconstruction have argued that fusion in crown anthropoids is distinct and 

more complex relative to other instances of fusion, noting the underlying mechanisms 

rather than the final configuration as significant (Ravosa, 1999). As such, fusion in crown 

anthropoids (caused by significant wishboning stress) has been tied to a restructuring the 
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skull rather than an adaptation to a more mechanically demanding diet, which has 

historically been interpreted as the primary cause of fusion in other primate lineages 

(Ravosa, 1996; 1999; Ravosa et al., 2000). The presumed complexity of this feature in 

anthropoids has been used as supporting evidence for the singular evolution of an 

anthropoid-type symphyseal evolution prior to the common ancestor of catarrhines and 

platyrrhines, as it would be unlikely to evolve multiple times independently (Beard et al., 

1996; Kay et al., 1997; Ravosa, 1999). Note, however, that this interpretation excludes 

Catopithecus and other oligopithecids from the crown anthropoid clade (Figure 2.3a) and 

implies that the independent evolution of partial or complete fusion present in these stem 

anthropoids results primarily to resist increased dorsoventral shear stress as a possible 

dietary response rather than to resist wishboning stress (Ravosa, 1999). 

Alternatively, other researchers regard symphyseal fusion in crown anthropoids as 

no different from that found in other primate lineages (Seiffert and Simons, 2001; Simons 

and Rasmussen, 1996; Simons et al., 2001). From this perspective, Catopithecus and 

other oligopithecids are considered basal catarrhines due to the loss of the second 

premolar and shared postcranial features with other living and fossil catarrhines (Seiffert 

and Simons, 2001; Simons and Rasmussen, 1996; Simons et al., 2001). This phylogenetic 

reconstruction suggests that the last common ancestor of catarrhines and platyrrhines did 

not exhibit complete symphyseal fusion, implying that it evolved independently in each 

lineage (Figure 2.3b). These conflicting interpretations highlight the importance of 

understanding the mechanisms underlying symphyseal fusion in different primate 

lineages. 
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Outside of Anthropoidea, complete symphyseal fusion is believed to have evolved 

independently three times among the recently extinct subfossil lemurs within the 

Archaeolemuridae, Palaeopropithecidae, and Megaladapidae. All archaeolemurids and 

megaladapids have complete symphyseal fusion while only Palaeopropithecus and 

Archaeoindris of the palaeopropithecid clade have evolved complete fusion. Babakotia 

and Mesopropithecus retain complex partial fusion of the mandibular symphysis (Ravosa 

and Simons, 1994; Ravosa et al., 2007; Scott et al., 2012b). As sister taxa, indriids and 

palaeopropithecids would have likely shared a common ancestor with a partially fused 

symphysis. Due to the correlation of symphyseal fusion and dietary mechanical 

properties, the prevailing expectation is that fusion is a response to increased dorsoventral 

shear from the recruitment of vertical balancing-side adductor muscle to forcefully chew 

tougher or harder food items (Scott et al., 2012b).  

Complete and partial symphyseal fusion seen in certain adapoid and omomyoid 

lineages have also been attributed to resisting greater amounts of dorsoventral shear stress 

rather than wishboning, albeit based on different functional underpinnings (Ravosa, 

1996). Each family of adapoids (Adapidae, Notharctidae, and Sivaladapidae) has 

examples of taxa with unfused, partially fused, and completely fused symphyses (Gebo, 

2002; Ravosa, 1996). Most omomyoids retain unfused mandibular symphyses with some 

instances of partial fusion within the Omomyinae (Gebo, 2002; Ravosa, 1996). Unlike 

extant strepsirrhines and the recently extinct subfossil lemurs, symphyseal fusion does 

not appear to correlate with dietary mechanical demands in adapoids and omomyoids, but 

instead has been attributed to allometric effects on symphyseal stresses (Ravosa, 1996). 

The primary stress affecting symphyseal fusion is assumed to be dorsoventral shear rather 
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than wishboning due to the late ontogenetic timing of fusion observed in select adapoid 

and omomyoid species (Ravosa, 1996) and the notion that a partially ossified symphysis 

is poorly adapted to resisting wishboning stress (Ravosa, 1996).  

 

2.1.4 Study goals  

The first goal of this study is to provide a comparative assessment of masticatory 

function and mandibular shape across primates with fused, partially fused, and unfused 

mandibular symphyses, and to interpret these relationships in the context of strength and 

stiffness models for symphyseal fusion. These models provide specific predictions that 

are tested along with other confounding factors impacting mandibular and symphyseal 

morphology: 

Electromyography (EMG) activity and mandibular shape: Rather than simply 

interpreting differences in mandibular shape in a functional context, EMG variables 

describing masticatory activity patterns are used to extract shape variations related 

directly to function among extant primates with fused, partially fused, and unfused 

mandibular symphyses. 

Strength vs. stiffness hypotheses: If symphyseal fusion serves to strengthen the 

symphysis against increased stress levels, additional changes in symphyseal shape are not 

expected (Lieberman and Crompton, 2000). Therefore, similar-sized primates with fused 

and unfused symphyses are not expected to differ in symphyseal form. If symphyseal 

fusion serves to primarily stiffen the symphysis to transfer mediolaterally oriented forces 

from the balancing-side to the working-side of the mandible, symphyseal shape is 
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predicted to change in response to accompanying increases in stress levels at the 

symphysis (Lieberman and Crompton, 2000). Specifically, primates exhibiting greater 

dorsoventral shear stress are expected to have a greater symphyseal cross-sectional area 

and taller mandibular corpora resulting from parasagittal bending (Hylander, 1984); 

increased wishboning stress should result in labiolingually thicker symphyses and 

possibly buccolingually thicker corpora (Hylander, 1984).  

Additionally, other factors are expected to impact masticatory loading regimes 

that may provide insight into the strength and stiffness debate. Larger individuals have 

proportionately smaller cross-sectional areas of their masticatory muscles due to the 

negative allometric relationship between cranial size and jaw muscle size (Cachel, 1984) 

and therefore, are expected to recruit more vertically oriented balancing-side muscle 

force to generate equivalent bite forces (Ravosa, 1991; 1996). Greater balancing-side 

adductor recruitment should result in greater dorsoventral shear stress at the symphysis 

and parasagittal bending of the corpus, resulting in a relatively larger symphyseal area 

and deeper corpora in larger individuals. If an unfused symphysis transfers vertically 

oriented forces as efficiently as a fused symphysis (Dessem, 1985), this pattern would be 

expected in both anthropoids and strepsirrhines. However, if this pattern is observed in 

anthropoids but not unfused strepsirrhines, then a fused symphysis may provide the 

stiffness necessary to transfer vertically oriented muscle force across the symphysis 

whereas an unfused symphysis does not (Greaves, 1988; 1993; Scapino, 1981). 

 Since the mandible is modeled as a curved beam, symphyseal curvature is an 

important factor in the production of wishboning stress at the symphysis. A symphysis 

that is more curved in the transverse plane would result in elevated stress concentrations 
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along the lingual aspect of the symphysis during mediolateral mandibular movements 

(Hylander, 1984; 1985; 1988; Ravosa and Vinyard, 2002; Vinyard and Ravosa, 1998). In 

anthropoids (and other primates with symphyseal fusion), greater symphyseal curvature 

is expected to correlate with a labiolingually thicker symphysis (or more horizontal 

symphyseal orientation) to resist increased wishboning stress. Increased symphyseal 

curvature is not expected to result better wishboning resistance in strepsirrhines lacking 

mandibular fusion due to the inefficient transfer of mediolateral force across an unfused 

symphysis (Lieberman and Crompton, 2000).  

The second goal of this study is to make inferences about masticatory function in 

fossil primates based on the comparative assessment of extant primates. If significant 

shape-function relationships are demonstrated in extant primates, the extracted shape 

vectors can be used to estimate masticatory function based on mandibular shape in 

extinct taxa. Additionally, this has the potential to help identify the functional factors 

driving symphyseal fusion in different extinct primate lineages.  

  

2.2 MATERIALS AND METHODS 

  The specimens for this study included mandibles from 35 extant and 10 extinct 

primate species sampling widely across the primate clade. Table 2.1 provides sample 

sizes for each taxon. Most specimens were scanned using a Breuckmann SmartSCAN 

white light scanner to collect a series of surface scans for each specimen. Geomagic 

Design X software was used to clean, align, and merge the resulting scans to create 3D 

models. Other specimens were acquired as 3D models from the Smithsonian 3D primate 
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collection or as .tiff stack images output from μCT scans generously contributed by Dr. 

CJ Vinyard. Final 3D surface models of the .tiff stacks were generated using Checkpoint 

software (Stratovan Corporation, Davis, CA). 

 The fossil specimens from both anthropoid and strepsirrhine clades included in 

this analysis all exhibit partial or complete mandibular fusion. The fossil anthropoids 

consist of putative stem catarrhines (Aegyptopithecus zeuxis and Epipliopithecus 

vindobonensis), stem anthropoids (Simonsius grangeri and Apidium phiomense), as well 

as Catopithecus browni with uncertain affinities to the crown anthropoid clade. Of these 

specimens, all have complete symphyseal fusion except the partially fused mandible of 

Catopithecus. Four subfossil lemur species were sampled for this analysis, two with 

complete fusion (Megaladapis edwardsi and Archaeolemur majori) and two with 

complex partial fusion (Mesopropithecus dolichobrachion and Babakotia radolfilai). 

Lastly, two specimens of Notharctus tenebrosus with complete symphyseal fusion were 

included in the analysis to represent the notharctine clade of adapoids. 

 A total of 196 three-dimensional landmarks and semilandmarks (Table 2.2, Figure 

2.4) were collected for each extant primate mandible using Checkpoint software 

(Stratovan Corporation, Davis, CA). A reduced set of 51 three-dimensional landmarks 

and semilandmarks were collected on the fossil primate mandibles to represent the 

aspects of morphology shared among all specimens (i.e., the mandibular condyle, corpus, 

and symphysis). Fossil specimens preserving only the left side of the mandible were 

reflected to create all right-sided specimens. The landmark configurations for extant taxa 

were reduced to match those collected for fossil specimens. Missing landmarks for extant 



37 

 

specimens were estimated in the Geomorph package in R (Adams and Otarola-Castillo, 

2013) using a thin plate spline approximation for each taxon separately.  

The raw landmark configurations contain information other than shape (i.e., size, 

orientation, and location) that must be removed before they can be analyzed. This 

variation was removed using a generalized Procrustes analysis (Gower, 1975; Rohlf and 

Slice, 1990) performed with the Geomorph package in R (Adams and Otarola-Castillo, 

2013), separately for both the full and reduced landmark sets. During superimposition, 

semilandmarks were allowed to slide along tangents to the curves in order to minimize 

bending energy (Bookstein, 1997; Gunz et al., 2005). The alternative method of 

minimizing Procrustes distance across all specimens (see Gunz and Mitteroecker, 2013) 

was not used as it resulted in semilandmarks sliding past each other. Semilandmarks were 

placed in relatively high density to best approximate the local curvature as the 

semilandmarks are slid along tangents to the curves. 

Additional linear measurements were calculated from landmark coordinates to 

specifically address factors driving variation in symphyseal form. Mandibular length 

(ML) was calculated as the distance between the posterior condyle and infradentale 

(Table 2.2, Figure 2.4: M4-M20). Mandibular width (MW) was calculated as the bilateral 

distance between left and right M1 (Table 2.2, Figure 2.4: M10-M10). The curvature of 

the symphysis (SC) was calculated by dividing mandibular length by mandibular width 

(SC=ML/MW), where symphyseal curvature increases as the value increases. Centroid 

size (CS) was calculated for all of the mandibular landmarks and again for only the 

landmarks of the symphyseal outline. The centroid size of the whole mandible was used 
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as a proxy for overall size of the masticatory apparatus while the centroid size of the 

symphysis was calculated specifically as a measure of symphyseal size.  

 

 

 

 



39 

 

Table 2.1: Extant (a) and fossil (b) taxa used in this study. State of symphyseal fusion designated as 

fused, complex partial, simple partial, or unfused. 
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The first goal of this study was to analyze the relationship between mandibular 

morphology and variation in masticatory muscle activity. To accomplish this, a 2-block 

partial least squares analysis was employed to find patterns of covariation between the 

mandibular landmark configurations and experimentally derived electromyography data 

(Hylander et al., 2000; 2002; 2004; 2005; 2011; Ross and Hylander, 2000; Vinyard et al., 

2006; 2007; 2008), including working-side/balancing-side muscle force ratios and peak 

timing of masticatory muscle activity. The EMG data reflect measures that are direct 

indicators of the WMP and other aspects of masticatory muscle activity, and thus 

provides a direct link between the WMP and variation in mandible shape. This analysis is 

referred to here as a functional partial least squares (F-PLS) and was performed on taxa 

with varying degrees of symphyseal fusion to determine mandibular shape vectors that 

covary with loading regimes associated with fusion. Pairs of singular vectors or axes 

were constructed for the two blocks of multivariate data (X and Y) that maximally covary 

with each other (Rohlf and Corti, 2000). The newly formed axes were calculated using a 

singular value decomposition of the interblock variance-covariance matrix (Rxy), 

meaning that the analysis excluded the covariances within each block of data (Rxx and 

Ryy). In the context of a standard variance-covariance matrix, with the two blocks of data 

arranged sequentially, the interblock variance-covariance matrix can be visualized in the 

formula: 
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Singular values represent the covariance between each pair of singular vectors and are 

ordinated from greatest to least.  

EMG data were available for nine primate species: Macaca fascicularis, Papio 

hamadryas, Aotus trivirgatus, Callithrix jacchus, Lemur catta, Otolemur crassicaudatus, 

Propithecus verreauxi, Homo sapiens, and Cebus apella. EMG data for Homo sapiens 

and Cebus apella were obtained from Dr. CJ Vinyard. Data for the remaining seven 

species were collected from previous publications (Hylander et al., 2000; 2002; 2004; 

2005; 2011; Ross and Hylander, 2000; Vinyard et al., 2006; 2007; 2008). Timing of peak 

activity was calculated for each masticatory muscle as milliseconds before or after the 

peak activity of the working-side superficial masseter muscle. Since larger primates have 

absolutely longer chewing cycles, the peak times were scaled by an estimation of the 

length of the power stroke that was calculated as the time between the peaks of the first 

and last muscles to fire (Ross et al., 2008). The resulting firing times and muscle force 

ratios were standardized by the standard deviation of each variable. The F-PLS was 

performed using species averages since morphometric and EMG data were not collected 

on the same specimens, only the same species. 
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Table 2.2: List of mandibular landmarks and semilandmarks. Landmarks begin with “M” and 

semilandmarks begin with “MS”. Landmark numbers noted with an asterisk (*) were used in the 

reduced dataset to include fossil specimens.  
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Figure 2.4: Mandibular (a-rostral, b-dorsal, c-lateral) landmarks and semilandmark curves (blue 

line) used in this analysis. Both sides of the mandible were digitized for the analysis, but this figure 

only displays landmarks on the left side and midline. 

 

A note of caution is needed for interpreting the p-values reported in analyses 

utilizing EMG data. The sample sizes for these analyses are small and therefore lack the 

power to detect significant relationships, increasing the likelihood of type II error. 

However even with the paucity of available experimental data, the results nevertheless 

meaningful relationships between shape and function for the species in the analyses. 

A second F-PLS analysis was performed including only taxa that have complete 

or partial fusion to determine if degree of fusion manifests different shape-function 
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relationships. A separate F-PLS analysis was run rather than interpreting subsequent axes 

of the original analysis so that the potential differences between primates with partial and 

complete fusion were not constrained by the correlations described on previous pairs of 

axes. Additionally, a between-group principal component analysis (BGPCA) was used as 

a multivariate ordination method to summarize shape differences between primates with 

completely and partially fused symphyses to determine if these shape differences can 

provide insight into variation in degree of fusion. In this analysis, the full dataset of 

specimens is projected onto the eigenvectors of the group mean configurations of all 

specimens that exhibit complete and partial fusion (Boulesteix, 2005; Mitteroecker and 

Bookstein, 2011). This approach has the benefit of summarizing group differences, 

similar to a canonical variates or discriminant function analysis, but employs a rigid 

rotation of the data rather than warping the shape space. 

Since the primate species used in this study have a shared evolutionary history, 

they should not be thought of as independent observations. Shared evolutionary history 

generally manifests in a proportional degree of phenotypic similarity. Therefore, analyses 

of evolutionary correlations or covariances of traits need a phylogenetic context to 

account for the lack of independence among taxa. Therefore, and additional phylogenetic 

PLS or P-PLS (Adams and Felice, 2014) was performed between the landmark 

coordinate and EMG data to identify patterns of covariation between mandibular shape 

and masticatory function while accounting for phylogenetic relationships. This method 

calculates a singular value decomposition of the interblock portion of the evolutionary 

covariance matrix (Adams and Felice, 2014). The phylogeny used in this analysis was 

based off the molecular phylogeny generated by Perelmen et al., (2011).  In essence, the 
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phylogenetic PLS finds axes that maximally covary between the two blocks of data based 

on the estimated changes from nodes to tips rather than the measured values for each 

species. This method allows for analysis of how masticatory function and mandibular 

shape covary along the evolutionary tree rather than simply comparing overall patterns 

among terminal taxa that might reflect similarities due to phylogenetic history. 

Additional analyses were performed to investigate how different factors impact 

symphyseal morphology in primates with both fused and unfused symphyses, and to 

incorporate a larger number of species for which no experimental data are available. 

First, allometric effects were tested using linear regression analysis of the log(symphyseal 

CS) on log(mandibular CS) to determine how symphyseal size scales with overall 

mandibular size in primates with and without symphyseal fusion. Multivariate 

regressions (Klingenberg, 2016; Monteiro, 1999) of the landmark coordinates on 

log(mandibular CS) were performed separately for anthropoids and strepsirrhines to 

investigate the shape variation associated with changes in size of the masticatory 

apparatus. Additional multivariate regressions were performed to determine the 

relationship of symphyseal shape to changes in symphyseal curvature in anthropoids and 

strepsirrhines. Additional visual comparisons are provided between primates with 

different degrees of symphyseal fusion of a similar mandibular size to illustrate actual 

differences in mandibular and symphyseal shape between species. To create these, mean 

configurations were calculated for each species and a three-dimensional model (a 

specimen of Pan troglodytes) was warped to each configuration using Landmark Editor.  

The second goal of this study was to use form-function relationships in extant 

taxa to make inferences about masticatory function and the evolution of symphyseal 
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fusion in extinct primates. For this aim, the set of landmarks and semilandmarks was 

reduced to 51 and only includes the right hemimandible so as to incorporate as many 

fossil primate specimens as possible. An F-PLS was again performed on the extant taxa 

using the reduced landmark set and the functional EMG variables. The landmark 

coordinate data for the fossil specimens were then projected onto the resulting singular 

vectors corresponding to mandibular shape. Fossil specimens were also projected onto 

the single shape vector separating primates with complete symphyseal fusion and partial 

fusion as computed using a BGPCA. Since morphology is expected to reflect masticatory 

loading regimes, inferences of masticatory function are made for fossil specimens based 

on morphological similarity to extant primate species.  

Lastly, similar to the analysis of extant primates, visual comparisons were made 

between fossil specimens and mean configurations of extant species with unfused 

symphyses of similar mandibular size. The landmark configurations from fossil 

specimens and mean configurations of extant species were visualized by warping a 

hemimandible of Pan troglodytes. Comparisons were made only for fossil specimens that 

had extant taxa with similar mandibular sizes to mitigate any confounding allometric 

effects. 
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Figure 2.5: Plot of the first pair of axes from the F-PLS of mandibular shape and EMG data 

including all nine species with EMG data. Visualization shows mandibular shape change along the 

first F-PLS shape axis from negative (left) to positive (right) values. 
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Table 2.3: Loadings for the EMG variables from an F-PLS on all taxa with EMG data. Variables 

with the largest loadings for each singular vector are identified with an asterisk. 

  
 

 

 

Table 2.4: Statistical results from an F-PLS on all taxa with EMG data. 
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Figure 2.6: Plot of the second pair of axes from the F-PLS of mandibular shape and EMG muscle 

activity data. Visualization shows mandibular shape change along the second F-PLS shape axis from 

negative (left) to positive (right) values. 
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2.3 RESULTS 

2.3.1 Masticatory muscle activity and mandibular shape 

The F-PLS of mandibular shape and EMG muscle data with all 9 extant species 

(Tables 2.3-2.4) resulted in a primary set of axes that differentiate unfused strepsirrhines 

(i.e., Lemur and Otolemur) from primates with some degree of fusion (i.e., Aotus, 

Callithrix, Cebus, Homo, Macaca, Papio, and Propithecus) at the other end (Figure 2.5). 

Importantly, the close association of Propithecus with anthropoids confirms that this 

analysis elucidates shape-function relationships associated with symphyseal fusion rather 

than basic phenetic differences reflecting phylogeny. Along the first pair of axes, a 

deeper gonial region, taller mandibular condyle, deeper corpus, and taller, labiolingually 

thicker symphysis correlate with delayed activity and increased recruitment of the 

balancing-side deep masseter and posterior temporalis muscles (Figure 2.5). 

The second pair of F-PLS axes provides evidence that Homo exhibits a unique 

relationship between mandibular shape and masticatory function among primates (Figure 

2.6). Interestingly, the timing of the balancing-side superficial masseter and working-side 

posterior temporalis and a reduction in balancing-side superficial masseter recruitment 

contribute most to the variation along the second axis. The balancing-side superficial 

masseter muscle fires earlier in the chewing cycle and is the first to reach peak activity. 

In this sample, this pattern is unique to Homo and Otolemur with the working-side deep 

masseter reaching peak activity first in all other primates. The working-side posterior 

temporalis is delayed in the Homo chew cycle and reaches peak activity near the same 

time as the working-side superficial masseter. These changes in masticatory function 
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correlate with a wider mandibular arch, reduced gonial region, and shorter, more vertical 

symphysis (Figure 2.6). 

A second F-PLS not including unfused strepsirrhines (Tables 2.5-2.6) was used to 

determine if a shape-function relationship could identify differences between complete 

and partial fusion. Homo was also excluded from this analysis to prevent its unique 

shape-function relationship from being a significant driver of covariation between the 

two blocks of data. Unexpectedly, catarrhines and platyrrhines are separated along the 

first axis with Propithecus plotting in the middle (Figure 2.7). Along this axis, an early 

firing working-side deep masseter correlates with a less vertically oriented ramus, wider 

condyles, deeper corpus, narrower mandibular arch, and the development of an inferior 

transverse torus (Figure 2.7). 
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Figure 2.7: Plot of the first pair of axes from the F-PLS including only species with fusion (except 

Homo). Visualization shows mandibular shape change along the first F-PLS shape axis from negative 

(left) to positive (right) values. 
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Table 2.5: Loadings for the EMG variables from an F-PLS on all taxa with some degree of 

symphyseal fusion. Variables with the largest loadings for each singular vector are identified with an 

asterisk. 

 
 

 

 

Table 2.6: Statistical results from an F-PLS on only taxa with some degree of symphyseal fusion. 
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Figure 2.8: BGPCA to separate primates with complete fusion and partial fusion. Visualization 

shows mandibular shape change along BGPCA1 from negative (left) to positive (right) values. 

 

A BGPCA distinguishing primates with complete and partial symphyseal fusion 

resulted in a single axis that separates these groups with no overlap (Figure 2.8). 

However, there is a much broader distribution of primates with complete fusion 

compared to those with partial fusion, likely reflecting the greater diversity of 

anthropoids in comparison to indriids. The results from this analysis indicate that 

primates with complete fusion (or specifically anthropoids when compared to indriids) 

have a more vertically oriented symphysis, an everted inferior mandibular corpus, wider 

mandibular condyles, and a less projecting gonial region (Figure 2.8). Overall ramus 

height increases toward the indriid end of the axis but condylar height above the occlusal 

surface is greater moving toward the anthropoid end of the axis. Additionally, the long 

axis of the mandibular symphysis is elongated in extant primates with partial fusion. 
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When accounting for the shared evolutionary history among taxa, the covariation 

demonstrated by the first pair of P-PLS axes generally separates primates with complete 

and partial fusion from those without symphyseal fusion, except Papio plots with unfused 

strepsirrhines (Figure 2.9, Table 2.7-2.8). This is likely because, in comparison to 

Macaca, Papio has an earlier peak firing time of the balancing-side deep masseter, 

working-side anterior temporalis, and working-side posterior temporalis, all of which 

load most heavily on the first pair of P-PLS axes. These masticatory patterns correlate 

with a posteriorly angled ramus that has a shorter condylar height, shorter corpus height, 

narrower mandibular arch, and a more circular symphyseal cross-section. The second pair 

of P-PLS axes is similar to the initial F-PLS that distinguishes Homo from the other taxa 

which has similar shape changes associated with early activity of the balancing-side 

superficial masseter and delayed activity of the working-side posterior temporalis and 

deep masseter muscles, and is therefore not displayed here. 
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Figure 2.9: Plot of the first pair of axes a phylogenetic PLS of the nine species with EMG data. 

Visualization shows mandibular shape change along the first P-PLS shape axis from negative (left) to 

positive (right) values. 
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Table 2.7: Loadings for the EMG variables from a P-PLS on all taxa with EMG data. Variables with 

the largest loadings for each singular vector are identified with an asterisk. 

 

 

Table 2.8: Statistical results from a P-PLS on all taxa with EMG data. 
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2.3.2 Testing hypotheses of strength and stiffness for symphyseal fusion  

For a given size, anthropoids have relatively larger symphyses compared to 

strepsirrhines that lack symphyseal fusion. Figure 2.10 shows that in a bivariate plot of 

symphyseal size to overall mandibular size, the anthropoid distribution (p=0.0001, 

R
2
=0.933) is positioned above the strepsirrhine distribution (p=0.0001, R

2
=0.834). 

Indriids are the exception in that both Avahi and Propithecus plot within or above the 

anthropoid distribution. A multivariate regression of the mandible coordinates on 

mandible size across anthropoids (p=0.001, R
2
=0.215) shows that the symphysis is taller, 

more vertically oriented, and has a slight or no increase in relative size as overall 

mandibular size increases (Figure 2.11). Interestingly, smaller anthropoids have 

symphyses thicker in the labiolingual dimension whereas their larger counterparts 

emphasize a thicker dorsoventral dimension. Comparatively, in strepsirrhines (p=0.001, 

R
2
=0.452) the symphysis becomes anteriorly inclined and decreases in relative size with 

an increase in overall mandibular size (Figure 2.11). Indriids with partial fusion 

(Propithecus verreauxi and Avahi laniger) do not follow the allometric patterns 

demonstrated by unfused strepsirrhines (Figure 2.11). 

Multivariate regressions of the mandibular landmark coordinates on the degree of 

symphyseal curvature (Figure 2.12) identify a significant relationship across anthropoids 

(p=0.0009, R
2
=0.227) but not strepsirrhines (p=0.253, R

2
=0.096). As the curvature of the 

symphysis increases in anthropoids, the symphyseal region becomes more anteriorly 

inclined and elongated through the long axis which would provide better resistance to 

increased wishboning stress. Additionally, symphyseal curvature is associated with the 

development of a more prominent inferior transverse torus and a reduction in 
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anteroposterior thickness of the mandibular ramus.  Mandibular shape does not change in 

a significant way with symphyseal curvature in unfused strepsirrhines. However, when 

indriids are included in the multivariate regression (Figure 2.12), it is clear that they have 

a different relationship between mandibular shape and symphyseal curvature likely 

reflecting the importance of the wishboning motor pattern and transverse jaw movement 

during mastication in indriids. 

 

 

 

 

Figure 2.10: Plot of symphyseal log(centroid size) against log(centroid size) of the entire mandible.  
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Figure 2.11: Multivariate regression of mandibular shape coordinates on log (centroid size) of the 

mandible for anthropoids (top) and strepsirrhines (bottom). Visualizations to the right depict the 

vector of shape change from negative (left) to positive (right). 
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Figure 2.12: Multivariate regression of the mandibular shape coordinates on log(symphyseal 

curvature) for anthropoids (top) and strepsirrhines (bottom). Visualizations to the right depict vector 

of shape change from negative (left) to positive (right). 
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By visualizing shape differences between mean configurations of primates with 

similar mandibular lengths but differing in degree of symphyseal fusion allow for direct 

comparisons without confounding and different allometric effects. The clearly distinct 

allometric patterns in anthropoids and strepsirrhines complicate the removal of allometric 

effects across taxa. In each comparison, the species with complete or partial fusion 

possess relatively larger symphyseal regions compared to the species with no symphyseal 

fusion (Figure 2.13). In most of the anthropoid-strepsirrhine comparisons, the 

anthropoids have more vertically-oriented symphyses (except for Callithrix and 

Leontopithecus) but maintain a labiolingually robust symphysis by the extension of a 

superior transverse torus (Figure 2.13a,b) or additional development of an inferior 

transverse torus (Figure 2.13c-e). Similarly, Propithecus verreauxi exhibits an 

inferolingual projection of the symphysis that could be described as an inferior transverse 

torus while maintaining a similar symphyseal orientation to Lemur catta (Figure 2.13f). 

Additionally, all primates with completely or partially fused symphyses also have taller 

mandibular rami through both a deeper gonial region and increased height of the 

mandibular condyle, deeper corpora, and a wider mandibular arch compared to unfused 

strepsirrhines. 
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Figure 2.13. Visualization of differences between mean configurations of select species with and without symphyseal fusion by warping a three-

dimensional model of Pan troglodytes using a thin plate spline deformation. Species were chosen that have similar mandibular centroid size to mitigate 

confounding allometric effects. 
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2.3.3 Inferring masticatory function in fossil primates 

The plot of the first pair of axes for the F-PLS of the reduced landmark set and 

masticatory muscle activity patterns (Figure 2.14, Tables 2.9-10) is similar to the plot of 

the original F-PLS using the full mandible landmark configurations. F-PLS1 separates 

anthropoids and Propithecus from strepsirrhines with unfused symphyses. The EMG 

variables that load most heavily on this axis are the W/B ratios and peak timing of the 

posterior temporalis and deep masseter muscles which correlate primarily with a taller 

and thicker mandibular symphysis and a taller mandibular corpus (Figure 2.14). When 

the fossil specimens are projected onto this singular shape vector, each specimen plots 

either within the range or in close proximity to the distribution of primates with complete 

or partial fusion (Figure 2.14). Apidium plots farthest from the range of extant primates 

with complete or partial fusion but is still closer to this group than to primates with 

unfused symphyses. 

 The BGPCA calculated from the mean differences between primates with 

complete and partial fusion separates extant anthropoids from indriids, Propithecus and 

Avahi (Figure 2.15). When plotted on this axis, the subfossil lemurs Babakotia, 

Mesopropithecus, and Megaladapis, fall in the range of primates with partial fusion. The 

remaining fossil specimens (Archaeolemur, Notharctus, Apidium, Simonsius, 

Catopithecus, Aegyptopithecus, and Epipliopithecus) plot closer to anthropoids with 

complete fusion indicating mandibular shapes more similar to extant anthropoids than to 

indriids. The cases of Archaeolemur and Notharctus are interesting in that while more 

closely related to indriids, they plot closer to living anthropoids along this axis.  
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Since the initial F-PLS of primates with mandibular fusion identified differences 

between catarrhines and platyrrhines in their shape-function relationships, the fossil 

specimens were projected onto the shape singular vector constructed from an F-PLS 

using only anthropoids (Figure 2.16, Tables 2.11-12). Interestingly, only the specimen of 

Aegyptopithecus falls in the cercopithecoid range while Catopithecus and Apidium plot in 

the platyrrhine range. Simonsius and Epipliopithecus fall in the overlapping range 

between catarrhines and platyrrhines. When other extant species are projected onto this 

axis, there is an overlap with larger-bodied platyrrhines and colobines. Hominoids plot 

more closely with platyrrhines but also overlap with cercopithecoids.  

In the scaling of symphyseal size to mandibular size, fossil specimens generally 

plot with anthropoids and indriids and have overall larger symphyseal sizes relative to 

mandibular size than unfused strepsirrhines (Figure 2.17). Apidium falls between the 

anthropoid and strepsirrhine distributions. When visualizing shape change between fossil 

specimens and unfused strepsirrhines, Catopithecus and Apidium both have more 

pronounced lingual projections of the superior transverse torus compared to Perodicticus, 

but still maintain anteriorly inclined symphyseal orientations (Figure 2.18a). 

 

 

 

 

 

 

 



66 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.14: plot of the first pair of axes from the functional PLS including all taxa with EMG data 

using the reduced landmark set. A boxplot is included showing all extant and fossil specimens 

projected onto the first F-PLS axis. Visualization shows mandibular shape change along the first F-

PLS shape axis. 

 

Projection onto Mandible shape 1 
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Table 2.9: Loadings for the EMG variables from an F-PLS on all taxa with EMG data using the 

reduced landmark dataset. Variables with the largest loadings for each singular vector are identified 

with an asterisk. 

 

 

 

Table 2.10: Statistical results from an F-PLS on all taxa with EMG data using the reduced dataset. 
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Figure 2.15: Fossil specimens projected onto the BGPCA eigenvector calculated from the difference 

between mean configurations of primates with complete and partial fusion.  
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Catopithecus also has a mandibular condyle that is higher above the occlusal 

surface of the dentition than in Perodicticus, but is less noticeable the elevated condyle in 

Apidium. The symphysis of Simonsius has a distinctly vertical orientation compared to 

Otolemur in addition to more robust dorsoventral and labiolingual dimensions (Figure 

2.18b). The putative stem catarrhines, Aegyptopithecus and Epipliopithecus, both have 

overall robust and vertically oriented symphyses compared to Varecia (Figure 2.18c). 

Aegyptopithecus has a distinctly projecting superior transverse torus while 

Epipliopithecus has a sloping lingual surface and a labial surface that appears to project 

anteriorly. The subfossil lemurs Babakotia and Mesopropithecus resemble extant indriids 

in their symphyseal morphology by retaining an inclined orientation of the symphysis but 

elongating through the long axis (Figure 2.18c). The superior transverse torus is also 

thicker and an inferior lingual projection is present that could be described as an inferior 

transverse torus. These distinctions from Varecia result in an overall increase in surface 

area of the symphysis but also provide increased labiolingual thickness. Similar to the 

other extinct strepsirrhines in this sample, Notharctus retains an inclined orientation of 

the symphysis that is elongated compared to extant, unfused strepsirrhines (Figure 2.18c). 

The symphysis of Notharctus has a sloping lingual surface that terminates as a shelf with 

a short but steep drop to the inferior margin. 
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Figure 2.16: Plot of the first pair of axes of the F-PLS on the reduced landmark set including only 

anthropoid taxa. The boxplot shows the projection of all extant and fossil anthropoid specimens onto 

the first shape axis. Visualization shows mandibular shape change along the first F-PLS shape axis. 
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Table 2.11: Loadings for the EMG variables from an F-PLS on all anthropoid taxa with EMG data 

using the reduced landmark dataset. Variables with the largest loadings for each singular vector are 

identified with an asterisk. 

 

Table 2.12: Statistical results from an F-PLS on anthropoid taxa with EMG data using the reduced 

dataset. 
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2.4 DISCUSSION 

2.4.1 EMG patterns and mandibular shape 

The results from the initial F-PLS analysis using the full landmark set identify 

new shape-function relationships and support some but not all observations from 

previous studies. The first pair of F-PLS axes identified a shape vector associated with 

the wishboning motor pattern. Delayed activity of the balancing-side deep masseter and 

posterior temporalis muscles are identified and correlated with a taller mandibular ramus, 

deeper corpus, and taller, thicker symphysis. Specifically, the labiolingually thicker 

mandibular symphysis and taller mandibular ramus verify previous hypotheses regarding 

the mandibular shapes associated with the wishboning motor pattern and loading regimes 

(Hylander, 1979a,b). A labiolingually thicker symphysis efficiently counters increased 

wishboning stress generated by the lateral pulling of the balancing-side mandible by the 

delayed activity of the balancing-side deep masseter, and potentially posterior temporalis 

muscle (Ravosa and Hogue, 2004). Ravosa et al., (2000) also postulated that a taller 

mandibular ramus is a key component associated with the wishboning motor pattern by 

affecting the orientation of the deep masseter muscles, requiring a delay in their activity 

in the chew cycle. Additionally, the deeper corpus and taller symphysis indicate a 

configuration better able to resist parasagittal bending and dorsoventral shear stress, 

respectively. These shape changes, in addition to increased recruitment of balancing-side 

adductor muscle force (through the posterior temporalis, and possibly balancing-side 

deep masseter), suggest that loading regimes reflecting increased recruitment of both 

vertical and transverse balancing-side muscle force are accounted for on the first pair of 
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axes. Ravosa and colleagues have previously acknowledged the importance of both 

dorsoventral shear and wishboning stress in the evolution of symphyseal fusion in 

anthropoids but only dorsoventral shear for indriids (Ravosa, 1999; Ravosa and Hogue, 

2004). In contrast, the results presented here suggest that higher magnitudes of both 

stresses are experienced by anthropoids and indriids in comparison to other strepsirrhines 

with unfused symphyses.  

 

 

 

 

Figure 2.17: Plot of the log (centroid size) of the mandibular symphysis to log(mandibular length) 

including all extant species and fossil specimens.   
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Figure 2.18: Visualization of select specimen landmark configurations that by warping a three-dimensional model of Pan troglodytes using a thin plate 

spline deformation. Each set of comparisons includes fossil specimens and the mean configuration of a strepsirrhine species with no symphyseal fusion 

and similar mandibular length. 
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It has been proposed that anthropoids exhibit increased wishboning and 

dorsoventral shear stress at the symphysis compared to strepsirrhines with no fusion, 

whereas indriids only generate greater amounts of dorsoventral shear stress (Ravosa, 

1999; Ravosa and Hogue, 2004). However, the results presented here indicate that at least 

one indriid, Propithecus,  exhibits masticatory patterns consistent with increased 

recruitment of both vertically and transversely oriented balancing-side muscle force 

during mastication and shape patterns consistent with resisting wishboning and 

dorsoventral shear stresses generated from these loading regimes (Hylander et al., 2011). 

This undermines the notion that fusion in anthropoids is substantively different from that 

found in all other primates. 

Analyzing shape-function relationships in a phylogenetic context provides the 

opportunity to find patterns of mandibular shape and masticatory activity that are not 

contingent on the evolutionary history of the species studied. The first pair of axes from 

the P-PLS shows a separation of primates with and without symphyseal fusion (similar to 

the F-PLS), but Papio plots among unfused strepsirrhines. Even though the plot from the 

P-PLS generally resembles that of the F-PLS, the shape-function relationships borne out 

along the pairs of axes are different. The relationships between masticatory activity 

patterns and mandibular shape from the P-PLS are not as easily interpretable in the 

context of loading regimes associated with symphyseal fusion. The differences between 

these two analyses might suggest that aspects of mandibular shape and function related to 

symphyseal fusion evolved independently in indriids and early in anthropoid evolution so 

that these relationships are observed at higher taxonomic levels rather than along 

branches between subsequent nodes and tips. 
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Although the results from the P-PLS are difficult to interpret in relation to 

symphyseal fusion, they do provide an interesting insight into other aspects of 

masticatory shape and function. Closer inspection of the EMG variables shows that, in 

comparison to its nearest relative Macaca, Papio has working-side anterior and posterior 

temporalis muscles that reach peak activity earlier near the timing of the balancing-side 

superficial masseter. This additional working-side adductor activity may then account for 

the reduction in balancing-side superficial masseter recruitment that also loads highly on 

this axis. The correlated shape vector indicates a reduction in the size of the mandibular 

ramus which may correspond to a decreased reliance on masseter muscle force. The 

balancing-side deep masseter also weighs heavily on this axis. Lemur and Otolemur are 

known to have early peak activity of the balancing-side deep masseter compared to 

anthropoids and indriids, and the balancing-side deep masseter in Papio fires early 

compared to Macaca. Reduction in the height of the condyle above the occlusal surface 

of the dentition and overall ramus height (a pattern present in Papio in relation to 

Macaca) is correlated with early peak activity of the balancing-side deep masseter, thus 

providing further evidence for a link between increased condylar height, ramus height, 

and delayed activity of the balancing-side deep masseter muscle. 

Among the anthropoids with EMG data, catarrhines and platyrrhines were found 

to have distinct relationships between mandibular shape and masticatory activity patterns. 

The working-side deep masseter muscle fires earlier in the chew cycle in catarrhines and 

correlates with a relatively longer mandible, less projecting gonial region, wider 

condyles, narrower mandibular arch, and the development of an inferior transverse torus. 

This relationship has multiple possible interpretations. An isolated working-side deep 
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masseter muscle firing early during the closing stroke would move the working-side of 

the jaw laterally during adduction. This could potentially cause lateral transverse bending 

at the symphysis due to the transverse orientation of the deep masseter muscle fibers and 

require additional buttressing support provided by the development of an inferior 

transverse torus. However, additional experimental work is needed to determine if the 

isolated working-side deep masseter muscle force generates significant stress at the 

symphysis at the beginning of the closing stroke since there does not appear to be a 

contralateral force on the balancing-side of the jaw. Even if the stress generated does not 

exceed the wishboning stress present at the end of the power stroke, additionalbuttressing 

could be necessary to prevent fatigue from repetitive loading (Hylander, 1979). Further 

work investigating these possible differences in underlying mechanisms for increased 

wishboning stress has the potential for indicating independent evolution of symphyseal 

fusion in catarrhines and platyrrhines; however, the current results are too preliminary to 

speculate. Additionally, more experimental data for larger platyrrhines and smaller 

catarrhines are needed to clarify whether these patterns reflect phylogeny or allometric 

effects of masticatory function. 

 Even though modern humans demonstrate shape-function patterns characteristic 

of primates with fused symphyses, they also exhibit relationships that are not shared with 

any other species. Humans manifest a mandible with a shorter ramus and corpus, shorter 

symphysis, and much wider mandibular arch in conjunction with reduced recruitment of 

the balancing-side superficial masseter which also fires earlier in the chew cycle. The 

independent, early firing of the balancing-side superficial masseter muscle may not 

require significant recruitment if it is isolated (and presumably firing concurrently with 
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the balancing-side medial pterygoid muscle); however, this is an assumption that requires 

additional investigation. Additionally, a reduction in balancing-side recruitment may 

simply indicate that a diminished bite force is needed to chew food. With humans doing 

much of their food processing externally (e.g., through cooking) (Wrangham et al., 1999; 

Wrangham, 2009), it is likely that less muscle force and balancing-side recruitment is 

needed to break down food orally for ingestion. Homo also has delayed firing of the 

working-side posterior temporalis muscle compared to other primates so that its peak 

activity is more in line with triplet II. Lastly, the wide mandibular arch and vertical 

orientation of the symphysis suggests that, unlike other anthropoids, modern humans may 

not generate significant wishboning stress at the symphysis. Many of the gracile features 

of the human mandible and dentition are presumed to reflect a reduction in the reliance of 

the masticatory apparatus for processing tough foods over the course of human evolution 

(e.g., Chamberlain and Wood, 1985; Lieberman, 2011; Wood and Collard, 1999a,b), and 

perhaps consequently affect the activity of the masticatory muscles. The correlation 

between these specific functional and morphological changes is not easily interpretable 

but provides a basis for future investigation into the evolution of hominin masticatory 

form and function. 

 

2.4.2 Strength vs. stiffness models for symphyseal fusion 

 The strength and stiffness models for symphyseal fusion provide different 

expectations for the comparison of symphyseal shape between primates with and without 

fusion. The strength model predicts that symphyseal fusion evolves to resist wishboning 

stress (and potentially increased dorsoventral shear stress) (Ravosa and Hogue, 2004), 
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and thus the shape and orientation of the symphysis are not required to change to provide 

additional buttressing. The stiffness model interprets symphyseal fusion as a means of 

transferring mediolateral force across the symphysis (Lieberman and Crompton, 2000). 

From this perspective, additional changes to symphyseal shape and orientation are needed 

to resist the increased wishboning stresses generated as a result of stiffening the joint and 

transferring greater mediolaterally-directed forces. The results from this analysis indicate 

that extant primates exhibiting either complete or partial symphyseal fusion also possess 

symphyseal morphologies or orientations that are better suited to resist wishboning stress 

than their unfused counterparts. The change in shape and orientation in addition to fusion 

provides morphological support for the stiffness model of symphyseal fusion.  

 Due to the negative allometric relationship between cranial size and adductor 

cross-sectional area (Cachel, 1984), larger primates are expected to recruit greater 

balancing-side vertical adductor muscle force to maintain a similar bite force on the 

working-side of the jaw, resulting in greater dorsoventral shear stress at the symphysis 

and parasagittal bending of the corpus (Hylander, 1984). Therefore, larger primates are 

predicted to have a relatively larger cross-sectional area of the symphysis and deeper 

corpora compared to smaller primates. These shape-function relationships are expected to 

be observed across both anthropoid and strepsirrhine taxa since Dessem (1985) argued 

that unfused symphyses transfer vertically oriented muscle force across the symphysis as 

well as fused symphyses. Additionally, EMG studies have shown that the larger-sized 

Lemur catta recruits greater amounts of balancing-side adductor muscle force than the 

smaller Otolemur crassicaudatus (Hylander, 1977; 1979a; Vinyard et al., 2006). 
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These hypotheses find varying degrees of support from the results in this analysis. 

While an increase in overall mandibular size in anthropoids is associated with a more 

vertically oriented symphysis, the relative size of the symphysis does not appear to 

change noticeably. In unfused strepsirrhines, both the relative size of the symphysis and 

the corpus depth decrease as overall mandibular size increases, suggesting a reduced 

ability to resist larger dorsoventral shear and parasagittal bending stresses, respectively 

(cf., Ravosa, 1991). Further analysis and experimental data for other strepsirrhine taxa are 

needed to explain the incongruence of experimental and morphological evidence. 

Although the physiological cross-sectional area of jaw adductor muscles scales 

negatively with size, there does not appear to be an allometric relationship with 

mandibular size and ability to resist increased dorsoventral shear stress either within 

anthropoids or strepsirrhines (see Hylander et al., 2000; 2003). It is possible that other 

factors are affecting mandibular shape so that it is not solely reflecting the ability to resist 

the hypothesized loading regimes or that other aspects of the masticatory apparatus are 

scaling differently to achieve a functionally equivalent bite force for different sizes (e.g., 

Kay, 1975; Ravosa and Hogue, 2004).  

As a curved beam structure, the mandible should experience greater wishboning 

stress as the curvature of the symphyseal region increases, provided the symphysis can 

transfer mediolaterally oriented forces across the symphysis (Hylander, 1984; 1985). 

Therefore, as the mandibular arch becomes relatively narrower, symphyseal region is 

expected to provide better buttressing against wishboning through either a thicker 

labiolingual dimension or an anteriorly inclined orientation (Hylander, 1984; 1985; 

Vinyard and Ravosa, 1998). This effect was expected to be present in only primates with 
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completely or partially fused symphyses, which was supported by this analysis. Any 

force generated in the transverse plane is expected to dissipate in the ligaments of an 

unfused symphysis, particularly if it does not have transversely oriented ligaments 

(Herring and Mucci, 1991, Lieberman and Crompton, 2000).That the predicted 

relationship between symphyseal curvature and symphyseal shape was found only in 

primates with complete or partial fusion also suggests that ossification of the joint serves, 

at least in part, to stiffen the symphysis for the transfer of mediolaterally directed forces.  

Taken together, these results do not suggest that fusion does not also contribute to 

the strengthening of the symphysis to some degree, but rather highlights the requirement 

of stiffening the articulation between the hemimandibles for the transfer of muscle force. 

In this regard, mandibular symphyseal fusion, with the wishboning motor pattern, acts as 

an adaptation to create a transverse chewing motion rather than arising as a response to 

masticatory stresses generated at the symphysis. 

 

2.4.3 Partial vs complete symphyseal fusion 

 The question still remains as to why some primates completely fuse their 

symphyses and others develop only partial fusion. If fusion functions to strengthen the 

symphysis against stresses at the symphysis, indriids and anthropoids appear to have 

found different ways to counteract similar stress patterns that may reflect possible 

adaptive pathways limited by phylogenetic inertia. Indriids have partially fused 

mandibular symphyses rather than complete fusion, which likely reflect symphyseal 

orientations. Since the symphysis is anteriorly inclined in strepsirrhines (Figure 1.4), 

thought to be a consequence of having a tooth comb, its long axis is better oriented to 
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resist wishboning stress. Rather than completely fusing the symphysis, indriids have 

instead, elongated the long axis of the symphysis compared to other strepsirrhines. In this 

case, partial fusion could be interpreted to best resist dorsoventral shear rather than 

wishboning. This is supported by previous observations that the ossified tissues at the 

symphysis are oriented in the dorsoventral plane (Beecher, 1977). Additionally, the 

anteroinferior aspect of the symphysis fuses first and the lingual aspect fuses last 

(Beecher, 1977), which has been used to suggest that a partially fused symphysis would 

not efficiently resist wishboning.  

 The explanation of partial fusion has been a weakness for the stiffness model for 

symphyseal fusion. Ravosa and Hogue (2004) argue that partial fusion is not suited to 

resist or transfer mediolaterally oriented muscle forces because of the labiolingual 

direction of fusion. However, indriids may not require complete ossification of the joint 

to adequately transfer mediolateral force across the symphysis. The anteriorly inclined 

symphyses of indriids orient the labial portion of the symphysis in a more horizontal 

plane. Additionally, Beecher (1977) demonstrated that, unlike strepsirrhines with no 

fusion, Propithecus verreauxi has transverse symphyseal ligaments located at the lingual 

aspect of the symphysis. These transverse ligaments, in addition to ossification of the 

labial aspect and orientation of the symphysis, may provide sufficient stiffness for the 

transfer of mediolateral muscle force during mastication. 

2.4.4 Masticatory function and symphyseal fusion in fossil primates 

 All the fossil primates included in this study exhibit either partial or complete 

symphyseal fusion. When projected onto the F-PLS shape axis that delineates shape 

variations associated with EMG data, each fossil specimen plots closer to primates with 
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fused symphyses; however, not all are located within the range of extant primates (Figure 

2.14). This is not surprising considering some of the extinct taxa may represent 

transitional periods in the evolution of symphyseal fusion or convergent morphologies 

derived from different underlying mechanisms. Therefore, direct comparisons of 

mandibular shape between these fossil specimens and extant primates can provide greater 

insight into the evolution of symphyseal fusion rather than only analyzing suites of 

features that are different between groups of extant primates.  

Hylander et al., (2011) demonstrated that Propithecus verreauxi (and presumably 

all other indriids) have masticatory activity patterns convergent with anthropoids 

associated with increased transverse movement of the mandible. The results presented 

here support this observation by linking the wishboning motor pattern with a mandibular 

structure characteristic of generating and resisting significant wishboning stress. Further, 

this study suggests that Babakotia, Mesopropithecus, Archaeolemur, and Megaladapis 

exhibit similar masticatory patterns to indriids compared to other strepsirrhines. When 

mandibular morphology is compared between primates with complete and partial fusion, 

the subfossil lemurs more closely resemble indriids rather than anthropoids, except for 

Archaeolemur. Even though larger in overall size, Babakotia and Mesopropithecus 

resemble Propithecus verreauxi in symphyseal and overall mandibular shape which 

likely reflects similarities and masticatory function as well as a close phylogenetic 

relationship. Both subfossil lemur taxa have partially fused symphyses with an anteriorly 

inclined orientation and elongation through the long axis. Mesopropithecus possesses a 

more labially-projecting superior transverse torus than Babakotia. Both taxa also have 

taller corpora and mandibular condyles located higher above the occlusal surface of the 
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dentition compared to other unfused strepsirrhines. Additionally, Mesopropithecus and 

Babakotia are believed to have more mechanically demanding diets, similar to 

Propithecus (Godfrey et al., 1997; 2004; Muchlinski et al., 2011; Rafferty et al., 2002).  

Archaeolemur and Megaladapis are unique in having evolved complete 

symphyseal fusion. In comparison to Propithecus, Archaeolemur has a symphysis that 

maintains a similar orientation but it not as elongated. However, the symphysis is 

labiolingually thicker and the corpus is buccolingually thicker in Archaeolemur. The 

more robust mandibular dimensions of Archaeolemur are likely an adaptation to resist 

different loading regimes possibly related to an omnivorous diet consisting of fruit and 

hard objects (Godfrey et al., 1997; 2004; 2005; Rafferty et al., 2002; Scott et al., 2009). 

The increased robusticity and/or fusion of the symphysis and buccolingual thickness of 

the corpus might reflect a greater occurrence of coronal bending in Archaeolemur which 

may be inferred from a less inverted inferior ramus compared to Propithecus. 

Megaladapis has a unique symphyseal morphology compared to Propithecus, with a 

labial surface that appears to be concave with a projecting superior transverse torus 

inferiorly located on the lingual surface (to some degree resembling Alouatta). 

Additionally, the corpus is shorter but buccolingually thicker with a mandibular condyle 

higher above the occlusal surface of the dentition. The morphology of Megaladapis 

reflects a decreased ability to resist vertically oriented forces but increased ability to 

counter mediolaterally oriented forces, possibly a consequence of allometric properties or 

a highly folivorous diet.  

   All other extinct primate specimens – Notharctus, Apidium, Simonsius, 

Catopithecus, Aegyptopithecus, and Epipliopithecus – more closely resemble extant 
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anthropoids in their mandibular morphology when compared to Propithecus and other 

subfossil lemurs. Notharctus, an adapoid primate from the Eocene, was previously argued 

to have evolved complete symphyseal fusion to resist increased dorsoventral shear stress 

(Ravosa, 1996). This inference was based on the assumption that the wishboning motor 

pattern and increased wishboning stress was characteristic of primates that have early 

ontogenetic fusion (i.e., crown anthropoids). Notharctus was predicted to have late 

ontogenetic fusion based on the ontogenetic timing of fusion of other adapiforms, 

primarily Leptadapis magnus and Adapis parisiensis (Ravosa, 1996). It has since been 

demonstrated that primates with partial and late ontogenetic fusion do possess the 

wishboning motor pattern (Hylander et al., 2011), and presumably wishboning loading 

regime (supported by the results in this analysis), which nullifies the previous 

assumptions made for Notharctus. Based on this analysis, Notharctus possesses a 

mandibular shape that is suited to better resist both increased dorsoventral shear and 

wishboning stress. Additionally, Notharctus has a mandibular condyle located higher 

above the occlusal surface of the dentition which has been associated with the 

wishboning motor pattern. Comparisons of diet and mandibular morphology with other 

adapoids and omomyoids suggests that fusion is related to allometric constraints on 

muscle force production and unrelated to dietary adaptations (Ravosa, 1996).  

 Similar arguments can be made for most of the fossil anthropoids included in this 

analysis. Simonsius, Catopithecus, Aegyptopithecus, and Epipliopithecus all possess 

symphyseal shapes that suggest they were better equipped to resist both increased 

dorsoventral shear and wishboning stress at the symphysis, have deeper corpora, and 

taller mandibular condyles. Similar to Notharctus, Simonsius was previously assumed to 
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have evolved complete symphyseal fusion to resist increased dorsoventral shear stress 

based on the ontogenetic timing of fusion (Ravosa, 1999). However, the juvenile 

specimen that this observation is based on is tentatively attributed to this taxon based on 

only the size of the specimen. The other parapithecid in this analysis, Apidium, exhibits 

complete symphyseal fusion but possesses a pattern of mandibular morphology that is 

intermediate between anthropoids and strepsirrhines which has been observed in previous 

work (Ravosa et al., 2000). 

 Catopithecus provides an interesting case in that it demonstrates similar external 

morphology to anthropoids but only exhibits partial fusion. Previous work has 

characterized Catopithecus as evolving partial fusion primarily as an adaptation to resist 

increased dorsoventral shear stress, similar to other primates with partial fusion, but not 

resist significant wishboning stress, thought to occur only in crown anthropoids (Ravosa, 

1999). This interpretation was the basis for placing Catopithecus as a stem anthropoid, 

outside of the crown anthropoid clade, and is contingent on the evolution of the 

wishboning motor pattern and increased wishboning stress during mastication prior to the 

divergence of platyrrhines and catarrhines (Ravosa, 1999). However, based on 

morphological comparisons of Catopithecus, this taxon was better equipped to resist 

increased dorsoventral shear and wishboning stress at the symphysis compared to similar 

sized, unfused strepsirrhines. Additionally the mandibular condyle is higher above the 

occlusal surface of the dentition, and therefore, may have had the wishboning motor 

pattern. Unlike indriids with partial fusion, Catopithecus has a more vertical symphyseal 

orientation that is similar to other anthropoids and has a symphyseal shape that is more 

comparable to Callithrix with a superior transverse torus that projects lingually and drops 
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vertically without an inferior transverse torus. The combination of anthropoid-like 

morphology and partial fusion makes this taxon unlike any extant primate and difficult to 

interpret in regard to masticatory function. If fusion occurs to primarily stiffen the 

symphysis to allow for efficient transfer of balancing-side muscle force, partial fusion 

may have been sufficient in Catopithecus and may represent a transitional form leading 

to increased reliance on recruiting transversely oriented muscle force from the balancing-

side of the jaw during mastication. Additionally, Catopithecus is believed to have been 

frugivorous and likely insectivorous (Kirk and Simons, 2001; Rasmussen and Simons, 

1992; Simons and Rasmussen, 1996), to which partial fusion could represent increased 

balancing-side muscle recruitment for a greater reliance on fruit in the diet as opposed to 

insects. 

 The fossil anthropoid specimens were also projected onto the F-PLS axis 

separating catarrhines and platyrrhines. Although the overall relationship tested was not 

found to be significant, possibly as a result of sample size, some interesting patterns 

emerged among individual fossil taxa. Of the fossil anthropoids included in this analysis, 

only Aegyptopithecus falls in the catarrhine range while the others plot closer to 

platyrrhines, including stem catarrhine Epipliopithecus. Although caution is needed in the 

interpretation of this result, the similarities between these fossil and extant platyrrhine 

specimens suggest that the ancestral condition for crown anthropoids may have more 

closely resembled the platyrrhine masticatory muscle patterns. One expectation might be 

that the distinctions found here are related to body size; however, Epipliopithecus has a 

slightly larger mandibular size compared to Aegyptopithecus, but nevertheless more 

closely resembles platyrrhines, suggesting body size may not be a significant factor. 
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2.5 CONCLUSIONS 

  The results from this study provide support for many previous studies 

differentiating between the mandibular shape of strepsirrhines and anthropoids; however, 

additional insights are provided for extant and extinct taxa. This work is novel for 

providing direct relationships between masticatory activity and mandibular shape, rather 

than interpreting function solely through shape, and then making inferences about fossil 

primates based on these relationships. Furthermore, shape-function patterns were 

identified that differentiate catarrhines from platyrrhines as well as modern humans from 

other primates that require additional investigation.  

 It is likely that all of the fossil primates in this study exhibited the wishboning 

motor pattern that evolved convergently for anthropoids and indriids. Nevertheless, 

Apidium appears to have an intermediate mandibular morphology when comparing 

anthropoids to strepsirrhines, which has similarly been noted for the dentition of Apidium 

(Ravosa et al., 2000). The corpus and symphyseal morphology of Catopithecus suggests 

that it was capable of resisting greater masticatory stresses than strepsirrhines with no 

symphyseal fusion and similar to small-bodied platyrrhines, even though it retains only a 

partially fused symphysis. Partial fusion in Catopithecus, in conjunction with a shorter 

and vertically-oriented symphysis, might suggest that transverse movement during 

mastication was less important compared to extant anthropoids and likely indicates a 

transitional morphology towards greater reliance on transverse mandibular movement. 

 Lastly, the morphological evidence presented here supports the model that 

symphyseal fusion in primates evolves to stiffen the symphyseal joint between the left 

and right hemimandibles. Additional changes to symphyseal shape occur with both 
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partial and complete ossification of the symphysis that would efficiently resist increased 

dorsoventral shear and wishboning stress. Stiffening the symphyseal region allows for 

greater transfer of balancing-side muscle force during mastication and increases the stress 

generated at the symphysis (particularly wishboning) that is not present in unfused 

strepsirrhines. Nevertheless, the functionality of symphyseal fusion to stiffen the 

mandible does not mean that ossification of the joint does not enhance the strength in any 

way. It is likely that fusion increases both the stiffness and strength of the symphysis, but 

more efficient transfer of force generates new stresses that are otherwise dissipated in the 

ligaments of unfused symphyses.  
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3 Mandibular symphyseal fusion and the wishboning 

motor pattern 

 

 In the previous chapter, morphometric and EMG data were analyzed conjointly to 

make direct links between mandibular shape and masticatory function. The timing of 

muscle firing patterns and recruitment of balancing-side muscle force quantified through 

EMG analyses are associated with different masticatory loading regimes. Particularly, the 

recruitment of a delayed and unopposed balancing-side deep masseter muscle is 

associated with mediolateral movement of the mandible that generates a wishboning 

loading regime at the symphysis. Additionally, dorsoventral shear of the symphysis is 

associated with greater recruitment of balancing-side adductor muscle force in the 

vertical plane. Consequently, the shape of the mandible is expected to change in 

predictable ways in response to the loading regimes if those regimes generate significant 

stress.  The results from the analyses presented in Chapter 2 indicate that both 

anthropoids and indriids experience the motor pattern associated with the wishboning 

loading regime, and exhibit mandibular morphology to counter significant wishboning 

stress. Greater recruitment of the balancing-side posterior temporalis muscle in 

conjunction with changes in corpus and symphyseal morphology indicate that greater 

magnitudes of dorsoventral shear stress are also likely present in anthropoids and indriids 

relative to unfused strepsirrhines. 

 Whether symphyseal fusion is interpreted as a means to either strengthen or 

stiffen the anterior jaw impacts how the evolution of the wishboning motor pattern 

(WMP) and fusion are viewed together. As will be discussed in the following chapter, 
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proponents of the strength hypothesis have proposed that symphyseal fusion in 

anthropoids is a response to a newly evolved loading regime (i.e., wishboning) brought 

about by correlated structural changes in the skull (Ravosa et al., 2000; Ravosa and 

Hogue, 2004). From this perspective, symphyseal fusion is not seen as an initial adaption 

on its own, but as a response to stresses generated from the WMP (Ravosa et al., 2000). 

Conversely, based on the stiffness hypothesis, symphyseal fusion and the WMP can be 

viewed as co-occurring adaptations for increased mediolateral force during unilateral 

mastication as the stiffness provided by fusion is needed for the WMP to function 

(Lieberman and Crompton, 2000). Whether increased mediolateral movement and muscle 

force is needed as an adaption to diet or to maintain functional equivalency as a 

consequence of other changes in skull morphology, symphyseal fusion is a requirement 

for the WMP to be successful. 

In both models, the wishboning motor pattern plays a significant role in 

generating mediolaterally oriented muscle force during mastication resulting in greater 

magnitudes of wishboning stress and a corresponding change in symphyseal morphology 

(Lieberman and Crompton, 2000; Ravosa and Hogue, 2004). Therefore, it becomes 

necessary to understand the underlying mechanisms driving the evolution of the WMP to 

assess which hypothesis has more explanatory power. An alternative to viewing the 

WMP as an adaptation to changing dietary mechanical properties, it is possible that 

changes in overall skull morphology affect the functional equivalency of the masticatory 

apparatus. Ravosa et al., (2000) have proposed specifically that increasing the relative 

size of the neurocranium results in a sequence of skull changes that ultimately leads to 

the WMP. In primates, larger relative brain size correlates with increased facial kyphosis 
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(Ross and Ravosa, 1993), which is expected to displace the dentition inferiorly and 

increases ramus height. As a result, the masseter muscles are oriented more vertically and 

mediolateral movement of the mandible is maintained through delaying peak activity of 

the balancing-side deep masseter muscle (Ravosa et al., 2000). This hypothesis was 

initially proposed based on comparisons between anthropoids and strepsirrhines, but did 

not take into consideration the presence of the WMP in indriids (Ravosa et al., 2000; 

Ross and Ravosa, 1993). In the following chapter, the relationship between skull 

morphology and the WMP is evaluated across anthropoids and strepsirrhines (including 

indriids) to determine which aspects of skull morphology are likely associated with the 

evolution of the WMP and whether these shape-function relationships are shared across 

clades which have independently evolved the WMP. 
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4 Morphological integration of the skull and the 

evolution of symphyseal fusion 
 

4.1 INTRODUCTION 

4.1.1 Mandibular symphyseal fusion in primates 

Mandibular symphyseal fusion is an anatomical phenomenon that has evolved 

multiple times over the course of primate evolution (e.g., Fleagle, 1999; Hartwig, 2002; 

Martin, 1990; Scott et al., 2012b; Szalay and Delson, 1979). Among extant primates, all 

anthropoid species (including all catarrhines and platyrrhines) have complete fusion of 

the mandibular symphysis, and a small assortment of strepsirrhine species (e.g., indriids) 

exhibit partial fusion in adult forms. Symphyseal fusion is argued by some researchers to 

have evolved as a mechanism to strengthen against stresses generated at the symphysis 

during mastication (Ravosa and Hogue, 2004; Ravosa and Hylander 1993; 1994) while 

others suggest that fusion occurs to stiffen the symphysis to more efficiently transfer 

balancing-side muscle force during unilateral mastication (Crompton et al., 2008; 

Greaves, 1988; 1993; Herring et al., 2008; Lieberman and Crompton, 2000; Scapino, 

1981). However, it has been shown that the shape and orientation of the mandibular 

symphysis also contributes to the resistance of stresses occurring at the symphysis (see 

Chapter 2). Therefore, both symphyseal shape and orientation need to be considered in 

association with the degree of fusion when trying to understand masticatory activity and 

mandibular loading regimes.  

Previous analyses on symphyseal fusion have often focused on the differences 

between fused anthropoids and unfused strepsirrhines, identifying the wishboning loading 
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regime and motor pattern in the former but not the latter group (e.g., Hylander, 1979a, 

1984; Hylander and Johnson, 1994; Hylander et al., 2000; Ravosa et al., 2000; Vinyard et 

al., 2006). However, more recent work has inferred the wishboning motor pattern (WMP) 

in Propithecus verreauxi as well, based on muscle activity patterns (Hylander et al., 

2011). This finding, in addition to evidence based on mandibular structure (see Chapter 

2), suggests the production of wishboning stress at the symphysis occurs in this and 

perhaps other related taxa (i.e., indriids) with partial symphyseal fusion. Previously, 

indriids were hypothesized to generate larger magnitudes of dorsoventral shear compared 

to other strepsirrhines, but not anthropoid-like wishboning, based on their partially fused 

symphyses and more robust symphyseal and corpus dimensions (Ravosa, 1991; Ravosa 

and Hogue, 2004). Nevertheless, the partial fusion and mandibular morphology of 

indriids also supports the hypothesis that indriids were able to resist greater wishboning 

loads during unilateral mastication (see Chapter 2). 

With current data suggesting that both partially fused strepsirrhines and 

anthropoids with complete fusion generate similar motor and muscle force patterns, the 

variation within strepsirrhines provides an interesting opportunity to understand the 

relationship between jaw shape, masticatory loading regimes, and ultimately symphyseal 

fusion. If mandibular symphyseal fusion is associated with generating increased 

wishboning stress (and likely also dorsoventral shear) by recruiting greater balancing-side 

muscle force during mastication, strepsirrhines and anthropoids seem to be finding 

different combinations of symphyseal shape and orientation to resist similar symphyseal 

stresses. The more vertically oriented mandibular symphysis in anthropoids necessitates a 

labiolingual thickening of the symphysis to resist increased wishboning stress (Hylander, 
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1984). Conversely, the anteriorly inclined symphysis of Propithecus – probably oriented 

as a function of having a tooth comb – is already better oriented to resist wishboning 

stress and has instead elongated the midline through its long axis (see Chapter 2). Often, 

previous analyses (e.g., Ravosa, 1991; 1996) have overlooked the importance of 

symphyseal orientation when simply comparing labiolingual and dorsoventral dimensions 

with regard to resisting symphyseal stress (see Section 1.2). 

The relationship between jaw fusion and dietary mechanical properties in 

strepsirrhines has been used as evidence for different underlying mechanisms for 

symphyseal fusion in anthropoids and indriids (Scott et al., 2012b). It has been 

hypothesized that symphyseal fusion tracks differences in dietary mechanical properties 

in extant strepsirrhines but not anthropoids (or even extinct strepsirrhines such as 

adapoids) (Ravosa, 1996; 1999; Ravosa and Hogue, 2004; Scott et al., 2012b). 

Strepsirrhines that eat more mechanically resistant foods such as leaves, bamboo, or 

seeds are characterized by partial fusion with interlocking rugosities and calcified 

ligaments (Beecher, 1977; Scott et al., 2012b). Those that rely on foods that are easier to 

process, such as ripe fruit, exudates, and insects, have smoother symphyseal plates that 

are not fused (Scott et al., 2012a). Increased symphyseal fusion in strepsirrhines occurs 

with a greater recruitment of muscle force from the balancing-side jaw adductor muscles 

(Ravosa, 1991; 1996; Hylander et al., 2011). Anthropoids are different in that they have 

no reduction in symphyseal ossification given their diverse ecological and dietary 

preferences (Scott et al., 2012a,b), and researchers have questioned why symphyseal 

fusion still occurs in primates, such as callitrichids, that have less mechanically 

demanding diets (Ravosa and Hogue, 2004; Scott et al., 2012b). The retention of 
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symphyseal fusion across anthropoids suggests that either the wishboning motor pattern 

and fusion retain their importance as a functional adaptation during mastication even for 

less mechanically demanding diets, or that it is retained through some other mechanism 

such as developmental canalization (Lockwood, 2007).  

Currently, the best supported hypothesis links mandibular symphyseal fusion to 

the WMP and a reliance on transverse jaw movement and muscle force during 

mastication as an evolutionary package (see Ravosa and Hogue, 2004). This is the case 

whether symphyseal fusion functions to strengthen or stiffen the symphysis (Lieberman 

and Crompton, 2000; Ravosa and Hogue, 2004). The WMP creates the transversely-

oriented balancing-side muscle force that is transferred across the symphysis to move the 

working-side mandible medially and generates wishboning stress at the symphysis. Thus 

rather than focusing on symphyseal fusion, it is perhaps more prudent to focus on the 

underlying causes and adaptive significance of the WMP. 

 

4.1.2 The relationship between the wishboning motor pattern and loading regime 

 One important consideration that needs further attention is the assumed 

relationship between the wishboning motor pattern and the wishboning loading regime. 

Experimental studies using strain gauge measurements provide the best way to measure 

bone strain and predict stresses exhibited by the mandible, compared to inferring strain 

and stress through shape (Herring et al., 2008; Hylander, 1977; 1979a; 1986; Hylander 

and Crompton, 1986; Hylander et al., 1998). However, these particular experimental data 

are difficult to measure and have only been collected for a small number of primate 

species (Hylander, 1977; 1979a; 1984; Hylander and Crompton, 1986; Hylander and 



97 

 

Johnson, 1989; 1993; 1997; Hylander et al., 1992; 1998). These studies have found that 

primates exhibiting significant wishboning strain and stress also demonstrate a motor 

pattern that corresponds with delayed activity of the balancing-side deep masseter 

muscle. As a result, a causal relationship has been inferred for these two functional 

observations which has led to this specific motor pattern being designated as the 

wishboning motor pattern. Additional experimental work has identified the WMP in other 

anthropoid taxa and been used as evidence for inferring the presence of the wishboning 

loading regime across anthropoids. However, even though WMP has been identified in 

Propithecus (Hylander et al., 2011), little attention has been given to the presence of a 

wishboning loading regime in this species. 

 

4.1.3 Evolution of the wishboning motor pattern 

Hylander and colleagues have identified the WMP in at least six anthropoid 

species using EMG analyses (Hylander et al., 2000; 2002; 2004; Ross and Hylander, 

2000; Vinyard et al., 2007; 2008) and, due to the ubiquitous nature of complete 

symphyseal fusion across anthropoids, the WMP is assumed to be shared among all 

living anthropoids (Ravosa and Hogue, 2004). As mentioned previously, the WMP has 

also been observed in the strepsirrhine Propithecus verreauxi (Hylander et al., 2011) and 

is thought to be common among other indriids with partially fused mandibles but has not 

yet been demonstrated in unfused strepsirrhines. The WMP refers to the postponed and 

unopposed peak activity of the balancing-side deep masseter muscle during the chewing 

cycle (see Ravosa and Hogue, 2004). In primates with the WMP, the working-side 

superficial masseter, working-side medial pterygoid, and balancing-side temporalis 
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muscles (Triplet II) move the working-side of the jaw medially and upward so the upper 

and lower dentition are in maximum occlusion (Kay and Hiiemae, 1974; Hylander, 

2006). Subsequently, the balancing-side deep masseter muscle fires in relative isolation 

(but in conjunction with the balancing-side posterior temporalis) which is thought to 

cause transverse movement of the jaw at the end of the power stroke and maintain tooth 

contact after maximum occlusion (Hylander and Johnson, 1994). Since the balancing-side 

deep masseter is not counteracted by other muscles on the same side, the opposing 

transverse forces generated by the muscle and tooth-tooth or tooth-food contact on the 

working-side would create significant wishboning stress at the symphysis (Hylander and 

Johnson, 1994).  

In contrast, the balancing-side deep masseter muscle in unfused strepsirrhines 

peaks earlier in the power stroke, around the same time as Triplet I, in conjunction with 

the balancing-side medial pterygoid muscle (Ravosa and Hogue, 2004; Ross and Iariarte-

Diaz, 2014). The joint activity of these muscles contracting at the same time is thought to 

adduct the balancing-side of the mandible with little transverse movement and does not 

result in mediolaterally oriented muscle force or higher magnitudes of wishboning stress 

(Ravosa and Hogue, 2004). Therefore, it has been argued that the observed wishboning 

stress at the symphysis late in the power stroke in anthropoids and indriids derives from 

an unopposed, late-acting balancing-side deep masseter muscle (e.g., Hylander and 

Johnson, 1994).  

Studies investigating differences between anthropoids and strepsirrhines have 

associated structural changes in skull to the evolution of the WMP, as the WMP was 

initially thought to be unique to anthropoids (Ravosa et al., 2000). Multiple previous 
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works have identified greater integration of the orbits and anterior cranial base in 

anthropoids compared to strepsirrhines (Dabelow, 1929; McCarthy and Lieberman, 2001; 

Ross and Ravosa, 1993) which results from a greater approximation of the orbits toward 

the midline where the orbital roof forms much of the floor anterior cranial fossa 

(Cartmill, 1970; 1972; Dabelow, 1929). The configuration of the orbits within 

anthropoids has led to a structural integration of neurocranium, face, and basicranium 

such that an increase in relative brain size flexes the basicranium while concurrently 

rotating the face downward (Ross and Henneberg, 1995; Ross and Ravosa, 1993; Spoor, 

1997). This relationship is not present in strepsirrhines due to the lateral position of the 

orbits (Ross and Ravosa, 1993). The theoretical basis for this work was explicitly 

developed as the spatial-packing hypothesis by Biegert (1957; 1963) but was expanded 

upon and tested by other researchers (Bastir et al., 2010; DuBrul and Laskin, 1961; 

Enlow, 1990; Gould, 1977; Lieberman et al., 2000; 2008; McCarthy, 2001; McCarthy 

and Lieberman, 2001; Moss, 1958; Ross and Henneberg, 1995; Ross and Ravosa, 1993; 

Spoor, 1997; Strait, 1999; 2001; Vogel 1964). In his influential papers, Biegert (1957; 

1963) proposed that neocortical volume and the size of the masticatory apparatus have 

opposite effects on flexion of the basicranium: increasing the relative size of the 

neurocranium increases basicranial flexion while increasing masticatory size reduces 

basicranial flexion. Biegert (1957; 1963) also predicted that, as a consequence of body 

size alone, smaller animals should have more flexed basicrania than larger animals since 

the masticatory apparatus scales with positive allometry and the neocortex scales with 

negative allometry.  
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Ravosa et al. (2000) evoked these ideas of skull integration to hypothesize that 

relative brain size, basicranial flexion, and facial kyphosis initiate a cascade of structural 

and functional changes that ultimately result in mandibular symphyseal fusion in 

anthropoids. In a separate analysis of primarily mandibular components, Ravosa et al. 

(2000) interpreted an increased height of the temporomandibular joint above the occlusal 

surface of the dentition in anthropoids as a consequence of the downward rotation of the 

face (e.g., Ross and Henneberg, 1995; Ross and Ravosa, 1993). A higher 

temporomandibular joint deepens the mandibular ramus which in turn results in more 

vertically oriented masseter muscles, as the masseter muscles originate on the zygomatic 

processes and insert onto the external ramus and gonial angle of the mandible (Figure 

4.1). A vertical orientation of the masseter muscle reduces its contribution to the 

transverse movements of the jaw during mastication. Thus, increasing or maintaining 

adequate levels of transverse jaw movements during mastication delays the balancing-

side deep masseter muscle activity in anthropoids compared to strepsirrhines (Ravosa et 

al., 2000). 

Ravosa et al’s., (2000) hypothesis contradicts some of Biegert’s (1957; 1963) 

initial assertions in the spatial-packing hypothesis. Biegert (1957; 1963) does not provide 

specific criteria defining “increased size of the masticatory apparatus”, but increasing the 

depth of the mandibular ramus would be one way to do this provided there is not a 

corresponding significant reduction in mandibular length as well. However, Ravosa et al., 

(2000) attribute increased ramus height ultimately to greater brain size and basicranial 

flexion, which is the opposite relationship proposed by Biegert’s (1957; 1963) spatial-

packing hypothesis. Nevertheless, Biegert (1957; 1963) highlighted the importance of 
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increasing the jaw joint height above the occlusal surface for masticatory adaptations, and 

described this configuration as the “universally specialized type” in comparison to the 

“generalized form.” He proposed that the “universally specialized type” can be achieved 

by either rotating the face upward (i.e., airorhynchy), displacing the palate and nasal 

chamber inferiorly from the mandibular condyle, or through palatal vaulting to inferiorly 

displace occlusal surface from the palate and mandibular condyle. The emphasis of 

Ravosa et al (2000) on facial kyphosis assumes that rotating the face downward heightens 

the face by displacing the occlusal surface below the jaw joint, but it is not clear whether 

these two morphological changes are related, and if so, do they follow the mechanisms 

described by Biegert (1957; 1963). The uncertainties underlying the structural 

relationships of these skull components highlight the necessity for further investigation 

into the evolution and integration of these features. 
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Figure 4.1: Diagram of the differences in structural configuration of the temporomandibular joint 

(TMJ), gonial angle, and zygomatic arches between anthropoids and strepsirrhines (modified from 

Ravosa et al., 2000). The line between the zygomatic arch and gonial angle represents the masseter 

muscle. The distance between the zygomatic arch and TMJ does not differ between anthropoids and 

strepsirrhines, so a deeper gonial angle in anthropoids results in a more vertical masseter muscle.  

 

Insight from the fossil record already provides some evidence to doubt previous 

hypotheses regarding the underlying factors driving the evolution of the WMP and 

symphyseal fusion. Ravosa et al.’s (2000) model identifies increased encephalization in 

early anthropoid lineages as one of the instigating factors leading to symphyseal fusion. 

Nevertheless, fossil specimens of early stem catarrhines and platyrrhines (e.g., 

Aegyptopithecus, Chilecebus, and Homunculus) have relatively small, strepsirrhine-like 
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brain sizes which suggest that greater encephalization evolves later, and independently, in 

these primate lineages (Radinsky, 1977; Sears et al., 2008; Simons et al., 2007). The 

evolution of a larger relative brain size also does not evolve concurrently with 

mandibular symphyseal fusion as Aegyptopithecus has complete symphyseal fusion but 

retains a relatively small neurocranium. This evidence does not exclude other factors – 

such as facial kyphosis or facial height – from participating in the fusion of the 

anthropoid symphysis, but it nevertheless demonstrates a need for further investigation of 

craniomandibular integration and symphyseal fusion. 

 

4.1.4 Mandibular fusion and the WMP as an Evolutionary Stable Configuration 

In a discussion of the phylogenetic importance of correlated characters, 

Lockwood (2007) used the complex evolution of mandibular symphyseal fusion in 

anthropoids, as described by Ravosa and colleagues (Ravosa, 1999; Ravosa et al., 2000), 

to suggest these correlated characters may serve as an evolutionary stable configuration 

(ESC). The idea of an ESC (Schwenk, 2001; Wagner and Schwenk, 2000) was developed 

to describe groups of characters adapted to perform a function that are stable within taxa 

which possess the configuration. More specifically, an ESC is identified by three 

particular characteristics (Lockwood, 2007; Schwenk, 2001; Wagner and Schwenk, 

2000): key components must not vary significantly in taxa with the ESC, components 

must vary more within taxa that do not have the ESC, and the ESC should be present in 

multiple environmental contexts. Lockwood (2007) described symphyseal fusion in 

anthropoids as an ESC by arguing that whereas fusion in strepsirrhines is a 

straightforward response to increased stress as a result of diet or size, in anthropoids it is 
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“a more complex phenomenon related to skull shape as a whole” (Lockwood, 2007: 496). 

However, as previously discussed, more recent recognition of the WMP in Propithecus 

verreauxi potentially challenges the notion of an ESC in anthropoids, and underscores the 

need for further investigation to provide a more extensive understanding of the WMP and 

loading regime. 

 Likewise, the suite of characteristics thought to contribute to an ESC related to 

symphyseal fusion in anthropoids has not actually been fully tested to see whether it 

conforms to the defined characteristics of an ESC. Ross and Ravosa (1993) demonstrated 

that brain size, basicranial flexion, and facial kyphosis are interrelated in anthropoids but 

not in unfused strepsirrhines. However, this analysis did not assess whether anthropoids 

display a configuration that is entirely distinct from that of strepsirrhines, or whether 

strepsirrhines are more variable in their overall configurations. Additionally, although 

Ravosa et al., (2000) did determine that the anthropoid mandibular ramus is deeper than 

that of strepsirrhines, they did not provide data to support the assumption that ramus 

height is linked to the structural relationships of the cranium as described by Ross and 

Ravosa (1993). Nevertheless, it is clear that symphyseal fusion and the WMP are present 

in multiple environmental contexts given the dietary diversity of living anthropoids, 

supporting the interpretation of mandibular fusion as an ESC.  
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Figure 4.2: Two models for the evolution of complete symphyseal fusion (noted by gray stars) in 

anthropoids.  

 

4.1.5 Evolutionary impact of mandibular symphyseal fusion 

Lockwood’s (2007) discussion on the phylogenetic impact and interpretation of 

correlated traits has a particular relevance to the evolution of mandibular symphyseal 

fusion in anthropoids. The hypothesized complexity of symphyseal fusion in crown 

anthropoids has led some researchers to argue that the integrated set of features 

associated with fusion likely evolved only once prior to the common ancestor of extant 

anthropoids rather than independently in platyrrhine and catarrhine lineages (Ravosa, 

1999; Ravosa and Hogue, 2004). From this perspective, the association of multiple 

correlated components to create a single functional complex allows greater phylogenetic 

weight to be place on this set of features as opposed to other “simple” characteristics that 

have been previously used to reconstruct early stem and crown anthropoid relationships 

(Lockwood, 2007). Phylogenetic interpretations based solely on the most parsimonious 

evolution of symphyseal fusion places oligopithecids (e.g., Catopithecus) as a stem 
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anthropoid the sister taxon to either crown anthropoids or the crown anthropoid-

parapithecid clade (Figure 4.2a; Ravosa, 1999). Ravosa (1999) describes early anthropoid 

evolution as a step-wise transition from a basal anthropoid condition with no symphyseal 

fusion, to a later stem anthropoid condition of generating increased dorsoventral shear 

stress resulting in partial fusion (exhibited by Catopithecus, and possibly Arsinoea), to 

the crown anthropoid condition of complete fusion to resist significant wishboning stress. 

Based on this model, the WMP evolved once prior to the common ancestor of all living 

anthropoids and is unique to crown anthropoids.  

Complete symphyseal fusion evolved in multiple species from the Early 

Oligocene (e.g., parapithecids), but these are placed as stem anthropoids by Ravosa 

(1999) who suggested that complete fusion in these taxa occurs primarily from increased 

dorsoventral shear stress rather than exhibiting the wishboning loading regime. This 

inference is based on the symphyseal condition exhibited by an unassociated juvenile 

mandibular fragment that is consistent in size with specimens of Simonsius and therefore 

referred to that genus (Ravosa, 1999). Because this specimen is only partially fused, it 

suggests late ontogenetic fusion for Simonsius, similar to that seen in indriids. Since 

Ravosa and colleagues (Ravosa, 1991; 1996; 1999; Ravosa and Hogue, 2004) argue that 

indriids fuse the mandibular symphysis to resist dorsoventral shear stress, similar loading 

regimes have been inferred for parapithecids. Although the assumptions behind this 

interpretation are not unreasonable, they are far from definitive, leaving room for 

investigations into the possible loading regimes exhibited by early stem anthropoids with 

partial and complete mandibular fusion that are based on other sources of evidence. 
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 Homology of the WMP complex in anthropoids has been challenged by other 

researchers who argued for the independent evolution of complete symphyseal fusion in 

catarrhine and platyrrhine lineages (Figure 4.2b) by placing greater phylogenetic value on 

other morphological features. Specifically, oligopithecids share similarities in postcranial 

morphology as well as the loss of the second premolar with other catarrhines to the 

exclusion of platyrrhines (Fleagle and Kay, 1987; Harrison, 1987; Seiffert et al., 2000; 

2004; Seiffert and Simons, 2001; Simons and Rasmussen, 1996). This interpretation 

suggests that the common ancestor of platyrrhines and catarrhines exhibited an unfused 

symphysis or a partially fused symphysis such as that found in Catopithecus. From this 

perspective, symphyseal fusion is given little phylogenetic weight, in part due to the 

independent evolution of fusion in several primate lineages, and thus important for 

reconstructing anthropoid evolutionary relationships. However, as discussed previously, 

while symphyseal fusion may appear as a simple character on the surface level, its 

underlying mechanisms may be more complex. 

 

4.1.6 Study goals 

 The purpose of this analysis is to investigate the relationship between masticatory 

function (particularly the WMP) and skull morphology along with the morphological 

integration of the skull across different taxonomic levels of primates. Specifically, the 

WMP has been hypothesized to result from increased relative brain size, basicranial 

flexion, facial kyphosis, and a deeper mandibular ramus from a higher jaw, distinguishing 

anthropoids from strepsirrhines (Ravosa et al., 2000). Here, this hypothesis is evaluated 

by directly analyzing the relationship between masticatory muscle activity and skull 
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shape across primates to elucidate the correlated relationship between masticatory 

function and skull shape. Subsequently, morphological integration of the skull is 

analyzed across multiple taxonomic levels to determine if the mandibular and cranial 

components hypothesized to produce the WMP are meaningfully integrated. Ravosa et al. 

(2000) evoked previous interpretations of cranial evolution (e.g., Ross and Ravosa, 1993) 

to explain differences in mandibular shape (particularly jaw joint and ramus height) and 

masticatory function between anthropoids and strepsirrhines. However, the results from 

Ross and Ravosa (1993) specifically address the relationship of cranial components 

within higher taxonomic levels of primates without making particular distinctions in 

cranial shape between anthropoids and strepsirrhines – an important assumption for 

Ravosa et al. (2000). Therefore, whether the mandibular variation between anthropoids 

and strepsirrhines identified by Ravosa et al. (2000) can be explained by the same 

patterns of cranial variation identified within anthropoids by Ross and Ravosa (1993) still 

remains untested. This study investigates patterns of covariation between the mandible 

and cranium at different taxonomic levels to determine if there is a potential causal link 

between the hypothesized cranial and mandibular shapes proposed to result in the WMP. 
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Table 4.1: Sample size by taxon used in this study. State of symphyseal fusion designated as complete, 

partial, or unfused. 
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4.2 MATERIALS AND METHODS 

 These research questions were addressed by analyzing the skull shapes of a 

taxonomically diverse sample of primates that vary in the presence of the WMP and the 

degree of symphyseal fusion (Table 4.1). 3D models of 320 primate skulls were obtained 

from multiple sources. The majority of primate skulls were scanned using a Breuckmann 

SmartSCAN white light scanner using 90mm lenses. Additional specimens were 

generously made available by other researchers, from either μCT or NextEngine 3D scans 

(Callithrix jacchus, Dr. CJ Vinyard; Alouatta seniculus and Ateles geoffroyi, Dr. Lauren 

Halenar). Skull shape was quantified using landmark-based morphometrics with a series 

of 90 landmarks and 15 semilandmark curves (Table 4.2, Figure 4.3) collected on each 

specimen using Stratovan Checkpoint software (Stratovan Corporation, Davis, CA). The 

landmarks and semilandmark curves were chosen specifically to address hypotheses 

related to skull structure and masticatory function. The semilandmarks curves were 

densely sampled initially to best approximate the morphology of each curve and then 

resampled to obtain a series of evenly-spaced points using RESAMPLE.exe (available at 

pages.nycep.org/nmg/, created by David Reddy and Johann Kimm, edited by Dr. Ryan 

Raaum). A more densely sampled curve provides enhanced representation of the 

morphology and a reduction of the error introduced when sliding semilandmarks along 

curve tangents. However, a densely sampled curve may include variation that is not 

biologically meaningful and mask the variation of interest. For this analysis, different 

numbers of evenly-spaced points were output for each semilandmark curve and visually 

inspected after superimposition to determine an appropriate density of points for each 

curve. For a small number of specimens, missing landmarks were estimated individually 
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using species-specific thin-plate spline interpolation in the Geomorph package in R 

(Adams and Otarola-Castillo, 2013).   

A generalized Procrustes analysis was performed to superimpose each landmark 

configuration and remove location, orientation, scale to allow for analysis of shape 

variation. The application of sliding the semilandmarks along the curve is required to 

create a geometric homology of the semilandmarks across specimens (Bookstein et al., 

1999, Gunz and Mitteroecker, 2013). There are currently two accepted methods for 

sliding semilandmarks along a curve or surface. One first method minimizes Procrustes 

distances among specimens but has been found to inappropriately slide points past each 

other when comparing more variable shapes, and thus works better when using 

specimens with similar morphology (Gunz and Mitteroecker, 2013). The other method 

minimizes bending energy across specimens (Bookstein 1997; Gunz et al., 2005), and 

although based on the non-biological properties of a thin-plate spline transformation, 

constrains semilandmarks from sliding past each other. Based on the sample analyzed in 

this study, sliding semilandmarks along tangents of the curves to minimize bending 

energy was the more appropriate method.  

Most of the analyses presented here analyze the cranium and mandible together 

using a single Procrustes superimposition; however, for the certain analyses the cranium 

and mandible were aligned separately so shape variations specific to each component 

were not confounded by variation in their shared orientation. Since, both alignment 

procedures yielded similar results with the same interpretations, only results from the 

single superimposition are reported. 
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Table 4.2: Description of landmarks and semilandmarks used in this study 
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Figure 4.3: Three-dimensional landmarks and semilandmark curves used in the study. 

Landmarks=black dots, semilandmarks=blue curves 
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The relationship between skull shape and the WMP was first investigated using a 

2-block partial least squares analysis between the skull landmark configurations and data 

describing masticatory function. Partial least squares analysis creates pairs of (singular) 

axes that maximally covary with each other using a singular value decomposition of the 

interblock variance-covariance matrix (Rohlf and Corti, 2000) which identifies patterns 

of skull shape and masticatory function that have the greatest covariation. Since this 

analysis contains specific data on masticatory function, it will subsequently be referred to 

as a functional PLS (F-PLS). The functional data set consisted of electromyography 

measures (i.e., working-side/balancing-side ratios and timing of peak muscle activity for 

various masticatory muscles) that were collected from previously published studies 

(Hylander et al., 2000; 2002; 2004; 2005; 2011; Ross and Hylander, 2000; Vinyard et al., 

2006; 2007; 2008) or generously shared through personal communication with Dr. CJ 

Vinyard. Working-side/balancing-side ratios are not direct measures of force generated 

by muscles but rather a relative assessment of the recruitment of the balancing-side 

muscle activity compared to the working-side muscle. Timing of peak muscle activity 

was calculated as the difference in milliseconds between the peak activity of the working-

side superficial masseter muscle and each masticatory muscle for which published data 

exists. Peak times were then scaled by an estimation of the length of the power stroke, 

calculated as the time between peaks of the first and last muscles to fire. Scaling of peak 

muscle activity is necessary since larger primates have absolutely longer chewing cycles 

(Ross et al., 2008). The scaled peak timing of masticatory muscle activity and WS/BS 

ratios were standardized by the standard deviation of each variable. EMG data were only  
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available for nine primate species (Homo sapiens, Macaca fascicularis, Papio anubis, 

Aotustrivirgatus, Callithrix jacchus, Cebus apella, Propithecus verreauxi, Otolemur 

crassicaudatus, and Lemur catta) but include taxa that vary in the presence of the WMP 

and symphyseal fusion. Since only the mean values for the EMG data were available and 

the functional and shape data were not collected on the same specimens, the F-PLS was 

performed using the mean configurations of skull shape for each of the eight taxa. The 

functionally-associated shapes are visualized through thin-plate spline deformations of a 

specimen of Colobus guereza (the species nearest to the sample mean configuration) 

using the eigenvector of the newly constructed shape axis. 

 To further address the interrelationship of cranial and mandibular components, 

additional analyses were performed that benefitted from the inclusion of other species for 

which no EMG data exists. These analyses specifically test patterns of skull integration to 

determine if the specific components associated with the WMP are integrated as 

predicted. Although these analyses do not provide direct functional interpretations, they 

investigate the integration of cranial and mandibular components across different levels. 

First, skull morphology was evaluated across higher taxonomic units. Three between-

group principal component analyses (BGPCA) were used to identify mean shape 

differences between groups with the WMP (i.e., catarrhines, platyrrhines and 

Propithecus) and strepsirrhines that do not have the WMP. BGPCA is a multivariate 

ordination procedure that uses group mean configurations to create new axes that 

summarize shape differences in low-dimensional space. The individual specimens are 

then projected onto the eigenvectors created by differences in group mean configurations 

(Boulesteix, 2005; Mitteroecker and Bookstein, 2011). Catarrhines and platyrrhines were 
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separated into different groups since it is uncertain whether the WMP evolved 

independently in each lineage or prior to the divergence of these lineages.  

Morphological integration of the cranium and mandible was assessed in a 

phylogenetic context across all primate species in the sample using methods developed 

by Adams and Felice (2014). Skull shape was determined to have a phylogenetic signal 

(p-value < 0.0001) using the a permutation test that randomly permutes the multivariate 

shape data among the terminal branches of the phylogeny with a test statistic of the total 

amount of squared change summed overall all the branches of the tree (Klingenberg and 

Gidaszewski, 2010).This suggests that the shared evolutionary history needs to be 

considered in the analysis as it manifests as a proportional degree of phenotypic 

similarity across species. The non-independence of taxa was accounted for using a 

phylogenetic PLS (P-PLS) which performs a singular value decomposition of the 

interblock evolutionary covariance matrix calculated using the molecular phylogeny 

generated by Perelmen et al., (2011) and the mean shape configurations for each species. 

A P-PLS was also performed using only taxa that exhibit the WMP, but the primary 

patterns of craniomandibular integration were similar to the results using the complete 

sample. Thus, only results from the analysis on the entire sample are reported. The 

overall covariation between the cranial and mandibular landmarks was quantified using 

the RV coefficient (Escourier, 1973; Klingenberg, 2009). This measure is a multivariate 

extension of the squared correlation coefficient between two variables (Klingenberg, 

2009). 

The shared within-species pattern of craniomandibular integration was 

subsequently analyzed across living primates that exhibit the WMP (i.e., all anthropoids 
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and indriids). A pooled within-species 2BPLS was performed to account for species 

differences and find common patterns of covariation between the cranium and mandible 

across taxa. Since this analysis relies on the species specific covariance pattern, those 

species with less than ten specimens were dropped from the analysis since they likely do 

not provide an adequate estimation of the covariance structure.  

The relationships of skull components hypothesized by Ravosa et al., (2000) were 

more directly investigated by analyzing skull shape in relation to the angle of facial 

kyphosis (AFK) using multivariate regression. The AFK was measured by Ross and 

Ravosa (1993) as the angle between the floor of the nasal fossa and the plane of clivus 

ossis occipitalis at the midline. This exact angle could not be duplicated for this analysis 

since the majority of the 3D models used only captured the external surface morphology. 

Nevertheless, AFK was approximated in this study as the three-dimensional angle 

between the vectors of prosthion-staphylion and basion-hormion. This external measure 

of AFK still quantifies the orientation of the face relative to the basicranium 

appropriately in order to determine how the facial angle is integrated with other aspects 

of cranial and mandibular shape. The multivariate regression (Klingenberg, 2016; 

Monteiro, 1999) on AFK was performed on the aligned landmark coordinates to estimate 

the effects of AFK on skull shape across primates with the WMP. A phylogenetic 

correction was not used in this analysis since the AFK does not have a phylogenetic 

signal (p-value=0.491).  
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4.3 RESULTS 

4.3.1 Analysis of the WMP and skull shape 

 The first pair of axes from the F-PLS investigating covariation between EMG and 

shape data generally distinguish primates with the WMP (anthropoids and Propithecus) 

from those without (Lemur and Otolemur) (Figure 4.4; Tables 4.3-4.4). There does not 

seem to be a simple linear relationship explaining the transition from an unfused to a 

fused symphysis, but with only a small number of species associated with EMG data, it 

cannot be ruled out. The relationship between EMG and shape data clearly associate 

Propithecus with the anthropoids, indicating that it shares morphological features with 

anthropoids related to muscle function, but as a strepsirrhine, its shape is closer to the 

other strepsirrhines than are the anthropoids. Also conspicuous is the position of Homo as 

the negative extreme on the shape axis. Its separation from other anthropoids may 

indicate a unique relationship between skull shape and masticatory function. The EMG 

variables that load most heavily on the first axis reflect variation in the WMP through the 

timing and recruitment of the balancing-side deep masseter and posterior temporalis 

muscles (Figure 4.4). As expected, anthropoids and Propithecus recruit greater 

balancing-side deep masseter and posterior temporalis muscle activity and delay the 

activity of these muscles until the end of the power stroke. 
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Figure 4.4: Plot of the first pair of F-PLS axes and the visualization along the shape axis. Lateral 

view: dotted line= orbital plane, black line= basion-hormion, dashed line= staphylion-incision, white 

line=m1-m3 alveolar plane. Frontal view: black line= orientation of masseter muscle from zygomatic 

arch to inferior ramus. 
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Table 4.3: Loadings for the EMG variables from an F-PLS on all taxa with EMG data. Variables 

with the largest loadings for each singular vector are identified with an asterisk. 

 

 

Table 4.4: Statistical results from an F-PLS on all taxa with EMG data. 

 



122 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5: Plot of the second pair of F-PLS axes and the visualization along the shape axis. Lateral 

view: dotted line= orbital plane, black line= basion-hormion, dashed line= staphylion-incision, white 

line=m1-m3 alveolar plane. Frontal view: black line= orientation of masseter muscle from zygomatic 

arch to inferior ramus. 
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Lines are transposed on a lateral view of the skulls to demonstrate the changes in 

basicranial flexion, orbit and palate orientation, and postcanine tooth row position along 

each axis (Figure 4.4).  Without the internal cranial morphology, external basicranial 

flexion is visualized by the angle between the basion-hormion chord and orbital plane 

(Strait, 2001) and facial orientation is quantified as the angle between the basion-hormion 

chord and midsagittal line of the palate (cf. Ross and Ravosa, 1993).The shape change 

along F-PLS1 provides support for many of the predictions made by Ravosa et al., 

(2000). The negative end of the first shape axis corresponds with a relatively larger 

neurocranium, more flexed basicranium, and a taller, less prognathic face with slight 

facial kyphosis. This configuration also has a taller mandibular ramus, due in small part 

to increased jaw joint height above the occlusal plane, but more definitively from 

expanding the inferior portion of the ramus. The small increase in jaw joint height above 

the occlusal surface of the dentition is a function of the palate moving inferiorly in 

relation to the jaw joint rather than vaulting of the palate. As a result of the orientation of 

the zygomatic process and inferior ramus, the masseter muscle appears to be more 

vertically oriented in primates with the WMP on this axis. Additional changes in skull 

morphology that correlate with the WMP include a taller corpus and symphysis, 

convergent orbits, and the medial pterygoid muscles appear to be more vertically oriented 

rather than in the anterior-posterior direction.  

The relationship between the second pair of F-PLS axes is not statistically 

significant (Table 4.4). The small sample size due to the availability of EMG data reduces 

the statistical power for detecting significant relationships; nevertheless, the relationship 

is suggestive and merits interpretation. The second pair of axes primarily distinguishes 
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Old World monkeys from smaller-bodied New World monkeys (i.e., Aotus and 

Callithrix), although both Cebus and Homo plot in the middle (Figure 4.5). Propithecus 

falls near Cebus and Homo whereas Otolemur plots with the other platyrrhines and 

Lemur near to the catarrhines. The results from this analysis are comparable to an F-PLS 

including only anthropoid taxa (not reported). The negative end of the EMG axis is 

characterized by an earlier peak activity of the working-side deep masseter muscle at the 

beginning of the chew cycle along with earlier peak activities of the balancing-side 

superficial masseter and balancing-side anterior temporalis muscles. Peak activity of the 

balancing-side superficial masseter in platyrrhines occurs at approximately the same time 

as the working-side superficial masseter but prior to the working-side superficial 

masseter in catarrhines. Associated skull morphology with early peak activity of these 

masticatory muscles includes a less vertical symphysis with the development of an 

inferior transverse torus, a longer face and mandible, a less transversely-oriented 

masseter muscle while retaining a similar orientation of the medial pterygoid muscles, 

and expansion of the temporalis muscles towards the midline of the cranium (Figure 4.5).  

 

4.3.2 Comparisons of skull shape between primates with and without the WMP 

Results of a BGPCA comparing skull shapes in fused and unfused primates 

results in a single axis delineating the two groups. Compared to strepsirrhines without the 

WMP, on average catarrhines have a relatively larger neurocranium, orbits that are more 

convergent and frontated, and a less prognathic and taller face (Figure 4.6). The face still 

maintains a significant degree of subnasal prognathism with the major reduction 

occurring in the nasal cavity. The basicranium is greatly flexed relative to the orbital 
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plane in catarrhines, but the face only has a slight downward rotation. Catarrhines also 

have a shorter mandible with a taller ramus, corpus, and symphysis and a slightly 

labiolingually thicker symphysis. The corpus is not buccolingually thicker in catarrhines. 

The taller mandibular ramus does produce more vertically oriented masseter muscles. 

Increased ramus height in catarrhines is a function of both deepening the ramus inferiorly 

and increasing jaw joint height from the occlusal surface of the dentition through palate 

vaulting. 

A BGPCA of platyrrhines vs. unfused strepsirrhines finds that they differ in 

nuanced but unique ways in comparison to the differences between catarrhines and 

unfused strepsirrhines. Platyrrhines do have a relatively larger neurocranium, more 

convergent and frontated orbits, and a shorter, taller face compared to strepsirrhines 

(Figure 4.7). However on average, platyrrhines do not exhibit increased facial kyphosis 

even with a more flexed basicranium relative to the orbital plane. Platyrrhines also have a 

shorter mandible with a noticeably taller mandibular ramus, achieved by expanding the 

gonial region, and more vertically-oriented masseter muscles. The corpus is taller but not 

noticeably thicker, and the symphysis is taller and more vertically-oriented. Platyrrhines 

do have a slightly higher jaw joint relative to the occlusal surface of the dentition due to 

the inferior displacement of the palate rather than vaulting of the palate.  
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Figure 4.6: Plot of BGPCA of catarrhines and strepsirrhines without the WMP and the visualization 

of shape change along this axis. Lateral view: dotted line= orbital plane, black line= basion-hormion, 

dashed line= staphylion-incision, white line=m1-m3 alveolar plane. Frontal view: black line= 

orientation of masseter muscle from zygomatic arch to inferior ramus. 
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Figure 4.7: Plot of BGPCA of platyrrhines and strepsirrhines without the WMP and the visualization 

of shape change along this axis. Lateral view: dotted line= orbital plane, black line= basion-hormion, 

dashed line= staphylion-incision, white line=m1-m3 alveolar plane. Frontal view: black line= 

orientation of masseter muscle from zygomatic arch to inferior ramus. 

 



128 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8: Plot of BGPCA of strepsirrhines with and without the WMP and the visualization of 

shape change along this axis. Lateral view: dotted line= orbital plane, black line= basion-hormion, 

dashed line= staphylion-incision, white line=m1-m3 alveolar plane. Frontal view: black line= 

orientation of masseter muscle from zygomatic arch to inferior ramus. 
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The BGPCA of Propithecus compared to unfused strepsirrhines demonstrates that 

the former does not have relatively larger neurocrania than other strepsirrhines, but does 

possess a smaller angle between the basicranium and orbital plane, likely due to greater 

frontation of the orbits rather than to a more flexed basicranium (Figure 4.8). 

Additionally, Propithecus does not have a more kyphotic face even though the face is 

relatively shorter.  The mandibular ramus is significantly taller in indriids from an 

expanded gonial region and, to a lesser degree, an inferior displacement of the palate. The 

mandibular corpus and symphysis are also both taller in indriids than other strepsirrhines. 

 

4.3.3 Patterns of craniomandibular integration associated with the WMP 

As expected, the cranium and mandible are highly integrated (RV 

coefficient=0.966) across primates when accounting for shared evolutionary history 

among taxa. The first pair of axes from the P-PLS of all primates distinguishes Homo 

(positive end) from Alouatta, Pan, and Papio (negative end) with other species clustered 

midway in-between (Figure 4.9; Table 4.5). Moving towards the positive end of each 

axis, relative neurocranial size increases, orbits become larger, the basicranium becomes 

more flexed, and the face is shorter (primarily through reduced subnasal prognathism) 

and rotated downward. The mandible is anteroposteriorly shorter with a more vertical and 

shorter symphysis, lacking the inferior projection of a transverse torus. The corpus 

dimensions remain constant but the corpus is everted inferiorly. A downward rotation of 

the face results in a reduction in jaw joint height above the occlusal surface and ramus 

height. The coronoid process is higher with a more pronounced mandibular notch. 

Overall, the ramus is smaller which is likely to reflect relatively smaller masseter muscles 
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that are more transversely-oriented. The inferior border of the mandible does not provide 

a smooth transition at the junction of the ramus and corpus but instead has a concave 

appearance that might be a consequence of greater facial kyphosis. 

The second pair of P-PLS axes demonstrates a relatively linear relationship with 

Papio towards the negative end of the plot (Figure 4.10). Similar to the first pair of axes, 

increased basicranial flexion is associated with a downward rotation of the face; however, 

this correlates with a taller, more prognathic face, smaller and less frontated orbits and a 

shorter basicranium. The positioning of the orbits relative to the palate is particularly 

affected along this pair of axes. Relative neurocranial size does not appear to 

meaningfully change along this pair of axes. Increased facial kyphosis covaries with 

greater palatal vaulting but also with an overall shorter and smaller mandibular ramus. 

The symphysis is relatively shorter but labiolingually thicker. The coronoid process is 

taller and again there is a concave junction of the ramus and corpus associated with facial 

kyphosis. Even though the mandibular ramus is shorter, the orientation of the masseter 

muscles appears to be more vertically-oriented related to a reduction in bizygomatic 

breadth and laterally-projecting gonial regions. 

 .  
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Figure 4.9: Plot of the first pair of P-PLS axes on all taxa with EMG data and the visualization along 

each axis. Lateral view: dotted line= orbital plane, black line= basion-hormion, dashed line= 

staphylion-incision, white line=m1-m3 alveolar plane. Frontal view: black line= orientation of 

masseter muscle from zygomatic arch to inferior ramus. 

 

 

 

Table 4.5: Statistical results from a P-PLS on all taxa with EMG data. 
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Figure 4.10: Plot of the second pair of P-PLS axes and the visualization along each axis. Lateral view: 

dotted line= orbital plane, black line= basion-hormion, dashed line= staphylion-incision, white 

line=m1-m3 alveolar plane. Frontal view: black line= orientation of masseter muscle from zygomatic 

arch to inferior ramus. 
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Figure 4.11: Plot of the third pair of P-PLS axes and the visualization along each axis. Lateral view: 

dotted line= orbital plane, black line= basion-hormion, dashed line= staphylion-incision, white 

line=m1-m3 alveolar plane. Frontal view: black line= orientation of masseter muscle from zygomatic 

arch to inferior ramus. 
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The third pair of significant P-PLS axes separates more gracile strepsirrhines 

(e.g., Varecia, Lemur, and Otolemur), small-bodied platyrrhines, and Hylobates from 

other primates that tend to be more robust within their respective clades (Figure 4.11). 

Towards the negative end of the axes, a more globular neurocranium, reduced basicranial 

flexion and facial kyphosis, a shorter and taller face and greater vaulting of the palate 

correlate with and relatively shorter but overall more robust mandible. The ramus, 

corpus, and symphysis are all relatively deeper with presumably larger and more vertical 

masseter muscles 

A pooled within-species PLS analysis identified patterns of within-species 

covariation that are shared across the sample (Table 4.6). The first pair of axes identifies 

the pattern of a relatively larger neurocranium, increased basicranial flexion, a slightly 

taller face and a shorter ramus, corpus, and symphysis (Figure 4.12). This configuration 

additionally has an origin of the temporalis muscle further from the midsagittal plane and 

slightly more transversely oriented masseter muscles. This first pair of axes appears to be 

identifying shared patterns of covariation that differentiate males from females, albeit 

with quite a bit of overlap. 

 Along the second pair of axes, decreased facial kyphosis and more frontated 

orbits relative to the palate covary with a slightly longer mandible with a narrower arch 

and a less vertical symphysis with a more developed inferior transverse torus (Figure 

4.13). The orientations of the masseter and temporalis muscles do not appear to be 

significantly affected by this pattern of covariation. A PLS analysis using separate 

superimpositions for the cranium and mandible yield similar results to the analysis with a 

simultaneous superimposition for the cranium and mandible and is not presented. 
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 The angle between basion-hormion and the palate was calculated to determine 

how the angle of facial kyphosis (AFK) directly relates to changes in skull morphology 

using a multivariate regression. The AFK does not have a phylogenetic signal and is quite 

variable even within species (Figure 4.14). Primates with the WMP do not have a 

distinctly smaller AFK than primates without the WMP, contrary to the prediction of 

Ravosa et al. (2000). A multivariate regression of skull shape coordinates on AFK 

estimates that a reduction in the AFK covaries with a more flexed basicranium, a more 

prognathic face, a decrease in ramus height, a narrower mandibular arch, and a less 

vertical symphysis with a thicker superior transverse torus (Figure 4.15). A reduction in 

the height of the mandibular ramus results in more transversely-oriented masseter 

muscles. In the plot, one platyrrhine species, Alouatta seniculus, is distinct from the other 

primates which might indicate a unique relationship between AFK and overall skull 

shape (Figure 4.15). It is important to note that the multivariate regressions on AFK 

accounts for 14.32% of the total variation in the coordinate shape data. 
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Figure 4.12: Plot of the first pair of axes from a pooled within species PLS and the visualization along 

each axis. Lateral view: dotted line= orbital plane, black line= basion-hormion, dashed line= 

staphylion-incision, white line=m1-m3 alveolar plane. Frontal view: black line= orientation of 

masseter muscle from zygomatic arch to inferior ramus. 

 

 

Table 4.6: Statistical results from a pooled PLS on all taxa. 
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Figure 4.13: Plot of the second pair of axes from the pooled within species PLS and the visualization 

along each axis. Lateral view: dotted line= orbital plane, black line= basion-hormion, dashed line= 

staphylion-incision, white line=m1-m3 alveolar plane. Frontal view: black line= orientation of 

masseter muscle from zygomatic arch to inferior ramus. 
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4.4 DISCUSSION 

4.4.1 Wishboning motor pattern and skull morphology 

The purpose of this study was to investigate how specific patterns of skull shape can 

impact masticatory function in different groups of primates. Ravosa et al. (2000) propose 

that a cascade of skull features differentiating anthropoids from strepsirrhines ultimately 

result in the development of the WMP and symphyseal fusion in anthropoids. According 

to this hypothesis, anthropoids possess a jaw joint that is vertically displaced from the 

occlusal surface of the dentition which deepens the mandibular ramus and orients the 

masseter muscles vertically, necessitating a change in masticatory motor patterns to 

maintain transverse jaw movements during chewing (Ravosa et al., 2000). This has been 

linked to increases in relative brain size and shifts in the orientation of the basicranium 

and face (Ravosa et al., 2000; Ross and Henneberg, 1995; Ross and Ravosa, 1993). To 

determine if primates with the WMP exhibit these hypothesized changes in skull 

morphology compared to primates without the WMP, EMG data on muscle activity 

patterns were leveraged to extract functionally relevant shape differences rather than 

simply analyzing overall phenetic variation among taxa that are hypothesized to differ in 

masticatory function. The EMG data used in this study provide information about 

patterns of masticatory muscle activity that have been directly linked to changes in 

loading regimes occurring in the mandible associated with mandibular symphyseal 

fusion, particularly in anthropoids. Although the convergent evolution of the WMP in 

Propithecus has not been thoroughly addressed in previous studies, Propithecus was 

included in this analysis to provide additional insight into the underlying mechanisms 

associated with generating the WMP. Using EMG data to directly extract relevant 
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patterns of shape variation is particularly beneficial as it finds patterns of shape 

associated with function rather than phylogeny, which might otherwise be expected.  

The results from this analysis make a primary distinction between primates with 

and without the WMP. Peak activity of the balancing-side posterior temporalis muscle 

was identified with delayed activity of the balancing-side deep masseter as part of the 

WMP which has been acknowledged in previous analyses (e.g., Hylander et al., 2011) but 

has received little attention regarding its functional significance. The balancing-side 

posterior temporalis muscle may assist in the transverse movement of the mandible in 

addition to adduction and potentially retraction of the balancing-side of the mandible. 

Generally the WMP covaries with a relative increase in neurocranial size, more flexed 

basicranium, slight facial kyphosis, a shorter and taller face with more convergent orbits, 

and a taller mandibular ramus. The height of the ramus increases primarily from 

expanding the inferior border of the ramus. 

Different patterns in skull morphology are found when looking at mean 

differences between higher taxonomic groups that do and do not have the WMP. 

Compared to strepsirrhines lacking the WMP, catarrhines and platyrrhines have relatively 

larger neurocrania, less prognathic faces, and increased basicranial flexion relative to the 

orbital plane, resulting to some degree from more frontated and convergent orbits. The 

mandibular ramus is taller in catarrhines and platyrrhines, primarily from deepening the 

inferior ramus, but with some contribution from a taller jaw joint above the occlusal 

surface of dentition. However, this is attained in different ways in catarrhines and 

platyrrhines. On average, vaulting of the palate to move the dentition inferiorly is more 

characteristic of catarrhines, whereas platyrrhines exhibit an inferior displacement of the 
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palate and nasal chamber. Neither group has a significantly more kyphotic face compared 

to strepsirrhines. This differs from the results from the F-PLS due to the lack of 

taxonomic diversity for which the EMG data are available. The taxa included in the F-

PLS generally have smaller angles between the palate and basicranium compared to 

strepsirrhines (Figure 4.14), but once other platyrrhine and catarrhine species were 

included, the difference in AFK appears negligible. 

 

 

 

 

 

Figure 4.14: Boxplot showing the variation in the angle of facial kyphosis for each species. 
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Figure 4.15: Plot the multivariate regression of skull landmark coordinates on the angle of facial 

kyphosis. The distinct platyrrhine group in the upper right corner is Alouatta seniculus. Lateral 

view: dotted line= orbital plane, black line= basion-hormion, dashed line= staphylion-incision, white 

line=m1-m3 alveolar plane. Frontal view: black line= orientation of masseter muscle from zygomatic 

arch to inferior ramus. 
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 The inclusion of Propithecus provides a unique perspective on what drives the 

evolution of the WMP that is not confounded by skull characteristics that differentiate 

anthropoids from strepsirrhines for taxonomic rather than functional reasons. Similar to 

anthropoids, Propithecus (and likely other indriids) have more frontated orbits, increased 

basicranial flexion relative to the orbital plane, a less prognathic face, and no definitive 

change in AFK compared to other strepsirrhines lacking the WMP. The ramus is taller in 

Propithecus and, similar to platyrrhines, has a slightly taller jaw joint above the occlusal 

surface due to an inferior displacement of the palate. However, the main contribution to 

increased ramus height is below the dentition through projection of the gonial angle. 

Considering all of this evidence, one must conclude that evolution of the WMP 

does not require the reorganizing of the skull proposed by Ravosa et al. (2000). Greater 

encephalization and increased facial kyphosis are not necessary for generating a taller 

mandibular ramus (Figures 4.8, 4.9, 4.12, and 4.15). All primates with the WMP do 

appear to have more frontated orbits, but it is not clear if this is directly related to ramus 

height. An increase in jaw joint height above the occlusal surface of dentition only 

partially contributes to the overall increase in ramus height between primates with and 

without the WMP. Additionally, jaw joint height is not related to a downward rotation of 

the face, as suggested by Ravosa et al. (2000), but rather through vaulting of the palate or 

inferior displacement of the nasal cavity and palate, two mechanisms proposed much 

earlier by Biegert (1957; 1963). Although the sequence of cranial changes proposed by 

Ravosa et al. (2000) may not be relevant to the WMP, the results from this analysis do 

provide support for their conclusion that a taller ramus corresponds with a more 

vertically-oriented masseter muscle. It has yet to be determined whether the orientation of 
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the deep masseter muscle has a significant impact on the transverse movements of the 

jaw during chewing, but the change in orientation is consistent with all primates that 

demonstrate the WMP. Experimental data on jaw kinematics are necessary to further 

address this question. 

 

4.4.2 Morphological integration of skull components as an ESC 

In addition to comparing the configuration of the skull across different groups of 

primates, this study investigates the morphological integration of mandibular and cranial 

components of the skull. Ravosa et al. (2000) refer to the conclusions drawn by other 

studies (Lieberman et al., 2000; Ross and Henneberg, 2005; Ross and Ravosa, 1993; 

Spoor, 1997) that the midline orientation of the face, basicranium, and neurocranium 

covary with each other to explain variations in mandibular form and masticatory 

function. Patterns of craniomandibular integration identified in this study do not support 

the hypothesis that increased encephalization, basicranial flexion, and facial kyphosis 

result in a higher jaw joint above the occlusal surface of the dentition and an overall 

increase in mandibular ramus height (Ravosa et al., 2000). Analyses of morphological 

integration across primate species and patterns shared within species show that increased 

relative neurocranial size, basicranial flexion, and facial kyphosis covary with a reduction 

in mandibular ramus height. However this pattern of skull integration corroborates the 

descriptions of skull shape patterns by Biegert (1957; 1963) with the relative size of the 

brain and masticatory apparatus having opposite effects on the flexion of the 

basicranium. These patterns are related to allometric relationships of the skull and body 

size as described by Biegert (1957; 1963). Smaller primates should have more flexed 
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basicrania due to a relatively larger neurocranium and smaller masticatory apparatus. 

Modern humans are unique in exhibiting the pattern of morphological integration similar 

to smaller primates even though it is the largest taxon included in this analysis.  

From this evidence, it is unlikely that the skull morphology hypothesized to 

underlie the WMP constitutes an ESC, at least not in its entirety. A phenetic examination 

might support the anthropoid cranial reorganization proposed by Ravosa et al. (2000) 

hypothesis as an ESC based on general differences in skull shape between anthropoids 

and strepsirrhines, and on the presence of the WMP and mandibular fusion in a variety of 

ecological contexts across anthropoids. However upon further analysis, there is little 

evidence that the cranial and mandibular components evolved together as a functional 

unit – a requirement if they are an ESC. First, the cranial and mandibular components are 

not integrated in the predicted manner, both across and within primate species. This 

implies that greater encephalization, basicranial flexion, and facial kyphosis of the 

cranium did not drive the evolution of a taller mandibular ramus, the WMP, and 

mandibular fusion in anthropoids. The fossil record also provides some evidence for the 

independent evolution of these cranial and mandibular components. Multiple stem 

platyrrhines and catarrhines (e.g., Aegyptopithecus, Chilecebus, and Homunculus) have 

evolved complete mandibular fusion while retaining a strepsirrhine-like brain size. 

Second, the convergent evolution of the WMP in indriids provides insight into aspects of 

skull shape associated with the WMP without other confounding taxonomic differences 

that are not functionally relevant. Indriids (specifically Propithecus) do not exhibit the 

cranial components proposed by Ravosa et al. (2000), except for frontated orbits, when 

compared to other strepsirrhines but do display a taller mandibular ramus resulting in 
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more vertically-oriented masseter muscles. Lastly, one of the key components, facial 

kyphosis, does not discriminate anthropoids and strepsirrhines (Figure 4.14). Ravosa et 

al. (2000) suggest that a downward rotation of the face in anthropoids displaces the 

occlusal surface of the dentition from the jaw joint, effectively increasing mandibular 

ramus height. Although anthropoids do have taller mandibular rami compared to 

strepsirrhines, this does not appear to be directly related to facial kyphosis. Nevertheless, 

an ESC related to the WMP and mandibular fusion may still exist without implicating all 

of the proposed cranial components. A taller mandibular ramus and vertically-oriented 

masseter muscles are maintained in all primates exhibiting the WMP and thus may be 

functionally related to mandibular fusion as suggested by Ravosa et al. (2000), but 

ultimately determined by factors other than increased encephalization, basicranial 

flexion, and facial kyphosis.  

  

4.4.3 Interpreting mandibular symphyseal fusion and the WMP 

 Despite extensive research on the evolution of symphyseal fusion in primates, and 

mammals in general, there is still no consensus on the primary function of symphyseal 

fusion. The arguments for fusion to provide either strength or stiffness to the symphysis 

lead to ultimately different interpretations regarding the underlying WMP. On one hand, 

the hypothesis that fusion strengthens the symphysis against greater amounts of stress 

ultimately characterizes fusion as a response to changes in masticatory activity patterns 

and loading regimes. Specifically, increased wishboning stress is caused by delayed 

activity of the balancing-side deep masseter muscle, which in turn results from taller 

ramus height and vertically-oriented deep masseter muscles. Determining the cause for 
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increased ramus height still remains a problem. Prior to this study greater 

encephalization, basicranial flexion, and facial kyphosis were thought to be the initiating 

factors, but the present research does not find support for this hypothesis. Interestingly, 

differences in the facial and palatal structure of platyrrhines and indriids versus 

catarrhines may provide evidence of different underlying mechanisms and independent 

evolution of the WMP. Nevertheless, the strength hypothesis does not interpret 

symphyseal fusion (at least in anthropoids) as an adaptation to changing dietary 

preferences but is instead ultimately a result of craniomandibular shape affecting 

masticatory activity patterns and loading regimes. 

 On the other hand, the stiffness hypothesis provides alternative interpretations for 

the evolution of the WMP and symphyseal fusion. Where the strength hypothesis 

proposes symphyseal fusion as a response to changing loading regimes, the stiffness 

hypothesis interprets symphyseal fusion as an adaptation to recruit and transfer 

mediolaterally-oriented muscle force from the balancing to working side of the mandible. 

A change in diet to harder or tougher foods would reasonably be expected to require 

recruitment of additional balancing-side muscle force. Therefore, it is possible that 

symphyseal fusion and delayed activity of the balancing-side deep masseter muscle 

evolved as an adaptive complex to transfer mediolaterally oriented muscle force across 

the symphysis to the working side of the jaw. The increase in ramus height that correlates 

with the WMP and symphyseal fusion may instead function to increase the overall size of 

the masseter muscles to generate greater muscle force rather than impacting the 

orientation and activity of the masticatory muscles. This interpretation views symphyseal 

fusion as an adaptation to changes in diet rather than a response to a structural 
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reorganization of the masticatory apparatus. However, the fossil record does not provide 

great support for this interpretation. Stem and early crown anthropoids do show 

adaptations pertaining to more frugivorous and folivorous diets (e.g., Kay et al., 1997; 

Kirk and Simons, 2001; Rasmussen and Simons, 1992; Simons and Rasmussen, 1996) 

contrary to their more insectivorous ancestors, but many extant strepsirrhines are 

frugivorous and retain unfused symphyses. Nevertheless, this does not necessarily prove 

that the evolution of the WMP and symphyseal fusion, when it occurred, would not be a 

beneficial adaptation to processing even marginally more mechanically demanding foods 

if it were to arise.  

A third possibility is that the face and palatal structure initiated the WMP as 

described for the strength hypothesis (Ravosa and Hogue, 2004), and symphyseal fusion 

was needed to transfer the balancing-side muscle force to maintain the transverse 

movement of the mandible during the chew cycle. It is possible that unfused 

strepsirrhines maintain transverse movement through the working-side medial pterygoid 

muscle, and thus do not need to transfer mediolaterally oriented force across the 

symphysis. The increased height of the ramus in anthropoids and indriids could cause a 

more vertical orientation of the medial pterygoid muscle (similar to the masseter muscle) 

instigating the isolation of peak balancing-side deep masseter muscle activity at the end 

of the power stroke and requiring symphyseal fusion to transfer balancing-side muscle 

force across the symphysis. Additional experimental evidence is needed to understand the 

role of the medial pterygoid muscle in the chew cycle to either support or refute this 

hypothesis. 
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4.4.4 Masticatory patterns and morphology within anthropoids 

 Catarrhines and platyrrhines have a few distinct differences in their patterns of 

masticatory function. Figure 4.5 identifies patterns of masticatory function and skull 

shape that primarily distinguish Old World monkeys from smaller-bodied New World 

monkeys. The working-side deep masseter muscle fires very early and unaccompanied in 

the chew cycle in Old World monkeys.  The working-side deep masseter muscle adducts 

the jaw and moves it laterally to the working-side which has the potential to create a 

wishboning stress at the symphysis.  This peak muscle activity pattern covaries with a 

thicker, less vertical symphysis and the presence of an inferior transverse torus. However, 

these characteristics could also simply be related to other differences between 

platyrrhines and catarrhines. The more prognathic papionin face creates greater 

symphyseal curvature and thus higher wishboning stress (Vinyard and Ravosa, 1998). 

Increasing the anteroposterior width of the symphysis in addition to a less vertical 

orientation or development of an inferior transverse torus could counteract increased 

wishboning stress. To ascertain if the isolated activity of the working-side deep masseter 

muscle is a causal factor in determining symphyseal morphology, experimental evidence 

from strain gauge studies is needed to see if significant wishboning stress corresponds 

with the activity of the working-side deep masseter muscle. The force generated at the 

symphysis by the working-side deep masseter may be insignificant if there is not a 

counter force on the contralateral side of the jaw. 

 Conversely, the peak activity of the balancing-side superficial masseter occurs at 

nearly the same time as the working-side superficial masseter in small-bodied 

platyrrhines. A coordinated firing of the working and balancing-side superficial masseters 
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could twist both corpora with inferior eversion from the muscle force and superior 

inversion from the bite force (only on the working-side). Without counteracting forces 

from muscles on the ipsilateral sides (e.g., working and balancing-side medial pterygoid 

muscles), a twisting of the corpus would result in coronal bending at the symphysis. This 

hypothesis is supported by the corresponding differences in skull shape between small-

bodied platyrrhines and papionins. Platyrrhines have a more transversely oriented 

masseter while retaining a similar orientation of the medial pterygoid muscles compared 

to papionins. Even if the medial pterygoids fire concurrently with the ipsilateral 

superficial masseters, the transverse orientation of the superficial masseters could still 

cause eversion of the inferior border of the corpus. Additionally, the more-vertical 

orientation of the symphysis and buccolingually thicker corpora in platyrrhines are better 

suited to resist coronal bending and torsional stress, respectively. 

 

4.4.5 Phylogenetic context of the WMP and symphyseal fusion 

 The argument put forth for the evolution of mandibular fusion prior to the 

divergence of platyrrhines and catarrhines is based on the complexity and cascade of 

features associated with mandibular fusion. Proponents of this interpretation have 

suggested that the functional complexity of mandibular fusion in anthropoids warrants 

greater phylogenetic weight compared to other features (such as the loss of P2) and other 

instances of mandibular fusion across the primate tree (Lockwood, 2007; Ravosa, 1999). 

The results from this study demonstrate that the evolution of the WMP and mandibular 

fusion in anthropoids is not likely tied to an elaborate reconfiguration of the skull that 

differentiates anthropoids from strepsirrhines and may not be different from the 
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mechanisms exhibited by indriids. Hence the WMP and mandibular fusion should be 

used with caution in phylogenetic analyses as it has evolved independently in multiple 

lineages. 

 Evidence for independent evolution of the WMP in platyrrhines and catarrhines is 

potentially found in the manner in which members of each taxon increase the height of 

the mandibular ramus. Although ramus height is increased in both parvorders primarily 

through expanding the ramus below the dentition, the height of the mandibular condyle 

above the dentition also contributes to the overall ramus height, in a potentially 

significant way. In catarrhines, the palate is vaulted to distance the mandibular condyle 

from the dentition while the palate as a whole is inferiorly displaced from the condyle. 

Indriids share the same configuration with platyrrhines in that the inferior displacement 

of the palate relative to the mandibular condyle contributes a small portion to the increase 

in overall ramus height. Even though condylar height is only partially responsible for the 

increase in overall ramus height, it demonstrates separate mechanisms in platyrrhines and 

catarrhines for achieving an overall similar functional configuration associated with the 

WMP and symphyseal fusion. 

 A decrease in the phylogenetic importance of mandibular fusion in anthropoids 

(and possible evidence for independent evolution) influences the placement of fossil 

primates on the anthropoid evolutionary tree. In particular, Catopithecus and other 

oligopithecids have been viewed as stem anthropoids by researchers that argue for the 

homologous nature of mandibular fusion in anthropoids. This new insight into the 

evolution of the WMP and mandibular fusion in anthropoids increases the possibility that 

Catopithecus could be a basal catarrhine by reducing the phylogenetic importance of 
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mandibular fusion and emphasizing other features that this taxon shares with other 

catarrhines. 

 

4.5 CONCLUSIONS 

 It is often the case with scientific research that when trying to answer one 

question, many more arise. The current study shows it is unlikely that the evolution of the 

WMP and symphyseal fusion in primates is related to greater encephalization, basicranial 

flexion, and facial kyphosis; however, new questions are unveiled that provide the 

foundation of future research. Morphological evidence supports the hypothesis that 

mandibular ramus height is associated with the orientation of the masseter muscles and 

delayed activity of the balancing-side deep masseter muscle, but underlying mechanisms 

driving variation in ramus height in anthropoids and strepsirrhines are still undetermined. 

The results presented here indicate that ramus height could partially be related to the 

structure of the palate and nasal cavity that are different in catarrhines and platyrrhines, 

potentially suggesting independent evolution. Additionally, ramus height could reflect 

masseter muscle size as a dietary adaptation. Fusion in strepsirrhines has historically been 

attributed to more mechanically demanding diets but specifically as a mechanism to resist 

increased dorsoventral shear stress, not as a response to the wishboning motor pattern. 

Studies have shown that there is a correlation between diet and symphyseal fusion in 

strepsirrhines, but it is unknown whether symphyseal fusion is reversible since no 

strepsirrhine clade has evolved symphyseal fusion and subsequently diversified into a 

less demanding dietary niche. In this case, fusion in strepsirrhines may also be similar to 

anthropoids in that once it has evolved it is not likely to reverse even with a less 
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mechanically demanding diet. Regardless of the ultimate factors driving increased ramus 

height and symphyseal fusion in different primate lineages, there is no evidence 

suggesting that symphyseal fusion in some clades is better for reconstructing 

phylogenetic relationships than in others. Symphyseal fusion should not be afforded 

greater weight than other characteristics in phylogenetic analyses of fossil taxa.   
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5 Insights into mandibular symphyseal fusion from an    

ontogenetic perspective 

 

 The previous few chapters have investigated the shape-function relationships of 

the masticatory apparatus and the impact of skull morphology on specific masticatory 

motor patterns. Both analyses highlighted the importance of the wishboning motor 

pattern and loading regime in the evolution of symphyseal morphology and fusion in all 

extant primates that either completely or partially fuse their symphyses. These results and 

interpretations challenge previous notions regarding the loading regimes associated with 

fusion in different primate lineages. Historically, the wishboning loading regime was 

explicitly tied to mandibular symphyseal fusion in crown anthropoids while partial fusion 

in strepsirrhines and other extinct primates was seen specifically as a response to 

dorsoventral shear stress (Lockwood, 2007; Ravosa, 1991; 1996; 1999; Ravosa and 

Hogue, 2004; Scott et al., 2012b). This interpretation was based on the ability of a 

partially fused symphysis to counter wishboning stress (which was addressed in Chapter 

2) and the ontogenetic timing of symphyseal fusion in different primate lineages. 

 Extant anthropoids are the only primates known to fuse the mandible at the 

symphysis early on during growth and development, before or near weaning. Conversely, 

partial or complete fusion occurs in strepsirrhines later in ontogeny, often once dental 

maturity has been reached. Previous researchers have argued that this discrepancy in 

developmental timing of fusion reflects differences in underlying loading regimes. If 

adult masticatory behaviors are adopted around the time of weaning, then the presence of 

the wishboning motor pattern and loading regime would necessitate symphyseal fusion 
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around the same time (see Ravosa and Hogue, 2004). The association of dorsoventral 

shear with late ontogenetic fusion implies that allometric constraints of the masticatory 

apparatus require greater recruitment of balancing-side adductor muscle force to maintain 

a consistent bite force (see Ravosa and Hogue, 2004). Nevertheless, many of these 

assumptions had never been thoroughly tested. The aim of the following chapter is to 

investigate the ontogenetic trajectories of mandibular morphology in relation to 

expectations of different masticatory loading regimes in primates with early and late 

ontogenetic fusion of the mandibular symphysis. No previous studies have provided a 

comparative assessment of mandibular functional morphology between primates with 

different ontogenetic timings of symphyseal fusion and across the timing of fusion within 

ontogenetic series. 
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6 Mandibular ontogeny and the evolution of 

mandibular symphyseal fusion 

 

6.1. INTRODUCTION: 

         Fusion of the mandibular symphysis has proven to be an enigmatic feature in the 

evolutionary diversification of primates. The occurrence and degree of mandibular 

symphyseal fusion varies across the primate and other mammalian clades and has been 

studied extensively over the last few decades without consensus on the underlying 

mechanisms driving fusion (e.g., Beecher, 1977; 1979; Crompton et al., 2008; 2010; 

DeGueldre and DeVree, 1990; Greaves, 1988; 1993; Herring and Scapino, 1973; 

Hylander, 1979a; 1984; Hylander and Johnson, 1994; Hylander et al., 2000; Lieberman 

and Crompton, 2000; Ravosa, 1991; Ravosa, 1999; Ravosa et al, 2000; Scapino, 1965; 

1981; Scott et al., 2012a,b; Vinyard et al., 2006; Weijs and Dantuma, 1981; Williams et 

al., 2008). Interspecific comparative functional and morphological studies on adult 

mammals have comprised the majority of attempts to understand symphyseal fusion, with 

few addressing fusion in an ontogenetic context (primates: Ravosa, 1996; Ravosa and 

Simons, 1994; Ravosa and Vinyard, 2002; Ravosa et al., 2007, rabbits: Hirschfeld et al., 

1977; Weijs et al., 1989, pigs: Herring and Wineski, 1986; Herring et al., 1991; 2008; 

Huang et al., 1994). Nevertheless, it is known that mandibular symphyseal fusion in 

primates occurs postnatally, and that the ontogenetic timing of fusion varies among 

different primate lineages (see Ravosa and Hogue, 2004). The current study attempts to 

generate new hypotheses and provide insight into mandibular symphyseal fusion by 



156 

 

addressing the relatively unexplored relationship between mandibular symphyseal fusion 

and ontogeny. 

 

6.1.1 Ontogenetic timing of symphyseal fusion 

In extant anthropoids, mandibular symphyseal fusion coincides with weaning and 

the eruption of the first permanent molars and is characterized as early-ontogenetic 

fusion. This is contrasted with indriids, which display partial symphyseal fusion that 

occurs later in growth and development, often around the subadult or adult stage. 

Expectedly, the ontogenetic timing of fusion in extinct primates requires at least a partial 

ontogenetic series – a rarity in the fossil record. Luckily, the abundance of mandibular 

elements for a few extinct primate species allows estimates of ontogenetic timing of 

fusion for these taxa, and thereby the inference of fusion in closely related species. For 

example, observations of a mandibular ontogenetic series of Archaeolemur indicated that 

this genus and likely other subfossil lemurs, exhibited late-ontogenetic symphyseal fusion 

similar to indriids (Ravosa and Simons, 1994). Unlike indriids, however, Archaeolemur 

and some other subfossil lemurs (i.e., Megaladapis, Hadropithecus, Archaeoindris, and 

Palaeopropithecus) possess a fully fused or ossified mandibular symphysis. Likewise, a 

similar pattern of late-onset complete fusion is found in the adapoid primates Leptadapis 

magnus, Adapis parisiensis, and Notharctus tenebrosus (Ravosa, 1996). Late-ontogenetic 

fusion has also been proposed for the stem anthropoid, Simonsius grangeri (Ravosa, 

1999); however, this interpretation is tenuous since it is based on a single mandibular 

specimen attributed to this taxon solely by size and location. Overall, current evidence 
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indicates that early-ontogenetic symphyseal fusion is a unique feature of the crown 

anthropoid clade (Ravosa, 1999). 

Unfused mandibular symphyses are accompanied by a network of ligaments and 

fibrocartilage that hold the hemimandibles together. As discussed previously (Chapter 2), 

the density and orientation of ligaments varies and is likely functionally related to the 

transfer of muscle force or resistance of stresses generated at the symphysis. Both early- 

and late-ontogenetic symphyseal ossification in primates occur in the labiolingual 

direction (Beecher, 1977; 1979), which is perplexing given the presumed importance of 

wishboning stress for fusion in anthropoids (Ravosa and Hogue, 2004) and likely 

strepsirrhines (see Chapter 2; Hylander et al., 2011). Considering cortical bone is weaker 

in tension than compression and wishboning stress generates significant tension on the 

lingual symphysis, ossification might be expected to begin at the lingual aspect of the 

symphysis to fortify against wishboning stress. It is possible that the neurovascular 

structures housed in the lingual region of the symphysis affect the direction of fusion 

(Beecher, 1977; 1979; Ravosa et al., 2007), but it is also interesting to note that pigs, 

which experience significant lingual compression and labial tension during mastication, 

undergo symphyseal fusion in the opposite (i.e., lingual to labial) direction (Herring et al., 

2008).  

Additionally, early- and late-ontogenetic fusion have been associated with 

different functional underpinnings reflected in the adult masticatory loading regimes. 

Adult masticatory function is often inferred to be present in individuals with the eruption 

of the first permanent molars (Iinuma et al., 1991; Smith, 1991; Vinyard and Ravosa, 

1998). Early-ontogenetic fusion in crown anthropoids has been linked with the 
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wishboning motor pattern and loading regime, where complete symphyseal fusion 

provides either stiffness to transfer muscle force or strength to fortify against increased 

wishboning stress once adult masticatory patterns are realized. Conversely, late-

ontogenetic fusion was previously argued to be functionally associated with greater 

recruitment of vertically-directed balancing-side adductor muscle force, either to resist 

increased dorsoventral shear stress or to stiffen the symphysis for transferring balancing-

side muscle force to the working-side (Ravosa and Vinyard, 2002; Ravosa and Hogue, 

2004). However, these interpretations likely require revisions given that EMG data 

suggest that sifakas have a balancing-side deep masseter recruitment pattern similar to 

anthropoids (Hylander et al., 2011), even though they have late-ontogenetic fusion. The 

combined presence of the wishboning motor pattern and morphology of the mandibular 

symphysis suggest that sifakas were able to resist moderate to high levels of wishboning 

stress (Chapter 2). 

Little information exists on the ontogenetic change of jaw muscle activity in 

primates. Hylander et al., (1987; 1992) demonstrated that jaw muscle recruitment patterns 

do not change significantly between subadult and adult crab-eating macaques while other 

work has indicated that EMG magnitudes of the masseter becomes relatively larger 

compared to the temporalis during ontogeny (McNamara, 1974). Even though it is often 

assumed that adult masticatory function is present with the eruption of the first permanent 

molar, there are expectations for allometric variations in muscle force recruitment with 

size (Ravosa and Vinyard, 2002). Additionally, Herring et al., (2008) demonstrated 

variability in masticatory loading regimes with age in an ontogenetic series of pigs, 

supporting the notion of ontogenetic change in masticatory function. 
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 6.1.2 Mandibular variation and function 

         Extensive work has focused on understanding form-function relationships of the 

primate mandible. Generally, these studies have analyzed interspecific variation of adult 

specimens either among closely related sister taxa (e.g., Daegling, 1992; Taylor and 

Groves, 2003; Taylor, 2005, 2006a,b; Daegling and McGraw, 2001, 2007; Terhune, 

2013) or across a wider clade of primates (e.g., Bouvier, 1986a,b; Anapol and Lee, 1994; 

Ravosa, 1991, 1996). These analyses have tested experimentally- or theoretically-derived 

hypotheses that provide expectations of differences in mandibular morphology in relation 

to masticatory loading regimes or responses to different mechanical requirements of diet. 

Masticatory muscle activity and loading patterns influence the morphology of the 

mandible and have the potential to vary based on dietary preferences. Species with 

tougher diets that require greater muscle force and repetitive loading of the masticatory 

apparatus (e.g., folivory as opposed to frugivory) are assumed to exhibit greater 

masticatory loads and necessitate improved resistance to maintain similar stress and 

strain levels (Hylander, 1985). However, adaptations to a folivorous diet may vary among 

different primate clades depending on the material properties of food, masticatory 

behaviors, and loading patterns and regimes already in place that are in part defined by 

phylogenetic history (Ross et al., 2012).  

 Elevated levels of balancing-side jaw adductor muscle force during unilateral 

mastication bends the balancing-side mandibular corpus in the parasagittal plane and 

generates dorsoventral shear stress at the symphysis when coupled with bite point 

reaction forces (Hylander, 1979a,b). Experimental studies have shown that the amount of 

bending is directly proportional to the recruitment of balancing-side adductor muscle 
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force (Hylander, 1984). Resistance to parasagittal bending of the balancing-side corpus is 

most efficiently achieved through increasing the vertical depth of the corpus. 

Additionally, dorsoventral shear stress at the symphysis is efficiently countered by 

increasing the cross-sectional area of cortical bone at the symphysis (Hylander, 1984). 

The working-side mandibular corpus is also twisted through axial torsion about its 

long axis during unilateral mastication and incision (Hylander, 1979a,b, 1981). The 

lateral direction of the masseter muscle force resultants and medial direction of the bite 

force everts the inferior corpus and inverts the alveolus creating axial torsion of the 

corpus. This activity also generates a coronal bending of the symphysis (Hylander, 

1979a,b, 1981). Even cortical bone distribution about the neutral axis to increase 

buccolingual thickness of the postcanine corpus most efficiently resists torsional loads 

while increasing the depth of the symphysis counters coronal bending (Hylander, 

1979a,b, 1985). Increased muscle force or repetitive loading to process tougher foods 

would presumably increase the torsional loads and coronal bending at the symphysis and 

be reflected in the corresponding mandibular dimensions. 

 Experimental studies have observed wishboning stress at the symphysis (and 

possibly corpus) in primates that exhibit delayed activity of the balancing-side deep 

masseter muscle at the end of the power stroke during unilateral mastication. This muscle 

activity pattern and loading regime is present in anthropoids and the muscle activity 

pattern has been observed in indriids as well (Hylander et al., 2011). It is likely that 

mandibular symphyseal fusion or the presence of transversely oriented symphyseal 

ligaments provide the stiffness necessary for the mandible to function as a curved beam 

when the mandible is bent in the plane of curvature, generating wishboning stress 
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(Lieberman and Crompton, 2000). Without the proper symphyseal structure to transfer 

muscle force from balancing-side to working-side, it is feasible that the wishboning stress 

generated at the symphysis would diminish in the ligaments of an unfused mandibular 

symphysis (Herring and Mucci, 1991). Wishboning generates high tensile stress lingually 

and compression labially and thus increasing the labiolingual thickness or orienting the 

long axis of the bone more horizontally would counter increased wishboning loads 

(Hylander, 1985). Additionally, since the mandibular symphysis acts as a curved beam, 

wishboning loads increase with greater curvature of the symphysis. As symphyseal 

curvature tends to increase with size, larger individuals or species are expected to 

experience intensified wishboning stress at the symphysis (Hylander, 1985; Vinyard and 

Ravosa, 1998). Therefore, wishboning loads and the resulting morphological effects are 

expected to track size variation rather than the mechanical requirements of diet. 

 Other aspects of mandibular morphology are expected to vary as a result of 

dietary adaptations. Some researchers have argued that a shorter, deeper face with 

anteriorly positioned masseter muscles create a greater mechanical advantage by 

positioning the masticatory muscles closer to the bite point, thus improving the load-lever 

arm ratio and reducing the bending moments in the face (Anton, 1996; DuBrul, 1977; 

Hylander 1977, 1979a; Ravosa, 1990; Spencer and Demes, 1993). Additionally, bite 

force is inversely proportional to jaw length, so a shorter jaw increases the amount of 

muscle force converted into bite force (Hylander, 1979a; Spencer, 1998). Increasing the 

height of the temporomandibular joint above the occlusal surface is thought to more 

evenly distribute occlusal loads across the postcanine teeth, effectively reducing the 

fatigue and failure associated with repetitive loading (Herring and Herring, 1974; Ward 
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and Molnar, 1980). Lastly, comparative studies have shown that folivorous primates tend 

to have wider mandibular condyles to distribute loads across the lateral condyle during 

unilateral mastication (Bouvier, 1986a; Smith et al., 1983; Takahashi and Pan, 1994). 

This has been associated with an emphasis on postcanine food processing while 

anteroposterior longer condyles are associated with anterior tooth use (Smith et al., 1983; 

Bouvier, 1986a).  

While identification of loading regimes and masticatory activity patterns in 

experimental studies have corresponded with expected theoretical changes in mandibular 

morphology, the link between diet and morphology is more tenuous. The lack of 

consistent relationships between diet and morphology is likely a consequence of 

inaccurate expectations of broad characterizations of diet and the phylogenetic history of 

internal and external forces associated with mastication. Dietary profiles are variable and 

composed of many items with different structural properties, so referring to a species as 

being “frugivorous” or “folivorous” may not provide enough detail of the geometric and 

material properties of items to generate appropriate dietary-loading regime relationships. 

Ultimately, dietary variation will only correspond with variation in mandibular 

morphology if diets differentially affect mandibular loadings regimes and stress and 

strain patterns in a consistent manner, which may not be expected across primate clades 

with different phylogenetic histories (see Ross et al., 2012). 

Elongation of the jaw in many catarrhines results a larger gape which is likely to 

allow for the display and use of large canines for competition or defense (Hylander, 

2013; Ravosa, 1996a). However, a larger gape is achieved through the elongation of 

masticatory muscle fibers and/or the posterior position of jaw adductor muscles that 
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ultimately reduce the mechanical efficiency of the masticatory apparatus (Spencer and 

Hogard, 2001). It is therefore expected that in a species with sexually dimorphic canines, 

increased gape and facial prognathism would be associated with relatively larger 

masticatory muscle mass to maintain functional equivalence of bite force (Hylander, 

2013).   Conversely, a reduction in jaw gape and more anteriorly positioned or shorter 

jaw muscles result in increased mechanical efficiency of the masticatory apparatus and 

would be expected with a reduction in canine size (Hylander, 2013). The relationship 

between canine size, gape, and mechanical efficiency of the masticatory apparatus 

provides an example of how other factors unrelated to diet can affect masticatory 

biomechanics.  

 

6.1.3 Postnatal growth and development of the mandible 

While interspecific analyses of adult mandibular variation have been plentiful, 

comparative work on the postnatal growth and development of the mandible has received 

less attention. Most previous ontogenetic analyses have compared scaling trajectories 

between closely related species using specific linear measurements associated with 

masticatory loading regimes and dietary adaptations in the context of heterochrony (e.g., 

Boughner and Dean, 2008; Cole, 1992; Daegling, 1996; Ravosa, 1992; Ravosa and 

Daniel, 2010; Taylor, 2002; 2003).  

Regardless of the methods employed, most studies comparing ontogenetic 

trajectories identify prenatal or early postnatal differences in mandibular morphology 

between closely related species even if the overall trajectories are parallel or divergent. In 

Gorilla and Pan, differences in mandibular shape are present at infancy and are likely 
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due to prenatal developmental variation (Daegling, 1996). The two genera do not share 

the same slope for their ontogenetic trajectories, indicating that they have different 

allometric changes in mandibular shape throughout development (Daegling, 1996; 

Taylor, 2002). Similar conclusions have been reached for ontogenetic comparisons of 

Pan paniscus with Pan troglodytes (Boughner and Dean, 2008; Taylor and Groves, 2003) 

and Cebus apella with Cebus albifrons (Cole, 1992). These studies found that the main 

differences in shape between congeners are already present early in development (likely 

due to prenatal growth processes), although they share parallel ontogenetic trajectories 

during their postnatal growth (Boughner and Dean, 2008; Cole, 1992). Therefore, the 

shape differences between species are not simply the result extended or truncated 

development, but instead often result from prenatal morphological differences possibly 

reflecting different dietary adaptations (Cole,1992; Taylor, 2002). 

Recent ontogenetic studies by Ravosa and colleagues have sought to understand 

the mandibular variation across multiple strepsirrhine clades (lorises: Ravosa, 1998; 

2007; galagos: Ravosa et al., 2010; indriids and lemurs: Ravosa, 1992; Ravosa and 

Daniels, 2010). These studies have found that much of the variation in the facial skeleton 

within multiple extant strepsirrhine clades is a result of extended or truncated 

development along similar ontogenetic trajectories (Ravosa, 1992, 1998, 2007; Ravosa 

and Daniel, 2010; Ravosa et al., 2010). Even though the face may be ontogenetically 

scaled, the mandibular dimensions exhibit divergent growth trajectories that have been 

interpreted as resulting from different feeding adaptations among sister taxa (Ravosa, 

1992, 1998, 2007; Ravosa and Daniel, 2010; Ravosa et al., 2010). 
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        Dental development has been identified by some authors as an important factor in 

mandibular morphology in hominins (Dean and Benyon, 1991), African apes (Daegling, 

1996; Taylor, 2002; Taylor and Groves, 2003) and capuchins (Cole, 1992), whereas 

others have suggested that tooth development has little impact on mandibular 

morphology (Boughner and Dean, 2004, 2008). Many studies have noted the greater 

relative thickness of the corpus in younger individuals, and that a reduction in relative 

growth rates for mediolateral corpus thickness corresponds with the timing of eruption of 

M1 as the influence of molar size and development on mandibular shape (Cole, 1992; 

Daegling, 1996; Taylor, 2002; Taylor and Groves, 2003). In contrast, Boughner and Dean 

(2008) argue that since the buccolingual growth of the corpus finishes after the eruption 

of M1 in Pan, the corpus cannot contribute further space to the development of the 

molars. Thus, the postnatal linear ontogenetic trajectory of mandibular shape change does 

not coincide with the non-linear variation in tooth developmental timing (Boughner and 

Dean, 2008). Nevertheless, a study of the fetal development of the mandibular symphysis 

in humans and chimps suggests that prenatal dental development (especially of the 

deciduous canines) may affect the growth of the anterior corpus, with the transition of a 

vertical symphysis to an anteriorly inclined symphysis coinciding with the emergence of 

deciduous canines in chimps (Coquerelle et al., 2010).  In sum, these results indicate that 

there is still much that is unknown about the relationship of dental development and the 

variation in mandibular form. 
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6.1.4 Study goals 

The goals of this study are to quantify and compare ontogenetic patterns of shape 

change for primate species representing different clades, and to identify similar and 

disparate adaptations to masticatory loading regimes. The majority of previous studies on 

the growth and development of mandibular form and function have analyzed closely 

related species or subspecies. However, Ravosa and colleagues (Ravosa, 1992, 1998, 

2007; Ravosa and Daniel, 2010; Ravosa et al., 2010) have provided some initial work on 

clade-wide scaling patterns of craniomandibular dimensions among strepsirrhines to 

interpret variations in masticatory loading regimes among species. The goal of this 

analysis is not only to compare ontogenetic trajectories among clades, but also to 

investigate potential changes in masticatory loading regimes during growth and 

development in association with the timing of symphyseal fusion. In this context, the 

ontogenetic shape changes associated with mandibular symphyseal fusion are 

investigated for representative species that exhibit either complete or partial symphyseal 

fusion. All extant primates that exhibit complete symphyseal fusion in adulthood undergo 

early ontogenetic fusion while partial fusion in extant primates is associated with late 

ontogenetic fusion. Partial and complete fusion have been hypothesized to result from 

different loading regimes and thus different morphologies are expected. Mandibular 

shapes of specimens with and without fusion in an ontogenetic series are compared to 

determine whether the shape changes associated with fusion reflect loading regimes 

within each species. To the author’s knowledge, this work provides the first comparative 

analysis of mandibular ontogeny and the timing of symphyseal fusion between species 

that vary in the degree and ontogenetic timing of fusion. 
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6.2 MATERIALS AND METHODS 

         The sample in this analysis includes a mixed-sex, cross-sectional ontogenetic 

series of mandibles for six primate species. The species were chosen to include 

representatives from most of the major primate clades and include primates that 

demonstrate variability in mandibular symphyseal fusion: complete fusion, partial fusion, 

and no fusion. The ontogenetic series for each species was divided into 4 discrete age 

classes based on dental eruption stages: all deciduous, M1 in occlusion, M2 in occlusion, 

and M3 in occlusion or adult (Table 6.1). When possible, each age class was represented 

by roughly equal numbers of males and females. Some individuals of unknown sex were 

included but primarily in the younger age classes. All mandibles were scanned using a 

Breuckmann SmartSCAN white light scanner using 90mm lenses. The individual scans 

for each specimen were cleaned, aligned, and merged using Geomagic Design software to 

create 3D models of each primate mandible.  

 

 

Table 6.1: Sample size by age group for each taxon. 
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Table 6.2: List of mandibular landmarks and semilandmarks. Landmarks begin with “M” and 

semilandmarks begin with “MS”. 
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Figure 6.1: Mandibular (a-rostral, b-dorsal, c-lateral) landmarks and semilandmark curves (blue 

lines) used in this analysis. Both sides of the mandible were digitized, but only landmarks on the left 

side and midline are displayed. 

 

A series of homologous landmarks and semilandmarks was placed on each 

specimen using Stratovan Checkpoint software (Stratovan Corporation, Davis, CA ) 

(Table 6.2, Figure 6.1). Semilandmark curves were densely sampled to best approximate 

the actual curvature of the morphology and then resampled to obtain a series of evenly-

spaced points for each curve using RESAMPLE.exe (available at pages.nycep.org/nmg/, 

created by David Reddy and Johann Kimm, edited by Dr. Ryan Raaum). A densely 

sampled curve provides greater detail of the bone’s curvature and decreases the deviation 

of the semilandmarks off of the surface when sliding along the curve tangents. 
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Nevertheless, large numbers of semilandmarks capture minute details of the morphology 

that may not be to the research questions being asked and mask morphological patterns of 

interest. In this analysis, different numbers of evenly-spaced points were exported and 

analyzed to determine the appropriate density of semilandmarks for each curve. Missing 

landmarks in a few specimens were estimated within species-age categories using the 

thin-plate spline interpolation method in the Geomorph package in R (Adams and 

Otarola-Castillo, 2013). 

 The raw landmark configurations were superimposed to only represent shape 

variation among specimens using a generalized Procrustes analysis that translates each 

configuration to a common origin, scale configurations to a centroid size of one, and 

iteratively rotates the configurations to minimize the Procrustes distance between 

homologous landmarks (Gower, 1975; Rohlf and Slice, 1990) using the Geomorph 

package in R (Adams and Otarola-Castillo, 2013). During superimposition, the 

semilandmarks were allowed to slide along tangents to the curves under the criterion of 

minimizing bending energy to create geometric homology of the semilandmark curves 

across specimens (Bookstein, 1997; Gunz et al., 2005). Procrustes superimpositions were 

calculated separately for each species when analyzing each ontogenetic series but 

included multiple species when investigating shared patterns of shape change among age 

cohorts.  
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Figure 6.2: Multivariate regression of the Procrustes landmark coordinates on log centroid size for the ontogenetic series of (a) Macaca fascicularis, 

(b) Colobus guereza, (c) Pan troglodytes, (d) Cebus apella, (e) Propithecus verreauxi, and (f) Lemur catta. The ontogenetic allometric vector of shape 

change is visualized to the right of each plot from negative end (left column) to positive end (right column) of the axis. 

a. 

b. 

c. 
f. 

d. 

e. 
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To explore the effects of ontogenetic allometry on mandibular shape, multivariate 

regressions of Procrustes shape coordinates on log centroid size were computed 

individually for each of the six species. Multivariate regression scores were calculated 

and plotted against log centroid size of the mandible for each species. Multivariate 

regressions (Klingenberg, 2016; Monteiro, 1999) were also computed for the Procrustes 

shape coordinates on age class, but the resulting vectors of shape change were not 

interpretively different from those calculated using log centroid size for each species and 

therefore only the latter are reported (see Simons and Frost, 2016). Descriptions of the 

shape change associated with ontogenetic allometry are provided for each species and 

interpreted based on potential variations in loading regimes experienced during ontogeny.  

Canonical variates analysis (CVA) and between-group principal component 

analysis (BGPCA) were used to analyze differences between age groups. Both are 

ordination methods that distinguish among groups by calculating eigenvectors of group 

mean configurations. Whereas CVA ordinates means within a space transformed to 

maximize group differences, and hence requires assumptions of within-group 

homogeneity of covariance, BGPCA is a rigid rotation of the original shape space based 

on differences in group mean configurations (Boulesteix, 2005; Mitteroecker and 

Bookstein, 2011). 

Differences in age categories were first analyzed within anthropoids, Lemur catta, 

and Propithecus verreauxi. Anthropoids were grouped together since all experience early 

ontogenetic and complete fusion of the mandibular symphysis.  Lemur retains an unfused 

mandibular symphysis throughout ontogeny, and Propithecus exhibits late ontogenetic, 

partial fusion. Only BGPCA was used to compare age groups within Lemur and 
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Propithecus due to small sample sizes within the various age groups. Shape changes 

among age groups were interpreted to highlight possible changes in loading regimes 

during growth and development.  

         Lastly, to investigate the specific shape changes associated with mandibular 

symphyseal fusion, between-group principal component analyses were performed 

separately for Macaca fascicularis and Propithecus verreauxi within the age groups 

associated with complete or partial fusion. This approach minimized other age-related 

shape variations found in the longer ontogenetic series. Macaca exhibits early 

ontogenetic fusion where the mandibular symphysis is completely ossified before the 

eruption of M1. Conversely, partial symphyseal fusion generally occurs once dental 

adulthood is achieved in Propithecus. The groups that define these BGPCAs are those 

individuals with unfused symphyses contrasted with those that have reached the terminal 

state of fusion for that taxon (complete fusion in Macaca and partial fusion in 

Propithecus), thereby illustrating mean differences in mandibular shape associated with 

the development of symphyseal fusion.   

 

6.3 RESULTS 

6.3.1 Ontogenetic allometric patterns of mandibular shape in primates 

In Macaca fascicularis, symphyseal curvature and relative mandibular length increases 

with size and age (Figure 6.2a). Ramus height increases with size and age through greater 

depth of the gonial region and increasing height of the condyle above the occlusal 

surface. The area of the coronoid process increases as the height of the mandibular 

condyle increases, so the heights of the mandibular condyle and coronoid process remain 
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comparable throughout ontogeny. However, the mandibular condyle becomes wider and 

anteroposteriorly shorter in older, larger specimens. Corpus depth increases and width 

decreases with size resulting in taller, thinner corpora in larger specimens. The 

symphyseal region becomes less vertically inclined and the inferior transverse torus 

becomes larger and projects further posteriorly as the mandible gets larger; however, the 

relative size of the superior transverse torus does not change significantly during 

ontogeny.  

Colobus guereza demonstrates an ontogenetic allometric pattern of increase 

symphyseal curvature with size and age (Figure 6.2b). Larger, older individuals have a 

taller mandibular ramus with a deeper gonial region and taller mandibular condyle above 

the occlusal surface. Unlike other species in this analysis, the relative height and size of 

the coronoid process does not significantly change during ontogeny. Smaller specimens 

have a noticeably shorter condyle relative to the coronoid process. Mandibular condyles 

are anteroposteriorly shorter in larger specimens, but the mediolateral width does not 

appear to change significantly with size or age. The mandibular corpus becomes deeper 

and narrower as size increases while the symphysis becomes labiolingually thicker 

(through increased projection of both superior and inferior transverse tori) and less 

vertically oriented. 
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Figure 6.3: Results from a between-group PCA and canonical variates analysis of all anthropoid 

specimens using age group as the classifying variable. The shape vectors described by the BGPC and 

CV axes are similar, so only the shape vectors for the first two BGPC axes are visualized. 
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Figure 6.4: Results from a between-group PCA on the mean configurations of the different age 

groups of Propithecus verreauxi. The shape vectors for the first two BGPC axes are visualized. 
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Figure 6.5: Results from a between-group PCA on the mean configurations of the different age 

groups of Lemur catta. The shape vectors for the first two BGPC axes are visualized. 
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  Pan troglodytes shows many similarities in ontogenetic allometric patterns with 

Macaca and Colobus (Figure 6.2c). Larger mandibles have increased symphyseal 

curvature, larger surface area of the mandibular ramus, deeper gonion, and taller 

mandibular condyles and coronoid processes. Similar to Macaca, the coronoid process 

and mandibular condyle retain similar heights relative to each other throughout ontogeny. 

As mandibular size increases, the condyles become relatively wider and anteroposteriorly 

shorter. Additionally, the corpus becomes taller and narrower which is also demonstrated 

to some degree in the symphysis. Larger specimens have a labiolingually thinner 

symphysis with a less projecting superior transverse torus, although it is less inclined and 

has a more developed inferior transverse torus.   

The ontogenetic trajectory of Cebus apella is similar to those of other anthropoids 

with some nuanced differences (Figure 6.2d). Symphyseal curvature does not appear to 

change relative to size or age when considering the curvature of the mandible from the 

symphysis to approximately M1. However, the overall curvature of the mandible is more 

parabolic in smaller specimens and U-shaped in larger specimens, with the primary 

differences in shape occurring posterior to M1.  Similar to Macaca and Pan, both the 

coronoid process and condyle increase in height as centroid size increases; however, the 

coronoid process increases in size at a greater rate leading to a configuration in larger 

individuals where the coronoid process is significantly taller than the condyle. Smaller 

individuals have a coronoid process and condyle of similar height. The mandibular 

condyle increases in width but decreases in length as mandibular size increases. The 

cross-sectional area of the mandibular symphysis does not appear to change with size or 
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age, but larger individuals have a less vertical symphyseal orientation with a reduction in 

the superior transverse torus but an expansion of the inferior transverse torus.  

The curvature of the mandible changes in Propithecus verreauxi from a more 

parabolic shape in smaller specimens to U-shape in larger specimens (Figure 6.2e). Thus, 

the curvature of the symphyseal region (from the symphysis to approximately M1) is 

greater in younger specimens but the bigonial width is relatively smaller in larger 

specimens. During ontogeny, the gonial region deepens and the coronoid process and 

mandibular condyle increase in height above the occlusal surface. The coronoid process 

and condyle maintain similar geometric relationships relative to each other during 

ontogeny, as seen in Macaca and Pan. The dimensions of the mandibular condyle do not 

appear to change significantly during ontogeny in Propithecus. Unlike anthropoids, the 

corpus does not appear to deepen significantly during growth and development, but 

corpus width decreases in a manner similar to other primates. Similarly, the relative 

cross-sectional area of the symphysis decreases during ontogeny in Propithecus with a 

slight increase in the expansion of the inferior transverse torus and corresponding 

reduction in the superior transverse torus.  

Lemur catta shows no change in symphyseal curvature or relative length of the 

mandible during ontogeny (Figure 6.2f). The inferior ramus is slightly everted with a 

relatively narrower bigonial width in larger specimens. During ontogeny the gonial angle 

is expanded and the mandibular ramus increases in height through inferior projection of 

gonial angle and increase in condylar height above the occlusal surface. The condyle and 

coronoid process both increase in height during ontogeny but maintain similar 

relationships as seen in Propithecus. The mandibular ramus becomes more vertically 
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oriented with an increase in centroid size. The mandibular condyle is slightly wider but 

anteroposteriorly shorter in older specimens. Similar to Propithecus, the corpus becomes 

relatively narrow during growth and development but does not appear to change in 

relative height. Similarly, relative symphyseal size decreases throughout ontogeny but the 

orientation is slightly less vertical with a more anterior projection of the tooth comb.  

Overall Pan, Macaca, and Colobus exhibit greater proportional growth of the 

mandibular corpus relative to the ramus which also results in an overall relative increase 

in symphyseal size throughout ontogeny in these taxa, whereas the other taxa (Cebus, 

Propithecus, and Lemur) have greater proportional growth of the mandibular ramus and a 

reduction or no change in relative symphyseal size during ontogeny. 

 

 

Figure 6.6: Visualization of the shape change between specimens with and without symphyseal fusion 

in Macaca fascicularis and Propithecus verreauxi. 
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6.3.2 Mandibular variation among age groups 

While the CVA expectedly provides better separation among age groups than 

does BGPCA, both analyses yield similar shape vectors (Figure 6.3), and therefore, only 

the BGPCA shape visualizations are discussed. Additionally, the overlap between age 

groups demonstrated in the BGPCA plot provides perhaps a better representation of the 

continuous effects of age on morphology. Even though means were computed for discrete 

age groups, some individuals are inherently closer in age to the prior group while others 

are closer to the subsequent age group, and this is better reflected in the variance within 

groups of the BGPCA. 

In the analysis of anthropoids, the first BGPC axes distinguish adults with fully 

erupted M3s from those with only deciduous dentition or M1 in occlusion (Figure 6.3). 

Relatively longer and narrower mandibles occur toward the end of the axis occupied by 

adults. This end of the axis is also characterized by mandibular condyles and coronoid 

processes that are higher above the occlusal surface of the dentition with a corresponding 

deeper gonial region. The condyles increase slightly in mediolateral width but decrease in 

anteroposterior length. The mandibular corpus is vertically deeper and the symphysis is 

less vertically oriented with a more prominent inferior transverse torus and reduced 

superior transverse torus. The second axis separates individuals with a fully occluded M1 

from individuals with only deciduous dentition (Figure 6.3). The other two age groups 

(M2 and M3 in occlusion) fall in between or closer to the youngest age group depending 

on the plot. Most of the shape patterns along this axis are similar to the first CV and 

BGPC axes except that the end of the axis containing juveniles with fully erupted M1s 

demonstrate both larger superior and inferior transverse tori in addition to a taller ramus 
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and higher mandibular condyles and coronoid processes above the occlusal surface of 

dentition. 

The BGPCAs on the age groups of Propithecus verreauxi and Lemur catta yield 

similar plots to the analyses of anthropoids by separating specimens with only deciduous 

dentition and adults with fully erupted M3s on the first axis and those with M1 in 

occlusion from the other groups on the second axis. Along the first BGPC axis using the 

Propithecus ontogenetic series (Figure 6.4), adults with fully erupted M3s plot at the end 

characterized by relatively shorter mandibles with taller condyles and coronoid processes 

along with a larger, deeper gonial region. Moving from negative to positive along this 

axis, the mandibular arch becomes narrower anteriorly and wider posteriorly describing a 

more V-shaped mandible in specimens with only deciduous dentition and a U-shaped 

mandible in adult specimens. The mandibular condyles increase in mediolateral width 

moving toward the end of the axis occupied by adult specimens. Along the second BGPC 

axis, individuals with M1 in occlusion occupy the end of the axis that represents a higher 

coronoid process and larger inferior transverse torus in comparison to specimens with 

only deciduous dentition.  

The first axis of the BGPCA on the ontogenetic series of Lemur resembles that of 

both anthropoids and Propithecus in that the end of the axis occupied by adults with M3 

in occlusion is characterized by a taller mandibular ramus and higher condyles and 

coronoid processes above the occlusal surface of dentition (Figure 6.5). However, an 

increase in the dimensions of the ramus does not coincide with a deeper mandibular 

corpus or more robust symphysis. Conversely, the mandibular symphysis becomes less 

vertically oriented but relatively smaller. The M1 age group is separated from the other 
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age groups along the second axis by plotting at the end of the axis associated with a 

posteriorly expanded coronoid process, anteroposteriorly longer mandibular condyles, 

less posteriorly projecting gonial region, and a taller but narrower symphysis. 

 

6.3.3 Intraspecific mandibular shape and symphyseal fusion 

 A BGPCA was run on specimens of Macaca fascicularis that have only erupted 

deciduous dentition in order to determine the mandibular variation occurring during the 

process of mandibular symphyseal fusion (Figure 6.6). Within this dental age group, 

symphyseal fusion occurs with an overall larger mandibular ramus by increasing the 

height of the mandibular condyle and coronoid process and deepening the gonial region. 

The mandibular symphysis is less vertically oriented but has more projecting superior and 

inferior transverse tori and no change in the relative height of the corpus. Additionally, 

the relative length and curvature of the mandibular symphysis does not appear to differ 

between fused and unfused Macaca specimens with only erupted deciduous dentition. 

 The pattern of variation displayed in the late fusing Propithecus verreauxi 

resembles many of the shape changes associated with complete fusion in Macaca 

fascicularis (Figure 6.6) Among dental adult specimens of Propithecus, those with partial 

symphyseal fusion on average have taller mandibular condyles and coronoid processes 

above the occlusal surface of the dentition in addition to deeper gonial regions. 

Additionally, the mandibular symphysis is slightly less vertical with a more projecting 

inferior transverse torus. However, unlike Macaca, Propithecus specimens with partial 

fusion also have deeper corpora relative to their unfused counterparts. 
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6.4 DISCUSSION  

6.4.1 Comparison of ontogenetic allometric patterns of mandibular shape and function 

among primate species 

 Some patterns in the growth and development of the mandible are conserved 

among primates. Anthropoids and strepsirrhines alike increase the relative size of the 

mandibular ramus in older specimens. The mandibular ramus broadens, the gonial region 

deepens, and both the coronoid process and mandibular condyle increase in height above 

the occlusal surface of dentition. The increase in area of the coronoid process and 

mandibular ramus suggest an increase in relative size of the masticatory muscles since 

they are the attachment sites for the temporalis and masseter muscles, respectively. 

Masticatory muscle size has been used as a reflection for the ability to generate muscle 

force and subsequently bite force (Anton, 1996; Hylander, 1979a,b; Ravosa, 1990; 

Taylor, 2002). Masseter muscle size has been shown to increase with positive allometry 

in ontogenetic series of Gorilla and Cebus suggesting that older, larger specimens are 

able to generate greater muscle and bite force (Cole, 1992; Taylor, 2002). The results in 

this analysis not only corroborate these previous studies and demonstrate similar patterns 

in two strepsirrhine taxa, but additionally find that greater bite force likely occurs in 

larger, older individuals specifically through a relatively larger temporalis muscle in 

addition to the masseter muscle. 

 Previous work has suggested that the shape of the mandibular condyles reflects 

the primary locations along the dental arcade used for processing food (Bouvier, 1986a,b; 

Smith et al., 1983;Takahashi and Pan, 1994). Mediolaterally wider condyles are 

associated with repetitive loading along the postcanine dentition while anteroposteriorly 
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longer condyles are thought to reflect greater usage of the anterior dentition. Each of the 

primates in this analysis demonstrates a shift in condylar shape toward mediolaterally 

wider but anteroposteriorly shorter mandibular condyles with increased age or size. This 

is not to suggest that individuals transition from loading the anterior dentition to 

postcanine dentition as they age, but perhaps that the muscle or bite force generated at the 

postcanine dentition during mastication increases with age. This would support the 

interpretations of masticatory muscle size based on the relative sizes of the attachment 

sites. Unfortunately, ontogenetic series of tree-gouging primates such as marmoset or 

tamarins which exhibit significant loading of the anterior dentition were not sampled for 

this study. Future ontogenetic investigations into the mandibular growth and development 

of primate species that preferentially load different aspects of the mandible would be very 

insightful. 

The morphology of the mandibular symphysis and corpus are expected to reflect 

masticatory loading regimes and the stresses generated in the mandible from muscle and 

bite force (Hylander, 1985). The anthropoids in this study all develop a more prominent 

inferior transverse torus during ontogeny but either experience no change or a reduction 

in the relative size of the superior transverse torus. Additionally, the orientation of the 

long axis of the symphysis becomes anteriorly inclined with age in anthropoids, although 

Cebus experiences a less drastic shift in the orientation of the symphysis during growth 

and development. The development of the inferior transverse torus and orientation of the 

symphysis suggests that older individuals are better equipped to resist increased 

wishboning stress than younger individuals of the same species. With the increase in size 

of the masseter muscles, it is likely that greater wishboning stress is generated from an 
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increase in balancing-side deep masseter muscle force during unilateral mastication. 

Additionally, the wishboning loading regime is also expected to increase with age as a 

reflection of the geometric properties of the mandible. Older, larger specimens have 

longer mandibles with greater symphyseal curvature that generate greater wishboning 

stress (Hylander, 1985; Vinyard and Ravosa, 1998). The change in orientation of the 

symphysis appears to transfer the primary effect of resisting symphyseal wishboning 

stress from the superior transverse torus to the inferior transverse torus. A reduction in 

the vertical orientation of the symphysis is associated with development of the inferior 

transverse torus and often a decrease in size of the superior transverse torus. With a less 

vertical orientation, an increase in symphyseal thickness through the superior transverse 

torus is not directly oriented in the labiolingual plane that would most efficiently resist 

wishboning stress. Thus, the projection of the inferior transverse torus in conjunction 

with the orientation of the long axis of the symphysis likely provides a better 

approximation of the ability to resist wishboning stress. Consequently, many previous 

studies have utilized the labiolingual thickness of the symphysis (at the superior 

transverse torus) as a proxy for the ability to resist wishboning stress by measuring the 

greatest thickness of the symphysis perpendicular to the long axis of the symphysis (e.g., 

Hylander, 1985; Ravosa, 1991; Ravosa and Daniel, 2010; Vinyard and Ravosa, 1998). 

However, this approach does not account for symphyseal orientation or the inferior 

transverse torus as a factor in resisting wishboning stress.  

In comparison, Propithecus exhibits some changes in symphyseal shape and 

orientation that are similar to changes found in anthropoids, particularly the reduction of 

the superior transverse torus while the inferior transverse torus becomes more prominent 
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with age. However, symphyseal curvature does not appear to increase with age as it does 

in anthropoids suggesting that changes in the geometric properties of the mandible may 

not result in increased wishboning stress with age. It may also be the case that the lack of 

symphyseal fusion throughout most of growth and development does not permit an 

efficient transfer of transversely oriented balancing-side muscle force across the 

symphysis (Lieberman and Crompton, 2000), limiting the amount of wishboning stress 

generated during chewing. In contrast to anthropoids, the symphysis of Lemur becomes 

more elliptical in shape but reduced in relative size with age. Older Lemur individuals 

would therefore be less able to resist increased levels of wishboning stress than younger 

individuals. This is not surprising considering experimental studies and interspecific 

comparisons of mandibular shape suggest that the wishboning loading regime and 

transverse movement of the mandible is not of great importance in Lemur and other 

strepsirrhines lacking fusion.  

 In anthropoids, the depth of the corpus increases with age suggesting the corpus in 

older individuals is structured to resist greater amounts of parasagittal bending and/or 

larger working-side bite and muscle forces resulting in greater shear behind the bite point 

than in younger individuals. Hylander (1985) has suggested that direct shear behind the 

bite point on the working-side of the jaw might have the greatest impact on corpus 

morphology. Increased balancing-side parasagittal bending from greater recruitment of 

vertically oriented balancing-side muscle force is also expected to correspond with 

increased cross-sectional area of the symphysis to resist dorsoventral shear stress. A 

larger symphyseal cross-section is only demonstrated in Macaca and Colobus indicating 

possible increased recruitment of vertically oriented balancing-side adductor muscle 
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force with age. Although symphyseal orientation and shape in Pan and Cebus change 

during ontogeny, the overall cross-sectional surface area of the symphysis does not 

appear to change significantly during growth and development. Therefore, it is possible 

that the increase in corpus height in Pan and Cebus may simply reflect resistance to 

greater muscle force generated on the working-side corpus rather than increased 

recruitment of balancing-side vertical muscle force with age (which is hypothesized for 

Macaca and Colobus). These differences in ontogenetic patterns of corpus shape provide 

testable hypotheses for ontogenetic differences in masticatory loading regimes within 

anthropoids, but ontogenetic experimental studies are necessary to confirm these 

hypotheses. Nevertheless, the results of this analysis support previous interpretations that 

the diminishing buccolingual thickness of the corpus with age likely reflects the size of 

the postcanine dentition (Cole, 1992; Daegling, 1996; Taylor, 2002) and obscures the 

relationship between corpus width and mandibular loading regimes.  

Interestingly, the relative symphyseal cross-sectional area and corpus height do 

not appear to change significantly with age or size in the Propithecus and Lemur. This 

would suggest that neither Propithecus nor Lemur are structured to resist greater 

parasagittal bending of the corpus and dorsoventral shear of the symphysis from greater 

recruitment of balancing-side vertical adductor muscle force, not unlike Pan and Cebus. 

However, the static configuration of corpus height also suggests that there was no 

significant increase in direct shear of the working-side corpus from larger working-side 

muscle and bite forces.  
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6.4.2 Mandibular shape variation associated with early and late ontogenetic fusion 

Weaning in primates occurs with the eruption of the first permanent molars and 

has been thought to coincide with the adoption of adult masticatory patterns and loading 

regimes (Iinuma et al., 1991; Smith, 1991; Vinyard and Ravosa, 1998). The early timing 

of symphyseal fusion in anthropoids has been inferred to result from adopting an adult 

masticatory loading regime that relies on the late activity of the balancing-side deep 

masseter muscle to generate mediolateral movement of the jaw at the end of the power 

stroke (Ravosa and Hogue, 2004). Therefore, symphyseal fusion is necessary prior to 

weaning to either resist the wishboning stress generated at the symphysis or transfer 

transversely oriented muscle force across the symphysis. When comparing mandibular 

shape between anthropoid specimens before weaning (only deciduous dentition) and after 

weaning (M1 in occlusion), the resulting shape differences provide support for the 

assumption of adopting adult-like masticatory function associated with generating 

wishboning stress. Individuals with M1 in occlusion have a taller mandibular ramus with 

higher condyles above the occlusal surface of the dentition which has previously been 

associated with delayed activity of the balancing-side deep masseter muscle and 

increased wishboning stress. The mandibular symphysis is larger in cross-sectional area 

with better developed superior and inferior transverse tori. This is opposed to the overall 

pattern of symphyseal shape associated with growth and development within anthropoid 

species that demonstrates a reduction in the superior transverse torus with an increase in 

age. These changes in symphyseal morphology produce a symphysis that is better 

equipped to resist increased dorsoventral shear and wishboning stress. Similar results are 

found when making comparisons between fused and unfused macaques with only 
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deciduous dentition except that the mandibular symphysis is also more horizontally 

inclined and therefore better equipped to resist wishboning stress in specimens with 

symphyseal fusion. 

With the assumption that weaning benchmarks the acquisition of adult 

masticatory patterns (Iinuma et al., 1991; Smith, 1991; Vinyard and Ravosa, 1998), late 

symphyseal fusion in indriids has previously been attributed to resisting increased 

dorsoventral shear stress generated through greater recruitment of balancing-side 

adductor muscle force later in development. Delayed activity of the balancing-side deep 

masseter muscle associated with transverse movement of the jaw during mastication and 

wishboning stress has been identified in adult indriids (Hylander et al., 2011). Therefore, 

the expectation of adopting adult masticatory function post-weaning and the late 

development of symphyseal fusion in indriids suggest initially that fusion does not occur 

as a result of mediolateral jaw movements or increased wishboning stress, but instead 

from greater dorsoventral shear by recruiting vertically oriented balancing-side muscle 

force. However, this study demonstrates through ontogenetic shape changes that partial 

symphyseal fusion in Propithecus verreauxi coincides with the production of increased 

wishboning stress and transverse jaw movements during mastication. Propithecus 

specimens with M1 in occlusion differ from specimens with only deciduous dentition by 

primarily having an overall more robust symphysis, deeper corpora, and larger coronoid 

processes. An overall greater cross-section of the symphysis provides better resistance for 

increased dorsoventral shear stress which possibly coincides with greater balancing-side 

adductor muscle force from a larger temporalis muscle (inferred by larger coronoid 

processes). The lack of any change in ramus or condylar height and no change in 
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orientation of the symphysis indicates that Propithecus does not exhibit improved 

resistance to wishboning stress or mandibular shapes associated with the wishboning 

loading regime. Conversely, comparisons between dental adults with and without partial 

symphyseal fusion identify patterns of mandibular shape variation generally associated 

with the wishboning loading regime. Propithecus adults with partial fusion display a 

taller mandibular ramus and condyles higher above the occlusal surface of the dentition. 

Additionally, the symphysis has a long axis that is more horizontally oriented orientation 

and elongated which would specifically provide better resistance to increased wishboning 

stress. This morphological evidence provides tentative support for the relationship 

between late ontogenetic symphyseal fusion in indriids and the wishboning loading 

regime, contrasting previous inferences that highlight dorsoventral shear stress as the 

primary factor in indriids fusion (c.f. Ravosa, 1991; 1999; Ravosa and Hogue, 2004). 

Additionally, these results also provide support for the hypothesis that delayed activity of 

the balancing-side deep masseter muscle is delayed as a result of a taller mandibular 

ramus and vertically oriented masseter or medial pterygoid muscles (Ravosa et al., 2000). 

Ramus height increases with age and size in Propithecus and may reach a point where the 

masseter and/or medial pterygoid are not able to provide adequate transverse mandibular 

movements, requiring a shift to the WMP. If true, this muscle orientation threshold would 

be crossed late in ontogeny and coincide with stiffening of the mandibular symphysis 

through partial fusion and changes in symphyseal shape that resist higher magnitudes of 

wishboning stress. This analysis introduces new testable hypotheses for the development 

of the wishboning motor pattern later in ontogeny in indriids rather than assuming the 

adoption of adult masticatory function soon after weaning.  



192 

 

  

6.4.3 An ontogenetic perspective on the strength and stiffness hypotheses for symphyseal 

fusion 

 Debate remains as to whether symphyseal fusion functions primarily to strengthen 

the mandibular symphysis to resist increased stress generated during mastication or to 

stiffen the symphysis to allow for the efficient transfer of balancing-side muscle force 

across the symphysis to the working-side of the jaw. The difficulty is in separating 

whether symphyseal fusion is necessary to transfer mediolaterally oriented muscle force 

and generate transverse mandibular movements or whether an unfused symphysis is 

adequate to transfer mediolateral muscle force and fusion is a consequence providing 

resistance the wishboning stress resulting from those masticatory forces. In either case, 

symphyseal fusion is expected to occur with the ontogenetic development and evolution 

of the wishboning motor pattern and loading regime. However, the hypothesis for 

symphyseal fusion to create a stiff articulation of the hemimandibles to transfer 

balancing-side muscle force also predicts that symphyseal shape and orientation should 

reflect resistance to increased wishboning stress at the symphysis as a result of the 

transfer of force. Conversely, if symphyseal fusion is occurring to strengthen the 

symphysis against increase wishboning stress, no additional changes in symphyseal shape 

or orientation are necessarily expected. In anthropoids and strepsirrhines, intraspecific 

comparisons of mandibular shape between specimens with and without fusion in an 

ontogenetic context find that timing of fusion during ontogeny corresponds with changes 

in symphyseal orientation and shape that are best interpreted as providing resistance to 

increased wishboning stress. These results indicate that either symphyseal fusion 
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primarily functions to stiffen the mandibular symphysis or that fusion alone does not 

adequately strengthen the symphysis to resist wishboning stress, and additional structural 

changes are required. 

  While morphological evidence appears to support the stiffness model for 

symphyseal fusion (see Chapter 2), future experimental EMG studies on an ontogenetic 

series of Propithecus verreauxi could provide the adequate proof needed to settle the 

strength versus stiffness debate, or elaborate that both may play a part in causing fusion. 

The morphological evidence in this analysis (based as well on previous interspecific work 

associating particular mandibular morphologies with the wishboning motor pattern and 

loading regime; Chapter 2) suggests that the wishboning loading regime does not develop 

until later in ontogeny in Propithecus, in conjunction with partial symphyseal fusion. If 

this hypothesis were supported by experimental studies, at least partial symphyseal fusion 

would appear to be necessary to stiffen the symphysis to transfer balancing-side muscle 

force across the symphysis. However, if the wishboning motor pattern and loading 

regime are demonstrated in juveniles immediately after weaning, the lack of symphyseal 

fusion in these specimens would suggest that the ligamentous articulations in an unfused 

mandibular symphysis are adequate to transfer mediolaterally oriented muscle force 

across the symphysis. As such, symphyseal fusion would likely occur later in ontogeny to 

resist increased recruitment of balancing-side muscle force (likely dorsoventral shear 

stress) at the symphysis. These circumstances would additionally require a reexamination 

of the mandibular shape changes associated with the wishboning loading regime, as many 

of the diagnosed patterns of mandibular shape are not present in the indriid mandible 

post-weaning, as previously discussed.  
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6.5 CONCLUSIONS 

  Ontogenetic patterns of mandibular shape change can be used to generate 

hypotheses as to how masticatory loading regimes, stress, and strain patterns change 

during growth and development. Comparisons across primate clades find that some 

mandibular ontogenetic allometric patterns are conserved in primates. Areas for the 

attachments of the temporalis and masseter muscles increase in relative size with age 

suggesting an ability to generate greater muscle and perhaps bite force with in older 

individuals. This is also supported by the increase in corpus height demonstrated in each 

anthropoid ontogenetic series indicating an increased ability to resist parasagittal bending 

from greater muscle and bite forces during unilateral mastication. However, relative 

corpus height does not appear to change in the strepsirrhine ontogenetic series. This 

might indicate that masticatory muscle size increases only to maintain functional 

equivalency rather than increasing the amount of stress or strain experienced by the 

corpus. Interestingly, primates with complete or partial symphyseal fusion demonstrate a 

greater ability to resist increased wishboning stress with age through the development of 

an inferior transverse torus and anterior inclination of the symphysis and a presumed 

decreased reliance on the superior transverse torus for resisting wishboning stress. 

 Previous studies have linked wishboning stress to early-ontogenetic, complete 

fusion in anthropoids and dorsoventral shear stress to late-ontogenetic, partial fusion in 

indriids. Observations of mandibular shape variation associated with the ontogenetic 

occurrence of symphyseal fusion in anthropoids supports the hypothesis that fusion is a 

function of the wishboning loading regime. Remarkably, the mandibular shape patterns 

associated with the early-occurrence of fusion in anthropoids are similar to those 
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observed during the transition to a partially fused symphysis in indriids, late in ontogeny. 

If mandibular shape provides a reliable predictor of masticatory loading regimes 

(wishboning in particular), then fusion in anthropoids and indriids likely occur from the 

adoption of similar loading regimes and may signify significant changes in masticatory 

activity later in growth and development for indriids. 
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7 Summary 

 

 Previous discussions of mandibular symphyseal fusion in primates have created a 

narrative that supports an ancestral crown anthropoid morphotype with a completely 

fused symphysis and distinct underlying factors associated with fusion in anthropoids 

compared to strepsirrhines. This interpretation has support in the observations that 

anthropoids differ from strepsirrhines in both the ontogenetic timing and degree of 

symphyseal fusion. Comparative morphological studies between anthropoids and those 

strepsirrhines without symphyseal fusion have led researchers to hypothesize that an 

increase in brain size and other correlated changes in skull morphology led to the 

development of the wishboning motor pattern, ultimately requiring complete symphyseal 

fusion in anthropoids to withstand these new masticatory forces and stresses. Conversely, 

partial fusion in strepsirrhines has been attributed strictly to resisting increased 

masticatory forces and stresses generated from eating more mechanically demanding 

diets. Ultimately, this explanation has led to the use of mandibular symphyseal fusion in 

the reconstruction of early anthropoid evolutionary relationships to the extent of 

excluding oligopithecids from the crown anthropoid clade. 

 However, some evidence has cast doubt in these interpretations. First, fossil 

evidence indicates that stem catarrhines and platyrrhines with fused symphyses retained 

relative brain sizes, similar to strepsirrhines rather than extant anthropoids (Radinsky, 

1977; Simons et al., 2007; Sears et al., 2008), suggesting that increases in brain size were 

not a driving factor in the evolution of symphyseal fusion in anthropoids. Second, 

Hylander et al., (2011) observed that Propithecus verreauxi shares the wishboning motor 
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pattern with anthropoids, previously thought to be unique to the anthropoid clade. Lastly, 

other researchers have provided evidence supporting the alternative, yet not entirely 

distinct, hypothesis that mandibular symphyseal fusion functions to stiffen the symphysis 

to transfer balancing-side muscle force rather than strengthening it against masticatory 

stresses (Lieberman and Crompton, 2000). These doubts bring skepticism to the current 

narrative and prompted the present studies analyzing previously held notions regarding 

symphyseal fusion.  

 An interspecific examination of mandibular morphology in relation to 

biomechanical variables associated with different masticatory loading regimes identifies 

shape-function relationships associated with wishboning in anthropoids but also in 

indriids with partial fusion. Evaluating fossil anthropoids in the context of these shape-

function relationships (and in general comparison to strepsirrhines without fusion) 

indicated that these taxa were capable of resisting greater amount of dorsoventral shear 

and wishboning stress and possess mandibular shapes accompanying the wishboning 

loading regime. One of these fossil anthropoids is Catopithecus browni, an oligopithecid 

previously assigned as a stem anthropoid based on the assumption that it lacked the 

wishboning loading regime and whose phylogenetic placement has been greatly debated 

among researchers. The symphyseal morphology suggests Catopithecus was able to resist 

higher magnitudes of wishboning and dorsoventral shear stress compared to similar sized 

strepsirrhines, although the retention of only a partially fused symphysis remains 

enigmatic. 

 The hypothesis that brain size is related to changes in the masticatory apparatus 

that could ultimately result in mandibular symphyseal fusion had never been previously 
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tested until this study. While extant anthropoids generally differ from strepsirrhines in 

relative brain size and other skull features, analyses investigating the integration of these 

components with the morphology of the masticatory apparatus show that they are not 

integrated with a configuration associated with the wishboning loading regime. Rather, 

integrated patterns within the masticatory apparatus hint at the idea that catarrhines and 

platyrrhines may have evolved the wishboning loading regime, and therefore symphyseal 

fusion, independently. 

 The evaluation of mandibular symphyseal fusion from an ontogenetic perspective 

indicates that the ability to resist wishboning stress in primates with complete or partial 

fusion increases with age through an anterior inclination of the symphysis and 

development of an inferior transverse torus. Additionally, even though anthropoids and 

strepsirrhines have different ontogenetic timing of fusion, analyses of mandibular shape 

changes occurring at the specific timing of fusion in each indicates that the fusion is 

likely accompanied by the wishboning motor pattern and loading regime in both cases. 

 Overall, the results from these analyses tentatively support the hypothesis that 

fusion functions to stiffen the symphysis to allow for the transfer of force across the 

symphysis. This does not preclude the idea that ossifying the halves of the symphysis 

would strengthen the joint as well, but the additional changes in shape and orientation 

accompanying fusion suggest that these other methods may be better suited to countering 

increased wishboning stress. Nevertheless, as discussed in the previous chapter, 

determining the ontogenetic onset of the wishboning motor pattern in Propithecus 

verreauxi through experimental EMG studies might provide enough evidence to 
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determine which model is most appropriate for the function of mandibular symphyseal 

fusion. 
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