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ABSTRACT 

Infectious diseases are a growing major public health concern due to the increase 

of antimicrobial resistance to current therapies and the lack of new drugs in development. 

As an alternative to developing new anti-infective drugs, my thesis research focuses on 

ways to optimize current antimicrobial therapies. This thesis aims specifically to utilize 

pharmacometric modeling and simulation that applies pharmacokinetic (PK) and 

pharmacodynamics (PD) principles to provide insights into ways to maximize drug effect 

while minimizing side effects and preventing resistance. Mathematical and statistical 

methods are used to develop integrated drug, body, and microbial models that quantify 

relationships among dose, plasma and tissue concentrations, and microbial killing. These 

pharmacometric models are then used to predict the outcome of various untested 

scenarios to select the optimal dosing regimens for confirmatory clinical testing.  

A dose-finding study, named COAT, was conducted to assess the PK and 

microbiological efficacy of adjunctive sertraline for the treatment of cryptococcal 

meningitis (CM) in HIV-infected Ugandans. Plasma sertraline concentrations, fungal 

counts in cerebral spinal fluid, and survival outcome were modeled to characterize the 

dose-exposure-response-outcome relationships of sertraline as an antifungal. Sertraline 

PK was influenced by body weight and co-administration anti-retroviral therapy (ART) 

non-nucleotide reverse transcriptase inhibitors. The addition of sertraline to the standard 

induction therapy of Cryptococcus increased fungal clearance rate from cerebrospinal 

fluid 34-48% compared to COAT trial, a similar historical study in which patients 

received CM induction therapy without sertraline. The effect of sertraline on 

Cryptococcus fungal clearance was similar irrespective of the daily dose patients received 
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(100 – 400 mg). The 2-week survival rates were lower for females and patients receiving 

sertraline 100 and 400 mg daily.  

Further, a model-based meta-analysis of sertraline published PK studies in healthy 

adults were performed to estimate oral bioavailability, absorption and plasma clearance. 

Sertraline had super-proportional increase in exposure with dose attributed to the 

nonlinear increase of bioavailability with dose. The findings were then used to build and 

validate a physiological-based pharmacokinetic (PBPK) model in order to assess the 

potential clinical use of sertraline as an antimicrobial. PBPK oral stimulations indicated 

that therapeutic doses (50-200 mg) of sertraline do not produce clinical concentrations 

required for antimicrobial effects (MIC = 1 – 12 mg/L).  

In addition, a population PK model of aminoglycoside antibiotic, amikacin, was 

developed in pediatric cancer patients and used to predict the probability of various 

dosing regimens to achieve PK-PD targets predictive of efficacy and toxicity. Simulation 

indicated ≥ 60 mg/kg administered once daily are expected to have a 97.5% probability in 

which the unbound fCmax/MIC ≥ 8 is achieved in 80% of pediatric patients weighing 8-70 

kg and the unbound fCmin < 10 mg/L in almost all patients. Furthermore, the population 

PK model was linked to an adaptive PD (ARPD) model of amikacin against 

Pseudomonas aeruginosa built using in vitro literature time-kill curve data to perform 

PK-ARPD simulation. The results suggested that amikacin 90 mg/kg given in two 

divided doses (45 mg/kg twice a day) will hit safety (fCmin < 10 mg/L) and efficacy 

(fCmax/MIC ≥ 8 ) targets, and be associated with a lower rate of bacterial resistance 

evident by bacterial counts being below the limit of detection until day 7.   
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This thesis demonstrates the vital role of pharmacometric modeling and 

simulation in the rational selection of dose regimens of antimicrobial agents. The 

application of this tool in drug development process and clinical practice can guard 

against the costly late-stage failures and improve clinical outcomes of patient care, 

respectively.  
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1 THESIS SCOPE AND OBJECTIVES  

The scope of this thesis is to demonstrate the utility of pharmacometric modeling 

and simulation approach in informing drug development and optimizing 

pharmacotherapy of antimicrobials. The specific objectives are: 

1. Review the role of pharmacometric-based analysis in improving drug 

development and pharmacotherapy of antimicrobial agents (Chapter 2). 

2. Characterize the dose-exposure-response-outcome relationships of 

sertraline antifungal properties in HIV-infected patients and identify 

covariates that affect these relationships (Chapter 3). 

3. Characterize sertraline pharmacokinetics in healthy subjects using a 

model-based meta-analysis (Chapter 4) 

4. Assess the potential clinical use of sertraline as an anticancer and 

antimicrobial agent using a whole-body physiologically-based 

pharmacokinetic model (Chapter 5).  

5. Optimize aminoglycoside antibiotic, amikacin, dose in children with 

cancer using the probability of achieving MIC-based PK-PD indices and 

dynamic PK-PD simulation approach (Chapter 6).  
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2 IMPACT OF PHARMACOMETRICS ON DRUG DEVELOPMENT AND 

PHARMACOTHERAPY OF ANIT-MICROBIALS 

2.1 SUMMARY 

While microbial resistance toward available therapies increases worldwide, the 

number of newly approved antimicrobial drugs decreases with very few ones in 

development pipelines. This alarming situation is attributed to the key triad of 

unproductive and inefficient drug development approach, inappropriate uses of anti-

infective agents in clinical settings, and lack of interest of pharmaceutical industry in the 

antimicrobial sector. The latter is solved with economic incentive programs put in place 

to allure pharmaceutical companies to re-enter the field and to replenish the drought in 

antimicrobial pipelines. Pharmacometrics, on the other hand, is recognized and endorsed 

by regulatory agencies as the tool to address the first two causes. It streamlines the drug 

development process, de-risks investments, improves the economic viability, increases 

the probability of success, and accelerates drug approval. Pharmacometrics can also 

improve pharmacotherapy practice via the optimization of antimicrobial dosing regimens 

to maximize efficacy, minimized drug-related toxicity, and reduce microbial resistance. 

Additionally, it is applied to set antimicrobial susceptibility breakpoints, to guide 

formulary decision in health-care systems, and to establish infection treatment guidelines. 

2.2 INTRODUCTION 

Pharmacometrics is an emerging discipline that is gaining rapid popularity in 

pharmaceutical industry, regulatory agencies and academia due its potential to improve 
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drug development and the practice of pharmacotherapy. Yet, it remains greatly under-

appreciated and under-utilized in both areas. This chapter aims to provide an overview 

about the shortcomings in drug development and pharmacotherapy, and to demonstrate 

how these limitations can be overcome by the application of pharmacometric modeling 

and simulation with a particular emphasis on anti-infective agents. 

2.2.1 Problem 

The development of a new drug is a very lengthy, costly, and risky process. On 

average, it takes 13 years for a drug to get the US Food and Drug Administration (FDA) 

approval for human use since the first discovery (1). Throughout each developmental 

phase, the number of drug candidates decreases exponentially and so does the costs 

associated with advancing the drug through the process. About 5% of drugs in 

development successfully complete the journey from the pre-clinical testing to the clinic 

that brings the total cost for each successful drug approval to at least $1 billion (2). Of all, 

the clinical failures, phase II and III studies are the most resource-wasting due to the high 

cost associated with them. Therefore, an innovative approach is warranted to reliably and 

quantitatively inform “go/no go” decisions before committing to more expensive studies. 

This will improve efficiency through resource conservation and reallocation to more 

promising development programs.  

Furthermore, the investment in new drugs continues to increase over time and is 

currently reaching unsustainable levels. Drug development cost increased 14.3 fold from 

$0.179 billion in 1970s to $2.558 billion in 2010s and it touches $2.87 billion when 

accounting for post-approval phase IV commitments (3). There is no doubt that the 
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inefficient approach of drug development is a key driver for sky-rocketing costs, but it is 

not the sole contributing factor. Other factors play a role in this issue as well. It is likely 

that the low-hanging fruits have already been picked. The majority of pharmacological 

targets for the treatment of human diseases are already identified and targeted with drugs. 

Today, a greater depth of biological understanding, advanced methodologies and 

technologies, extensive experimentations, and innovative data modeling tools are 

required to pinpoint new promising targets and demonstrate its medical value in clinics. 

This in itself can bring the cost up and delay drug approval let alone the other factors, 

such as regulatory barriers (4).  

For antimicrobials, the problem is even worse and the future looks darker for two 

main reasons. The first one is the rapid loss of anti-infective arsenal against infectious 

diseases due to the emergence of antimicrobial resistance (AMR). The outlook of the 

post-antimicrobial era will be the same as the pre-era. Human life will be significantly 

affected; many surgical and drug therapies will become limited; and life expectancy will 

become short once again. Currently, AMR claims 23,000 and 25,000 lives every year in 

the United States (US) and Europe, respectively (5). AMR also imposes higher economic 

burdens on health-care systems and patients. In the future, AMR infections are projected 

to be the number one killer as it was before the discovery of antimicrobials. A report 

shows that 10 million deaths and total global cost of $100 trillion are expected annually 

by 2050 (6). This is undoubtedly a global issue that requires immediate action because it 

is a matter of time before the crisis fully manifests. As a sign for what is coming, a pan-

resistant bacterial infection by carbapenem-resistant Enterobacteriaceae (CRE) that was 
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not susceptible to any available antimicrobial drugs was recently reported in Nevada US 

and resulted in death (7).   

 While alarming resistance to anti-infective medications is quickly spreading, a 

fewer number of newly approved anti-infectives is available to treat AMR infections. 

This is the second reason that complicates the situation. For the past two decades, there 

was a constant decline in the number of FDA approved antimicrobials and the very few 

in development were taking longer times to get approved (8, 9). Additionally, the vast 

majority of approved drugs after 1985 are not of true clinical value because they lack 

novelty in mechanism of action. These drugs are synthetic re-engineering of existing ones 

with underlying resistance mechanisms already present, characterizing the so called 

“discovery void” period (10, 11).   

In addition, drug development endeavors are heavily driven by financial reasons 

and feasibility more than critical needs. This is reflected on the differential availability of 

approved antimicrobial therapies and the ones in development. For example, there is a 

paucity of antifungals in development relative to antivirals and antibacterials (12–17). 

Likewise, there are more therapeutic classes to choose from for the treatment of bacterial 

and viral infections whereas therapeutic options are limited for fungal diseases even 

though the need for safer and more effective antifungals is substantial (18).  

2.2.2 Causes  

The low productivity and escalating cost of drug development is principally 

attributed to the use of an empirical statistical approach. It focuses on hypothesis-testing 

with minimum assumptions to answer a single “yes/no” question at a time to support 
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regulatory approvals while it largely ignores learning opportunities (19, 20). Also, the 

approach is often wrongly used in studies whose objectives are merely learning in which 

open-end questions are of interest, such as “what is the dose-response relationship in a 

patient population?”, “what doses achieve desired effects?”, “What dose achieves the 

maximum response”, and “how does a disease change drug exposure?” (21). For 

example, three clinical studies were performed to determine the highest dose of liposomal 

amphotericin B associated with the maximal antifungal effect against invasive pulmonary 

aspergillosis. All concluded the lack of clinical therapeutic benefit with higher doses (22–

24). The time, resources, and patient suffering from receiving high doses of a toxic drug, 

amphotericin B, could have been avoided altogether with one pharmacometric-based 

analysis that integrated pre-clinical and clinical data. The analysis was, in fact, performed 

and found there was no additional benefit expected with doses greater than 3 mg/kg/day 

(25). The analysis answers the right scientific question of interest whereas the three 

clinical studies answered a slightly different question because analyses were performed 

with the wrong objective in mind. 

Another major limitation of the empirical statistical approach is the inability to 

leverage all relevant data collected from different sources throughout the development 

program as just mentioned with example above (19, 20). The approach is also prone to 

false-positive and false-negative findings due to uncertainty which leads to low statistical 

power that can be reduced further in case of multiple comparisons (26). To decrease 

uncertainty and increase power, a large trial with more patients can always be conducted. 

However, this will cost more and take longer duration of time to complete. Such decision 
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can consume the limited resources that could have been allocated to other development 

programs.  

Similarly, anti-infective pharmacotherapy is practiced at suboptimal levels 

because clinical recommendations and guidelines are formulated based upon clinical 

studies analyzed with empirical statistical approaches. It is known with no doubt that sub-

optimal use of currently available antimicrobials is a major contributor to the emergence 

of AMR we are facing today (27). Many older anti-infective agents were approved at 

suboptimal dosage regimens because the science of pharmacodynamics (PD) used to 

optimize therapies was simply not existent back then (28). The examples are many and 

amikacin, an aminoglycoside antibiotic, is a good representative one to list. It is FDA 

approved at 15 mg/kg in 1-3 divided doses (29–31). This dose is shown to be suboptimal 

and doses ≥ 40 mg/kg once daily are required to achieve good therapeutic outcomes in 

different patient populations (7, 31–33).  

Another ripple effect of the empirical drug development approach is the selection 

of inappropriate dose. It is, in fact, the most common cause of failures in clinical 

development, either due to unsatisfactory efficacy (suboptimal doses) or unexpected 

adverse events (super-therapeutic doses) (36). Dose-ranging studies are first conducted to 

determine the range of safe doses for potential clinical use. These studies are mostly 

analyzed by a linear model, analysis of variance, or multiple pairwise comparisons to 

select a dose for confirmatory testing in subsequent trials that are likely carried out in 

parallel design and analyzed the same way. Generally, these empirical analyses are 

performed under the null hypothesis there is no dose-response relationship. Despite 

simplicity, rapidity and regulatory acceptability of these tests, they do not provide 
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information on the shape of individual dose-response curve; do not allow for dose 

interpolation; and have a strong tendency to select higher doses than required for optimal 

effect, especially in studies that have few number of patients and large variability in 

response (37, 38). This can certainly explain the clinical development failures caused by 

unexpected adverse events since studied doses are mostly super-therapeutic. Drugs that 

did not fail and received regulatory approval were likely required dose reduction. At least 

20% of FDA-approved drugs between 1980-1999 had post-marketing dosage change in 

which 80% of the time was a dose reduction because of safety concerns (39).  

In addition, the mean dose-response curve characterized by empirical statistics 

can be misleading of the individual curves (40). It is of greater clinical value to identify 

patient covariates that affect the dose-response relationship as “one dose fits all” is no 

longer preferred standard of care. Mechanistically, response is driven by drug exposure at 

the target site and modeling response a function of dose, rather than drug exposure, leads 

to overestimation of response variability (40). Not all patients receive the same doses will 

have the same exposures, thus, the over-estimated variability in this case represents the 

sum of drug exposure and response variability.  

Like super-therapeutic dosing, the study of sub-optimal doses can also result in 

clinical development failures. This is the case in many failures of antimicrobial 

development programs. Ambrose looked at four different antibacterial programs that 

failed to get the FDA approval: daptomycin for the treatment of community-acquired 

(CAP), tigecycline and ceftobiprole for treatment of hospital-acquired pneumonia (HAP), 

and doripenem for the treatment of ventilator-associated pneumonia (VAP) (41). He 

showed that all were unsuccessful for one reason and that was the selection and study of 
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sub-optimal dose regimens in confirmatory pivotal trials. He concluded that a shift from 

frequentist statistical inferences to pharmacometric-based analyses would help to predict 

and avoid these costly failures.  

Not only is sub-optimal dosing responsible for drug development failures, but also 

it compromises the efficacy of currently available antimicrobial therapies. As pointed out 

earlier, the inappropriate prescribing that include unnecessary treatment, wrong drug, 

wrong dose, wrong dosing frequency, or wrong treatment duration, increased the 

emergence of AMR. Again, pharmacometrics is suggested to be a promising tool to 

optimize anti-infective dosing to prevent or at least slow down the rate of microbial 

resistance (43, 44).  

Despite the urgent need for new antimicrobials, fewer drugs are being developed 

because of the shifting interests in the pharmaceutical industry. This shift of attention 

started at the national level in 1966 when former Surgeon General of United States, 

William Stewart stated “it’s time to close the books on infectious diseases, declare the 

war against pestilence won, and shift national resources to such chronic problems as 

cancer and heart disease” (45). It was a well-said statement that turns out to be true only 

for the time it was voiced when infectious diseases were easily treatable with efficacious 

antimicrobials that were abundant. Today, the situation is different because the effective 

antimicrobial armamentarium is scarce.  

For pharmaceutical companies, it was not just a shift of attention. Rather, it was a 

search for a more lucrative sector with expected high profits (45). Chronic diseases, such 

as diabetes type II, cardiovascular diseases, and cancer, represented a true captive market 

since patients require life-long drug treatment as opposed to a short course of therapy that 
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can last usually for 2 weeks to clear an infection. The choice was really an easy one to 

make given the objective was a market with high profit potential.  

Regulatory barriers also make drug development more expensive and extensive. 

Imposed obstacles includes bureaucracy, approval uncertainty, changes in clinical trial 

design and requirements, uncertainty regarding the magnitude drug effect, and poor 

bilateral communications (27, 46). The ultimate impact of these obstacles is the need for 

larger, more expansive trials to meet approval requirements. As an example, the approval 

of telavancin, a derivative of vancomycin, to treat HAP caused by Methicillin-resistant 

Staphylococcus aureus (MRSA) was delayed and made more expansive. The US FDA 

changed the only requirement to demonstrate non-inferior efficacy to vancomycin in 

clearing the infection to also show 28-day all-cause of mortality is not higher for 

telaavancin (47, 48). Not only was the change sudden, but also it was unrealistic as the 

patients who contract HAP are very sick, making it hard to know if the drug was the real 

cause of death, and HAP is relatively a rare infection. This additional requirement is a 

deterrent for companies since the need for larger pivotal trials to capture enough deaths to 

reach an acceptable statistical power are costly and unaffordable to many (45). 

2.2.3 Solutions  

Multiple countermeasures are taken to address the key triad causes of the 

problem: inefficient drug development approach; inappropriate uses of anti-infective 

agents in clinical settings; and lack of interest of pharmaceutical industry in the 

antimicrobial sector. Here, we focus only on the use pharmacometrics that address the 
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first two causes and the role of economic incentivization to replenish antimicrobial 

pipelines.  

The urgent need for a scientific and quantitative approach to assess safety and 

efficacy of new drugs in faster time frames, with more certainty and at lower cost is 

recognized by FDA in the white paper titled “Innovation or Stagnation: Challenge and 

Opportunity on the Critical Path to New Medical Products”(49). In the same paper, the 

FDA also recognized and strongly endorsed pharmacometrics as a discipline to meet that 

need through the development and application of pharmaco-statistical models of drug 

efficacy and safety from preclinical and clinical data to improve drug development 

knowledge, management, and decision-making. This approach is termed a model-based 

drug development (MBDD) (19, 49, 50). To address limitations associated with the 

previous term and capture all potential impacts, the approach is currently named Model-

Informed Drug Discovery and Development (MID3) and comprehensively redefined as 

“quantitative framework for prediction and extrapolation, centered on knowledge and 

inference generated from integrated models of compound, mechanism, and disease level 

data and aimed at improving the quality, efficiency and cost-effectiveness of decision 

making”(51).  

The MBDD or MID3 approach was first pioneered by Lewis Sheiner who, with 

others, demonstrated the usefulness of pharmacometrics to enable knowledge-based 

decision making and increase drug development efficiencies across the continuum from 

discovery to commercialization (19, 50, 52). He also introduced the learning-confirming 

paradigm in which the aim, design and methods of analysis differ depending on whether 

the phase is learning or confirming. While confirmatory analysis requires few simple 
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assumptions to test predefined hypotheses using single-study data, exploratory analysis 

integrates all relevant information across multiple studies when needed and uses rich-

assumption models based on known scientific information (physiology, pharmacology, 

pathophysiology, microbiology, etc) to increase knowledge about compound in 

development (52). The created knowledge is then used to inform “go/no go” decision 

making, such as to terminate the development program or to proceed with the next trial to 

confirm the knowledge and test new assumptions. Of note, a study can have both 

confirmatory and exploratory objectives, like phase II studies in which dose-response is 

confirmed and the optimal dose is explored to guide dose selection for future Phase III 

trials. So, drug development is really an iterative cycle of model-based learning and 

confirming to steer the compound from discovery to clinic in which knowledge about the 

compound is updated continuously and used to inform decision making, drug 

development strategies, and even labelling for approved drugs as shown in Figure 2-1(51).  

 

Figure 2-1: Learning and confirming paradigm. 
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To illustrate the process, the dose-response relationship knowledge in preclinical 

species is used to select an appropriate dose for a first in human phase I study in which 

the maximal tolerated dose is determined. Then, dose tolerability and efficacy is 

confirmed in small of group of patients (phase 2A). The cycle of learning and confirming 

can be repeated again in larger phase 2B and phase III studies when sufficient efficacy 

and lack toxicity are convincing to support the investment for full development. In phase 

2B, the objectives are to explore the dose-response in larger number of target patients and 

to propose a dose that has acceptable benefit/risk. The ratio of benefit/risk is subsequently 

confirmed in a Phase III study to get marketing drug approval. Even though phase III is a 

confirmatory study, learning should be continued to assess factors that affect safety and 

efficacy to potentially identify special sub-populations that require different dosing 

recommendations (19). 

To promote the appropriate use of antimicrobial therapies in clinics, several 

recommended steps are also implemented that include adaptation of antimicrobial 

stewardship programs, improving diagnosis, tracking prescriptions, prevention of 

infection and transmission, using combination therapies, and optimization of therapeutic 

regimens (53). The latter two can be easily achieved with the application of 

pharmacometrics to develop pharmacokinetic-pharmacodynamic models to describe the 

interrelated relationships of patient-drug-pathogen. After that, simulation is performed to 

explore dosing regimens and select the one that maximizes antimicrobial efficacy, 

minimizes drug-related adverse and reduces microbial resistance.  

To address the lack of new antimicrobial development, incentive economic 

programs are enacted to attract pharmaceutical companies to intensify their research 
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efforts and replenish development pipelines. Under the US FDA Safety and Innovative 

ACT (FDASIA), the Generating Antibiotic Incentives Now (GAIN) act was signed into a 

law in 2012  and aimed to increase the profitability of pharmaceutical companies who 

develop new antibiotics (53, 54).  The act provides 5-year of additional exclusivity and 

eligibility for fast-track and priority review status to expedite FDA approval. Since then, 

39 antibiotics in development has gained the Qualified Infectious Disease Product 

(QIDP) designation under the GAIN act including 3 drugs (dalbavancin, tedizolid, and 

oritavancin) that were approved in 2014 (54). A similar program was also enacted in 

Europe for the same purpose called New Drugs for Bad Bugs (ND4BB) under the public-

private Innovative Medicines Initiatives (IMI) (55).  

As hoped, the concerted actions of countermeasures has eased the problem. Since 

the implantation of pharmacometric-based approach, improvements in drug development 

is recorded. Pharmacometrics has made a remarkable impact on streamlining the drug 

development process, de-risking investments, improving the economic viability, 

increasing the probability of success, and accelerating drug approval (50–52, 56). 

Pharmacometrics also plays a critical role in optimizing antimicrobial dosing regimens to 

suppress the development of microbial resistance. New pharmacometric-based dosing 

strategies for old antifungal and antibiotic agents are suggested and published but 

unfortunately the majority of dosing recommendations are not FDA-endorsed yet (11, 28, 

57). Thanks to antimicrobial economic incentive programs, the number of approved anti-

infective agents started to increase with 4 approved drugs in 2014 alone ending the  

decline that lasted for decades, and more drugs are now in development (12–17, 53). 

Measures put in place were impactful in addressing the triad causes, with 
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pharmacometric modeling and simulation is likely the most sustainable solution and 

impactful tool. 

2.3 PHARMACOMETRICS 

2.3.1 Definition and Principles  

Pharmacometrics is the scientific discipline that applies mathematical and 

statistical methods to develop integrated physiology-drug-disease models to characterize 

the dose-exposure-response relationships, to quantify uncertainty of these relationships, 

and to rationalize decision-making in drug development and pharmacotherapy (58). It can 

also be described as a bridging science as it sets at the interface of many disciplines 

including and not limited to pharmacology, physiology, pharmacokinetics (PK), 

pharmacodynamics (PD), microbiology, pathology, data visualization, stochastic 

simulation, computational science, computer programing, and statistics (59). 

Pharmacometric models can be made simple (empirical) or complex (mechanistic) as 

needed to fit the purpose of modeling and simulation exercise. Empirical models, also 

known top-down approach, are data-driven while mechanistic models (bottom-up) aim to 

describe mechanisms of human physiology that require prior knowledge, and the 

combination of the two strategies is the middle-out approach (60). The development of 

pharmacometric models creates a powerful framework to facilitate multisource data 

integration for analysis and prediction to quickly explore untested scenarios for informing 

future decisions.     
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The application of pharmacometric-based analysis in infectious diseases relies on 

understanding the dynamic interactions between three components: patient, drug, and 

pathogen (Figure 2-2) (61). The patient-drug relationship is characterized by PK that 

describes the relationship between drug dosing and concentration-time profile in the 

body. PD links drug concentration to desired (drug-pathogen relationship) and undesired 

(drug-patient relationship) effects. PD also characterizes the decrease in microbial 

susceptibility upon drug exposure (pathogen-drug relationship). Microbial susceptibility 

is quantified by minimum inhibitory concentration (MIC) defined as the lowest drug 

concentration that inhibits visible growth of a pathogen in vitro. The patient-pathogen 

interaction represents immune response against the infective pathogen while the 

pathogen-patient interaction describes infection severity and physiological changes 

caused by the infection. These relationships are highly connected and a change in one 

relationship will trigger a change in the others. For example, a decrease in microbial 

susceptibility (increased MIC) is associated with more severe infection that causes 

physiological changes affecting the concentration-profile and drug exposure at the site of 

infection. 
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Figure 2-2: Triangle interaction between patient, antimicrobial agent, and Phogen. 

A dose recommendation that fails to account for these intricate interactions in the 

triangle is more likely to result in suboptimal dosing leading to poor clinical outcomes 

and microbial resistance. Super-therapeutic doses can possibly increase resistance as 

patients become less adherent to therapy when they experience drug adverse events (55). 

Using either drug exposure or microbial susceptibility alone is insufficient to predict 

antimicrobial efficacy. Rather, hybrid parameters that consider PK and PD of the anti-

infective agents are shown to be good surrogate endpoints of clinical outcomes and 

microbiological cure (11, 28, 57, 62–64).  

These parameters are: the maximum free (unbound) drug concentration to MIC 

ratio (fCmax/MIC); the area under the free drug concentration-time curve to MIC 

(fAUC/MIC); and percent of time in the dosing interval when free drug concentrations 

are above MIC (%fT>MIC) as shown in Figure 2-3. These PK-PD indices are based on free 

drug concentrations at the site of infection because only free drug concentrations are 

Patient 

Pathogen Drug 

Pharmacodynamics 

Resistance  
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available to bind to targets in infective pathogens and produce microbiological effect. 

Free plasma concentrations can be used instead when they are good surrogate markers for 

concentrations at the site of infection. This is case for most antimicrobial agents but 

certainly not all (28). Efficacy-linked PK-PD indices are also indicative of mode of 

killing and optimal dosing strategy of an anti-infective drug. The efficacy of agents that 

exhibit time-dependent killing with no post antimicrobial effect (PAE), characterized by 

the persistent suppression of microbial growth even after concentration drops below MIC, 

correlates with %fT>MIC and is maximized by prolonged infusion or small frequent 

doses. On the other hand, drugs that have concentration-dependent killing with prolonged 

PAE are optimized by large infrequent doses and their efficacy is linked to fCmax/MIC. 

The last group of antimicrobial agents shows time-dependent killing with moderate to 

prolonged PAE. Their effect is enhanced by dosing regimens that maximize overall drug 

exposure relative to MIC as fAUC/MIC is the optimal predictive index.     

    
Figure 2-3: Efficacy-linked PK-PD indices of anti-infective agents 

 

The PK-PD index for drugs in the same class is similar and so is the index target 

magnitude even for different pathogens that is after accounting for difference in protein 
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binding between agents (65, 66). The predictive PK-PD index is determined in pre-

clinical animals using dose-fractionation studies in which the same total daily dose is 

administered with different dosing intervals to break the correlations between the three 

PK-PD indices (Figure 2-4) (57). When the most antimicrobial activity is associated with 

the most fractionated dose, then %fT>MIC is likely the predictive index. The relevant 

index is fCmax/MIC when the least fractionated dose has the most antimicrobial activity. 

If the drug effect is the same regardless of the dose regimens, then efficacy is best 

predicted by fAUC/MIC. In such studies, dosing schedule relative to the half-life of the 

drug and whether or not the drug has PAE should be taken into considered to avoid 

incorrect conclusions. Once this relationship is established, it can easily be extrapolated 

to humans after accounting for species difference in physiology assuming the drug-

pathogen interaction is independent of the host. That means the concentration-effect 

relationship in human is the same as in laboratory animals (18).  

 
Figure 2-4: Effect of dose fractionation on concentration-time profile. 
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2.3.2 Acceptance 

The Critical Path Initiative Report released in 2004 serves as the official FDA 

endorsement for the use of pharmacometric modeling and simulation in drug 

development (49). After that, multiple guidelines for industry are released to reflect the 

continuous support and encouragement for pharmacometrics use (67–70). The FDA 

specifically recognizes the role of the pharmacometric-based analyses to address the 

vexing problems in infectious diseases in a workshop co-sponsored in 2007 with 

Infectious Diseases Society of America (IDSA) (71). Similarly, pharmacometrics has 

gained the trust of the FDA counterpart in Europe, European Medicines Agency (EMA), 

to improve antimicrobial drug development (72). Unfortunately, the value of 

pharmacometrics in pharmacotherapy practice seems yet to be fully appreciated since the 

documented impact in literature is minimal.  

However, the benefits of pharmacometric modeling and simulation is well-

recognized by pharmaceutical industry, regulatory authorities, and academia (73). As a 

result, pharmacometrics becomes a hot topic in many conferences of pharmaceutical 

sciences and workshops since the early 2000s (20). Despite late adaptation, the use of 

pharmacometrics continues to grow with a substantial demand worldwide for scientists 

with pharmacometric skills (74). The implementation of pharmacometric-based approach 

by Pfizer led to an annual reduction in clinical trial budget of $100 million and increase 

in success rates of phase III and IV (56). This cost-saving was attributed to many factors 

but principally to early termination of development programs with unacceptable 

probability of success and studies for futility. Merck and 10 other large to mid-sized 
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pharmaceutical companies reported similar significant cost-saving through an impact on 

decision-making.  

A recent FDA review (75) shows pharmacometric analyses are used to support 

drug approval and labelling decisions of more than 60% of New Drug Application 

(NDA) submissions between 2000 and 2008; dose labelling in 11% of submissions was 

based on pharmacometric analysis with no clinical trials conducted to assess efficacy; and 

30% of submissions were assessed by independent pharmacometric analyses conducted 

by FDA reviewers. For example, FDA performed an independent exposure-response 

analysis of pooled data from two phase II and one phase III studies and recommended the 

approval of micafungin 150 mg dose instead of 100 mg for the treatment of esophageal 

candidiasis (76). Levofloxacin pediatric dose recommendation, 8 mg/kg twice day,  for 

children following anthrax exposure was also based on an FDA independent 

pharmacometric analysis with no confirmatory studies (77). 

Similar benefits can be achieved in pharmacotherapy practice and research upon 

the implementation of pharmacometrics. The efficiency of research, especially in 

investigator-led studies funded by government and public money, can be significantly 

improved. The involvement of scientists with proficiency in pharmacometrics in the 

design and analysis of studies can ensure the use of optimal doses, proper design, and 

correct analyses. Altogether can reduce cost, shorten duration, and maximize knowledge 

gain per study. 
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2.3.3 Advantages over Conventional Analyses 

Pharmacometrics uses assumption-rich nonlinear mixed-effect modeling methods 

that may make frequentist statisticians feel uncomfortable. Yet, these assumptions are, in 

fact, an advantage rather than a deterrent for several reasons. The assumptions are based 

on established scientific principles in many relevant fields that include pharmacology, 

physiology, pathology, and microbiology (78). So, this characteristic is an advantage 

since it allows leveraging of prior knowledge accumulated over decades of research. The 

inclusion of such information allows our models to be more mechanistic and closer to 

reality. Of course, no model is perfect and each model should be weighed against the 

benefits. With that, assumptions can always be stated explicitly, debated openly, and 

tested rigorously.     

In addition, pharmacometrics is a better approach to characterize complex 

biological systems because of the inherent nature of nonlinearity that cannot be 

adequately described with simple linear models. Biological systems also exhibit 

hysteresis in which two different measurements of effects can be observed for the same 

concentration. The temporal concentration-effect delay is a routine problem in 

pharmacometric data and it is easily modelled by delay differential equations or the 

incorporation of a transit, effect compartment, or indirect response model (79, 80). 

Another advantage is that pharmacometric model parameters have biological meanings 

associated with them even for parameters from empirical models. For example, small, 

hydrophilic, and highly protein-bound drugs that are eliminated renally tend to have 

clearance value close to the glomerular filtration rate and apparent volume of distribution 

similar to plasma volume. This exemplifies the usefulness of leveraging biological prior 
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information without which extrapolation of findings in one population to another, use of 

findings from one study to design the next, or application of findings directly in patient 

care would be difficult (81).       

 The pharmacometric-based approach often applies population mixed effects 

analysis that better estimates typical and individual values by quantifying between 

subject variability. On the contrary, traditional analysis tend pool data together, or ignore 

the correlation of data points within a subject leading to biased parameter estimates and 

inflated unexplained variability (81). Furthermore, pharmacometric-based analysis 

achieves significantly higher statistical power. It uses all longitudinal data instead of the 

end of trial observations that increases the signal to noise ratio (52, 82, 83). As a result, 

smaller and shorter in duration studies are required with pharmacometric-based analysis 

to achieve satisfactory power that translates to substantial cost-saving (56). For this 

reason, pharmacometrics is well-suited for the situation when only sparse data are 

obtained due to practical limitations or constraints in study design. The pharmacometric 

approach is a better fit with adaptive clinical trial design strategies that aim to maximize 

the information about dose-response curve via the strategic allocation of patients based 

on responses of earlier subjects (83). Lastly, pharmacometric-based analysis can be used 

effectively in both learning and confirming activities recommended by Sheiner (52, 83). 

Despite the advantage of pharmacometric-based analysis, it is unfortunately not yet 

widely implemented to reach it is full potential for several reasons. 
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2.3.4 Challenges for Implementation 

The adoption of pharmacometric modeling and simulation by pharmaceutical 

industry had been delayed until more recently for multiple reasons. The first one is a 

multifaceted organizational concern due to uncertainty of outcomes and lack of 

experience (20, 83). Pharmaceutical companies were not sure whether the investment in 

the shift from traditional to pharmacometric-based approach would pay off in terms of 

greater productivity, cost-saving, and faster approval. Equally, they were fearful if such 

as a change would be approved and accepted by regulatory bodies. In addition, there was 

a lack of experience and trained personnel qualified to perform pharmacometric-based 

analysis. The unfavorable circumstance and natural resistance to the change is a typical 

response to every change in every discipline and the adoption of pharmacometrics by 

pharmaceutical industry represents one of many examples. These concerns are no longer 

valid because the pharmacometric-based approach received the endorsement of 

regulatory authorities and substantial benefits of the approach are already documented as 

mentioned earlier. Also, in response to the need of skilled manpower, academic 

departments in leading universities have established new graduate programs focused on 

pharmacometric and quantitative clinical pharmacology (84). The output of these 

programs is surely not enough to meet the substantial demand for pharmacometricians 

but it should not be a hurdle to widely implement the approach. Pharmaceutical 

companies also share the responsibility to train and educate their scientists about the 

principles of and technical skills required for the pharmacometric-based approach. This, 

in fact, is part of the upfront investments for such a transformation. 
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The other reasons limiting the pharmacometric-based analysis implementation are 

related to the approach itself. There are limitations to nonlinear mixed-effects modeling 

(NLMEM). One deterrent is the inability to quantify type I and II errors and this 

limitation remains to be addressed (83). Power calculation of NLMEM is another 

drawback that requires computationally-intensive Monte Carlo simulation and re-

estimation with the planned model analysis to generate the distribution of test statistic 

(85). This is overcome with the development of newer and faster methods including 

Monte Carlo Mapped Power for the Wald test and parametric power estimation for 

likelihood ratio test (86, 87). In addition, violation of distributional assumptions of 

random effects for between subject and unexplained residual variabilities can render the 

model inappropriate and findings incorrect. To address this challenge, a semiparameteric 

approach is proposed to relax the assumptions on the distributions and add a flexibility to 

describe a wider range of distributions (88, 89). This is done using a transformation 

function where the parameter shape is estimated with the rest of model parameters. The 

distributional assumptions of uncertainty of model parameters are also important for 

interval estimates. Non-parametric methods already exist for NLMEM, such as 

bootstrapping and log likelihood profiling, but they lack diagnostics to judge their 

appropriateness and require intense computation. A new nonparametric sampling 

importance resampling technique was proposed to overcome the limitations of the 

existing methods and it is shown to be superior in cases of small datasets, highly 

nonlinear models, and meta-analyses (90).  

Model building in NLMEM is typically data-driven and goes through a series of 

testing models before a final one is selected. This makes the model building process is 
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highly subjective and associated with an increased type I error that is not easily 

quantifiable (83). As a result, the use of NLMEM is not favored in confirmatory analysis 

since it requires model pre-specification to be fully described in advance. A proposal for 

full pre-specified model-based analyses in which model building is completely avoided 

or limited to a number of testing models with predefined selection criteria are suggested 

to ensure reproducibility and type I error control (91, 92). However, model pre-

specification does not provide sufficient type I control when the predefined model is 

miss-specified. An alternative, multi-model approach (model-averaging), in which data 

are fit to a set of models and the weight of each model is adjusted based on how well it 

fits the data, is used to control type I error while safeguarding against model 

misspecification (83, 93).   

2.3.5 Current Applications 

There are many pharmacometric applications that span drug development 

continuum and pharmacotherapy across all therapeutic areas (44, 51, 78). Here, we only 

present the most common applications relevant to infectious diseases. Pharmacometrics is 

used to guide the rational selection of optimal dosing regimens in drug development: to 

maximize the success probability of clinical studies in the first time and to improve 

therapeutic outcomes of patient care in clinical settings. The optimal regimens are 

selected using stochastic (Monte Carlo) simulation-based methods. The first one is 

probability of target attainment (PTA) that aims to calculate the percentage of simulated 

patients with an estimated efficacy-linked PK-PD index equal to or greater than the target 

magnitude related to the antimicrobial efficacy against a pathogen with a certain MIC 
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(method 1) as shown in Figure 2-5 (55, 94) . Thus, PTA integrates the variability of 

microbial susceptibility (MIC), the variability of drug exposure in the target patient 

population characterized by a population PK model, and efficacy-predicting PK-PD 

indices to quickly explore, via simulations, various dosing regimens and recommend the 

one that is associated with the highest probability of achieving the PK-PD target. A 

slightly modified PTA approach (method 2) that incorporates the uncertainty associated 

with the PK model parameters, is also used. The modified PTA estimates the mean and 

confidence intervals (CIs) of the PTA where the intersection of the horizontal line at the 

PTA target value and the lower confidence represents the covered MICs by the dosing 

regimen (Figure 2-5) (73, 95). This modified PTA method provides conservative 

breakpoints that can be even more conservative by using a higher level of CI. Method 2 is 

the approach used by the European Committee on Antimicrobial Susceptibility Testing 

(ECAST) (11, 96) . 

 
Figure 2-5: PTA methods to select optimal dosing regimens. Solid lines are the means 

and shaded area is the 95% CI. 

Despite the merits of the PTA method, it has major deficiencies arising from the 

use of MIC-based indices. The MIC of a drug against a pathogen is determined after the 

pathogen is exposed typically for 24 hr to a constant concentration of the drug that does 
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not reflect what happens in vivo (73, 97). So, MIC represents the net (snapshot) effect of 

microbial growth and killing over the incubation period and ignores the time-course 

relationships. Time-kill curve studies, on the other hand, provides more detailed 

information about the drug-pathogen interaction over time. The studies are designed to 

expose the pathogen to constant (static) or fluctuating (dynamic) drug concentrations to 

mimic in vivo scenarios. Time-kill curve data allow the use of pharmacometric-based 

analysis to develop an integrated PK-PD model to characterize the microbial growth and 

rate of killing as a function of both time and drug concentration. This approach allows 

one to identify the development of adaptive resistance of the pathogen upon drug 

exposure. This is a well-documented phenomenon for aminoglycoside antibiotics (42, 

98). PK-PD modeling and simulation is the second method used to optimize doing 

regimens (Figure 2-6). It uses developed PK-PD models based on time-kill curve data and 

Monte Carlo simulation taking into account variability in both PK and PD to predict 

dosage regimens that result in microbial eradication (microbiological cure) (73). 

 

Figure 2-6: PK-PD modeling and simulation to guide dose selection. Solid lines are the mean 

and shaded areas are the 95% CI.  
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Pharmacometrics is also used to set antimicrobial susceptibility breakpoints. They 

serve as a guide for clinicians about the likelihood of treatment success for an 

antimicrobial agent against a micro-organism that is classified as susceptible, 

intermediate, or resistant (11, 78). The correct establishment of breakpoint is critical 

since it has significant clinical implications. Setting breakpoints higher than they actually 

are can lead to denying patients effective therapies. If higher breakpoints are used, it will 

expose patients to higher doses which may be toxic. On the contrary, therapeutic failure 

and microbial resistance may occur when the breakpoints are wrongly set lower than they 

actually are because the therapy would be suboptimal. The clinical breakpoint is set based 

on the efficacy-linked PK-PD indices to identify the highest MIC at which a subjective 

PTA target, usually ≥ 80%, is achieved for a given dosing regimen. It is the same PTA 

methods used for optimal dosing regimen selection (Figure 2-5).  

Antimicrobial dosing recommendations are typically derived from PK-PD in 

healthy adults that do not apply to patients who have significantly altered physiology, 

such as critically-ill, renally- or hepatically- impaired, burn, sepsis, and pediatric patients 

(61). As shown figure 2, physiological changes as consequence of underlying disease 

states affect the PK of antimicrobial agents and drug exposure at the site of infection 

leading different PD effect. Therefore, different dosing recommendations are likely 

needed that take into consideration the altered PK in the target patients. This is where 

pharmacometrics comes in to use available data to characterize the altered PK or leverage 

prior information of diseased-induced physiological changes in the absence of data to 

guide dose recommendations for special populations. In the latter situation, 

physiologically-based PK modeling is commonly used and widely accepted by regulators 
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to explore the effect of intrinsic and extrinsic factors affecting drug efficacy and safety in 

patients (67, 78).  

Lastly, pharmacometrics can guide formulary decisions and establish treatment 

guidelines. Again, it uses Monte Carlo simulation to estimate the cumulative fraction of 

response (CFR) for a specific drug regimen against a specific micro-organism given the 

population distribution of MIC. CFR is calculated as: 

𝐶𝐹𝑅 =  ∑ 𝑃𝑇𝐴𝑖  × 𝐹𝑖

𝑛

𝑖=1

 

Where i represent the MIC dilution level, PTA is the probability of achieving PK-

PD target, and Fi is the percentage of isolate at each MIC dilution level (99, 100). This 

method uses local and regional susceptibility data to compare the efficacies of different 

drugs or different doses of the same drug against different pathogens. Such information is 

then used with some economic considerations to inform formulary decisions in hospitals. 

Likewise, treatment guidelines are established based on the knowledge generated by 

pharmacometric-based approaches (101). These pharmacometric decision-guiding 

methods for antimicrobial therapies are now available in both mobile and electronic 

health record-embedded point-of-care platforms for the clinicians and antimicrobial 

stewardship personnel as an easy-to-used tool to individualize therapies and inform 

organizational decisions, respectively. One program is called PK-PD Compass developed 

by the Institute for Clinical Pharmacodynamics Technologies (Schenectady, New York, 

NY, USA) (102, 103). PK-PD Compass integrates population PK models, patient- 

specific characteristics, pathogen-specific susceptibility data, and Monte Carlo simulation 

to perform PK–PD target attainment analyses and select the optimal dosage regimens for 

a patient. Other similar platforms are available and currently in use as well. 
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2.4 CONCLUSION 

Pharmacomteric modeling and simulation is emerging as a powerful discipline to 

rationalize and streamline drug development. Significant increase in drug development 

productivity and substantial reduction in cost are documented after the adoption of 

pharmacoemtric-based analysis by pharmaceutical companies. This is because of the 

advantages of pharmacometric-based analysis over the traditional statistical approach. 

With pharmacometrics, optimal doses are selected and studied for the first time in smaller 

and shorter in duration studies. It also allows the integration of data collected from 

different sources throughout the development program to maximize learning about the 

compound and inform decision making. Similar benefits can be achieved in 

pharmacotherapy practice and research when the pharmacometric approach is adopted. 

The efficiency of investigator-led studies can be improved by ensuring optimal doses are 

selected, studies are well-designed, and correct analyses are performed.   
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3 PHARMCOKINETICS-PHARMACODYNAMICS (PK-PD) OF 

SERTRALINE AN ANTIFUNGAL IN HIV-INFECTED PATIENTS WITH 

CRYPTOCOCCAL MENINGITIS 

3.1 SUMMARY 

The ASTRO-CM pilot study investigated the role of adjunctive sertraline for the 

treatment of HIV-associated cryptococcal meningitis in HIV-infected patients. This study 

is a secondary analysis of that study using a pharmacokinetic-pharmacodynamic 

modeling approach to provide insight into sertraline exposure-response-outcome 

relationships. To quantify the sertraline effect, estimated rates of fungal clearance of 

ASTRO-CM patients were compared to those in COAT, a similar study in which patients 

received standard Cryptococcus therapy of amphotericin B (0·7–1·0 mg/kg per day) and 

fluconazole (800 mg/day) without sertraline. Sertraline clearance was higher among 

antiretroviral therapy (ART) patients by more than 2-fold, resulting in lower drug 

exposure. However, ART was found to not affect fungal CSF clearance or survival of 

patients. Cumulative AUC of total sertraline concentration in the brain to MIC ratio was 

best correlated with the percent daily change in log10 CFU/mL. Sertraline significantly 

increased fungal clearance from CSF by 41.3% on average and the effect was found to be 

dose- and exposure- independent. This finding suggests that sertraline response might be 

mediated by different mechanisms than directly inhibiting the initiation of protein 

translation. This is supported by that fact that unbound sertraline concentrations are 

unlikely to reach MIC levels in the brain. Exploratory survival analysis showed female 

patients and those receiving 100 or 400 mg of sertraline daily had significantly lower 2-
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week survival rate compared to patients receiving no or 200-300 mg sertraline daily. 

Altogether, study findings suggest sertraline doses greater than the maximum FDA-

approved dose (200 mg/day) may not provide any additional benefits and come with 

greater risk of adverse events.    

3.2 INTRODUCTION 

Cryptococcal meningitis (CM) is an opportunistic fungal infection of the central 

nervous system caused by the pathogenic encapsulated yeast Cryptococcus neoformans. 

It is transmitted mainly by inhalation and commonly affects immunocompromised 

individuals, in particular those infected with human immunodeficiency virus (HIV) (104). 

In 1990s, the introduction of antiretroviral therapy (ART) significantly decreased the 

incidence and improved the long-term mortality of HIV-associated CM in western 

developed countries. However, in developing nations, CM burden remains unexpectedly 

high due to the lack of health care access (104–106). CM is one of the most common 

acquired immunodeficiency syndrome (AIDS)-defining infections in HIV-infected 

individuals with approximately 1 million new cases and 625,000 deaths every year 

worldwide (107). About 75% of these cases occur in HIV-infected people in Sub-Saharan 

Africa making Cryptococcus the 4th leading cause of death in the region (107). Globally, 

10-week mortality rate is currently at least 35% and cerebral spinal fluid (CSF) 

sterilization at week 2 is achieved only in 60-70% of patients (108). Current drug 

therapies are expensive, toxic and not readily accessible, especially in resource-poor 

settings. These statistics highlight the critical unmet need for new safe, effective, 

affordable, and readily accessible antifungal therapies for CM treatment.   
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Sertraline (Zoloft®), a selective serotonin reuptake inhibitor commonly 

prescribed for the treatment of depression  and other mental disorders, was shown to have 

an in vitro and in vivo fungicidal activity against Cryptococcus neoformans (109–111). 

The sertraline effect in vitro and animals was dose-dependent and believed to be 

mediated by the inhibition of protein synthesis of the fungus (109, 111, 112). Other 

mechanisms of action for sertraline antifungal activity are also suggested and include: 

non-specific lipophilicity-dependent cytotoxicity; membrane phospholipids disruption of 

acidic intracellular organelles; and elevation of plasma serotonin (5-HT) that is found to 

be biologically active against Candida and Aspergillus spp. and it could also be the case 

against Cryptocccocus (113–117). In addition, the effect of sertraline in combination with 

fluconazole, a major component of standard induction, consolidation, and maintenance 

phase therapy for CM, was synergistic against Cryptococcus in vitro and in vivo (109, 

111, 118–120).  

Previous findings suggest the potential use of sertraline in treating HIV-related 

CM given its favorable physiochemical, pharmaceutical, and therapeutic properties. 

Sertraline has high lipophilic characteristics that enable it to cross the blood brain barrier 

easily and concentrate in the brain at concentrations 10-57 times higher than in plasma 

(121). It can also help with depression, which is found to be a common co-morbidity in 

HIV-infected patients (122). More importantly, sertraline has a good safety profile: 

overdose situations are relatively safe and easily managed; drug-drug interactions are 

minimal which is an important advantage in this therapeutically complex setting; it is 

available as a less-costly generic formulation; it is orally bioavailable; and it has long 

half-life that allows once-daily dosing (123). 
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Based on the above compelling evidence and therapeutic properties of sertraline, 

our group hypothesized that the addition of sertraline to Amphotericin B and fluconazole 

would result in faster rates of fungal clearance from CSF and probably better clinical 

outcomes. To test this hypothesis, we conducted and authored the first-in human dose-

escalating clinical trial to investigate the safety and efficacy of adjunctive sertraline for 

the treatment of HIV-associated CM (ASTRO-CM, NCT01802385) (108). This study is a 

secondary analysis of the ASTRO-CM pilot study using a pharmacokinetic-

pharmacodynamic (PK-PD) modeling approach to provide insight into sertraline 

exposure-response-outcome relationships. An older study, COAT (Cryptococcal Optimal 

ART Timing), in which patients received standard CM therapy only was used as a 

comparison to quantify sertraline added effect on brain fungal clearance from CSF (124).    

3.3 MATERIALS AND METHODS  

3.3.1 Patients Cohort & Sampling Collection.  

This study included a subset of HIV-infected Ugandans with CM from the 

ASTRO-CM pilot study, who had sertraline plasma concentrations measured (108). 

Venous blood samples were collected on days 1, 3, 7, 10 and 14 mostly within 8 hours 

after dose administration (Figure 3-1). Samples were analyzed using a high performance 

liquid chromatography (HPLC). Full details of study design and methods are presented in 

our previously published manuscript (108).  
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Figure 3-1: Study design of ASTRO-CM. LP is lumbar puncture and BS is blood sample. 

3.3.3 Pharmacokinetic Analysis.  

All sertraline plasma concentrations were fitted simultaneously using nonlinear 

mixed-effect regression methodology to a one- and two-compartment PK model with 

linear and nonlinear clearance. Between subject variability (BSV) was described by an 

exponential model and residual unexplained variability (RUV) was evaluated by 

proportional and combined error model. The effects of age, sex, weight, concomitant 

antiretroviral therapy (ART), parent-to-metabolite ratio (sertraline-to-desmethylsertraline 

ratio, RA), serum creatinine (SCr), and liver function enzymes (AST and ALT) were 

visually screened against Empirical Bayes parameter estimates of the base model. 

Potential covariates were then tested as linear and power models for continuous 

covariates and as a fractional change for categorical ones. The statistical significance of 

covariates was tested using the likelihood ratio test (χ², α =0.05, df = 1) which 

corresponds to at least a 3.84-point drop in objective function value (OFV, a measure of 

goodness of fits similar to a sum of squares). The criteria used to select the PK model 

were OFV, plausibility of parameter estimates, diagnostic plots and the prospective 

applicability of the model. The performance of the selected model was assessed by 
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prediction-corrected visual predictive check (pcVPC) (125) and parameter precision was 

evaluated by the sampling importance resampling (SIR) method (90).   

There were missing data in weight, RA, and time of dose administration and 

blood draws. A single imputation was performed to replace missing weights with the 

median value of known weights based on sex (54 kg for male and 49 kg for female). 

Within a patient, RA, SCr, AST, and ALT were imputed with the last observation carried 

forward then the last observation carried backward. Missing dosing times were replaced 

by the frequent dosing time of patients while missing blood draw times were imputed by 

visit times when available or frequent blood draw times for other patients done on the 

same day. When there was no information to make reasonable imputation, records were 

excluded.  

3.3.4 Predictive PK-PD Index Exploration.  

This sub-analysis was limited to 115 patients who had fungal count 

quantifications in CSF and sertraline plasma concentration measurements. Quantitative 

CSF cultures were obtained by therapeutic lumber punctures using manometers at 

diagnosis, and on days 3, 7, 10, and 14. A described method was used for determining 

quantitative CSF cultures measured as CFU/mL (126). The empirical Bayesian estimates 

(EBEs) from the final PK model were used to simulate the sertraline brain concentration-

time profiles using brain-to-plasma concentration ratios and to calculate standardized PK-

PD indices: Cmax/MIC, AUC24/MIC, %T>MIC (121).  

Cmax is the highest (peak) concentration reached, AUC is the area under 

concentration-time profile, %T>MIC is the cumulative percentage of 24-hr period that the 
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concentration is above MIC. cAUC/MIC, the ratio of cumulative area under 

concentration-time profile to MIC, is not a commonly used PK-PD index but it was 

calculated to evaluate whether the drug effect was better associated with cumulative drug 

exposure. MIC is the minimum inhibitory concentration of sertraline against 

Crypotococcus, that was measured by broth microdilution in RPMI1640 media per 

protocol (127). When MICs of clinical isolates were undetermined, they were assumed to 

have the median value (4 mg/L).  

All PK-PD indices are generally based on the free unbound plasma or tissue 

concentrations, and indicated by the prefix f. However, because unbound plasma 

concentrations were not measured in our patients, the prefix f was not used and total, 

instead of free, brain sertraline concentrations were predicted using the median value 

(16.5 fold) of total brain-to-plasma concentration ratios (121). Assuming that measured 

fungal CFU was only affected by previous doses, PK-PD indices were calculated after the 

last dose for Cmax/MIC, AUC24/MIC, %T>MIC and up to the last dose given for 

cAUC/MIC. Drug effect was calculated as the percent change in log10 CFU/mL from the 

previous culture.   

3.3.5 Fungal Count Analysis.  

Fungal CSF counts from the ASTRO-CM pilot study and COAT trial were 

modeled together to determine the additional benefit of sertraline on brain CSF fungal 

clearance rate when added to standard induction therapy for 2 weeks (108). COAT is an 

earlier study that included similar patients from the same hospital, who were treated with 

the same regimen of amphotericin and fluconazole without sertraline (124). All CSF 
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fungal counts were log10-transformed, rounded to nearest integer and fitted to a Poisson 

model (equation 3-1) (128).  

𝑃(𝑌𝑖𝑗 = 𝑛) =  
𝜆𝑖𝑗

𝑛

𝑛!
 𝑒−𝜆𝑖𝑗                (3 – 1) 

The probability of observing Yij equal to n =0, 1, 2, … is determined by lambda 

(λij), the mean fungal count for individual i occurring at fixed time-interval j and the 

factorial function (!) of n. λij was further influenced by the preceding counts f(λi(j-1)) and 

time f(tj) (equation 2-2).   

λij = BASEi . f(λi(j-1)). f(tj)           (3 – 2) 

A three-state transition Markov model (MM) for an increase, decrease and no 

change in log10 CFU/mL from the previous count was used to account for the correlation 

of data within a patient. Time effect was best modeled by a mono-exponential decline 

function with a separate random effect for each study (equation  3 – 3).  

λij = BASEi. MM . e-[K
i 

+ (1-SER).η
1

 + SER.η
2

).t
j
]  (3 – 3) 

MM is a multiplier factor for each Markov model state. SER is an indicator 

variable that equals 0 for COAT trial and 1 for ASTRO-CM study. K is an exponential 

constant for the daily decrease in fungal counts (day-1). It was fixed to 1 for COAT trial 

and estimated for each dose arm (100, 200, 300, 400 mg/day) of ASTRO-CM study. This 

model parameterization was chosen to allow for easy comparison among different 

sertraline arms and standard induction therapy with no sertraline.    

A different model parameterization was also used in order to characterize the 

dose-response relationship assuming sertraline has dose-dependent effect as supported by 

in vitro and animal studies. A common K value for both studies and a sertraline effect 

term described by a sigmoidal Emax function were used (equation 3 – 4). 
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𝜆𝑖𝑗 =  𝐵𝐴𝑆𝐸𝑖  .  𝑀𝑀 .  𝑒−[(K+η1).t] .  [1 −
(

𝐷𝑂𝑆𝐸
𝑀𝐼𝐶 )

𝛾

𝐷50
𝛾 + (

𝐷𝑂𝑆𝐸
𝑀𝐼𝐶 )

𝛾]                (3 − 4) 

D50 is the dose of sertraline to MIC ratio when sertraline effect is half maximal 

and γ is a shape parameter for the dose-response curve. The final count model was 

assessed by VPC and parameters uncertainty were estimated by SIR.  

3.3.6 Survival Analysis.  

This analysis was limited to patients included in the count analysis. Two-week 

survival rate of patients from both (COAT & ASTR-CM) studies was modeled as time to 

death using a time-varying exponential hazard function (equation 3 – 5). 

ℎ(𝑡) =  𝜆0 .  𝑒β𝑜×ln(t)                          (3 − 5) 

λo is the baseline hazard and βo is the shape parameter of the hazard function. 

Based on whether covariates were time-invariant or time-varying, they were modeled, 

respectively, as follows (129):  

ℎ(𝑡) =  𝜆0 .  𝑒(β0 × ln(t)+ β𝑐1× 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒1)                                                 (3 − 6) 

ℎ(𝑡) =  𝜆0 .  𝑒β0 × ln(t) .  [1 + β𝑐1 ×  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒1(𝑡)]                         (3 − 7) 

The selected model was validated internally by VPC and distribution of parameter 

uncertainty were estimated by SIR. 

3.3.7 Software. 

 Nonlinear-mixed-effects, count and survival modeling analyses were performed 

in NONMEM 7.3 (ICON Development Solutions, Ellicott City, MD) using various 
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ADVANs and estimation methods. The PK analysis was performed with ADVAN2 

TRANS2 and FOCEI method; count analysis was done using PREDPP with FO 

Laplacian method; and survival rates were estimated using ADAVN6 with FO likelihood 

method. Data manipulation, imputation, and plotting were done in R (version 3.2.5). Perl-

speaks-NONMEM (PsN) was utilized to perform VPC and SIR analyses. The Pirana 

interface was used to maintain and compare NONMEM and PsN runs (130). 

3.4 RESULTS  

3.4.1 Pharmacokinetic Model.  

Weights of 45 unique patients (32 males and 13 females), 94 dosing times, and 19 

blood draw times were imputed as described above. Nine observations below the lower 

limit of quantification (1 ng/mL) were excluded. The final analysis included 335 

sertraline plasma concentrations from 137 patients whose characteristics are summarized 

in Table 3-1. A 1-compartment PK model with first-order absorption and elimination 

adequately described the data. A combined proportional and additive error model was 

preferred for the RUV. The absorption rate constant (Ka) was fixed to a literature value of 

0.3 hr-1 because it was not estimable (131). Oral clearance (CL/F) and volume of 

distribution (V/F) were allometrically scaled to a standard 70-kg person (equations 3 – 8 

& 3 – 9). 

𝐶𝐿

𝐹
=  𝜃1 × (

𝑊𝑒𝑖𝑔ℎ𝑡

70
)

0.75

× 𝑒𝜂1                (3 − 8) 

     
𝑉

𝐹
=  𝜃2 × (

𝑊𝑒𝑖𝑔ℎ𝑡

70
) × 𝑒𝜂2                      (3 − 9)    
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Table 3-1: Characteristics of patients included in PK analysis 

 100 mg 200 mg 300 mg 400 mg Total P-value 

Subjects, n 14 49 36 38 137 - 

Male, n (%) 8 (57) 33 (67) 20 (56) 26 (68) 87 (64) 0.59 

Age, mean (SD) 38 (7) 36 (8) 38 (8) 34 (8) 36 (7.8) 0.15 

Weight, mean (SD) 54 (10.4) 52.7 (10.5) 50.8 (8.7) 52.2 (9.7) 52 (9.6) 0.72 

ART, n (%) 8 (57) 23 (47) 12 (33) 14 (37) 57 (42) 0.34 

 

The selected PK model included ART as a covariate on plasma CL/F, reducing 

the OFV by 40 points (p-value < 0.00001). On average, concomitant ART increased 

CL/F by 110% leading to lower drug exposure (Figure 3-2). The effect of ART was not 

different between patients receiving efavirenz- and nevirapine-based ART (result not 

shown). The diagnostic plots and pcVPC showed the model reasonably captured the 

observed data (Figure 3-3 & Figure 3-4). The selected PK model parameters and their 

SIR-based uncertainty are presented in Table 3-2. 
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Figure 3-2: Effect of weight and ART on sertraline exposure 

 

 

 

Figure 3-3: Diagnostic plots of the selected sertraline PK model.  Red lines are Lowess 

smoothers. CWRES is conditional weighted residuals.  
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Figure 3-4: Prediction-corrected visual predictive checks of the selected sertraline PK 

model.  Blue open circle represents the prediction-corrected concentrations, red solid and dashed 

lines represents the median, 5th and 95th percentile, respectively. Shaded areas are the simulated 

95% CI of each percentile.  
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Table 3-2: Parameter estimates of the selected PK model of sertraline 

Parameter Estimate (RSE) SIR median (95% CI) 

CL/F*          55.7 (9) 56 (46 -67) 

V/F*           2630 (11) 2649 (2092 – 3284) 

ART_CL 1.1 (31) 1.16 (0.60 – 1.87) 

Ka 0.3 FIXED - 

RUV1  41.83 (74) 41.75 (23.57 – 60.54) 

RUV2 11.4 (34) 11.6 (7 – 17.2) 

* Parameters are allometrically scaled to a 70-kg person, CL/F (L/hr) and V/F (L) are oral 

clearance and volume of distribution, respectively, ART_CL is the fractional change in CL/F for 

patients receiving ART, Ka (hr-1) oral absorption rate constant, RUV1 & RUV2 are the additive 

(SD) and proportional (%CV) components of residual unexplained variability. RSE is relative 

standard of error and SIR is sampling importance resampling. 

3.4.2 Predictive PK-PD Index.  

In vitro susceptibilities were determined for 151 clinical isolates (81 from 

ASTRO-CM and 70 from COAT) obtained from baseline CSF cultures from participants 

with a first episode of CM. The MIC distributions were comparable for both studies. The 

median (range) of sertraline MIC were 4 (1-8) µg/mL and 4 (1–12) µg/mL for ASTRO-

CM and COAT clinical isolates, respectively. The undetermined MIC levels for the 

remaining 138 clinical isolates (34 from ASTRO-CM and 104 from COAT) were 

assumed to be 4 µg/mL.  

PK-PD indices of ASTRO-CM patients calculated from the predicted total brain 

sertraline concentration-time profiles were plotted against the percent change in log10 



46 

 

CFU/mL that was not zero (Figure 3-5). There was no association between %T>MIC and 

% change in log10 CFU/mL. The change in fungal counts had a hockey-stick relationship 

with AUC24/MIC and Cmax/MIC. cAUC/MIC index was the most predictive of the daily 

percent reduction in fungal counts.  

 

 

Figure 3-5: Association between the percent changes in log10 CFU/mL and sertraline PK-

PD indices. Red lines are Lowess smoothers. 

3.4.3 Rate of Fungal Clearance.  

A total of 947 fungal count observations (491 from ASTRO-CM and 456 from 

COAT) from 289 patients (115 from ASTRO-CM and 174 from COAT) were included in 

the final analysis. The distribution of fungal counts and individual mean-variance 

relationship were similar in the two studies, but ASTRO-CM had a slightly stronger serial 

correlation of counts than COAT (Figure 3-6). ASTRO-CM treatment arms were 

comparable except there were 10 patients in the 100 mg arm compared to 43, 32, and 30 

patients in the 200, 300, and 400 mg arms, respectively.  

No covariate was found to affect fungal counts. The selected model (equation 2-3) 

found that the addition of sertraline to CM standard induction therapy significantly 
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increased CSF fungal clearance. The increase ranged from by 34-48% with an overall 

average of 41%.  

The sertraline effect was similar irrespective of the daily sertraline dose our 

patients received (Table 3-3). The adequacy of the selected model was supported by the 

VPC in which model predictions reasonably captured the observed data (Figure 3-7 & 

Figure 3-8). A differently parameterized model with fewer parameters (equation 3 – 4), 

that was able to fit the data well and characterize a dose-response curve of sertraline, 

generated similar results. Compared to the first model (equation 3 – 3), the second model 

(equation 3 – 4) had a higher AIC but comparable VPC plots (results not shown). 

Modeling results were also similar when un-rounded log10-transformed were fitted 

(results not shown).   
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Figure 3-6: Characteristics of observed fungal counts.  The left panel is a count distribution 

plot; middle panel is a mean-variance plot; the right panel is a serial correlation of counts. All 

plots are stratified by study: COAT top and ASTRO-CM bottom. Dash black line and solid blue 

line represents mean and median in the distribution plot, respectively. Dash black line is identity 

line in the mean-variance and serial correlation of count while blue solid line is a linear regression 

line. The slope of the regression line indicates the strength of serial correlation of count. 
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Table 3-3: Parameter estimates for the selected count model 

Parameter Estimate (RSE) SIR median (95% CI) 

λ 4.43 (2) 4.43 (4.22 – 4.62) 

MM 1 1.56 (4) 1.56 (1.41 – 1.71) 

MM -1 1.15 (4) 1.15 (1.03 – 1.28) 

K- 0 1 FIXED - 

K-100 1.41 (28) 1.44 (0.72 – 2.29) 

K-200 1.42 (15) 1.46 (1.08 – 1.90) 

K-300 1.34 (18) 1.38 (0.97 – 1.89) 

K-400 1.48 (18) 1.51 (1.08 – 2.03) 

BSV1 in K 0.074 (14) 7.5 % (5.58 – 9.41) 

BSV2 in K 0.14 (13) 14.3% (11.3 – 17.3) 

λ (log10 CFU/mL) is the population mean count, MM 1/ MM -1 is the fractional increase and 

decrease in mean count from the previous one, K (day-1) is the rate of daily decrease in fungal 

count for a given daily sertraline dose, and BSV1 and BSV2 (SD) are the between subjective 

variability in K for  COAT and ASTRO-CM, respectively. RSE is relative standard of error and 

SIR is sampling importance resampling. 
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Figure 3-7: Mean fungal count over time visual predictive checks stratified by study. Blue 

open circles are the observed counts. Solid and dash red lines represent the median, 5th and 95th 

percentiles of the observed data. The shaded red and purple areas are simulated 95% CI for the 

median, 5th and 95th percentiles. 
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Figure 3-8: Categorical visual predictive check stratified by study and count.  The blue 

dotted line and purple shaded area specify the proportion of observed data and simulated 95% CI, 

respectively.  
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3.4.4 Survival Rate.  

The selected survival model found that hazard of death was significantly 

influenced by sex and sertraline daily dose as follows:  

ℎ(𝑡) =  𝜆0 .  𝑒(β0 × ln(t)+ β𝑠𝑒𝑥× 𝑆𝐸𝑋 +  β𝐷𝑂𝑆𝐸× 𝐷𝑂𝑆𝐸100/400 )             (2 − 7) 

SEX equals 0 for female and 1 for male. DOSE100/400 is 1 for those patients 

receiving 100 or 400 mg and 0 otherwise. Inclusion of sex reduced OFV by 13.9 points 

(p-value < 0.0005) and subsequent inclusion of DOSE100/400 resulted in additional drop of 

6.24 points in OFV (p-value < 0.02). The exponentiation of β’s coefficients revealed that 

the hazard ratio of male to female is 0.25 and patients receiving 100 or 400 mg of 

sertraline daily to those receiving no sertraline, 200 or 300 mg daily is 2.92 (Table 3-4). 

The internal validation by VPC confirmed the model adequate (Figure 3-10 & 

Figure 3-10).    

 

Table 3-4: Parameter Estimate of survival model 

Parameter Estimate (RSE) SIR median (95% CI) 

λo 0.0367 (17) 0.0365 (0.0241 – 0.0473) 

βo 2.32 (16) 2.30     (1.61 – 3.25) 

SEXmale  -1.38 (29) -1.38    (-2.20 –  -0.695) 

DOSE100/400 1.07 (38) 1.03     (0.25 – 1.82) 

λo is the baseline hazard, βo is the shape parameter of the hazard function, SEXmale and 

DOSE100/400 are exponential coefficient to describe the effect of being male and receiving 100 or 

400 mg of sertraline daily on the baseline hazard. RSE is relative standard of error and SIR is 

sampling importance resampling. 
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Figure 3-9:  Kaplan-Meier plots for time to death stratified by dose. This is 

comparison of observed data (blue line) to the 95% prediction interval of the simulated data 

(green area). 
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Figure 3-10: Kaplan-Meier plots for time to death stratified by SEX and ART. Female and 

no ART are 0. This is comparison of observed data (blue line) to the 95% prediction interval of 

the simulated data (green area).  
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3.5 DISCUSSION 

The co-administration of ART increased sertraline oral plasma clearance by > 2 

fold, resulting in lower drug exposure. Yet, ART was found to not affect fungal clearance 

from CSF or survival of patients. Of the PK-PD indices explored, cAUC/MIC of total 

sertraline concentrations in the brain was the most predictive index of percent daily 

change in log10 CFU/mL. The addition of sertraline to the CM standard induction therapy 

increased the rate of CSF fungal clearance on average by 41%, and the effect was similar 

across dose arms. We also found that female patients and those receiving 100 or 400 mg 

of sertraline daily had lower 2-week survival rate. 

Estimated sertraline clearance was similar to what was previously published, but 

the volume of distribution was 2-3 fold lower even after adjusting for body weight (132, 

133). The difference in volume of distribution can possibly be explained by the disease 

state and race given that our patients were HIV-infected and sub-Saharan Africans. 

Metabolism is the main route of sertraline elimination and its clearance was expected to 

increase with ART co-administration because our patients received a triple efavirenz or 

nevirapine-based treatment for HIV. Efavirenz and nevirapine are non-nucleotide reverse 

transcriptase inhibitors (NNRTI) that are known to induce cytochrome P450 metabolizing 

enzymes responsible for sertraline metabolism (134, 135).  

It is challenging to separate out a predictive PD index of sertraline effect in the 

current study. Our patients were on the CM standard therapy and the observed reduction 

in log10 CFU/ml cannot be solely attributed to sertraline. Thus, cAUC/MIC is a PD index 

of sertraline in combination with amphotericin B (0·7–1·0 mg/kg per day) and 

fluconazole (800 mg/day). The PD target can be different for sertraline monotherapy and 
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to determine that, in vitro, ex vivo, and in vivo animal studies are required due to the 

ethical reasons and the inability to control for host and fungal factors in a clinical setting. 

Findings from these studies can then be used to propose a rational dosage regimen of 

sertraline for confirmatory clinical testing. 

Although it decreased sertraline exposure, ART did not influence the rate of 

fungal clearance from CSF. The sertraline added benefit was also the same regardless of 

the daily dose our patients received. Together, this suggest that the observed clinical 

sertraline effect is dose- and concentration-independent which contradicts previous 

evidence from animal studies (136). One possible explanation is the lack of statistical 

power related to study design, insufficient number of patients, unbalanced arms, and the 

narrow range of tested sertraline doses. The range of studied sertraline was only 4-fold 

and fell at the lower range of the dose-response curve as shown in Figure 3-11. to 

sufficiently estimate dose-response relationships, at least 10-fold range between the 

highest and lowest studied doses is recommended by the European Medicines Agency 

(EMA) (137). The dose to MIC ratio at which sertraline effect is half maximal (D50) was 

estimated to be 500. Assuming MIC is 4 µg/mL, sertraline daily dose required to achieve 

50% reduction in fungal counts is calculated to be 2000 mg (Figure 3-11). This is 10-fold 

greater than the maximum daily dose approved by the US Food & Drug Administration 

(FDA).  
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Figure 3-11: Dose-response curve of sertraline. This is the sigmoidal Emax function describing 

the sertraline effect in equation 4 using the parameter estimates and assuming sertraline MIC is 4 

µm/mL. 

In addition, it is possible that sertraline effect in human is mediated by different 

mechanisms than inhibiting protein synthesis of the fungus (111). This idea is supported 

by the fact that the unbound sertraline concentration is unlikely to reach MIC levels 

(113). Sertraline is highly-protein bound in plasma and only unbound concentration is 

able to cross tissue membranes (e.g. blood-brain barrier and fungal cell wall), bind to 

therapeutic targets, and elicit pharmacological action (138). The highest steady-state total 

sertraline plasma concentration observed in our patients was 1,078 ng/mL. With 98% 

protein binding and median of 16.5-fold higher concertation in brain tissue than in blood, 

the unbound brain sertraline concertation is predicted to be 0.356 µg/mL. This is lower 

than the lowest determined MIC level (1 µg/mL) for our clinical isolates. Despite 

consensus that unbound concentration is what really drives drug action in vivo, there is 

unfortunately still a persistent inclination to report total tissue concentrations, arguing 
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they are better related to drug efficacy. Total tissue concentrations are shown to be poor 

surrogates for drug efficacy because they are determined after tissue homogenization 

which is likely unrepresentative of concentration at the site of action (37). 

Enhancing fluconazole effect through beneficial pharmacokinetic interaction is 

one plausible mechanism for the observed clinical effect of sertraline. Fluconazole is a 

substrate for the efflux transport P-glycoprotein that is widely expressed in gut, blood-

brain barrier, renal tubules and other tissues of humans (139–141). Sertraline, on the 

other hand, is a substrate and inhibitor of P-glycoprotein (142, 143). In theory, the 

inhibition of P-glycoprotein (P-gp) by sertraline would increase the gut absorption, 

central nervous system (CNS) penetration producing higher brain concentrations, and 

decrease renal clearance of fluconazole. Ultimately, sertraline would increase fluconazole 

exposure particularly in the brain which could possibly explain our results as pointed out 

by Veringa and his colleagues (144). P-gp-mediated drug-drug interaction at blood brain 

barrier was confirmed in preclinical species and recently in humans despite the 

skepticism about the clinical relevance (145, 146).  

Increasing 5-HT in plasma is another possible mechanism. 5-HT is shown to have 

direct and indirect anti-microbial effects against invading pathogens (147, 148). 5-HT 

possesses antimicrobial properties by itself. It is also a master regulator of innate and 

adaptive immune response through its wide receptors expressed on immune cells and by 

receptor independent signaling so-called serotonylation (149). It was shown that 

depletion of 5-HT in blood and platelets is associated with impaired immune responses as 

in HIV-infected individuals (150). On the other hand, elevated circulating level of 5-HT 

is documented in multiple autoimmune inflammatory diseases, such as rheumatoid 
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arthritis, asthma, Crohn’s disease, and ulcerative colitis due to either over-production of 

5-HT or/and reduced function of 5-HT transporter (SERT) (147). Just like in the brain, 

SERT in the periphery functions to tightly regulate 5-HT signaling via the reuptake 5-HT 

back into the cell to terminate and prevent off-target 5-HT effect, protect 5-HT from 

degradation by monoaminoxidases, and store 5-HT for later release upon subsequent 

stimulation (151, 152). With that, it is plausible that SERT inhibition by sertraline and 

simulation of immune response may be the underlying mechanism for the improved 

fungal clearance in the ASTRO-CM patients. 

Survival was not a primary outcome and the study was not powered to find 

survival difference between sertraline dose arms. However, there was a strong statistical 

evidence that female patients (p-value <0.0005) and those receiving 100 or 400 mg of 

sertraline daily (p-value <0.02) had lower survival rate. Our findings could be biased 

because the analyzed patients represented a nonrandom sample since the analysis only 

included patients who have plasma measurements and fungal count quantifications (115 

out of 137). Results could also be biased by differential co-morbidities or confounding 

factor that was not accounted for. The first 60 patients were assigned to sertraline daily 

dose in a non-random fashion. For example, it could be by chance that patients receiving 

100 or 400 mg of sertraline daily were sicker, have other opportunistic infections, or just 

characteristically different than the rest of patients. Though, results should be taken into 

considerations for further studies to balance patient sample by sex and test at least two 

different sertraline doses (low and high) to further investigate these findings. 

The current study has several limitations. The ASTRO-CM study was not 

designed for the pharmacometric analyses presented here. Missing data was imputed for 
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several variables. Single imputations were performed to impute missing weight, dosing 

time, blood draw time, and clinical characteristics. Pharmacokinetic data were also very 

sparse and not optimally sampled. Sertraline levels were drawn mostly in the absorption 

phase on different days. Our patients were diagnosed with multiple medical conditions 

and on poly-drug therapy. This creates a challenging situation to account for all probable 

drug-drug interactions. Lastly, sertraline dose groups were not balanced with fewer 

patients in the 100 mg arm. With these limitations in mind, our findings reflect the 

available data and should be interpreted cautiously.  

In summary, the fungal clearance rate from CSF was increased by sertraline when 

added to the combination therapy of amphotericin B and fluconazole compared to COAT 

study. Sertraline effect was unlikely to be mediated via the inhibition of protein synthesis 

as unbound sertraline concentrations do not reach MIC levels. The effect could be driven 

by enhancing fluconazole response through the inhibition of P-gp efflux transporter or 

increasing plasma 5-HT that has antifungal properties and immunomodulatory effects on 

immune cells. Because the sertraline effect was dose-independent, higher doses than the 

maximum FDA approved dose may not be needed as they provide little additional benefit 

come with a greater risk of unwanted adverse events. Further studies are in need to 

confirm or refine current findings. 
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4 POPULATION PHARMACOKINETICS OF SERTRALINE: A MODEL-

BASED META-ANALYSIS 

4.1 SUMMARY 

Published mean plasma concentrations of sertraline in healthy adult individuals were 

extracted from 27 studies and used to develop and validate a population pharmacokinetic 

model using a model-based meta-analysis (MBMA) approach. Based on non-

compartmental analysis (NCA), the increase in Cmax and AUC∞ was dose proportional 

between 50 and 200 mg for single-dose data and between 5 and 200 mg for multiple-dose 

data. The sertraline single doses of 5 and 25 mg were associated with lower values of 

Cmax and AUC∞ than expected. Tmax and t1/2 did not change across the dose range (5 -200 

mg). Sertraline oral bioavailability (F) increased with dose from 5 to 50 mg and then 

plateaued for single-dose mean data while it was relatively the same across the entire 

dose range for multiple-dose data. Deconvolution analysis of single-dose data showed 

that sertraline F was similar to those calculated by NCA and absorption rate constant was 

a time-dependent process that was best described by a sigmoidal Emax function of time 

after dose. A 2-compartment pharmacokinetic (PK) model with linear elimination, time-

dependent absorption, and proportional error adequately described the sertraline literature 

mean data. Three random effects were used for inter-study variability (ISV), inter-arm 

variability (IAV), and residual unexplained variability (RUV). The latter two were 

weighted by the inverse square root of total number of subjects in an arm (1/√𝑛). The 

steady-state (SS) status was associated with higher peripheral volume of distribution (V3) 

and F increased with dose nonlinearly for single dose data only. 
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4.2 INTRODUCTION 

Sertraline is an orally bioavailable selective serotonin reuptake inhibitor (SSRI) first 

marketed by Pfizer in 1991 under the brand name Zoloft® for the treatment of major 

depressive disorder (123). Today, it is approved at 25-200 mg for additional conditions, 

including panic disorder, obsessive-convulsive disorder, post-traumatic stress disorder, 

premenstrual dysphoric disorder and social anxiety disorder, and is current being 

investigated in human for other potential uses (153). Sertraline remains one of the 

preferred SSRI agents because of its good safety and efficacy profile. It rarely causes 

serotonin syndrome by itself. When overdosed up to 8,000 mg, symptoms are similar to 

those associated with therapeutic doses. Over-dose symptoms usually subside within 4 

hours and are easily treated with lavage or the administration of activated charcoal when 

needed (154). Moreover, sertraline has few documented drug-drug interactions of clinical 

significance due to its minimal inhibition effect on the cytochrome P450 enzyme system 

(123, 153).    

The pharmacokinetics of sertraline, unlike some SSRIs, is reported to be linear up to 

the maximum studied dose (400 mg) (132). The PK linearity is shown to hold even in 

overdose cases (155). Following oral administration, sertraline is slowly absorbed from 

gastrointestinal tract and undergoes extensive first pass metabolism by P450 enzymes to 

form a pharmacological inactive metabolite, N-desmethylsertraline (134, 156). Absolute 

oral bioavailability of sertraline remains unknown with inconsistent reports due to the 

lack of published studies comparing drug exposure of oral to IV administration (123, 

157). The maximum plasma concentration (Cmax) of oral dose is reached 4-8 hours (Tmax) 

which is not affected by administration time (morning vs evening) (10). However, the 
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administration with food increases sertraline Cmax by 25% and decreases Tmax from 7.9 to 

5.4 hours, yet it results in slightly insignificant and clinically irrelevant increase in area 

under plasma concentration-time curve (AUC)  (158). 

Sertraline is a moderate to high clearance drug that is 95-98% bound to plasma 

proteins; however, it has a long half-life (t1/2) that ranges from 22 to 36 hours due to the 

extensive distribution into body tissues (123, 159). The plasma concentrations at steady 

state (SS) is highly variable in which 15-fold difference was observed in patients 

receiving typical therapeutic antidepressant doses (160). Age, gender, hepatic function, 

and single nucleotide polymorphisms (SNP) of CYP 2C19 were found to affect sertraline 

pharmacokinetics. Sertraline exposure was higher in elderly, young females, CYP2C19 

poor-metabolizers, and individuals with impaired liver function (156, 161–163).  

To the authors’ knowledge, there is not any published population PK model of 

sertraline in healthy volunteers. Therefore, the study objective was to use literature 

plasma concentrations data to develop and validate a population PK model of sertraline in 

healthy subjects applying model-based meta-analysis (MBMA) approach. This can serve 

as the starting point for more population-based analyses in different patient populations 

given the great interest of the medical communities in the use of sertraline as an 

anticancer, antibacterial, antifungal, and a sensitizing agent of chemotherapies (112, 164–

168).  
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4.3 MATERIALS AND METHODS  

4.3.1 Literature Search & Data Extraction.  

A systematic literature search in the PubMed database in October 2015 was carried 

out to identify published PK studies of sertraline. The search terms included a 

combination of the following: sertraline, Zoloft, SSRI, healthy subjects, and 

pharmacokinetics. The literature search was restricted to studies which included healthy 

subjects aged at least 18 years old, and reported in the English language. The initial 

search resulted in 54 articles. After full-paper examination, studies that had the mean 

plasma concentration-time profile data tabulated or plotted versus time were selected for 

inclusion regardless of the study design. Data including patient demographics were then 

extracted and formatted for analysis.     

4.3.2 Dose Proportionality Analysis. 

 Extracted mean plasma concentrations were analyzed by NCA to calculate PK 

variables. The sertraline F for each mean plasma concentration-time profile relative to the 

IV profile was calculated using the following (equation 4 – 1): 

𝐹 =  
𝐴𝑈𝐶𝑝𝑜×𝐷𝑂𝑆𝐸𝐼𝑉

𝐴𝑈𝐶𝐼𝑉×𝐷𝑂𝑆𝐸𝑃𝑂
           (4 − 1) 

A log-transformed power model with dose as a fixed effect was used to evaluate dose 

proportionality for Cmax, and AUC∞ (equation 4 – 2).  

Log(parameter) = log(α) + β log(dose) + ε           (4 – 2) 

The steady-state (SS) status (No/Yes) was adjusted for when testing dose 

proportionality for Cmax. This adjustment was not necessary for AUC∞ because it was 
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calculated as AUCτ for multiple-dose mean plasma concentration-time profiles. Model fit 

was assessed by the random scattering of residuals around the horizontal line of zero. The 

dose proportionality is declared when the estimated β value is not significantly different 

from 1. Values of β above 1 represent higher (super-proportional) exposure whereas β 

values below 1 represent lower (sub-proportional) exposure. The dose effect on sertraline 

t1/2 and Tmax was tested using a linear fixed effects model on log-transformed values 

adjusted for SS status (equation 4 – 3).  

Log(parameter) = α + β1 Dose + β2 SS + ε        (4 – 3) 

4.3.3 Deconvolution Analysis.  

The IV mean plasma concentration-time data were analyzed by compartmental 

analysis. The final estimated exponential terms were assumed to be the same for the oral 

data. Assuming linear kinetic system, deconvolution analysis was performed on single-

dose mean data only to estimate F and input rate into the system. The absorption rate 

constant (Ka) was calculated from the slope of the log absorbable amount of drug in 

gastrointestinal tract (A) vs time (t) multiplied by -2.303 where Ao represents the 

absorbable amount of drug at time 0 (equation 4 – 4).   

log(𝐴) = log(𝐴𝑜) −  (
𝐾𝑎

2.303
) . 𝑡      (4 − 4) 

4.3.4 Pharmacokinetic Modeling. 

 Using nonlinear mixed-effects regression, mean plasma concentrations were fitted to 

one and two compartment PK models with linear and nonlinear elimination. Three-level 

nested random effects were included: inter-study variability (ISV), inter-arm variability 
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(IAV), and residual unexplained variability (RUV). Exponential models were used for 

ISV and IAV while RUV was described by a proportional error. IAV and RUV were 

weighted by the inverse square root of the total number of subjects in an arm (1/√𝑛). 

Guided by the findings of deconvolution analysis, Ka was modeled as a time-dependent 

variable using a sigmoidal Emax function (equation 4 – 5).  

𝐾𝑎 =
𝐾𝑎𝑀𝐴𝑋 𝑇𝐴𝐷𝛾 

𝑇50
𝛾+ 𝑇𝐴𝐷𝛾     (4 − 5) 

TAD is time after dose administration, T50 is the TAD when Ka is half maximal, and γ 

is a steepness shape parameter for the Ka – TAD curve. The effect of dose, SS status, and 

patient demographics including age, weight, and sex were screened visually against 

Empirical Bayes parameter estimates of the base model. The statistical significance of 

covariates were then tested by the likelihood ratio test (χ², α =0.01, df = 1), that 

corresponds to a reduction in objective function value (OFV) of 6.63 points or greater. 

Selection of the final PK model was guided by the OFV, parameter estimates relative to 

literature values, diagnostics plots, and Akaike information criterion (AIC). The final 

model was validated internally by visual predictive checks (VPC) and the uncertainties of 

model parameter estimates were computed by sampling importance resampling (SIR) 

method. 

4.3.5 Software.  

Figures of plasma concentration-time profiles were digitized using WebPlotDigitizer 

(version 3.11). NCA were performed in R (version 3.1.0) using PKNCA package and 

deconvolution analysis done in Pheonix WinNonlin (version 6.3). Model parameter 

estimates and the 95% CI of the log-transformed power and linear models were obtained 
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by ordinary least square regression in R (version 3.1.0). PK analysis was performed in 

NONMEM 7.3 (ICON Development Solutions, Ellicott City, MD) using ADVAN 13 

with the FOCEI method. The ISV random effect was approximated using $Level and the 

R-matrix in the $COVARIANCE record. VPC and SIR analyses were implemented in 

Perl-speaks-NONMEM (PsN). Pirana interface was used to maintain and compare 

NONMEM and PsN runs. 

4.4 RESULTS 

4.4.1 Data Extraction.  

A total of 60 mean concentration-time profiles extracted from 27 studies provided 

748 plasma concentrations of doses ranging from 5 mg to 400 mg (Table 4-1). The 

majority of studies were either randomized crossover PK studies or validation PK studies 

for developed analytic methods. Eleven mean concentration-time profiles were from 

multiple-dose studies, 1 mean was from an IV study, and the rest were single-dose studies 

(Figure 4-1). Of the 60 profiles, 6 were the mean of females only, 6 profiles were the 

mean of equal numbers of females and males, 5 profiles were the mean of females and 

males in which the proportion of males was greater than 50%. The sex was not reported 

for 12 mean profiles and the remaining mean profiles were for males only. The median 

and (range) of mean age and mean body weight were 26 (20-72 years) and 67 (59-80 kg), 

respectively. 
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Table 4-1: Summary of PK studies included in the model-based meta-analysis (MBMA) 

Study Description Subjects Arms Doses Ref 

1 Single dose double-blind placebo-

controlled cross-over study  

10 3 100, 200 

& 400 mg 

(169) 

2 Single dose 24 3 50, 100 & 

200 mg 

(155) 

3 Single dose  PK study  10 1 100 mg (161) 

4 Multiple dose PK in elderly and young 

male and female 

24 4 200 mg (170) 

5 Single dose chrono-pharmacokinetic 

and food effect study 

24 4 100 mg (158) 

6 Single dose randomized crossover 

bioavailability study 

24 2 50 mg (171) 

7 Multiple dose PK interaction study with 

zolpidem 

27 2 50 mg (172) 

8 Single dose randomized crossover 

bioequivalence study 

11 2 150 mg (173) 

9 Single dose PK to study CYP2C19 

polymorphism effect  

6 2 100 mg (174) 

10 Single dose PK validation study for 

GC-MS method 

5 1 50 mg (175) 

11 Single & multiple dose open-label 

three-period crossover  interaction study 

with donepezil 

16 4 50 & 100 

mg 

(176) 

12 Single dose randomized crossover 

bioequivalence study 

24 2 50 mg (177) 

13 Single dose randomized crossover 

bioequivalence study 

24 4 100 mg (178) 

14 Single dose PK validation study for 

HPLC-EIMS method 

20 2 50 mg (179) 

15 Single dose bioequivalence PK 

validation study for HPLC-TMS 

method 

18 2 50 mg (180) 

16 Single dose randomized crossover 

bioequivalence study 

24 2 50 mg (181) 

17 Single dose bioequivalence PK 

validation study for HPLC 

1 1 100 mg (182) 

18 Single dose randomized crossover 

bioequivalence study 

24 2 50 mg (183) 

19 Single dose bioequivalence PK 

validation study for HPLC-TMS 

method 

32 2 100 mg (184) 

20 Single dose randomized crossover 24 2 50 mg (185) 
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bioequivalence study 

21 Single dose three-period crossover 

study 

6 3 5, 25 & 50 

mg 

(186) 

22 Single dose bioequivalence PK 

validation study for LC/MS/MS 

18 2 50 mg (187) 

23 Single dose PK study 5 1 100 mg (188) 

24 Single dose crossover PK study 14 2 100 mg (189) 

25 Single dose PK validation study for 

UPLC-MS/MS method 

20 1 100 mg (190) 

26 Multiple dose three-period crossover 

study 

10 3 5, 25 & 50 

mg 

(191) 

27 IV infusion over 12 hours  12 1 100 mg (192) 

 

4.4.2 Dose Proportionality 

The NCA analysis included 56 mean profiles from 25 studies because mean profiles 

from 2 studies did not have plasma concentrations measured in the elimination phase 

(Figure 4-1). Sertraline PK variables per dose level and color-coded by SS status are 

presented in Figure 4-2. The calculated F increased with dose in a nonlinear fashion for 

single-dose data, whereas it was relatively the same for multiple-dose data. The dose-

proportionality condition (β coefficients were not different from 1) was met for both 

AUC∞ and Cmax across the dose range for multiple-dose data.  For single-dose data, the 

proportionality condition was met only between the dose range of 50-200 mg. There was 

a disproportional decrease (lower values than expected) in AUC∞ and Cmax at lower single 

doses of 5 and 25 mg. Dose was found to neither affect t1/2 nor Tmax across the entire dose 

range of 5-200 mg after adjusting for SS status.  
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Figure 4-1: Extracted mean concentration-time profiles. 

 

  

Figure 4-2: Pharmacokinetic variables calculated by NCA. Bioavailability was calculated 

using equation 1. 
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4.4.3 Deconvolution.  

The IV mean profile was best fit to a two compartment PK model with a linear 

elimination, and a proportional error model. The plasma body clearance (CL), Q, central, 

and peripheral volumes (V2 and V3, respectively) were estimated to be 66.43 L/hr, 82.75 

L/hr, 1011.11 L, and 955.95 L, respectively. The α and β exponential terms were 

calculated to be 0.207 1/hr and 0.0275 1/hr.  

Deconvolution analysis included 47 mean concentration-time profiles from 21 single-

dose PK studies. The estimated F was comparable to the values calculated from NCA and 

presented in Figure 4-3. The Ka was found to be time-dependent as shown in Figure 4-4.  

  

Figure 4-3: Sertraline bioavailability estimated by deconvolution. 
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Figure 4-4: Absorption rate constant (Ka) relationship with time. Grey and maroon lines are 

the individual and the mean Ka, respectively. 

4.4.4 Pharmacokinetic Model.  

A 2-compartment PK model with a linear elimination and proportional error 

adequately described the sertraline literature mean data. ISV & IAV were included in CL, 

V2 and γ. The SS status increase peripheral volume of distribution (V3) and dose 

increased F nonlinearly for single dose data only (equation 4 – 6).  

𝐹 =
𝐷𝑂𝑆𝐸

𝐷50+𝐷𝑂𝑆𝐸
      (4 − 6) 

D50 is the dose when F is 50%. Diagnostic plots show no evidence of model lack of fit 

which is further supported by VPC (Figure 4-5 & Figure 4-6). The parameter estimates 

of the selected model and their SIR-based uncertainty are shown in Table 4-2. 
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Figure 4-5: Diagnostic plots for the selected MBMA PK model of sertraline. Red lines are 

Lowess smoothers. CWRES is conditional weighted residuals. 
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Figure 4-6: Diagnostic plots for the selected MBMA PK model of sertraline. Blue open 

circle represents the prediction-corrected concentrations, red solid and dashed lines represents the 

median, 5th and 95th percentile, respectively. Shaded areas are the simulated 95% CI of each 

percentile.
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Table 4-2: Parameter estimates for the selected MBMA PK model of Sertraline 

Parameter (unit) Definition Estimate (%RSE) SIR median (95%CI) 

CL           (L/hr) Clearance  59.7   (8) 61.47 (49.17 – 74.01) 

V2            (L) Central volume of distribution 1200  (12) 1242 (914.2 – 1621) 

Q             (L/hr) Inter-compartmental clearance  161    (11) 163.7 (124.4 – 206.9) 

V3 single        (L) Peripheral volume of distribution for single 

dose 

928    (8) 948.4 (752.9 – 1142) 

V3 multiple   (L) Peripheral volume of distribution for 

multiple dose 

1350  (10) 1371 (1044 – 1755) 

KaMAX    (1/hr)  Maximum absorption rate constant 0.855 (10) 0.86 (0.713 – 1.05) 

T50            (hr) Time when absorption rate is 50% of KaMAX 3.7     (3) 3.71 (3.23 – 4.31) 

γ Shape parameter of absorption rate 1.37   (3) 1.38 (1.28 – 1.47) 

Fmax Maximum bioavailability 0.639 (8) 0.661 (0.559 – 0.804) 

D50           (mg) Dose when bioavailability is 50%  15.5   (16) 15.51 (10.5 – 22) 

ISV CL    (%CV) Inter-study variability in CL 30.8   (12) 31.60 (23.50 – 40.91) 

ISV V1     (%CV) Inter-study variability in V1 39.8   (16) 40.75 (27.28 – 56.72) 

ISV γ       (%CV) Inter-study variability in γ 54.8   (15) 56.22 (38.92 – 80.26) 

IAV CL   (%CV) Inter-arm variability in CL 30.9   (10) 31.62 (25.32 – 39.28) 

IAV V1   (%CV) Inter-arm variability in V1 59.9   (13) 60.93 (46.79 – 81.40) 

IAV γ          (%CV) Inter-arm variability in γ 45.7   (12) 46.66 (36.10 – 60.56) 

RUV        (%CV) Proportional residual unexplained variability   19      (6) 19 (17 – 21.4) 
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4.5 DISCUSSION  

In this study, literature mean data of sertraline plasma concentrations were extracted 

and analyzed by NCA, deconvolution analysis, and MBMA approach. Sertraline Cmax and 

AUC∞ were dose proportional across the studied doses (5 - 200 mg) for the multiple-dose 

data whereas dose proportionality was met only between 50 and 200 mg for the single-

dose data. F was lower for sertraline single doses of 5 and 25 mg and it is likely the 

underlying cause of the observed dose disproportionality at lower doses. Tmax and t1/2 of 

sertraline were dose independent. Deconvolution analysis of single-dose data resulted in 

similar F estimates from NCA and showed that Ka was time-dependent best described by 

a sigmoidal Emax function of TAD. A 2-comaprment PK model with a linear elimination, 

time-dependent Ka, and proportional error adequately described the sertraline literature 

mean data. SS status and sertraline dose after single dose administration increased V3 and 

increased F in nonlinear manner, respectively. 

The study findings indicate that nonlinear changes in sertraline exposure are due to 

the changes in F with dose, rather than being mediated through an effect on clearance. 

This is in disagreement with what was suggested by in vitro studies and in adolescent 

patients (134, 193). The nonlinearity in F can be rationally explained by the inhibition of 

P-glycoprotein (P-gp) efflux transporter in the gastrointestinal (GI) tract. Sertraline is a 

substrate and potent inhibitor of P-gp with an IC50 value of 31.8 µM that is similar to the 

well-known inhibitor quinidine (33.8 µM) (142, 143, 194). Given that sertraline can 

reach GI concentration well above the IC50 value (65 to 2612 µM for 5 and 200 mg), this 

makes GI P-gp inhibition a highly plausible explanation. Even though GI concentrations 
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are calculated to be twice the IC50, sertraline doses lower than 50 mg had significantly 

lower F. This is probably because of the low binding affinity (Ki) of sertraline to P-gp 

that can be compensated for by achieving higher concentrations. This is likely the case 

with higher doses (≥ 50 mg). It was also suggested that P-gp is easily saturated at 

therapeutic doses of high permeable drugs like sertraline rendering the effect P-gp  

clinical irrelevance unless the therapeutic doses are very low (195). Yet, it remains 

unclear why dose effect on F was absent with repeated dosing that needs further 

investigation. It might be that repeated dosing of low doses eventually achieves similar P-

gp saturation or inhibition caused by high doses. In fact, clinical drug-drug interaction 

(DDI) studies are required to determine the effect of sertraline therapeutic doses on the 

pharmacokinetic of P-gp substrate drugs, such as digoxin, because the criterion (the 

highest approved dose dissolved in 250 ml divide by IC50 ≥ 10) set by the Food Drug 

Administration in the 2012 draft guidance on DDI is met (196).  

According to Biopharmaceutics Classification System (BCS), sertraline is a class II 

low solubility, high permeability compound whose absorption from the GI tract is limited 

by solubility (197). Sertraline appears to slowly dissolve in the GI as evident from the 

initial slow increase of the mean concentration-time profiles on a normal-scale plot 

(Figure 4-7). To account for the time it takes for sertraline to dissolve and be available for 

absorption, a time-dependent Ka, which was also informed by deconvolution findings, 

resulted in the best fit of the data. The model fit was significant better and more 

physiological-sound than a 1st order absorption process with a lag time. A time-dependent 

Ka resulted in a significant reduction in OFV and improved diagnostic plots. The time-

dependent absorption model was also easier to implement as it requires straightforward 
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coding, less computation time, and it is more likely to coverage than a transit-absorption 

model (198). 

  

 Figure 4-7: A sertraline mean concentration-time profile after 100 mg dose. 

 

SS status was found to significantly increase V3 indicating a greater tissue distribution 

of sertraline with repeated dosing. This translates into an increase in elimination t1/2 from 

26.6 to 32.7 hr. This increase in t1/2 is opposite to what was observed in adolescent 

patients (193). Our analysis did not find sex and age, previously known to be influential, 

to affect sertraline pharmacokinetics. This can be attributed to the insufficient number of 

mean profiles of females and the narrow range of mean ages. A major limitation of the 

current findings that there is few mean concentration-time profiles of doses less than 50 

mg leading to high uncertainty of the F-dose relationship at the lower doses.   

In conclusion, a population PK model of sertraline in healthy subjects was successfully 

developed and validated internally by VPC. It was the first model that used IV infusion, 

single, and multiple oral mean data from 27 studies. F was nonlinearly related to dose 

after single dose administration only which is likely caused by the inhibition or saturation 

of P-gp in the GI tract. Repeated dosing of sertraline was associated higher V3 and longer 

elimination t1/2. Sertraline absorption rate constant was time-dependent and best 
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described by a sigmoidal function. The PK model can be a useful starting point for other 

patient populations. Parameter estimates can also be used as inputs for mechanistic 

models, such as physiological-based PK model (PBPK) in order to increase our 

understanding of the biological processes that control sertraline disposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

5 PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL OF 

SERTRALINE TO DETERMINE CLINICAL RELEVANCE OF 

CONCENTRATIONS AT TARGET TISSUES 

5.1 SUMMARY 

Significant in vitro and in vivo evidence supports the potential use of sertraline as 

an anticancer and antimicrobial agent. Yet, it is unknown whether concentrations 

following therapeutic doses are achieved in relevant clinical tissues. The study objectives 

were to develop a PBPK model for sertraline and estimate the probability of achieving 

effective concentrations in various target tissues, especially in brain and liver. A generic 

PBPK model consisting of 14 perfusion-limited compartments representing physiological 

organs of the body linked together by arterial and venous blood and incorporated with 

clearance, distribution, and absorption models was implemented in R. CL and V 

parameters were first optimized by scalars from IV data and then used to simulate an oral 

steady-state profile. The incorporation of a first-order intestinal loss rate constant whose 

value was dependent on dose and steady state, reduced gastric emptying rate, and 

saturable hepatic first pass elimination reproduced oral data well. Simulated weights from 

a truncated normal distribution were used to generate physiological parameters for 1000 

in silico subjects. Population PBPK simulations were performed and the probabilities of 

achieving effective steady-state sertraline concentrations in brain, liver and other target 

tissues were calculated for 50, 100, 200 and 400 mg doses. Predicted unbound 

concentrations at steady state were unlikely to reach the therapeutic concentrations 

determined in vitro. The estimated probability in 9 clinically relevant tissues was ≤ 50% 
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and zero for therapeutic concentrations 0.25-0.50 and ≥ 1 mg/L, respectively. PBPK 

simulations indicate therapeutic sertraline doses are unlikely to produce concentrations 

required for anti-cancer (0.31 – 9 mg/L) and antimicrobial (1 - >200 mg/L) effects in 

human. 

5.2 INTRODUCTION 

Physiologically based pharmacokinetic (PBPK) modeling and simulation is a 

mechanistic quantitative framework that integrates physiological processes with 

compound physicochemical properties to describe the time-course of absorption, 

distribution, metabolism, elimination (ADME) of a chemical compound in vivo. Thus, 

two sets of parameters, physiology- and compound-dependent, are required to develop a 

PBPK model in a species of interest (199, 200). This tool is simple, reliable, fast, cost-

effective, and gaining wide acceptance by regulatory agencies as evident by the recent 

release of PBPK analysis guidance by the U.S. Food and Drug Administration (FDA) 

(67). The applications of PBPK modeling and simulation are enormous that can be 

broadly categorized into three major roles from early to late drug development stages: (1) 

gain mechanistic understanding of the processes affecting the kinetics of the compound; 

(2) inform clinical development decisions; (3) support regulatory submissions and 

labeling (201).  

Developing the PBPK model is a challenging task and is limited by the availability of 

input parameters, particularly drug characteristics (202). Although, these parameters can 

be measured experimentally or predicted by in silico models, they remain to be a 

deterrent to the application of PBPK due to inaccuracy arising from the measurement and 
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prediction errors. As a consequence of using inaccurate parameter inputs, a simulated 

profile can fail to follow observed in vivo profiles. The mismatch between the simulated 

and observed profile can be caused by a multitude of factors, especially in oral profiles 

(199, 203). To identify the parameter inputs that have the most influence on the simulated 

oral profiles, parameter sensitivity analysis is usually performed. Yet, the selection of 

parameters on which to focus and the reasonable range of biological plausibility over 

which parameters can be varied require expert knowledge (199, 201). To overcome the 

limitation of inaccurate parameter inputs, Peters (195, 203) proposed and validated a 

strategy using the mismatch pattern between the simulated and observed oral profiles to 

identify processes that affect oral lineshapes after optimizing clearance (CL) and volume 

(V) from an intravenous (IV) data by the inclusion of  adjustable CL and V scalars to 

reproduce the observed IV curve.          

There is a plethora of in vitro and in vivo animal evidence supporting the potential use 

of sertraline as an anticancer and antimicrobial against bacterial, fungal, and viral 

infections (204–208). Also, synergism is observed when sertraline is combined with 

chemo- and antimicrobial therapies (112, 120, 164, 168, 209, 210). Sertraline half 

maximum inhibitory concentration (IC50) for anti-proliferative activity against different 

cancer cell lines ranged between 1-25 µM (0.31–9 mg/L) and its effect was shown to 

dose-dependent (112, 166, 167, 211–214). Likewise, antimicrobial properties of sertraline 

are dose-dependent and its minimum inhibitory concentration (MIC) against wide range 

of pathogenic microbes vary from 1 to >200 mg/L (109, 206, 207). Whether these 

concentrations are clinically achieved in target tissues following the administration of 

therapeutic doses is unknown. The study objectives were to develop and validate a PBPK 
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model of sertraline in healthy subjects using Peters’s novel approach and perform 

population simulations to estimate the probability of achieving sertraline anticancer and 

antimicrobial therapeutic concentrations in humans.    

5.3 METHODS 

5.3.1 PBPK Model Building  

A “middle-out” approach that combines mechanistic physiological processes with 

available in vivo information was used to develop and validate a PBPK model for 

sertraline in healthy subjects (215). A generic PBPK model consisting of 14 

compartments representing different physiological organs linked together by arterial and 

venous blood  and incorporated with first-order hepatic clearance, distribution, and 

advanced compartmental absorption & transit (ACAT) models was implemented in R 

(version 3.2.5) using mrgsolve package (version 0.8.6) (203, 216). The diagram 

representation and mass balance differential equations of the integrated PBPK were 

previously described (203). Because sertraline is a small, highly lipophilic, and 

permeable compound, perfusion-limited distribution into well-stirred compartments of 

body organ was assumed (197).  

The mean physiological input parameters of a healthy human including organ blood 

flows (Qorg) and organ volumes (Vorg) for the PBPK model were obtained from literature 

and are presented in  
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Table 5-1 (217). Sertraline-specific parameters including molecular weight (MW), 

lipophilicity (logP), fraction unbound in plasma (fup), its acid dissociation constant (pKa) 

to calculate tissue-to-blood partition coefficients (Kp) for tissue distribution models, and 

other parameters were collected from the literature and are summarized in Table 5-2. Kp 

values were predicted from three commonly used in silico models (218–220). The hepatic 

intrinsic clearance (CLint) of sertraline was calculated from the estimated in vivo plasma 

clearance (CLp), its blood to plasma ratio (BP), and hepatic blood flow (QH) using the 

following equation (221): 

𝐶𝐿𝑖𝑛𝑡 =  
𝑄𝐻 ×𝐶𝐿𝑝

𝑓𝑢𝑝 (𝑄𝐻− 𝐶𝐿𝑝/𝐵𝑃)
    (5 – 1) 

For oral simulations, intestinal solubility (Solif) was predicted by Mithani’s equation  

that accounts for the increase of solubility due to the presence of bile salts and depends 

on intrinsic solubility (So) and physicochemical properties (222).  

Solif = Solwater + Solbile       (5 – 2) 

Solwater = So × (10(pKa – pH) + 1)     (5 – 3) 

Solbile = 10(2.23 + 0.61×logP) × Solwater × MWwater × [bile salt]    (5 – 4) 

Intestinal permeability (Peff) was also predicted by multiplying Caco-2 apparent 

permeability (Papp) by a scaling factor of 25 from which the absorption rate (Ka) was 

calculated as (203): 

𝐾𝑎 =  
𝑃𝑎𝑝𝑝 × 25 × 2

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑒 (𝑐𝑚)
   (5 – 5) 

Oral bioavailability (F) was estimated as the product of the fraction absorbed (Fabs), 

the bioavailability of gut (Fg), and the bioavailability of hepatic (Fh). Fg was 

indistinguishable from Fabs, so F was Fabs times Fh which is calculated using equation 5 – 

6 (221).  
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𝐹 =  𝐹𝑎𝑏𝑠  × 𝐹ℎ =  𝐹𝑎𝑏𝑠  ×  (1 −
𝐶𝐿𝐻

𝑄𝐻 × 𝐵𝑃
)   (5 – 6) 

 

 Table 5-1: Human physiological tissue parameters 

Tissue 
Volume 

(mL/Kg) 

Blood Flow Rates 

(mL/min/Kg) 

Adipose 143 3.7 

Bone 124 3.6 

Brain 20.7 10 

Gut 23.6 13 

Heart 3.8 2.14 

Kidney 4.4 15.7 

Liver 24.1 21 

Lung 16.7 71 

Muscle 429 10.7 

Pancreas 1.2 1.9 

Skin 111 4.3 

Spleen 2.7 1.1 

Stomach 2.2 0.56 

Testes 0.51 0.04 

Arterial blood 25.7 - 

Venous blood 51.4 - 

 

Following a stepwise procedure suggested by Peters, CL and Kp scalars were 

included in the PBPK model and adjusted to fit the observed IV data (203). Because the 

IV concentration-time profile is primarily dictated by DME wihch presumably remain 

unchanged regardless of the administration route, the IV-optimized V and CL parameters 

were fixed and used to simulate an oral profile. The mismatch between simulated and 

observed oral lineshapes was rationally interpreted by Peter (203) as factors affecting oral 

profiles including drug-induced gastric emptying delay, gut wall metabolism, P-

glycoprotein efflux, chemical degradation, enterohepatic recirculation, and variable 

absorption across gut wall. She already demonstrated and validated the approach through 

examples and provided a decision tree to identify these mechanisms affecting oral 

lineshapes based on the mismatch pattern which we followed in this study. 
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Table 5-2: PBPK Model input parameters for sertraline 

Parameters (unit) Literature values Ref Used Value 

Compound type Monoprotic base (131)  

Molecular weight (g/mol) 306a, 343b (131, 197) 306 

Lipophilicity, logP 4.9, 5.2, 4.3, 5.15, 5.5 (131, 192, 197, 223, 224) 4.94g 

Acid dissociation constant, pKa  9.1, 9.1, 9.16, 9.5, 9.43 (131, 192, 197, 223, 224) 9.26g 

Fraction unbound in plasma, fup 0.0134 – 0.0161, 0.02, 0.05, 0.023 (123, 131, 170, 223) 0.018g 

Red blood cells/plasma ratio 1.34 (225) - 

Whole blood/plasma ratio, BP 1.5c, 0.85, 0.7 (156, 223, 226) 2.925h 

Intrinsic solubility at pH 7.0 (mg/mL) 0.003a, 0.18b (192, 197) 0.003 

Permeability, Papp (10-6 cm/s) 5.7, 1.9 (131, 223) 3.80f 

Intestinal permeability, Peff (10-4 cm/s) 1.611 (192) - 

Clinical plasma clearance, CLp (L/hr) 60d,66e, (44,89), 144 (132, 133) 59.7d 

Clinical volume of distribution, Vss (L/kg) (28, 30, 36)d,f, 89f (133) 51.7g 

 a: sertraline, b: sertraline HCl, c: average of rats & dogs BP, d: estimated from a model-based meta-analysis, e:estimated from IV 

data only, f: calculated by dividing estimated mean total volume by mean body weight, g: mean of literature values, h: the value 

provided the best fit of IV data and was determined by sensitivity analysis.
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5.3.2 Clinical Pharmacokinetics Data 

Literature IV infusion and oral sertraline pharmacokinetic data in healthy subjects 

were used for the PBPK model development and validation. The PBPK model was 

developed using the IV and single oral dose data that included 48 profiles (1 IV and 47 

oral) from 22 PK studies. IV mean data were from a 100 mg dose infused over 12 hours 

and oral data were from doses ranging from 5 mg to 400 mg. The PBPK model was then 

validated against the steady-state oral data.  

5.3.3 Pharmacokinetic Parameters Calculation and Accuracy Assessment 

PK variables (AUC∞, CL, Cmax, Tmax, t1/2) of observed and simulated profiles were 

calculated by non-compartmental analysis in R using PKNCA package (version 0.8.1). 

The accuracy of predicted PK parameters was assessed by the fold error (FE) calculated 

as the ratio of the predicted to observed PK parameters. The goodness of fit was also 

assessed by the mean log fold error (MLFE) taken over all time points (n) and calculated 

as:  

𝑀𝐿𝐹𝐸 =  10(
1

𝑛
∑ log (𝐹𝐸))

   (5 - 7) 

When there are multiple observed concentrations at each sampling time point, a 

reduced χ2 statistic was used to assess the agreement between the observed and simulated 

oral profiles and calculated as:  

𝜒2 =  
1

𝑁
 ∑

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖)2

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖

𝑁
𝑖=1    (5 – 8) 
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where N is the number of observed concentrations. χ2 value close to 1 is an indication of 

a good agreement.  

5.3.4 PBPK Simulation  

Two published decision trees were followed: the first one was for fitting of IV data 

and the second was to identify and modify processes affecting the oral profile guided by 

the mismatch pattern between the observed and simulated data to reproduce the observed 

curve (195, 203). The initial simulated IV profile in healthy subjects was sensitive to the 

physiological parameter inputs, predicted Kp values, and BP. Several models generate 

different physiological parameter values as they are differently scaled to different 

anthropometric properties (weight vs height) and demographic characteristics (age, 

gender) (227). For simplicity, physiological parameters solely predicted by body weight 

(table 1) were used for all simulation in this study. Kp values predicted by the 3 

commonly-used in silico models only influenced the Kp scalar. Again, for consistency 

purposes, the values predicted by Rodgers et al. (220) were used in all oral simulation. 

Sertraline BP was unknown and sensitivity analysis was performed to identify the BP 

value associated with the best fit which was then fixed and used throughout. Lastly, CL 

and Kp scalars were adjusted to further improve the fit of IV data as judged by FE and 

MLFE.  

Next, the oral profile under fasting condition of 100 mg dose for which we had the 

most data was simulated using the CL, V, and BP values from the best IV fit. The 

simulated AUC was greater than the observed indicating intestinal loss due to gut wall 

metabolism, P-glycoprotein efflux (P-gp), and chemical degradation. To account for the 
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intestinal loss, a first-order intestinal loss rate constants (Kil) were introduced into all 

compartments of the ACAT model. Kil value was adjusted until the simulated AUC 

matched the observed value. Despite the agreement of AUC, Cmax and Tmax were higher 

and shorter than the observed indicating drug-induced gastric emptying which was 

accounted for by decreasing the gastric emptying rate (GER). This modification made the 

simulated AUC lower than the observed suggesting saturable biliary elimination at the 

hepatic first passage which was addressed by lowering the CLint. Optimized parameters 

from the 100 mg dose were used to simulated oral profiles for other doses. Higher Kil 

were needed for 5, 25 and 50 mg to reproduce the observed data and GER was changed 

for some dose levels to improve the fit of data.    

5.3.5 Population PBPK Simulation 

Weights of 1000 subjects were simulated from a truncated normal distribution 

(MEAN=69.33, SD=6.69) to match the observed mean weights of subjects from 

published PK studies. Using weights, physiological parameters were calculated to 

generate a virtual population of 1000 healthy individuals. To further account for 

biological between subject variability, CL was assumed to follow a log-normal 

distribution with 40% coefficient of variations (CV). In addition, the model included the 

observed variability in Kp values that was approximated by a log-normal distribution 

with a mean equal to the predicted value by Rodgers’ model and SD = 0.471 (53% CV in 

a lognormal distribution) (121). After the inclusion of these variabilities, population 

simulation was performed for all doses of sertraline and the probability of unbound 
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steady-state concentrations in brain, liver and other tissues being greater of equal to the 

effective in vitro concentration was calculated for 50, 100, 200 and 400 mg doses.  

5.4 REULTS 

5.4.1 IV Fitting.  

The shape of concentration-time profile was highly dependent on the BP ratio. The 

value of 2.925 guided by sensitivity analysis resulted in a good fit of the observed data 

irrespective of the model used to predict Kp values (Figure 5-1A). The fit was further 

improved by scaling of CL by1.15 that was also not influenced by the predicted Kp 

coefficients (Figure 5-1B). The Kp scalar was dependent on the prediction model used. 

The best fit was achieved when Kp scalar was 1, 4.7, and 4.75 for Rodgers & Rowland, 

Poulin & Theil, and Berezhkovskiy model, respectively (Figure 5-1B-C). The goodness 

of fit was comparable visually for the three Kp models. However, the lowest MLFE of all 

observed concentrations was achieved with the Kp values predicted by Berezhkovskiy’s 

model (Table 5-3).   
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Figure 5-1: PBPK simulation of sertraline IV infusion. Line is simulated concentrations and 

black circles are observed data. (A) Sensitivity analysis showing the effect of BP on IV profile 

when Kp values predicted by Rodgers model. (B-D) Optimized simulation (BP =2.925 & CL 

scalar = 1.15) with Kp values predicted by Rodgers (Kp scalar =1), Poulin (Kp scalar =4.7), and 

Berezhkovskiy (Kp scalar =4.75) accordingly.  

 

Table 5-3: Goodness of fit comparison using different distribution models   

Variable 

Observed 

Values 

Fold Error 

Rodgers & Rowland* Poulin & Theil* Berezhkovskiy* 

AUC∞ (mg.hr/L) 1.53 1.00 1.00 1.00 

Cmax    (mg/L) 0.053 1.08 1.10 0.98 

t1/2       (hr) 24.92 1.00 1.00 1.00 

λ         (1/hr) 0.028 1.00 1.00 1.00 

MLFE - 1.36 1.42 1.27 

 * To fit observed data well, BP was 2.925, CL scalar was 1.15, and Kp scalars were 1, 4.7 

and 4.75 for Rodgers & Rowland, Poulin & Theil, Berezhkovskiy, respectively. 
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5.4.2 Oral Simulation.  

Simulated from the best IV fit parameters, the oral profile of 100 mg appeared to have 

a higher AUC, higher Cmax, and shorter time to reach Cmax (Tmax) than the observed data 

(Figure 5-2A). The addition of Kil (0.02421 /hr) matched the simulated AUC to the 

observed value, but it failed to correct Cmax and Tmax (Figure 5-2B). When compared to 

the simulated profile, the observed data seems to have lower rate of absorption causing 

absorption rate-limited elimination, a phenomenon commonly known as flip-flap kinetics 

and characterized by lower Cmax, longer Tmax and terminal t1/2. This inconsistency 

between observed and simulated profiles is an indication of drug-induced impairment of 

gastric emptying. The reduction of GER by a scaling factor of 0.045 improved the fit 

significantly (Figure 5-2C) (228). Yet, the fit lowered the simulated AUC with 

significant under-prediction of terminal concentrations suggesting saturable elimination 

of hepatic first pass effect with oral dosing. The under-prediction was corrected by 

reducing CL scalar from 1.15 to 1.051 (Figure 5-2D).  
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Figure 5-2: PBPK oral simulation of sertraline 100 mg. Line is simulated concentrations and 

black circles are observed data. (A) Simulated profile using optimized IV parameters. (B) 

Simulated profile including intestinal loss constant rate (Kil =0.02421 1/hr). (C) Simulated profile 

including intestinal loss and scaled GER by 0.045. (D) Simulated profile including intestinal loss, 

adjusted GER, and reduced CL scalar from 1.5 to 1.051 to account for saturable elimination at the 

first pass effect with oral dosing.   

 

Using the best fit parameters of 100 mg oral data, simulated profiles of doses from 5 

mg to 400 mg reasonably capture the observed data (Figure 5-3A). However, Cmax and 

Tmax were different than observed values for some doses with noticeable over-prediction 

for 50, 25 and 5 mg doses. The lower the dose was, the higher the over-prediction was. 

To improve the fit, GER was modified for each dose (Figure 5-3B) and the Kil was 

increased for 50, 25, and 5 mg until data were well captured (Figure 5-3C). The final 

parameters for each dose and the assessment of prediction accuracy are presented in 

Table 5-4. In addition, predicted F was close to the estimated values by our model-based 

meta-analysis (MBMA) performed earlier (Figure 5-4). 
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Figure 5-3: PBPK oral simulation of various doses of sertraline after single dose. Line is 

simulated concentration and black circles are observed data. (A) Simulated profiles using 

optimized parameters for 100 mg dose. (B) Simulated profiles with adjusted GER. (C) Simulated 

profiles with higher Kil for lower doses < 100 mg to account for the nonlinearity in bioavailability 

estimated from our earlier MBMA.  
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Table 5-4: PBPK parameters and prediction accuracy 

Variable 5 mg 25 mg 50 mg 100 mg 150 mg 200 mg 400 mg 

   Adjusted Parameters 

CL scalar* 1.051 1.051 1.051 1.051 1.051 1.051 1.051 

Kp scalar 1 1 1 1 1 1 1 

GER factor 0.01 0.026 0.045 0.045 0.045 0.15 0.2 

Kli      (1/hr) 0.10 0.080 0.050 0.0242 0.0242 0.0242 0.0242 

 Fold Error  

AUC   (mg.hr/L) 0.96 1 0.95 1.00 0.84 1.07 - 

CL      (L/hr) 1.04 1 1.06 1.00 1.19 0.94 - 

Cmax  (mg/L) 1.1 1.05 1.00 1.07 1.17 1.00 0.86 

Tmax  (hr) 1 1 1.00 0.83 1 0.67 0.67 

t1/2       (hr) 0.65 0.93 0.91  0.77 1.04 - 

λ         (1/hr) 1.55 1.07 1.10  1.30 0.96 - 

 Goodness of Fit 

MLFE 1.33 1.00 1.35 1.40 1.07 1.23 0.59 

χ 2 statistic - - 1.35 1.42 - - - 

* Reduced from 1.15 to 1.051 to account for the saturable hepatic first pass elimination 

 

 

 

Figure 5-4: Sertraline oral bioavailability. 
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The simulation of steady-state profiles using the parameters optimized from single- 

dose data (Table 3) predicted observed data well for 100 and 200 mg while it under-

predicted the concentrations for 50, 25 and 5 mg dose with various degrees (Figure 5-5) . 

Better predictions for lower doses were obtained when Kil was changed back to, the value 

of higher doses (Figure 5-5).  

 

 Figure 5-5: PBPK oral simulation of various doses of sertraline at steady state.  Line is 

simulated concentrations and black circles are observed data. (A) Simulated profiles using 

optimized parameters from single dose. (B) Simulated profiles excluding nonlinearity in 

bioavailability in which Kil was 0.02421 for all doses.  

5.4.3 Probability Prediction of Therapeutic Concentrations.   

The median and 95% prediction interval of population PBPK simulation for single 

and multiple doses captured the observed data well (Figure 5-6). Further, steady-state 

simulations showed the predicted median of sertraline unbound concentration was much 

higher in liver, kidney, heart, and lung, than in brain even though they are all highly 

perfused organs (Figure 5-7). Likewise, concentration was higher in bone, a less 

perfused organ, than in the brain. Time-concentration profiles of all organs were similar 
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to plasma, except the muscle profile. The concentration increased slowly and had 

considerably longer Tmax (Figure 5-7). The calculated probability of unbound Cmax 

concentration at steady state being greater than or equal to therapeutic concentrations of 

0.25-0.5 mg/L and ≥ 1 mg/ L was ≤ 50% and zero, respectively (Figure 5-8).  

 

 Figure 5-6: Median and 95% prediction interval of population simulation of sertraline. 

Black circles are observed data. 

 

 

Figure 5-7: Predicted median of steady-state unbound concentrations of different sertraline 

doses in different tissues. 
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Figure 5-8: Probability of sertraline unbound Cmax concentrations reaching therapeutic 

levels in different tissues 

5.5 DISCUSSION 

This study assessed the potential clinical use of sertraline as an anticancer and 

antimicrobial using PBPK modeling and simulation. Sertraline CL and V were first 

optimized from IV data by CL and Kp scalars. Then, the optimized parameters were used 

to understand mechanisms that affect the oral profile. Introduction of Kil, lowering GER, 

and saturable hepatic first pass effect were introduced into the PBPK model to reproduce 

observed data. Kil was dose-dependent after a single oral dose administration. It 

decreased with the increase amount of administrated dose and leveled at ≥ 100 mg. With 

repeated dosing, the dependency of Kil on dose was lost. Predicted unbound 

concentrations at steady state in different organs were unlikely to reach therapeutic 
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concentrations determined in vitro. The probability was estimated ≤ 50% and zero for 

therapeutic concentrations 0.25-0.50 and ≥ 1 mg/L.       

The reported sertraline CL in rat, dog and human is close to and higher than QH (132, 

133, 156, 229). Not only does this indicate sertraline is a high clearance drug, but also 

that it has higher affinity for blood cells than plasma. It is mathematically impossible for 

CL to exceed QH only if BP > 1 as shown in equation 5 – 1 (221). Sertraline BP in 

previous PBPK models was incorrectly assumed or calculated to be ≤ 1. This could 

possibly lead to over-prediction of blood CL and under-prediction of F. Informed by 

sensitivity analysis, we used 2.925 for BP. This value is in line with the values in rat (1.7) 

and dog (1.5) which all are > 1.  

Of the three models, Kp values predicted by Rodgers seems to describe sertraline in 

vivo distribution well from its physicochemical properties since the Kp scalar was 1. On 

the other hand, Poulin and Berezhkovskiy models needed Kp scalars of 4.7 and 4.75 to 

correctly account for the observed distribution. This is probably because they fail to 

account for all specific protein binding in tissues. The Vss, calculated as the sum of scaled 

Kp times Vorg for all organs plus the plasma volume, was comparable across all models 

and ranged from 29 to 33 L/kg. This estimate is in agreement with the reported value in 

animals (25 L/Kg) and our MBMA estimate in table 1. However, Vss is much higher than 

the value (8.2 L/Kg)  reported by a previous PBPK model (123, 131).   

Despite having high CL exceeding QH, sertraline exhibits lower Cmax, longer Tmax and 

longer terminal t1/2. This could not be accounted for by the large V only. It was likely due 

to the flip flop kinetics where sertraline elimination is limited by its absorption rate. Since 

is sertraline is a Biopharmaceutics Classification System (BCS) class 2 compound 
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characterized by high-permeability and low-solubility, its absorption was expected to be 

solubility-limited (192). However, neither solubility nor dissolution rate were found to 

significantly affect sertraline oral profile. Unlike Sutton who modulated Peff to fit the 

individual data, we followed Peter’s recommendation to reduce GER to capture the data 

because our calculated Peff (1.90 × 10-4 cm/s) was close to the fitted value (1.61 × 10-4 

cm/s) by Sutton (192) . When Sun’s equation used, our Peff (1.43 × 10-4 cm/s) was also 

similar to Sutton’s value (230). This increased our confidence to modify GER rather than 

Peff.  

Sertraline F was nonlinearly dependent on dose after single dose administration. This 

is caused by the differential intestinal loss attributed to the sum effect of gut metabolism, 

P-gp efflux, precipitation, and chemical degradation. Sertraline is a known substrate and 

inhibitor of P-gp as well as a substrate for CYP enzymes (134, 194). Both P-gp and CYP 

enzymes are highly expressed in enterocytes of the gut (231, 232). The concerted action 

of minor P-gp efflux and major metabolism by CYP enzymes are the probable cause of 

sertraline nonlinear F. At lower doses (≤ 25 mg), intestinal loss is large likely due to the 

P-gp efflux and CYP intestinal metabolism. At higher doses (≥ 50 mg), higher luminal 

concentrations are achieved, that are greater than sertraline Michaelis-Menten constants 

(Km) for N-demethtylation (98 µM) and N-deamination (114 µM). This would lead to 

saturation of P-gp and CYP enzymes and ultimately to small intestinal loss we observed 

(134, 233). Likewise, hepatic first pass effect seems to be saturated as a result of the high 

hepatic concentrations achieved with an oral administration (217). This is why we needed 

to reduce CL scalar of IV data from 1.51 to 1.05 in order to reproduce oral data. 

Accounting for nonlinear elimination as suggested by in vitro studies also improved F 
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predictions that match our MBMA results (Figure 4) (134). This also allowed us to 

estimate Fabs to be 0.81 for 200 mg, instead of assuming it was 1. Fabs estimation was in 

agreement with the value reported (0.77) by Sutton (131, 192) . With repeated dosing, 

sertraline F was no longer dependent on dose. This could be that CYP saturation is 

eventually achieved with the repeated dosing of low doses due to the accumulation of 

sertraline in gut and liver tissues.  

Our simulation indicates that unbound sertraline concentration at steady state was 

unlikely to reach therapeutic levels in 9 different tissues including brain and liver. Yet, 

clinical benefit of sertraline against cancer and Cryptococcus was shown (108, 204, 234, 

235). We believe the observed effect is mediated through the stimulation of immune 

system rather than directly killing the cancerous cells and Cyprtococcus. Sertraline is 

shown to have dose-dependent immune-modulatory effect through altering plasma level 

of serotonin that acts as a hormone, auto- paracrine, and intercellular signaling messenger 

to control a wide range of critical physiological functions including mounting and 

orchestrating immune responses (147).  

In this study, we developed a sertraline PBPK model in healthy subjects that quantifies 

intestinal loss, Fabs, and F. The model well-described single- and multiple-dose data from 

wide range of doses (5-400 mg). Overall, the model-predictions were in agreement to 

literature values. Based on our stimulation, therapeutic doses of sertraline do not produce 

clinical concentrations required for anti-cancer and antimicrobial effects. Thus, it is 

unlikely that the observed clinical effect is directly mediated by sertraline. Further 

investigations are needed to shed light on the true mechanism of action by which 

sertraline could possibly exert its anti-cancer and anti-microbial action. In addition, our 
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model can be used to predict sertraline concentration-time profile in any patient 

population by simply updating the physiology-dependent parameters that represent the 

population of interest. 
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6 AMIKACIN PHARMACOKINETIC-PHARMACODYNAMIC (PK-PD) 

ANALYSIS IN PEDIATRIC CANCER PATIENTS 

6.1 SUMMARY 

We performed PK-PD and simulation analyses to evaluate standard 15 mg/kg/day 

amikacin in children with cancer and to determine an optimal dosing strategy. A 

population pharmacokinetic model was developed from clinical data collected in 34 

pediatric patients and used in a simulation study to predict the population probability of 

various dosing regimens to achieve accepted safety- (fCmin < 10 mg/L) and efficacy-

linked (fCmax/MIC ratio ≥ 8) targets. In addition, an adaptive resistance PD (ARPD) 

model of amikacin against Pseudomonas aeruginosa was built based on literature time-

kill curve data and linked to the PK model to perform PK-ARPD simulation and compare 

results with the probability approach. Using the probability approach, an amikacin dose 

of 60 mg/kg administered once daily is expected to achieve the target fCmax/MIC in 80% 

of pediatric patients weighing 8-70 kg with a 97.5% probability and almost all patients 

were predicted to have fCmin < 10 mg/L. However, PK-ARPD simulation predicted that 

60 mg/kg/day is unlikely to suppress bacterial resistance with repeated dosing. 

Furthermore, PK-ARPD results suggested that amikacin 90 mg/kg given in two divided 

doses (45 mg/kg BID) are expected to hit safety and efficacy targets, and associated with 

a lower rate of bacterial resistance. The disagreement between the two methods is due to 

the inability of the probability approach in predicting development of drug resistance 

with repeated dosing. This originates from the use of PK-PD indices based on the MIC 

that neglects measurement errors, ignores the time-course dynamic nature of bacterial 
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growth and rate of killing, and incorrectly assumes the MIC to be constant during 

treatment.  

6.2 INTRODUCTION 

Bacterial resistance to currently available antibiotics is a growing health problem 

worldwide as it compromises the efficacy of modern antibiotic therapies and endangers 

millions of human lives (236). According to the U.S. Centers of Disease Control and 

Prevention (CDC), antibiotic-resistant bacteria infect 2 million people in the United 

States annually and directly cause 23,000 deaths every year (237). Appropriate dosing is 

a major determinant of successful drug therapy and, for anti-infective medications, sub-

optimal dosing can lead to greater harm than just therapeutic failure. Considerable 

evidence from in vitro and in vivo work links antibiotics sub-optimal dosing to the 

emergence of bacterial resistance (42, 238). An inverted U-shaped function is found to 

describe the relationship between drug exposure and selection of resistant bacteria that 

initially rises and then declines with increasing exposure, until reaching a threshold that 

prevents amplification of resistant bacteria (238).  

The optimization of antibiotic dosing could potentially prevent the emergence of 

resistance or at least delay it. To do so, an understanding of pharmacokinetic-

pharmacodynamic (PK-PD) relationships of a drug against a bacterial pathogen is key 

(31). For example, the licensure of daptomycin, a lipopeptide antibiotic active against 

gram-positive bacteria, failed in the 1970s because of poor PK-PD understanding. In 

2003, the same drug was approved by Food and Drug Administration (FDA) for clinical 
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uses after switching from fixed dose three-times-a-day to weight-based once-daily dosing 

(42).   

Likewise, amikacin, an aminoglycoside antibiotic used either alone or in 

combination with β–lactams to treat serious gram-negative infections, was first approved 

at 15 mg/kg of body weight in 1-3 divided doses a day (29–31). Over time as amikacin 

PK-PD became better understood, dosing changed to larger once daily doses in order to 

maximize efficacy and limit toxicity (30, 239–241). Amikacin is an antibiotic that 

exhibits a concentration-dependent bactericidal activity and better clinical outcomes were 

associated with a high free, unbound plasma concentration to minimum inhibitory 

concentration ratio (fCmax/MIC). Because a bacterial population is not homogeneous but a 

mixture of distinct populations having their own MIC levels, a population MIC value 

named MIC90 and defined as the drug concentration that inhibits the growth of 90% of 

bacteria is used in the fCmax/MIC target. Generally, fCmax/MIC ratio of 8 to 10 has shown 

to result in at least a 90% therapeutic success rate and believed to suppress bacterial 

resistance (242–245). Similarly, amikacin safety was linked to the steady-state unbound 

trough plasma concentration (fCmin) being below 10 and ideally less than 5 mg/L (245). 

Nephrotoxicity is found to be lower with once daily administration since it limits 

repeated exposure of amikacin and provides longer interdose intervals that allow kidneys 

to excrete the drug. There is no doubt that dose optimization of antibiotics is of 

paramount importance and a promising approach to improve therapeutic outcomes, limit 

adverse events and combat bacterial resistance. 

Two of several methods are widely used for the selection of optimal dosing: 

probability of target attainment (PTA) and PK-PD simulation. PTA was first proposed by 
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Drusano’s team in which drug exposure in a virtual patient population of interest was 

simulated based on a population PK model developed from similar patients (94). The 

simulated time-course PK profiles were then used to compute a PK-PD index of interest 

(fCmax/MIC; fAUC24/MIC: the area under unbound concentration-time curve over 24 hr 

to MIC ratio; and %fT>MIC: the cumulative percentage of the dosing interval that the 

unbound concentration is above MIC) and the PTA of achieving the selected PK-PD 

target within the population for a given dosing regimen. The acceptable PTA level is still 

debatable. PTA of 90% or higher is advocated as it is associated with higher probability 

to achieve desired clinical outcomes. PK-PD simulation is similar to the PTA except that 

time-concentration drug profile is linked to a dynamic PD model based on in vitro or in 

vivo time-curve kill data of a drug-bacterium combination of interest to select a dose that 

is likely to eradicate bacteria.     

The aim of this study is to use a modeling and simulation approach to suggest an 

optimal dosing regimen of amikacin in pediatric cancer patients through the application 

of pharmacometric principles. A population pharmacokinetic model was developed from 

data collected in children with cancer and used in a simulation study to predict the PTA 

of various dosing regimens to achieve commonly accepted PK-PD targets for efficacy 

and safety of an fCmax/MIC ≥ 8 and fCmin < 10 mg/L, respectively. In addition, an 

adaptive resistance PD (ARPD) model of amikacin against Pseudomonas aeruginosa was 

built based on literature time-kill curve data and linked to the PK model to perform PK-

ARPD simulation of the same dosing regimens explored in the PTA simulations and to 

suggest a regimen associated with maximum bacterial killing and minimum development 

of resistance.  
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6.3 MATERIALS AND METHODS  

6.3.1 Patients.  

This study included children with cancer and suspected or documented gram-

negative bacterial infection admitted to the in-patient ward of National Cancer Institute 

(NCI), Cairo, Egypt during the period of June 2009 to December 2009. Patients were 

diagnosed with different types of malignancies broadly categorized into hematological 

and solid cancers that were treated with different chemotherapy protocols accordingly. 

All patients were treated empirically with amikacin 15 mg/kg once daily infused 

intravenously over 1 hr, which was the standard of care dose. Patient demographics and 

pertinent clinical characteristics were collected and recorded. The study was reviewed 

and approved by the Hospital Ethical Committee. Parental informed consent and child 

informed assent when appropriate were obtained prior to the study inclusion.  

6.3.2 Sample Collection & Analytical Assay.  

Two blood samples were drawn from a peripheral vein: one was taken at the end 

of infusion time (1 hr) while the second sample was drawn at least 2 hr following the first 

sample. Amikacin serum concentrations were measured by amikacin enzyme multiple 

immunoassay technique (Emit ® 2008), supplied by Syva company (CA, USA). The 

assay was linear from 0 – 50 µg/mL with reported between-run and within-run 

coefficients of variation (CV) 3.9% and 5.8%, respectively. Two controls were assayed in 

every 24-hr period and amikacin serum concentrations were calculated automatically by 

the Emit 2008 analyzer (Syva Co, Dade Behring Inc., Cupertino, CA, USA). 
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6.3.3 Pharmacokinetic Analysis.  

Amikacin concentrations from all patients were fitted simultaneously to one and 

two-compartment PK models with linear elimination using nonlinear mixed-effects 

regression analysis. An exponential random effect model and proportional error model 

were used to estimate between subject variability (BSV) and residual unexplained 

variability (RUV), respectively. To explain variability in model parameters, the effect of 

patient demographics and clinical characteristics were screened visually as potential 

covariates with particular concern on the effects of male vs female, hematological vs 

solid malignancies, afebrile vs febrile (defined as an oral temperature > 38.5 C or non-

oral, axillary or temporal, temperature > 38 C on two separate readings at least 1 hr 

apart) (246), and normal albumin level vs hypoalbuminemia defined as a serum albumin 

< 3.5 g/dL. The statistical significance of a covariate was tested using the likelihood ratio 

test (χ², α =0.01, df = 1) in which a reduction in objective function value (OFV, a 

measure of goodness of fit similar to a sum of squares) of 6.63 or greater is observed after 

the inclusion of a covariate. The final PK model was selected based on the OFV, 

biological plausibility of parameter estimates and diagnostics plots. The parameter 

standard errors and uncertainty distributions were computed by sampling importance 

resampling (SIR) (90) and model performance was qualified  using a prediction-corrected 

visual predictive check (pcVPC) (125).   

6.3.4 PTA Calculation.  

The Empirical Bayesian Estimates (EBEs) from the final PK model and amikacin 

protein binding were used to calculate fCmax and fCmin for a single dose. They 
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consequently were used to estimate the PTA of achieving the safety and efficacy targets 

of 15 mg/kg/day dosing in the study patients. 

In addition, the population PK model was also used to estimate the population 

PTA to achieve fCmax/MIC ≥ 8 and fCmin < 10 mg/L for different amikacin dosing 

regimens. Monte Carlo Simulation (MCS) was used to simulate 500 trials of 100 patients 

for each combination of amikacin weight-based total daily dose (15, 30, 60, and 90 

mg/kg) and dosing interval (Q8h, Q12h and Q24h). Weights of pediatric patients were 

simulated from a truncated log-normal distribution (mean = 3.23, SD=0.55) to match the 

observed weights of patients in the study. To account for parameter uncertainty, BSV and 

the extent of correlation among the estimated values of model parameters, the full 

variance-covariance matrix obtained by SIR was incorporated into the MCS. Taking into 

consideration a fixed 10% protein binding of amikacin, the PTA (expressed as a %) of 

fCmax/MIC ≥ 8 and fCmin < 10 mg/L for each trial was calculated for a range of assumed 

MIC values: 1, 2, 4, 8, 16, and 32 mg/L. For each of the 500 simulated trials for each 

dose and dosing interval combination, the median, 5th and 95th percentiles of PTAs were 

calculated.   

6.3.5 In Vitro Pharmacodynamic Analysis. 

 A PubMed literature search was performed and identified time-kill curve studies 

of amikacin against Pseudomonas aeruginosa in which figures were digitized using 

WebPlotDigitizer (version 3.11) (247). The extracted bacterial counts, measured as 

colony-forming unit per mL of medium (CFU/mL), from static and dynamic studies were 
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fitted together to a bacterial dynamic growth model with adaptive resistance (equations 6 

– 1:3) (42).  

𝑑𝑁

𝑑𝑡
=  𝐾𝑔 ×  (1 −  

𝑁

𝑁𝑚𝑎𝑥
)  × 𝑁 − 𝐷𝐸 × 𝑁      (6 − 1) 

𝐷𝐸 =  
𝐸𝑚𝑎𝑥  𝐶𝑝

𝐴𝐷 × 𝐸𝐶50 + 𝐶𝑝
                                        (6 − 2) 

𝐴𝐷 = 1 +  𝛽 [1 − 𝑒(−𝛼.𝐶𝑝.𝑡 )]                                (6 − 3) 

Bacterial growth (eq.1) follows a logistic model in which N is total bacterial 

counts at time t; Kg is the first-order bacterial growth rate constant; Nmax is the maximum 

bacterial count; and DE is the drug effect and it equals 0 when there is no drug. In the 

presence of amikacin (eq.2), DE was characterized by a maximal killing effect (Emax) and 

EC50 which is the unbound amikacin plasma concentration (Cp) needed to produce 50% 

of the Emax. Cp was simulated from a 1-comparment PK model with half-lives (t1/2) and 

peak concentrations identical to what were reported in the in vitro studies. To allow for 

adaptive resistance to develop, EC50 was multiplied by an adaptation factor (AD) that 

causes EC50 to increase with time and Cp. The adaptation factor (eq. 6 – 3) is a fractional 

multiplier in which β represents the maximum fractional increase in EC50 when unbound 

concentration and time become large; and α is the adaptation rate constant that allows 

adaptation to transition from 1 when drug concentration is zero to (1 + β).  

In this meta-analysis of literature data, random effect terms for inter-study 

variability (ISV), inter-arm variability (IAV) and log10–based additive RUV were 

included in the model. The ISV random effect was approximated in NONMEM using 

$Level and R matrix in the $COVARIANCE record. Below limit of detection 

observations were ignored in the modeling process. The criteria and methods used to 
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develop the PK model were used to select and assess the final PD model, except that 

VPC was not performed due to the sparse nature of extracted literature data.  

6.3.6 PK-ARPD Simulations.  

The literature-based in vitro ARPD model was linked to the final PK model to 

perform PK-ARPD simulation for the same dosing regimens explored in PTA simulation. 

A virtual pediatric patient population of 1000 subjects with different weights sampled 

from the same truncated log-normal distribution above was generated for each dose and 

dosing interval combination. In PK-ARPD simulation, parameter uncertainty and BSV 

were only included in the PK parameters while typical values were used for the PD 

model because of the unsuccessful covariance step.  

6.3.7 Software.  

All non-linear-mixed-effects modeling analyses were performed in NONMEM 

7.3 (ICON Development Solutions, Ellicott City, MD) using ADVAN13 and the first-

order conditional estimation method with interaction (FOCEI). Data manipulation and 

plotting were done in R (version 3.2.5). Perl-speaks-NONMEM (PsN) was utilized to 

perform the VPC and SIR analyses. MCS was performed with the R-based mrgsolve 

package (version 0.7.1). The Pirana interface was used to maintain and compare 

NONMEM and PsN runs.  
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6.4 RESULTS  

6.4.1 Pharmacokinetic Model.  

The PK analysis included 34 Egyptian pediatric patients whose demographics and 

clinical characteristics of patients are summarized in Table 6-1. A total of 68 amikacin 

plasma concentrations (2 samples per subject) were collected for modeling. The data 

were best fit by a two-compartment PK model with first-order elimination and BSV on 

clearance (CL) and volume distribution of central compartment (V1). All parameters were 

allometrically scaled to a 70-kg subject as follows:  

𝐶𝐿 =  𝜃1 × (
𝑊𝑒𝑖𝑔ℎ𝑡

70
)

0.75

× 𝑒𝜂1    (5 − 4)           

 𝑄 =  𝜃3 × (
𝑊𝑒𝑖𝑔ℎ𝑡

70
)

0.75

      (5 − 5)   

𝑉1 =  𝜃2 × (
𝑊𝑒𝑖𝑔ℎ𝑡

70
) ×  𝑒𝜂2    (5 − 6)   

   𝑉2 =  𝜃4 × (
𝑊𝑒𝑖𝑔ℎ𝑡

70
)         (5 − 7)  

Compared to a one-compartment, the two-compartment model was associated with better 

diagnostic plots and a reduction in OFV by 19.74 points. No other covariates were found 

to influence the PK parameters. The adequacy of the final model was supported by 

diagnostics plots and pcVPC (Figure 6-1 & Figure 6-2). Parameter estimates of the final 

PK model and their SIR-based 95% confidence interval (CI) are presented in                           

Table 6-2.  
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Table 6-1: Summary of patient demographic and clinical characteristics 

Characteristic N = 34 

Age, n, median (range) 34, 9 (1 – 18) years 

Sex, n (%)  

 Male 14 (41) 

 Female 20 (59) 

Weight, n, median (range) 34,  (8 – 70) kg 

Height, n, median (range) 34, 127.5 (75 – 169) cm 

Body Surface area, median (range) 34, 0.94 (0.41 – 1.74) m2 

CrCL, n, median (range)* 34, 207.85 (58.06 – 418) mL/min 

BUN, n, median (range) 31, 21 (7 – 93) mg/dL 

Hemoglobin b, n, median (range) 34, 8.60 (6.23 – 11.70) mg/dL 

Albumin, n, median (range) 19, 3.55 (2.00 – 4.30) g/L 

ALT, n, median (range) 17, 22 (5 – 135) unit/L 

AST, n, median (range) 17, 23 (9 – 176) unit/L 

Bilirubin n, median (range) 33, 0.44 (0.15 – 1.50) mg/dL 

Concomitant medication, n (%)  

 Vancomycin 12 (35) 

 Amphotericin B 20 (50) 

Fever, n (%) 6 (18) 

Malignancy, n (%)  

 Hematological 26 (76) 

 Solid 7 (21) 

*CrCL is creatinine clearance and is calculated by Schwartz equation 
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Figure 6-1: Diagnostic plots of the selected amikacin PK model. Red lines are Lowess 

smoothers. CWRES is conditional weighted residuals. 
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Figure 6-2: Prediction-corrected visual predictive checks of the selected amikacin PK 

model. Black solid circle represents the prediction-corrected concentrations, red and blue solid 

lines represents the median, 5th and 95th percentile, respectively. Shaded areas are the simulated 

95% CI of each percentile.
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                          Table 6-2: Parameter estimate of the selected amikacin PK model 

Parameter (unit) Definition Estimate (RSE %) SIR median (95% CI) 

CL* (L/hr/70kg) Clearance  11.1 (10) 11.1 (9.28 – 13.2) 

V1*  (L/70kg) Central volume of distribution 30.2 (21) 30.70 (16.3 – 43.0) 

Q*   (L/hr/70kg) Inter-compartmental clearance 4.26 (42) 4.48 (2.52 – 8.81) 

V2*  (L/70kg) Peripheral volume of distribution  14.9 (13) 15.41 (12.37 – 19.80) 

BSV CL (%CV) Between subject variability in CL  33.0 (22) 33.6 (25.1 – 46.6) 

BSV V1   (%CV) Between subject variability in V1  63.1 (22) 67.7 (35.6– 106) 

RE          (%CV) Proportional residual error  2.28 (28) 2.39 (1.37 – 4.83)   

                           * Parameters are allometrically scaled to a 70-kg person  
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6.4.2 PTA. 

The single dose median and range of fCmax and fCmin in Egyptian patients 

estimated by EBEs were 23.7 (8.69 – 27.7) mg/L and 0.044 (0.0075 – 2.70) mg/L, 

respectively. The fCmax was the estimated concentration at the end of infusion and fCmin 

was the estimated concentration at 24 hr from the start of infusion. The calculated PTA of 

fCmax/MIC = 8 was zero for MIC90 of 4 and 8 mg/L (248, 249). All patients had an 

estimated unbound trough concentration substantially below the target trough 

concentration of 10 mg/L.  

The median and range of simulated weights were 25.5 (8 – 70) kg and they are 

similar to the observed values reported in Table 6-1. The predicted PTA was plotted 

against MIC values, color-coded by total daily dose, and stratified by dosing intervals 

(Figure 6-3). PTA of fCmax/MIC ≥ 8 is higher for higher doses of amikacin for any 

given MIC level and dosing interval. A total daily dose of amikacin given in divided 

doses resulted in significantly lower PTA than when given once a day. The width of 95% 

CI around PTA increased with amikacin doses when given at the same frequency. The 

95% CI was the widest for 90 mg/kg and the narrowest for 15 mg/kg when given once a 

day. On the contrary, the width of 95% CI increased as the frequency of dosing (number 

of doses per day) decreased. The 95% CI of PTA was wider for 90 mg/kg when 

administrated once rather than twice or thrice daily. The overall probability of fCmin being 

below 10 mg/L ranged from 95 to 100% for all simulated dosing regimens.  



118 

 

 

Figure 6-3: PTA of achieving fCmax/MIC ≥ 8 versus MIC for amikacin dosing of 15, 30, 60 

and 90 mg/kg when given in one (Q24HR) or divided doses (Q8HR or Q12HR). Each PTA 

line is the median of 500 Monte Carlo simulations of 100 patients with different weight randomly 

sampled from a truncated log-normal distributed to match the observed weights of patients 

included in the study. Shaded areas around each PTA line represent the 95% CI. Horizontal line 

indicates 80% PTA. 

6.4.3 In Vitro Pharmacodynamic Model.  

The PubMed search identified 10 studies in which in vitro time-kill curve data of 

amikacin against Pseudomonas aeruginosa were available. Eight studies were included in 

the development of the in vitro ARPD model after excluding 2 studies (31, 33, 250–255). 

One excluded study was an in vivo experiment and the other study had a design quite 

different from the others. One included study was static while the rest were dynamic 

experiments of single and multiple dosing up to 48 hr (Table 6-3).  
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Table 6-3: Summary of in vitro time-curve kill studies included in the final PD analysis 

Study Experiment Strain MIC  LOD  Cmax  T1/2 Ref 

1 Static 27853 4 NR 0, 2, 8, 32 & 128 - (254) 

2b,f Dynamic 27853/16690 2/2 2 0 & 80 2.1 (253) 

3c,f Dynamic  27853/27853R 2/2 2 0, 40, & 80 2.3 (252) 

4c Dynamic 27853 3.13 2 0, 80 2.35 (251) 

5a,b,f Dynamic 64/244 8/16 NR 24,  & 72 2.2 (33) 

6a,c,d Dynamic 27853 8 1 0, 24,  & 72 2 (250) 

7b Dynamic 27853 3.7 NR 10 2.4 (255) 

8 Dynamic 99063 NR NR 0 - (31) 

a: drug was infused over 1 hr instead of being bolused, b: single dose experiment over 24 hr, c: 

multiple dose experiment up to 48 hr, d: 1-compartment infection model used instead of 2-

comparment model, f: studies included more than one stain of Pseudomonas aeruginosa. NR: not 

reported.  The unit for MIC and Cmax is mg/L, LOD is log10 CFU/mL and T1/2 is hr. 

 

Overall, there were 302 data points in which 21 observations (6.9%) were at or 

below the limit of detection (LOD). The final analysis included 281 data points after 

excluding the below LOD observations. The final ARPD model included additive ISV 

and IAV on No (initial bacterial count), exponential ISV on Kg and Emax and one additive 

RUV for static and dynamic experiments separately. Goodness of fit plots did not show 

any model deficiency (Figure 6-5). The parameter estimates of the ARPD model and 

their uncertainty distributions were successfully computed by SIR and are presented in 

Table 6-4. 
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Figure 6-4: Diagnostics plots for the final ARPD model. Red line are Lowess smoothers. 

CWRES is conditional weighted residuals. 
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Table 6-4: Parameter estimates for the final ARPD model 

Parameter (unit) Definition Estimate  SIR median (95%CI) 

N0     (10CFU/mL) Initial bacterial count 6.80  6.79 (6.45 – 7.10) 

Kg        (hr-1) Bacterial growth rate constant 1.04 1.03 (0.89 – 1.13)  

Nmax  (10CFU/mL) Maximum bacterial count 9.41 9.61 (8.96 – 10.29) 

Emax  (hr-1) Maximum killing rate constant 9.38 9.38 (7.36 – 11.91) 

EC50  (mg/L) Plasma drug concentration to 

achieve 50% maximum killing rate  

3.49 3.46 (2.52 – 4.79) 

α      (L/mg.hr) Rate of bacterial adaptation 

constant 

0.0143  0.0143 (0.013 – 

0.016) 

β Maximum bacterial adaptation 29.2 30.4 (23.8 – 38.3) 

ISV  N0   (SD) Inter-study variability in N0 0.91 0.914 (0.769 – 1.02) 

ISV  Kg   (%CV) Inter-study variability in Kg 23 23.0 (21.7 – 24.8) 

ISV  Emax (%CV) Inter-study variability in Emax 33.9 34.0 (31.8 – 36.2) 

IAV N0    (SD) Inter-arm variability in N0 0.14 0.14 (0.12 – 0.16) 

RUVstatic Log10 residual error for static 

studies 

0.859 0.85 (0.61 – 1.02)  

RUVdynamic Log10 residual error for dynamic 

studies 

0.570 0.58 (0.47 – 0.67) 

 

6.4.4 PK-ARPD Simulations.  

Amikacin unbound plasma concentration-time profiles, fCmax, and fCmin 

distributions were similar to those obtained in PTA simulations. In general, the 

probability of fCmin < 10 mg/L decreased with higher amikacin doses given more 
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frequently as shown in the top panels of Figure 6-5 . Significant reduction of bacterial 

counts occurred with the first dose of amikacin followed by bacterial regrowth. The 

magnitude of initial bacterial reduction and time to regrowth were higher and longer with 

higher doses of amikacin for a given dosing interval. This pattern is clearly evident with 

the daily dosing as shown in the bottom right plot of Figure 6-5. Administering the same 

amikacin amount in divided doses was also associated with lower initial bacterial 

reduction. A reduction in bacterial killing with subsequent doses of the same amount was 

also observed, indicating development of bacterial resistance. This is a documented 

phenomenon for aminoglycoside antibiotics and it is well-captured by the current ARPD 

model (42, 98). The loss of bacterial killing is the highest for 15 mg/kg dose and rate of 

resistance was faster when the same daily dose was given more frequently in divided 

doses. Predicted bacterial counts below LOD (2 log10 or 102 CFU/mL) was achieved by 

90 mg/kg administered either at once or in divided doses. The 60 mg/kg also resulted in 

bacterial count below LOD but only when administered daily and not in divided doses. 

Lower doses (15 – 30 kg/mg) failed to drive bacterial count to the LOD level.  
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Figure 6-5: PK-ARPD simulations of 1000 patients for amikacin dosing of 15, 30, 60 and 90 

mg/kg when given in one (Q24HR) or divided doses (Q8HR or Q12HR). Weights of patient 

were sampled from a truncated log-normal distributed to match the observed weights of patients 

in the study. Top panel is the predicted unbound amikacin plasma concentration time-profiles 

from the PK model after 1-hr infusion. Bottom panel shows bacterial time-kill curves predicted 

by the ARPD model given the predicted unbound amikacin plasma concentration time-profiles. 

Lines are the median and shaded areas are 95% CI. 

6.5 DISCUSSION  

The simulation results suggest that 15 mg/kg/day is a safe but suboptimal dose of 

amikacin in our pediatric cancer patients. Not a single patient in the study was calculated 

using the EBEs and percent of protein binding to achieve the fCmax/MIC ≥ 8. The 

ramification of a low dose is not only limited to high probability of therapeutic failure in 

a patient, but also associated with significant collateral damage that affects our societies 

as a whole through the selection of drug-resistant bacteria (256). Our PTA simulation 

study suggests that once daily administration of larger amikacin doses are expected to be 
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associated with higher PTA and lower risk of toxicities overall. The rationale for once 

daily dosing is to maximize bactericidal effects driven by higher fCmax/MIC and prolong 

post-antibiotic effects, and to allow longer interdose intervals resulting in lower fCmin. 

Based on the PTA simulation, a minimum amikacin dose of 60 mg/kg administrated once 

daily is expected to achieve the target fCmax/MIC ≥ 8 in 80% of pediatric patients 

weighing 8-70 kg with a 97.5% probability and the safety target < 10 mg/L in almost all 

patients. 

This dosing recommendation is consistent with other studies that suggest higher 

single daily doses of amikacin ≥ 40 mg/kg in different patient populations including 

pediatric cancer patients (142, 164–166). In 1998, the amikacin dose of 20 mg/kg 

administered once a day was recommended for immuno-compromised pediatric patients 

including those with cancer (241). A recent study presented in the 2017 American 

Society for Clinical Pharmacology & Therapeutics (ASCPT) conference has suggested a 

high dose of 40 mg/kg for a 5-year old patient weighing 20 kg and having creatinine 

clearance (CrCL) of 120 mL/min per 1.73 m2 of body surface area (35). The increase in 

recommended dose from 20 to 40 mg/kg daily is likely due to the documented increase in 

amikacin MIC90 from 4 to 8 mg/L against Pseudomonas aeruginosa over the past 

decades (249, 257). Craig has shown that the magnitude of PK-PD index does not change 

for resistant bacteria when one corrects for the increase in MIC (258). Higher doses are 

needed to produce higher exposure and reach the effective PK-PD target as a 

compensation of the increase in MIC. According to a recent study, the amikacin MIC90 is 

currently at 16 mg/L (259). The consistent increase in amikacin MIC90 over time is 
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caused at least partly if not entirely by the repeated exposure of suboptimal 

concentrations that selects for the pre-existing less-susceptible bacterial populations.  

There are several possible explanations for the study findings. Our PK model was 

based on limited data (64 observations, 2 data points per subject) from Egyptian patients 

and did not find CrCL and age to be significant covariates as has been shown previously 

(35). Despite that, the estimated CL (4.33 L/hr), V1 (8.63 L), Q (1.66 L/hr), V2 (4.26 L) 

and t1/2 (3 hr) for a typical patient of 20 kg are similar to reported literature values (35, 

241, 260, 261). It is documented that oncology patients do have altered amikacin kinetics 

characterized by increased clearance and volume of distribution (261–264). This is 

attributed to the disease condition, severity, and drugs used for treatment. Yet, the kinetic 

changes are not uniform and they can be predicted by a single or combined variables, 

such as malignancy type, degree of neutropenia, disease state, total exposure or type of 

chemotherapy (264). This is in agreement with our results that did not find any influential 

clinical covariate. It is also important to note that the majority of our patients had 

hematological malignancy. With that, our results may not apply to children with different 

types of cancer. The generalization of study findings to other population is also limited 

due to the heterogeneity in renal functions.  

Another justification for our results is that uncertainty of typical PK parameters, 

BSV, and variability of body weights were accounted for in the MCS when estimating 

the mean and 95% CI of PTA to achieve fCmax/MIC ≥ 8 and fCmin < 10 mg/L. It is noted 

that higher uncertainty of and variability in PK parameters generally leads to higher 

uncertainty of PTA resulting in higher optimal dose prediction (95). However, this 

approach is strongly advised by Colin in the support of quality and proper clinical-
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decision making for anti-infective optimal dosing (95). He stated that the lower boundary 

of PTA 95% CI can be conservatively used to select an appropriate dosing regimen for a 

given MIC where there is 97.5% probability that the unknown PTA exceeds a certain cut-

off (e.g. 80% in our case) in a patient population. The high uncertainty in PK parameter 

estimates caused by the sparse nature of our data, high BSV, high level of confidence 

(95% vs 90%), and random selection of weight together can explain the higher predicted 

optimal dose of 60 instead of 40 mg/kg/day suggested by Liu (35).  

Despite the merits of PTA with the parameter uncertainty approach, it lacks the 

ability to account for the adaptive resistance of bacteria upon exposure to amikacin (42, 

98). The PTA approach is based on MIC that provides no information about the kinetics 

of drug effect and the persistent activity when drug concentrations are below the MIC 

since it is determined at single time point (265). This is a major limitation that can lead to 

incorrect dosing recommendation. PK-ARPD simulation shows that the 60 mg/kg/day 

dose suggested by PTA is unlikely to suppress bacterial resistance. Upon repeated dosing, 

bacterial resistance is expected to dominate over the killing effect that is initially 

predicted. This is demonstrated in figure 5; after the initial reduction, predicted median 

bacterial account at the end of every day increases in a linear fashion. The steepness of 

slope decreases as the dosing frequency increases suggesting slower rate of resistance. 

The predicted increase in bacterial count is driven by both the drop in amikacin 

concentration with time during dosing intervals and the loss of amikacin efficacy with 

repeated exposure. The PK-ARPD simulation also shows that safety and development of 

resistance goes hand in hand creating a double-sword situation. Large single doses are 

safer for patients with greater initial killing but they are likely to be selective for the 
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emergence of resistant bacterial population. When complete bacterial eradication 

(bacteriological cure) is not achieved, less susceptible bacterial sub-populations with 

increased MIC will grow and predominate as amikacin unbound concentration falls 

below the MIC threshold. A compromise between efficacy on one hand and acceptable 

safety and less chance of bacterial resistance on the other hand is achieved with twice-

daily dosing where there is enough time between doses for kidneys to excrete amikacin 

while limiting the amount of time when drug concentration is below the MIC and 

maintaining an acceptable fCmax/MIC ratio.   

PK-ARPD simulation predicted 90 mg/kg/day given in two divided doses are 

needed to sustain median bacterial counts below the LOD until the end of day 3. 

Predicted median bacterial counts remained below LOD until day 7 (data not shown), but 

we only presented the results up to day 3 since it is the time it takes to get an informative 

microbiological report back to adjust therapy accordingly. Taking safety into account, 90 

mg/kg administered in two divided doses (45 mg/kg BID) is probably safer for empirical 

treatment than given in three divided doses (30 mg/kg TID) that is predicted to have fCmin 

> 10 mg/L. With twice a day dosing, fCmin is predicted to be < 10 mg/L and provides 

sufficient time for drug excretion before next dose to avoid drug accumulation. 

Furthermore, our stimulation shows that the probability of resistance is lower with twice 

daily dosing (45 mg/kg BID) than with a single dose (90 mg/kg QD).  

PK-ARPD simulation also shows the administration of amikacin in divided doses 

is generally expected to facilitate bacterial resistance more than killing, unless the divided 

dose is high enough (≥ 20 mg/kg TID or ≥ 40 mg/kg  BID) (data not shown). The 

simulation results (Figure 5) also show that bacterial regrowth rate is the same 
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irrespective of dose and it peaks at the time of the next dose. This is consistent with 

amikacin affecting only growing bacteria while leaving less-drug susceptible bacteria in 

the stationary phase unaffected (266). This may explain the adaptive resistance seen with 

aminoglycosides despite their bactericidal effect. A limitation of our PK-ARPD 

simulation is that the in vitro ARPD model does not take into account for the role of 

immune system of the host. In the antimicrobial world, the observed effect in vivo is a 

combination of both drug effect and the host immune response. With that in mind, it is 

very possible that even lower doses than what our simulation suggested could be 

effective.  

The disagreement in dose recommendation between PTA and PK-ARPD 

approach in our simulations highlights the inability of PTA in predicting development of 

drug resistance. Nielsen highlighted several limitations associated with the PTA approach 

in details which are beyond the scope of this manuscript (59).  Importantly, she pointed 

out that PTA limitations originate from the use of MIC-based PK-PD indices as targets 

for safety and efficacy. All PK-PD indices rely on the MIC which is a threshold that 

neglects measurement errors and ignores the dynamic nature of bacterial growth and 

killing rate occurring over the incubation period. She also mentioned that MIC is 

incorrectly assumed to stay constant during the treatment period. In addition, the MIC-

based PK-PD indices are surrogate end-points of the true clinical outcome to achieve the 

complete eradication of pathogenic bacteria, bacteriological cure.  

With that, PK-PD modeling and simulation is preferred over MIC-based PTA. It 

is a better approach for amikacin to describe the time-course relationship among dose, 

concentration, bacterial killing and resistance that happen simultaneously. The PK-ARPD 
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models can also be used to predict the efficacy-linked PK-PD indices (267). However, 

although PK-PD modeling and simulation shows superiority over the MIC-based PTA 

approach, it remains underused in the development and improvement of antibiotic dosing 

regimens despite (59). When adapted, the PK-PD approach would result in more 

appropriate dosing of antibiotics which is likely to help in battling growing bacterial 

resistance. 

In conclusion, oncology pediatric patients do have altered amikacin 

pharmacokinetics which probably necessitates higher doses to achieve the therapeutic 

target. Based on our simulation findings, daily mono-dose administration of 15 mg/kg 

may not be optimal in the study patients. In addition, a dose recommendation suggested 

by PTA is likely incorrect because it uses surrogate indices of clinical outcomes that are 

not sufficiently sensitive for determining optimal dosage regimens for total 

bacteriological cure. We find PK-PD modeling and simulation superior on theoretical 

basis because it provides deeper insight about the intricate time-course relationship 

among dosing regimens, plasma concentration and wanted as well as unwanted 

outcomes. Our PK-ARPD simulation suggests that 45 mg/kg BID is likely to achieve 

safety and efficacy targets, and is expected to be associated with lower rate of bacterial 

resistance. Study results can be used to justify a controlled clinical trial to evaluate 

suggested doses against currently doses used in clinical setting. 
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7 RECAPITULATION 

This thesis demonstrated through examples the vital role pharmacometric 

modeling and simulation can play both in drug development and pharmacotherapy. 

Despite being in its infancy, pharmacometrics has emerged quickly as an indispensable 

tool to rationalize the drug development process and support decision making throughout 

the path from in vitro experiments, to laboratory animals, to human studies and to market. 

The implementation of the approach has increased the productivity and efficiency of drug 

development leading to higher success rates of late-stage trials, lower cost, and 

accelerated drug approval. Similarly, pharmacometrics can conserve the efficacy of 

currently available antimicrobial therapies and reduce the emergence of microbial 

resistance through dosing optimization. Unfortunately, the approach remains 

underutilized in pharmaceutical industry and is almost non-existent in investigator-led 

clinical research for multiple reasons that should no longer be hurdles for the 

implementation and full exploitation of pharmacometric-based analyses.  

In Chapter 3, re-analysis of the ASTRO-CM pilot study using the 

pharmacometric-based approach was performed to describe the dose-exposure, exposure-

response and response-outcome relationships of sertraline antifungal properties when 

combined with the standard induction CM therapy that consisted of amphotericin B and 

fluconazole. Sertraline kinetics was affected by patient body weight and the concomitant 

anti-retroviral therapy NNRTI, efavirenz and navirapine (Table 3-2). This was expected 

because of their known induction effect on drug-metabolizing P450 enzymes. The PK-PD 

index exploration showed that cAUC/MIC ≥ 10 mg/L was associated with 50% reduction 

in initial fungal count (Figure 3-5). However, this association was strictly visual and did 



131 

 

not account for correlations of data within a subject. The addition of sertraline increased 

the rate of fungal clearance from CSF by 41% compared to the COAT study in which 

patients received the CM standard therapy without sertraline. The effect of sertraline was 

dose and exposure-independent with a similar increase in the CSF fungal clearance 

observed across study arms (Table 3-3). Despite a more rapid fungal clearance from the 

CSF, short-term survival did not seem to be improved. An exploratory survival analysis 

did not show any benefit of adjunctive sertraline; rather, a higher 2-week mortality rate 

was observed in 100 mg and 400 mg sertraline arms compared to the other arms (no 

sertraline and 200-300 mg sertraline daily)  and among female patients (Table 3-4).  

Our findings contradicted the evidence from in vitro and in vivo animal studies 

that suggested dose-dependent antifungal effect of sertraline. The lack of dose-effect 

could be due to the insufficient number of patients and low statistical power. Under the 

assumption that sertraline has dose-dependent activity, the dose-response curve was 

explored while accounting for serial correlation in the data. Findings indicated that 

studied sertraline doses (100 – 400 mg) were at the lower range of dose-response curve 

and 2000 mg daily dose would be required to achieve 50% reduction in CSF fungal 

burden (Figure 3-11). Together with the fact that sertraline has immunomodulatory 

action, results suggested the observed clinical effect might be mediated through the 

stimulation of immune responses and not through the direct effect on the fungus. This 

hypothesis is highly plausible and is further supported by the fact that predicted unbound 

sertraline concentrations are unlikely to reach therapeutic levels needed for antifungal 

activities. Future studies are essential to test this hypothesis, to shed some light on the 
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possible underlying mechanisms of sertraline observed clinical benefit, and to whether or 

not sertraline affects the immune system.  

In addition, the antifungal activity of sertraline main metabolite, N-

desmethysertrlaine, is unknown and can be determined to assess its potential contribution 

to the observed effect. More in vitro and in vivo animal experiments are critical to discern 

sertraline true mechanism of action, mode of killing (time- vs concentration-dependent), 

and efficacy-predicting PK-PD index that can help strategize the dosing regimen. From 

such studies, much can be learned and doses can be rationally selected for testing in 

clinical studies to maximize the success rate and the amount of knowledge gained. Time-

kill curve experiments, routinely performed studies, are far more powerful in exploring 

the dynamic microbial growth and rate of killing by drug over a wide range of 

antimicrobial concentrations. This can be intimidating to perform due to the slow-

growing nature of Cryptococcus, but a similar experiment has been successfully done and 

guided fluconazole optimal dosing.  

The sparse nature of ASTRO-CM pharmacokinetic data precluded fitting a more 

complex model to explore the underlying causes of sertraline nonlinear exposure in 

patients. Therefore, an MBMA of published sertraline pharmacokinetic studies was 

performed to fully characterize sertraline kinetics in healthy subjects (Chapter 4). After 

single dose administration, bioavailability was found to increase nonlinearly with dose 

(Figure 4-2). Additionally, repeated dosing of sertraline resulted in greater tissue 

distribution evident by the increase in peripheral distribution (V3) (Table 4-2).  

Furthermore, a PBPK model for sertraline was developed and validated against 

literature data and used to provide insight regarding the potential clinical uses of 
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sertraline as an anticancer and antimicrobial therapy. Simulation of oral dosing indicated 

that steady-state Cmax unbound concentrations of sertraline in different target tissues do 

not reach the levels required for antitumor and antimicrobial activities (Figure 5-8). This 

is in total agreement with our previous prediction (Chapter 3) and published studies that 

undermine sertraline antifungal use for the same reason. The PBPK model also supported 

dose-dependent bioavailability after single dose administration that was suggested by our 

MBMA (Figure 5-4). Saturable hepatic elimination after oral administration was first 

predicted by in vitro studies and now captured by the PBPK model (Figure 5-2). 

Putting the pieces together, there is little evidence of additional clinical benefits 

(higher efficacy) for sertraline doses above 200 mg a day. It is the maximum FDA-

approved dose and doses above that if they do not come with greater risk of adverse 

events, will at least be of un-necessary cost to health care systems and patients. This was 

supported by multiple analyses we conducted and our findings are consistent with 

previous publications. Thus, the lowest possible efficacious dose should be considered as 

it is the best choice for the aforementioned safety and economic reasons. Meanwhile, 

resources should be directed toward more in vitro work to allow for the full 

characterization of the exposure-response relationships of sertraline antifungal action and 

elucidation of the mechanism by which it exerts its action.    

Lastly in chapter 6, the PTA and PK-PD simulation approach were implemented 

to propose an optimal amikacin dose against Pseudomonas aeruginosa infections in 

children with cancer. Our simulation shows that the approved dose of 15 mg/Kg in 1-3 

divided doses a day is sub-optimal and may be the reason behind the increasing MICs 

during the past several decades. The MIC-based PTA method indicated at least 60 mg/kg 
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once daily is needed to achieve the efficacy target (fCmax/MIC ≥ 8 mg/L) in 80% of 

pediatric cancer patients (Figure 6-3). However, this approach wrongly assumes that 

MIC remains constant over time and, thus, it fails to account for the adaptive bacterial 

resistance that develops upon exposure. This phenomenon was well captured by the PK-

PD modeling and simulation approach that suggested 45 mg/Kg twice daily instead 

(Figure 6-5). Higher and less frequent dosing was associated with higher initial killing of 

susceptible bacteria and faster domination of resistant-bacterial populations maybe 

because they provide sufficient time for bacteria to replicate after drug concentration 

drops below MIC and before the next dose is due. Therefore, twice daily dosing (45 

mg/kg BID) was predicted to be better than once daily (90 mg QD) in suppressing the 

emergence of bacterial resistance without compromising safety associated with frequent 

dosing. However, this proposed dosing regimen is a simulation-based recommendation 

that needs clinical testing before it can be adapted in clinical practice.   
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9 APPENDIX 

A. NONMEM CODE FOR SERTRALINE PK IN HIV PATIENTS 

 $PROBLEM SERTRALINE PK IN HIV PATIENTS 

  

 $INPUT C ID PID DATE=DROP TIME TAD AMT DV DMS RA SS II DL EFA 

MIC DEATH WT AGE SEX ART IND=DROP INH=DROP SUB=DROP 

NET=DROP QCC BILI=DROP ALT=DROP AST=DROP SCR=DROP  ;LOCF 

THEN LOCB IMPLEMENTED FOR QCC BILI ALT AST SCR 

  

 $DATA scm_im.CSV IGNORE=@  

 $SUBROUTINES ADVAN2 TRANS2 

  

 $PK 

 IWT = WT  

 IF(WT.EQ.-99.AND.SEX.EQ.0) IWT=46 

 IF(WT.EQ.-99.AND.SEX.EQ.1) IWT=54 

 TVCL = THETA(1) * (1+ART*THETA(4)) * (IWT/70)**0.75 

 CL = TVCL * EXP(ETA(1)) 

 TVV = THETA (2) * (IWT/70) 

 V = TVV * EXP(ETA(2)) 

 KA = THETA(3) 

 S2=V/1000 

 K = CL/V 

  

 $ERROR 

 IPRED = F 

 Y = F + F*ERR(1) + ERR(2) 

  

 $THETA 

 (0, 42);CL 

 (0, 1800);V 

 (0, 0.3) FIX ;KA 

 (0, 2);ART_CL 

  

 $OMEGA 

 (0.1) ; IIV CL 

 (0.1) ; IIV V 

  

 $SIGMA 

 0.1;PROP 

 100 ;ADD 
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 $EST METHOD=1 INTERACTION MAXEVAL=9999 

  

 $COV 

  

 $TABLE ID PID TIME AMT TAD V CL KA RA AGE WT DL SEX ART IPRED 

CWRES ONEHEADER NOPRINT FILE=sdtab32 

  

 ;XPOSE 

 $TABLE ID KA CL V ETA1 ETA2 ONEHEADER NOPRINT FILE=patab32 

 $TABLE ID RA AGE WT ONEHEADER NOPRINT FILE=cotab32 

 $TABLE ID DL SEX ART ONEHEADER NOPRINT FILE=catab32 
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B. NONMEM CODE FOR FUNGAL COUNT MODLE 

 $PROBLEM  POISSON MODEL FOR RATE OF FUNGAL CLEARANCE 

  

 $INPUT  ID TIME DV DOSE AGE SEX WT ART DEATH T2DEATH CL V 

SMIC FMIC AMIC SER VMR IND ME INDE 

 $DATA rate2.csv IGNORE=@  

  

 $PRED 

 BASE = THETA(1) ;+ ETA(1) 

 IF(IND.EQ.0)  LAMB1 = BASE 

 IF(IND.EQ.1)  LAMB1 = BASE * THETA(2) 

 IF(IND.EQ.-1) LAMB1 = BASE * THETA(3) 

  

 DIF = 1                      ;COAT 

 IF(DOSE.EQ.100) DIF = THETA(5)  ;A 100 

 IF(DOSE.EQ.200) DIF = THETA(6)  ;A 200 

 IF(DOSE.EQ.300) DIF = THETA(7)  ;A 300 

 IF(DOSE.EQ.400) DIF = THETA(8)  ;A 400 

  

 TE = THETA(4) * DIF + ETA(1)*SER + ETA(2)*(1-SER) 

  

 LAMB = LAMB1 * EXP(-TE*TIME) 

 LFDV = LOG(EXP(GAMLN(DV+1))) 

 LOGP = -LAMB + DV*LOG(LAMB) - LFDV 

  

 Y=-2*LOGP 

 ;Simulation block 

 IF (ICALL.EQ.4) THEN 

 T=0 

 N=0 

 DO WHILE (T.LT.1)              ;Loop 

 CALL RANDOM (2,R)              ;Random number in a uniform distribution 

 T=T-LOG(1-R)/LAMB 

 IF (T.LT.1) N=N+1 

 END DO 

 DV=N                           ;Incrementation of one integer to the DV 

 ENDIF 

  

 $THETA 

 (0,0.5)                        ;LAMB 0 

 (0,0.5)                        ;LAMB 1 

 (0,0.5)                        ;LAMB -1 

 (0, 0.5)                       ;TE 

 (0, 1)                         ;DIF_A100 
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 (0, 1)                         ;DIF_A200 

 (0, 1)                         ;DIF_A300 

 (0, 1)                         ;DIF_A400 

  

 $OMEGA 

 0.1     ;BSV TE ASTRO_CM 

 0.1     ;BSV TE COAT 

  

 ;Sim_start 

 ;$SIM (12345) (678910 UNI) ONLYSIM NOPRED NSUB=100 

 $EST MAXEVAL=9999 METHOD=COND LAPLACE -2LL PRINT=1 

  

 $COV PRINT=E 

  

 $TABLE ID TIME LAMB DOSE AGE SEX WT ART DEATH T2DEATH CL V 

SMIC FMIC AMIC SER VMR IND ME INDE NOPRINT ONEHEADER 

FILE=sdtab4 

 ;$TABLE ID TIME LAMB DOSE AGE SEX WT ART DEATH T2DEATH CL V 

SMIC FMIC AMIC SER VMR IND ME INDE NOPRINT ONEHEADER 

FILE=simtab4 

 ;Sim_end 
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C. NONMEM CODE FOR SURVIVAL ANALYSIS  

 $PROBLEM VARYING DEATH HAZARD USING DES 

  

 $INPUT  ID TIME DV SER DL DOSE AGE SEX WT ART CL V SMIC FMIC 

AMIC EVID 

 ;Sim_start 

  

 $DATA sur30.csv IGNORE=@  ;IGNORE(SER.EQ.0) 

 ;$DATA simsur30.csv IGNORE=@  ;IGNORE(SER.EQ.0) 

 ;Sim_end 

  

 $SUBR ADVAN=6 TOL=9 

  

 $MODEL COMP=(HAZARD) 

  

 $PK 

 IF(NEWIND.NE.2) TP=0 ; for RTTE. TP is time of previous event. 

 ; T-TP is time since last event. 

 ; For TTE TP is always 0. 

 BASE = THETA(1)*EXP(ETA(1)) ;the ETA is a placeholder here 

  

 SHP  = THETA(2)             ;shape 

 LAM  = BASE*SHP             ;lambda=scale 

 BETA = SHP-1 

 BETA1 = THETA(3)            ;SEX EFFECT 

 X1=0 

 IF(DOSE.EQ.400.OR.DOSE.EQ.100)X1=1 

 BETA2 = THETA(4)            ;DOSE100/400 EFFECT 

  

 $DES 

 DEL=1E-6                    ; to keep from taking 0**power 

 DADT(1) = LAM*EXP(BETA*LOG(BASE*(T-TP)+DEL)) * 

EXP(BETA1*SEX+BETA2*X1) 

  

 $ERROR 

 IF(NEWIND.NE.2) OLDCHZ=0  ;reset the cumulative hazard 

 CHZ = A(1)-OLDCHZ         ;cumulative hazard from previous time point in data set 

 OLDCHZ = A(1)             ;rename old cumulative hazard 

 SUR = EXP(-CHZ)           ;survival probability 

 DELX = 1E-6 

 HAZNOW=LAM*EXP(BETA*LOG(BASE*(TIME-TP)+DELX)) * 

EXP(BETA1*SEX+BETA2*X1) 

 IF(DV.EQ.0)   Y=SUR         ;censored event (prob of survival) 

 IF(DV.NE.0)   Y=SUR*HAZNOW   ;prob density function of event 
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 IF(ICALL.EQ.4) THEN         ; for simulation 

 CALL RANDOM (2,R) 

 DV=0 

 RTTE = 0 

 IF(TIME.EQ.13) RTTE = 1      ; for the censored observation at 13 day 

 IF(R.GT.SUR) THEN 

 DV=1 

 RTTE = 1            ;observed event 

 ENDIF 

 ENDIF 

  

 $THETA 

 (0,0.02)     ; LAMBDA 

 (0,2)        ; ALPHA 

 (1)          ; MALE 

 (1)          ; DOSE100/400 

  

 $OMEGA 

 0  FIX 

  

 ;Sim_start : add/remove for simulation 

 ;$SIMULATION (5988566) (39978 UNIFORM) ONLYSIM NOPREDICTION 

SUB=100 

 $EST MAXEVAL=9990 METHOD=0 LIKE PRINT=1 

  

 $COV PRINT=E 

  

 $TABLE ID TIME BASE DOSE SUR EVID NOPRINT ONEHEADER 

FILE=sdtab14 

 ;$TABLE ID TIME Y DV SER DOSE AGE SEX WT ART CL V SMIC FMIC 

AMIC EVID NOPRINT ONEHEADER FILE=simtab14 

 ;Sim_end 

  

 ;XPOSE 

 $TABLE ID CL V ONEHEADER NOPRINT FILE=patab14 

 $TABLE ID AGE WT SMIC FMIC AMIC ONEHEADER NOPRINT 

FILE=cotab14 

 $TABLE ID SER DOSE SEX ART ONEHEADER NOPRINT FILE=catab14 
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D. NONMEM CODE FOR SERTRALINE MODLE-BASED META-ANALYAIS 

$PROBLEM SERTRALINE PK META-ANALYSIS IN HEALTHY SUBJECTS 

 

$INPUT ID SID TIME DV AMT RATE SS II M WT AGE SEX DOSE CMT N EVID 

ARM 

 

$DATA METAN.csv IGNORE=@ ;GNORE(M.EQ.1) ;IGNORE(TIME.GT.144) 

IGNORE(SID.EQ.7) 

 

$SUBROUTINES ADVAN6 TOL=6 

 

$MODEL 

COMP(1)     ;GUT 

COMP(2)     ;CENTRAL 

COMP(3)     ;PERIPHERAL 

 

$PK 

W =1/SQRT(N) 

 

TVCL = THETA(1) 

CL = TVCL * EXP(ETA(1)*W + ETA(4)) 

 

TVV2 = THETA(2) 

V2 = TVV2 * EXP(ETA(2)*W + ETA(5)) 

 

TVQ = THETA(3) 

 

Q = TVQ ;* EXP(ETA(3)*W + ETA(11)) 

 

TVV3 = THETA(4) 

IF(M.EQ.1) TVV3 = THETA(11) 

V3 = TVV3 ;* EXP(ETA(4)*W + ETA(12)) 

 

TVKAMAX = THETA(5) 

KAMAX = TVKAMAX ;* EXP(ETA(5)*W + ETA(13)) 

 

TVKA50 = THETA(6) 

KA50 = TVKA50 ;* EXP(ETA(6)*W + ETA(14)) 

 

TVGAM = THETA (7) 

GAM = TVGAM * EXP(ETA(3)*W + ETA(6)) 

 

TVF1 = THETA(8) * 

DOSE**THETA(10)/(THETA(9)**THETA(10)+DOSE**THETA(10)) 
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IF(M.EQ.1) TVF1=THETA(8) 

F1 = TVF1 ;* EXP(ETA(8)*W + ETA(16)) 

 

S2 = V2/1000 

K23=Q/V2 

K32=Q/V3 

 

$DES 

CP = A(2)/V2 

KA = KAMAX * T**GAM/(KA50**GAM + T**GAM) 

 

DADT(1) = -KA*A(1) 

DADT(2) = KA*A(1) + K32*A(3) - K23*A(2) - CP*CL 

DADT(3) = K23*A(2) - K32*A(3) 

 

$ERROR 

Y= F + F*ERR(1)*W 

IPRED = F 

 

$THETA 

(0, 56.4)        ;TVCL 

(0, 1140)        ;TVV2 

(0, 163)         ;TVQ 

(0, 940)         ;TVV3 

(0, 0.836)       ;TVKAMAX 

(0, 3.65)        ;TVKA50 

(0, 1.38)        ;TVGAM 

(0, 0.684)       ;TVF1 

 

(0, 20.4)        ;D50 

(0, 1)    FIX    ;GDOSE 

(0, 1140)        ;TVV2M 

 

$OMEGA 

0.1 ;IAV CL 

0.1 ;IAV V2 

0.1 ;IAV GAM 

 

$OMEGA 

0.1 ;ISV CL 

0.1 ;ISV V2 

0.1 ;ISV GAM 

$SIGMA 

0.1 ;PROP ERROR 

$LEVEL 

SID=(4[1],5[2],6[3]) 
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$EST METHOD=1 INTERACTION MAX=9999 PRINT=5 SLOW 

 

$COV MATRIX=R PRINT=E 

 

$TABLE ID TIME CL V2 Q V3 KAMAX KA50 F1 GAM WT AGE SEX M DOSE 

IPRED WRES CWRES NOPRINT ONEHEADER FILE=sdtab103 

 

;XPOSE 

$TABLE ID CL V2 Q V3 F1 KAMAX KA50 GAM ETA1 ETA2 ETA3 ETA4 ETA5 

ETA6 ONEHEADER NOPRINT FILE=patab103 

$TABLE ID WT AGE ONEHEADER NOPRINT FILE=cotab103 

$TABLE ID SEX M DOSE ONEHEADER NOPRINT FILE=catab103 
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E. NONMEM CODE FOR AMIKAIN PK IN CHIDLERN WITH CANCER 

$PROBLEM AMIKACIN PK IN PEDS 

 

$INPUT ID TIME DV AMT RATE II SS EVID RA AGE SEX WT HT BSA ALB AST 

ALT BIL DIAG SCR BUN URIC CRCL VAN AMPH TEMP HGB HCT PLT BCLT 

DCHM DAMK 

 

$DATA AMIKACIN.csv IGNORE=@  

 

$SUB ADVAN3 TRANS4 

 

$PK  

TVCL = THETA(1)*(WT/70)**0.75 

CL   = TVCL*EXP(ETA(1)) 

 

TVV1 = THETA(2)*(WT/70) 

V1   = TVV1*EXP(ETA(2)) 

 

TVQ  = THETA(3)*(WT/70)**0.75 

Q    = TVQ 

 

TVV2 = THETA(4)*(WT/70) 

V2   = TVV2 

 

S1   = V1 

 

$ERROR  

IPRED=F 

Y = IPRED + (IPRED*ERR(1)) 

 

$THETA   

(0,5)   ;CL 

(0,15)  ;V1 

(0,5)   ;Q 

(0,30)  ;V2 

 

$OMEGA   

0.1     ;CL 

0.1     ;V 

 

$SIGMA   

0.1  ; PROP 

$EST METHOD=1 INTERACTION PRINT=5 MAX=9999 
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$COV 

 

$TABLE ID TIME AMT RATE CL V1 Q V2 PRED CWRES WRES IPRED 

ONEHEADER NOPRINT FILE=sdtab1 

 

;XPOSE 

$TABLE ID CL V1 Q V2 ETA1 ETA2 ONEHEADER NOPRINT FILE=patab1 

$TABLE ID RA AGE WT HT BSA ALB AST ALT BIL DIAG SCR BUN URIC CRCL 

HGB HCT PLT DCHM DAMK ONEHEADER NOPRINT FILE=cotab1 

$TABLE ID SEX VAN AMPH TEMP BCLT ONEHEADER NOPRINT FILE=catab1 
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F. NONMEM CODE FOR IN VITRO PD MODEL OF PSEUDOMONAS 

AERUGINOSA 

 $PROBLEM IN VITRO PD MODEL 

  

 $INPUT C SID ID TIME NDV DV LDV AMT CMT ADDL MIC STRAIN 

STATIC DRUG HL II BQL EVID CONC RATE RUV4 

  

 $DATA PD_DATA2.csv IGNORE@ IGNORE (SID.EQ.3) IGNORE (SID.EQ.8) 

IGNORE (BQL.EQ.1) 

  

 $SUB ADVAN13 TOL=6 

  

 $MODEL       

 COMP(1) ;CFU 

 COMP(2) ;CP 

  

 $PK  

 TVN0    = THETA(1) 

 N0      = 10**(TVN0 + ETA(1) + ETA(4)) 

 A_0(1)  = N0 

  

 TVKG    = THETA(2) 

 KG      = TVKG * EXP(ETA(2)) 

  

 TVNMAX  = THETA(3) 

 NMAX    = 10**(TVNMAX) 

  

 TVEMAX  = THETA(4) 

 EMAX    = TVEMAX * EXP(ETA(3)) 

  

 TVEC50  = THETA(5) 

 EC50    = TVEC50 

  

 ALPHA   = THETA(6) 

  

 BETA    = THETA(7) 

  

 K       = LOG(2)/HL 

 IF(HL.EQ.0) K = 0 

  

 $DES  

 N       = A(1) 

 CP      = A(2) 
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 AD      = 1 + BETA*(1-EXP(-CP*ALPHA*T)) 

 DE      = EMAX * CP/(AD*EC50+CP) 

 IF(DRUG.EQ.0) DE=0 

  

 DADT(1) = KG*(1-N/NMAX)*N - DE*N 

 DADT(2) = -K*A(2) 

  

 $ERROR  

 IPRED = 0 

 IF(F.GT.0) IPRED = LOG10(F) 

 ER = ERR(1) 

 IF(SID.NE.1) ER = ERR(2) 

 Y = IPRED + ER  

  

 $THETA   

 (0,6.8)     ;NO 

 (0,1.04)    ;KG 

 (0,9.40)    ;NMAX 

 (0,9)       ;EMAX 

 (0,3.5)     ;EC50 

 (0,0.0143)  ;ALPHA 

 (0,29)      ;BETA 

  

 $OMEGA   

 0.14        ;IAV NO 

  

 $OMEGA 

 0.9         ;ISV NO 

 0.0445      ;ISV KG 

 0.0916      ;ISV EMAX 

  

 $LEVEL 

 SID=(4[1]) 

  

 $SIGMA 

 2           ;STATIC 

 2           ;DYNAMIC 

  

 $EST METHOD=1 INTERACTION PRINT=5 MAX=9999 SLOW 

  

 $COV MATRIX=R 

  

 $TABLE ID TIME N0 KG NMAX EMAX EC50 ALPHA BETA SID MIC 

STATIC DRUG PRED CWRES WRES IPRED ONEHEADER NOPRINT 

FILE=sdtab70 
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 ;XPOSE 

 $TABLE ID N0 KG NMAX EMAX EC50 ALPHA BETA ONEHEADER 

NOPRINT FILE=patab70 

 $TABLE ID ONEHEADER NOPRINT FILE=cotab70 

 $TABLE ID SID MIC STATIC DRUG ONEHEADER NOPRINT FILE=catab70 

 


