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	 Rocks are solid mineral assemblages formed under 
varying conditions at different times of Earth's history. 
They help us understand the processes that shaped our 
planet and other extraterrestrial bodies. Few minerals are 
magnetic, the most important being magnetite. Locked 
in a matrix of “non-magnetic” material, these (typically) 
ferri-magnetic minerals, when larger than a mineral-
specific threshold-size, carry a remanent magnetization. 
Their remanence tells the story of how the magnetic 
field direction and/or intensity has changed with time. 
Much of paleo- and planetary-magnetism relies on the 
unaltered remanence state of a rock or meteorite to draw 
conclusions about the origin of that magnetization. How-
ever, even if a rock contains magnetic minerals and car-
ries a magnetization, it is not given that the remanence 
reflects a primary magnetization, and is consequently 
trustworthy. 
	 Rock magnetism tries to understand how these parti-
cle systems are able to retain magnetic information over 
millions, sometimes billions of years and what processes 
can alter their state. Decades of work has been put into 
understanding why some rocks are better at recording 
magnetic fields than others. One of the most important 
factors is the size, or to be more precise the magnetic do-
main state, of the magnetic particles contained in a rock.
Paleomagnetists are not the only scientists interested 
in the size of magnetic particles. From the material sci-
ences to environmental magnetism, grain-size dependent 
magnetic properties play an important role.  Magnetic 
grain-size may be used as a proxy for climatic changes 
and can be used to reconstruct the environment at the 
time of their genesis or deposition. Environmental mag-
netism, for example, uses the quasi continuous record 
of sediments to explore relative changes of the sediment 
sources and/or depositional and post-depositional condi-
tions through time. Often the question of where the sedi-
ments’ magnetic particles come from may be answered 

by investigating their rock magnetic properties. The same 
principle has also been used by archeomagnetists to trace 
the provenance of artifacts constructed with geological 
materials. With such a wide variety of sample materials, 
such as rocks and meteorites, fresh lake or marine sedi-
ments, loess, soils, and even magnetotactic bacteria, the 
particle sizes in question can be equally broad. 
Domain state boundaries are mineral dependent. Ex-
tremely small particles, usually in the low nm range, are 
in a so-called superparamagnetic (SP) state. They behave 
similarly to a paramagnetic grain as they can not record 
magnetic fields, but they share the same saturation mag-
netization as their larger counterparts. The inability to 

Magnetic tests and characterization protocols: 
mineralogy and grain size / domain state
Part I: isothermal strong field tests

Figure 1: Hysteresis processes and quantities.  On removal of a positive saturating 
field the magnetization decreases from ferromagnetic saturation (A') to Mr (A).  
Continued sweeping of the field toward large negative values drives the magne-
tization toward -Ms. Interrupting the sweep and turning the field off at reversal 
fields (B’ to I’) produces the set of backfield remanences (B to I) and minor loops 
B-B’, C-C’, etc.  The field-axis intercept of the loop (i.e.,  point at which the 
magnetization is reduced to zero,  between D' and E') is the coercive force (Bc). 
The reverse field which reduces the remanence to zero (i.e., between E and F) is 
the coercivity of remanence (Bcr). Modified after Roberts (1995) and Thompson 
and Oldfield (1986).
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Visiting Fellow Reports
Characterisation of palaeomagnetic 
remanence carriers in palaeokarst sedi-
ments from southern Africa
Tom Mallett
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	 Plio-Pleistocene cave infill deposits of dolomitic 
karst systems in southern Africa have been the target of 
magnetobiostratigraphic age assessments since the late 
1970s (e.g. Brock et al. 1977). In more recent years, 
palaeomagnetic analyses have been undertaken in con-
junction with uranium-lead and uranium-thorium dat-
ing, electron spin resonance, cosmogenic nuclide burial 
dating and biochronology to obtain more refined multi-
proxy age estimates for the cave fills (see chronological 
reviews in Herries et al. 2009; 2013). These UNESCO 
World Heritage listed sites, which are for the most part 
located just northwest of Johannesburg, are known for 
their abundant preservation of early hominin (Australo-
pithecus, Paranthropus and Homo) and other extinct 
fossil taxa, along with some of the earliest archaeologi-
cal traces found in South Africa (Early Stone Age lithic 
technology and bone tools).
	 Palaeomagnetic analysis at these sites has long been 
complicated by a number of factors. Many of the caves 
occur in relict, collapsed states (palaeokarst), affected 
by widespread landscape erosion, along with mining ac-
tivities during the early 20th century. Some sites have 
also undergone multiple phases of karstification through 
more ancient portions of the cave fills that obscure al-
ready complex stratigraphic relationships that can ex-
ist in caves (e.g. Sterkfontein; Herries & Shaw 2011). 
Further, brecciated deposits that often dominate the 
stratigraphy (e.g. talus sediments) have been shown to 
exhibit randomised remanence directions due to their 
deposition by collapse (Herries et al. 2006). This leaves 
fine-grained (calcified) fluvial sediment and speleothem 
components that can be suitably targeted for palaeomag-
netism. Whilst these deposits often record stable deposi-
tional and post-depositional magnetisations, they usually 
exist in short and disconnected stratigraphic sequences 
that vary laterally across the sites, opening the potential 
for gaps in the magnetostratigraphy. An additional com-
plicating factor is that samples often exhibit substantial 
low coercivity viscous overprinting within ultrafine su-
perparmagnetic (SP) grains that occur in high concentra-
tions within the cave sediments (considered a product 
of long term burning and weathering of the South Afri-

can landscape; Herries et al. 2006). This has been par-
ticularly problematic for obtaining secure age estimates 
at sites such as the Australopithecus africanus bearing 
Makapansgat Limeworks (Herries et al. 2013). In ad-
dition, we at present have only a limited understanding 
on the effects of karst-specific diagenetic processes (e.g. 
secondary calcite induration, calcification and recrystal-
lisation) on the acquisition, alteration and lock-in times 
for cave sediment magnetisations.   
	 Despite these problems, some significant palaeo-
magnetic records have been obtained from palaeokarst 
sites that have been central to constructing robust chro-
nostratigraphies. Short geomagnetic excursions and high 
resolution transitional field states have been recorded in 
rapid depositional rate sequences that correlate well to 
polarity timescales with chronometric ages (Pickering et 
al. 2011 and manuscript in preparation). Flowstones in 
particular, which can be directly dated via uranium-se-
ries and suffer less in the way of post-depositional altera-
tions (Lascu & Feinberg 2011), often record short dura-
tion events, especially between ~2.2 and 1.95 Ma when 
many sites were undergoing active sedimentation during 
periods of increased geomagnetic instability (Herries 
& Shaw 2011; Singer 2014). To date, evidence for the 
Huckleberry Ridge event has been documented at two 
sites (Dirks et al. 2010; Herries and Shaw 2011) as well 
as potentially the Réunion and pre-Olduvai events (Her-
ries and Shaw 2011; Pickering et al. 2011). The identi-
fication of polarity reversals also allows for a reduction 
in large absolute age error margins for stratigraphic units 
when reversal boundaries are located within close strati-
graphic proximity to dated samples (Herries et al. 2018).
As part of continuing chronological work at these locali-
ties, we sought to undertake more detailed rock magnet-
ic experiments to determine what mineral phases were 
holding the palaeomagnetic signal, and whether these 
had been subject to diagenetic alteration that could affect 
correct magnetostratigraphic correlation. This was stim-
ulated in particular by recent work on older deposits that 
show more complex overprinting and lower unblocking 
temperature magnetisations than previously identified 
at younger sites (e.g. Herries et al. 2018). We bought 
samples to the Institute for Rock Magnetism (IRM) from 
a number of different South African cave systems (Dri-
molen, Bolt’s Farm, Malapa, Coopers, Makapansgat, 
Haasgat and Hoogland; ~5–4 to 1.6–1.4 Ma age range) 
as a ‘regional palaeokarst sample’, to assess inter-site 
variation in iron oxide minerology, concentration, do-
main state and grain size. These have also served as a 
control sample set to integrate additional characterisa-
tion methods (e.g. Raman micro-spectroscopy, electron 
microscopy). We have also more extensively sampled 
deposits at Makapansgat Limeworks and Haasgat to help 
clarify their magnetostratigraphic profiles.  At the IRM, 
we measured hysteresis loops and backfield curves, first 
order reversal curves (FORCs), high temperature mag-
netic susceptibility (χT) on the Kappabridge (in air to 
700°C), and various low temperature remanence and 
susceptibility sweeps on the MPMS XL and 5S units. 
These are being linked with measurements undertaken 
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Figure 1: Rock magnetic data for palaeokarst at the Drimolen Makondo (adapted from Herries et al. 2018). A) High temperature magnetic sus-
ceptibility with a derivative plot insert and Tc estimate. B) FORC diagram. C) RT SIRM low temperature data. D) Low temperature magnetic 
susceptibility measurements at varying frequencies.
at The Australian Archaeomagnetism Laboratory (www.
archaeomagnetism.com), including alternating field de-
magnetisation (AFD), thermal demagnetisation (THD), 
and combined AFD/THD strategies, 3-axis isothermal 
remanent magnetisation THD, and viscous remagnetisa-
tion tests.  
	 Results show that the regional palaeokarst samples 
have a consistent minerology across the different lo-
calities; Figure 1 shows a representative example from 
the ~2.6 Ma Drimolen Makondo (Herries et al. 2018). 
FORC diagrams (Figure 1B) highlight that the samples 
are dominated by a low coercivity remanence in a single 
domain (SD) to vortex state (Roberts et al. 2017) grain 
size range. SD contributions are shown from closed con-
centric contours along the central ridge of the FORC, 
while vortex state magnetisations are inferred from re-
manence intensities with a broader spread away from the 
central ridge along the Bu axis and weak lobe-like fea-
tures. There is minimal evidence for remanence contri-
butions from multi-domain (MD) particles, which would 
display a vertical spread along the Bu FORC axis. χT and 

low temperature remanence experiments indicate that 
these low coercivity magnetisations are carried by im-
pure forms of magnetite or maghemite. Curie tempera-
tures (Tc), estimated from the 1st derivative minima of χT 
heating curves, range from 380–550°C (mean of 490°C). 
The bulk of samples also show subtle inflections close 
to the Verway transition (Tv) in magnetite (~120 K; Fig-
ure 1C), suggestive of Ti-substitution in the crystal lat-
tice or potentially oxidisation (maghemisation) effects. 
Increased Ti-substitution in magnetite also functions 
to lower the Tc which likely explains the χT estimates. 
Low temperature measurements also indicate the pres-
ence of goethite in almost all samples as highlighted by 
increases in magnetisation at lower temperatures, the 
spread between 2.5 TFC-ZFC remanence curves, and 
largely reversible RT SIRM curves. Whilst high coer-
civity remanences are typically seen in these sites via 
the non-saturation of isothermal remanent magnetisation 
curves, this is the first time goethite has been identified 
magnetically at these sites. The high coercivity compo-
nents have typically been interpreted as relating to pig-
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	 We measured rock magnetic properties on sediment 
core samples from two sites in the offshore Mahanadi 
Basin, India, drilled in 2015 during International Ocean 
Discovery Program (IODP) Expedition 353 (Clemens et 
al., 2016). These sites, U1445 and U1446, are 96 and 
75 km offshore and in 2502 and 1430 m water depth 
respectively. Shipboard magnetic susceptibility (κ) 
from whole round core logging shows down core cyclic 
variability that may potentially represent a monsoon-
driven paleoenvironmental signal. However, below the 
sulfate-methane transition zone (SMTZ) at ~20 m be-
low sea floor (msbf) at both sites, κ decreases and the 
signal becomes diminished (Fig. 1). This effect is most 
pronounced at Site U1445. Is this change driven by an 
increase in the transport and deposition of ferrimagnetic 
minerals with time? Or is it driven by an onset of altera-
tion at depth? We hypothesize that the primary detrital 
magnetic mineral assemblage has been altered by hy-
drogen sulfide produced by organoclastic sulfate reduc-
tion and/or anaerobic oxidation of methane, as has been 
observed in other methane-bearing continental margin 
sediments (e.g. Housen and Musgrave, 1996; Riedinger 

mentary hematite given the red colouration of the sedi-
ments (e.g. Herries et al. 2006), which does not usually 
contribute to the natural remanent magnetisation (NRM) 
of the samples. There was no substantive evidence for a 
Morin transition in hematite (260–250 K), which similar 
to the Tv, can also be supressed by substitution as well as 
when it occurs in ultrafine grain sizes such as pigmen-
tary forms. Additionally, low temperature magnetic sus-
ceptibility (χ) sweeps on warming from 20–300 K show 
a strong frequency dependence on χ, likely relating to 
ultrafine SP grains that dominate South African palaeo-
karst sediments (Figure 1D).   
	 We are currently testing for any goethite influence on 
the NRM, which would likely be a secondary chemically 
formed remanence, via thermal pre-treatments to ~160°C 
of AFD samples and comparison to conventional AFD 
on sister specimens. As for lower unblocking tempera-
ture magnetisations, these likely relate to increased Ti 
content in magnetite (or variable Tc maghemite), perhaps 
related to influence of local intrusive volcanics on an-
cient sediment sources (Herries et al. 2018). It is clear 
however from THD spectra that multiple unblocking 
temperature components reflective of detrital minerals 
can exist within the same sample, often recording the 
same directions, implying that their magnetisations were 
locked-in coevally.  
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et al., 2005).
	 In order to test this hypothesis and determine the 
extent to which the magnetic signal has been altered, 
we measured multiple magnetic properties at the IRM 
that will be integrated with ongoing sulfur and carbon 
geochemistry measurements. At the IRM, we measured 
magnetic susceptibility (room temperature and high tem-
perature sweeps with the KappaBridge), hysteresis loops 
with a vibrating sample magnetometer (VSM), anhyster-
etic remanent magnetism (ARM), and low temperature 
remanence curves with the magnetic properties measure-
ment system (MPMS).
	 The magnetic susceptibility measured in the lab con-
firmed the pattern measured at sea. MPMS measure-
ments suggest a primary magnetic mineral assemblage 
composed of magnetite and goethite, based on the devia-
tion between the field-cooled (FC) and zero field-cooled 
(ZFC) remanences and the presence of the Verwey tran-
sition (Fig. 2). Variation in the low-temperature rema-
nence curves between samples shows the relative varia-
tion in these minerals down core. Hysteresis parameters 
suggest the presence of pseudo-single domain magnetite. 
All samples measured with high temperature sweeps in 
the KappaBridge showed substantial alteration during 
heating steps (Fig. 3), even under argon atmosphere, 
which could be explained by iron sulfides or iron-rich 
carbonates converting to magnetite during heating. The 

magnitude of this alteration in magnetic susceptibility 
during heating was generally higher in deeper samples. 
ARM results suggest a loss of fine-grained magnetite 
with depth. We are now continuing to interpret down 
core patterns and cross-correlations in all magnetic prop-
erties to understand potential alteration pathways. The 
rock magnetic data obtained at the IRM are also being 
integrated with bulk elemental chemistry and pore wa-
ter chemistry data to understand the history of magnetic 
mineral alteration at these sites. 
	 Magnetic susceptibility can be a useful proxy of de-
trital processes influenced by the Indian monsoon (e.g. 
Colin et al., 1998; Phillips et al., 2014); however, the 
potential for mixed detrital and diagenetic influences on 
these magnetic records must be taken into account, es-
pecially in sediment cores that extend to the SMTZ. Our 
rock magnetic measurements made at the IRM can help 
determine which intervals of the recovered cores record 
paleoenvironmental signals and which have been over-
printed by diagenetic processes.
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Application for 
the 2018 Summer School 

in Rock Magnetism
is Open!

Magnetic geoscience research uses sensitive, nonde-
structive measurements on natural materials to illumi-
nate geomagnetic field history, tectonic processes and 
environmental changes.  Learn more about the funda-
mentals and applications at the fourth biennial Summer 
School in Rock Magnetism (SSRM), which will be held 
June 4-13th, 2018 at the Institute for Rock Magnetism 
(IRM) in Minneapolis, MN. The 10-day program is tar-
geted at graduate students and advanced undergraduate 
students in rock magnetism, paleomagnetism, and asso-
ciated fields. Students will receive intensive instruction 
in rock magnetic theory and laboratory techniques. A 
daily schedule of lectures, hands-on laboratory measure-
ments, and data processing will introduce students to the 
fundamentals of rock magnetism and paleomagnetism 
and the practical aspects of collecting and interpreting 
data responsibly. Instructors for the summer school will 
be primarily IRM  faculty and staff.

please visit our website 
for details:

www.irm.umn.edu
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Current Articles
A list of current research articles dealing with various topics in 
the physics and chemistry of magnetism is a regular feature of 
the IRM Quarterly. Articles published in familiar geology and 
geophysics journals are included; special emphasis is given to 
current articles from physics, chemistry, and materials-science 
journals. Most are taken from ISI Web of Knowledge, after 
which they are  subjected to Procrustean culling for this news-
letter. An extensive reference list of articles (primarily about 
rock magnetism, the physics and chemistry of magnetism, 
and some paleomagnetism) is continually updated at the IRM. 
This list, with more than 10,000 references, is available free of 
charge. Your contributions both to the list and to the Current 
Articles section of the IRM Quarterly are always welcome. 
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The "fate rock" or "magnet mountain" which ruined every ship 
coming too close by pulling out all nails due to its terrible mag-
netic power 1.
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retain a remanence is due to thermal fluctuations, that 
change the magnetization too frequently within the time-
frame of a measurement so that the magnetization is ran-
domized. While these particles are not magnetic rema-
nence carriers, they strictly belong to the group of single 
domain particles. However, what we think of when we 
talk about the single domain (SD) state, are particles that 
are slightly larger, i.e., the stable SD (SSD) state (Table 
1). Rocks with high concentrations of SSD particles are 
what we look for, but rarely find. SSD particles are so 
highly sought after, as they are able to preserve records 
of magnetic fields for billions of years and we can use 
their remanence to understand the history of our solar 
system with them. As particles grow larger we approach 
a “grey area” of magnetic stability. Often referred to as 
‘pseudo single domain’ (PSD), these grains have com-
plex domain structures but can still be good recorders of 
the magnetic field. The name is somewhat disputed, as 
it makes no statement of the actual spin geometry, and 
“vortex state” is preferred by some. The final impor-
tant size range encompasses the multidomain particles, 
which are typically magnetically soft (low Bc) and can 
easily be demagnetized. Therefore, the remanence stored 
in these grains is often unreliable. Natural rocks often 
contain a mixture of different magnetic minerals and dif-
ferent domain states, and determining the mineralogy as 
well as the domain state is important.
	 Whether the application is geared to paleomagnet-
ic memory or material properties as indicators of past 
processes and conditions, rock-magnetic analysis is a 
critical part of the research.  Here we want to provide 
a short overview of some of these methods, what their 
advantages are and how one may be able to use them 
to gain a better understanding of the magnetic carries in 
your samples. This is not a textbook and by no means a 
complete list, but we hope it will help you find the right 
method.
	 Often the easiest way to determine the size of some-
thing is to look at it. Technology is advancing rapidly, 
and we are now even able to look at individual atoms in a 
crystal. But often these methods are not directly applica-
ble to rocks. The concentration of magnetite can be very 
low, so that just finding the particles of interest is often 
difficult. Superconducting Quantum Interference Device 
(SQUID) magnetometers, on the other hand, may still 
able to detect and measure the magnetic signal of a rock 
that contains a concentration of magnetite at the PPM 
level. Nonetheless, traditional imaging techniques, such 
as optical and electron microscopy are good ways to de-
termine grain sizes. Working with synthetic powders is 
often easier, since you may be able to determine their 
size with Laser counters, through their Zeta potential 
or by means of X-Ray diffraction line broadening if the 
particles are < 100 nm. However, generally the particles 
in a rock are hidden in a matrix of non-magnetic mate-
rial, that we are only partially interested in. Therefore, 
we need non-destructive methods that can estimate their 

size and/or their domain state.
Mineral SP-SSD SSD-MD Reference
Magnetite 
(Fe3O4)

25-30 nm 50-60 nm Dunlop 
(1973)

Hematite 
(Fe2O3)

25-30 nm 100 µm Banerjee 
(1971); 
Kletetschka 
(2001)

Pyrrhotite 
(Fe7S8)

1.6 µm Soffel 
(1977)

Table 1: Upper and lower limits for SSD state of different min-
erals at room temperature. These are highly variable and are 
strongly influenced by the shape of the particle.

	 A few concepts should be explained before we start. 
First, remanence ≠ remanence. There are several types 
of remanence, such as thermal remanence, isothermal 
remanence, anhysteretic remanence and many others. 
Without going into much detail on their acquisition (see 
Dunlop and Özdemir, 1997), they can be separated into 
two categories: remanences acquired in strong magnetic 
fields, usually applied in the lab; and weak-field rema-
nences. Most natural processes belong to the second cat-
egory. While their difference - the field strength - seems 
obvious, they create remanences that have vastly differ-
ent properties (e.g. intensity, median destructive field). 
In the first part of this series, we will discuss tests that 
employ lab-induced strong-field remanences, as well as 
magnetization measured in the presence of strong ap-
plied fields. In future parts we will cover weak-field and 
thermal methods.

Strong-field tests
Hysteresis Loops (HYS): Hysteresis loops are among 
the most basic magnetic measurements (Ewing, 1885) 
but also the most fundamental. A hysteresis loop mea-
sures the magnetization of a sample in an applied field 
cycled to large positive and negative values, and can 
provide several important parameters. Firstly, the mag-
netization of ferrimagnetic materials reaches a limit 
M(B→∞) called the saturation magnetization (Ms). Ms is 
a material constant for each mineral, and can be used 
to determine the concentration of ferromagnetic material 
in a sample. Usually the magnetic signal of bulk natu-
ral samples is a linear combination of ferri-,  para- and 
diamagnetic signals and the high field slope (χHF) has to 
be corrected to isolate the ferrimagnetic signal, prefer-
ably using an approach-to-saturation technique (Fabian, 
2006; Jackson and Sølheid, 2010). Ms is one of the few 
magnetic properties that is not grain-size dependent, at 
least above the nano-size range. 
	 Secondly, the magnetization remaining when the field 
is zero is called remanent magnetization (Mr or Mrs if the 
sample was saturated). In contrast to Ms, the remanence 
is domain-state dependent in strength and stability. Note 
however, that the point at which the loop closes is gener-
ally significantly lower than that required for full satura-
tion Bs. This can be called the field of remanence satura-
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tion Brs, which for magnetite has a maximum value of 
~240 kA/m or ~300 mT, where domains have all been 
driven out of the MD and PSD grains, and the magnetic 
moments of the stable single domain (SSD) particles 
that are present in the rock have all been non-reversibly 
turned in the polarity of the field. The nonlinear M(B) 
regime between Brs and Bs is the “approach to satura-
tion,” in which the individual-particle magnetic mo-
ments are forced to align parallel to the field, by rotating 
away from the particle long (easy) axes. Only when all 
the magnetic moments are parallel to the field Ms is ob-
tained, and M(B) thereafter becomes a line that increases 
indefinitely (if paramagnetic phases are present in the 
sample).
	 The field needed to achieve a zero net magnetization, 
while the field is applied, is the coercivity (Bc). Simi-
lar to Mr, Bc is also dependent on size. Large MD grains 
have smaller coercivities than SSD grains, since domain 
walls can be moved through a grain rather easily. Sev-
eral other parameters are related to the magnetic miner-
alogy and particle-size distribution of the sample. Since 
most of the hysteresis parameters change as a function of 
grain-size, a simple hysteresis loop can already tell a lot 
about the nature of the magnetic carriers. Even mixtures 
of high- and low-coercivity materials can sometimes be 
determined by the shape of the loop (wasp-waisted, pot-
bellied). 
	 Keep in mind that your results are only as good as the 
measurement and proper calibration of the instrument, 
and that careful data processing (Jackson and Sølheid, 
2010), is required to obtain reliable results, especially 
from weak samples. One example is the deconstruction 

of a loop into Mih (induced hysteretic or reversible) and 
Mrh (remanent hysteretic or irreversible) components 
(von Dobeneck, 1996). These parts can be fitted with 
hyperbolic basis functions to reduce noise in weak sam-
ples, and to quantify the coercivity spectrum.

Direct Current Demagnetization Curves (DCD): 
These curves, often referred to as backfield curves, are 
used to determine the coercivity of remanence (Bcr) of 
a sample, and more generally to characterize the coer-
civity spectrum. After acquiring a saturation remanence, 
the sample is successively “demagnetized” in an increas-
ingly stronger magnetic field with opposite polarity (i.e., 
the positive remanence is gradually replaced by a nega-
tive one, starting with the least coercive particles and 
proceeding through the coercivity spectrum). Figure 1 
shows a major (fully saturated) hysteresis loop with sev-
eral (A, B, C…) minor loops. On these minor loops, part 
of the remanence is recovered after the reverse field is 
switched off. Since a DCD is measured in a quasi-zero 
field and a hysteresis loop in an applied field, Bcr and 
Bc are generally different, with Bcr ≥ Bc. Similar to the 
hysteresis parameters, Bcr is strongly dependent on the 
grain-size. In large grains Bcr  >> Bc while Bcr approaches 
the value of Bc in SSD particles. SP particles on the other 
hand, as they have no remanence, also have Bcr  = Bc = 
0. DCD measurements are generally more time consum-
ing than HYS, and therefore several ways to estimate Bcr  
from a hysteresis loop have been proposed (Tauxe et al., 
1996; Fabian and von Dobeneck, 1997; Fabian 2003). 
The simplest estimate is given by the median destruc-
tive field (MDF) of the remanent hysteretic part of the 
hysteresis (Brh) .

Isothermal Remanent Magnetization (IRM) Acquisi-
tion Curves: IRM acquisition curves are related to the 
DCD. However, instead of “demagnetizing” (progres-
sively reversing)  the saturation magnetization, the mea-
surement starts from a demagnetized state. Increasing 
magnetic fields are applied to acquire the IRM, which 
is measured step by step in a zero field. Since the ini-
tial magnetization should be zero, it is helpful to mea-
sure the IRM before the DCD curve. Natural rocks usu-
ally contain a number of different minerals, each with 
a distribution of sizes, and IRM acquisition curves (and 
their derivatives) can give information on the num-
ber of  components present and their coercivity ranges 
(e.g., Dunlop, 1972). The overall magnetization is a su-
perposition of the signals of the individual components 
and as such, can in certain cases be unmixed, assuming 
that the end-member contributions are linearly additive 
(Lees, 1997).  In IRM unmixing (Robertson and France, 
1994; Kruiver et al., 2001; Egli, 2003), the data are plot-
ted against log(B) and fitted with analytical distribution 
functions. The function and pretreatment (e.g. filtering, 
interpolation) of the data depends on the means of calcu-
lation (excel spreadsheet, software, online applications 
(Maxbauer et al., 2016)). If many IRMs, or DCDs, are 
measured, the data can be unmixed without any a priori 
specification of the distribution functions that best rep-

Figure 2: Classical S-ratio (-M(100 mT)/SIRM) for mixtures of synthetic mag-
netite and hematite. High S-ratios correspond to a Magnetite dominated sam-
ple, low values show hematite dominated sample. After Frank and Nowaczyk 
(2008).
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Figure 3: Hysteresis loop (red = raw data, blue = slope-corrected, green = Mrh ), DCD curve, and coercivity spectrum unmixed 
using MAX UnMix (Maxbauer et al., 2016), for an obsidian from the Gutansar volcanic complex, Armenia, containing magnetite 
and hematite (Frahm et al., 2014).  Loops and backfield curves clearly show at least two coercivity components; unmixing reveals 
a third broadly-distributed component (color bands show statistical uncertainty determined by resampling analysis).
resent the samples' components (e.g. Heslop and Dillon, 
2007). The final output gives a mathematical description 
of the individual parts that, when combined, make up the 
rocks’ magnetic signal.

	 These three types of measurements (HYS, DCD and 
IRM) are utilized in most paleomagnetic studies. There 
are several methods to further analyze the parameters 
determined from these that allow us to obtain a better 
understanding of the samples’ domain state.

S-ratio: In environmental magnetism, it is often useful 
to quantify, if only on a relative scale, the amounts of 

magnetic soft (e.g. magnetite) and hard (e.g. hematite) 
particles. In some cases, this can be estimated from the 
data of a DCD curve. The classical S-ratio is defined as 
the ratio of the moment at a given backfield (typically 
300 mT) and the SIRM (i.e. Mr) (Stober and Thompson, 
1979); S = -M300 mT/SIRM. Values can range from -1 to 1 
representing the range from only high coercivity com-
ponents (-1) to only low coercivity components (1), re-
spectively (Fig.2). Other definitions have been used in 
the literature but the general idea is the same (Heslop, 
2009). One problem with this approach, however is that 
substitutions in hematite (e.g. Al) can cause widely vary-
ing coercivities. In cases, where the hematite has an un-
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usually low coercivity, it can cause an overestimation of 
the magnetite  content.

L-ratio: Another proposed parameter in environmental 
studies is the L-ratio (Liu et al., 2007), which, build-
ing from the S-ratio, provides a way of quantifying the 
concentration of high coercivity minerals (hematite, 
goethite). Here an IRM is acquired in a 1T field and 
AF-demagnetized in a 100 mT (IRMAF100mT)  and sub-
sequently 300 mT field (IRMAF300mT). The IRMAF300mT is 
often called hard IRM (HIRM) and can be used as a com-
position indicator on its own. However, in contrast to the 
S-ratio, the L-ratio (IRMAF300mT/IRMAF100mT) is thought to 
be independent of composition (Fe-substitutions). Most 
modern VSMs have the option to apply alternating mag-
netic fields (albeit at much lower frequencies than con-
ventional AF instruments), and they allow a coarse AF 
demagnetization without requiring a specialized high 
field AF-coil. 

Day Plot: The Day plot is probably one of the most 
widely used ways of plotting to evaluate the domain 
states of a set of samples. It was introduced by Day et 
al (1977), who measured hysteresis loops and backfield 
curves for titanomagnetite samples (TM) with a variety 
of compositions and particle sizes. They constructed 
different biparametric plots and found that when the re-
manence ratio (Mr/Ms) is plotted against the coercivity 
ratio (Bcr/Bc), a clear trend emerged that was mostly in-
dependent of TM composition, isolating the particle-size 
dependence.  They defined SSD, PSD and MD regions, 

which indicate the overall domain state. Later Dunlop 
(2002a, 2002b) revisited the test and adjusted the bound-
aries. Furthermore, he determined how mixtures of SSD/
MD and SP/SSD would influence the data and proposed 
the often cited mixing curves. 
	 In particular, the remanence ratio has a theoretical 
justification. An assemblage of randomly oriented, non-
interacting single domain particles with uniaxial anisot-
ropy should have a value of 0.5 (Stoner and Wohlfarth, 
1948). However, this value can change depending on the 
crystalline anisotropy and on the orientation distribution 
of the easy axes.  Nonuniform magnetization states, and 
especially increasing domain multiplicity, cause Mr/Ms to 

Figure 4: Day Plot of hysteresis data for two sample sets. Black markers show 
the data from Day et al. 1977 for Ti content x=0 (cross) and x=0.2 (plus) with 
marker size according to grain size. Colored circles represent samples of the Tiva 
Canyon Tuff, containing dominantly elongate SP-SSD titanomagnetite particles 
with narrow size distributions.  TEM studies [Schlinger et al, 1991] give modal 
particle sizes ranging from 5.5x15 nm (~4.5x10-25 m3) to 25x250 nm (~1.5x10-
22 m3). Markersize as well as color scale reflect the volume of the particles on 
a log10 scale.  

Figure 5: The “squareness-coercivity plot” (a) is sensitive to varia-
tions in magnetic grain size (domain state) and to Ti-content of the 
magnetite (Tauxe et al, 2002; Wang and Van der Voo, 2004), in con-
trast to the Day plot (b) which was designed to minimize (titano-)
magnetite composition sensitivity and focus on particle sizes.  Graphs 
from Wang and Van der Voo (2004).
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decrease with increasing particle sizes.
	 While the Day plot appears to be an easy way to es-
timate domain state, it is not without controversy. The 
main issue with this simple interpretation of magnetic 
parameters is that it reduces the level of detail in a loop 
to a single point on the Day plot, for the purpose of easy 
comparison of large sample numbers, and much infor-
mation is thereby discarded. There is also the fact that 
many factors can influence the data, and data often do 
not lie on the proposed mixing lines. For instance, the 
domain state regions were determined only for titano-
magnetites. Other minerals may plot in the SD range 
but that does not necessarily mean that they are (see the 
compilation of different minerals in Peters and Dekkers, 
2003). Consequently, samples don’t necessarily plot in 
their designated regions and additional knowledge of the 
mineralogy of the sample is necessary.

Squareness-Coercivity plot: A predecessor of the Day 
plot is the squareness plot  (Néel, 1955; Tauxe et al., 
2002). Instead of plotting the squareness of the hyster-
esis loop (Mr/Ms) against the ratio of the coercivities, it is 
simply plotted against coercivity (fig. 4a). Both param-
eters are easily determined from a simple hysteresis plot, 
which avoids the extra DCD measurement. Because the 
coercivity depends on the composition, this method is 
not independent of the Ti-content of magnetite. The Day 
plot, on the other hand, is used exactly because of its rel-
ative independence to Ti content (fig. 4b). Consequent-
ly, the squareness-coercivity plot can not only be used 
to gain understanding on the domain state of samples 
but also indicates their composition. This, in combina-
tion with the Curie temperature, which for magnetite is 
strongly dependent on the Ti content, can be a useful ad-
dition to a study.

Preisach Methods: Simple hysteresis loops omit much 
of the magnetic information, which is stored in the 
transient hysteresis, the difference of ascending and de-

scending hysteresis branches. Other, more sophisticated 
methods can use this information to better understand 
the domain-state. The Preisach model was originally de-
rived as a mathematical description of the hysteretic pro-
cesses of non SD materials (Preisach, 1935). As of today, 
several experimental approaches have been developed to 
understand these magnetization process. 
	 The most common are the so-called first-order rever-
sal curve diagrams (FORC, fig. 5). FORCs are a rela-
tively new, increasingly popular method that allow for a 
visual interpretation of the distribution of domain states 
(Pike et al., 1999, Roberts et al. 2000). They are a modi-
fication of the simple hysteresis plot, but the measure-
ment procedure is more complicated (see Roberts et al., 
2014). The sample is saturated at the saturation field Bsat. 
Next, the field is ramped down to some reversal field Br 
and the magnetization curve (M(Br, B)) from Br is mea-
sured while B increases; this is a single FORC curve. 
The process is repeated for a range of reversal fields, and 
depending on the field steps (B, Br), a FORC data set can 
easily have more than 5000 individual measurements. 
A mixed derivative with respect to Br and B is calcu-
lated and displayed as a contour plot. Several methods 
for calculating, correcting, and smoothing the data have 
been proposed, each with their own advantages (Vari-
FORC (Egli, 2013), FORCinel (Harrison and Feinberg, 
2008)…). 
	 A lesser-known, even more elaborate variety is the 
second order reversal curve (SORC). In general, the 
measurement procedure is similar to that of a FORC. 
However, a second reversal field Br2 is introduced and 
an extra magnetization curve M(Br, Br2, B), that branches 
out from the FORC M(Br, B) curve is measured. The 
extra curves require even more measurements, making 
the procedure extremely time consuming, so that few 
SORCs have actually been measured (Winklhofer et al. 
2008).
	 Preisach diagrams (e.g. Church et al. 2016) or rema-
nent FORC diagrams (rFORC) (e.g. Bodale et al. 2011) 

Figure 6: Room-temperature FORC distributions for (top) Tiva Canyon tuff sample CS911 containing non-interacting single-
domain titanomagnetite particles (Pike et al., 2001) and (bottom) the “central ridge” of a high-resolution FORC diagram for a 
sediment sample from Lake Ely containing magnetotactic bacteria with intact chains of SSD magnetosomes (Egli et al., 2010).
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are another method that is gaining popularity. They differ 
from FORCs and SORCs, as only the remanent magne-
tization is measured. Starting from a SIRM, a field with 
opposite polarity is applied, much like a DCD. From this 
somewhat demagnetized state, an IRM acquisition curve 
is measured. 
	 Preisach methods are able to show features that are 
considered diagnostic of certain domain states. For exam-
ple, a sample containing SSD grains will show a promi-
nent central ridge along Bc, distinctly different from MD 
grains, that display a vertical distribution at Bc=0. Thus, 
they can help in the interpretation of single and mixed 
domain state samples (e.g. SD+MD), show evidence of 
thermal relaxation effects (Pike et al., 2001), and show 
interactions between particles (though we note here that 
certain groups of particles, e.g. the chains produced by 
magnetotactic bacteria, are so strongly interacting that 
they are equivalent to isolated, non-interacting SSD par-
ticles on a FORC diagram! See fig.5b). While a single 
well-measured FORC will lead to a better understanding 
of the magnetic state of an individual sample, large num-

bers of FORCs can be used to understand differences be-
tween samples, or the distribution of properties in a pop-
ulation of samples, using principal component analysis 
(Lascu, 2015). Similar to unmixing of IRMs, this method 
allows for the separation of the individual components 
of mixed state systems using a mathematical formalism. 
Therefore, common remanence carriers in the samples 
can be determined and their spatial or temporal varia-
tions analized.
	 However, all of these methods are much more time-
consuming than typical HYS, DCD, IRM measurements 
and measurement times of several hours are normal, 
even with the help of special gridding techniques (Zhao 
et al. 2015). Ultimately, time is the price to pay for a bet-
ter understanding of particle systems. 

Henkel Plot: Assuming there are no interactions, which 
is a whole different kind of problem, the IRM acquisi-
tion curve should be easily relatable to the DCD curve 
(Wohlfarth, 1958). The backfield curve goes from Mr to 
-Mr, and the IRM from 0 - Mr. Therefore, the moment at a 
given field M(B)DCD= Mr - 2 M(B)IRM. Henkel (1964) was 
the first to plot the DCD curve against the IRM acquisi-
tion and show a linear relationship. Thus if the sample 
contains purely SD particles without interactions, the 
Henkel plot returns a linear slope of -2 (fig. 6a).

Cisowski Test: Similar to the Henkel plot, the Cisowski 
(1981) test uses an IRM acquisition curve plotted to-
gether with an alternating field (AF) demagnetization of 
Mr (SIRM). If the point (R), at which the two normalized 
curves cross, has an ordinate value of 0.5 (i.e., the me-
dian acquisition field and MDF are equal (see Dankers, 
1981)), the sample is dominated by non-interacting SD 
particles (fig. 6b). For obvious reasons this plot is often 
informally referred to as the crossover plot. This method 
was expanded on by Symons et al. (2000) for a variety 
of different mineralogies and therefore can also give in-
formation on the carrier minerals.
	 In many cases, to save time measuring the AF curve, 
the test is performed using an appropriately scaled DCD 
curve instead. Both the Henkel plot and Cisowski tests 
have in common that they show if the sample is in a 
stable non-interacting SD state. However, the tests can 
be somewhat misleading: if magnetostatic interactions 
are at play the tests also indicate non-SD behavior. On 
the other hand, these tests can provide a useful addition 
when making interpretations on a sample that has al-
ready shown predominantly SD behavior through other 
tests.

	 Most magnetic properties depend on the domain state 
and consequently particle size of the magnetic carrier-
minerals of a rock. However, they are also heavily in-
fluenced by the mineralogy, so that other tests should be 
used to probe the mineral composition of the specimen.  
In this first installment, we have presented methods that 
use strong field magnetizations, and can be used to es-
timate the domain state of a specimen or suite of speci-
mens. A multitude of other tests have also been estab-

Figure 7: Henkel (a) and Cisowski (b)  plots for a Tiva Canyon 
tuff sample at 20K, showing ideal non-interacting SSD behav-
ior (Worm and Jackson, 1999).
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lished over the years, many of which rely on weak field 
magnetizations, susceptibilities, or changing magnetic 
properties as a function of temperature. These tests will 
be discussed in subsequent articles. As a final word, keep 
in mind that no single test provides a definitive answer, 
so patience (and instrument-time) is key! 
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The Rupes Nigra, a phantom island, was believed to be a 
33-mile-wide black rock located at the Magnetic North Pole 
or at the North Pole itself. It purportedly explained why all 
compasses point to this location. 

The "fate rock" or "magnet mountain" which ruined every ship 
coming too close by pulling out all nails due to its terrible mag-
netic power 2.
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