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Abstract 

Cerebral malaria (CM) and severe malarial anemia (SMA) remain drivers of morbidity 

and mortality due to Plasmodium falciparum infection in children in Sub-Saharan Africa. 

There are currently no adjunctive therapies for severe malaria (SM), suggesting that we 

need a better understanding of both host and pathogen factors that contribute to SM. This 

dissertation attempted to identify both host and parasite factors that contribute to disease 

severity in malaria, factors that differentiate between CM and SMA, and those associated 

with mortality and neurocognitive outcomes in CM.  

Children between 18 months and 12 years of age, meeting the WHO definition for CM 

(n=269) or SMA (n=232), were recruited from the Acute Care Unit at Mulago Hospital in 

Kampala, Uganda. Healthy community children (CC, n=213) in the same age-range were 

recruited from the neighborhoods and extended households of children with SM. Whole 

blood was collected at enrollment and was either processed immediately for plasma or 

was preserved and stored accordingly for future RNA and DNA isolation. We performed 

genotyping for endothelial protein C receptor (EPCR) polymorphisms, quantitative 

reverse-transcriptase PCR to estimate transcript levels of var genes encoding 

P.falciparum erythrocyte membrane protein 1 (PfEMP1), and used plasma to quantify a 

number of cytokines, chemokines, angiogenic growth factors, soluble EPCR and 

erythropoietin with ELISA-based assays.  
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The work presented in this dissertation identified both cytoadhesion of infected 

erythrocytes (IEs) and host immune factors as important contributors to SM pathogenesis. 

We have shown that polymorphisms associated with less bound and more soluble EPCR 

are associated with reduced risk of SM; that EPCR-binding PfEMP1 are important in SM 

and that their transcript levels are higher in CM than SMA; that the immune profile, 

while quite similar in CM and SMA, is differentiated especially by elevated levels of 

chemokines and IL-10 in CM. Lastly, our studies on the association of TNF-α and EPO 

with disease severity in CM highlight the importance of understanding both systemic and 

local effects of host mediators when considering targets for adjunctive therapies, and the 

importance of selectively inhibiting the pathogenic effects without compromising the 

beneficial roles of that target. 
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Chapter 1 

Introduction  

1.1  Malaria overview: epidemiology and life cycle 

Although 633 million malaria cases were averted between 2000-2015 due to 

interventions such as the use of insecticide treated bed nets (ITNs), indoor residual 

spraying (IRS) and the use of artemisinin combination therapies (ACT)1, malaria remains 

an important public health issue, especially in Sub-Saharan Africa (Figure 1.1)2. Of the 

214 million malaria cases in 2015, 438,000 resulted in death, 70% of which affected 

children under the age of 51. Malaria was responsible for 5% of deaths in children under 

5 worldwide and for 10% of deaths in the same age-group in Sub-Saharan Africa1,3. 

Severe malaria, especially cerebral malaria, remains a driver of malaria mortality in 

children.  



 

  2 

 
 
Figure 1.1. Geographical distribution of malaria transmission.  

Source: Center for Disease Control and Prevention2 
 
Malaria is caused by the Apicomplexa parasite Plasmodium. There are five Plasmodium 

species that can infect humans: P.falciparum, P.vivax, P.malariae, P.ovale and 

P.knowlesi. However, P.falciparum is the deadliest and accounts for the majority of 

severe malaria cases. An individual is infected when a female Anopheles mosquito 

carrying P.falciparum takes a blood meal and injects a small number of sporozoites into 

the skin of an individual. In minutes, these sporozoites make it to the liver, infect 

hepatocytes, and initiate intracellular replication. This is known as the liver stage and is 

clinically silent. This stage lasts for 10-12 days and is followed by the release of 

merozoites into the blood stream, where they invade red blood cells (RBCs) and initiate 

the blood stage of the infection. Upon invasion, the merozoites develop either through the 

asexual or sexual cycle.  A small number of infected erythrocytes (IEs), under stimuli that 
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are not well understood, commit to the sexual cycle and develop into gametocytes, which 

can be picked up by another mosquito to restart the transmission cycle.  

 
Figure 1.2. Plasmodium falciparum development 

Source: Pasvol et al. 20104 
 

The majority of merozoites commit to the asexual blood stage, where the parasites 

develop within the RBC, going from early ring stage to trophozoites and finally to 

schizonts within 48-hours (Figure 1.2). At the end of the 48-hour cycle, the IEs burst to 

release more merozoites into the circulation and infect more RBCs. The rupture of the 

IEs induces periodic waves of fever in patients. The asexual blood stage is the clinically 

active stage of the disease and is responsible for the spectrum of disease manifestations in 

malaria from asymptomatic to life-threatening disease.  
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1.2  Exported P.falciparum variant surface proteins 

During the asexual blood stage development, P.falciparum remodels the RBC to promote 

its own survival. The parasite develops within the parasitophorous vacuole (PV) and 

digests hemoglobin as the main source of amino acids. In addition, the parasite sets up a 

complicated protein transport system to allow the export of its own proteins to the surface 

of the RBC5. These alterations make the IE less flexible and more adhesive, which allows 

the parasite to evade spleen clearance.  

 

At ~16-hours post-invasion, knob-like structures appear on the surface of the IE (Figure 

1.3) and these structures contain a number of variant surface antigens (VSA) including 

P.falciparum erythrocyte membrane protein 1 (PfEMP1), repetitive interspersed family 

proteins (RIFINs), subtelomeric open reading frame proteins (STEVORs), and surface-

associated interspersed gene family proteins (SURFINs)6,7. These antigens are encoded 

by large gene families and are highly polymorphic.  PfEMP1 is the most well studied 

VSA and an important target of the immune response against asexual blood stage 

antigens8. PfEMP1 allows IE binding to various host receptors such as CD36, ICAM-1, 

chondroitin sulphate A (CSA), complement receptor 1 (CR1) and endothelial protein C 

receptor (EPCR)9. As a result, PfEMP1 is involved in various aspects associated with 

disease severity and complications in malaria such as antigenic diversity10-13, 

cytoadherence to various host-receptors9, rosetting14 and evasion of the immune 

response15. The only other VSAs known to have a functional role to date are RIFINs 
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which were shown to bind to blood group A and mediate binding of IEs to UEs in 

structures known as rosettes, which are important in severe disease16. 

Figure 1.3. Scanning electron micrograph of uninfected (left) and infected (right) erythrocyte 

Source: Spillman 20157 
 

1.3  Severe malaria manifestations 

Severe malarial episodes account for only 1-2% of P.falciparum infections17 but have an 

18.5% mortality rate in adults18 and 9.7% in children19. In low transmission areas adults 

are more commonly affected by severe malaria, whereas in stable transmission settings 

such as Sub-Saharan Africa, severe malaria is mainly a childhood disease.  The most 

common forms of severe malaria in children are cerebral malaria, severe malarial anemia 

and metabolic acidosis17. These complications can manifest separately or overlap.  
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Pediatric severe malaria is characterized by sequestration of IEs in various organs; local 

and systemic production of pro- and anti-inflammatory cytokines and chemokines in 

response to parasite products, release of parasite toxins, and endothelial activation and 

dysfunction17,20. How these factors, combined with host and parasite genetic factors, 

influence the type of complications seen in pediatric severe malaria is not entirely clear.  

 

1.4  Cerebral malaria: diagnosis, treatment and etiology 

The World Health Organization (WHO) defines CM as impaired consciousness in the 

context of P.falciparum infection and no other identifiable cause for the coma. Impaired 

consciousness is determined as a Blantyre coma score (BCS) of less than 3 in children 

under the age of 5 and a Glasgow coma score (GCS) of less than 11 in children older than 

5 years old20. GCS and BCS consist of 3 categories: eye, verbal and motor response. 

While GCS can be given a score of 1-6 for each of these categories, where 1 is the least 

responsive, BCS is given a score from 0-2 in each category with 0 being the least 

responsive. In most studies, including ours, the CM definition is restricted to children 

who remain unconscious at least one hour after convulsions and after receiving a bolus of 

glucose. This is to avoid enrolling children with impaired consciousness due to febrile 

convulsions or hypoglycemia. Cerebrospinal fluid (CSF) gram stain and cultures are 

performed on CM children to rule out bacterial meningitis.  

 

CM is responsible for roughly 9% of malaria admissions21 and has a mortality rate of 13-

15% 22-25. Survivors of CM are at high risk of short-26 and long-term27 neurocognitive 
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impairment. To date, no adjunctive treatment for CM in humans has decreased mortality 

or neurologic complications28,29. As a result, patients who are identified with CM are 

started on antimalarials and treated for their symptoms such as seizures, dehydration, 

hypotension or lactic acidosis20.  

 

In CM, sequestration of IEs, leukocytes and platelets to the blood-brain barrier (BBB) 

endothelium, combined with an imbalanced immune response and endothelium activation 

are thought to lead to BBB dysfunction and adverse clinical outcomes17,30-33. However 

the relative contribution of each of these factors and the order of events are not well 

understood, because of the limitations of human studies and the lack of a mouse model 

that reproduces all aspects of human CM34. Moreover, the small sample size in studies 

looking to understand CM pathogenesis has made it hard to identify host and parasite 

factors associated specifically with mortality or neurologic outcomes in CM.  

 

The majority of our knowledge on important factors in human CM comes from autopsies. 

Despite the pathologic diversity that is observed in fatal CM pediatric patients, one 

common theme is sequestration of IEs in the BBB microvasculature35-37. IE binding has 

been associated with endothelial activation, BBB breakdown, hemorrhages, fibrin 

accumulation, as well as brain inflammation, demyelination and axonal damage23,36,37. 

The ability of IEs to sequester has been linked to parasite variant surface antigens38,39 of 

which P.falciparum erythrocyte membrane protein 1 (PfEMP1) is the most studied. 

However, there is no direct proof that IE sequestration is sufficient to cause CM or death 
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in these patients. In addition, cytoadhesion of P.falciparum infected erythrocytes occurs 

in asymptomatic and mild malaria also, suggesting that parasite expression of certain 

PfEMP1 proteins or other parasite virulence factors could lead to CM. Unfortunately, this 

cannot be studied in the animal model of CM since the parasites used in these models do 

not express a homologue of PfEMP1.  

 

Despite the limitations of CM studies, both experimental CM models (ECM) and clinical 

studies agree on the importance of the host’s immune response in both controlling the 

infection and contributing to the pathogenesis of CM. An imbalanced pro- and anti-

inflammatory response is characteristic of childhood severe malaria with elevated IFN-γ, 

TNF-α, IL-6, IL-10, IL-1β, IL-1ra 40-44, elevated levels of IL-8, IP-10 and reduced levels 

of RANTES as compared to uncomplicated or mild malaria43-45.  The importance of the 

immune response in human CM is also indicated by recruitment of neutrophils, other 

leukocytes, and platelets to the sites of endothelium activation in the brain of fatal CM 

patients46,47. A role for the pathogenic aspect of the immune response is also seen in ECM 

where nude mice or mice deficient in α/β TCR, IFN-γ or IFN-γ receptor are resistant to 

CM32. While ECM is mostly an immunologically driven phenomenon, that does not seem 

to be the case in human CM. The use of general anti-inflammatory therapies 

(dexamethasone) or TNF-α neutralizing antibodies have not been successful as adjunctive 

therapies in CM28, suggesting that a better understanding of both systemic and local 

immune mediators specifically associated with coma and mortality is needed.  
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Markers of endothelial activation and barrier damage are commonly observed in CM 

patients17,31,33. As mentioned above, IE sequestration has been associated with thrombosis 

and hemorrhages36,37. In addition, IE binding also triggers endothelial activation48-50 and 

coagulation processes by inducing tissue factor and activating thrombin51. Moreover, 

PfEMP1 binding to endothelial protein C receptor (EPCR) inhibits the activation of 

protein C (aPC) and promotes endothelial inflammation and increased endothelial barrier 

permeability52-56. Inflammation, as well as consumption of nitric oxide by free 

hemoglobin and hemolysis contribute further to endothelium activation, as indicated by 

elevated levels of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular 

adhesion molecule-1 (sVCAM-1), angiopoietin 2 (Ang2) and von Willebrand Factor 

(VWF) in CM patients31. Despite systemic inflammation and the ability of IEs to bind to 

various microvasculature beds, it is not clear why there is only brain pathology in CM 

patients. Understanding host and parasite factors that make the brain microvasculature 

more sensitized to the infection could highlight important novel factors to target with 

adjunctive therapies.   

 

1.5  Severe malarial anemia: diagnosis, treatment and etiology 

SMA is defined by WHO guidelines as hemoglobin levels ≤5g/dL with detectable 

P.falciparum in peripheral blood20. Normal hemoglobin levels for children are 11-13g/dL 

highlighting the severity of anemia in the children with SMA. Severe anemia in African 

children is associated not only with malaria but also HIV-1 infection, bacteremia, 

hookworm infections, vitamin A and B12 deficiencies57. Therefore, in many studies, 
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including ours, the enrollment into the SMA group is limited to children with no known 

chronic illness or malnutrition that required medical care or hospitalization in the past or 

any known developmental delay.  

 

SMA children tend to be younger than children with CM and the risk of SMA peaks in 

the first year of life in high transmission areas and in two year-olds in moderate and low 

transmission areas58. SMA poses a substantial burden in Sub-Saharan Africa causing 

about 20% of all P.falciparum hospitalizations21. In Tanzania, SMA mortality was 

8.9%58. However, in urban settings such Kampala, where there is easier access to blood 

transfusions, the mortality is low. There have not been many adjunctive treatments tried 

in SMA patients, since a rapid blood transfusion in combination with antimalarials 

usually reverses the severe anemia episode and reduces mortality. In addition, SMA 

patients are treated for their other presenting symptoms such as lactic acidosis or deep 

breathing whenever present20.  

 

Severe anemia in malaria is thought to be multifactorial and a result of destruction of 

infected (IEs) and uninfected erythrocytes (UEs), dyserythropoiesis, and suppression of 

erythropoiesis. However, the relative contribution of these factors to SMA and disease 

outcomes, as well as the contribution of other host and parasite factors specifically to 

SMA are not well understood.  
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The destruction of IEs at the end of the 48-hour cycle of parasite development or as a 

result of phagocytosis contributes to the reduction of hematocrit during a malarial 

infection. However, peripheral parasite density or total parasite load is not always 

associated with malarial anemia, and often the highest parasite loads are observed in 

uncomplicated or mild forms of malaria59. In animal models of SMA, which rely entirely 

on parasitemia to drive anemia, the levels of parasitemia needed to reach these low 

hemoglobin values are way higher than any parasitemia observed in patients32. A birth-

cohort study in Tanzania showed that a major drop in hemoglobin levels, sometimes 

more than 3g/dl occurred during the acute malaria infection59.  Mathematical models 

show that parasitemia alone cannot explain this drop, and that for every single IE 

destroyed there needs to be lysis of ~8.5 uninfected erythrocytes60 . These UEs are 

targeted for destruction due to changes that occur on their surface such as phosphotidyl 

serine externalization, oxidation of the plasma membrane and reduced deformability 

leading to elimination via autoantibodies, immune complexes and antibody-specific 

clearance32.  

 

Dyserythropoiesis and inhibition of erythropoiesis are other factors that are thought to 

contribute to SMA. Dyserythropoiesis indications are seen from bone marrow of adults 

and children with malarial anemia where erythrophagocytosis, hemozoin deposition, 

parenchymal damage of bone marrow and a reduced rate of erythropoietic progenitor 

proliferation are observed61,62. Moreover, indicators of reduced erythropoiesis, such as 

reduced reticulocyte production index or red cell distribution width, are seen in SMA 
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children63,64. The reduction in erythropoiesis does not seem to be due to inappropriate 

elevation of erythropoietin (EPO), but due to reduced response to EPO itself 63. 

Inflammation and oxidative stress cascades can reduce responsiveness of erythroid 

precursors to EPO and inhibit erythropoiesis65. In addition TNF-α, IFN-γ and IL-1 can 

directly inhibit the proliferation and differentiation of erythroid precursors66. 

P.falciparum hemozoin (byproduct of hemoglobin digestion) has also been associated 

with reduced proliferation and maturation of erythroid precursors65,67,68. The role of 

parasite virulence factors such PfEMP1 are not well understood in SMA. In addition, 

there is not a clear picture of host immune factors that differentiate SMA from other 

forms of severe disease such as CM.  

 

1.6  Gaps in knowledge  

CM and SMA drive morbidity and mortality caused by P.falciparum infection in children 

in Sub-Saharan Africa. Pediatric severe malaria (SM) is characterized by sequestration of 

IEs in various organs, imbalanced immune response, release of parasite toxins and 

endothelial dysfunction17,20. How these factors, combined with host and parasite genetic 

factors, influence the type of complications seen in pediatric SM is not clear. Moreover, 

the small sample size in studies of CM pathogenesis has made it hard to identify host and 

parasite factors associated specifically with mortality or neurologic outcomes in CM. 

 

In this study we attempted to identify parasite virulence, host genetic or immune factors 

that are important in both CM and SMA as compared to healthy community children 
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(CC), and factors that differentiate between CM and SMA. More specifically we tackled 

a number of knowledge gaps: 

1. Cytoadhesion of P.falciparum IEs occurs in asymptomatic and mild malaria also. 

Therefore, we asked whether certain PfEMP1 variants are associated specifically 

with CM, SMA, and with various disease outcomes in CM. 

2. Despite the ability of IEs to bind to various microvasculature beds, it is not clear 

why patients with CM manifest mainly with brain pathology. We try to 

understand whether a specific parasite protein to host receptor combination could 

explain the specific brain manifestation in CM.  

3. The use of general anti-inflammatory therapies or TNF-α neutralizing antibodies 

have not been successful as adjunctive therapies in CM28. Here, we study the role 

of local TNF-α in CM patients, and obtain a more complete picture of the immune 

mediators associated with CM specifically and its severe outcomes.  

4. The role of PfEMP1 and the involvement of host immune factors specifically in 

SMA are not well understood. We made use of the large SMA group in our study 

to start asking some of these questions.  
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Chapter 2 

Study description  

2.1  Study area location  

The current study (CMR01) was conducted at Mulago National Referral and Teaching 

Hospital in Kampala, Uganda, which serves as the district hospital for Kampala and the 

surrounding areas. Uganda is located in east Africa, bordered to the east by Kenya, to the 

north by Sudan, to the south by Tanzania, to the southwest by Rwanda and to the west by 

the Democratic republic of Congo. In 2015, Uganda had a population of 39,032,000 with 

a gross national income of $1 per capita69. Agriculture is the most important sector of the 

economy, which employs ~80% of the population according to 1999 estimates70. Uganda 

has a tropical climate, rainy with two short dry seasons (December to February and June 

to August)70. Kampala is the capital of Uganda and the largest city in the country.  

 

According to 2013 data, Uganda had a prevalence of more than 1 confirmed case of 

malaria per 1000 population (Figure 2.1a), 100% of them being due to P.falciparum. 

There were 3,631,939 reported malarial cases in 2013 with an estimate of 4,400,000–

12,000,000 cases1. In 2013, there were 5,921 reported deaths from malaria with an 

estimated 5,300-17,000 deaths1. Numbers of admissions and deaths have remained 

mostly constant in Uganda from 2009-2014 (Figure 2.1b). There were fewer admissions 

between 2006-2009 and a sharp decrease in deaths in 2008. This decrease could be due to 

a number of prevention strategies and policies implemented around this time in Uganda 
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such as distribution of insecticide treated bed nets (ITN) free of charge since 2006, 

recommendation of indoor residual spraying (IRS) since 2005, as well as implementation 

of artemisinin combination therapies (ACT) as first line of treatment in Uganda in 20051. 

The apparent rise in admissions and deaths between 2009-2010 could also be attributed to 

increased access to health care or better recording of cases in the country. Of note, 

hospital admission in Uganda is reserved for more complicated cases of malaria rather 

than for uncomplicated malaria, which is normally seen and treated in the outpatient 

clinics.  

      

a.                                                              b. 

Figure 2.1. a) Epidemiological profile of Uganda and b) number of admission and deaths from all 

Plasmodium species in Uganda 

Source: World Health Organization Malaria Report 20151 
 

2.2  Study design 

Ethics statement 

The study was reviewed and approved by the Ugandan National Council for Science and 

Technology (UNCST), the Makerere University School of Medicine Research and Ethics 
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Committee and the University of Minnesota Institutional Review Board. Written 

informed consent was obtained from parents or guardians of study participants.  

 

Selection of study population: inclusion and exclusion criteria 

The CMR01 study was performed from 2008-2013 and enrolled children with cerebral 

malaria (CM, n=269), severe malarial anemia (SMA, n=232) and community children 

(CC, n=213). Children between 18 months and 12 years of age, meeting the WHO 

definition for CM or SMA, were recruited from the Acute Care Unit at Mulago Hospital.  

 

Cerebral malaria was defined as:  1) coma (Blantyre Coma Score [BCS] ≤2); 2) evidence 

of Plasmodium falciparum infection on a blood smear; 3) no other known cause of coma; 

4) no response to glucose one hour after administration if hypoglycemic, and 5) coma 

persisted at least one hour after administration of first line anticonvulsants if 

anticonvulsants were given.  Exclusion criteria for CM included white blood cell count 

>5 cells/µl in cerebral spinal fluid (CSF), identification of bacteria in the CSF by Gram 

stain and/or culture positive for CSF. A lumbar puncture (LP) to rule out bacterial 

meningitis is standard of care for all children with suspected CM and was performed in 

all children with CM unless it was clinically contraindicated or the parents or guardians 

of the child would not agree to having an LP performed.  

 

Severe malarial anemia was defined as the presence of Plasmodium falciparum on a 

blood smear in children with hemoglobin < 5 g/dL. Children were excluded from SMA if 
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they had any signs of impaired consciousness (GCS<15 for children older than 5 years 

old and BCS<5 for children < 5 years old) or had repeated seizures prior to admission. 

Some children presented with both CM and SMA (22% of CM): these children were 

assigned to the CM group at enrollment.  

 

Community children were recruited from the extended family or nearby neighborhood of 

children with CM or SMA. Eligible CC were age 18 months to 12 years and currently 

healthy. CC were matched by age group, not to an individual level, but using the age 

distribution from the first 45 children with CM or SMA enrolled. CC were excluded if 

they had an active illness or had an illness in the past 4 weeks requiring medical 

attention. A blood smear was prepared from children with CC at the time of enrollment 

and those with any density of P.falciparum on smear are indicated here as asymptomatic 

parasitemic (AP). AP were sent home with antimalarials.  

 

Other exclusion criteria for all children included: 1) known chronic illness requiring 

medical care; 2) known developmental delay; or 3) prior history of coma, head trauma, 

cerebral palsy, or hospitalization for malnutrition.  

 

All children were followed up for 2 years, and were asked to return to Mulago hospital 

for any illness. Over 2 years of follow-up, 14 children with CM, 26 children with SMA, 

and 3 CC were admitted to the hospital, and 13 children with CM, 18 children with SMA 

and 1 CC were admitted to the hospital with severe malaria. These data are only for 
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children that were not part of a sub-study looking at the role of iron supplementation in 

long-term severe malaria outcomes (CM (n=164), SMA (n=155), CC (n=132)).  

 

Malarial retinopathy diagnosis 

Children were assessed for malarial retinopathy by indirect and direct ophthalmoscopy. 

Ophthalmoscopy was done by medical officers in all CM patients on admission, unless 

the patient was too clinically unstable, and was repeated every 24 hours while they 

remained comatose. Before each examination, pupils were dilated with sequential 

instillation of cyclopentolate 1% and tropicamide 1%. Using a binocular indirect 

ophthalmoscope, an eye exam was performed 30-60 minutes later. Direct 

ophthalmoscopy was also performed in many though not all patients. The medical 

officers were trained by an ophthalmologist experienced in the evaluation of malarial 

retinopathy. The study investigators and the ophthalmologist performed repeat training 

and assessment of accuracy of the study medical officers one year into the study.  

 

Clinical treatment 

All children underwent a medical history and physical examination. Children with severe 

malaria were managed according to the Ugandan Ministry of Health treatment guidelines 

at the time, which included quinine treatment until the patient was alert and then oral 

quinine for hospitalized patients; and artemether combination therapy, usually with 

artemether-lumefantrine, for outpatients. Since there are currently no recommended 
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adjunctive treatments for severe malaria, these children received supportive and 

symptomatic care as needed, which in most cases for CM included anticonvulsants. All 

children with SMA received a blood transfusion. The blood units provided to hospitals in 

Uganda are checked for HIV-1, syphilis, hepatitis B and C71.  

 

Standard laboratory and clinical testing 

Thick and thin blood smears were prepared and analyzed by Giemsa staining according 

to a standard protocol72. Parasite density was estimated based on two independent 

readers, and whenever the two readings were >20% different from each other, a third 

reader counted independently. The final parasite density was estimated as the median of 

the three readings, or the average of the two initial readings. However, parasite density 

gives only an estimation of the parasites that are circulating in a patient. Considering that 

P.falciparum IEs can sequester in the microsvaculature of various organs, we also 

measured the levels of P.falciparum histidine rich protein-2 (PfHRP-2), a parasite protein 

released in the circulation upon bursting of IEs at the end of the 48-hour asexual cycle. 

PfHRP-2 quantification was performed using the Malaria Ag CELISA (Cellabs, 

Brookvale, Australia), and sequestered parasite biomass was calculated as previously 

described 73. Briefly, sequestered parasite biomass is estimated by subtracting circulating 

parasite biomass (based on parasite density and weight of each child) from total parasite 

biomass (based on levels of PfHRP-2, weight and hematocrit of each child).  
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A complete blood count (CBC) was performed on all enrolled children using a 

COULTER® Ac·T™ 5diff CP (Cap Pierce) hematology analyzer. Blood glucose, 

hemoglobin and lactate levels were estimated immediately upon admission by hand held 

devices (glucometer, hemocontrol and the lactate monitor, respectively), which require 

only a couple of drops of blood. These results were then included in the study after 

consent was obtained from the caregiver. HIV-1 testing was performed whenever the 

parents or guardians of the child approved. Three immunochromatographic tests 

(Determine, STAT-PAK and Uni-Gold) were used and the decision was made based on 

the Uganda National HIV testing algorithm. Stool was examined by microscopy for the 

presence of red blood cells, motile trophozoites or protozoa, protozoan cysts, and 

helminthic ova or larva. Blood culture was initially performed with the Bactec 9050 

Blood Culture System and for the negative samples they were further examined by 

microscopy, blood agar or chocolate agar cultures to completely rule out any infections.  

 

Specimen collection and storage 

Blood was collected in EDTA tubes at enrollment and at 6-month and 12-month follow-

up visits. Plasma was prepared from whole blood tubes and was separated in 1-1.5ml 

aliquots, which were stored at -80 oC. Another tube of whole blood was collected at 24 

hours from patients with severe malaria. Those tubes were also stored -80oC. For all 

patients, we also collected dried blood spots at enrollment, 6-month, and 12-month 

follow-up, which were stored at 4oC. Specific methodology and sample collection for the 
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work presented in each chapter are highlighted in the methods section of the respective 

chapters.  

 

Neurologic assessment and follow-up 

A detailed neurologic examination was performed at discharge and six months later. A 

neurologic deficit was defined as the presence of motor deficits, ataxia, movement 

disorder, behavior, or speech or visual disorders, in a child with no known prior deficits. 

Children that had only hypereflexia were not considered to have a neurologic deficit.  

 

Cognitive assessment and follow-up 

Children had cognitive assessment a week after discharge (or at enrollment for CC) and 

then at 6 and 12 months after enrollment. For children younger than 5 years old, the 

Mullen Scales of Early Learning74 were used to measure cognitive ability. Scores from 

fine motor, visual reception, receptive language, and expressive language scales were 

summed to give the early learning composite score, a measure of overall cognitive 

ability. Attention was assessed using the Early Childhood Vigilance Test (ECVT)75, in 

which a child was required to focus his/her gaze on cartoons screened on a computer for 

about 7 minutes. The measure of attention is the percent time the child spent gazing at the 

screen. Associative memory was assessed using the Color Object Association Test76, in 

which children are required to associate toys with specific color-coded boxes and scored 

on the total number of toys placed in the correct boxes. In children 5 years and older, the 



 

 22 

Kaufman Assessment Battery for Children (second edition) was used to measure overall 

cognitive ability77. Lauria’s model was used to obtain a composite score including 

sequential processing, simultaneous processing, learning ability and planning ability. 

Attention in these children was assessed using the Test of Variables of Attention (TOVA) 

to measure attention and impulse control in four main areas: response time variability, 

response time, impulse control (commission errors), and inattention (omission errors)78. 

Neuropsychology testers were blinded to the study groups (CM, SMA, or CC) being 

tested. 

 

2.3  Dissertation focus 

There are currently no adjunctive therapies for severe malaria28. Adjunctive therapies, 

which have mostly targeted one host factor at a time have not shown success in 

controlled clinical trials28, suggesting that we need a better understanding of both host 

and pathogen factors that contribute to severe malaria, and that successful adjunctive 

therapies may need to target both host and pathogen pathways simultaneously. This 

dissertation takes a more comprehensive approach in identifying both host and parasite 

factors that contribute to disease severity in malaria. More importantly, the sample size 

and study design allow this work to identify factors that specifically differentiate between 

cerebral malaria and severe malarial anemia, and to identify markers of mortality and 

neurocognitive deficits in cerebral malaria. 
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Chapter 3 The endothelial protein C receptor rs867186-GG genotype is associated with 

increased soluble EPCR and could mediate protection against severe malaria. This 

chapter determines the prevalence of a known functional polymorphisms in the gene 

encoding the endothelial protein C receptor (EPCR), a host receptor for infected 

erythrocytes, in both disease groups and community controls. This chapter also looks at 

the levels of soluble EPCR at enrollment and 6-months follow-up in order to understand 

the availability and role of EPCR in malaria as compared to other infectious and 

inflammatory processes without malaria.  

 

Chapter 4 EPCR-binding PfEMP1 variants differ in variant type and expression in 

cerebral malaria and severe malarial anemia. This chapter assesses transcript abundance 

of P.falciparum erythrocyte membrane protein 1 (PfEMP1), an important parasite 

virulence factor, and determines whether the extent of PfEMP1 expression contributes to 

disease manifestation in severe malaria.  

 

Chapter 5 Cerebrospinal fluid tumor necrosis factor-alpha levels are associated with 

coma duration and acute and long-term neurologic deficits in Ugandan children with 

cerebral malaria. This chapter investigates the role of systemic and local TNF-α in CM, 

and emphasizes the need to further study and target local inflammatory pathways in the 

central nervous system.  
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Chapter 6 Systemic immunologic markers of malarial disease severity in Ugandan 

children. This chapter assesses the levels of 18 different cytokines, chemokines and 

growth factors in severe malaria patients with the goal of identifying immune response 

pathways that differentiate between cerebral malaria and severe malarial anemia. In 

addition, this chapter looks at whether certain cytokines or chemokines are associated 

specifically with mortality and neurologic deficits in children with CM.  

 

Chapter 7 High plasma erythropoietin levels are associated with prolonged coma 

duration and increased mortality in children with cerebral malaria. This chapter suggests 

that recombinant erythropoietin (EPO), which has been tried as an adjunctive therapy in 

small phase I trial in CM, may not be safe in children with CM. By looking at the 

association of EPO with coma and mortality in CM, we emphasize that host factors with 

multifunctional roles systemically and locally in the CNS do not represent optimal targets 

for adjunctive therapies.  
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Chapter 3 

The endothelial protein C receptor rs867186-GG genotype is 

associated with increased soluble EPCR and could mediate 

protection against severe malaria79 

3.1  Objectives  

ü Determine the prevalence of rs867186-G, an EPCR polymorphism associated 

with less bound and more sEPCR, in the Ugandan population with and without 

severe malaria 

ü  Evaluate the association of genotype with phenotype for rs867186-G 

ü Determine the availability and role of EPCR in severe malaria as compared to 

other infectious and inflammatory processes 

3.2  Introduction  

Binding of infected erythrocytes (IEs) to host endothelium via P.falciparum erythrocyte 

membrane protein1 (PfEMP1) is an important driver of CM as it prevents parasite 

clearance, and is associated with increased local vasoconstriction, hypoxia and acidosis 

23,35-37,46,80. Binding of IEs and sequestration are also important in SMA 81,82 together with 

other factors such as erythrocyte lysis and suppression of hematopoiesis 65. PfEMP1 can 
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bind to various host-receptors 83,84 and recently, PfEMP1 variants associated with severe 

malaria 85-87 were shown to bind EPCR 52, suggesting an important role for this receptor 

in pathogenesis of severe malaria. 

 

EPCR regulates coagulation by enhancing activation of protein C (PC) 88-90, and has 

cytoprotective functions when bound to activated PC (aPC) (Figure 3.1) 91. EPCR is 

cleaved into its soluble form (sEPCR) by tumor necrosis factor-α converting enzyme 

(TACE) 92. TACE’s activity is increased, by TNF-α, IL-1β and thrombin generation 93. 

EPCR gene (PROCR) variations can also affect sEPCR levels. The rs867186-G variant in 

exon 4 of PROCR causes a serine-to-glycine substitution in the transmembrane region, 

making bound EPCR more susceptible to shedding 94,95.  

 

The evidence that PfEMP1 binds to EPCR at the binding site of PC and aPC 52,54, 

reducing the production and cytoprotective effects of aPC (Figure 3.1) 55 makes EPCR a 

potential important link between sequestration, coagulation defects and endothelial 

activation in severe malaria. sEPCR can bind to IEs and inhibit their adhesion to human 

brain microvasculature endothelial cells 55. Reduced EPCR was observed in autopsy 

samples from pediatric CM patients, which coincided with sequestration of IEs and fibrin 

accumulation 96. Also, a study from Thailand found that rs867186-GG genotype was 

protective against severe malaria 97.  

 



 

 27 

 

Figure 3.1. Physiological function of EPCR and the effect of binding of infected erythrocytes on these 

functions in the context of a P.falciparum infection.  

EPCR promotes activation of protein C (PC) into activated PC (aPC) by thrombomodulin (TM), which is 

important in controlling thrombin production. In addition, binding of EPCR to aPC promotes cleaving of 

protease activated receptor-1 (PAR-1), resulting in endothelial cytoprotective and anti-inflammatory 

functions. Binding of infected erythrocytes (IEs) to EPCR at the binding site of PC and aPC inhibits these 

physiological functions of EPCR.  

 

However, other studies, including studies in African children showing no association 

between the rs867186-G variant and severe disease 98,99 and conflicting studies showing 

an increase 100 or decrease 99 in sEPCR levels in severe malaria suggest that the 
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contributions of the rs867186-GG genotype and sEPCR levels in severe malaria are still 

unclear. These unresolved questions about the association of severe malaria with the 

rs867186-G variant and changes in sEPCR levels led us to investigate these associations 

in a cohort of Ugandan children with severe malaria (cerebral malaria or severe malarial 

anemia), uncomplicated malaria, and otherwise healthy Ugandan children.  

 

3.3  Methods  

Study design  

In addition to the main study described in section 2.2, the work presented in this chapter 

also includes samples obtained from a smaller study that preceded the CMR01. This 

smaller study was performed during 2003-2005 and enrolled children with cerebral 

malaria (CM), uncomplicated malaria (UM) and community controls (CC) between the 

ages of 3-12 years old. This study was reviewed and approved by the Ugandan National 

Council for Science and Technology (UNCST), the Makerere University School of 

Medicine Research and Ethics Committee and Case Western Reserve University. Written 

informed consent was obtained from parents or guardians of study participants. 

 

CM and CC were enrolled as described in section 2.2. Children with UM (fever, P. 

falciparum on blood smear, no criteria for severe malaria, not admitted) were enrolled 

from the Mulago Hospital outpatient malaria clinic.  
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Importantly, none of the community children were readmitted for severe malaria in the 6-

month follow-up period, while 5.3% of the children with severe malaria were readmitted 

for severe malaria, demonstrating that the CC group did have protection against severe 

malaria as compared to the severe malaria group. 

 

PROCR genotyping was done on samples with sufficient DNA quality and volume (551 

SM (325 CM and 226 SMA), 71 UM, 172 CC). Plasma sEPCR levels were tested in 

children at baseline and 6-month follow-up if a sufficient volume was collected (Figure 

3.1). Cerebrospinal fluid (CSF) sEPCR levels were measured in CM children who had 

adequate CSF volume for testing (n=76). Control CSF samples were obtained from North 

American children successfully treated for prior leukemia who had CSF obtained after 

treatment to rule out return of malignancy (ruled out in all). 

 

DNA extraction and PROCR rs867186 genotyping 

Genomic DNA was isolated from whole blood samples of severe malaria patients using 

the DNeasy Blood and tissue kit (Qiagen, Valencia, CA) and from filter papers for UM 

patients and CC using QIAamp 96 DNA Blood Kit (Qiagen, Valencia, CA). E4F (5’- 

GCTTCAGTCAGTTGGTAAAC-3’) and E4R (5’- TCTGGCTTCACAGTGAGCTG-

3’)101 were used to amplify the region of the PROCR gene containing rs867186 and 

rs9574. Genotyping of rs867186 and rs9574 was done by initially amplifying the region 

of interest using HotStar Taq plus master mix (Qiagen, Valencia, CA), followed by 

Sanger Sequencing (ABI 3730xl, University of Minnesota Genomics Center).  
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Laboratory testing  

Soluble EPCR in plasma, serum and CSF were quantified using Asserachrom® sEPCR 

immunoassay (Stago, France). Plasma and serum were diluted according to 

manufacturer’s instructions (1:51); CSF was diluted 1:2. The Asserachrom® sEPCR 

immunoassay uses antibodies directed against the PC binding site of sEPCR.   

 

Plasma soluble intercellular adhesion molecule-1 (sICAM-1), vascular cellular adhesion 

molecule-1 (sVCAM-1), and TNF-α levels were measured by magnetic cytometric bead 

assay (R&D Systems, Minneapolis, MN and EMD-Millipore, Billerica, MA, 

respectively) according to manufacturers’ instructions with a BioPlex-200 system (Bio-

Rad, Hercules, CA). Plasma angiopoietin-2 (Ang-2) and von Willebrand Factor (VWF) 

levels were quantified using the human angiopoietin 2 DUO ELISA kit (R&D Systems, 

Minneapolis, MN) and REAADS von Willebrand Factor activity ELISA kit (Corgenix, 

Broomfield, CO), respectively.  Plasma and CSF albumin were quantified by the 

Advanced Research and Diagnostic Laboratory at the University of Minnesota.  

 

Statistical analysis  

Fisher’s exact test for 2x2 tables was used to compare prevalence of PROCR variants 

between the control and malaria groups, when considering a dominant or recessive 
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model. Fisher’s exact test for 2x3 tables was used for the additive model. To control for 

multiple comparisons, only P<0.008 was considered statistically significant in both tests. 

 

Measures with skewed distributions, including sEPCR levels, were replaced by their 

common logs (log to base 10) for ANOVA or regression analyses. sEPCR levels were 

compared between groups or between genotypes using ANOVA, followed by Tukey’s 

post-hoc test to control for multiple comparisons. Clinical and laboratory findings for 

children in the different disease groups were compared using the chi-squared test if 

categorical and if continuous, ANOVA followed by Tukey’s post-hoc test. Regression 

analyses used linear regression for continuous outcomes and logistic regression for 

categorical outcomes. All regression analyses were adjusted for age.   

 

3.4  Results 

Baseline characteristics  

Of the 794 children who were genotyped for rs867186, sEPCR levels at enrollment were 

quantified in 484 SM (277 CM and 207 SMA), 38 UM and 110 CC (see Methods, Figure 

3.2). Children with SM were younger than children with UM or CC (Table 3.1). sEPCR 

level was associated with age in children with SM (Spearman’s rho -0.10, P=0.03) but 

not in children with UM or healthy controls (P>0.64 for all). sEPCR level was not 

associated with sex in any group (P>0.17 for all). 
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Figure 3.2.  Study profile.  

Abbreviations: sEPCR, soluble endothelial protein C receptor; SM, severe malaria 
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Table 3.1. Age and sex of children with severe or uncomplicated malaria and community children 
 

aANOVA, Tukey post-hoc test adjustment for multiple comparisons with log10 transformed values for variables with 
no normal distribution. Chi-squared test was used for categorical variables, with P<0.017 considered significant to 
control for multiple comparisons.  
bIn post-hoc testing, all pairs of groups differ significantly 
cSM significantly different from UM  
dIn post-hoc testing, CC differ from SM and UM 
e n=540 for SM, n=69 for UM and n=131 for CC 

 Severe 
Malaria 

(SM, n=551) 

Uncomplicated 
Malaria 

(UM, n=71) 

Community 
Children 

(CC, n=172) 

Pa 

Age (months) median (IQR) 41.7 
(28.1-59.3) 

78.0 
(58.6-108) 

55.5 
(36.1-84.9) 

<0.0001b 

Sex, male n (%) 
 

329 (59.7) 31 (43.7) 85 (49.4) 0.005c 

P. falciparum peripheral blood density 
(parasites/µl)e, median (IQR) 

39660 (9900-
191380) 

33420 (7860-
116580) 

0 (0-0) <0.0001d 

 

Prevalence of rs867186-G EPCR variant in children with severe malaria, 

uncomplicated malaria and healthy community children  

The prevalence of rs867186-G was higher in healthy controls than severe malaria 

children in an additive model (P=0.006, Table 3.2). A recessive model looking at the 

prevalence of GG genotype vs. AG+AA showed that healthy community children had a 

higher prevalence of the GG genotype (4.1%) compared to children with SM (0.6%, 

P=0.002). The GG genotype was associated with an 87% reduced rate of severe malaria 

(odds ratio (OR) 0.13, 95% CI 0.03-0.50, P=0.003). The prevalence of AA vs. GG+AG 

did not differ significantly between the disease groups and CC in a dominant model 

(P>0.37 Table 3.2).  
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Table 3.2. Prevalence of rs867186-G variant in malaria disease groups and community children 

SM, severe malaria (cerebral malaria or severe malarial anemia); UM, uncomplicated malaria; CC, community children 
aFisher’s exact test is used. P<0.008 considered significant to control for multiple comparisons 
bSM vs. CC 
cUM vs. CC 
 

 rs867186 (A4600G) Pa  
Additive model  

Pa  
Recessive 

model 

Pa 
Dominant 

model 
 AA, N (%) AG, N (%) GG, N 

(%) 
 GG vs. 

AG+AA 
GG+AG vs. 

AA 
SM (N=551) 446 (80.9) 102 (18.5) 3 (0.6) 0.006b 0.002b 0.38b 

UM (N=71) 57 (80.3) 14 (19.7) 0 (0) 0.28c 0.11c 0.73c 

CC (N=172) 134 (77.9) 31 (18.0) 7 (4.1) Reference Reference Reference 

 

The rs867186-G variant tags haplotype 3 of PROCR. We also assessed the prevalence of 

haplotype 1, tagged by rs9574-C, as it has been associated with increased risk of 

thromboembolism in some 101 but not all 102 studies, and one study associated the 

presence of both these haplotypes with protection from severe sepsis 103. In our cohort, 

the prevalence of rs9574-C did not differ significantly between malaria groups and CC 

under a recessive, dominant or additive model (P>0.13 for all comparisons, Supplemental 

Table 3.1). Moreover, children who had both variants were not less likely to have severe 

malaria (P>0.98, Supplemental Table 3.2).  

 

Levels of soluble EPCR in children with severe malaria were lower at 

enrollment but normal at six-months follow-up 

Plasma sEPCR levels at enrollment were significantly lower in children with SM (n=484, 

median, ng/ml [25th percentile, 75th percentile], 91.8ng/ml [69.4,118]) compared to CC 

(n=110, 117ng/ml [94.9, 189], P<0.001, Figure 3.3a). sEPCR levels in children with 
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uncomplicated malaria (UM, n=38, 114ng/ml [82.4,156]) were lower than CC (P=0.03), 

and higher than children with SM (Figure 3.3a), but the latter comparison did not reach 

statistical significance (P=0.07), potentially due to the small sample size of the UM 

group.  When controlling for age, the (log-transformed) sEPCR level was significantly 

lower in the SM group compared to CC (P<0.001).  The difference between the UM and 

CC group was modest (p=0.055).   

 

At six months post-discharge, sEPCR levels in children with SM (n=378, 118ng/ml 

[94.7,176]) did not differ significantly from CC (n=73, 118ng/ml [94.8, 163], P=0.77, 

Figure 3.3b), and were similar to the CC levels at enrollment. These results suggest that 

lower plasma sEPCR levels in children with SM occur most notably during the disease 

processes of severe malaria. 
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Figure 3.3. Plasma sEPCR levels are lower with increased disease severity at enrollment, but normal 

at 6-months follow-up  

(a) sEPCR levels (on a logarithmic scale) at enrollment and (b) at 6-months follow-up. The horizontal line 

represents median values. Severe malaria (SM), uncomplicated malaria (UM), community controls (CC). 

 

Plasma sEPCR levels at enrollment and 6-month follow-up trend lower in 

children with repeated SM 

Readmission rates for severe malaria were assessed in the children from the CM/SMA 

study who were not enrolled in a subsequent nested study of iron treatment and who did 

not leave the study (301 children: CM, n=156, SMA, n=145), as iron could change risk of 

readmission. We compared plasma sEPCR levels at enrollment in children with severe 

malaria that were readmitted with severe malaria within 6-months of discharge versus 



 

 37 

sEPCR levels in children that were not readmitted with severe malaria. sEPCR levels at 

enrollment trended lower in children who were readmitted with severe malaria as 

compared to not readmitted (readmitted with severe malaria within 6-months of discharge 

n=16, median, [25th percentile, 75th percentile] ng/ml, 72.2ng/ml [60.5, 102] vs. not 

readmitted n=244, 95.0ng/ml [72.8, 123], P=0.06, Figure 3.4). Readmitted children also 

tended to have lower sEPCR levels at 6-month follow-up (readmitted n=15, median, [25th 

percentile, 75th percentile] ng/ml, 101ng/ml [87.6, 116] vs. not readmitted n=226, 

121ng/ml [94.1, 176], P=0.06).  
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Figure 3.4. Plasma sEPCR levels trended lower in the children readmitted with severe malaria  

sEPCR levels (on a logarithmic scale) at enrollment in children with SM separated by whether they were 

readmitted within 6-mo of discharge for severe malaria. The horizontal line represents median values.  

 

Association of rs867186-G variant with higher sEPCR levels 

In our cohort, rs867186-G variant and sEPCR levels were strongly associated in each 

disease group, with AG and GG genotypes having higher sEPCR levels than AA (Figure 

3.5). Children with SM who had genotype AG (n=91, median, ng/ml [25th, 75th 

percentile], 131ng/ml [107,170]) had significantly higher levels than children with 
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genotype AA (n=390, 84.5ng/ml [65.7, 104], P<0.001). Only three SM children had the 

GG genotype, and they had higher sEPCR level than the children with AA (n=3, 

194ng/ml [104, 211], P=0.007) but not AG genotypes (P=0.71, Figure 3.5). Similarly, 

children with UM with the AG genotype (n=13, 161ng/ml [142, 164]) had higher plasma 

sEPCR levels than those with AA  (n=25, 86.5ng/ml [75.4, 113], P<0.001). The effect of 

rs867186-G variant was clearest in healthy CC children. Plasma sEPCR levels were 

higher with increasing presence of the G variant (AA (n=79, 98.4ng/ml [87.8, 121]; AG, 

n=25, 241ng/ml [203, 288]); GG, n=6, 350ng/ml [319, 380], P<0.006 for all 

comparisons, Figure 3.5). The rs867186-G variant was similarly associated with sEPCR 

level at 6-months follow-up (Supplemental Figure 3.1).  
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Figure 3.5. rs867186-G is associated with higher sEPCR level  

sEPCR levels are represented on a logarithmic scale and each disease group is separated by rs867186 

genotype: AA, AG or GG. The horizontal line represents median values. Severe malaria (SM), 

uncomplicated malaria (UM), community controls (CC). 

 

For the AA, AG and GG genotypes, sEPCR levels were higher with decreasing disease 

severity (Figure 3.6). Thus, sEPCR levels were lower in children with severe malaria 

even after controlling for the rs867186-G variant.  
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Figure 3.6. Plasma sEPCR levels are lower with increased disease severity when controlling for 

rs867186-G variant 

For each genotype (AA, AG or GG) the median plasma sEPCR levels are represented for each group. The 

horizontal line represents median values. Severe malaria (SM), uncomplicated malaria (UM), community 

controls (CC). 
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Relationships between inflammation, parasite biomass and endothelial 

activation and plasma sEPCR levels in children with severe malaria  

Inflammation and parasite biomass can affect sEPCR levels, while EPCR can in turn 

affect endothelial activation. When comparing levels of markers of inflammation, 

endothelial activation and parasite biomass to sEPCR levels, all levels were log 

transformed (log base 10) because of their skewed distribution, so β-coefficients 

represent comparisons of log 10 increase in one factor to a log 10 increase in the other 

factor. After adjustment for age, plasma TNF-α levels correlated positively with sEPCR 

levels in children with severe malaria (β-coefficient 0.03, 95% CI 0.002-0.06, P=0.04, 

Table 3.3). Plasma PfHRP-2 levels in the full study cohort had a negative but non-

significant correlation with plasma sEPCR levels (β coefficient -0.01, 95% CI  -0.03-

0.007, P=0.24). However, among children with severe malaria, sEPCR levels were 

positively associated with total (β-coefficient 0.05, 95%CI 0.03-0.08, P<0.001) and 

sequestered parasite load (β-coefficient 0.04, 95% CI 0.02-0.07, P=0.002, Table 3.3), 

after adjusting for age.  

 

Among markers of endothelial activation, including von Willebrand Factor (VWF), 

angiopoietin 2 (Ang-2), intercellular adhesion molecule-1 (ICAM-1) and vascular cellular 

adhesion molecule-1 (VCAM-1), sEPCR levels were associated with increased levels of 

soluble ICAM-1 (β-coefficient 0.51, 95% CI 0.20-0.82, P=0.001), but not with VWF, 

VCAM-1 and Ang-2 levels (Table 3.3).  
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Table 3.3. Association of plasma sEPCR levels with endothelial activation markers and PfHRP-
2 levels in children with severe malaria 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

aModels adjusted for age 
bModels adjusted for age, and systemic TNF-α levels 
All values were log-transformed (log10).  

 Plasma sEPCR (ng/ml) 
 β coefficient  

(95% CI) 
P 

TNF-α 
(pg/ml)a 

0.03 
 (0.002-0.06) 

0.04 

PfHRP-2 
(ng/ml)a 

0.05 
 (0.03-0.08) 

<0.001 

Sequestered 
biomassa 

0.04  
(0.02-0.07) 

0.002 

VWF 
(% of normal)b 

0.11 
 (-0.10-0.33) 

0.29 

Plasma Ang-2 
(ng/ml)b 

0.08 
(-0.22-0.38) 

0.60 

sICAM-1 
(ng/ml)b 

0.51  
(0.20-0.82) 

0.001 

sVCAM-1 
(ng/ml)b 

0.07 
 (-0.06-0.20) 

0.31 

 

sEPCR levels in the cerebrospinal fluid of children with CM  

EPCR is also important in the central nervous system (CNS) as it transports aPC across 

the blood brain barrier (BBB) 104 and facilitates neuroprotective effects of aPC 104-106. 

Elevated levels of sEPCR in cerebrospinal fluid (CSF) could inhibit these neuroprotective 

effects by depleting available aPC. To assess the association of CSF sEPCR levels with 

adverse outcomes in CM, we quantified sEPCR in the CSF of children with CM. Median 

[25th percentile, 75th percentile] CSF sEPCR levels (ng/ml) were higher in children with 

CM (n=76, 4.8ng/ml [3.9, 7.3]) than in control North American children with prior 

neoplastic disease (n=10, 2.2ng/ml [1.8, 2.3], P<0.0001, Figure 3.7a). CSF sEPCR levels 

correlated positively with plasma sEPCR levels (Spearman’s rho=0.34, P=0.003) 
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suggesting a passive diffusion due to BBB breakdown. To investigate this further, we 

assessed the association of CSF-to-plasma sEPCR ratio (CSF sEPCRx1000/Plasma 

sEPCR (ng/ml)) with CSF-to-plasma albumin ratio (CSF albumin x1000/Plasma albumin 

(mg/L)). The sEPCR ratio correlated positively with the albumin ratio (Spearman’s 

rho=0.68, P<0.0001, Figure 3.7b), suggesting that the major source of sEPCR in the CSF 

of children with CM is transport from plasma across an impaired BBB.  

 

Figure 3.7. CSF sEPCR levels are elevated in children with cerebral malaria  

(a) Levels of sEPCR were measured in CSF obtained in CM children who were in stable conditions for a 

spinal tap. Control CSF samples were obtained from asymptomatic children successfully treated for prior 

leukemia who had CSF obtained after treatment to rule out return of malignancy. (b) Spearman correlation 

of CSF-to-plasma albumin ratio vs. CSF to plasma sEPCR ratio for children with CM. 
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Association of plasma and CSF sEPCR with disease severity markers in 

cerebral malaria  

Among cerebral malaria (CM) children that had plasma sEPCR quantified (n=277), 30 

died and of the children who survived, 80 children were discharged with neurologic 

deficits and 11 had neurologic deficits at 6-months follow-up.  In children with CM, 

neither plasma nor CSF sEPCR was associated with mortality or neurologic deficits at 

discharge or 6-months follow-up (P>0.10 for all, Table 3.4), adjusting for age. CSF and 

plasma sEPCR were also not associated with coma duration or seizure number during 

admission (data not shown). sEPCR levels were also not associated with neurocognitive 

outcomes (overall cognitive ability, associative memory, or attention) in children with 

CM under 5 years of age (P>0.10 for all, Table 3.5). 

Table 3.4. Relationship of plasma and CSF sEPCR levels to mortality and neurologic morbidity in 
children with cerebral malaria   
 

 Mortality Neurologic deficit  
(discharge) 

Neurologic deficit 
(6mo)  

OR 
(95% CI) 

 n 

P OR 
(95% CI) 

n 

P OR 
(95% CI) 

 n 

P 

Plasma 
sEPCR 
(ng/ml) 

3.13 
(0.36-27.39)a 

n=277 

0.30 3.53 
(0.76-16.35)b 

 n=243 

0.11 3.87  
(0.12-128)c 

 n=233 

0.45 

CSF sEPCR 
(ng/ml) 

4.30 
 (0.17-110)d  

n=76 

0.38  0.99 
(0.13-7.65)e 

 n=70 

0.99 0.09  
(0.0005-16.14)f 

 n=67 

0.37 

All models were adjusted for age. Plasma and CSF sEPCR levels were log transformed (log 10) 
a Survived (n=247), died (n=30) 
b Discharged with neurologic deficits (n=80) vs. without (n=163) 
c Neurologic deficits at 6-months follow-up (n=11) vs. not (n=222) 
d Survived (n=70), died (n=6) 
e Discharged with neurologic deficits (n=26) vs. without (n=44) 
f Neurologic deficits at 6-months follow-up (n=4) vs. not (n=63) 
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Table 3.5. Relationship of plasma and CSF sEPCR levels with cognitive outcomes at 12 months 
follow-up in children with cerebral malaria 
 

 Overall cognition Associative memory Attention 
 β coefficient  

(95% CI),n 
P β coefficient  

(95% CI), n 
P β coefficient 

 (95% CI), n 
P 

Plasma sEPCR 
(ng/ml) 

-1.26 (-2.90-0.38) 
n=120 

0.13 -0.65 (-1.48-0.18) 
n=120 

0.12 -0.82 (-1.83-0.18) 
n=123 

0.11 

CSF sEPCR 
(ng/ml) 

-0.45 (-3.18-2.28) 
n=47 

0.74 -0.33 (-0.99-0.33) 
n=47 

0.31 1.09 (-0.24-2.41) 
n=47 

0.11 

All models were adjusted for age. Plasma and CSF sEPCR log transformed (log 10).  

 

Finally, we compared sEPCR levels in the children with CM who were malaria 

retinopathy positive versus negative. Children who were retinopathy positive had lower 

sEPCR levels, and difference approached statistical significance (n, median, ng/ml [25th 

percentile, 75th percentile] levels in retinopathy positive, n=153, 88.7ng/ml [71.0,115] vs. 

retinopathy negative, n=72, 98.9ng/ml [72.8, 141], P=0.07). 

 

3.5  Discussion  

The present study found that in Ugandan children, the rs867186-GG genotype is more 

prevalent in healthy community children than in SM and is associated with increased 

sEPCR levels; that healthy community children have higher sEPCR levels than children 

with SM, and that among children with an initial episode of SM, those with repeated 

episodes of SM tended to have lower sEPCR levels during the initial admission and at 6-

month follow-up than those without repeated SM. Since sEPCR levels in other infectious 

and inflammatory processes are almost uniformly elevated, the present study’s findings 

suggest a distinctive role for sEPCR in severe malaria as compared to other infectious 
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diseases, and support the idea that the rs867186-GG genotype might mediate protection 

from severe malaria through increased sEPCR levels.  

 

The reduced prevalence of the rs867186-GG genotype in severe malaria is similar to the 

findings of a study of Thai adults 97, but differs from studies in Ghanaian 98 and 

Tanzanian children 99, which found no association between the prevalence of rs867186-G 

variant and severe malaria 98,99. In all these studies, rs867186-GG was uncommon, 

occurring in <5% of the population, suggesting that the benefits are either modest or 

counterbalanced by deleterious effects, such as the association of this variant with an 

increased risk of thrombotic disorders 107. The inconsistencies between findings could 

arise from host and parasite genetic factors, diseases, or co-infections that differ between 

these study populations. Large multi-center studies including areas of differing malaria 

transmission are needed to understand the selection pressure, if any, on this gene and 

others involved in the aPC/EPCR system in Sub-Saharan Africa. 

 

The present study also found that sEPCR levels were decreased in severe malaria, in 

contrast to the elevated sEPCR levels typically seen in other infections and disease 

processes characterized by inflammation. We did not see a significant difference in 

sEPCR levels between children with CM and SMA (data not shown).  High sEPCR levels 

are seen in SLE 108,109, before relapse in Wegener’s granulomatosis 110, and in Behcet’s 

disease 111. In sepsis, the findings are more nuanced, but the majority of the studies have 

shown elevated108,112,113 or similar 114,115 levels of sEPCR in sepsis patients as compared 
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to healthy individuals, with one study showing significantly lower sEPCR levels in 

patients with severe sepsis at the onset of organ failure than in healthy controls116. The 

differences in findings could be explained partially by the lack of rs867186-G 

genotyping, which is strongly associated with sEPCR levels. The present study’s findings 

on low sEPCR in SM are consistent with an earlier small study of children with severe 

malaria 99, but contrast with a study of children from Benin in which sEPCR levels were 

higher in children with CM than in children with uncomplicated malaria, and in which 

the highest sEPCR levels were seen in children who died 100. Differences in sample 

processing or testing, or differences in levels due to extremely severe disease in the Benin 

study (in which patients with CM had a 47% mortality rate) or differences in population 

genetics might have contributed to the differing findings in the Benin study. However, 

the present study, which has a sample size more than triple that of either previous study, 

clearly found that sEPCR levels are lower in severe malaria, and also showed that 

children readmitted with severe malaria tended to have lower sEPCR levels than children 

not readmitted with severe malaria, further supporting an association of low sEPCR 

levels with severe malaria. 

 

While the rs867186-G variant can affect the levels of sEPCR, we showed that even when 

controlling for the prevalence of this variant, children with SM had lower levels of 

sEPCR than CC (Figure 3.6), suggesting that disease processes in SM are affecting the 

levels of sEPCR seen in SM. Why might plasma sEPCR levels be decreased in severe 

malaria? There are several potential reasons. Because sEPCR can bind to IEs 55, the IE-
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bound EPCR may be cleared by the spleen or be removed during plasma processing. 

Binding of PfEMP1 to EPCR could also provide an immune evasion mechanism for the 

parasite. Moxon et al. demonstrated that loss of EPCR was associated with parasite 

sequestration 96, suggesting that interaction of IEs with EPCR may decrease detection of 

endothelial cell-bound EPCR. How this affects shedding of sEPCR is unknown; it is 

possible that IE binding to cell-bound EPCR could reduce EPCR shedding. Also, sEPCR 

could bind to activated neutrophils 117, or due to its small size, leak into damaged organs 

as seen in the CSF of children with CM (Figure 3.7b). Any or all of these processes could 

contribute to decreased systemic sEPCR in severe malaria. Determining the expression 

level of EPCR in subcutaneous tissues 96 or circulating endothelial cells 109 would 

complement our findings. Additionally, measuring sEPCR levels and parasite clearance 

at multiple time-points could help determine whether the changes in sEPCR are indeed 

due to a malaria-specific event.  

 

In the present study, we found elevated levels of CSF sEPCR in CM children, similarly to 

a previous smaller study 96, but unlike Moxon et al. we did not find strong evidence for 

local shedding of sEPCR since sEPCR and albumin ratios strongly correlated and there 

was no evidence of an upward shift in sEPCR ratios more than what would be predicted 

from a similar increase in albumin index (Figure 3.7b). However, we could not measure 

the albumin index in our control samples, and so could not rule out any local production 

of sEPCR. Furthermore, considering the nature of our study, we cannot determine 

causality and order of events. It could be that BBB leakage as a result of inflammation 
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leads to increased sEPCR in the CSF, but it could also be that considering the 

cytoprotective effects of EPCR91, increased shedding of EPCR as a result of 

inflammation leads to loss of BBB integrity and increased leakage of plasma proteins 

including sEPCR. In our study, plasma and CSF sEPCR levels were not associated with 

mortality, morbidity (neurologic deficits, seizure number, coma duration), or cognitive 

outcomes in children with CM, suggesting that a further decrease in the already low 

sEPCR levels of children with severe disease did not lead to increased mortality or 

adverse neurologic complications. However, lower sEPCR levels at enrollment showed a 

trend towards increased risk of readmission for malaria in children with severe malaria, 

suggesting that children with the lowest sEPCR levels during disease might have a 

greater risk of increased disease severity (requiring admission) with subsequent P. 

falciparum infection. This finding supports the idea that the ability to bind parasites with 

increased sEPCR might lead to protection from severe malaria, but the study numbers 

were small and additional studies are required to determine if this association is 

consistently seen. 

 

Across all children, sEPCR levels had a non-significant but negative correlation with 

PfHRP-2 levels, as might be expected if increased parasite load led to increased binding 

of sEPCR in plasma.  However, among children with CM or SMA, children with higher 

parasite biomass also had higher sEPCR levels. Since within disease groups, TNF-α 

correlated strongly with PfHRP-2 (Spearman’s rho 0.57, P<0.0001), and TNF-α is known 

to be associated with severe disease 118-120, it is possible that this correlation between 
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sEPCR and PfHRP-2 reflects the second phase of a biphasic response: while initially 

EPCR binds IEs and sEPCR could be protective against sequestration, later in the disease 

stage, an increase in TNF-α levels in response to an increase in parasite biomass, leads to 

elevated shedding of sEPCR93.  Moreover, considering the role of EPCR in endothelial 

stability we hypothesized that elevated levels of sEPCR would be associated with 

elevated endothelial activation in SM. When adjusting for TNF-α levels, sEPCR levels 

were associated only with elevated sICAM-1 (Table 3.3), emphasizing the multifactorial 

processes that could be contributing to endothelial activation in SM.  

 

EPCR-binding PfEMP1 are large multi-domain proteins and are likely binding to other 

receptors. Therefore it will be important to determine the relative importance of other 

receptors working in concert with EPCR in severe malaria. In vitro studies and clinical 

studies across multiple research sites could provide much additional information on what 

induces production of sEPCR, how it is regulated and removed from the body, and how 

sEPCR levels relate to endothelial cell-bound EPCR. 

 

In summary, our study found that in Ugandan children, the rs867186-GG genotype was 

associated with increased sEPCR levels and was less common in severe malaria, higher 

sEPCR levels were seen in healthy community children than in children with severe 

malaria, and lower sEPCR levels during severe malaria and in follow-up were associated 

with readmission for malaria.  The findings suggest that sEPCR has a distinctive role in 

malaria, probably due to its binding to IEs. The mechanisms by which sEPCR levels are 
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altered in severe malaria, the sequence of events, and the full consequences of decreased 

sEPCR levels are important areas for future studies.  
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Chapter 4 

EPCR-binding PfEMP1 variants differ in variant type and 

expression in cerebral malaria and severe malarial anemia  

4.1  Objectives 

ü Evaluate the performance of newly designed primers that target a larger diversity 

of P.falciparum var genes 

ü Determine whether var genes encoding for group A (rosetting or non-rosetting) 

and EPCR-binding PfEMP1 are differentially transcribed in parasites from 

Ugandan children with CM vs. SMA, from CM children with or without 

retinopathy, and from CM children that died vs. those that survived.  

4.2  Introduction  

Cerebral malaria (CM) and severe malarial anemia (SMA) are two distinct clinical 

entities, CM characterized by coma and high mortality and SMA characterized by severe 

anemia. In CM, adhesion of infected erythrocytes (IEs) to other uninfected erythrocytes 

(UEs) (rosette formation), sequestration of IEs, leukocytes and platelets to the blood-

brain barrier (BBB) endothelium, combined with an imbalanced immune response and 

endothelium activation are thought to lead to BBB dysfunction and adverse clinical 

outcomes17,30-33. In SMA, destruction of IEs and UEs, dyserythropoiesis and suppression 

of erythropoiesis are considered important contributors to severe anemia. However, little 
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is known about how parasite virulence factors may contribute to the development of these 

different clinical manifestations of severe malaria. 

 

Within CM, malarial retinopathy has been proposed to distinguish “true” CM 

(retinopathy positive, RP) from coma due to other causes, with incidental P.falciparum 

parasitemia (retinopathy negative, RN)36. However, some studies121,122 suggest that RN 

CM may be part of the clinical spectrum of CM, milder than RP CM but still due to P. 

falciparum and not other causes. Assessment of parasite gene expression could help 

determine whether parasite virulence factors expressed in RP CM are also expressed in 

RN CM. 

 

The best-studied parasite virulence factor is P.falciparum erythrocyte membrane protein 

1 (PfEMP1). PfEMP1 is involved in various aspects associated with disease severity and 

complications in malaria such as antigenic diversity10-13, cytoadherence to various host-

receptors9, rosetting14 and evasion of the immune response15. PfEMP1 is encoded by the 

diverse var gene family12,123,124. Var genes can be classified into group A, B, C, B/A and 

B/C based on their 5’ upstream sequence, chromosome location and direction of 

transcription125,126. The extracellular portion of PfEMP1 varies in organization and length 

but comprises a combination of Duffy binding like domains (DBLα-ζ) and cysteine rich-

interdomain regions (CIDR α-δ)127,128, which can be found in conserved tandem 

arrangements known as domain cassettes (DC)128.   
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The observation that immunity to severe malaria arises rapidly after only a few 

episodes129 together with studies showing increased recognition of IE surface antigens 

with age130 have led to the hypothesis that severe malaria is associated with a small 

number of PfEMP1 variants to which antibodies are acquired early in life. Expression of 

group A131-135 var genes and var genes encoding DC8 (var B/A) and DC13 (var A) 

PfEMP185 have been associated with severe malaria in some, but not all, studies136-138. 

Antibodies against var A and B/A PfEMP1 are gained earlier in life139 and a broader 

reactivity of antibodies to group A and B var domains has been associated with 

protection against severe malaria140.  

 

Endothelial protein C receptor (EPCR) binding appears particularly important for the 

PfEMP1 variants associated with severe malaria. DC8 (var B/A) and DC13 (var A) 

PfEMP1 mediate binding of IEs to various microvasculature beds86,141 via EPCR52, thus 

reducing the production and cytoprotective effects of aPC53,55,56. As a result, the extent of 

PfEMP1-EPCR binding could determine the amount of sequestration, coagulation 

defects, endothelial activation and permeability, which in turn could define the outcomes 

of severe malaria. Whether group A var, and EPCR-binding var genes (group A or B) are 

differentially expressed in the different manifestations of severe malaria is not well 

characterized. In a study of Kenyan children, non-rosetting var A-like genes were found 

more commonly in parasites infecting children with impaired consciousness (BCS<4), 

whereas rosetting var A types were associated with respiratory distress142. Comparable 

var transcript levels were seen between CM and SMA, however transcript levels of group 
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A var genes (DC13 and DC5) trended higher in CM85. A recent study did not see a 

significant difference in transcript levels of var genes encoding DC8 and DC13 PfEMP1 

between RP and RN CM children143, suggesting that parasites infecting RN express the 

var genes associated with severe malaria and IE-binding to the same extent as RP. 

However, a comparison of RN with another form of severe malaria was not performed, 

which could help in further placing RN CM in the disease spectrum of malarial severity.  

 

Despite the evidence that EPCR-binding PfEMP1 variants are important in development 

of severe malaria, there is limited data on how these variants may contribute to 

development of CM or SMA, or whether they differ in RP vs. RN CM. In the current 

study we addressed whether var genes encoding group A (rosetting or non-rosetting) and 

EPCR-binding PfEMP1 are differentially transcribed in parasites from Ugandan children 

with CM vs. SMA, from CM children with or without retinopathy, and from CM children 

that died vs. those that survived. We have re-designed the qRT-PCR primers based on the 

comparison of 226 var sequences. The var profile that leads to the most severe malaria 

manifestations could help identify the binding characteristics that can be targeted to 

reduce morbidity and mortality in severe malaria.  

 

4.3  Methods 

Sample collection and RNA isolation 

Whole blood was collected at enrollment in PAXgene Blood RNA preservative solution 

(PreAnalytiX, Hombrechtikon, Switzerland) in a ratio of 2.76 mL of additive per mL of 
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blood. The samples were stored long-term at -80oC. RNA was isolated using the 

PAXgene Blood RNA Kit (PreAnalytiX, Hombrechtikon, Switzerland).  

 

Quantification of var transcription by qRT-PCR  

Total RNA was treated with DNase I (Invitrogen, Carlsbad, CA). cDNA was synthesized 

using random hexamers and the SuperScript® III First-Strand Synthesis System 

(Invitrogen, Carlsbad, CA) according to manufacturer’s instructions. qRT-PCR was 

performed in 20µl reactions using KiCqStart® SYBR® Green qPCR ReadyMix™ (Sigma-

Aldrich, St. Louis, MO) with the 7500 Real Time PCR System (Applied Biosystem, 

Foster City, CA). Amplification was performed following the previously published 

conditions85 and data was collected at the final elongation step.  No reverse transcriptase 

and no template controls for both housekeeping genes were included in each plate tested 

to rule out DNA contamination in the RNA samples and any nucleic acid contamination 

in reagents, respectively. Gene expression was normalized to the average of two 

housekeeping genes: seryl t RNA synthetase and fructose-bisphosphate aldolase 

(ΔCtvar_primer = Ctvar_primer − Ctaverage_control primers). Only samples that had a Ctaverage_control 

below 25 were included in the analysis, to allow analysis only of those samples that fell 

well within the linear range of the standard curves for these two genes. ΔCtvar_primer was 

transformed into arbitrary units using Tu=2(5−ΔCt). Any time ΔCtvar_primer  was 5 or higher, 

it was given an arbitrary unit of 1. As an example, if a domain was expressed 5 fold lower 

than the housekeeping genes (ΔCtvar_primer =5), the arbitrary units would be 1. This cutoff 

of was set to allow for analysis of only the samples that had Ct values, which fell within 
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the linear range of the standard curves generated from the dilution of 3D7 gDNA for each 

domain. Melting temperature analysis was performed for each target and only samples 

with Tm within 1.7oC of median Tm were analyzed. If only primer dimers or non-specific 

larger targets were detected, Tu for that target was assigned as 1.  

 

Statistical analysis  

Data was analyzed using Stata/SE 12.1 (StataCorp, College Station, Texas). Transcript 

levels of var genes were compared between disease groups using Mann-Whitney U test. 

Clinical and laboratory findings for children in the different disease groups were 

compared using the chi-squared test if categorical and using t-tests for continuous 

measures. Median Tu for group A EPCR-binders was determined as median of 

CIDRα1.4, CIDRα1.5a, CIDRα1.5b, CIDRα1.6b and CIDRα1.7 Tu; median Tu for group 

B EPCR-binders was determined as median of CIDRα1.1, CIDRα1.8a and CIDRα1.8b 

Tu; median of CIDRα1 EPCR-binders was calculated as median of CIDRα1.1-

CIDRα1.8b Tu.  

 

4.4  Results 

Characteristics of study population 

We had RNA with sufficient volume and quality to quantify P.falciparum var transcript 

levels from 159 patients (98 cerebral malaria [CM], 47 severe malarial anemia [SMA], 

and 14 asymptomatic parasitemic [AP]). Median age of this population was 40.0 months 
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[25th percentile, 75th percentile], [28.7, 54.6]). Age and sex did not significantly differ 

between disease groups (Table 4.1). As expected, parasite biomass, indicated by 

P.falciparum histidine rich protein-2 (PfHRP-2) levels differed between disease groups 

(P<0.0001, Table 4.1), being higher in CM than SMA than AP. Sequestered biomass 

followed the same trend (P<0.0001, Table 4.1) confirming that while sequestration occurs 

commonly in P.falciparum infections, its magnitude and contribution to disease severity 

differs among various manifestations of malaria.  

 

Table 4.1. Study population characteristics 

 

a ANOVA, Tukey post-hoc test adjustment for multiple comparisons with log10 transformed values for 
variables with no normal distribution. Chi-squared test was used for sex, with P<0.017 considered 
significant to control for multiple comparisons.  
b In post-hoc testing, SMA differed from CM and AP 
c In post-hoc testing, all groups differed from each other 
d In post-hoc testing, CM and SMA differed from AP 
 

 CM   
(n=98) 

SMA  
(n=47) 

AP  
(N=14) 

Pa 
 

Age (months), median (IQR)  41.5 (30.9-54.6) 33.4 (24.9-52.4) 48.5 (31.0-71.0) 0.14 

Sex (male), n (%)  59 (60.2) 
 

35 (74.5) 7 (50.0) 0.14 

Weight for age z-score, mean 
(SD) 

-1.11 (1.49) 
n=97 

-1.98 (1.39) -0.31 (1.17) 
 

0.0001b 

  
Hemoglobin (g/dL), mean (SD) 

7.07 (2.30) 3.81 (0.74) 11.2 (2.15) <0.0001c 

  
Parasite density (/µl), median 
(IQR) 

67010  
(18030-347010) 

n=96 

43880 
 (11940-156040) 

n=46 

2170  
(520-11880) 

<0.0001d 

Parasite load (PfHRP-2, ng/ml), 
median (IQR) 

2648 (883-5150) 862 (288-2033) 
n=46 

88.8 (4.80-158) 
n=13 

<0.0001c 

Sequestered biomass (x10^8), 
median (IQR) 

17928  
(5323-39891) 

n=96 

6249 
 (1303-15839) 

n=45 

469  
(0-1309) 

n=13 

<0.0001c 
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Children with asymptomatic P. falciparum parasitemia have low transcript 

levels of var genes encoding group A and EPCR-binding PfEMP1 variants 

Previous studies have shown higher transcript levels of group A and B PfEMP1 var genes 

in children with severe malaria (SM) when compared to children with uncomplicated 

malaria85,131,133 or asymptomatic parasitemia133,138. To confirm these findings in a cohort 

of Ugandan children, we used newly designed primers to compare transcript levels of a 

number of group A and B PfEMP1 var genes between children with SM (CM or SMA) 

and children from the same extended household or neighborhood of the children with SM 

who had asymptomatic parasitemia (AP). Prior comparisons assessed either only DBLα 

domains and classified them based on cysteine residues138 or quantified transcript levels 

of group A, B or C var genes based on the 5’ upstream sequence without being able to 

determine specifically the var A, B or C domains and their binding phenotype133. In the 

present study, we used degenerate primers to quantify transcript levels of a number of 

EPCR-binding PfEMP1 variants and group A non-EPCR binders that have not been 

previously assessed in children with AP. The domains that were quantified include: 

DBLα1ALL, targeting the head structure of all group A var genes; DBLα1.5/6/8 type 

domains, targeting the head structure of group A genes that do not normally bind to 

EPCR and have some rosetting ability144; CIDR1δ domain which is normally preceded by 

a DBLα1.5 and is associated with rosetting144; as well as a number of EPCR-binding 

domains (Figure 4.1, Supplemental Table 4.1). The EPCR-binding PfEMP1 domains 

included DBLα2/1.1/2/4/7/9 types, group A EPCR-binders (median of CIDRα1.4, 

CIDRα1.5a, CIDRα1.5b, CIDRα1.6b and CIDRα1.7) and group B-EPCR binders 
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(median of CIDRα1.1, CIDRα1.8a and CIDRα1.8b) (Figure 4.1, Supplemental Table 

4.1). To provide an overall idea of the transcript levels of EPCR-binding CIDRα1 

domains, we also determined median transcript levels of CIDRα1 EPCR-binding 

PfEMP1 (median of CIDRα1.1-CIDRα1.8b). Since CIDRα1.1 and CIDRα1.4 represent 

the largest CIDRα1 families for DC8 and DC13, respectively we have reported these 

domains separately.  

 

Figure 4.1. Schematics of the extracellular PfEMP1 domains, whose transcript levels are quantified 

in the study and their known binding phenotype 

 

In the current study, median transcript levels of all var genes quantified were higher in 

parasites infecting children with SM compared to AP (P≤0.05 for all, Figure 4.2). Only 

DBLα2/1.1/2/4/7/9 types showed a range of transcript abundance in AP. These domains 
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normally precede CIDRα1.1 in DC8, however CIDRα1.1 showed mostly basal levels of 

transcription in AP. Since DBLα2 is a DBLα0/DBLα1 hybrid, it could be that the primers 

targeting DBLα2 are quantifying some DBLα0, which are normally followed by 

CIDRα2-6 of group B var genes, not quantified here. All AP samples included in the 

analysis had average Ct values for the two housekeeping genes below 25, which fell 

within the linear portion of the gDNA standard curves for both housekeeping genes 

(Supplemental Figure 4.1), suggesting that the observed basal expression for the rest of 

the var genes was not due to lack of sensitivity.  
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Figure 4.2. Group A and EPCR-binding PfEMP1 transcript levels are higher in severe malaria than 

asymptomatic controls  

(a) Arbitrary unit values for DBLα1ALL (all group A var genes), DBLα1.5/6/8 types (group A with some 

rosetting ability), CIDR1δ (associated with rosetting) and b) DBLα2/1.1/2/4/7/9 types (group A normally 

followed by an EPCR binding CIDRα1 domain), CIDRα1.1 (DC8), CIDRα1.4 (DC13), as well as median 

of group A, group B and all CIDRα1 EPCR-binders. Arbitrary units of expression are shown on a 

logarithmic scale. The horizontal line represents median values. Medians are compared by Mann-Whitney 

test. Severe malaria (SM), asymptomatic parasitemia (AP).  
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Transcript levels of EPCR-binding PfEMP1 variants are higher in children 

with CM compared to SMA 

To determine whether different var genes associated with severe malaria contribute 

differently to the various manifestations of severe malaria we compared their median 

transcript levels between CM and SMA.  

 

P.falciparum parasites infecting children with CM had similar transcript level of group A 

var genes compared to SMA (P>0.10 for all, Figure 4.3a). However, the median 

transcript level of var genes encoding EPCR-binding PfEMP1 trended higher in CM than 

SMA (Figure 4.3b), and reached statistical significance for DBLα2/1.1/2/4/7/9 types 

(CM, n=73, median, arbitrary units [25th percentile, 75th percentile], 43.5 [24.5,60.5] vs. 

SMA, n=43, 27.3 [10.1, 45.7], P=0.01), CIDRα1.1 (DC8) (CM, n=77, 10.4 [1, 43.4] vs. 

SMA, n=47, 3.11 [1, 21.4], P=0.04) and group A EPCR-binders (CM, n=77, 1 [1, 2.38] 

vs. SMA, n=47, 1 [1, 1], P=0.02). In a multiple regression model including 

DBLα2/1.1/2/4/7/9, CIDRα1.1 (DC8) and group A EPCR binders adjusted for PfHRP-2 

levels, age, sex and weight for age z-score, log base 10-transformed DBLα2/1.1/2/4/7/9 

transcript levels were independently associated with increased risk of CM (odds ratio 

(OR) 5.46, 95% CI 1.60-18.6, P=0.007). Combined with the clinical characteristics 

showing that children with CM have higher total parasite biomass and sequestered 

parasite biomass than SMA, these data suggest that EPCR-binding and parasite load can 

independently increase the risk of CM. 
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Figure 4.3. Transcript abundance of EPCR-binding PfEMP1 is higher in parasites from children 

with cerebral malaria than severe malarial anemia  

(a) Arbitrary unit values for DBLα1ALL (all group A var genes), DBLα1.5/6/8 types (group A with some 

rosetting ability), CIDR1δ (associated with rosetting) and b) DBLα2/1.1/2/4/7/9 types (group A normally 

followed by an EPCR binding CIDRα1 domain), CIDRα1.1 (DC8), CIDRα1.4 (DC13), as well as median 

of group A, group B and all CIDRα1 EPCR-binders. Arbitrary units of expression are shown on a 

logarithmic scale. The horizontal line represents median values. Medians are compared by Mann-Whitney 

test. Cerebral malaria (CM, hemoglobin >5g/dL), severe malarial anemia (SMA).  
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In our study, 21 of 98 CM children (21.4%) had both cerebral malaria and severe malarial 

anemia (CM/SMA). These children were not included in the analysis above, which 

focused on children with CM alone or SMA alone, but were compared separately to the 

children with CM to assess how they differed from this primary group. Children with 

CM/SMA had higher DC13 transcript levels (n=21, median, arbitrary units [25th 

percentile, 75th percentile], 11.1 [2.85, 20.3]) than children with CM only (n=77, 4.16 [1, 

11.7], P=0.02, Supplemental Table 4.2). DBLα1ALL transcript levels also trended higher 

in CM/SMA compared to CM only (P=0.09, Supplemental Table 4.2), suggesting that the 

extent of var group A transcription could contribute to the type of severe manifestation 

seen in children with SM.  

 

PfEMP1 transcript levels differ by presence of retinopathy in children with 

CM only for DC13, and are similar in retinopathy negative CM and SMA  

Malarial retinopathy (MR) during hospitalization was found to be a good predictor of 

brain sequestration post-mortem in children classified as CM by WHO definitions36. As a 

result, MR is used to qualify retinopathy positive (RP) CM as “true” CM and retinopathy 

negative (RN) CM as incidental parasitemia with another cause for the coma. Indirect 

ophthalmoscopy in our study was performed by trained medical officers and represents a 

real-life setting for retinopathy diagnosis in the field (see Methods). In our study, RN 

children have the characteristics of a less severe form of CM122 , however children with 

RN still have high parasite loads and estimated sequestered biomass compared to 
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SMA121, suggesting a potential contribution of the parasite load and sequestration to the 

clinical manifestations of RN CM.  

 

In order to determine whether parasites infecting RN CM express var genes associated 

with severe disease and with IE binding to host endothelium, we compared transcript 

abundance of group A and EPCR-binding PfEMP1 between RP and RN CM, as well as 

between RN CM and SMA. In these patients, which represent a subset of those assessed 

for PfHRP-2 levels121, sequestered parasite biomass trended lower in RN CM compared 

to RP CM (P=0.08, Table 4.2) but was similar to SMA. Transcript levels of DBLα1ALL, 

DBLα1.5/6/8, DBLα2/1.1/2/4/7/9 and CIDRα1.1 (DC8) were significantly higher in RP 

CM vs. SMA (P<0.05 for all, Figure 4.4). However, only DC13 transcripts were higher 

in RP (n=50, 8.74 [2.33, 18.6]) vs. RN CM (n=47, 3.28 [1, 8.88], P=0.02, Figure 4.4b), 

and all var transcript levels were similar between RN CM and SMA (P>0.05 for all). 

Altogether, the data suggest that rosetting and IE cytoadhesion may also be important in 

RN CM pathogenesis.  
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Table 4.2. Clinical characteristics of CM children with and without malarial retinopathy 

 

a ANOVA, Tukey post-hoc test adjustment for multiple comparisons with log10 transformed values for 
variables with no normal distribution. Chi-squared test was used for sex, with P<0.017 considered 
significant to control for multiple comparisons.  
b In post-hoc testing, SMA differed from RN 
c In post-hoc testing, all groups differed from each other 
d In post-hoc testing, SMA differed from RP and RN 
e In post-hoc testing, RP differed from SMA. For RP vs. RN, P=0.08 
 

 RP  
(n=50) 

RN  
(n=47) 

SMA  
(n=47) 

Pa 
 

Age (months), median (IQR)  40.1  
(29.6-50.2) 

42.0  
(31.7-59.4) 

33.4  
(24.9-52.4) 

0.23 

Sex (male), n (%) 29 (58.0) 29 (61.7) 35 (74.5) 0.21 
Weight for age z-score, mean (SD) -1.30 (1.26) 

n=49 
-0.92 (1.71) -1.98 (1.39) 0.002b 

  
Hemoglobin (g/dL), mean (SD) 

6.34 (2.17) 7.80 (2.21) 3.81 (0.74) <0.0001c 

  
Parasite density (/µl), median 
(IQR) 

100260  
(21830-415920) 

n=48 

50690  
(10780-273100) 

43880  
(11940-156040) 

 n=46 

0.17 

Parasite load (PfHRP-2, ng/ml), 
median (IQR) 

3190 
 (1418-5222) 

2491 
 (446-3900) 

862  
(288-2033) 

n=46 

<0.0001d 

Sequestered biomass (x10^8), 
median (IQR) 

20880 
 (11037-44350) 

n=48 

15766  
(2450-31276) 

n=47 

6248  
(1303-15839) 

n=45 

0.0005e 
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Figure 4.4. DC13 transcripts are higher in cerebral malaria patients with malarial retinopathy.  

(a) Arbitrary unit values for DBLα1ALL (all group A var genes), DBLα1.5/6/8 types (group A with some 

rosetting ability), CIDR1δ (associated with rosetting) and b) DBLα2/1.1/2/4/7/9 types (group A normally 

followed by an EPCR binding CIDRα1 domain), CIDRα1.1 (DC8), CIDRα1.4 (DC13), as well as median 

of group A, group B and all CIDRα1 EPCR-binders. Arbitrary units of expression are shown on a 

logarithmic scale. The horizontal line represents median values. P values are estimated by ANOVA on 

log10 transformed arbitrary units followed by Tukey adjustment for multiple comparisons. Retinopathy 

positive CM (RP), retinopathy negative CM (RN) and severe malarial anemia (SMA). 
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Due to the difficulties and the expertise needed for indirect ophthalmoscopy, PfHRP-2 

levels have been identified as a good predictor of MR. It has previously been shown that 

PfHRP-2 levels >1700ng/ml at enrollment had a 90% sensitivity and 87% specificity in 

predicting MR145. We used this cutoff to redefine two groups within CM: one with 

PfHRP-2 levels higher than 1700 ng/ml (PfHRP-2-high, n=62) and one with levels lower 

than 1700ng/ml (PfHRP-2-low, n=35). Transcript levels of the var genes considered in 

this study did not differ significantly between the PfHRP-2-high and PfHRP-2-low 

groups (Supplemental Table 4.3). When considering a PfHRP-2 cutoff based on the 

samples from all children with CM in the study (not only those who had RNA for gene 

expression testing), a cutoff of 1392ng/ml had the highest sensitivity and specificity in 

distinguishing RP from RN CM (sensitivity 78.3% and specificity 41.9%)121. When 

classifying the CM group based on this PfHRP-2 cutoff, 33 CM patients had lower levels 

than the cut-off and 64 higher. The var transcript levels did not differ significantly in CM 

patients that were above vs. below this cutoff (data not shown). The data from the present 

study showing similar transcript levels of all PfEMP1 variants associated in multiple 

studies with severe malaria suggest that use of a PfHRP-2 cutoff could lead to 

misdiagnosis of a substantial proportion cases of true CM as coma due to other causes. 
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P.falciparum parasites infecting CM children that died have lower transcript 

levels of group A var genes compared to those that survived 

To further assess the association of group A and EPCR-binding PfEMP1 transcript levels 

with malarial disease severity, we compared var transcripts between CM children that 

died vs. those that survived. DBLα1ALL which targets all group A var genes had higher 

transcript level in children that survived (n=87, 55.0 [19.0, 83.4]) vs. those that died 

(n=11, 1 [1, 45.0], P=0.005, Figure 4.5a). There was no significant difference in the other 

domains (P>0.09 for all). A log base 10 increase in DBLα1ALL transcript levels was 

associated with a 74% decreased risk of mortality in CM patients (OR 0.26, 95% CI 0.11-

0.62, P=0.003) when adjusted for PfHRP-2 levels. The difference in DBLα1ALL 

transcript level persisted even when considering only retinopathy positive CM children 

(survived, n=41, 58.8 [36.9, 92.7] vs. died, n=9, 9.22 [1-45.0], P=0.006, Supplemental 

Figure 4.2), suggesting that the lower transcript abundance of DBLα1ALL in children 

with CM who died cannot be explained by some other cause of mortality.  
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Figure 4.5. DBLα1 transcripts, targeting all group A var genes are lower in parasites from cerebral 

malaria patients that died 

(a) Arbitrary unit values for DBLα1ALL (all group A var genes), DBLα1.5/6/8 types (group A with some 

rosetting ability), CIDR1δ (associated with rosetting) and b) DBLα2/1.1/2/4/7/9 types (group A normally 

followed by an EPCR binding CIDRα1 domain), CIDRα1.1 (DC8), CIDRα1.4 (DC13), as well as median 

of group A, group B and all CIDRα1 EPCR-binders. Arbitrary units of expression are shown on a 

logarithmic scale. The horizontal line represents median values. Medians are compared by Mann-Whitney 

test.  
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To assess whether time to death was associated with level of DBLα1ALL transcripts at 

enrollment, we looked at median DBLα1ALL transcript levels stratified by time to death. 

In our study, 5 children died the day of enrollment, 3 within 24 hours, 2 within 48 hours 

and one within 72 hours of enrollment (DBLα1ALL median Tu 9.22, 1, 23.0 and 55.3, 

respectively). The differences in median transcript levels at later time of death were large, 

but the numbers were small to be statistically significant (P for Kruskal-Wallis test for 

trend = 0.27). 

 

4.5  Discussion 

In the present study, we use redesigned degenerate primers that target a larger diversity of 

var genes and found that transcript levels of group A and EPCR-binding PfEMP1 were 

higher in parasites infecting children with severe malaria (SM) compared to 

asymptomatic parasitemia (AP); that transcript levels of EPCR-binding PfEMP1 were 

higher in CM than SMA; that PfEMP1 var transcript levels were similar in retinopathy 

negative CM and SMA, and differed between retinopathy positive and retinopathy 

negative CM only for DC13; and that DBLα1ALL (targeting all group A var) was higher 

in CM children that survived compared to those who died. The data provide new insights 

into parasite contributions to disease pathogenesis in SM and add to the ongoing debate 

as to what constitutes a case of “true” CM.  
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Group A and B var genes were previously found to be less prevalent in AP than SM 

133,138, however our study was able to quantify a larger diversity of var genes and show 

higher transcript levels for DBLα1ALL (all group A var genes), DBLα1.5/6/8 types 

(group A with some rosetting ability), CIDR1δ (associated with rosetting), 

DBLα2/1.1/2/4/7/9 types (group A normally followed by an EPCR binding CIDRα1 

domain), as well as group A and B CIDRα1 EPCR-binders (Supplemental Table 4.1) in 

SM as compared to AP (Figure 4.2). In future studies, we plan to assess transcript levels 

of group B and C CD36-binding PfEMP1, which have shown to be similar133 or higher137 

in AP as compared to uncomplicated or SM in prior studies. The AP group in this study 

had no history of prior SM and did not experience SM over the 2 years of follow-up, 

despite presumably similar malaria exposure (since they lived in the same extended 

household as SM children). AP children appear to be protected from SM, and therefore 

represent a valuable comparator group to SM. We did not have access to RNA samples 

from patients with uncomplicated malaria, which represent another important comparison 

group of malaria without severe manifestations. However, parasites from patients with 

uncomplicated malaria could still express some of the domains associated with SM, even 

though these patients never reached severe disease due to early treatment.  

 

 
Recently, sequencing of almost full-length var genes showed that CIDRα1 were the only 

common domains found in pediatric CM and SMA patients146. However, in the current 

study we show that EPCR-binding PfEMP1 transcript levels  (DBLα2/1.1/2/4/7/9, 

CIDRα1.1, and overall group A EPCR) were higher in parasites from children with CM 
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compared to SMA (Figure 4.3b). Moreover, high DBLα2/1.1/2/4/7/9 transcript levels 

were associated with CM independently of PfHRP-2 levels. These finding suggest that 1) 

not only the presence, but more importantly the transcript level and therefore the extent 

of EPCR binding by PfEMP1 may be important in determining the clinical manifestation 

of SM and that 2) both EPCR binding and total parasite biomass are important in 

determining the type of severe manifestation (coma or severe anemia). PfEMP1 binding 

to EPCR reduces the production and cytoprotective effects of aPC53,55,56 and loss of 

EPCR has been associated with sequestration and fibrin deposition in CM patients96. In 

addition, EPCR expression is low in small microvasculature beds, such as the 

microvasculature of the brain 147. As a result, it could be hypothesized that once a certain 

parasite load is reached, parasites expressing higher EPCR-binding PfEMP1 occupy more 

of the EPCR binding sites available in the brain microvasculature contributing to brain 

pathology. In SMA, EPCR binding by PfEMP1 could lead to anemia through effects on 

hematopoiesis since EPCR signaling in the bone marrow environment is important for 

retention of long-term hematopoietic stem cells and for hematopoiesis148. We found that 

DBLα2/1.1/2/4/7/9, CIDRα1.1, and group A EPCR-binders transcript levels were higher 

in CM than SMA, suggesting that these variants specifically contribute to the 

development of CM, but no variants were expressed at higher levels in SMA than CM. 

This does not rule out a contribution of the var genes seen in both CM and SMA to the 

development of SMA, as these genes were expressed at higher levels in SMA than AP, 

but it suggests other non EPCR-binding group A PfEMP1 could contribute specifically to 

severe anemia. Quantifying transcript levels of the secondary DBL-CIDR structure of 
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PfEMP1 could help determine whether domains binding to ICAM-1 or other host 

receptors make up the rest of group A var that are not accounted for by the EPCR-

binding PfEMP1 in SMA.  

 

 
A recent study did not find any significant difference in group A, DC8 and DC13 

transcript levels between RP and RN CM in a Kenyan cohort143. The present study, which 

uses new primers that target a higher diversity of var genes, found only higher DC13 

transcripts in RP compared to RN CM (Figure 4.4). The Kenyan study saw higher 

proportional expression of group A and DC8 var genes in RN vs. RP143. We did not 

assess proportional expression because transcript levels are not absolute values, and no 

study captures 100% of var diversity in a patient, so proportional values can be strongly 

influenced by outlier values. Nevertheless, both these studies suggest that IE binding via 

group A and EPCR- binding PfEMP1 is an important contributor to RN CM etiology, and 

therefore that coma in RN CM is at least partially due to P. falciparum. While assessment 

of retinopathy in either study may have been imperfect, these studies represent real world 

assessment of retinopathy, and are probably more accurate than retinopathy diagnosis in a 

typical low-resource clinical setting in Africa. The use PfHRP-2 cutoff levels, proposed 

as a simpler test to distinguish “true” CM, also showed similar var gene expression in 

those above vs. below the cutoff level and discourages the use of PfHRP-2 to distinguish 

“true” CM from coma with incidental parasitemia. Assessment of var transcript levels in 

the field is unlikely to ever be a practical diagnostic tool, but could be very useful in 

future research studies of CM for attributing coma to P.falciparum or another cause. 
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Evolutionary, it has always been intriguing why P.falciparum parasites maintain var 

genes that sustain cytoadhesion when cytoadhesion and rosetting could result in death of 

the host. Our study’s findings suggest that host mortality is not driven entirely by these 

adhesion traits, but rather by a combination of host and parasite factors. Parasites 

infecting CM children that died had lower transcript levels of DBLα1ALL (targeting all 

group A var) than CM children that survived, despite higher PfHRP-2 levels in children 

who died compared to survivors, and this remained true when analysis was restricted to 

RP CM. A similar trend towards lower var transcript abundance in CM children that died 

was observed in a previous study85. Possible reasons for low var A transcript levels in 

those who died include the inability of group A var genes to provide an advantage at this 

stage of the disease, possibly because coagulation and rosette formation can promote 

mechanical sequestration and there is less need for active sequestration via PfEMP1 

binding to host receptors. It is also possible that in the most severe forms of disease the 

parasite is expressing var genes characterized by weaker binding or binding to CD36. 

Quantifying transcript levels of these var genes and assessing var gene expression over 

time could help test these hypotheses. 

 
 

Children with SM and AP in this study are from the same households in Kampala and 

therefore have had similar malaria exposure. Why parasites infecting certain patients 

have higher group A and EPCR-binding PfEMP1 transcript levels remains an interesting 

question. While it is becoming more apparent that epigenetic mechanisms regulate var 
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transcription149, it is less well-understood how host factors and host environmental 

signals can affect these epigenetic mechanisms. In addition, our data shows that the 

parasites expressing the highest levels of group A and EPCR-binding var genes are not 

always the ones causing the most severe disease, emphasizing that other parasite binding 

proteins such as RIFINs, host factors (genetic or immunologic) and potential co-

infections and co-morbidities could be determining whether the parasites expressing these 

group A or EPCR-binding PfEMP1 lead to severe malaria.  

 

In conclusion, the current study shows that transcript abundance of EPCR-binding 

PfEMP1 were higher in CM than SMA; that group A PfEMP1 variants and many of the 

EPCR-binding PfEMP1 variants had similar transcript abundance in RP CM and RN CM, 

and that DBLα1ALL (targeting all group A var) was higher in CM children that survived 

vs. those that died. These findings suggest that expression of specific EPCR-binding 

PfEMP1 variants, in combination with host factors, could contribute to disease severity 

and clinical manifestation of disease in severe malaria, and the disruption of this binding 

could therefore help reduce morbidity due to severe malaria.  
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Chapter 5 

Cerebrospinal fluid tumor necrosis factor-alpha levels are 

associated with coma duration and acute and long-term 

neurologic deficits in Ugandan children with cerebral malaria  

5.1  Objectives 

ü Determine TNF-α levels in plasma and CSF of children with CM as compared to 

controls 

ü Evaluate the association of systemic and local TNF-α levels with markers of 

disease severity in CM such as coma duration, neurologic deficits and mortality  

5.2  Introduction 

The incomplete understanding of host-pathogen interactions in cerebral malaria (CM) has 

hindered the discovery of successful adjunctive therapies. Tumor necrosis factor-alpha 

(TNF-α) is considered an important contributor to CM pathogenesis due to its role in 

promoting endothelial activation, which can further increase binding of infected 

erythrocytes (IE) to host endothelium150,151, an important hallmark of CM. Treatment 

with anti- TNF-α monoclonal antibody did not reduce mortality and was associated with 

increased risk of neurologic deficits in children with CM152, suggesting that more work is 

needed to understand the regulation of TNF-α systemically and especially locally in CM 

and its association with acute and long-term neurocognitive deficits. 
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TNF-α is a pro-inflammatory cytokine with a broad spectrum of biological activities. It is 

primarily produced by activated immune cells such as macrophages and T and B cells, 

and is important in promoting macrophage activation, neutrophil recruitment and 

production of other pro-inflammatory cytokines151,153. High levels of TNF-α, however 

can contribute to pyrexia, tissue damage and apoptosis151,153. TNF-α is also an important 

cytokine in the central nervous system (CNS) that can be locally produced by microglia, 

astrocytes and neurons154-156. TNF-α is found in healthy neurons157 and is important in 

controlling synaptic strength158, but elevated levels in the CNS can lead to activation of 

astrocytes and microglia and demyelination, and have been implicated in a number of 

CNS diseases such as ischemic stroke, multiple sclerosis and Parkinson’s 

disease156,159,160.  

 

Since the finding that P.falciparum infected erythrocytes stimulate TNF-α production 

from mononuclear cells161, a number of studies have investigated the role of this cytokine 

in malarial infections. In mouse models of malaria, TNF-α has been shown to reduce 

parasitemia and protect against the early stages of infection162-165 but has also been 

associated with disease severity when elevated at later stages163. TNF-α was also shown 

to be essential in the pathogenesis of experimental cerebral malaria166,167. This dual effect 

is thought to occur during human infections as well, as lower systemic TNF-α levels are 

seen at enrollment in patients with uncomplicated or mild malaria but higher levels are 

consistently detected in patients with severe malaria118,168-171. The pathogenic role of 
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TNF-α is attributed to its ability to limit the growth of erythroid precursors in vitro172 and 

promote erythrophagocytosis and dyserythropoiesis173, as well as its  association with 

endothelial activation150,174,175, which can promote IE adhesion to the endothelium 150.  

 

In humans, two to ten fold elevated systemic TNF-α levels have been associated with 

mortality in children with severe malaria119,170 and in children with CM specifically118 in 

some studies, but not in others168. High levels of TNF-α have also been associated with 

hyperparasitemia and hypoglycemia118,119, deeper coma120 and endothelial activation170 in 

severe malaria. In addition, TNF-α polymorphisms associated with high TNF-α 

expression were more prevalent in patients with CM and fatal CM176,177. Despite all this 

information hinting at elevated systemic TNF-α levels being pathogenic in severe malaria 

in humans, the use of antibodies against TNF-α had adverse effects in children with 

CM152, suggesting that more work is needed to understand the role of this cytokine not 

only systemically but also locally in the CNS.  

 

In the CNS, TNF-α production by microglia and astrocytes has been associated with fatal 

murine cerebral malaria178. The data from human studies of CNS TNF-α in CM patients 

is more limited, but also generally suggests a role for CNS TNF-α in CM: two studies 

have documented elevated CSF TNF-α levels in CM patients120,179  (another did not) 119, 

and autopsy studies of individuals who died of CM have shown TNF-α expression in the 

brain parenchyma 180-182. Our group has previously shown that high levels of TNF-α at 

enrollment in the CSF but not plasma were associated with neurologic deficits at three 
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months post-discharge and impaired attention and working memory at six months follow-

up in children five years and older 179 suggesting a role for local TNF-α in the neurologic 

outcomes of CM. Whether these findings would be found be in the developing brains of 

children with CM who are younger than 5 years old is not known.  

 

To better assess the role of systemic and CNS TNF-α in children with CM across the 

typical age spectrum in which CM is seen in Africa, we investigated how plasma and 

CSF TNF-α levels in Ugandan children 18 months to 12 years of age correlated with 

mortality, coma duration and acute and long-term neurologic deficits. 

 

5.3  Methods 

Cytokine Testing 

Cytokine testing was performed on plasma and CSF samples collected at enrollment from 

children with CM. CSF samples were obtained for children with CM in whom a lumbar 

puncture was not contraindicated. Control CSF samples were obtained from North 

American children successfully treated for prior leukemia who had CSF obtained after 

treatment to rule out return of malignancy (ruled out in all).  

 

Plasma and CSF levels of TNF-α were measured by a magnetic cyometric bead assay 

(EMD-Millipore, Billerica, MA) according to the manufacturer’s instructions with a 

BioPlex-200 system (Bio-Rad, Hercules, CA). Plasma soluble intracellular adhesion 
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molecule-1 (sICAM-1) and vascular cellular adhesion molecule-1 (sVCAM-1) were also 

measured by magnetic cytometric bead assay (R&D Systems, Minneapolis, MN) 

according to the manufacturer’s instructions. Plasma angiopoietin-2 (Ang-2) and von 

Willebrand Factor (VWF) levels were quantified using the human angiopoietin 2 DUO 

ELISA kit (R&D Systems, Minneapolis, MN) and REAADS von Willebrand Factor 

activity ELISA kit (Corgenix, Broomfield, CO), respectively.  Plasma and CSF albumin 

were quantified by the Advanced Research and Diagnostic Laboratory at the University 

of Minnesota.  

 

Statistical Analysis 

Demographic characteristics were compared using t-tests for continuous measures and 

Pearson's χ2 test for categorical variables. Plasma and CSF TNF-α levels, endothelial 

activation markers, coma duration, and number of seizures had skewed distributions, so 

for these variables, Wilcoxon rank-sum testing was used for comparisons between groups 

(e.g., children with vs. without neurologic deficits), and Spearman’s rank correlation 

(rho) was used for assessment of correlation with continuous variables. 

 

5.4  Results 

Demographic characteristics of children with cerebral malaria  

248 children with CM and 199 CC had sufficient plasma for TNF-α testing, and 166 

children with CM had sufficient CSF sample available for TNF-α testing.  
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The 19 children who did not have plasma available for testing did not differ from the 248 

children with plasma available for testing in terms of age (median 65.3 vs. 41.5 months, 

P=0.07), mortality (3/19, 15.6%, vs. 30/248, 12.1%, P=0.64), neurologic deficits at 

discharge (4/16 survivors, 25.0%, 79/216 survivors, 36.6%, P=0.35) or coma duration 

(median 42 vs. 46 hours, P=0.41).  

 

The 82 children who had plasma but no CSF available for testing differed from the 166 

children who had CSF available for testing in mortality (21/82, 25.6%, vs. 9/166, 5.4%, 

P<0.001), neurologic deficits at discharge (16/61 survivors, 26.2%, 63/155 survivors, 

40.7%, P=0.05) and coma duration during admission (median 36.5 vs. 56.3 hours, 

P<0.0001) but not age (median 44.7 vs. 39.8 months, P=0.09).  

 

The median age of the children in the study was 42 months. Age did not differ 

significantly between CM (n=248, median, months [25th percentile, 75th percentile], 41.5 

[30.2, 56.9]) and CC children (n=199, 43.2 [32.1, 56.5], P=0.39). A higher proportion of 

children with CM than CC were male (59.3% vs. 45.7% respectively, P=0.004). The 

median parasite density for children with CM was 47880 parasites/µl [11360, 234360]. 

Plasma and CSF TNF-α levels were not associated with age (Spearman’s rho -0.10, 

P=0.13 and Spearman’s rho -0.10, P=0.22, respectively), sex (P>0.20 for both) or weight 

for age z-score (Spearman’s’ rho 0.06, P=0.37 and Spearman’s rho 0.07, P=0.34, 

respectively) in children with CM. Regression models adjusting for these factors were 
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therefore not employed when comparing plasma and CSF TNF-α levels to clinical 

outcomes. 

 

Relationship between plasma and cerebrospinal fluid TNF-α levels  

Median plasma TNF-α levels in children with CM (n=248, median, pg/ml [25th 

percentile, 75th percentile], 104pg/ml [49.4, 209]) were significantly higher than CC 

(n=199, 26.4pg/ml [18.0, 41.8], P<0.0001, Figure 5.1a). In addition, children with CM 

had significantly higher CSF levels of TNF-α (n=166, 1.35pg/ml [0.55, 3.10]) as 

compared to control North American children with prior neoplastic disease (n=13, 

0.02pg/ml [0.02, 0.06], P<0.0001 Figure 5.1b). CSF TNF-α was only weakly correlated 

with plasma TNF-α levels in children with CM (Spearman’s rho 0.15, P=0.06), 

suggesting that CSF levels of TNF-α may reflect local CNS production of TNF-α. To 

investigate this further, we assessed the association of CSF-to-plasma TNF-α ratio (CSF 

TNF-α x1000/Plasma TNF-α (pg/ml)) with CSF-to-plasma albumin ratio (CSF albumin 

x1000/Plasma albumin (mg/L)). The TNF-α ratio correlated positively with the albumin 

index (Spearman’s rho=0.29, P=0.0003), suggesting that BBB leakage affects the levels 

of TNF-α seen in the CSF. However when looking at the absolute values for these ratios, 

CSF-to-plasma TNF-α ratios (n=166, median [25th percentile, 75th percentile], 13.0 [3.1, 

35.9]) are higher than the values for albumin index (n=148, 5.3 [3.1, 10.4]) suggesting 

some local production of TNF-α in the CNS.   
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Figure 5.1.  Plasma and CSF TNF-α levels at enrollment are higher in children with cerebral malaria 

than controls 

(a) Plasma and (b) CSF TNF-α (on a logarithmic scale) at enrollment. The horizontal line represents 

median values. Two-sample Wilcoxon rank-sum (Mann-Whitney) test used to compare median levels 

between groups. Cerebral malaria (CM), Ugandan community children (CC), North American control 

children (NAC). NAC samples were obtained from children successfully treated for prior leukemia who 

had CSF obtained after treatment to rule out return of malignancy (ruled out in all). 

 

Plasma and CSF TNF-α levels do not differ according to acute mortality  

Plasma TNF-α levels did not differ significantly between children with CM who died 

(n=30, median, pg/ml, [25th percentile, 75th percentile], 108 [50.4, 270]) as compared to 

those who survived (n=218, 103 [48.7, 196], P=0.29, Figure 5.2a). CSF TNF-α levels 

also did not differ significantly between children with CM who died (n=9, 1.29 [0.97, 

3.15]) and those who survived (n=157, 1.36 [0.48, 2.94], P=0.58, Figure 5.2b). 
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Figure 5.2. Plasma and CSF TNF-α levels at enrollment are not significantly different between 

cerebral malaria children that died vs. those that survived 

(a) Plasma and (b) CSF TNF-α (on a logarithmic scale) at enrollment based on survival outcome. The 

horizontal line represents median values. Two-sample Wilcoxon rank-sum (Mann-Whitney) test used to 

compare median levels between groups. 

 

Elevated CSF TNF-α levels are associated with prolonged coma during 

admission and neurologic deficits at discharge and 6-months follow-up 

Plasma TNF-α levels did not differ significantly between children with (n=79, median, 

pg/ml, [25th percentile, 75th percentile], 89.9pg/ml [31.6, 213]) vs. without (n=137, 

105pg/ml [54.0, 195], P=0.39, Figure 5.3a) neurologic deficits at discharge and between 

CM children with (n=11, 57.4pg/ml [26.0, 274]) or without neurologic deficits at 6-

months follow-up (n=197, 103pg/ml [50.4, 191], P=0.62, Figure 5.3a). However, levels 

of TNF-α in the CSF were significantly higher in children with CM who were discharged 
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with neurologic deficits (n=63, 1.74pg/ml [0.86, 4.37]) as compared to those who were 

not (n=92, 1.16pg/ml [0.36, 2.64], P=0.04, Figure 5.3b). CSF TNF-α levels also differed 

between children with (n=10, 2.19pg/ml [1.41, 4.37]) vs. without neurologic deficits at 6-

months follow-up (n=140, 1.20pg/ml [0.38, 2.74], P=0.05, Figure 5.3b).  

 

Figure 5.3. CSF TNF-α levels at enrollment are higher in cerebral malaria children discharged with 

neurologic deficits and those who had neurologic deficits at 6-months follow-up 

(a) Plasma and (b) CSF TNF-α (on a logarithmic scale) at enrollment based on neurologic outcomes at 

discharge or 6-months follow-up. The horizontal line represents median values. Two-sample Wilcoxon 

rank-sum (Mann-Whitney) test used to compare median levels between groups. 

 

CSF TNF-α, but not plasma TNF-α was positively associated with coma duration in 

children with CM (n=157, Spearman’s rho 0.18, P=0.02 and n=217, Spearman’s rho         

-0.05, P=0.43, respectively). Neither plasma nor CSF TNF-α levels were associated with 
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number of seizures during admission (n=248, Spearman’s rho 0.02, P=0.81 and n=166, 

Spearman’s rho 0.02, P=0.80, respectively).  

 

Plasma and CSF TNF-α levels do not differ according to malaria retinopathy 

The presence of malarial retinopathy at admission has been associated with brain 

sequestration post-mortem in cerebral malaria 36, but it is unclear if children with clinical 

CM and no retinopathy have a milder form of CM or an alternative cause of coma. To 

assess whether the presence of retinopathy was associated with differences in TNF-α 

responses, we compared TNF-α levels in children with CM with vs. without retinopathy. 

Plasma TNF-α levels did not differ significantly between retinopathy positive (RP, 

n=158, median, pg/ml, [25th percentile, 75th percentile], 104pg/ml [45.8, 190]) and 

retinopathy negative CM children (RN, n=80, 123pg/ml [53.8, 211], P=0.62, Figure 

5.4a). CSF TNF-α levels also did not differ significantly between RP (n=110, 1.41pg/ml 

[0.44, 3.25]) and RN CM (n=52, 1.18pg/ml [0.57, 2.31], P=0.30, Figure 5.4b). 
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Figure 5.4. Plasma and CSF TNF-α levels at enrollment are not significantly different between 

children with cerebral malaria with or without retinopathy  

(a) Plasma and (b) CSF TNF-α (on a logarithmic scale) at enrollment based on retinopathy characteristics. 

The horizontal line represents median values. Two-sample Wilcoxon rank-sum (Mann-Whitney) test used 

to compare median levels between groups. 

 

Plasma TNF-α levels correlate with parasite biomass and endothelial 

activation  

Considering the role of TNF-α in endothelium activation, and as a consequence its role in 

promoting parasite sequestration, we investigated how plasma TNF-α levels correlated 

with markers of endothelial activation such as soluble vascular cell adhesion molecule-1 

(sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1), soluble P-Selectin 

and E-Selectin, angiopoietin-2 (Ang-2) and von Willebrand Factor (VWF) in children 

with CM. We also assessed the correlation of plasma TNF-α levels with total and 
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sequestered parasite biomass. Plasma TNF-α levels correlated strongly and positively 

with all markers of endothelial activation (P<0.0004 for all, Table 5.1) except VWF. 

Plasma TNF-α levels were also associated with increased PfHRP-2 levels, as well as total 

and sequestered parasite biomass (P<0.0001 for all, Table 5.1), suggesting an important 

role for this cytokine in endothelial activation and parasite sequestration and persistence.   

 

Table 5.1. Association of plasma TNF-α levels with endothelial activation markers and parasite biomass 
in children with CM 
 
 

 Plasma TNF-α 

 N Spearman’s rho P 

sP-Selectin 194 0.30 <0.0001 
sE-Selectin 204 0.37 <0.0001 
sICAM-1 204 0.25 0.0003 
sVCAM-1 204 0.33 <0.0001 
Ang2 152 0.51 <0.0001 
VWF 198 0.05 0.50 
PfHRP-2 248 0.57 <0.0001 
Total parasite biomass 248 0.55 <0.0001 
Sequestered parasite biomass 241 0.49 <0.0001 
Circulating parasite biomass 241 0.30 <0.0001 

 

5.5  Discussion  

In the present study, we show that CSF but not plasma TNF-α correlate with key clinical 

outcomes in children with CM, including coma duration and acute and long-term 

neurologic deficits. The study findings demonstrate the importance of CNS TNF-α in the 

neurologic outcomes in children with CM, and suggest that CNS TNF-α, or factors, such 

as sequestered parasite biomass, that appear to affect CNS TNF-α production, may still 

be good targets for adjunctive therapy to reduce neurologic morbidity in CM.  
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Plasma TNF-α levels were 4-fold higher in children with CM as compared to healthy 

community controls (Figure 5.1a). TNF-α is released mainly upon activation of the 

innate161 and adaptive immune system183-186 in response to P. falciparum-infected red 

blood cell proteins and toxins. Though we cannot determine the exact source of this 

cytokine in the current study or the specific stimulants, TNF-α levels were positively 

associated with parasite density at enrollment (Spearman’s rho 0.31, P<0.0001) in 

children with CM supporting the role of a high infectious burden in immune activation 

and TNF-α production. TNF-α is also important in endothelial activation150,175 which can 

promote sequestration150 , further production of other pro-inflammatory cytokines174,175, 

release of  endothelial microparticles and induction of apoptosis175. Sequestration is an 

important immune evasion mechanism allowing the parasite to evade spleen clearance 

and persist. An association between plasma TNF-α levels, endothelial activation markers 

and parasite sequestration is supported in the present study by the positive correlation 

between plasma TNF-α levels and the endothelial activation markers, PfHRP-2 levels and 

sequestered parasite biomass (Table 5.1).  

 

Plasma TNF-α levels were not associated with mortality, neurologic deficits at discharge 

or 6-months follow-up, or coma duration and number of seizures during admission in the 

current study. Similar to other studies of this nature, we observe a wide range of plasma 

TNF-α levels in our cohort. This could be due to genetic factors that can affect TNF-α 

levels176,177, or possibly to differences in malaria exposure, since it has been shown that 
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with increased exposure, the production of TNF-α from CD4+ T cells is reduced184,185. 

The children in the present study come from an approximately 25km radius of the 

hospital, and so could have some variability in malaria exposure.  

 

In the current study, CSF TNF-α levels were elevated in CM children as compared to 

controls (Figure 5.1b). Elevated levels of TNF-α in the CNS have been shown in a 

number of disorders such as multiple sclerosis159, Parkinson’s disease160, and murine178 

and human cerebral malaria180-182. However, most of the human CM studies that have 

looked at local TNF-α have done so in brain tissue. Despite allowing for careful 

assessment of areas of the brain affected by TNF-α, these types of studies are limited in 

sample size and do not permit assessment of the role of CNS TNF-α in children who 

survive CM. As a result, quantification of CSF TNF-α allows for evaluation of CNS 

TNF-α in survivors of CM, and the correlation of CSF TNF-α with clinical outcomes. 

Parasite sequestration and systemic inflammation are thought to lead to BBB damage and 

leakage in CM, which could expose the brain parenchyma to plasma proteins and 

promote astrocyte and microglial activation187. In the present study, the albumin index 

and CSF to plasma TNF-α ratio were strongly correlated, but the absolute values for 

TNF-α ratios were higher than the albumin index, suggesting that TNF-α found in the 

CSF is not entirely due to the BBB leakage but is also partially produced in the CNS. 

Though we cannot determine the source of CSF TNF-α in the study children, activated 

astrocytes and microglia are frequent sources of CSN TNF-α 154,155. While the 

inflammatory pathways that occur locally are most likely complicated, our data suggests 
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local production of TNF-α in the CNS of CM children, possibly added to by crossing of 

some plasma TNF-α across an impaired BBB.  

 

We have previously shown an association of CSF TNF-α with neurologic deficits at 3-

months follow-up and impaired attention and working memory at 6-months post-

discharge in children 5 years and older179. In the present study we present a larger cohort 

and have expanded the age range between 18-months to 12 years old. In the present 

study, median CSF TNF-α levels were higher in children that were discharged with 

neurologic deficits and that continued having neurologic deficits at 6-months follow-up 

compared to those children that did not have acute or long-term neurologic deficits 

(Figure 5.3). These findings expand on the adverse effects of CSF TNF-α on neurologic 

deficits to children younger than 5 years old 179.  

 

We did not see a significant difference in plasma TNF-α levels in CM children with vs. 

without malarial retinopathy, findings that differ from one recent study 188. In addition, 

CSF TNF-α levels did not differ significantly between retinopathy positive and negative 

CM, suggesting a role for this cytokine in the pathogenesis of CM, despite the presence 

of malarial retinopathy.  

 

In the present study, we were not able to obtain CSF from all CM children. In addition, in 

some cases the CSF obtained was not sufficient. Children who were not tested for CSF 

TNF-α had higher mortality, lower chance of being discharged with neurologic deficits 
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and shorter duration of coma during admission than those who had CSF obtained and 

enough sample for TNF-α testing. Thus, a study limitation is that the associations of CSF 

TNF-α with disease outcomes in CM can be captured only for a subset of children.  

 

In conclusion, our study data show that plasma and CSF TNF-α levels are elevated in 

children with cerebral malaria, and that elevated CSF TNF-α levels in children with CM 

are associated with prolonged coma and acute and long-term neurologic deficits. Our 

results emphasize the importance of studying both the peripheral and CNS immune 

responses since they do not always tell the same story, suggest that CNS TNF-α, as 

opposed to systemic TNF-α, is particularly important in neurologic outcomes in children 

with CM, and demonstrate the need for assessment of how age may alter the effects of 

risk factors for neurologic impairment.  Further studies that aim to understand the role 

and regulation of CNS TNF-α in children with CM, with the goal of targeting the CNS 

production and effects of TNF-α, could lead to adjunctive treatments that decrease 

neurologic morbidity in CM.  
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Chapter 6 

Systemic immunologic markers of malarial disease severity in 

Ugandan children  

6.1  Objectives 

ü Identify immunologic markers that distinguish between cerebral malaria and 

severe malarial anemia  

ü Determine immune markers that predict the risk of mortality and neurologic 

deficits in children with CM.  

 

6.2  Introduction 

Identifying an immunologic profile that differentiates between various manifestations of 

severe malaria could help our understanding of the pathways that contribute to these 

forms of severe disease, as well as inform the design of better diagnostics and successful 

adjunctive therapies.  

 

Blood stage infection in malaria is characterized by elevated pro-inflammatory cytokines 

such as interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin-1 

beta (IL-1β), interleukin-6 (IL-6), and interleukin-12 (IL-12p70), which induce fever and 

other symptoms of malaria, but also contribute to controlling the infection32,189,190. IFN-γ 

and TNF-α are produced early in the infection191,192 and are important in mediating 
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macrophage and neutrophil activation to control parasite load193,194.  IFN-γ and TNF-α 

can also induce the production of IL-1β, more TNF-α and IL-6, which allows for further 

control of early parasite blood-stage infection and priming of an adaptive immune 

response32,189,190. Parasite factors such as hemozoin, together with inflammatory 

cytokines stimulate production of a number of inflammatory chemokines such as 

interleukin-8 (IL-8), macrophage inflammatory-1 alpha (MIP-1α), MIP-1β, and monocyte 

chemoattractant protein-1 (MCP-1)45,195.  Interferon gamma inducible protein-10 (IP-10) 

is also elevated in malaria196,197, whereas regulated on activation normal T cell expressed 

and secreted (RANTES) is usually downregulated45,198. While chemokines are generally 

important in immune cell recruitment to sites of inflammation, the exact role of these 

chemokines in human malaria remains understudied. Anti-inflammatory cytokines such 

as interleukin-10 (IL-10) are also seen elevated during a malaria infection and are 

important in controlling inflammation and tissue damage in malaria32,189,190.  

 

Severe malaria is characterized by an over-vigorous and imbalanced immune 

response189,190. More specifically, childhood severe malaria is typically characterized by 

elevated IFN-γ, TNF-α, IL-6, IL-10, IL-1β, IL-1ra 40-44, as well as elevated levels of IL-8, 

IP-10 and reduced levels of RANTES as compared to uncomplicated or mild malaria43-45. 

However, not all studies have found the same analytes elevated or downregulated across 

the board. This highlights the variability introduced by host genetics, sex and age in these 

studies, as well as the impact on the immune response of malaria endemicity, 

environmental factors and time in the disease progression at which patients are studied. 
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Importantly, a small proportion of febrile uncomplicated malaria patients progress to 

severe disease and the factors that lead to this progression are complex and difficult to 

study, since children who are treated for uncomplicated malaria rarely progress to severe 

disease. As a result, human studies looking at the immunologic profile in malaria patients 

are better designed to identify markers of disease severity and potential targets for 

adjunctive therapies, rather than to determine the pathways that lead from uncomplicated 

to severe malaria.  

 

A number of studies have focused on identifying immunologic markers of disease 

severity in malaria. Elevated TNF-α levels have been associated with mortality in 

children with severe malaria119,170 and in children with cerebral malaria (CM) 

specifically118 in some studies, but not in others168. Elevated serum IP-10 and IL-1ra, 

along with reduced RANTES, have also been associated with mortality in pediatric 

severe malaria43,44,196. In addition, high levels of TNF-α were associated with other 

markers of disease severity such as hyperparasitemia and hypoglycemia118,119, deeper 

coma120, and endothelial activation170. The immune regulation of TNF-α by IL-10199,200 is 

important for controlling immunopathology. An imbalance of these two cytokines as 

indicated by low IL-10 to TNF-α ratio (IL-10: TNF-α) has been associated with severe 

malarial anemia (SMA)201-203.  High levels of IL-10 and TNF-α have also been associated 

with respiratory distress in severe malaria42. Moreover, low levels of RANTES were 

associated with severity of anemia in malaria64 . Growth factors such as vascular 

endothelial growth factor (VEGF) and granulocyte-colony stimulating factor (G-CSF) 
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were also shown to be important in SM.  Elevated VEGF levels were associated with 

seizures and signs of intracranial pressure in Kenyan children with CM204, but lower 

levels of VEGF have been associated with increased severity in some studies of severe 

malaria in adults205,206. There has been no comparison to date of VEGF levels between 

CM and another form of severe disease in pediatric patients. G-CSF levels were elevated 

in CM as compared to uncomplicated malaria and were higher in children that died of 

CM in Ugandan children44. These studies have provided new insights into how 

inflammation may lead to disease severity in malaria, but typically grouped multiple 

manifestations of severe malaria, and often assessed a limited number of cytokines and 

chemokines and had a relatively small sample size. 

 

To better assess how pro- and anti-inflammatory cytokines and chemokines and 

angiogenic growth factors may contribute to development of two very different forms of 

severe malaria, cerebral malaria (CM) and severe malarial anemia (SMA), we assessed 

18 different cytokines, chemokines and angiogenic growth factors in a large study cohort 

of Ugandan children with CM (n=239), SMA (n=174) or healthy community children 

(CC, n = 161) from the same extended household or neighborhood as the children with 

CM or SMA.  To define how the immune response may affect disease outcomes in 

children with CM, we further assessed how these cytokines, chemokines or angiogenic 

growth factors related to mortality, neurologic deficits, coma duration and seizure 

number in children with CM. 
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6.3  Methods 

Cytokine Testing 

Plasma was processed from peripheral venous blood collected in EDTA tubes at 

enrollment and was stored long-term in -80oC. North American control samples (NAC) 

were obtained from healthy adults who had never been to a malaria endemic country and 

who were healthy at the time of blood collection.  

 

Plasma concentrations of 16 analytes: IFN-γ, IL-1β, IL-1ra, IL-4, IL-8, IL-10, IL-12p70, 

IP-10, MCP-1, MIP-1α, MIP-1β, G-CSF, FGF basic, PDGF-BB, RANTES and VEGF 

were measured using the Bio-Plex Pro™ Human Cytokine 27-plex Assay (Bio-Rad, 

Hercules, CA) in plasma diluted 1:4, according to manufacturer’s instruction. We 

selected those 16 analytes from the 27-plex assay based on their importance in malaria, 

severe malaria and inflammatory processes in general. Plasma levels of TNF-α and IL-6 

were measured by magnetic cyometric bead assay (EMD-Millipore, Billerica, MA) 

according to the manufacturer’s instructions. All the testing was performed with a 

BioPlex-200 system (Bio-Rad, Hercules, CA). To assess intra-assay reproducibility, 10% 

of samples were randomly selected from each assay plate to re-test on subsequent plates. 

The mean coefficient of variance for these samples for all analytes was 25.8%.  

 

Because concurrent parasitemia can alter peripheral blood cytokine levels207, only 

cytokine/chemokine/growth factor levels in CC with no P. falciparum parasitemia by 

microscopy (n=161) were compared to the levels in children with CM or SMA. 
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Statistical Analysis 

Measures with skewed distributions, which included all immune markers, were replaced 

by their common logs (log to base 10) for ANOVA or regression analyses. Cytokine and 

chemokine levels were compared between groups using Wilcoxon rank-sum when 

comparing two groups or ANOVA, followed by Tukey’s post-hoc test when comparing 

more than two groups. Clinical and laboratory findings for children in the different 

disease groups were compared using the chi-squared test if categorical and if continuous, 

Wilcoxon rank-sum when comparing two groups, and ANOVA followed by Tukey’s 

post-hoc test when comparing more than two groups. Linear regression analysis was used 

for continuous outcomes and logistic regression for categorical outcomes. Regression 

analyses were adjusted for potential confounding variables as indicated in the Results 

section and tables. Multivariate regression analysis was performed including the immune 

mediators that showed P<0.10 in the univariate regression analyses for the specific 

outcome, adjusting for potential confounding variables as indicated in the Results section. 

 

6.4  Results  

Distribution of cytokines and chemokines in severe malaria and community 

children 

Levels of plasma IFN-γ, TNF-α, IL-1β, IL-1ra, IL-4, IL-6, IL-8, IL-10, IL-12p70, IP-10, 

MCP-1, MIP-1α, MIP-1β, G-CSF, FGF-basic, PDGF-BB, RANTES and VEGF were 
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quantified in 413 children with severe malaria (SM), 239 cerebral malaria (CM) and 174 

severe malarial anemia (SMA) and in 161 healthy community children enrolled from the 

households or neighborhood of children with severe malaria. To get an idea of the 

balance between pro- and anti-inflammatory cytokines in an individual, we also 

calculated IL-10 to TNF- α ratio (IL-10: TNF-α).  IL-1β and IL-4 were on the lower end 

of the standard curve and had little variance in all samples studied (n=594, median pg/ml 

[25th percentile, 75th percentile], 3.03pg/ml [1.91, 4.84] and 2.78pg/ml [1.09, 4.79], 

respectively), therefore they are not included in further analysis.  

 

As expected, children with severe malaria had elevated levels of a number of pro- and 

anti-inflammatory cytokines and chemokines.  IL-1ra, IL-6, IL-8, IL-10, TNF-α, IL-10: 

TNF-α, G-CSF, IP-10, MCP-1, MIP-1β, and VEGF were higher in children with SM than 

CC (Table 6.1). In contrast, PDGF-BB, FGF-basic, and RANTES were lower in SM 

compared to CC. Surprisingly; IFN-γ levels were also lower in children with SM (n=413, 

median pg/ml [25th percentile, 75th percentile], 96.9pg/ml [58.4, 170]) as compared to CC 

(n=161, 150pg/ml [81.9, 254], P<0.0001, Table 6.1). The results were similar when 

comparing children with SM to community children who were negative for P.falciparum 

by PCR (Supplemental Table 6.1).  

 

As compared to CC (n=161) children with SM (n=413) were younger (age in months, 

median [25th percentile, 75th percentile], SM, 38.5 [26.9, 53.9], CC, 44.2 [32.0-55.6], 

P=0.01), and more malnourished (weight for age z-score, mean [standard deviation], SM, 
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-1.46 [1.33], CC, -0.89 [1.09], P<0.0001). A higher proportion of children with SM were 

male (61.3% vs. 46.6%, P=0.001). In a logistic regression model that included age, sex, 

and weight for age z-score, a log10 increase in the cytokine value was associated with a 

3- (G-CSF, VEGF), 4- (IL-6), 6- (TNF-α), 7- (MCP-1), 16- (IL-8), 40- (IL-10:TNF-α), 

69- (IL-1ra), 140- (IP-10), 166- (IL-10), and 2179- (MIP-1β) fold increased risk of SM 

(Table 6.2). PDGF-BB and RANTES were associated with significantly reduced risk of 

SM (Table 6.2), however when adjusting for number of platelets, which are important 

source for PDGF-BB and RANTES in the body208, only RANTES remained associated 

with an 80% reduced risk of severe malaria (one log10 increase in RANTES, odds ratio 

(OR) 0.20, 95% CI 0.08-0.48, P<0.001). Additionally IFN-γ was also associated with 

reduced risk of severe malaria upon adjusting for age, sex, and weight for z-score (Table 

6.2).  FGF-basic was no longer associated with reduced risk of SM when adjusting for 

platelet number, an important source of FGF-basic208 (OR 1.04, 95% CI 0.50-2.15, 

P=0.92). To address our main questions of which immune markers best distinguished 

between CM and SMA and were associated with morbidity and mortality in CM, we 

focused only on the immune markers that clearly differentiated severe malaria from CC. 

Therefore, IL-12p70, MIP-1α, FGF-basic and PDGF-BB were not considered further.  
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Table 6.1. Differences in plasma cytokines and chemokines between severe malaria and community 
control children 
 
 
 

a Wilcoxon rank-sum (Mann-Whitney) test.  
*SM (n=391), CC (n=153) 

 SM 
(n=413) 

CC 
(n=161) 

Pa 

 

IL-1ra (pg/ml), median (IQR) 900 (398-2840) 216 (127-320) <0.0001 
IL-8 (pg/ml), median (IQR) 36.8 (23.5-66.8) 19.7 (12.8-31.2) <0.0001 
IL-10 (pg/ml), median (IQR) 163 (55.4-560) 8.68 (4.51-14.7) <0.0001 
IL-12p70 (pg/ml), median (IQR) 20.3 (11.6-36.8) 22.1 (13.7-39.4) 0.23 
FGF-basic (pg/ml), median (IQR) 32.7 (12.8-48.6) 45.4 (27.4-65.4) <0.0001 
G-CSF (pg/ml), median (IQR) 67.2 (39.5-137) 48.5 (29.3-75.2) <0.0001 
IFN-γ (pg/ml), median (IQR) 96.9 (58.4-170) 150 (81.9-254) <0.0001 
IP-10 (pg/ml), median (IQR) 3566 (1421-9540) 559 (414-816) <0.0001 
MCP-1 (pg/ml), median (IQR) 56.4 (25.6-180) 21.8 (15.0-32.7) <0.0001 
MIP-1α (pg/ml), median (IQR) 6.73 (3.93-11.4) 6.81 (4.15-10.9) 0.82 
MIP-1β (pg/ml), median (IQR) 306 (185-533) 75.1 (59.5-104) <0.0001 
PDGF-BB (pg/ml), median (IQR) 730 (301-1424) 1218 (610-2287) <0.0001 
RANTES (pg/ml), median (IQR) 2563 (1412-5351) 7578 (3713-12053) <0.0001 
VEGF (pg/ml), median (IQR) 55.0 (33.0-98.1) 39.0 (22.6-69.7) <0.0001 
TNF-α (pg/ml), median (IQR)* 93.0 (49.3-175) 26.4 (18.1-41.6) <0.0001 
IL-6 (pg/ml), median (IQR)* 53.7 (18.8-216) 12.5 (2.65-39.8) <0.0001 
IL-10: TNF- α ratio, median (IQR)* 1.88 (0.97-4.11) 0.24 (0.15-0.54) <0.0001 
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Table 6.2. Association of plasma immune markers with severe malaria compared to community controls 
 
 

 

 

 

 

 

 

 

 

a OR, odds ratio, comparing severe malaria to community controls  
b Models adjusted for age, sex and weight for age z-score. All cytokine levels were log transformed (log 
base 10) 

 ORa (95% CI) Pb 
IL-1ra (pg/ml) 69.2 (29.8-161) <0.001 
IL-8 (pg/ml) 16.1 (7.95-32.6) <0.001 
IL-10 (pg/ml) 166 (61.4-451) <0.001 
IL-12p70 (pg/ml) 0.79 (0.51-1.22) 0.29 
FGF-basic (pg/ml) 0.25 (0.14-0.44) <0.001 
G-CSF (pg/ml) 2.82 (1.81-4.41) <0.001 
IFN-γ (pg/ml) 0.40 (0.24-0.64) <0.001 
IP-10 (pg/ml) 140 (55.4-355) <0.001 
MCP-1 (pg/ml) 7.28 (4.45-11.9) <0.001 
MIP-1α (pg/ml) 0.80 (0.53-1.21) 0.29 
MIP-1β (pg/ml) 2179 (555-8546) <0.001 
PDGF-BB (pg/ml) 0.30 (0.19-0.47) <0.001 
RANTES (pg/ml) 0.04 (0.02-0.09) <0.001 
VEGF (pg/ml) 2.58 (1.65-4.04) <0.001 
TNF-α (pg/ml) 5.60 (3.58-8.78) <0.001 
IL-6 (pg/ml) 3.53 (2.66-4.68) <0.001 
IL-10: TNF-α 40.4 (20.7-79.0) <0.001 

 

Baseline characteristics of children with cerebral malaria and severe malarial 

anemia 

Fifty-four of the 239 children with CM also had SMA. This group is presented here as 

CM/SMA and was separated from the CM group to clearly address the question of 

whether CM children have a unique immunologic profile as compared to SMA. Children 

with SMA or CM/SMA were younger than children with CM, had lower hemoglobin 

levels by definition, and a higher white blood cell count (Table 6.3). Children with CM or 

CM/SMA had a lower platelet count, higher PfHRP-2 levels and sequestered parasite 

biomass, and also were more likely to have taken anti-malarials prior to hospitalization 

than children with SMA (Table 6.3). Children with CM/SMA had the highest sequestered 
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biomass of any group. The prevalence of co-infections (HIV, bacteremia, stool 

helminths) was low and similar between all three groups (Table 6.3).  

 

Table 6.3. Baseline characteristics of children with cerebral malaria and severe malarial anemia 
 

a ANOVA followed by Tukey post-hoc adjustment for continuous variables. For continuous variables that 
did not have a normal distribution, values were log (log10) transformed. For categorical values, Chi2 test 
was used and P<0.017 was considered significant to account for multiple comparisons. 
b CM differed from CM/SMA and SMA 
c CM differed from SMA 
d SMA differed from CM and CM/SMA 
e All groups differed from each other 

 CM 
(n=185) 

CM/SMA 
(n=54) 

SMA 
(n=174) 

Pa 
 

Age (months), median (IQR)  43.8 (32.5-63.6) 35.7 (26.7-46.9) 31.6 (24.2-49.4) <0.0001b 

Sex (male), n (%) 112 (60.5) 31 (57.4) 110 (63.2) 0.72 

Weight for age z-score, mean 
(SD) 

-1.27 (1.22) -1.40 (1.17) -1.68 (1.45) 0.01c 

Anti-malarial prior to 
hospitalization, n (%) 

147 (79.5) 45 (83.3) 105 (60.3) <0.0001d 

HIV positive, n (%) 4 (2.38) 
n=168 

1 (1.92) 
n=52 

4 (2.34) 
n=171 

0.98 

Hookworm , n (%) 1 (0.54) 0 (0) 2 (1.15) 0.63 

Stool positive for parasites, n (%) 8 (4.37) 
n=183 

3 (5.66) 
n=53 

7 (4.24) 
n=165 

0.89 

Positive blood culture, n (%) 16 (8.70) 
n=184 

7 (13.0) 
n=54 

17 (9.88) 
n=172 

0.59 

  
Hemoglobin (g/dL), mean (SD) 

7.84 (1.96) 4.10 (0.77) 3.81 (0.86) <0.0001b 

Platelet number (×103/µL), 
median (IQR) 

57.5 (34-101) 
n=182 

79 (47-129) 
n=53 

146 (88-218) 
n=172 

<0.0001d 

White blood cell count (×103/µL), 
median (IQR) 

8.75 (6.50-12.3) 
n=182 

12.4 (7.9-18.8) 
n=53 

10.9 (8.25-14.6) 
n=172 

<0.0001b 

  
Parasite density (/µl), median 
(IQR) 

55620 (15040-
353305) 
n=180 

23225 (9050-
145700) 

n=52 

46240 (12560-
200620) 
n=173 

0.09 

Parasite load (PfHRP2, ng/ml), 
median (IQR) 

2335 (845-5083) 3926 (1802-
5887) 

1072 (512-2790) <0.0001d 

Sequestered biomass (x10^8), 
median (IQR) 

13300 (4614-
33888) 
n=180 

30026 (14446-
49311) 
n=52 

7853 (2475-
17977) 
n=173 

<0.0001e 
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Immunologic profile in Ugandan children with cerebral malaria or severe 

malarial anemia 

In order to determine which cytokines and chemokines best distinguish CM from SMA 

we compared the levels for each of these analytes between CM, SMA and CM/SMA. We 

hypothesized that the analytes differentially regulated in CM and CM/SMA, as compared 

to SMA, would be important in unique pathways that contribute to the pathogenesis of 

CM. Additionally, the immune markers differentially regulated in SMA and CM/SMA, as 

compared to CM, would contribute to the pathogenesis of SMA. Children with CM or 

CM/SMA had higher levels of IL-1ra, IL-6, IL-8, IL-10, and IP-10 and lower levels of 

RANTES than children with SMA (Figure 6.1), suggesting these cytokines and 

chemokines could be contributing specifically to the cerebral manifestations of the 

disease. The IL10:TNF-α ratio and MCP-1 were lower in SMA and CM/SMA as 

compared to CM, suggesting their importance in severe malarial anemia. G-CSF differed 

only between CM and SMA (Supplemental Figure 6.1) when adjusting for multiple 

comparisons. TNF-α (Figure 6.1), IFN-γ, MIP-1β and VEGF (Supplemental Figure 6.1) 

did not significantly differ between the three groups.  

 

Since CM and SMA differed in age, weight for age z-score, number of platelets, white 

blood cell count, PfHRP-2 levels, and the use of anti-malarials prior to enrollment, all of 

which could potentially affect cytokine levels we adjusted for these factors in a logistic 

regression model that assessed the levels of cytokines, chemokines and growth factors in 

children with CM compared to SMA. For this analysis, children with CM only were 
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compared to children with SMA only. In the regression model, increased levels of IFN-γ, 

IL-1ra, IL-8, IL-10, IL-10:TNF-α, MCP-1, IP-10, and G-CSF were associated with 

increased risk of CM (P<0.05 for all, Table 6.4). In a multivariate regression model 

including all the immune markers that had P<0.10 for the univariate regression models 

(Table 6.4), adjusting for age, weight for age z-score, anti-malarial treatment prior to 

admission, platelet and white blood cell count, and PfHRP-2 levels, elevated IL-10:TNF-

α (one log10 increase in IL10:TNF-α, odds ratio (OR) 4.80, 95% CI 1.94-11.9, P=0.001) 

was independently associated with increased risk of CM.  
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Figure 6.1. Differences in plasma cytokines and chemokines between children with cerebral malaria, 

severe malarial anemia and children that manifest with both forms of severe malaria  

Cytokines and chemokines (on a logarithmic scale) at enrollment that differentiate between the three 

groups. The horizontal line represents median values. P-values represent ANOVA on log 10 transformed 

values followed by Tukey post-hoc adjustment for multiple comparisons. CM (cerebral malaria, 

hemoglobin >5g/dL), CM/SMA (cerebral malaria, hemoglobin ≤5g/dL), and SMA (severe malarial 

anemia).  
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Table 6.4. Association of plasma cytokines with cerebral malaria compared to severe malarial anemia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a OR, odds ratio, comparing cerebral malaria to severe malarial anemia 

b Models adjusted for age, weight for age z-score, anti-malarial treatment, platelet and white blood cell 
count, and PfHRP-2 levels. All cytokine levels were log transformed (log base 10) 

 ORa (95% CI) Pb 
IL-1ra (pg/ml) 2.05 (1.25-3.36) 0.004 
IL-8 (pg/ml) 4.47 (2.19-9.14) <0.001 
IL-10 (pg/ml) 1.85 (1.17-2.91) 0.008 
G-CSF (pg/ml) 2.72 (1.53-4.86) 0.001 
IFN-γ (pg/ml) 2.64 (1.43-4.87) 0.002 
IP-10 (pg/ml) 2.75 (1.53-4.93) 0.001 
MCP-1 (pg/ml) 2.08 (1.29-3.34) 0.002 
MIP-1β (pg/ml) 0.81 (0.37-1.78) 0.60 
RANTES (pg/ml) 0.59 (0.30-1.16) 0.13 
VEGF (pg/ml) 1.21 (0.65-2.24) 0.55 
TNF-α (pg/ml) 0.77 (0.49-1.22) 0.27 
IL-6 (pg/ml) 1.37 (0.98-1.91) 0.07 
IL-10: TNF-α 2.79 (1.60-4.88) <0.001 

 

Elevated plasma IL-8 and IL-10 are associated with increased the risk of 

mortality in children with CM  

The role of systemic inflammation in mortality in CM is still poorly defined. 31 children 

with CM died (13.0%); 11 of these children died the same day they were enrolled in the 

study, 14 children within 24 hours, 5 children within 48 hours, and 1child within 72 hours 

of enrollment. PfHRP-2 levels were higher in children with CM who died compared to 

those who survived (died n=31, 4514ng/ml [2308, 7517] and survived n=208, 2389ng/ml 

[899, 5145], P=0.008). When adjusting for age, sex, weight for age z-score and PfHRP-2 

level, only elevated levels IL-8 and IL-10 were associated with increased risk of mortality 
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(Table 6.5). IL-8 and IL-10 did not differ significantly between children with CM who 

died within the first 24 hours (n=25) as compared to those who died later (n=6). 

However, the number of children with CM who died after 24 hours is low. In a 

multivariate regression model including all the immune markers that had P<0.10 for the 

univariate regression models (Table 6.5), adjusting for age, weight for age z-score, and 

PfHRP-2 levels, neither IL-8 nor IL-10 were independently associated with mortality risk 

in CM. Receiver operating curve analysis showed that IL-10 (AUROC 0.62, 95% CI 

0.51-0.73) was a slightly better predictor of CM mortality than IL-8 (AUROC 0.60, 95% 

CI 0.47-0.72), however none of these markers would qualify as a good predictor of 

mortality in CM for diagnostic purposes.  
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Table 6.5. Correlation of plasma cytokines and chemokines with mortality, and neurologic deficits at 
discharge or six-month follow-up in children with cerebral malaria 
 

a OR, odds ratio, comparing children with CM who died vs. survived; children with CM who were 
discharged with neurologic deficits vs. not , and children with CM who had neurologic deficits at 6-months 
follow-up vs. not.  
b Models adjusted for age, weight for age z-score, and PfHRP-2 levels. All cytokine levels were log 
transformed (log base 10) 

 Mortality Neurologic deficits at 
discharge 

Neurologic deficits 6-month 
follow-up 

 ORa (95% CI) Pb ORa (95% CI) Pb ORa (95% CI) Pb 
IL-1ra 
(pg/ml) 

1.50 (0.74-3.02) 0.26 0.78 (0.46-1.33) 0.36 0.82 (0.25-2.67) 0.75 

IL-8 (pg/ml) 2.51 (1.18-5.33) 0.02 1.32 (0.65-2.65) 0.44 1.86 (0.38-8.97) 0.44 
IL-10 (pg/ml) 1.96 (1.01-3.82) 0.05 0.68 (0.41-1.12) 0.13 0.87 (0.27-2.83) 0.81 
GCSF 
(pg/ml) 

1.29 (0.65-2.56) 0.47 1.19 (0.66-2.12) 0.57 1.70 (0.49-5.87) 0.40 

IFN-γ (pg/ml) 1.24 (0.47-3.30) 0.67 1.08 (0.55-2.14) 0.82 0.33 (0.09-1.17) 0.09 
IP-10 (pg/ml) 1.74 (0.81-3.73) 0.16 0.79 (0.46-1.37) 0.40 1.39 (0.38-5.11) 0.62 
MCP-1 
(pg/ml) 

1.25 (0.68-2.32) 0.47 0.59 (0.35-0.99) 0.05 1.54 (0.48-4.90) 0.46 

MIP-1β 
(pg/ml) 

1.96 (0.63-6.11) 0.25 0.26 (0.10-0.66) 0.005 0.55 (0.06-4.98) 0.59 

RANTES 
(pg/ml) 

0.73 (0.27-1.96) 0.54 0.85 (0.42-1.74) 0.66 0.30 (0.05-1.72) 0.18 

VEGF 
(pg/ml) 

1.72 (0.61-4.88) 0.31 0.84 (0.43-1.68) 0.63 0.50 (0.13-1.90) 0.31 

TNF-α 
(pg/ml) 

1.22 (0.55-2.73) 0.63 0.61 (0.36-1.04) 0.07 1.28 (0.26-6.42) 0.76 

IL-6 (pg/ml) 1.57 (0.95-2.61) 0.08 0.96 (0.68-1.36) 0.81 1.57 (0.60-4.10) 0.36 
IL10:TNF-α 
ratio 

1.93 (0.91-4.13) 0.09 1.13 (0.62-2.03) 0.69 0.59 (0.12-2.82) 0.51 

 

MIP-1β and MCP-1 levels are associated with reduced risk of neurologic 

deficits at discharge in children with CM  

Of the 206 children with CM who survived and had neurologic assessment done at 

discharge, 77 (37.4%) showed at least one sign of neurologic deficit. 200 of these 

children came back for the 6-month follow-up neurologic assessment and 11 (5.5%) 

children had neurologic deficits at this timepoint. Children that were discharged with 

neurologic deficits were younger, tended to be male more frequently and tended to have 
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lower weight for age z-score than those who were discharged without any neurologic 

deficits. When adjusting for age, sex, weight for age z-score, and PfHRP-2 only MIP-1β 

and MCP-1 were associated with reduced risk of neurologic deficits at discharge (Table 

6.5). However, in a multivariate regression model including all the immune markers that 

had P<0.10 in the univariate analyses (Table 6.5), adjusting for age, sex, weight for age 

z-score, and PfHRP-2 neither MIP-1β nor MCP-1 were independently associated with 

risk of neurologic deficits at discharge. There was no association between any of the 

immune markers and neurologic deficits at the 6-month follow-up timepoint.  

 

Increased IL-10, IFN-γ, RANTES and VEGF are associated with reduced 

coma duration in children with CM 

Number of seizures and coma duration during admission are other markers of disease 

severity in CM. Elevated levels of IL-10, IFN-γ, RANTES and VEGF were associated 

with shorter coma duration at admission when adjusting for age, sex, weight for age z-

score and PfHRP-2 levels (Table 6.6). To make sure that the association of RANTES and 

VEGF with coma duration was independent of platelet number we also adjusted for 

platelet number in those models. Elevated levels of RANTES and VEGF remained 

associated with shorter coma during admission (β-coefficient -0.14, 95%CI -0.27- -0.02, 

P=0.02; β-coefficient -0.16, 95% CI -0.27- -0.05, P=0.006, respectively). In a model 

including all immune markers that had P<0.10 in linear regression models (Table 6.6), 

adjusted for age, sex, weight for age z-score, and PfHRP-2 none of the immune markers 
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remained independently correlated with coma duration. There was no association 

between any of these markers and number of seizures during admission.  

 

Table 6.6. Correlation of plasma cytokines and chemokines with coma duration and seizure numbers 
during hospitalization in CM children 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a β, beta coefficient, comparing association of coma duration and number of seizures during admission with 
cytokine, chemokine levels and growth factor levels at enrollment.  
b Models adjusted for age, weight for age z-score, and PfHRP-2 levels. All cytokine levels were log 
transformed (log base 10) 

 Coma duration (h) Seizure numbers  
 βa coefficient (95% CI) Pb βa coefficient (95% CI) Pb 
IL-1ra (pg/ml) -0.06 (-0.14- 0.03) 0.18 0.03 (-0.06-0.12) 0.53 
IL-8 (pg/ml) -0.03 (-0.15-0.08) 0.56 -0.02 (-0.13-0.09) 0.71 
IL-10 (pg/ml) -0.09 (-0.16- 0.007) 0.03 -0.04 (-0.12-0.05) 0.39 
G-CSF (pg/ml) -0.05 (-0.14-0.05) 0.33 -0.06 (-0.15-0.04) 0.24 
IFN-γ (pg/ml) -0.15 (-0.26- -0.05) 0.005 -0.08 (-0.20-0.04) 0.19 
IP-10 (pg/ml) -0.06 (-0.15-0.02) 0.15 -0.007 (-0.10-0.09) 0.89 
MCP-1 (pg/ml) -0.07 (-0.15-0.01) 0.09 -0.03 (-0.12-0.04) 0.33 
MIP-1β (pg/ml) -0.10 (-0.24-0.04) 0.18 -0.08 (-0.24-0.08) 0.30 
RANTES (pg/ml) -0.13 (-0.24- -0.01) 0.03 0.07 (-0.07-0.21) 0.31 
VEGF (pg/ml) -0.14 (-0.25- -0.03) 0.01 -0.04 (-0.17- 0.09) 0.58 
TNF-α (pg/ml) -0.06 (-0.14-0.03) 0.18 -0.04 (-0.14-0.05) 0.37 
IL-6 (pg/ml) -0.05 (-0.11- 0.004) 0.07 -0.02 (-0.08-0.05) 0.58 
IL10:TNF-α -0.04 (-0.13- 0.06) 0.46 -0.005 (-0.11-0.10) 0.93 

 
 

6.5  Discussion 

Identifying an immunologic profile that distinguishes between cerebral malaria (CM) and 

severe malarial anemia (SMA) is important in understanding the distinct pathological 

processes that contribute to these two forms of severe malaria and in informing the design 

of better diagnostics and therapies. In the current study, elevated IL-1ra, IL-8, IL-10, G-

CSF, IFN-γ, IP-10, MCP-1, and IL-10:TNF-α increased the risk of CM over SMA. 

However, only IL-10:TNF-α remained independently associated with CM in a 

multivariate analysis. Elevated IL-8 and IL-10 were associated with increased risk of 
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mortality in CM, elevated MCP-1 and MIP-1β with neurologic protection at discharge, 

and elevated IL-10, IFN-γ, VEGF and RANTES with shorter coma during admission. 

However, none of these immune markers remained independently associated with 

mortality, neurologic deficits at discharge or coma duration in multivariate analysis. 

 

IL-10 and IL-10:TNF-α appear to be particularly important in the pathogenesis and 

outcomes of CM. In the present study, IL-10 was uniquely upregulated in CM and 

CM/SMA as compared to SMA (Figure 6.1), distinguished well between CM and SMA 

(Table 6.4), and was also associated with mortality (Table 6.5). IL-10 has been 

previously associated with mortality in Vietnamese adults with SM209 and in Ugandan 

children 5-12 years old with CM, the latter a prior study by our group43. IL-10 is also 

important in controlling TNF-α, which can limit the growth of erythroid precursors172 and 

promote erythrophagocytosis and dyserythropoiesis173. Low IL-10:TNF-α values have 

been previously associated with SMA201-203. In our study, IL-10:TNF-α values were also 

lower in CM/SMA and SMA as compared to CM (Figure 6.1), emphasizing the 

importance of IL-10 controlling TNF-α in SMA. However, we did not determine 

reticulocyte counts in these children to establish a more direct association between IL-

10:TNF-α and bone marrow function.  Moreover, high IL-10:TNF-α was associated with 

increased risk of CM over SMA and remained independently associated with the risk of 

CM in a multivariate regression model. This suggests that IL-10 is important in 

controlling the anti-erythropoietic effects of TNF-α, however, very high levels of IL-10 

could indicate an imbalanced anti-inflammatory response preventing parasite clearance in 
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CM. It is also possible that high levels of IL-10 reflect a strong anti-inflammatory 

response to a prior strong inflammatory reaction, and we are seeing a reflection of the 

consequences of earlier inflammation. However, the ability of IL-10, among multiple 

cytokines, to differentiate CM from SMA and, in children with CM, the survivors from 

those who died, does suggest a more specific role for this cytokine in the disease 

pathogenesis in CM. 

 

IP-10, IL-8, and MCP-1 were associated with increased risk of CM as compared to SMA, 

and IL-8 was also associated with increased mortality in CM. IP-10, IL-8, and MCP-1 are 

chemokines important in recruiting monocytes, activated T cells, dendritic cells, 

neutrophils, and natural killer cells to sites of inflammation210. Elevated IP-10 and IL-8 

have been previously reported in severe malaria 44,196,197,205,211,212, but they have been 

studied very little between CM and SMA196,197, especially in the case of IL-8. 

Additionally, MCP-1 was seen elevated in CM vs. mild disease in a study of Indian 

adults213 and trended higher in another study of adult CM211. The data in pediatric 

population is limited. Our group has previously shown elevated MCP-1 in children with 

CM compared to community controls and in children with CM who died44. Recruitment 

of neutrophils, other leukocytes and platelets, to the sites of endothelium activation in the 

brain has been reported in autopsy studies of human CM46,47. As a result, the elevation of 

IP-10, IL-8, and MCP-1 in CM and the association of IL-8 with mortality could be due to 

the ability of these chemokines to recruit immune cells to the brain microvasculature 

promoting mechanical sequestration and local inflammation, disease characteristics that 
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are not typical of SMA47. Lastly, IL-8 and MCP-1 can also be released by activated 

endothelial cells and platelets208,214. Since we have adjusted for platelet number in our 

models, elevated IL-8 and MCP-1 could be markers of endothelial activation, which is 

more predominant in CM than SMA17. Overall, more work is needed to characterize the 

expression of IL-8, MCP-1, and IP-10 in the brain microvasculature from fatal CM cases; 

characterize immune cells that express the receptors for these chemokines, and 

understand the role of IL-8, MCP-1, and IP-10 on chemotaxis in the context of a 

P.falciparum infection using in vitro assays.  

 

MIP-1β and MCP-1 were the only immune markers associated with protection against 

neurologic deficits at discharge in our cohort. This association was surprising since one 

log 10 increase in their levels was associated with a 7- and 2000-fold increased risk of 

SM as compared to CC, respectively, and MCP-1 was associated with increased risk of 

CM over SMA. Higher levels of these beta chemokines in CM vs. SMA, and association 

of higher MCP-1 and MIP-1β levels with neurologic protection in CM, could suggest that 

elevated levels of these chemokines are an indicator of a proper immune response against 

the pathogen. Additionally, children with CM present at the hospital at different stages of 

the disease. As a result, increased levels of MIP-1β and MCP-1, could be an indicator of 

being enrolled and starting treatment earlier in the infection. Similarly, the association of 

elevated levels of RANTES, VEGF, IFN-γ and IL-10 with shorter coma could suggest 

presentation of children with CM closer to disease onset. However, in the case of 

RANTES and VEGF there are indicators of lower levels being pathogenic in SM.  Low 
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RANTES was associated with mortality in 5-12 year old Ugandan children with CM 43 

and with severity of anemia in malaria64. Low VEGF levels have been associated with 

increased severity in some studies of adult severe malaria205,206 and are thought to 

contribute to disease partially via the effect of VEGF on the parasite itself and parasite 

biomass215. However, in a multivariate regression models none of these markers 

remained independently associated with neurologic protection or coma duration. There 

was no association of any of the immune markers studied here with neurologic deficits at 

6-months follow-up or number of seizures during admission.  

 

The finding that IFN-γ was not elevated in children with SM as compared to CC was 

surprising. Contrary to other studies43,211,216, including an earlier study by our group in 

the same hospital43,  IFN-γ was significantly lower in SM as compared to CC. However, 

in other studies, IFN-γ was detectable in only 23% of mild malaria and 35% of cerebral 

malaria patients197 or did not differ between severe malaria patients and controls169,205. 

Timing of sample collection (at time of coma for CM) was similar to timing in our earlier 

study43. However, timing could still affect levels, if sample collection is after peak of 

IFN-γ production, and IFN-γ tends to peak quite early in the infection and is highly 

transient191,192. Additionally, the presence of soluble IFN-γ receptors, normally elevated 

upon inflammation could be affecting the detection of IFN-γ in the context of a malaria 

infection. Within SM, high IFN-γ levels differentiated between CM over SMA. This 

emphasizes the need to better understand the factors that could affect the detection of 

IFN-γ in SM, and whether it could serve as a reliable marker of disease severity.  
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Similarly, we did not see elevated IL-1β and IL-12p70 levels in SM as compared to CC.  

This could be due to the highly elevated levels of IL-10 inhibiting the pro-inflammatory 

response, or due to the delay between disease onset and admission of children with SM; 

therefore we could be missing the initial peak of IL-1β, IFN-γ, and IL-12, and instead we 

are catching the downstream effectors, such as IL-6 and IL-10.  

 

There are a number of limitations to studies of this nature. We measured levels of 

cytokines and chemokines at a single time point in the disease. Multiple time points 

during the child’s admission and recovery might give a better idea of the factors that are 

specifically associated with coma and mortality, though we have shown previously that 

most cytokine and chemokine levels normalize by 72 hours43. Additionally, plasma does 

not reflect what could be happening locally in the secondary lymphoid organs, brain, and 

bone marrow of these patients. Obtaining and characterizing peripheral blood 

mononuclear cells might give a better idea about the source of these immune markers and 

their functionality. Moreover, we quantified levels rather than activity of these immune 

mediators. Quantification of their respective soluble receptors could give a better idea on 

the activity of these markers217. Genetic polymorphisms could also influence the 

variability in cytokine levels seen in this study. Lastly, while our study quantified 18 

immune markers, this is not an exhaustive characterization. Recently IL-15, IL-5, 

eotaxin, IL-17 and IL-27 were associated with various aspects of severe malaria and 

would be of interest to investigate in our unique setting211,213,218. We are conducting 
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ongoing studies to assess how levels of these cytokines in the cerebrospinal fluid relate to 

mortality and neurologic morbidity in CM. 

 

In conclusion, our study suggests that IL-10:TNF-α is an independent predictor of CM 

over SMA, that elevated levels of IL-10 and IL-8 differentiate well between CM and 

SMA and are also associated with mortality in CM, and that elevated IFN-γ, IL-10, 

RANTES and VEGF levels are associated with shorter coma duration in CM.  The 

findings provide new insight into how pro- and anti-inflammatory cytokines and 

chemokines may contribute to disease phenotype and mortality in severe malaria, but also 

highlight the complexity of the host immune response and the need for additional study 

of this response to better define how interventions can successfully produce the optimal 

balance between too much and not enough of an inflammatory response to the parasite. 
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Chapter 7 

High plasma erythropoietin levels are associated with 

prolonged coma duration and increased mortality in children 

with cerebral malaria 

7.1  Objectives  
 

ü Determine EPO levels in plasma and CSF of children with CM  

ü Evaluate the association of systemic and local EPO levels with markers of disease 

severity in CM such as coma duration, neurologic deficits and mortality  

 
 

7.2  Introduction  
 

Erythropoietin (EPO) is a hematopoietic factor that promotes survival and proliferation of 

bone-marrow progenitor cells during erythropoiesis 219. Expression of EPO under the 

control of hypoxia-inducible factor-1 alpha (HIF1-α) occurs primarily in the kidney, but 

EPO and EPO receptor (EPOR) expression has been identified in other organs, including 

the brain of rodents, monkeys, and humans 220. In vitro studies demonstrating that EPO 

reduced glutamate-induced neuronal apoptosis 221 initiated intensive investigations on the 

use of EPO as a neuroprotective agent.  
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Exogenous recombinant human EPO (rHuEPO) has been shown to be neuroprotective in 

animal models of cerebral ischemic neuronal damage 222, autoimmune encephalomyelitis 

(EAE) 223 and cerebral malaria 224,225. Consequently, rHuEPO was rapidly introduced into 

human clinical trials. A large phase I trial in acute ischemic stroke patients showed 

improved clinical outcome at the one-month primary endpoint 226. However, longitudinal 

follow-up of these patients revealed increased mortality in the rHuEPO arm and provided 

evidence, along with other studies, that in critically ill patients, EPO can increase the risk 

of thrombosis, endothelial cell activation, and platelet aggregation 227-229. rHuEPO has 

been shown to correlate with better cognitive outcomes in preterm infants 230, however 

the use of high doses of rHuEPO in children undergoing dialysis has been associated with 

an increased risk of hypertension 231, raising questions on the safety of rHuEPO as a 

neurotropic agent in children, particularly children with a pro-thrombotic disease process. 

 

Severe malaria induces upregulation of endogenous EPO levels 232,233, which can be 

greater than the increase induced by similar anemia without malaria 68. High plasma 

levels of endogenous EPO were associated with protection from acute neurologic deficits 

in Kenyan children with CM 204. This study and murine cerebral malaria studies 224,225 

prompted a small (n=35) phase I clinical trial in which EPO-beta adjunctive treatment for 

children with CM did not cause obvious adverse events 234.  In this study clinical 

assessment was limited and children were followed for only seven days. In light of recent 

studies showing increased mortality with rHuEPO in other neurologic conditions 227 and 

the lack of studies confirming the Kenyan study findings, we conducted a study to assess 
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the relationship of plasma and CSF EPO levels with mortality and acute and long-term 

neurologic deficits in children with CM. As EPO can increase endothelial activation 229 

which can further promote sequestration 30,235, the relationships between plasma and CSF 

EPO levels and markers of endothelial activation and levels of P. falciparum histidine-

rich protein-2 (PfHRP2), a measure of sequestered and circulating parasite biomass 73, 

were also assessed. 

 

7.3  Methods 

Laboratory testing 

Plasma and CSF EPO levels were tested via a high sensitivity radioimmunoassay (RIA), 

as previously described 236.  

 

Plasma analyte testing 

Plasma levels of soluble intracellular adhesion molecule-1 (sICAM-1), vascular cellular 

adhesion molecule-1 (sVCAM-1), and soluble P-Selectin and E-Selectin were measured 

by cytometric bead assay according to the manufacturer’s instructions in plasma diluted 

1:300 (R&D Systems, Minneapolis, MN) with a Bioplex-200 system (Bio-Rad, Hercules, 

CA).  
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Statistical Analysis 

Clinical and laboratory factors in children with vs. without neurologic deficits and in 

survivors vs. non-survivors were compared by χ2 testing if categorical and if continuous, 

by Student’s t-test or by the Wilcoxon rank-sum test for measures with skewed 

distributions. Variables with a P<0.2 in these analyses were adjusted for in the respective 

regression models. Plasma and CSF EPO levels, coma duration, and number of seizures 

had skewed distributions, so for these variables, Spearman’s rank correlation (rho) was 

used for unadjusted analyses and log-transformed (natural log) values were used for 

regression analyses.  Associations between log-transformed EPO levels and neurologic 

outcomes and mortality were tested by logistic regression for categorical variables and 

linear regression for continuous variables, with adjustment for potential confounding 

factors after initial testing for interactions of pairs of potential confounding factors and of 

log EPO with each potential confounder.  

 

7.4  Results 

Study cohort follow-up, sample collection and baseline characteristics 

Figure 1 shows the number of children tested for plasma and CSF EPO levels, the 

number of survivors and those who died, and the number of surviving children with 

neurologic deficits at discharge. Of the 204 children who had plasma tested, 147 had CSF 

tested. CSF was not tested on 57 of the 204 children for reasons specified in Figure 7.1. 

Children with HIV (n=5) and sickle cell disease (n=1) were not excluded from the study.  
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Figure 7.1. Study profile 

 

Clinical and laboratory predictors of neurologic deficits and mortality 

At discharge, 69 of 179 children who survived CM and had a neurologic exam (38.5%) 

had neurologic deficits, including motor deficits (n=37), ataxia (n=35), or disorders of 

movement (n=5), behavior (n=10), hearing (n=5), or speech or vision (n=34). At six 

months follow-up, 10 of 173 children who survived and completed follow-up (5.8%) had 

neurologic deficits, including motor deficits (n=4), ataxia (n=4), movement disorder 

(n=2), behavior (n=1), and speech or visual disorders (n=6).  

 

Clinical and laboratory variables that were biologically plausible as predictors of 

neurologic deficits or mortality in children with CM were compared in children with vs. 

without neurologic deficits at discharge and six months, and in children who survived vs. 
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children who died (Tables 7.1 and 7.2). Among these factors, children with neurologic 

deficits at discharge had a lower age, higher sP-Selectin levels and longer coma duration 

during admission than children without deficits, and children with neurologic deficits at 

six-month follow-up had a lower weight for age z-score, lower Blantyre coma score, 

longer coma and received a blood transfusion more frequently than children without 

deficits (Table 7.1). Lower sP-Selectin levels and a trend toward lower hemoglobin levels 

were seen in children who survived vs. children who died (Table 7.2).  
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Table 7.1. Clinical and laboratory findings in children with cerebral malaria with vs. without neurologic 
deficits, at discharge and 6-month follow-up 
 

 Discharge 6 month follow-up 
 Deficits 

(n=69) 
No deficits 

(n=110) 
Pa Deficits 

(n=10) 
No deficits 

(n=163) 
Pa 

Demographic and 
clinical findings 

      

Age (months) median 
(IQR) 

38.1  
(26.7-
47.8) 

43.7  
(32.5-61.6) 

0.02 37.1  
(24.8-42.3) 

41.5  
(31.1-52.9) 

0.09 

Sex, male n (%) 45 (65.2) 60 (54.6) 0.16 3 (30.0) 97 (59.5) 0.07 
Weight for age z-score, 
mean (SD) 

-1.46 
(1.29) 

-1.11 (1.10) 0.06 -1.96 (1.11) -1.20 (1.15) 0.04 

Seizures before 
admission, n (%) 

65 (94.2) 105 (95.5) 0.71 10 (100.00) 157 (96.3) 0.54 

Deep acidotic breathing, 
n (%) 

4 (5.80) 9 (8.18) 0.55 0 (0) 12 (7.36) 0.37 

Abnormal posturing, n 
(%) 

4 (5.80) 8 (7.27) 0.70 1 (10.00) 11 (6.75) 0.69 

Blantyre coma score, 
median (IQR) 

2 (1-2) 2 (2-2) 0.18 1 (1-1) 2 (2-2) <0.0001 

Coma duration (hours), 
median (IQR) 

73.0  
(40.0-119) 

47.0  
(27.5-70.0) 

0.0004 155  
(86.5-227) 

49.0  
(32.0-78.7) 

0.0001 

Seizures after admission, 
n (%) 

33 (47.8) 66 (60.0) 0.11 6 (60.00) 90 (55.2) 0.77 

No. of seizures after 
admission, median (IQR) 

0 (0-1) 1 (0-2) 0.29 3 (0-8) 1 (0-2) 0.11 

Transfused, n (%) 47 (68.1) 65 (59.1) 0.23 10 (100) 97 (59.5) 0.01 
Clinical laboratory tests       
Hemoglobin (g/dL), mean 
(SD) 

6.84 
(2.33) 

6.60 (2.21) 0.49 6.39 (1.47) 6.68 (2.23) 0.68 

White blood cell count, 
median (IQR) 

10.2 
(6.70-
16.1) 

8.90 
(6.50-12.3) 

0.11 8.30 
(5.30-
15.70) 

9.10 
(6.70-12.9) 

0.74 

Platelet count, median 
(IQR) 

63.0 
(33.5-130) 

61.0  
(37.0-105) 

0.96 58.0  
(31.0-75.0) 

61.0  
(37.0-115) 

0.62 

Hypoglycemiac, n (%) 6 (8.70) 6 (5.45) 0.40 1 (10.0) 11 (6.75) 0.69 
P. falciparum peripheral 
blood density, median 
(IQR) 

37580 
(8160-

249560) 

59180 
(14180-
407940) 

0.20 72370 
(6420-

801060) 

43990 
(12680-
309060) 

0.62 

PfHRP2 level (ng/ml), 
median (IQR) 

2678 
(1042-
5369) 

2274  
(943-4949) 

0.54 1001  
(470-3036) 

2561  
(996-5148) 

0.14 

Endothelial and platelet 
activation markers 

      

Soluble VCAM-1 
(ng/ml), median (IQR) 

4034 
(2551-
6815) 

3944  
(2869-
6601) 

0.78 5836  
(3781-
11977) 

3845  
(2715-
6364) 

0.09 

Soluble ICAM-1 (ng/ml), 
median (IQR) 

729  
(225-
1433) 

505  
(238-1340) 

0.60 657  
(220-1170) 

521  
(225-1433) 

0.86 
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Soluble E-Selectin  
(ng/ml), median (IQR) 

172  
(121-238) 

187  
(142-254) 

0.22 211  
(158-246) 

179  
(134-250) 

0.78 

Soluble P-Selectin  
(ng/ml), median (IQR) 

61.0 
(40.6-
83.1) 

48.6  
(35.8-72.8) 

0.05 58.8  
(51.7-83.2) 

50.0  
(36.8-76.1) 

0.40 

Erythropoietin (EPO) 
levels 

      

Plasma EPO (mU/ml), 
median (IQR) 

741 
 (330-
3234) 

933  
(288-2560) 

0.76 680  
(549-1763) 

783  
(259-2835) 

0.76 

CSF EPO (mU/ml) d, 
median (IQR) 

8.34  
(4.21-
14.8) 

8.50  
(4.17-18.4) 

0.99 8.34  
(4.21-12.0) 

8.76 
 (4.20-17.9) 

0.71 

Abbreviations: no., number; CSF, cerebrospinal fluid; IQR, inter-quartile range. See text for laboratory 
variable abbreviations. 
a Variables with medians reported compared by Wilcoxon rank-sum score; means compared by t-test; 
proportions compared by X2 test 
b Blantyre coma score assessed in children <5 years of age; at discharge, deficits, n=56, no deficits=82; at 6 
months, deficits= 9, no deficits=125 
c Hypoglycemia defined as blood glucose <2 mmol/L 
d CSF EPO tested on admission in 57 and 80 children with and without deficits, respectively, and at 6 
months, in 9 and 122 children with and without deficits, respectively 
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Table 7.2 Clinical and laboratory findings in children with cerebral malaria who survived compared to 
those who died 
 

  Survived (n=181) Died (n=23) Pa 

Demographic and clinical findings    

Age (months) median (IQR) 41.46 (31.05-52.17) 35.63 (25.79-46.98) 0.13 
Sex, male n (%) 106 (58.56) 14 (60.87) 0.83 
Weight for age z-score, mean (SD) -1.25 (1.18) -1.66 (1.29) 0.13 
Seizures before admission, n (%) 171 (94.48) 22 (95.65) 0.81 
Deep acidotic breathing, n (%) 13 (7.18) 3 (13.04) 0.33 
Abnormal posturing, n (%) 12 (6.63) 0 (0) 0.20 
Blantyre coma scoreb, median (IQR) 2 (1-2) 2 (1-2) 0.41 
Coma duration (hours), median (IQR) 54.0 (32.0-83.0) NA  
Seizures after admission, n (%) 100 (55.25) 13 (56.52) 0.91 
No. of seizures after admission, median 
(IQR) 

1 (0-2) 1 (0-2) 0.73 

Transfused, n (%) 112 (61.88) 12 (52.17) 0.37 

Clinical laboratory tests    

Hemoglobin (g/dL), mean (SD) 6.69 (2.24) 7.63 (2.35) 0.06 
White blood cell count, median (IQR) 9.30 (6.70-13.90) 10.70 (7.40-13.20) 0.38 
Platelets count, median (IQR) 61.00 (35.00-113) 55.00 (35.00-83.00) 0.34 
Hypoglycemiac, n (%) 12 (6.63) 3 (13.04) 0.27 
P. falciparum peripheral blood density, 
median (IQR) 

45600 (11780-302060) 49040 (6480-121100) 0.53 

PfHRP2 level (ng/ml), median (IQR) 2486 (996-5112) 3532 (1598-5822) 0.15 

Endothelial and platelet activation 
markers 

   

Soluble VCAM-1 (ng/ml), median (IQR) 3945 (2770-6601) 3225 (2532-6018) 0.23 
Soluble ICAM-1 (ng/ml), median (IQR) 621 (238-1400) 976 (321-1864) 0.16 
Soluble E-Selectin  (ng/ml), median 
(IQR) 

180 (137-246) 189 (158-283) 0.25 

Soluble P-Selectin  (ng/ml), median 
(IQR) 

53.07 (37.45-76.78) 67.09 (48.53-82.99) 0.05 

Erythropoietin (EPO) levels    

Plasma EPO (mU/ml), median (IQR) 783 (288-2759) 1566 (473-2852) 0.39 
CSF EPO (mU/ml) d, median (IQR) 8.42 (4.20-17.64) 9.70 (6.66-89.00) 0.21 

Abbreviations: no., number; CSF, cerebrospinal fluid; IQR, inter-quartile range. See text for laboratory 
variable abbreviations. 
a Variables with medians reported compared by Wilcoxon rank-sum score; means compared by t-test; 
proportions compared by X2 test 
b Blantyre coma score assessed in children <5 years of age; survived n=139, died =17 
c Hypoglycemia defined as blood glucose <2 mmol/L; d CSF EPO testing performed in 138 children who 
survived and 9 children who died 
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Plasma and CSF EPO levels and neurologic outcomes, adjusted for 

hemoglobin level and age 

Plasma and CSF EPO levels were strongly correlated (rho= 0.68, P<0.0001), and both 

plasma and CSF EPO correlated inversely with age (rho = -0.31, P<0.0001 and rho = -

0.29, P=0.0002, respectively) and hemoglobin level (rho = -0.78, P<0.0001 and rho= -

0.54, P<0.0001, respectively). Age and hemoglobin level were therefore included as 

adjusters when assessing the relationship of plasma and CSF EPO levels to primary 

outcomes. After adjusting for age and hemoglobin level, endogenous plasma and CSF 

EPO levels were not associated with neurologic deficits (at discharge or six-month 

follow-up) or number of seizures post-admission, but plasma and CSF EPO levels 

positively correlated with increased coma duration during hospitalization (Table 7.3). 

Plasma EPO levels in a cohort of asymptomatic and otherwise healthy children from this 

area were significantly lower than in children with CM (n=136, median [25th percentile, 

75th percentile], 20.02 mU/ml [15.62, 35.25], P<0.0001 compared to children with CM). 
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Table 7.3. Association of plasma and CSF EPO levels with neurologic deficits, number of seizures and 
coma duration 
 

 Neurologic deficit 
(discharge) 

Neurologic deficit  
(6 mo) 

Number of seizures 
after admission 

Coma duration 
(hours) 

 ORa  
(95% CI) 

P ORa  
(95% CI) 

P βa coefficient 
(95% CI) 

P βa coefficient 
(95% CI) 

P 

Plasma 
EPO 
(mU/ml) 

1.16 
(0.83-1.62) 

0.39 0.98  
(0.49-1.98) 

0.96 -0.01  
(-0.14-0.12) 

0.85 0.15  
(0.03-0.27) 

0.02 

CSF EPO 
(mU/ml) 

1.15  
(0.75-1.75) 

0.53 0.74  
(0.31-1.76) 

0.49 0.09  
(-0.08-0.27) 

0.30 0.20 
 (0.04-0.35) 

0.01 

a Adjusted for age and hemoglobin level; EPO levels, seizures after admission and coma duration were log-
transformed (natural log).  
Odds ratios (OR) denote the increase in odds of the clinical outcome (neurologic deficit or log of number of 
seizures or coma duration) for each log increase in EPO level. β-coefficients denote the increase in clinical 
outcome (neurologic outcome) or log of clinical outcome (number of seizures, coma duration) for each log 
increase in EPO level. 
 

Plasma and CSF EPO levels and mortality 

Unadjusted plasma and CSF EPO levels did not differ in CM survivors as compared to 

those who died (Table 7.2), but after adjustment for age and hemoglobin level, log-

transformed plasma EPO levels were associated with mortality (odds ratio (OR) 1.74, 

95% CI 1.09-2.77, P=0.02, Table 7.4). In this analysis, hemoglobin level (OR 1.70, 95% 

CI 1.27-2.26, P<0.001) but not age (OR 0.78, 95% CI 0.58-1.06, P= 0.11) was also 

independently associated with mortality. For any given hemoglobin level, children who 

died typically had a higher EPO level than children who survived (Figure 7.2). Using an 

8 g/dL cutoff for moderate anemia, plasma EPO was associated with mortality and 

prolonged coma duration in children with hemoglobin levels <8g/dL (adjusted OR 3.11, 

95% CI 1.30-7.41, P=0.01 and β=0.23, 95% CI 0.02-0.44, P=0.03, respectively) but not 

in children with hemoglobin levels ≥8g/dL (adjusted OR 1.37, 95% CI 0.76-2.47, P=0.29 

and β=0.11, 95% CI -0.12-0.34, P=0.34, respectively). Plasma EPO levels remained 
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associated with mortality and prolonged coma after adjustment for receipt of a blood 

transfusion or number of transfusions (data not shown). 

 

Table 7.4. Association of plasma and CSF EPO levels with mortality 
 

 ORa (95% C.I) P ORb (95% C.I) P 

Plasma EPO (mU/ml) 1.74 (1.09-2.77) 0.02 1.69 (1.03-2.77) 0.04 
CSF EPO (mU/ml) 1.70 (0.81-3.56) 0.16 1.73 (0.80-3.74)   0.17  

 

a Adjusted for age and hemoglobin level; EPO levels were log-transformed (natural log) 
b Adjusted for age and levels of hemoglobin, sP-Selectin, sICAM-1 and PfHRP2; EPO levels were log-
transformed (natural log) 
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Figure 7.2.  Hemoglobin and EPO levels in children with cerebral malaria who survived vs. died 

EPO levels (log-transformed) and hemoglobin level are depicted for children who died and survived. Solid 

and dashed lines show average EPO level for each hemoglobin level for children who survived (S) vs. 

children who died (D), respectively. In 19 of the 23 children who died, EPO values were higher than the 

mean EPO value of survivors for the same hemoglobin level. 

 

 CSF EPO levels showed a very similar trend toward association with mortality as plasma 

EPO levels (one natural log increase in CSF EPO level, odds ratio (OR) 1.70, 95% CI 

0.81-3.56, P=0.16, Table 7.4), but the trend did not achieve significance, likely because 

of smaller number of children with CSF samples for testing (n=147).  
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Plasma EPO levels, markers of endothelial activation and PfHRP-2 

Log-transformed plasma EPO levels, adjusted for age and hemoglobin level, were 

positively associated with levels of sP-Selectin, sE-Selectin, sICAM-1, and sVCAM-1 

(Table 7.5). Plasma and CSF EPO levels also correlated strongly with plasma PfHRP-2 

levels after adjustment for age and hemoglobin level (β=0.44, 95% CI 0.27-0.61, 

P<0.001 and β=0.50, 95% CI 0.27-0.73, P<0.001, respectively), but not with peripheral 

parasite density (p>0.71 for both). Levels of PfHRP-2, sP-Selectin, and sICAM-1 met the 

pre-determined adjuster cutoff for differences between children who survived vs. died 

(Table 7.2), so they were adjusted for in a final model assessing plasma EPO levels and 

mortality. Log-transformed plasma EPO levels remained independently associated with 

mortality after this further adjustment (OR 1.69, 95% CI, 1.03, 2.77, P=0.04, Table 7.4). 

 

Table 7.5. Association of plasma EPO with markers of platelet and endothelium activation 
 

 βa coefficient 
(95% CI) 

 

 
P 
 

sP-Selectin 0.11 (0.04-0.18) 0.002 
sE-Selectin 0.11 (0.06-0.17) <0.001 
sICAM-1 0.19 (0.007-0.38) 0.04 
sVCAM-1 0.11 (0.02-0.19) 0.01 

a Adjusted for age and hemoglobin level; EPO levels were log-transformed (natural log) 

 

7.5  Discussion 

The present study showed that in children with CM, both high plasma and CSF levels of 

endogenous EPO are associated with prolonged coma duration, while only plasma EPO 
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levels are associated with increased mortality. In contrast to an earlier study in Kenyan 

children with CM 204, we found no association between plasma and CSF EPO levels and 

protection from acute neurologic deficits; we also found no association with protection 

from long-term neurologic deficits. Further studies are needed to confirm these findings, 

but in conjunction with studies showing no neuroprotective benefit of endogenous EPO 

in adult CM patients 237 and increased risks of exogenous rHuEPO in other diseases 

227,231, the current findings argue for caution in using systemic rHuEPO as adjunctive 

therapy for children with CM. 

 

Association of endogenous and exogenous EPO with adverse outcomes has precedent in 

several severe diseases such as chronic kidney disease, dialysis and stroke 227,228,231.  

These studies, along with others that found an increase of exogenous EPO-mediated 

platelet and endothelial activation 229,238, suggest that a balance between neuroprotective 

and erythropoietic events is needed for erythropoietin to be both useful and safe. We 

observed a positive correlation of endogenous plasma EPO levels with markers of platelet 

and endothelial activation, factors important in CM pathogenesis 235. EPO could lead to 

increased disease severity in CM by endothelial and platelet activation, as this increased 

activation could lead to sequestration 30,235. In support of an association with 

sequestration, plasma EPO was not associated with parasite density at enrollment but was 

associated with plasma PfHRP-2 levels, a marker of total parasite biomass, including 

sequestered parasite biomass 73.  
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In vitro and in vivo studies have shown that EPO, as a neurotropic agent, can either be 

neuroprotective or harmful 239,240. The continued presence of high levels of EPO, when 

combined with moderate hypoxia leads to increased neuronal apoptosis in cultured rat 

neurons 239. Impaired local perfusion due to sequestration, rosette formation and reduced 

nitric oxide (NO) bioavailability leads to hypoxia in CM, which could tip the balance of 

EPO from neuroprotective to damaging. In addition, EPO levels at 10nM or higher 

increased apoptosis in cultures of rat hippocampal neurons 240. The levels of endogenous 

plasma EPO seen in this study are lower than the levels of EPO reached in adults after 

rHuEPO treatment 226, and since the affinity of EPO for its receptor in the brain is lower 

than for its homodimeric receptor on erythroid progenitors, it is possible that EPO levels 

above those produced endogenously are neuroprotective 241. Moreover, the timing of 

plasma EPO elevation could have detrimental effects. Untimely onset of EPO-induced 

reticulocytosis augmented parasitemia and was fatal in a mouse malaria model 242. In our 

study, endogenous EPO was not associated with parasitemia at enrollment, but we do not 

have consecutive EPO and parasitemia measurements to compare our findings with those 

of the mouse model. 

 

Our study findings contrast with those of a previous study done in Kenyan children with 

CM, in which high EPO levels were associated with protection from acute neurologic 

deficits and mortality 204. Children in the present study had a lower mortality rate and 

slightly more frequent neurologic deficits at discharge than children in the prior study, 

but these differences should not strongly alter associations between EPO and neurologic 
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deficits. Differences in age might partially explain the different study findings. The 

median age was higher in the present study, and increased age has been associated with 

greater upregulation of endogenous EPO levels in response to a similar decrease in 

hemoglobin levels 243, and with decreased clearance of both endogenous and exogenous 

EPO 243,244. Slower clearance of high EPO levels could increase the risk of thrombotic 

events. Our regression models controlled for age but we did not enroll children as young 

as the youngest children in the Kenyan study. The other primary differences seen 

between the current study population and the Kenyan study population were that children 

in the current study had lower mean hemoglobin levels and platelet counts and had higher 

median EPO levels. Among children in the present study, the elevated EPO levels were 

likely due to the lower hemoglobin levels, and the lower platelet counts could reflect 

increased platelet sequestration. Elevated EPO levels via their pro-thrombotic effect 

could have aggravated already increased platelet and infected erythrocyte sequestration in 

the children in our study. The association of EPO with mortality in children with a 

hemoglobin level <8 g/dL, but not in children with a hemoglobin level ≥8 g/dL is 

consistent with low hemoglobin levels being a driver of mortality in our study cohort, 

though transfusion did not alter outcomes. In the Kenyan study, high levels of EPO were 

associated with decreased mortality, after adjustment for deep breathing, number of 

seizures, coma duration, hyperparasitemia and papilledema. In our cohort, the association 

of EPO with mortality was unaltered in a model that included these predictors (adjusted 

OR for log-transformed plasma EPO 1.68, 95% CI 1.03-2.76, p=0.04). In summary, age, 

severity of anemia and degree of sequestration could explain some of the differences 
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between the Kenyan study and the present study, but studies in additional cohorts are 

needed to resolve the study differences. 

 

As a longitudinal, observational study, the present study cannot determine causality. 

Given the multiple factors that can cause EPO levels to increase, such as hypoxia, 

inflammation and suppression of erythropoiesis it will be important to determine whether 

the association of high endogenous EPO levels with coma duration and mortality is 

causative. Several factors lead us to believe that endogenous EPO levels are most likely 

causally related to prolonged coma and mortality. First, in randomized clinical trials of 

rHuEPO in stroke, which has some similarities in pathogenesis to CM, individuals in the 

rHuEPO arm had increased mortality 227. Second, in our study the association between 

EPO and mortality remained after adjustment for important confounding factors, 

including age, hemoglobin level and PfHRP2 level 73. Third, although exogenous EPO 

can be neuroprotective, evidence of EPO-related adverse events has been demonstrated in 

animal models and human studies of other diseases 227,231,239,240. However hypoxia, a 

major driver of EPO levels, can be caused by multiple factors and it remains possible that 

elevated endogenous EPO is a marker for another as yet undefined process that leads to 

mortality in CM. New analogues of EPO have been formulated that lack erythropoietic 

effects but retain the neuroprotective characteristics of EPO, such as carbamylated EPO 

238,245. These derivatives have been tested as neuroprotective agents in animal models of 

stroke and EAE 245, and may hold promise in CM treatment.  
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In summary, the present study showed that high plasma levels of endogenous EPO are 

associated with prolonged coma duration and increased mortality in CM children above 

18 months of age, and not with protection from neurologic deficits. In conjunction with 

other studies showing adverse effects from systemic rHuEPO therapy in adults and 

children with pro-thrombotic disease states, the present study findings suggest caution in 

considering recombinant systemic rHuEPO as adjunctive therapy for children above 18 

months of age with cerebral malaria. 
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Chapter 8 

Summary  

Cerebral malaria (CM) and severe malarial anemia (SMA) remain drivers of morbidity 

and mortality due to P. falciparum infection in children in Sub-Saharan Africa. 

Adjunctive therapies to date have not shown success in controlled clinical trials28, 

suggesting that we need a better understanding of both host and pathogen factors that 

contribute to severe malaria (SM). Moreover, it remains unclear how P.falciparum 

infection leads to CM vs. SMA. This dissertation attempted to identify both host and 

parasite factors that contribute to disease severity in malaria. The sample size and study 

design also allowed us to investigate host and parasite factors that differentiate between 

CM and SMA, and factors associated with mortality and neurocognitive outcomes in CM.  

 

Morbidity and mortality due to P.falciparum infection has exerted strong selective 

pressure on the human genome246. As an example, heterozygous individuals for the sickle 

cell gene (HbS) have  ~10 fold decreased risk of SM247. In our cohort, the sickle cell trait 

was prevalent in 19% of community children (CC) as compared to 0.8% and 0.9% in CM 

and SMA, respectively. CC had no history of SM, and only one CC returned to the clinic 

with SM in the two years of follow-up. Therefore, we hypothesized that other protective 

genes against SM would be present in our cohort. We investigated the prevalence of a 

functional polymorphism in the endothelial protein C receptor (EPCR) gene. EPCR binds 

to infected erythrocytes (IEs) in SM52 and rs867186-G variant is associated with less 
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bound and more soluble EPCR 94,95. Consequently, we hypothesized a higher prevalence 

of the rs867186-G variant in CC. We observed a significantly higher prevalence of the 

rs867186-GG genotype in our CC group (4.1%) as compared to SM (0.6%, P=0.002), 

suggesting an association of this genotype with protection against SM. As expected, we 

saw an association between the prevalence of rs867186-G and increased levels of soluble 

EPCR (sEPCR) in the plasma for each disease group, suggesting that the protection 

against SM could be due to less available bound EPCR and higher sEPCR. Nevertheless, 

our CC group was relatively small to make strong conclusions about protection, and 

larger multi-center studies are needed. Interestingly, despite inflammation, SM had lower 

levels of sEPCR than CC, unlike other diseases characterized by inflammation such as 

SLE 108,109, Wegener’s granulomatosis 110, Behcet’s disease 111 and sepsis108,112,113. These 

findings suggest that EPCR biology is quite different in SM and needs further studying. 

We hypothesized that IEs could be acting as a sink for sEPCR and in vitro studies with 

parasite strains that bind specifically to EPCR and sEPCR would help address this 

hypothesis. Also, how the shedding of EPCR is affected by IE-EPCR binding is unclear. 

In vitro studies with EPCR binding parasite strains in a simple endothelial monolayer 

model could start asking the questions of whether IE-EPCR binding prevents shedding of 

EPCR in the context of inflammation.  We did not see a correlation of sEPCR with 

mortality, neurocognitive deficits or coma in CM, suggesting that sEPCR would not be a 

good biomarker of disease severity in CM. Moreover, we did not see a difference in the 

prevalence of rs867186-G or in the levels of sEPCR in CM vs. SMA, suggesting that IE-

EPCR binding is a common phenomenon in both these forms of SM, and that potentially 
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the P.falciparum erythrocyte membrane 1 (PfEMP1) variant types and their expression 

levels could be determining whether the child gets CM vs. SMA.  

 

Cytoadhesion is a characteristic of all P.falciparum IEs mediated by parasite variant 

surface antigens such as PfEMP1, suggesting that it is not simply the presence of 

cytoadhesion that leads to SM, but potentially a unique combination of PfEMP1 variants 

and host receptors. Expression of group A131-135 var genes and var genes encoding DC8 

(var B/A) and DC13 (var A) PfEMP185 have been associated with SM. In addition, 

PfEMP1 variants that bind to EPCR, including DC8 and DC13 reduce the production and 

cytoprotective effects of aPC53,55,56. However, it has been unclear whether EPCR-binding 

PfEMP1 variants are equally transcribed and prevalent in CM and SMA. In the current 

study we show that EPCR-binding PfEMP1 domains (DBLα2/1.1/2/4/7/9, CIDRα1.1, 

and overall group A EPCR) were higher in parasites from CM children compared to 

SMA and elevated DBLα2/1.1/2/4/7/9 and group A EPCR PfEMP1 transcripts increased 

the risk of CM independently of parasite biomass. More work is needed to understand 

how PfEMP1 binding to EPCR could contribute to SMA. EPCR is expressed on long-

term hematopoietic stem cells (HSCs), and EPCR signaling is important in 

hematopoiesis148. Therefore, bone marrow smears staining for both EPCR and IEs could 

start elucidating whether co-localization of IEs with EPCR is also associated with 

abnormal bone marrow morphology, however these studies would be challenging to 

perform. Instead, in vitro models of erythropoiesis using CD34+ HSCs could be used to 

study whether parasites expressing certain PfEMP1 variants affect development and 
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survival of erythroid progenitors. As mentioned above, in vitro models are also needed to 

address how exactly PfEMP1-EPCR binding affects the blood brain barrier (BBB). 

Future directions should also include quantification of group B and C var genes, and 

quantification of transcript levels for the second head structure of PfEMP1, which could 

be providing binding to a second host receptor. Epigenetic mechanisms regulate var 

transcription149, however more work is needed to understand how host environmental 

signals can affect these epigenetic mechanisms and lead to expression of a specific 

PfEMP1.  

 

Host immune mediators can also promote IE binding in CM. TNF-α, is one of these 

mediators due to its role in promoting endothelial activation, which can further increase 

binding of IEs to host endothelium150,151. The association of TNF-α with severity markers 

remains controversial and the use of antibodies against TNF-α had adverse effects in 

children with CM152. In our study, plasma and cerebrospinal CSF TNF-α levels were 

elevated at enrollment in children with CM compared to controls.  In addition, elevated 

CSF, but not plasma TNF-α levels were associated with longer duration of coma, higher 

risk of neurologic deficits at discharge and 6-months follow-up, suggesting a pathogenic 

role of CSF TNF-α in CM. Our results emphasize the importance of studying both 

systemic and local immune responses since they do not always tell the same story. We 

hypothesize that adjunctive treatment with anti-TNF-α monoclonal antibodies was not 

successful in CM due to the inability of these antibodies to cross the BBB and inhibit 

local functions of TNF-α. However, in our study, we were not able to determine the 
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source of TNF-α in periphery or in the CNS, and we were not able to associate CSF TNF-

α levels with CNS or BBB damage due to the lack of tissue samples. These studies would 

be difficult to perform logistically and would limit our understanding only to the fatal 

cases of CM.  Future directions should include estimating the prevalence of functional 

TNF-α polymorphisms in this population. Moreover, in vitro co-culture BBB models are 

needed to understand how physiologically relevant TNF-α levels affect primary glial cells 

in addition to BBB endothelium in the context of P.falciparum infection.   

 

An imbalanced immune response is typical of SM episodes. Whether a certain systemic 

immunologic profile can differentiate between CM and SMA and between different 

outcomes in CM remains understudied due to the mixed inclusion of severe malaria cases 

and small sample size in many studies. In studies like ours, where patients present with 

coma or severe anemia it is difficult to determine the pathways that led to severe malaria. 

However, identifying immunologic markers that can differentiate between CM and SMA 

or between severe outcomes in CM at enrollment could have important diagnostic and 

therapeutic functions. In the current study, we quantified the levels of 18 cytokines, 

chemokines, and growth factors. IL-1ra, IL-8, IL-10, G-CSF, IFN-γ, IP-10, MCP-1, and 

IL-10:TNF-α increased the risk of CM over SMA. However, only IL-10:TNF-α remained 

independently associated with CM in a multivariate analysis. Elevated IL-8 and IL-10 

were associated with increased risk of mortality in CM, elevated MCP-1 and MIP-1β 

with neurologic protection at discharge, and elevated IL-10, IFN-γ, VEGF and RANTES 

with shorter coma during admission. However, none of these immune markers remained 
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independently associated with mortality, neurologic deficits at discharge or coma 

duration in multivariate analysis. Our study warrants further investigation of chemokines 

in CM. Quantifying expression of IL-8, MCP-1 and IP-10 in the brain microvasculature 

and tissues from fatal CM cases, as well as quantifying and characterizing the immune 

cells that express their receptors could increase our understanding of these chemokines in 

CM. Moreover, functional in vitro chemotaxis assays with patient cells would further 

elucidate the role of IL-8, MCP-1 and IP-10 in CM. Another important immune mediator 

in our study was IL-10, which differentiated well between CM and SMA and was also 

associated with mortality in CM. Together with higher IL-10:TNF-α being associated 

with CM, our findings suggest that IL-10 is important in controlling the anti-

erythropoietic effects of TNF-α, however very high levels of IL-10 could be an indicator 

of an imbalanced anti-inflammatory response preventing parasite clearance in CM and 

promoting parasite replication and sequestration.  

 

Lastly, we also investigated the role of endogenous erythropoietin (EPO) in CM patients 

to elucidate the factors that need to be considered when thinking of targeting any marker 

identified from clinical studies with adjunctive therapies. The present study showed that 

in children with CM, both high plasma and CSF levels of endogenous EPO were 

associated with prolonged coma duration, and plasma EPO levels were associated with 

increased mortality in CM children above 18 months of age, and not with protection from 

neurologic deficits. These findings, in conjunction with studies showing no 

neuroprotective benefit of endogenous EPO in adult CM patients 237 and increased risks 
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of deleterious outcomes following therapy with exogenous recombinant human EPO 

(rHuEPO) in other diseases 227,231 argue for caution in using systemic rHuEPO as 

adjunctive therapy for children with CM. New analogues of EPO have been formulated 

that lack erythropoietic effects but retain the neuroprotective characteristics of EPO, such 

as carbamylated EPO 238,245, which may hold promise in CM. Our study overall 

emphasizes that a single target might not be an ideal approach for adjunctive therapies in 

CM, especially when that target has multiple functions physiologically. An important 

limitation of our study is the lack of causality for the association of EPO with prolonged 

coma and mortality. However, we hypothesize that the pathogenic role of EPO in CM is 

due to its role in promoting platelet and endothelial activation 229,238, which could be 

tested in an in vitro BBB model. This would allow the investigation of physiologically 

relevant EPO levels, either rHuEPO or EPO that lacks erythropoietic effects on 

endothelial and platelet activation, as well as on IE sequestration.  

 

Overall, the work presented in this dissertation identifies both IE cytoadhesion and host 

immune factors as important contributors to SM pathogenesis. We have shown that 

polymorphisms associated with less bound and more soluble EPCR are associated with 

reduced risk of SM; that EPCR-binding PfEMP1 are important in SM and that their 

expression is higher in CM than SMA; that the immune profile, while quite similar in CM 

and SMA, is differentiated especially by elevated levels of chemokines and IL-10 in CM. 

Our studies on the association of TNF-α and EPO with disease severity in CM highlight 

the importance of understanding both systemic and local effects of host mediators when 
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considering targets for adjunctive therapies. In addition, successful adjunctive therapies 

must recognize and address the various physiological roles of a potential target and 

selectively inhibit only pathogenic effects without compromising essential and beneficial 

roles.   
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Appendix 

Appendix for Chapter 3 
 
Supplemental Table 3.1. Prevalence of rs9574-C variant in malaria disease groups and community 
control 
 
 

SM, severe malaria (cerebral malaria or severe malarial anemia); UM, uncomplicated malaria ; CC, 
community children 
aFisher’s exact test used. P<0.008 considered significant to control for multiple comparisons 
bSM vs. CC 
cUM vs. CC 

 rs9574 (G4678C) Pa 
Additive 

model 

Pa 
Recessive model 

Pa 
Dominant model 

 GG, N 
(%) 

GC, N 
(%) 

CC, N 
(%) 

 CC vs. GC+GG GG vs. GC+CC 

SM (N=550) 382 (69.5) 155 (28.2) 13 (2.3) 0.14b 0.28b 0.29b 
UM (N=71) 59 (83.1) 11 (15.5) 1 (1.4) 0.32c 0.44c 0.18c 
CC (N=170) 126 (74.1) 37 (21.8) 7 (4.1) Reference Reference Reference 

 
Supplemental Table 3.2.  Prevalence of rs9574-C and rs867186-G variants in malaria disease groups 
and community control 
 
 

SM, severe malaria (cerebral malaria or severe malarial anemia); UM, uncomplicated malaria; CC, 
community children 
a Fisher’s exact test used. P<0.025 considered significant to control for multiple comparisons; H1/H3 
having at least one copy of each variant (heterozygous or homozygous for H1 and heterozygous or 
homozygous for H3) 
bSM vs. CC 
cUM vs. CC 

 H1/H3, N (%) H1/Hx or H3/Hx, N (%) Hx/Hx, N (%) Pa (H1/H3) 

SM (N=550) 21 (3.8) 231 (42.0) 298 (54.2) 0.99b 

UM (N=71) 2 (2.8) 22 (31.0) 47 (66.2) 0.99c 

CC (N=170) 6 (3.5) 69 (40.6) 95 (55.9) Reference 
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Supplemental Figure 3.1. rs867186-G is associated with increased levels of systemic sEPCR at 6-

month follow-up 

sEPCR levels are represented on a logarithmic scale and each disease group is separated by rs867186 

genotype: AA, AG or GG. The horizontal line represents median values. Severe malaria (SM), community 

controls (CC). 
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Appendix for Chapter 4 

Supplemental Table 4.1. Primers used in the study and their targets 

 
 

Primer name Represented in the 
paper 

Primers Target 

CIDR1δ CIDR1δ F: TAAATGTAACTTAGATGTATGTGAAC 
F: TAAATGTAACTTACATGTATGTGAAC 
F: TAAATGTAACTTAGACGTATGTGAAC 
F: TAAATGTTACTTAGATGTATGTGAAC 
F: TAAATGTAACTTAGATATATGTGAAC 
F: TAAATGTAAGTTAGATGTATGTGAAC 
R: 
AATACTTTAACCAACGTTTAATCAATAC 
R: 
AATACTTTAACCAACGCTTAATCAATAC 
R: 
AATACTGCAACCAACGTTTAATCAATAC 
R: 
AATGCTCTAACCAACGTTTAATGAATAC 
R: 
AATACATCAACCAACGCTTAATCAATAC 

Rosetting 
PfEMP1  

DBLα1ALL Group A F: TTGGGAAATGTRTTRGTTACAGCAAA 
F: TTGGGAAATGTGTTAGTTATGGCAAA 
F: TTGGGGAATTTGTTAGTTATGGCAAG 
F: TTGGGGAACCTATTAGTTATGGCAA 
F: TTAGGAAATATATTGGTAGCAGCAA 
F: TTAGGAAATATCTTGGTCACAGCAA 
R: CCTATATCNGCAAAACTKCKWGC 

All group 
A 

DBLα1.5/6/8 
types 

DBLα1.5/6/8 types F:  TGGTWYRANGAATGGGCAGAAGA 
F: TGGTTYGAGGAATGGAGTGAAGA 
R: 
GATTTGTTTTWTTACAATCGTAACCCTC 
R: ACAATCCTCACCATCACCACTACAAT 
R: CGTGATATATCTGTTTKAGTACAATC 
R: 
GATCTGTTCGTTTACAATCGTAACCCTC 

Group A 
mostly 
non 
EPCR-
binders, 
associated 
with 
rosetting 

DBLα2/1.1/2/4/7/9 
types 
  

DBLα2/1.1/2/4/7/9 
types 
 

F:  TGGTWYRANGAATGGGCAGAAGA 
F: TGGTTYGAGGAATGGAGTGAAGA 
R: TACAATCATATCCATTAWGACTACAA 
R: 
TCACAATCGCATCCATTATGACTACAA 

Group A 
EPCR-
binders 
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CIDRα1.4 DC13  F: 

AACTATCAAAAATGGGAATGCTATTA 
F: 
AACTATGAACAATGGAAATGCTATTA 
F: AACTATCAAAAATGGAATTGCTATTA 
F: 
AACTATGAAAACTGGCAATGCTATTA 
F: 
AACAATCAAATATGGAAATGCTATTA 
R: TTTCCCACTTTATAGTGTCTATTA 
R: TTTCCCATTTTATAGTGTCTATTA 
R: TTTCCCACTTTATACTGTCTATTA 
R: TTTCCCAGTTTATAGTGTCTATTA 
R: TTTCCCACTCTATAGAGTCTATTA 

Group A 
DC13 

CIDRα1.5a  F: GATTTATGGATTAAGAATTTATTAAG 
F: GATTTGTGGGTTACGAATTTATTAAG 
F: GATTTGTGGGTTACATATTTATTAAG 
R: TAATTCATCCGTAAATTTCTTCCA 
R: CAAATCTTCCTTAAGTTTTTTCCA 
R: TAATTCATCCGTAAATTGATTCCA 
R: CAAATCTTCTTTAAGTTTTTTCCA 

Group A 
EPCR 
binders 

CIDRα1.5b  F: ACGATACTATAGACTGGAAATACG 
F: ATTGGGAAWATAAACTTAAGACCTG 
F: TGGATACTACAGATTGGGATCGTA 
R: AACCCATTGTTCAAAACATTTACA 
R: AACCCATTTATCAAAACACGTACA 
R: AACCCATTTATCAAAACACATACA 

Group A 
EPCR 
binders 

CIDRα1.6b  F: ATAATACTAATGTSACGGATTGT 
R: CAGTTTCTTTATACTATCCCATTC 
R: ACATCCTTTATACTACCCCATTCC 
R: AATTCCTTTATACTCTTCCATTCTG 

Group A 
EPCR 
binders 

  
CIDRα1.7 

 F: CGGAAACTATAACGTGGAACGATAA 
F: CGGAAACTATAAGGTGGAACGATAA 
F: CGGAAACTATAACGTGGAAAGATAA 
F: GGATACTATAATGTGGAATGATAAA 
R: TAGTTTCTTTATACTATTCCATTC 
R: TAGTTCCTTTATACTATTCCATTC 
R: TAGTTTCTTTATATTATTCCATTC 
R: TAGTTTCTTTATACTACTCCATTC 
R: TAATTCCTTTATATTATTCCATTC 

Group A 
EPCR 
binders 

Group A-
EPCR binders 

Median of CIDRα1.4, 
CIDRα1.5a, CIDRα1.5b, 
CIDRα1.6b and CIDRα1.7 

  

CIDRα1.1 DC8 F: 
TGGGAACATCAACTTAAGGATTGCATA 
F: 
TGGGAACATCAACTTAAGAATTGCATA 
F: 
TGGGAACATGAACTTAAGGATTGCATA 
R: TAAATCTTYCNTAAATTGATHCCAT 

Group B 
DC8 

CIDRα1.8a  F: ATAATTGTGAAATGAAAGGTTCA 
R: TATGCAMTTCTTAAGTTTGGTTTCC 

Group B 
EPCR 
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binders 
CIDRα1.8b  F: AATAGACAGTATAATGTGGGAA 

F: AAAGGATACTATAAAGTGGGAA 
R: CAAAACATWTACAATTTTCGTTACA 

Group B 
EPCR 
binders 

Group B –
EPCR binders 

Median of CIDRα1.1, 
CIDRα1.8a and 
CIDRα1.8b 

  

CIDRα1-
EPCR 

Median of CIDRα1.1-
CIDRα1.8b 
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Supplemental Table 4.2. Transcript abundance of var domains in children with cerebral malaria vs. 
those that have both CM and SMA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 CM/SMA 

(n=21) 

CM 

(n=77) 

P 

 

CIDR1δ 2.73 (1-6.05) 1 (1-3.44) 0.12 

DBLa1ALL 73.7 (25.0-140) 40.5 (9.88-77.6) 0.09 

DBLa1.5/6/8 types 13.7 (8.23-31.1) 

n=18 

10.4 (3.45-22.6) 

n=73 

0.11 

DBLa2/1.1/2/4/7/9 types 

  

48.6 (27.3-98.1) 

n=18 

43.5 (24.5-60.5) 

n=73 

0.27 

CIDRα1.4 11.1 (2.85-20.3) 4.16 (1-11.7) 0.02 

Group A-EPCR binders 1.35 (1-3.12) 1 (1-2.38) 0.26 

CIDRα1.1 14.3 (1-55.6) 10.4 (1-43.4) 0.72 

Group B-EPCR binders 1 (1-5.04) 1.37 (1-4.93) 0.87 

CIDRa1-EPCR binders 1.76 (1-6.06) 1.22 (1-3.62) 0.29 
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Supplemental Table 4.3. Transcript abundance of var domains in CM children with higher and lower 
than 1700ng/ml PfHRP-2 levels 
 

 

a ANOVA, Tukey post-hoc test adjustment for multiple comparisons with log10 transformed values. 
b In post-hoc testing, SMA differed from RP 
c In post-hoc testing, SMA differed from RP and RN 
d In post-hoc testing, SMA differed from RN 

  PfHRP-2-high 
 (n=62) 

PfHRP-2-low 
 (n=35) 

SMA  
(n=47) 

Pa 
 

CIDR1δ 1.34 (1-4.02) 1 (1-5.57) 1 (1-2.21) 0.58 

DBLa1ALL 53.8 (20.8-78.0) 36.9 (1-107) 25.4 (1-59.1) 
n=46 

0.06b 

DBLa1.5/6/8 types 10.8 (5.21-26.6) 
n=55 

11.5 (2.75-22.9) 5.95 (1.39-17.0) 
n=44 

0.09 

DBLa2/1.1/2/4/7/9 
types 
  

43.5 (23.6-69.8) 
n=55 

49.1 (28.4-70.2) 27.3 (10.1-45.7) 
n=43 

0.009c 

CIDRα1.4 4.76 (1.35-16.6) 5.08 (1-12.7) 1.27 (1-13.0) 0.26 

Group A-EPCR 
binders 

1 (1-2.15) 1 (1-2.92) 1(1-1) 0.03d 

CIDRα1.1 13.0 (1-43.3) 10.9 (1-48.3) 3.11 (1-21.4) 0.11 

Group B-EPCR 
binders 

1 (1-4.09) 1.91 (1-5.88) 1 (1-2.25) 0.17 

CIDRα1-EPCR 
binding 

1.23 (1-3.37) 1.82 (1-4.07) 1 (1-1.57) 0.06 
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Supplemental Figure 4.1. Detection of housekeeping genes in parasites infecting asymptomatic 

controls  

(a) Median comparison of average Ct values for the two housekeeping genes (seryl t RNA synthetase and 

fructose-bisphosphate aldolase) between disease groups. Average Ct values are shown on a logarithmic 

scale. The horizontal line represents median values. b) Standard curves for both housekeeping genes and 

the average based on dilutions of 3D7 gDNA.  Cerebral malaria (CM), severe malarial anemia (SMA) and 

asymptomatic control (AC). 
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Supplemental Figure 4.2. DBLα1 transcripts, targeting all group A var genes are lower in parasites 

from retinopathy positive patients that died 

Arbitrary unit values for DBLα1ALL (all group A var genes). Medians are compared by Mann-Whitney 

test. Only retinopathy positive cerebral malaria cases are presented in this figure. 
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Appendix for Chapter 6 
 
Supplemental Table 6.1. Differences in plasma cytokines between severe malaria and healthy Ugandan 
controls without P.falciparum parasitemia by PCR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a Wilcoxon rank-sum (Mann-Whitney) test.  
*SM (n=391), CC (n=119) 

 SM 
(n=413) 

CC 
(n=123) 

Pa 

IL-1ra (pg/ml), 
median (IQR) 

900 (398-2840) 214 (134-318) <0.0001 

IL-8 (pg/ml), 
median (IQR) 

36.8 (23.5-66.8) 21.1 (12.9-33.1) <0.0001 

IL-10 (pg/ml), 
median (IQR) 

163 (55.4-560) 8.27 (4.13-16.5) <0.0001 

IL-12p70 (pg/ml), 
median (IQR) 

20.3 (11.6-36.8) 23.5 (13.7-42.5) 0.09 

FGF-basic (pg/ml), 
median (IQR) 

32.7 (12.8-48.6) 46.6 (30.7-68.1) <0.0001 

G-CSF (pg/ml), 
median (IQR) 

67.2 (39.5-137) 53.4 (35.5-85.3) 0.003 

IFN-γ (pg/ml), 
median (IQR) 

96.9 (58.4-170) 158 (92.5-286) <0.0001 

IP-10 (pg/ml), 
median (IQR) 

3566 (1421-9540) 557 (407-816) <0.0001 

MCP-1 (pg/ml), 
median (IQR) 

56.4 (25.6-180) 23.8 (15.2-33.3) <0.0001 

MIP-1α (pg/ml), 
median (IQR) 

6.73 (3.93-11.4) 6.95 (4.37-10.9) 0.61 

MIP-1β (pg/ml), 
median (IQR) 

306 (185-533) 76.8 (58.5-105) <0.0001 

PDGF-b (pg/ml), 
median (IQR) 

730 (301-1424) 1197 (679-2049) <0.0001 

RANTES (pg/ml), 
median (IQR) 

2563 (1412-5351) 8248 (4976-12830) <0.0001 

VEGF (pg/ml), 
median (IQR) 

55.0 (33.0-98.1) 40.5 (22.6-67.9) <0.0001 

TNF-a (pg/ml), 
median (IQR)** 

93.0 (49.3-175) 25.5 (18.1-40.6) <0.0001 

IL-6 (pg/ml), 
median (IQR)** 

53.7 (18.8-216) 13.2 (1.71-38.4) <0.0001 

IL10: TNF-a ratio, 
median (IQR)** 

1.88 (0.97-4.11) 0.23 (0.14-0.58) <0.0001 
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Supplemental Figure 6.1. Cytokines and chemokines that did not differentiate well between CM and 

SMA 

The horizontal line represents median values. P-values represent ANOVA on log 10 transformed values 

followed by Tukey post-hoc adjustment for multiple comparisons.	CM (cerebral malaria, hemoglobin 

>5g/dL), CM/SMA (cerebral malaria, hemoglobin ≤5g/dL), and SMA (severe malarial anemia). 

 


