Idiopathic Pulmonary Fibrosis (IPF)

By: Sa Kong
What is Pulmonary Fibrosis?

- Chronic lung disease
 - Currently no cure
 - Life expectancy of patients is usually less than 5 years
 - Scarring of lung tissues causing it to become stiff and thickened
- Symptoms:
 - Difficulty breathing
 - Weight loss
 - Fatigue
Categorization

- 4 stages of disease
 - Mild
 - Early
 - Severe
 - Advanced
- GAP Index Evaluation
 - Places patients in the above stages based on these criteria:
 - Age
 - Recent respiratory hospitalization
 - Baseline Forced Vital Capacity (FVC)
 - 24 Week change in FVC
Risk Factors

- **Age**
 - More likely to occur in middle-aged and older adults
- **Smoking**
 - More likely to occur in those who smoke
- **Occupational and Environmental Factors**
 - Exposure to pollutants and toxins
- **Cancer Treatments**
 - Radiation therapy in the chest area
 - Certain chemotherapy drugs
 - Methotrexate
 - Cyclophosphamide
Idiopathic Pulmonary Fibrosis

- When the cause of pulmonary fibrosis cannot be pinpointed
 - The disease is called idiopathic pulmonary fibrosis
On a cellular level

- Overproduction of type I collagen
- Aberrant proliferation of IPF fibroblasts
 - Resistance to apoptosis
 - Higher cell viability
 - Altered cell signaling pathway
Proposed mechanism of Radiation Induced IPF

- Radiation causes decrease in the expression level of FoxO3a
 - FoxO3a is a transcription factor
- Downregulation in FoxO3a causes upregulation in FoxM1
- Increase in FoxM1 causes higher expression levels of DNA repair proteins
 - DNA damage repair proteins: BRCA2, Rad51, XRCC1
- Increase in DNA repair proteins leads to greater DNA repair activity
 - Allows the IPF fibroblasts to proliferate aberrantly
 - DNA damage accumulates in healthy fibroblasts
 - Signals for apoptosis
 - Decrease of this signaling in IPF
Cell Viability

- Control and IPF fibroblasts will be plated on polymerized collagen.
- Both will then be irradiated at 9 Gy.
- Cell viability will be checked 3 days after radiation.
 - Performed using CellTiter-Blue cell viability assay.
 - Reagent resazurin reduced to resorufin.
 - The conversion generates fluorescent product.
 - Fluorescence proportional to number of viable cells.
 - IPF fibroblasts should have higher fluorescence than control fibroblasts.
Western Blot

- Both IPF and control fibroblasts will be plated on polymerized collagen then irradiated
- Lysates will be collected at different time points after radiation to observe how radiation alters protein expression as a result of time progression.

Predicted results

Control Fibroblasts (as compared to IPF)
- Higher levels of FoxO3a
- Lower levels of FoxM1
- Lower levels of Brca2, Rad51, XRCC1

IPF Fibroblasts (as compared to control)
- Lower levels of FoxO3a
- Higher levels of FoxM1
- Higher levels of Brca2, Rad51, XRCC1
Future applications

- Pathway may be targeted in future drug development
- By finding a way to stop IPF fibroblasts proliferation
 - Potentially stop disease progression
- As IPF currently has no cure, studying its pathways will provide us with a better understanding of how the disease works and how we can stop it.
Additional Sources

Picture Sources:

https://www.mayoclinic.org
http://bronchiectasis.com.au
https://www.cancer.gov
https://reference.medscape.com
www.promega.com
http://www.imalab.net