Idiopathic Pulmonary Fibrosis (IPF)

By: Sa Kong

What is Pulmonary Fibrosis?

Normal lung and alveoli

Alveoli in pulmonary fibrosis

Irregular, abnormal air spaces

Large areas of scarring (fibrosis)

Irregular, thickening of

tissue between alveoli

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

- Chronic lung disease
 - Currently no cure
 - Life expectancy of patients is usually less than 5 years
 - Scarring of lung tissues causing it to become stiff and thickened
- Symptoms:
 - Difficulty breathing
 - Weight loss
 - Fatigue

Categorization

- 4 stages of disease
 - Mild
 - Early
 - Severe
 - Advanced
- GAP Index Evaluation
 - Places patients in the above stages based on these criterias
 - Age
 - Recent respiratory hospitalization
 - Baseline Forced Vital Capacity (FVC)
 - 24 Week change in FVC

Risk Factors

- Age
 - More likely to occur in middle-aged and older adults
- Smoking
 - o More likely to occur in those who smoke
- Occupational and Environmental Factors
 - Exposure to pollutants and toxins
- Cancer Treatments
 - Radiation therapy in the chest area
 - Certain chemotherapy drugs
 - Methotrexate
 - Cyclophosphamide

Idiopathic Pulmonary Fibrosis

- When the cause of pulmonary fibrosis can not be pinpointed
 - The disease is called idiopathic pulmonary fibrosis

On a cellular level

- Overproduction of type I collagen
- Aberrant proliferation of IPF fibroblasts
 - Resistance to apoptosis
 - Higher cell viability
 - Altered cell signaling pathway

Proposed mechanism of Radiation Induced IPF

- Radiation causes decrease in the expression level of FoxO3a
 - FoxO3a is a transcription factor
- Downregulation in FoxO3a causes upregulation in FoxM1
- Increase in FoxM1 causes higher expression levels of DNA repair proteins
 - DNA damage repair proteins: BRCA2, Rad51, XRCC1
- Increase in DNA repair proteins leads to greater DNA repair activity
 - Allows the IPF fibroblasts to proliferate aberrantly
 - DNA damage accumulates in healthy fibroblasts
 - Signals for apoptosis
 - Decrease of this signaling in IPF

Cell Viability

- Control and IPF fibroblasts will be plated on polymerized collagen.
- Both will then be irradiated at 9 Gy
- Cell viability will be checked 3 days after radiation
 - Performed using CellTiter-Blue cell viability assay
 - Reagent resazurin reduced to resorufin
 - The conversion generates fluorescent product
 - Fluorescence proportional to number of viable cells
 - IPF fibroblasts should have higher fluorescence than control fibroblasts

Western Blot

- Both IPF and control fibroblasts will be plated on polymerized collagen then irradiated
- Lysates will be collected at different time points after radiation to observe how radiation alters protein expression as a result of time progression.

Predicted results

Control Fibroblasts (as compared to IPF)

- Higher levels of FoxO3a
- Lower levels of FoxM1
- Lower levels of Brca2, Rad51, XRCC1

IPF Fibroblasts (as compared to control)

- Lower levels of FoxO3a
- Higher levels of FoxM1
- Higher levels of Brca2, Rad51, XRCC1

Future applications

- Pathway may be targeted in future drug development
- By finding a way to stop IPF fibroblasts proliferation
 - Potentially stop disease progression
- As IPF currently has no cure, studying its pathways will provide us with a better understanding of how the disease works and how we can stop it.

Sources

https://www.mayoclinic.org/

https://lunginstitute.com

https://www.promega.com

Additional Sources

- 1) Nho, R. S., P. Hergert, J. Kahm, J. Jessurun, and C. Henke. "Pathological alteration of FoxO3a activity promotes idiopathic pulmonary fibrosis fibroblast proliferation on type i collagen matrix." *The American Journal of Pathology* 179.5 (2011): 2420-430. *Pubmed*. Web. 27 Feb. 2017.
- 2) Im, Jintaek, Polla Hergert, and Richard Seonghun Nho. "Reduced FoxO3a expression causes low autophagy in idiopathic pulmonary fibrosis fibroblasts on collagen matrices." *American Journal of Physiology* (2015): L552-561. *American Physiological Society*. Web. 27 Feb. 2017.
- 3) Tan, Y., P. Raychaudhuri, and R. H. Costa. "Chk2 Mediates Stabilization of the FoxM1 Transcription Factor To Stimulate Expression of DNA Repair Genes." *Molecular and Cellular Biology* 27.3 (2006): 1007-016. *American Society for Micobiology*. Web. 27 Feb. 2017.
- 4) Balli, David, Vladimir Ustiyan, Yufang Zhang, I-Ching Wang, Alex J. Masino, Xiaomeng Ren, Jeffrey A. Whitsett, Vladimir V. Kalinichenko, and Tanya V. Kalin. "Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition." *The EMBO Journal* 32.2 (2013): 231-44. *US National Library of Medicine*. Web. 27 Feb. 2017.
- 5) Gomes, Ana R., Fung Zhao, and Eric W.f. Lam. "Role and regulation of the forkhead transcription factors FOXO3a and FOXM1 in carcinogenesis and drug resistance." *Chinese Journal of Cancer* 32.7 (2013): 365-70. Web. 27 Feb. 2017.
- 6) Johnston, Carl J., Jacqueline P. Williams, Paul Okunieff, and Jacob N. Finkelstein. "Radiation-Induced Pulmonary Fibrosis: Examination of Chemokine and Chemokine Receptor Families." *Radiation Research* 157.3 (2002): 256-65. Web. 27 Feb. 2017.

Picture Sources:

https://www.mayoclinic.org

http://bronchiectasis.com.au

https://www.cancer.gov

https://reference.medscape.com

www.promega.com

http://www.imalab.net