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Abstract 
  
 Cardiac arrest (CA) is the cessation of blood flow due to electrical or mechanical 

failure of the heart resulting in whole-body ischemia. Out-of-hospital CA (OHCA) is a 

medical emergency occurring in approximately 350,000 people in the United States each 

year with a survival rate of 5-15%. Mechanical improvements to cardiopulmonary 

resuscitation (CPR) as well as organizing a systems-based approach to resuscitation have 

resulted in only modest improvements in survival. Novel resuscitation strategies are 

necessary to improve survival following OHCA. 

 Two phases of injury are associated with prolonged ischemia: an initial injury 

during untreated ischemia, followed by paradoxical damage that occurs upon reperfusion. 

During CA, ischemic injury occurs prior to resuscitation efforts, whereas reperfusion injury 

begins when CPR is initiated. The extent and development of reperfusion injury during 

resuscitation following OHCA is poorly characterized.   

 Postconditioning, a suite of strategies applied after a lethal ischemia to mitigate 

reperfusion injury, can attenuate infarct size and organ dysfunction in the heart and brain 

when applied early during reperfusion. Following a CA, reperfusion is initiated with CPR. 

Thus, postconditioning strategies are predicted to have the greatest efficacy when applied 

during CPR for the treatment of CA. Ischemic postconditioning (IPC), a technique of non-

lethal pauses in blood flow during early reperfusion, has demonstrated protection of vital 

organs after focal ischemia. The ability to protect multiple organs makes IPC an appealing 

therapeutic for the whole-body ischemia of CA. Further, IPC is ideal for CA because 

controlled pauses in reperfusion can be accomplished simply by interrupting continuous 

chest compressions. 

 The central hypothesis of this work is that IPC implemented at the initiation of CPR 

can improve cardiac and neurologic recovery after prolonged CA. This work details 

experiments investigating the feasibility and efficacy of implementing a simple IPC 

strategy at the onset of CPR to mitigate organ and mitochondrial dysfunction following 

prolonged ventricular fibrillation (VF) CA. In a porcine model, IPC drastically improved 

cardiac function and neurologically favorable survival after 15 minutes of VF CA. IPC also 
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improved hemodynamics during CPR and increased cardiac mitochondrial function in the 

acute phase of resuscitation. A combination of IPC with other postconditioning strategies 

promoted cardiac and neurologic recovery after 17 minutes of untreated VF CA, a duration 

not previously compatible with positive outcomes in a porcine model. The mechanisms 

that mediate cardiac and neurologic protection remain undetermined, though evidence 

suggests increased coronary perfusion pressure during resuscitation is necessary and 

sufficient to restore acute cardiac mitochondrial function after prolonged VF CA. 

 These experiments highlight the impact of early CPR interventions on long-term 

outcomes, and emphasize the importance of continued innovation in resuscitation 

therapies. Every incremental improvement to resuscitation care has the potential to save 

thousands of lives. 
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CHAPTER 1 – Part 1 

 

Overview 

 

Cardiac Arrest and Cardiopulmonary Resuscitation 

 Cardiac arrest is the cessation of blood flow due to electrical or mechanical failure of 

the heart resulting in whole-body ischemia. Out-of-hospital cardiac arrest (OHCA) occurs 

approximately 350,000 times annually in the United States (1). Outcomes following 

OHCA are poor and represent a heavy burden in terms of mortality and morbidity (2). 

 Since efficacy of external cardiac massage was demonstrated by Kouwenhoven et 

al., cardiopulmonary resuscitation (CPR) has been the predominant initial therapy to 

reverse cardiac arrest (3). In the nearly six decades since, permutations of mechanical 

manipulations have been attempted to improve blood pressure during CPR. Evidence of a 

thoracic pump (4) paved the way for intrathoracic pressure regulation and active 

compression-decompression (5,6). These insights have now been engineered into devices 

that can facilitate sustained, high-quality CPR. In contrast to vasopressor dogma, sodium 

nitroprusside (SNP) in tandem with mechanical interventions to centralize blood flow was 

shown to increase vital organ perfusion as well as neurologically favorable survival (7). 

Extracorporeal membrane oxygenation (ECMO) represents the zenith of artificial cardiac 

output and shows potential for increased survival following OHCA (8,9). 

 However, improved techniques to generate blood flow have thus far failed to reliably 

and substantially improve outcomes from OHCA. Evidence from ischemia in isolated 

organs indicates that reperfusion injury, the paradoxical damage that occurs upon 

introduction of blood flow after a long bout of ischemia, contributes significantly to cellular 

and organ damage following prolonged ischemia (10). Postconditioning is a term for a suite 

of therapeutic strategies applied after a lethal ischemia to limit injury by mitigating 

reperfusion injury. Ischemic postconditioning (IPC), a technique of administering non-

lethal controlled pauses in blood flow during early reperfusion, has demonstrated 

protection via attenuation of infarct size, apoptosis, and organ dysfunction in the heart, 
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brain, and other vital organs (10–16). 

 Postconditioning shows the greatest efficacy when applied early during reperfusion. 

Following a cardiac arrest, reperfusion is initiated with CPR. Thus, postconditioning 

strategies are predicted to have the greatest efficacy when applied during CPR for the 

treatment of cardiac arrest. The ability to protect multiple organs makes IPC an appealing 

therapeutic for the whole-body ischemia of cardiac arrest. IPC is more relevant than 

preconditioning for the treatment of cardiac arrest due to the unpredictability of an arrest. 

Further, IPC is an ideal therapeutic because controlled bouts of ischemia/reperfusion can 

be accomplished easily during early reperfusion with CPR by temporarily discontinuing 

chest compressions. For these reasons, IPC was implemented as a therapeutic strategy to 

investigate the potential of postconditioning during CPR to improve survival and vital 

organ function after prolonged cardiac arrest. 

 . 

Objectives 

 The following aims were developed to address the safety and efficacy of IPC when 

applied during CPR (IPC-CPR) in a porcine model of prolonged ventricular fibrillation 

(VF) cardiac arrest. 

 

1)  Determine the feasibility and efficacy of IPC-CPR to promote cardiac and neural 

recovery in a porcine model of prolonged VF cardiac arrest. 

2)  Determine the synergy of IPC with other postconditioning strategies during CPR. 

 

 In Chapter 2, we tested the feasibility and efficacy of implementing IPC at the 

initiation of CPR via controlled pauses in chest compressions and ventilations during the 

first few minutes of CPR. We hypothesized that implementation of an IPC strategy during 

the initiation of CPR would improve cardiac and cerebral recovery after 15 minutes of VF 

cardiac arrest. 

 In Chapter 3, we investigated the effects of IPC ± vasodilators at the initiation of 

CPR on cardiac and cerebral functional after 15 minutes of VF cardiac arrest. We 

hypothesized that vasodilator therapy would act synergistically with IPC to protect the 
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heart and brain. We also investigated the effects of combining IPC with two other 

strategies, anesthetic postconditioning with sevoflurane and pharmacologic 

postconditioning with P188, at the initiation of CPR on cardiac and cerebral function after 

17 min of VF cardiac arrest. We hypothesized that a combination of postconditioning 

strategies would provide synergistic benefit to prevent sever injury, thus promoting cardiac 

and neurologic recovery after a duration of untreated VF cardiac arrest never before 

associated with positive outcomes. 

 

 Results from Aims 1 and 2 confirmed cardiac and neural protection via IPC-CPR 

following prolonged cardiac arrest. Based on these findings, we next focused on 

determining the role of mitochondria in mediating this protective benefit. Mitochondria are 

a nexus for integrating signals of both injury and protection during reperfusion and 

postconditioning, respectively (17,18). The review included in this chapter summarizes the 

rationale and recent advances for the use of postconditioning strategies to treat cardiac 

arrest. 

 

 The following aims were developed to determine the effect of IPC-CPR on acute 

mitochondrial function, and to determine the role of enhanced coronary perfusion pressure 

as a mediator of mitochondrial protection conferred by IPC-CPR. 

 

3)  Characterize the effect of cardiac arrest, standard CPR, and IPC-CPR on 

mitochondrial function in the vital organs of the heart and brain in a porcine model 

of prolonged VF cardiac arrest. 

4)  Investigate the effect of increased coronary perfusion pressures on acute cardiac 

mitochondrial function during resuscitation with and without IPC. 

  

 In Chapter 4, we characterized the severity of mitochondrial dysfunction in the heart 

and brain during cardiac arrest and standard CPR, and determined the potential for IPC to 

rescue mitochondrial function after 15 minutes of VF cardiac arrest. We hypothesized that 

cardiac and brain mitochondrial dysfunction develops during prolonged cardiac arrest and 
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can be rescued with IPC-CPR. We also characterized mitochondrial function six hours after 

return of spontaneous circulation. We hypothesized that differences in acute mitochondrial 

function between treatments would persist during recovery from prolonged cardiac arrest. 

 In Chapter 5, we investigated the effect of coronary perfusion pressure during 

resuscitation on acute mitochondrial function. We hypothesized that IPC-CPR confers 

benefit to cardiac mitochondrial function via increased coronary perfusion pressure. 
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Purpose of review 

 Despite decades of advances in prehospital and in-hospital medical care, patients 

with out-of-hospital cardiac arrest continue to have poor neurologic and cardiac function 

following otherwise successful resuscitation. This review examines the mechanisms and 

therapeutic strategies currently under development to activate the post-conditioning 

pathways and thereby improve survival and function. 

Recent findings 

 Post-conditioning utilizes the reperfusion injury salvage kinase (RISK) and survivor 

activating factor enhancement (SAFE) pathways as common avenues to promote cell 

survival and function. Ischemic postconditioning and multiple medications activate these 

pathways resulting in improved cardiac and neurological function in animal models of 

cardiac arrest. 

Summary 

 Detailed knowledge of the RISK and SAFE pathways can be used for further drug 

development. Human studies are now underway to test some of these strategies, but further 

clinical trials are necessary to translate these therapies to clinical practice. 

Keywords 

 cardiac arrest, cardiopulmonary resuscitation, post-conditioning, reperfusion injury, 

RISK pathway, SAFE pathway 

Key Points 

 • Reperfusion injury is a primary contributor to the tissue damage and dysfunction 

following ischemic injury. 

 • Post-conditioning reduces reperfusion injury as demonstrated by improved cardiac 

function, improved neurological function, and improved survival in animal models of 

cardiac arrest. 

 • The exact mechanism of post-conditioning remains unclear but likely involves 

activation of the RISK and SAFE pathways in addition to beneficial effects of gradual 

normalization of pH and calcium levels. The result of these changes is reduced apoptosis 

and improved organ function. 

 • The benefits of post-conditioning have been well described in animal studies, but 
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extensive clinical trials will be necessary to understand the role of these treatments in 

humans. 

 

INTRODUCTION 

 Survival after out-of-hospital cardiac arrest (OHCA) remains poor despite decades 

of innovation in prehospital and in-hospital care. Only 5–8% of patients survive to hospital 

discharge with good neurologic function (19–22). Reducing ischemic time with bystander 

cardiopulmonary resuscitation (CPR) and early defibrillation is associated with improved 

survival (23–26). However, additional tissue damage arises from restoration of blood flow 

into the ischemic territory, termed reperfusion injury (10,27). Reperfusion injury causes up 

to 50% of the total damage induced by myocardial infarction in animal models (10,11). 

Therapies initiated prior to ischemia are termed pre-conditioning. Therapies provided 

during ischemia but before reperfusion are called peri-conditioning. Treatment strategies 

initiated after reperfusion has begun are called post-conditioning. In the context of high-

quality CPR, it is important to consider reperfusion to start at the onset of CPR rather than 

at return of spontaneous circulation (ROSC). 

 Post-conditioning is accomplished by targeting cellular signaling pathways which 

lead to cell death and tissue dysfunction. Many therapies can be utilized for both pre and 

post-conditioning, though in many cases, the cellular targets and mechanism of protection 

are not fully known (11,28). In the setting of OHCA, post-conditioning offers an important 

advantage over pre-conditioning. Postconditioning strategies allow therapy to begin when 

medical professionals arrive to the patient, often in the pre-hospital setting, with 

continuation in the hospital. This review will explore some of the most promising post-

conditioning strategies currently in development to augment resuscitation efforts and 

improve outcomes after cardiac arrest. 

 
MECHANISMS OF POST-CONDITIONING 

 Post-conditioning provides benefit by modulating innate cellular pathways thereby 

influencing the balance between pro-apoptotic and pro-survival signaling. 
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Mechanisms of cell injury 

 Apoptosis is the final common pathway for much of the detrimental signaling 

induced by reperfusion injury. Inhibition of apoptosis reduces infarct size, reduces 

inflammation, improves endothelial function and coronary blood flow, and improves 

cardiac function (29). Pro-apoptotic signals can be initiated by rapid changes in pH, 

intracellular calcium, reactive oxygen species, or ATP depletion. In addition, extrinsic 

pathways involving the inflammatory response with Fas and tumor necrosis factor (TNF) 

signaling can also initiate apoptosis (Fig. 1-2.1). 

 Mitochondria play a critical role in cardiac arrest and resuscitation given their central 

role in energy metabolism and apoptotic signaling cascades. The mitochondrial 

permeability transition pore (mPTP), a nonselective channel in the inner mitochondrial 

membrane, integrates multiple signaling pathways to determine the fate of the 

mitochondria and the cell at large (30–33). When open, mPTP collapses the mitochondrial 

membrane potential thereby uncoupling oxidative phosphorylation. The open mPTP also 

releases cytochrome c into the cytoplasm where it can promote apoptosis (34,35). 

Reperfusion injury salvage kinase pathway 

 Two pro-survival pathways are currently understood in detail. The first pathway 

described for cellular protection was the reperfusion injury salvage kinase (RISK) pathway, 

which leads to activation of the PI3K-Akt and Erk signaling cascades (36–38). PI3K is 

activated by growth factor receptors and G-protein-coupled receptors providing for a 

diverse array of potential ligands or medications that may contribute to post-conditioning 

(39,40). Activation of PI3K also prevents calcium release from the sarcoplasmic reticulum 

via activation of the prosurvival protein, PKCe (41–43). Akt inhibits proapoptotic signaling 

proteins including caspases, Bax, Bad, and GSK-3b (44–47). Akt also activates endothelial 

nitric oxide synthase (eNOS) resulting in increased nitric oxide production (48). The 

subsequent activation of cGMP and PKG results in activation of sarco/endoplasmic 

reticulum calcium ATPase (SERCA) and increased calcium uptake into the sarcoplasmic 

reticulum thereby decreasing the overall calcium load affecting the mitochondria (49). 

Meanwhile, Erk activation also inhibits proapoptotic signaling and increases expression of 

prosurvival genes (50–52). 
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Survivor activating factor enhancement pathway 

 The survivor activating factor enhancement (SAFE) pathway promotes cell survival 

via TNF receptormediated activation of the JAK/STAT-3 pathway leading to stabilization 

of the mPTP in the closed state (53,54). When activated, STAT-3 also translocates to the 

nucleus where it induces transcription of multiple pro-survival genes including Bcl-2, 

growth factors, cell cycle regulators, and other transcription factors (55,56). STAT-3 

activation results in inhibition of pro-apoptotic proteins including Bax (57), Bad (58), and 

GSK-3b (59). In addition to nuclear translocation, STAT-3 also localizes to the 

mitochondria suggesting a potential effect on the electron transport chain and thus the cell’s 

energy production (60). 

 The RISK and SAFE pathways have been studied largely in isolation. However, 

some post-conditioning therapies have been shown to activate both pathways (e.g., 

ischemic post-conditioning, opioids, inhaled anesthetics, among others). There is also 

evidence that the two pathways interact, though the details are not fully known (59,61). 

Ultimately, the combination of these pro-survival pathways improves calcium 

homeostasis, reduces production of reactive oxygen species, increases production of nitric 

oxide, inhibits mPTP opening, and prevents apoptosis. 

 

ISCHEMIC POST-CONDITIONING 

 Ischemic post-conditioning uses a series of brief ischemic episodes during the initial 

phase of reperfusion following an ischemic insult. It was the first form of post-conditioning 

developed, as it was adapted from previous work with ischemic preconditioning performed 

in 1986 (62,63). The benefit of gradual reperfusion after coronary occlusion was also first 

described in 1986 and was then confirmed a decade later resulting in reduced infarct size 

and improved endothelial function (64,65). Pre and post-conditioning have since been 

shown to provide similar benefits in animal studies and clinical trials in patients with 

myocardial infarction (11,66,67). Importantly, pauses in cerebral reperfusion following 

stroke have demonstrated improved neurologic function as well as reduced cerebral 

infarction, cerebral edema, and inflammatory markers (68,69,13,70). Liver, intestine, lung, 

and kidney function have also been shown to benefit from ischemic post-conditioning 
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(71,72,15,73). 

 Ischemic post-conditioning was only recently assessed in a porcine model of cardiac 

arrest including 15 min of untreated ventricular fibrillation (74–76). Ischemic post-

conditioning, composed of four pauses of 20 s during the first 3 min of CPR, improved 

coronary and cerebral blood flow during CPR and after ROSC was achieved. Cardiac and 

neurologic functions were also improved when compared with standard CPR alone (75). 

 The protective mechanism of ischemic post-conditioning in cardiac arrest is not well 

understood. Gradual reperfusion may limit reperfusion injury by slowing the normalization 

of intracellular pH and calcium, thereby reducing production of reactive oxygen species, 

preventing opening of the mPTP, and preventing activation of the pro-apoptotic calcium-

sensitive protease, calpain (77,78). In addition, ischemic post-conditioning activates the 

RISK and SAFE pathways likely via multiple signaling molecules including adenosine and 

TNF (11,54). Dopamine receptors have been shown to potentiate these pathways through 

PKC activation, though PKC stimulation is not required for ischemic post-conditioning 

(79). Together, these pathways may account for the marked benefits observed with 

ischemic post-conditioning. Large clinical trials will be necessary to understand the degree 

to which these benefits translate to humans. 

 
PHARMACOLOGIC POST-CONDITIONING 

 Post-conditioning may occur through activation of the RISK and SAFE pathways or 

by reducing the rapid changes in intracellular environment that occur with reperfusion. The 

wide array of pathway activators provides various opportunities for pharmacologic 

manipulation. 

Nitric oxide 

 Intracellular nitric oxide levels are increased with activation of the RISK pathway as 

a result of eNOS activation. This process is required for the beneficial effects of ischemic 

post-conditioning (80) and has been shown to prevent opening of the mPTP (81). Infusion 

of nitric oxide donors has been shown to prevent mPTP opening via a PKG-dependent 

mechanism in hepatocytes (82). In addition, nitric oxide is a potent vasodilator, which may 

impact CPR by improving cardiac output. 
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 Sodium nitroprusside (SNP) is a nitric oxide donor and potent vasodilator currently 

used in clinical practice to dilate arterial vasculature and improve cardiac output in the 

setting of cardiogenic shock. SNP has now been tested in a porcine model of ventricular 

fibrillation arrest in combination with an enhanced CPR (eCPR) method, which directs 

blood toward the vital organs. The eCPR includes active compression-decompression CPR, 

an inspiratory impedance threshold device, and abdominal binding. SNP eCPR improves 

coronary perfusion pressure, carotid blood flow, arterial pH, and end-tidal CO2 when 

compared with eCPR alone (7,75,83–85). Rates of ROSC, cardiac function, neurologic 

recovery, and survival were also increased with SNP eCPR. Importantly, no improvement 

is observed when SNP is used in combination with standard CPR suggesting that 

mesenteric pooling and peripheral blood flow limit the effectiveness of SNP if eCPR is not 

performed. It is unclear to what degree SNP improves CPR by postconditioning versus 

improved hemodynamics during the resuscitation. Further studies examining the post-

conditioning pathways are necessary to understand the relative contribution of the RISK 

and SAFE pathways. Clinical trials will also be necessary to assess the effects of sodium 

nitroprusside in humans with OHCA. 

 Nitrite is a precursor for nitric oxide that undergoes conversion to nitric oxide in the 

setting of low oxygen and low pH leading to preferential conversion in areas of ischemia. 

Nitrite has shown improvement in cardiac function, neurologic function, and survival in 

rodent models of cardiac arrest (86,87). The benefits were attributed to reversible inhibition 

of mitochondrial complex I, which reduced the production of reactive oxygen species. No 

hemodynamic changes were observed. Activation of the RISK and SAFE pathways were 

not evaluated in these studies. Phase I clinical trials have demonstrated safety in humans 

(87) and further clinical trials are underway to assess its use in cardiac arrest and acute 

myocardial infarction (NCT01178359, NCT00924118). 

Adenosine 

 Adenosine is an arteriolar vasodilator with additional effects including increased 

endothelial and myocardial ATP stores, inhibition of platelet aggregation, and inhibition 

of neutrophils leading to reduced levels of reactive oxygen species. In addition, adenosine 

has been implicated as a critical activator of the RISK pathway. Ischemic post-conditioning 
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and activation of the RISK pathway was eliminated in rodents lacking the adenosine 

receptors A2a (88) or A2b (89) confirming the importance of adenosine signaling in post-

conditioning. 

 Canine models of myocardial infarction were the first used to assess the benefits of 

intracoronary adenosine showing reduced infarct size, increased epicardial and endocardial 

blood flow after reperfusion, and improved vasodilatory reserve in animals treated with 

adenosine (90,91). Reduced endothelial damage and improved microcirculation were 

implicated as the causes of the benefit. Importantly, these benefits did not occur if 

reperfusion began more than 3h after coronary occlusion suggesting that progression of the 

infarct during that time made adenosine ineffective (92). 

 Adenosine has also been tested in humans with ST-segment elevation myocardial 

infarction (STEMI) demonstrating reduced infarct size, improved survival, and reduction 

in a composite endpoint including new heart failure, re-hospitalization for heart failure, or 

death from any cause within 6 months (93,94). These effects were only observed in patients 

who underwent reperfusion therapy within 3h of symptom onset emphasizing the 

importance of early administration similar to the canine studies. 

 Studies of adenosine in CPR are limited. Adenosine was tested in a porcine model of 

ventricular fibrillation arrest in combination with SNP eCPR (76). Adenosine-treated 

animals demonstrated a further increase in cerebral blood flow and cardiac function beyond 

that achieved with SNP eCPR alone. The activation of RISK or SAFE pathways was not 

assessed. Further animal and human studies will be necessary to examine the role of 

adenosine in post-conditioning after cardiac arrest. 

Cyclosporine 

 Cyclosporine A prevents opening of the mPTP by inhibiting the calcium-dependent 

interaction of cyclophilin D with the pore. This effect mimics activation of the RISK and 

SAFE pathways, but bypasses the signaling pathways altogether. Studies using porcine 

models of cardiac arrest have shown improved mitochondrial integrity and respiration, 

reduced apoptosis, improved cardiac function, and improved survival with use of 

cyclosporine early in the resuscitation (95–97). Delayed administration by as little as 3 min 

after ROSC eliminated the benefit in a rat model of cardiac arrest (96,98). Previous clinical 
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trials have demonstrated a reduction in infarct size with cyclosporine treatment in patients 

with a STEMI (35,99). A clinical trial is currently underway to examine the potential 

benefit of cyclosporine therapy during CPR in humans (NCT01595958). 

Opioids 

 Opioids induce post-conditioning in animal models via activation of both the RISK 

and SAFE pathways by ∂ opioid receptors (59,100–103). Several studies have shown 

reduced infarct size and reduced apoptosis using remifentanil, morphine, and sufentanil in 

rat models (100,104–106). No human trials have confirmed these results, but opioids are 

commonly used for sedation in the setting of cardiac arrest, myocardial infarction, and 

stroke. 

Inhaled anesthetics 

 In the setting of cardiac arrest, inhaled anesthetics provide the opportunity to deliver 

medication at the initiation of resuscitation via a face mask thereby maximizing the benefits 

of post-conditioning. 

 Sevoflurane is a halogenated anesthetic used extensively for surgical patients. The 

cardiac effects of halogenated anesthetics have been studied extensively (107); however, 

the mechanism of the cardioprotective effect remains unclear. Sevoflurane and isoflurane 

have been shown to activate the RISK pathway in cardiomyocytes and neurons, but the 

mechanism of activation is unknown (108–110). Preconditioning with sevoflurane has 

been shown to reduce cerebral infarct size, preserve mitochondrial function, reduce ROS, 

and improve long-term neurological function in a rat model of stroke (111). Sevoflurane 

also reduces cardiac apoptosis and improves cardiac function in porcine models of cardiac 

arrest (112). Further study is necessary to assess the role for sevoflurane in improving 

neurological outcomes. 

 Xenon is a noble gas, which is known to inhibit N -methyl-D -aspartate (NMDA) 

receptors in the central nervous system. Inhibition of NMDA receptors may reduce calcium 

influx and activation of the mPTP, which may prevent the neuronal death induced by 

cardiac arrest and stroke. Improvements in neuronal necrosis and perivascular 

inflammation were observed in a porcine model of cardiac arrest when xenon was delivered 

after ROSC was achieved (113). Long-term improvements in neurological function were 
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not observed. 

Na+/H+ exchanger inhibitors 

 Cariporide is a selective inhibitor of the sarcolemmal Na+/H+ exchanger (NHE). The 

NHE can cause excessive intracellular sodium levels during reperfusion as the cell corrects 

intracellular acidosis. Sodium overload can induce excessive calcium release from the 

sarcoplasmic reticulum through the Na+ /Ca2+ exchange pump. Elevated cytosolic calcium 

levels lead to mitochondrial destruction, apoptosis, and arrhythmias. Cariporide treatment 

reduced ventricular ectopy and the need for postresuscitation defibrillation in a porcine 

model of cardiac arrest (114,115). Cardiac function and mean arterial blood pressure were 

also improved, whereas neurological outcomes were similar between cariporide treatment 

and placebo. Sabiporide is a longacting NHE inhibitor, which has also been shown to 

improve cardiac function and oxygen delivery to vital organs (116). It also showed an 

overall reduction in the systemic inflammatory response after cardiac arrest. 

 

CONCLUSION 

 Substantial effort has been invested in developing and understanding post-

conditioning strategies for cardiac arrest. The various medications known to induce post-

conditioning converge to achieve their therapeutic effects via a small number of pro-

survival signaling pathways. Challenges arise when testing the mechanisms of these agents, 

as many of the medications have substantial hemodynamic effects in addition to any role 

in postconditioning. For example, the vasodilation induced by SNP may improve cardiac 

output and clinical outcomes. Similarly, comorbidities such as age, diabetes, hypertension, 

and hyperlipidemia have been shown to impact the fidelity of these post-conditioning 

pathways, though the degree of this impact is unknown (110,117). These factors will be 

important when designing clinical trials as well as therapeutic strategies for individual 

patients. Although there have been small human studies in the past, and future studies are 

planned or underway, it has yet to be seen if these results in animals will translate to the 

clinical environment. 

 

  



 

 15 

Acknowledgements 

D.Y., MD, is the Medical Director of the Minnesota Resuscitation Consortium, a state-

wide initiative to improve survival in the state of Minnesota from cardiac arrest. This 

initiative is sponsored by the Medtronic Foundation and is part of the Heart Rescue 

Program. 

Conflicts of interest 

D.Y. is funded by an Institutional, Division of Cardiology grant at the University of 

Minnesota and the following NIH grants for CPR and resuscitation research: R01 

HL108926–02, 1R43HL110517–01A1, R43HL115937–01, R43 HL097479-01. J.B., MD, 

PhD, G.D., MD, MSc, and T.M. have no conflicts of interest. 



 

 16 

 
Figure 1.1. Cell injury and post-conditioning pathways active during ischemia-

reperfusion. The mechanisms of cell injury (Left) include extrinsic, intrinsic, and 

reperfusion injuries. The post-conditioning pathways (Right) include the RISK and SAFE 

pathways. Many pathways lead to the mitochondria, which integrates the signals to balance 

the pro apoptotic and pro-survival signals. Activation of Erk and STAT-3 also results in 

signal transduction to the nucleus where expression of pro-survival genes is increased. The 

apoptotic and survival pathways result in opposing physiologic and clinical outcomes as 

noted. Arrows indicate activation whereas rounded lines indicate inhibition. GPCR, G-

protein coupled receptor; mPTP, mitochondrial permeability transition pore; NO, nitric 

oxide; RISK, reperfusion injury salvage kinase; ROS, reactive oxygen species; SAFE, 

survivor activating factor enhancement; TNF, tumor necrosis factor. 
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Synopsis 

Objectives: Ischemic postconditioning (PC) with “stuttering” reintroduction of blood flow 

after prolonged ischemia has been shown to offer protection from ischemia reperfusion 

injury to the myocardium and brain. We hypothesized that four 20-s pauses during the first 

3 min of standard CPR would improve post resuscitation cardiac and neurological function, 

in a porcine model of prolonged untreated cardiac arrest. 

Methods: 18 female farm pigs, intubated and isoflurane anesthetized had 15 min of 

untreated ventricular fibrillation followed by standard CPR (SCPR). Nine animals were 

randomized to receive PC with four, controlled, 20-s pauses, during the first 3 min of CPR 

(SCPR + PC). Resuscitated animals had echocardiographic evaluation of their ejection 

fraction after 1 and 4 h and a blinded neurological assessment with a cerebral performance 

category (CPC) score assigned at 24 and 48 h. All animals received 12 h of post 

resuscitation mild therapeutic hypothermia. 

Results: SCPR + PC animals had significant improvement in left ventricular ejection 

fraction at 1 and 4 h compared to SCPR (59 ± 11% vs 35 ± 7% and 55 ± 8% vs 31 ± 13% 

respectively, p < 0.01). Neurological function at 24 h significantly improved with SCPR + 

PC compared to SCPR alone (CPC: 2.7 ± 0.4 vs 3.8 ± 0.4 respectively, p = 0.003). 

Neurological function significantly improved in the SCPR + PC group at 48 h and the mean 

CPC score of that group decreased from 2.7 ± 0.4 to 1.7 ± 0.4 (p < 0.00001). 

Conclusions: Ischemic postconditioning with four 20-s pauses during the first 3 min of 

SCPR improved post resuscitation cardiac function and facilitated neurological recovery 

after 15 min of untreated cardiac arrest in pigs. 
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1. Introduction 

 Cardiopulmonary resuscitation (CPR) survival rates have remained poor over the 

past half-century with only minimal if any improvements in neurologically intact survival 

(118). In humans, when ventricular fibrillation (VF) is left untreated for more than 10 min, 

short and long term survival is severely reduced (119). In animals, current non-invasive 

methods of CPR are unable to provide short and long-term neurological recovery when 

ventricular fibrillation is left untreated longer than 12–13 min (120–122). Furthermore, 

successful resuscitation following 12–15 min of untreated VF has been used as the model 

to evaluate post resuscitation left ventricular dysfunction (123). 

 Re-introduction of blood flow with “controlled pauses” has been shown to protect 

the myocardium and the brain from ischemia-reperfusion injury in clinical scenarios of 

regional ischemia during ST elevation myocardial infarction and stroke both in animals 

and humans (11,30,13,124). This concept has been called “ischemic postconditioning” and 

describes a method of reperfusion injury protection (10,11). 

 We sought to introduce ischemic postconditioning at the initiation of CPR efforts by 

providing four, 20-s pauses in chest compressions and ventilations over the first 3 min of 

reperfusion. We hypothesize that the implementation of a simple ischemic 

postconditioning (PC) strategy during the first 3 min of CPR, will improve cardiac and 

cerebral function and 48-h survival rates after 15 min of untreated ventricular fibrillation. 

2. Materials and methods 

 All studies were performed by an experienced research team in Yorkshire female 

farm pigs weighing 32 ± 2 kg. A certified and licensed veterinarian provided a blinded 

neurological assessment at 24 and 48 h. The protocol was approved by the Institutional 

Animal Care Committee of the Minneapolis Medical Research Foundation of Hennepin 

County Medical Center. All animal care was compliant with the National Research 

Council’s 1996 Guidelines for the Care and Use of Laboratory Animals. 

2.1. Preparatory phase 

 The anesthesia, surgical preparation, data monitoring, and recording procedures used 

in this study have been described previously (125). Briefly, we employed aseptic surgical 

conditions using initial sedation with intramuscular ketamine (7 mL of 100 mg/mL, 
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Ketaset, Fort Dodge Animal Health, Fort Dodge, Iowa) followed by inhaled isoflurane at 

a dose of 0.8–1.2%. Pigs were intubated with a size 7.0 endotracheal tube. The animal’s 

temperature was maintained at 37.5 ± 0.5 ˚C, with a warming blanket (Bair Hugger, 

Augustine Medical, Eden Prairie, Minnesota). Central aortic blood pressure was recorded 

continuously with a micromanometer-tipped (Mikro-Tip Transducer, Millar Instruments, 

Houston, Texas) catheter placed at the beginning of the descending thoracic aorta. A 

second Millar catheter was inserted in the right atrium via the right external jugular vein. 

All animals received an intravenous heparin bolus (100 units/kg) and 500 units of heparin 

every hour until surgical repair was completed. An ultrasound flow probe (Transonic 420 

series multichannel, Transonic Systems, Ithaca, New York) was placed to the right internal 

carotid artery to record blood flow (mL/min). The animals were then ventilated with room 

air, using a volume-control ventilator (Narcomed, Telford, Pennsylvania), with a tidal 

volume of 10 mL/kg and a respiratory rate adjusted to continually maintain a PaCO2 of 40 

mmHg and PaO2 of 80 mmHg (blood oxygen saturation > 95%), as measured from arterial 

blood (Gem 3000, Instrumentation Laboratory, Lexington, Massachusetts) to adjust the 

ventilator as needed. Surface electrocardiographic tracings were continuously recorded. 

All data were recorded with a digital recording system (BIOPAC MP 150, BIOPAC 

Systems, Inc., CA, USA). End tidal CO2 (ETCO2), tidal volume, minute ventilation, and 

blood oxygen saturation were continuously measured with a respiratory monitor (CO2SMO 

Plus, Novametrix Medical Systems, Wallingford, Connecticut). 

2.2. Measurements and recording 

 Thoracic aortic pressure, right atrial pressure, ETCO2, and carotid blood flow were 

continuously recorded. Coronary perfusion pressure (CPP) during CPR was calculated 

from the mean arithmetic difference between right-atrial pressure and aortic pressure 

during the decompression phase. Carotid artery blood flow was reported in mL/s. 

2.3. Experimental protocol 

 After the surgical preparation was complete, oxygen saturation on room air was 

greater than 95%, and ETCO2 was stable between 35 and 42 mmHg for 5 min, ventricular 

fibrillation was induced by delivering direct intracardiac current via a temporary pacing 

wire (St. Jude Medical, Minnetonka, Minnesota). The ventilator was disconnected from the 
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endotracheal tube. Standard CPR was performed with a pneumatically driven automatic 

piston device (Pneumatic Compression Controller, Ambu International, Glostrup, 

Denmark) as previously described (126). During S-CPR, uninterrupted chest compressions 

were performed at a rate of 100 compressions/ min, with a 50% duty cycle and a 

compression depth of 25% of the anterior–posterior chest diameter. Asynchronous 

positive-pressure ventilations were delivered with room air (FiO2 of 0.21) with a manual 

resuscitator bag. The tidal volume was maintained at ∼10 mL/kg and the respiratory rate 

was 10 breaths/min. The investigators were blinded to hemodynamics during CPR. 

2.4. Protocol 

 Following 15 min of untreated ventricular fibrillation, 18 pigs were randomized to 

receive standard CPR (SCPR) or SCPR plus postconditioning (SCPR + PC). The SCPR + 

PC group received initially 40 s of SCPR followed by a 20-s pause of compressions and 

ventilations followed by another 20 s of SCPR and the cycle was repeated for a total of 4 

pauses (Fig. 2.1). Epinephrine was administered in both groups in 0.5 mg (∼15 mcg/kg) 

bolus at minute three and was repeated every 3 min until return of spontaneous circulation 

(ROSC). Resuscitation efforts were continued until ROSC was achieved or a total of 15 

min of CPR had occurred. The first defibrillation effort was delivered with 200-J biphasic 

shocks after 4 min of CPR in both groups. If ROSC was not achieved, defibrillation was 

delivered every 2 min thereafter during CPR. 

2.5. Post ROSC care 

 After ROSC was achieved, animals were connected to the mechanical ventilator. 

Supplemental oxygen was added only if arterial saturation was lower than 90%. Animals 

were observed under general anesthesia with isoflurane until hemodynamically stable. 

Hemodynamic stability was defined as a mean aortic pressure > 55 mmHg without 

pharmacological support for 30 min and normalization of ETCO2 and acidosis. Animals 

that had a stable post-ROSC rhythm but were hypotensive (mean arterial pressure < 50 

mmHg) received increments of 0.1–0.2 mg intravenous epinephrine every 5 min until MAP 

rose above 50 mmHg. If pH was lower than 7.2, 100 mEq of NaHCO3 was given 

intravenously. Amiodarone 20 mg intravenously was given in all animals if there was 

recurrence of ventricular fibrillation after initial ROSC. At that point vascular repair of the 



 

 22 

internal jugular vein and the left common femoral artery were then performed. Arterial 

blood gases were obtained at baseline, at 5 min after ROSC and every 30 min thereafter. 

 Both groups received post resuscitation therapeutic hypothermia as per American 

Heart Association recommendations for resuscitated comatose patients from ventricular 

fibrillation in order to simulate best practice and optimize the chances of the control group 

for neurological recovery. Our institutional animal care committee mandated therapeutic 

hypothermia for protocol approval. Immediately after ROSC all animals in both groups 

received 1.5 l of chilled Saline (8–10 ˚C) and surface cooling with towels soaked with 

ethanol. Target temperature was set at 34 ˚C and was maintained at that level for 12 h with 

the use of a cooling blanket device (Arctic sun, Medivance Inc., Louisville, CO, USA). 

Target temperature was reached within 29 ± 8 and 31 ± 6 min in the control and IPC groups 

respectively (p = 0.56). Central temperature was measured at the bladder of the animals. 

Animals were re-warmed at 0.5 ˚C/h to 36 ˚C. Subsequently, animals were weaned off 

anesthesia and were extubated once they could maintain normal respiratory pattern and 

blood gasses for 30 min off the ventilator.  

 Survivors were given intramuscular analgesic injections of nonsteroidal anti-

inflammatory medication as previously described and had free access to water and food 

(7). No other post-ROSC medical care was provided after the vascular repair. Animals 

were returned to their runs and were observed every 2 h for the next 6 h for signs of distress 

or accelerated deterioration of their function. If animals met predetermined criteria or if the 

veterinarian judged that they were in severe distress they were euthanized per IACUC 

protocol. 

2.6. Neurological assessment 

 Twenty-four and 48-h after ROSC, a certified veterinarian, blinded to the 

intervention, assessed the pigs’ neurological function based upon a cerebral performance 

category (CPC) scoring system modified for pigs. The veterinarian used clinical signs such 

as response to opening the cage door, response to noxious stimuli if unresponsive, response 

to trying to lift the pig, whether the animal could stand, move all four limbs, walk, eat, 

urinate, defecate, and respond appropriately to the presence of a person walking into the 

cage. The following scoring system was used: 1 = normal; 2 = slightly disabled; 3 = 
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moderately disabled but conscious; 4 = vegetative state.14 For each group, mean CPC score 

(excluding deaths) was calculated at 24 and 48 h 

2.7. Echocardiographic evaluation of left ventricular function 

 A transthoracic echocardiogram was obtained on all survivors 1 and 4 h post ROSC. 

Images were obtained from the right parasternal window that provides similar views as the 

long and short parasternal windows in humans (127). Ejection fraction was assessed using 

Simpson’s method of volumetric analysis by an independent clinical echocardiographer 

blinded to the treatments (128). Before echocardiographic evaluation, any inotropic 

support was stopped for at least 20 min and, if needed, was restarted immediately after the 

echocardiographic evaluation. 

2.8. Statistical analysis 

 Values were expressed as mean ± standard deviation. Baseline data, hemodynamic 

parameters, blood gases and left ventricular ejection fraction measurements between 

groups were analyzed with unpaired t-test. A 2-tailed Fischer exact test was used to 

compare 24 and 48-h survival rate. Unpaired t-test was used to evaluate mean CPC scores 

between the two groups at 24 h. A paired t-test was used for comparison between 24 and 

48-h mean CPC score of the SCPR + PC. The primary study endpoint was the mean CPC 

score at 24 h and left ventricular ejection fraction at 4 h. Secondary endpoint was survival 

at 48 h after ROSC. A p-value of <0.05 was considered statistically significant. 

 

3. Results 

 There were no significant baseline differences between treatment groups in any 

hemodynamic or respiratory parameters (Tables 2.1 and 2.2). 

 At the end of 15 min of untreated fibrillation before CPR initiation, the core body 

temperature of the animals was 36.9 ± 0.3 ˚C and 37.1 ± 0.2 ˚C in the SCPR and SCPR + 

PC groups respectively. 

3.1. CPR hemodynamics 

 Both groups had similar aortic and right atrial pressures with similar pre epinephrine 

coronary perfusion pressures. The SCPR + PC group demonstrated significantly higher 

post epinephrine aortic and coronary perfusion pressures compared to SCPR alone (Table 
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2.1). 

3.2. Return of spontaneous circulation and survival 

 There were no significant differences in ROSC and 24 h survival between groups 

(Table 2.1). In the S-CPR group, 8/9 animals achieved ROSC, and 5/9 animals survived 

24 h. Only 1/9 animal survived to 48 h. In the SCPR + PC group, 9/9 animal had initial 

ROSC and 8/9 survived to 24 and 48 h (p = 0.003 for 48 h survival rate). Animals in the 

SCPR + PC group were significantly more stable and received significantly less 

epinephrine than the control animals during the recovery period (Table 2.1). Three of the 

five animals treated with SCPR that had ROSC, died during the first night. Animals that 

had a CPC score of 4 (coma) at 24 h died before the 48 h evaluation. 

3.3. Left ventricular function 

 Echocardiographic evaluation at 1 h revealed that animals receiving SCPR alone had 

a significantly lower left ventricular ejection fraction than the animals treated with SCPR 

+ PC who appeared to have normal function (35 ± 7%, vs 59 ± 11%, p < 0.01). The effect 

was maintained at 4 h (31 ± 13% vs 55 ± 8%, p < 0.01) (Table 2.1). 

3.4. Neurological function at 24 and 48 h 

 Mean CPC score at 24 h was significantly lower (better neurological function) in the 

animals that received SCPR + PC compared to SCPR alone (2.7 ± 0.4 vs 3.8 ± 0.4 

respectively, p = 0.003). Neurological function in SCPR + PC group significantly improved 

in all but one animals at 48 h and the mean CPC score of the group decreased from 2.7 ± 

0.4 to 1.7 ± 0.4 (p < 0.001). The one SCPR animal that survived 48 h had the same CPC 

score of 3 at 24 and 48 h (Fig. 2.2). 

3.5. Blood gasses, end tidal CO2 and lactate 

 There were no significant differences in blood gas values at baseline between groups. 

Immediately after ROSC, pH and HCO3 and ETCO2 were significantly higher in the SCPR 

+ PC group a finding that can be explained by higher circulation at the last few minutes of 

CPR and immediately after ROSC (Table 2.2). 
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4. Discussion 

 Our study, for the first time, shows that a simple strategy of ischemic 

postconditioning introduced early during standard-CPR with four 20-s pauses can 

significantly improve cardio-cerebral outcomes in a porcine model of very prolonged 

cardiac arrest and global ischemia. When good quality SCPR was coupled with controlled 

pauses at the initiation of reperfusion, the resuscitated animals documented normal left 

ventricular function post resuscitation in the absence of inotropic support and improved 

neurologic outcome. Furthermore, to our knowledge, this is the only study that has 

demonstrated complete neurological recovery is possible after 15 min of untreated cardiac 

arrest with standard CPR and a non-invasive intervention. 

 It is important to emphasize that unintentional pauses in chest compressions spread 

throughout resuscitative efforts have been associated with worse outcomes by adding to 

the injury that has accumulated from the no-flow period (129–131). The effects of pauses 

on coronary perfusion pressure and carotid blood flow were exactly as previously described 

by Berg et al (130). Pauses caused elimination of the trans-coronary pressure gradient and 

carotid flow. The type of intentional pauses described in this report is thought to harness 

endogenous protective processes associated with specific mitochondrial protective 

mechanics and should not be confused with the poor outcomes known to be associated with 

poor CPR quality that includes prolonged intervals of interrupted chest compressions 

(132). 

 The fact that there were no differences in ROSC rates between groups and that the 

S-CPR (control) group had such high ROSC rate is a testament to the high quality of CPR 

performed. While introduction of CPR pauses at the initiation of resuscitation efforts may 

appear to be contrary to some beliefs that continuous uninterrupted chest compressions are 

essential, four pauses of 20 s duration during the first 3 min after CPR initiation followed 

by continuous chest compressions with asynchronous ventilations for the remainder of the 

resuscitation appeared to positively impact neurological outcome after very prolonged 

global cerebral ischemia (133). 

 The animals that were treated with controlled pauses showed absence of post 

resuscitation left ventricular dysfunction and they were hemodynamically more stable post 
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ROSC requiring less epinephrine. There is very strong evidence that post conditioning is 

advantageous for cardiac muscle protection after ischemia (10,134). Three to four pauses 

during reperfusion of acute myocardial infarction have been shown to significantly 

decrease infarct size in human studies (30,124). Our results show that a similar strategy of 

controlled reperfusion after prolonged global ischemia in cardiac arrest exhibits the same 

benefits for the myocardium as a whole and mitigates post ROSC cardiac dysfunction that 

contributes heavily to post resuscitation morbidity and mortality. Recently animal studies 

have described strategies to alleviate ischemia reperfusion injury and promote cardiac 

recovery after cardiac arrest with inhaled anesthetics and hypothermia. It is possible that a 

strategy combining pauses during CPR and pharmacological postconditioning could 

demonstrate further benefits (112,135). 

 The most striking observation in our study was that the brain demonstrated the 

potential for full recovery after 15 min of global ischemia with no flow. Shaffner et al. 

showed that cerebral recovery was not feasible after 12 min of untreated arrest because 

regeneration of ATP was not possible despite high cerebral perfusion pressures (136). Our 

data suggest otherwise. To our knowledge, this is the first time that survival rates with 

consistently favorable neurological outcomes have been reported after 15 min of untreated 

cardiac arrest. Controlled reperfusion with short pauses at the initiation of reperfusion of 

stroke has been shown to significantly decrease injury in a rat model (13). Furthermore, 

15–30 s cycles of on/off flow in the same model with 10 min of global ischemic cerebral 

insult have provided significant cerebral preservation and recovery (13). The latter model 

is relevant to cardiac arrest where the ischemic insult is systemic and global. For the above 

mentioned reasons we combined the duration (15–30 s) and number of cycles (3–4) of 

different ischemic postconditioning strategies to create our tested protocol of four 20-s 

pauses during the first 3 min of CPR. 

 The mechanisms for protection of both the heart and brain have been well-studied 

and are currently considered to be mediated by direct and indirect modulation of 

mitochondrial permeability transition pore state (132,137–141). We used this strategy 

exactly because of previously documented protection of vital organs in stroke and 

myocardial infarction. Based on our data, it appears that postconditioning with pauses in 
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CPR efforts at the initiation of reperfusion, offer significant protection and facilitates 

functional cardiac and cerebral recovery (10,30,142,143). 

 Postconditioning with controlled reperfusion has also been shown to be beneficial in 

preventing ischemia reperfusion injury in most of the organs such as liver, kidney, retina, 

and small intestine (144–150). That could explain why the animals with SCPR + CP had 

an overall improvement in their status, survived and continued to improve to 48 h. 

 This study has limitations. First, we did not perform a dosing study and therefore we 

cannot comment what is the best combination of cycles and duration of pauses. We used 

the specific combination based on the literature targeting neurological protection (13). 

Second we do not know if the same benefits could be realized if resuscitation efforts are 

prolonged and we cannot exclude the possibility of synergy between mild therapeutic 

hypothermia and ischemic postconditioning. Third, our study was not designed to address 

the mechanism of protection offered by postconditioning. Nonetheless, we have no reason 

to believe that the mechanism should be different than the one described extensively in the 

cardiac and cerebral literature (10,30,142,143). We also did not assess biomarkers of injury 

for the heart and brain. Although the clinical endpoints reported here (echocardiographic 

LV function and blinded neurological assessment), in our opinion, represent higher quality 

preclinical endpoints than biomarkers, we cannot claim there was tissue protection despite 

the observed improvement in myocardial and cerebral functional outcomes. A 

histopathology/brain MRI study is underway to correlate the clinical endpoints observed 

in this study with brain pathology. However, we tested those interventions exactly as 

described for acute myocardial infarction and stroke and found them to be extremely 

effective in our model of cardiac arrest (30,142,143). Finally, it is unknown if the benefits 

demonstrated in this study would be seen with coexisting myocardial ischemia or can be 

translated to humans. 

 

5. Conclusion 

 A simple strategy of ischemic postconditioning with four 20-s pauses during the first 

3 min of SCPR mitigates post resuscitation cardiac dysfunction and facilitates neurological 

recovery after 15 min of untreated cardiac arrest in pigs. 
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Table 2.1. Hemodynamics, resuscitation rates. Values are shown as mean ± SD. CPR 

was performed with either SCPR or SCPR + PC. All pressures in mmHg, all flows in 

mL/min. SBP = systolic blood pressure, DBP = diastolic blood pressure, RA = right atrial 

pressure, CPP = coronary perfusion pressure, CBF = carotid blood flow, LVEF: left 

ventricular ejection fraction (%). 
* Mean statistically significant difference between groups with p < 0.05 SCPR: standard 

CPR; PC: postconditioning. 

 

 

 
Table 2.2. Arterial blood gasses during cardiopulmonary resuscitation and after 

return of spontaneous circulation. Mean ± SD. Arterial blood gas measurements at 

baseline and after ROSC. Partial pressures in torr. SaO2: percent oxygen saturation; HCO3: 

bicarbonate; ETCO2: end-tidal CO2. 
* Means statistically significant difference between groups. 
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Figure 2.1. Ischemic postconditioning protocol during standard cardiopulmonary 

resuscitation. In the SCPR + PC group during the first 3 min of CPR, animals received 

four 20-s pauses and each pause was followed by 20 s of SCPR. The “stuttering” 

introduction of reperfusion is called “ischemic postconditioning”. SCPR: standard CPR; 

VF: ventricular fibrillation; ROSC: return of spontaneous circulation. 
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Figure 2.2. 24 and 48-h neurological assessment. Addition of controlled pauses during 

SCPR significantly improved neurological function compared to SCPR alone at 24 h. In 

the SCPR + PC neurological function improved in all but one animal at 48 h. Mean CPC 

at 24 h was significant lower in the SCPR + PC compared to SCPR alone (CPC: 2.7 ± 0.4 

vs 3.8 ± 0.4 respectively, p = 0.003) cerebral performance category score: (1 = normal, 2 

= mild deficit, 3 = moderate deficit but conscious, 4 = coma); SCPR: standard CPR. PC: 

postconditioning. *Means statistically significant difference between groups at 24 h. 
§Means statistically significant difference between the SCPR + PC group at 24 vs 48 h. 
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Synopsis 

Aim of the study: We investigated the effects of ischemic postconditioning (IPC) with and 

without cardioprotective vasodilatory therapy (CVT) at the initiation of cardiopulmonary 

resuscitation (CPR) on cardio-cerebral function and 48-hour survival. 

Methods: Prospective randomized animal study. Following 15 min of ventricular 

fibrillation, 42 Yorkshire farm pigs weighing an average of 34 ± 2 kg were randomized to 

receive standard CPR (SCPR, n = 12), SCPR + IPC (n = 10), SCPR + IPC + CVT (n = 10), 

or SCPR + CVT (n = 10). IPC was delivered during the first 3 min of CPR with 4 cycles 

of 20 s of chest compressions followed by 20-s pauses. CVT consisted of intravenous 

sodium nitroprusside (2 mg) and adenosine (24 mg) during the first minute of CPR. 

Epinephrine was given in all groups per standard protocol. A transthoracic echocardiogram 

was obtained on all survivors 1 and 4 h post-ROSC. The brains were extracted after 

euthanasia at least 24 h later to assess ischemic injury in 7 regions. Ischemic injury was 

graded on a 0–4 scale with (0 = no injury to 4 ≥50% neural injury). The sum of the regional 

scores was reported as cerebral histological score (CHS). 48 h survival was reported. 

Results: Post-resuscitation left ventricular ejection (LVEF) fraction improved in SCPR + 

CVT, SCPR + IPC + CVT and SCPR + IPC groups compared to SCPR (59% ± 9%, 52% 

± 14%, 52% ± 14% vs. 35% ± 11%, respectively, p < 0.05). Only SCPR + IPC and SCPR 

+ IPC + CVT, but not SCPR + CVT, had lower mean CHS compared to SCPR (5.8 ± 2.6, 

2.8 ± 1.8 vs. 10 ± 2.1, respectively, p < 0.01). The 48-h survival among SCPR + IPC, SCPR 

+ CVT, SCPR + IPC + CVT and SCPR was 6/10, 3/10, 5/10 and 1/12, respectively (Cox 

regression p < 0.01). 

Conclusions: IPC and CVT during standard CPR improved post-resuscitation LVEF but 

only IPC was independently neuroprotective and improved 48-h survival after 15 min of 

untreated cardiac arrest in pigs. 

 

1. Introduction 

 An estimated 350,000 patients suffer from out-of-hospital cardiac arrest (OHCA) 

each year in the United States (151). Even with the best clinically documented methods of 

cardiopulmonary resuscitation (CPR), more than 85–90% of OHCA patients die or have 
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severe neurological deficits (152). Cerebral and cardiac dysfunction following successful 

resuscitation from cardiac arrest is the major cause of death and long-term morbidity 

(153,154). 

 We recently have shown that after 15 min of untreated cardiac arrest due to 

ventricular fibrillation, ischemic postconditioning (IPC) at the initiation of standard CPR, 

can improve neurological intact survival (74). IPC with four, 20 s pauses during the first 3 

min of CPR have been shown to be synergistic with sodium nitroprusside “enhanced” CPR 

(SNPeCPR) which utilizes active compression and decompression CPR with an inspiratory 

impedance threshold device and abdominal binding (76).  

 In this investigation we try to build upon our previous published studies and evaluate 

the effects of cardioprotective vasodilator therapy (CVT) alone and in combination with 

IPC in a model of standard CPR (SCPR). We sought to provide evidence of reduced global 

reperfusion injury after prolonged ischemia with histological and biomarker based 

endpoints in addition to the clinical endpoints. 

 We hypothesized that by using a simple CPR strategy designed to control the initial 

reintroduction of blood flow during Basic Life Support (BLS), we could protect vital 

organs from injury and substantially improve outcomes after 15 min of untreated 

ventricular fibrillation. Further, we hypothesized that the addition of cardioprotective 

vasodilatory agents would act synergistically with IPC. 

 

2. Materials and methods 

 All studies were performed on Yorkshire farm pigs weighing an average of 34 ± 2 

kg. A certified and licensed veterinarian provided a blinded neurologic assessment at 24 

and 48 h. The Institutional Animal Care Committee of the Minneapolis Medical Research 

Foundation approved the protocol (number 11-05, approved on 5/10/2011) (155). 

2.1. Preparatory phase 

 The anesthesia, surgical preparation, data monitoring, and recording procedures used 

in this study have been described previously in detail and the study protocol was used 

unaltered from Segal et al (74). After endotracheal intubation, inhaled isoflurane at a dose 

of 0.8–1.2% was used for anesthesia up until ventricular fibrillation (VF) induction. 
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Anesthesia was restarted after return of spontaneous circulation (ROSC). The animal’s 

bladder temperature was maintained at 37.5 ± 0.5 ̊ C with a warming blanket (Bair Hugger, 

Augustine Medical, Eden Prairie, MN). Central aortic and right atrial pressures were 

recorded continuously with micromanometer-tipped catheters (Mikro-Tip Transducer, 

Millar Instruments, Houston, TX). The left internal carotid artery was surgically exposed 

and an ultrasound flow probe (Transonic 420 series multichannel, Transonic Systems, 

Ithaca, NY) placed to quantify blood flow (mL/min). Compression force, rate and depth, 

were continuously recorded throughout all experiments and controlled during CPR to 

assure all groups received identical CPR quality. 

2.2. Experimental protocol 

 After the surgical preparation was complete, oxygen saturation on room air was 

>95%, and ETCO2 was stable between 35 and 42 mmHg for 5 min, VF was induced by 

delivering direct intracardiac current. Standard chest compression cardiopulmonary 

resuscitation was performed with a pneumatically driven automatic piston device 

(Pneumatic Compression Controller, Ambu International, Glostrup, Denmark) as 

previously described (126). During SCPR, we delivered uninterrupted chest compressions 

at a rate of 100 compressions/min, with a 50% duty cycle and a compression depth of 25% 

of the anteroposterior chest diameter. Asynchronous positive-pressure ventilations were 

delivered with room air (FIO2 of 0.21) with a manual resuscitator bag. The tidal volume 

was maintained at ∼10 mL/kg and the respiratory rate was 10 breaths/min. The 

investigators were blinded to hemodynamics during CPR. If ROSC was not achieved, 

defibrillation was delivered every 2 min thereafter during CPR. Resuscitation efforts were 

continued until ROSC was achieved or for a total of 15 min. 

2.3. Protocol 

 We tested two interventions in this study, independently, and in combination during 

SCPR. These interventions included, (a) IPC, that was delivered with four cycles of 20-s 

pauses for the first 3 min of the resuscitation effort (74) and (b) administration of 

cardioprotective vasodilator therapy (CVT). CVT consisted of sodium nitroprusside (SNP) 

and adenosine. SNP was given as a 2 mg bolus at minute 1 and a second 1 mg bolus at 

minute 3 of CPR (76). Adenosine was given as a single 24 mg bolus after the first SNP 
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bolus (after preliminary studies demonstrated superiority of this dose in improving post 

resuscitation left ventricular (LV) dysfunction (76). Epinephrine was administered in all 

groups in a 0.5 mg (∼15 g/kg) bolus at minute 4 of CPR, 60 s before first defibrillation. 

 Following 15 min of untreated VF, 42 pigs were randomized prospectively using a 

computer-generated program into four groups: 

I. SCPR group as controls: received only SCPR and epinephrine (12 animals). 

II. IPC group: received four 20-s pauses during the first 3 min of SCPR. 

III. CVT group: received SNP and adenosine as described above while performing SCPR. 

IV. IPC + CVT group: received both four 20-s pauses of CPR (IPC) and CVT, as described 

above. Groups II–IV had 10 animals each. 

2.4. Post-ROSC care 

 The protocol for post resuscitation care has been described in detail by Segal et al 

(74). Supplemental oxygen was added only if arterial saturation was lower than 90%. 

Animals were observed under general anesthesia with isoflurane until hemodynamically 

stable. Hemodynamic stability was defined as a mean aortic pressure >55 mmHg without 

pharmacologic support for 10 min as well as normalization of ETCO2 and acidosis. 

 Animals that were hypotensive post-ROSC received increments of 0.1 mg 

intravenous epinephrine every 5 min until mean arterial pressure rose above 50 mmHg. If 

pH was lower than 7.20, 50–100 mEq of NaHCO3 were given intravenously. All groups 

received post-resuscitation therapeutic hypothermia as recommended by the American 

Heart Association for comatose patients resuscitated from VF to simulate best practice and 

optimize the chances of the control group for neurological recovery (156). Target 

temperature was set at 34 ˚C and was maintained at that level with the use of a cutaneous 

cooling device (Arctic Sun, Medivance Inc., Louisville, CO). Central temperature was 

measured at the bladder of the animals. Total hypothermic time was 12 h (156). 

 Survivors were given intramuscular injections of nonsteroidal analgesics (84). 

Animals were returned to their runs and were observed every 2 h for the first 6 h for signs 

of distress or accelerated deterioration of their function If animals met predetermined 

criteria of an adverse outcome such as status epilepticus, severe cardio-respiratory distress 

or deep coma after 24 h based on the judgment of a veterinarian, blinded to the intervention, 
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they were euthanized per protocol. 

2.5. Neurologic assessment 

 24 and 48 h after ROSC, a certified veterinarian, blinded to the intervention, assessed 

the pigs’ neurologic function based on a modified cerebral performance category (CPC) 

scoring system for pigs. That has been described in detail by our group.5 The following 

scoring system was used: 1 = normal; 2 = slightly disabled; 3 = severely disabled but 

conscious; 4 = vegetative state; and 5 was given to animals that died in the lab due to 

unachievable ROSC or died in the run following ROSC. 

2.6. Echocardiographic evaluation of the left ventricle 

 A transthoracic echocardiogram was obtained on all survivors 1 and 4 h post-ROSC. 

Parasternal long and short axis views were obtained at each time point. Ejection fraction 

(EF) was assessed by visual estimation from two independent clinical echocardiographers 

blinded to the treatments and if there was more than 10% difference between the two 

readings, the EF was calculated by using Simpson’s method of volumetric analysis (128). 

2.7. Neurohistology 

 Animals that were found dead without direct observation were excluded from 

histological analysis due to unknown time of death. At 48 h (or if the veterinarian decided 

that the animals needed to be sacrificed after the 24 h evaluation) animals underwent 

sedation, were intubated, and anesthetized as described previously. Surgical exposure and 

cannulation of both common carotid arteries were performed under full anesthesia 

protocol. 

 An IV bolus of heparin (3000 units) was administered. Animals were then sacrificed 

by an injection of 10 mEq potassium chloride via direct cardiac stick. Immediately upon 

sacrifice, normal saline was infused through the carotid sheaths via a peristaltic pump (Cole 

Parmer, Vernon Hills, IL). The head was removed from the body, and 10% buffered 

formalin pumped through the carotid sheaths. The brain was allowed to fix for 1–3 h prior 

to removal and then the whole brain was removed and placed in 10% buffered formalin 

solution. 

 After fixation with formalin, brains were stained with hematoxylin and eosin (H&E). 

Assessment was modeled after a previously published method (120). 
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 Each pig brain was sectioned coronally into 5 slices (excluding brainstem and 

cerebellum) with the first cut at the level of the mammillary bodies for consistency. Within 

the 5 brain slices, sections sampled included: (1) frontal cortex, including watershed zones 

and underlying structures at the level of the head of the caudate; (2) deep gray nuclei 

(caudate putamen and globus pallidus), temporal cortex and hippocampus at the level of 

the mammillary bodies; (3) hippocampus and temporal cortex at the level of thalamus 

(including thalamus), (4) midbrain, (5) pons, (6) medulla and (7) cerebellum (1 cm from 

the midline including watershed zones). When regions were represented at more than one 

level, scoring was based on the section where damage was more extensive and notations 

made if significant differences are noted at two levels (i.e. head and body of caudate or 

anterior and posterior hippocampus). Light microscopic evaluations were made using an 

Olympus microscope. A board certified human neuropathologist blinded to the group 

treatments performed the histological evaluations at the core laboratories of the University 

of Minnesota. 

 We used a semi-quantitative scale for ischemic injury. Seven specific brain regions 

were graded on a 0–4 scale (0: no injury, 1–4, mild to severe). A score of 0 indicated that 

less than 1% ischemic neurons were seen in the region, 1 (minimal) was used if fewer than 

10% of neurons appeared ischemic, 2 (mild) was used if 10–25% of neurons were ischemic, 

3 (moderate) was used for 26–50% ischemia, and 4 (marked) for more than 50% ischemic 

neurons. The sum of categorical scores for regional prevalence throughout the brain 

describes the overall prevalence of ischemic neurons and is described here as total Cerebral 

Histological Score (CHS) 

2.8. Cardiac biomarkers 

 A 3-ml sample of arterial blood was obtained from all survivors 4 h after ROSC. 

Cardiac-specific troponin-I and creatinine phosphokinase-MB (CK-MB) were quantified 

via a two-site sandwich assay (Stratus CS Acute Care, Siemens, Tarrytown, NY). 

Personnel performing the analyses were blinded to treatment. 

2.9. Statistical analysis 

 Values are expressed as mean ± SD. The primary end point was the incidence of 

major adverse outcomes at 48 h. The adverse outcomes were defined by the protocol as 
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death or euthanasia after the veterinarian’s recommendation due to status epilepticus, 

severe cardiorespiratory distress with evidence of agonal breathing with cyanosis or 

pulmonary edema and coma at 24 h with the inability to respond to painful stimuli. 

Secondary endpoints were (a) 4-h left ventricular ejection fraction (LVEF) and (b) the 

cerebral histological score. A single-factor ANOVA was used to determine statistical 

significance of differences in means of continuous variables between groups. Pairwise 

comparison of subgroups was performed with the Student–Newman–Keuls test. 

Significance was set at a value of p < 0.05. A Kaplan Maier curve was plotted to show 

freedom from major adverse outcomes (death or euthanasia after 24 h due to coma, 

refractory seizures and cardio-respiratory distress) in the intervention and control groups. 

Cox regression analysis was used to assess the effect of IPC, and CVT on major adverse 

outcomes up to 48 h. The computer generated randomization process allocated the numbers 

of the animals in each group prospectively. 

 

3. Results 

 All animals were included in the analysis. No adverse event occurs during the 

experiment. There were no significant baseline differences between treatment groups 

(Tables 3-1.1 and 3-1.2). 

3.1. Hemodynamics and arterial blood gasses 

 During the first 3 min of CPR all animals had similar hemodynamics except, as 

expected, during the periods where pauses of compression and ventilations were introduced 

(Table 3-1.1). CVT therapy did not significantly affect coronary perfusion pressures. 

Arterial blood gases during CPR and at recovery are shown in Table 3-1.2. 

3.2. ROSC and 48-h incidence of major adverse outcomes 

 There were no significant differences in ROSC between groups (Table 3-1.1). IPC 

treated animals had a significant decrease in the combination of death and pre-specified 

major adverse outcomes (coma at 24 h, refractory seizures and cardio-respiratory distress 

leading to euthanasia) during the 48 h of observation. IPC was independently and strongly 

associated with a decrease in the risk of death and major adverse outcomes [HR = 0.13, 

95% CI = 0.035, 0.53, p = 0.004] and there was no observed synergy between IPC and 
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CVT (Fig. 3-1.1, Table 3-1.3). In the same fashion, IPC (p = 0.01) and IPC + CVT (p = 

0.024) were superior to SCPR. CVT alone was not superior to SCPR. 

3.3. Left ventricular function 

 Echocardiographic evaluation at 1 h revealed that animals receiving CVT, CVT + 

IPC or IPC had a significantly higher LVEF than those treated with SCPR (57 ± 12%, 54 

± 18%, 56 ± 14% vs. 36 ± 5%, respectively, p < 0.01 for all compared to SCPR). These 

results were sustained up to 4 h after ROSC (59 ± 9%, 52 ± 7%, 52 ± 14% vs. 35 ± 11%, 

respectively, p < 0.05). There was no difference in the LVEF among CVT, IPC-CVT or 

IPC alone groups, either at 1 or 4 h (Table 3-1.1). 

3.4. Cardiac biomarkers 

 Plasma was obtained at 4 h in all animals. IPC, CVT + IPC and CVT alone resulted 

in significantly lower CK-MB and Troponin-I levels (all in g/L) at 4 h compared to SCPR 

controls. The Troponin-I level was 31 ± 34 at 4 h in SCPR as compared to 8.5 ± 7, 7 ± 7, 

5 ± 5 for IPC, CVT, IPC + CVT, respectively (p < 0.05). CK-MB was measured at 37 ± 24 

in SCPR group compared to 13 ± 10, 18 ± 13, 11 ± 9 for IPC, CVT and IPC + CVT groups, 

respectively (p < 0.05). There was no difference the cardiac biomarkers among the 

intervention groups. 

3.5. Neurologic function 

 Blinded assessment of cerebral performance category (CPC) at 24 h on the live 

animals showed improvement in the CVT, CVT-IPC and IPC groups compared to SCPR 

group (2.6 ± 0.9, 2.25 ± 1, 2.75 ± 0.4 vs. 3.5 ± 0.5, respectively, p < 0.05 for all). At 48 h, 

there was only one animal that survived in the SCPR group and had CPC score of 3 (severe 

deficit). Surviving animals treated with CVT, CVT + IPC, and IPC alone at 48 h had a 

mean CPC score of 2.3 ± 1.6, 1.8 ± 0.8, 2.2 ± 0.9 with no difference between the groups, 

but with improvement in all intervention groups at 48 h compared with 24 h. 

3.6. Neurohistopathology 

 The mean time for brain harvest was shorter in the SCPR group since more animals 

died earlier or had major adverse outcomes requiring euthanasia. The mean harvest time 

for SCPR was 20 ± 12 h compared to 39.0 ± 12.4, 38.4 ± 13 and 42.0 ± 12.0 h for IPC, 

CVT + IPC, CVT, respectively. Despite later evaluation of histopathological samples, IPC 
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and IPC + CVT resulted in significantly lower total cerebral histological score (CHS) 

compared to SCPR group (5.8 ± 2.6, 2.8 ± 1.8 vs. 10 ± 2.1, respectively, p < 0.01) (Fig. 3-

1.2). One animal in the IPC group and two animals in the IPC + CVT group showed no 

ischemic damage at 48 h (≤2 total CHS). CVT alone did not improve CHS (6.6 ± 3.7) 

compared to SCPR group (p = 0.1). 

 

4. Discussion 

 Results from this investigation demonstrate that cardiac and cerebral function can be 

preserved after prolonged global ischemic insult of 15 min of untreated ventricular 

fibrillation cardiac arrest by early application of ischemic post-conditioning and use of 

cardioprotective vasodilators during CPR. These findings provide, for the first time, strong 

support for a simple BLS strategy that includes four controlled pauses of compressions 

during the first 3 min of CPR improves post-resuscitation LV function. This strategy also 

decreases the levels of cardiac biomarkers of injury at 4 h and leads to a significant decrease 

of the ischemic histological injury of the brain leading to better neurological outcomes at 

24 and 48 h compared to standard CPR. 

 In this study, ROSC was not a predictor of neurological and cardiac function post-

resuscitation. This finding that is consistent with large human studies showing dissociation 

between ROSC rates and improved survival with good neurological function (19,20). 

 Our data suggest that IPC is the most important factor leading to a significant 

improvement in cardiac function and survival with good neurological function. IPC 

decreased that risk of death and major adverse events by almost 80% compared to SCPR. 

It was also associated with significant improvement in cerebral histological injury; a 

combination of improved survival and cerebral preservation is currently considered the 

ultimate outcome for any intervention evaluated during cardiac arrest. 

 Our study is also in concordance with the published study by Wang et al. that showed 

that IPC was effective in protecting the brains of rats from a global 10-min ischemic insult 

that were not in cardiac arrest (13). This new observation should cause reassessment of the 

notion that cerebral recovery is not feasible after 10–12 min of cardiac arrest (136). In a 

recent series of papers, Allen et al. have shown that controlled reperfusion of the brain with 
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the use of bypass and a special reperfusion solution that mitigates reperfusion injury can 

result in the absence of ischemic changes in the brain even after 30 min of isolated global 

cerebral ischemia (157,158). Based on similar principles, we have provided a simple 

method of IPC (with four 20-s pauses in compressions and ventilation during the first 3 

min of CPR) that could be easily applied in the clinical setting and translated to patients 

receiving CPR for treatment of cardiac arrest. 

 We used IPC during CPR because of the described mechanisms of protection from 

reperfusion injury which currently is thought to be modulation of the opening of 

mitochondrial permeability transition pores (mPTP) and KATP channels 

(16,140,143,14,159,160). Our results support the contention that the previously described 

protective mechanisms can also be observed during the global ischemia and reperfusion of 

cardiac arrest, decreasing vital organ injury as documented, in this study, with the 

histological evaluation of the brain and functional and biomarker assessment of the 

surviving animals. 

 CVT with sodium nitroprusside and adenosine did not improve neurological 

outcomes but led to an independent improvement in post-resuscitation cardiac function and 

lower levels of biomarkers of cardiac injury. This is consistent with published evidence 

supporting the protective properties of these two medications after cardiac ischemia (30). 

CVT therapy did not show synergy with IPC in clinical outcomes but there was an 

improvement in cerebral histological score and the IPC + CVT group provided animals 

with the lowest scores recorded in histopathology analysis of the brain, effectively showing 

no ischemic changes in any of the regions examined. 

 By contrast, CVT alone has been shown to be very effective in improving outcomes 

when it is applied on CPR strategies that provide superior hemodynamics such as active 

compression decompression CPR and the impedance threshold device in combination with 

abdominal binding (7). In this setting, the CPR method can increase vital organ perfusion 

pressures and blood flow and lead to improved outcomes compared to SCPR (76). It 

became evident in our present study, which used SCPR, that CVT does not offer any 

significant survival advantage, although it did improve cardiac function after ROSC and 

there were no detectable side effects. 
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 Our study has limitations. We did not perform a dosing study so we cannot comment 

on the optimal IPC strategy, or the optimal CVT dosing. Dosing studies are difficult in a 

large animal laboratory due to the large number of animals needed. We did not evaluate 

mechanism in this study. We did, nevertheless, establish that our observed improved 

clinical outcomes were associated with evidence of cardiac and cerebral protection from 

ischemic injury in this global ischemic model of cardiac arrest. The histological assessment 

was performed in different times between the standard and the intervention groups. It is 

well established that histological evidence of ischemia becomes more pronounced after 24 

h and progressively gets worse up to 48-h (161). The observed differences in total cerebral 

histological score therefore are very likely to be an underestimation since there was 

significantly more time in the intervention groups to develop the observed ischemic 

changes. 

 

5. Conclusion 

 A simple IPC strategy applied at the initiation of CPR significantly improved clinical, 

histopathological and biomarker-related cardiocerebral outcomes in a porcine model of 

cardiac arrest of prolonged, untreated ventricular fibrillation. CVT offered a significant and 

independent improvement in post-resuscitation cardiac function and decreased levels of 

cardiac biomarkers at 4 h post-ROSC but it did not show any independent or synergistic 

effects with IPC effects on neurological and survival outcomes. 
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Table 3-1.1. The hemodynamics, ROSC and survival during CPR, ROSC, post-ROSC 

and 48 h. Values are shown as mean ± SD. CPR was performed with either SCPR, SCPR 

+ IPC, SCPR + CVT or SCPR + IPC + CVT. All pressures are in mm Hg and all flows in 

mL/min. CBF, carotid blood flow; CPP, coronary perfusion pressure; DBP, diastolic blood 

pressure; EPI, epinephrine; RA, right atrial pressure; SBP, systolic blood pressure; LVEF, 

left ventricular ejection fraction (%). The dose of EPI is in milligrams. * Means statistically 

significant difference compared to SCPR group with a p value of <0.05. 
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Table 3-1.2. Arterial blood gasses during cardiopulmonary resuscitation and after 

return of spontaneous circulation. Mean ± SD. Arterial blood gas measurements at 

baseline and after ROSC. Partial pressures in torr. SaO2, percent oxygen saturation; HCO3, 

bicarbonate; ETCO2, end-tidal CO2. * Means statistically significant difference compared 

to SCPR group with a p value of <0.05. 

 

 

 
Table 3-1.3. Effects of IPC, and CVT on major adverse outcomes up to 48 h (Cox 

regression analysis). SCPR is the reference. CI, confidence interval; HR, hazard ratio; and 

Ref, reference. 
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Figure 3-1.1. Kaplan–Meier curve of all 4 groups including only animals that achieved 

ROSC. The data demonstrate a significantly lower incidence of major adverse outcomes 

at 48 h post-ROSC with IPC and IPC + CVT interventions compared with SCPR (p = 

0.0097). (Major adverse outcomes are defined as death or coma, refractory seizures and 

cardio-respiratory distress leading to euthanasia.) SCPR, standard CPR; IPC, ischemic 

post-conditioning; and CVT, cardioprotective vasodilatory therapy. 
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Figure 3-1.2. Left panel: severe ischemic brain injury (SCPR), right panel: minimal 

ischemic brain injury (IPC) representative samples of severe versus minimal 

histologic ischemic brain injury. Purple condensed nuclei are a marker of ischemic insult 

(red arrow). Healthy neurons are shown with blue arrow. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of the 

article.) 
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Synoposis 

Objective: Ischemic postconditioning (stutter CPR) and sevoflurane have been shown to 

mitigate the effects of reperfusion injury in cardiac tissue after 15 min of ventricular 

fibrillation (VF) cardiac arrest. Poloxamer 188 (P188) has also proven beneficial to 

neuronal and cardiac tissue during reperfusion injury in human and animal models. We 

hypothesized that the use of stutter CPR, sevoflurane, and P188 combined with standard 

advanced life support would improve post-resuscitation cardiac and neurologic function 

after prolonged VF arrest. 

Methods: Following 17 min of untreated VF, 20 pigs were randomized to Control treatment 

with active compression/decompression (ACD) CPR and impedance threshold device 

(ITD) (n = 8) or Bundle therapy with stutter ACD CPR + ITD + sevoflurane + P188 (n = 

12). Epinephrine and post-resuscitation hypothermia were given in both groups per 

standard protocol. Animals that achieved return of spontaneous circulation (ROSC) were 

evaluated with echocardiography, biomarkers, and a blinded neurologic assessment with a 

cerebral performance category score. 

Results: Bundle therapy improved hemodynamics during resuscitation, reduced need for 

epinephrine and repeated defibrillation, reduced biomarkers of cardiac injury and end 

organ dysfunction, and increased left ventricular ejection fraction compared to Controls. 

Bundle therapy also improved rates of ROSC (100% vs. 50%), freedom from major adverse 

events (50% vs. 0% at 48 h), and neurologic function (42% with mild or no neurologic 

deficit and 17% achieving normal function at 48 h). Conclusions: Bundle therapy with a 

combination of stutter ACD CPR, ITD, sevoflurane, and P188 improved cardiac and 

neurologic function after 17 min of untreated cardiac arrest in pigs.  

 

1. Introduction  

 Over 350,000 people are affected by sudden cardiac death in the United States each 

year (162) while only 8–10% experience neurologically intact survival (19,20,22). Clinical 

studies have demonstrated severely limited neurologic outcomes when the cardiac arrest is 

longer than10 min (119). Likewise, animal studies show that prolonged ventricular 

fibrillation (VF), lasting 12–13 min, prohibits neurologically intact survival with standard 
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therapy (120–122).  

 Further study of global ischemia has revealed two types of injury with distinct 

mechanisms. The first is related to ischemic damage incurred during the period of arrest. 

The second is injury induced by tissue reperfusion (10,163,164). In contrast to ischemic 

injury which occurs prior to the arrival of emergency medical services, reperfusion injury, 

the injury caused by re-establishing blood flow, is amenable to medical management as it 

occurs when therapy begins. 

 Recent studies in animal models of cardiac arrest provide promising evidence for 

improved cardiac function and neurologic recovery when therapies targeting reperfusion 

injury are used. Ischemic postconditioning, which utilizes structured pauses in CPR, was 

shown to improve left ventricular ejection fraction (LVEF)and neurologically intact 

survival in a porcine model of cardiac arrest including 15 min of untreated VF (74). 

Sevoflurane has been shown to reduce release of cardiac biomarkers, reduce apoptosis, and 

improve LVEF; however, no difference in neurologic function was reported (112,165). 

Poloxamer 188 (P188) is a nonionic copolymer thought to adhere to gaps in the cell 

membrane, thereby blocking pores caused by severe cellular stress (166). 

 While each of these treatments is likely to provide protection against cardiac and 

neuronal reperfusion injury induced by cardiac arrest, we hypothesized that combining 

these therapies would provide a synergistic benefit even in severe injury. We therefore 

combined these therapies in a porcine model of cardiac arrest including 17 min of untreated 

VF. The tissue damage induced by this duration of cardiac arrest has generally been 

considered irreversible. We assessed hemodynamic parameters, markers of cardiac injury 

and function, neurologic recovery, and freedom from serious adverse events. 

 

2. Materials and methods 

 All studies were performed with approval from the Institutional Animal Care and 

Use Committee of the Minneapolis Medical Research Foundation and the National 

Research Council’s Guidelines for the Care and Use of Laboratory Animals. Yorkshire 

farm pigs weighing 38.6 ± 0.4 kg were used. 

2.1. Preparatory phase 
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 The anesthesia, data monitoring and recording, and surgical preparation have been 

described in detail previously (74). The femoral artery and right external jugular vein were 

cannulated percutaneously with eight French sheaths to provide access for continuous 

hemodynamic monitoring and repeated blood tests. 

2.2. Hemodynamic monitoring 

 Surface electrocardiographic tracings were recorded continuously. Central aortic and 

right atrial pressures were recorded continuously with micromanometer-tipped catheters 

(Millar Instruments) placed at the proximal descending thoracic aorta via the femoral artery 

and right atrium via the right external jugular vein, respectively. Coronary perfusion 

pressure (CPP) was calculated as the difference between the diastolic aortic pressure and 

right atrial pressure during the decompression phase of CPR. End tidal CO2 (ETCO2), 

blood oxygen saturation, tidal volume, and minute ventilation were continuously 

monitored with a respiratory monitor (CO2SMO Plus, Novametrix Medical Systems). All 

data were recorded with a digital recording system (BIOPAC MP150, BIOPAC Systems 

Inc.). 

2.3. Experimental protocol 

 The animals were allowed to stabilize with oxygen saturation >95% and 

ETCO2between 35 and 42 mmHg for 5 min. Isoflurane anesthesia was stopped 5 min prior 

to VF induction with direct intracardiac current delivered via a temporary pacing wire (St. 

Jude Medical). Following 17 min of untreated VF, 20 pigs were randomized to Control or 

Bundle treatment resulting in 8 pigs in the Control group and 12 pigs in the Bundle group. 

 

3. Experimental groups (Fig. 3-2.1): 

 Control therapy: Active compression/decompression (ACD) CPR was delivered 

using a pneumatically driven automated piston (Pneumatic Compression Controller, Ambu 

International) with chest compressions occurring at a rate of 100 per minute. Compression 

depth was maintained at 25% of the anteroposterior chest diameter. Compression force, 

rate, and depth were continuously recorded and controlled. An impedance threshold device 

(ITD; ResQPOD, Advanced Circulatory Systems Inc.) was used in addition to ACD CPR. 

Asynchronous positive-pressure ventilation was delivered during CPR with room air. A 
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tidal volume of 10 mL kg−1 was delivered at 10 breaths min−1. Isoflurane was not restarted 

until return of spontaneous circulation (ROSC) was achieved. At minute 3 of CPR all 

animals received 0.015 mg kg−1 of epinephrine. Up to three 275 J biphasic shocks were 

delivered at minute 4. If ROSC was not achieved, CPR continued with epinephrine 

administered every 3 min. Defibrillation was attempted every 2 min until ROSC was 

achieved or a total of 15 min of CPR was complete. If ventricular arrhythmias developed 

after ROSC was achieved, defibrillation was attempted and amiodarone 40 mg IV was 

given. Sodium bicarbonate (50 meq) was given to all animals at 5 min of resuscitation. 

 Bundle therapy: After 17 min of untreated VF, resuscitation began with ischemic 

postconditioning including stutter ACD CPR + ITD composed of 20 s of compressions 

followed by a 20 s pause. Sevoflurane was delivered during each pause at an end-tidal 

concentration of 2.0 vol.% with three positive pressure ventilations at a rate of 10 breaths 

min−1. No ventilations were delivered while compressions were performed. Once three 

cycles of stutter ACD CPR + ITD were complete, continuous chest compressions were 

performed similar to the Control group. Continuous ventilation with 10 breaths min−1 was 

initiated 20 s later. P188 (250 mg kg−1) was delivered at minute 2 of resuscitation. 

Epinephrine (0.015 mg kg−1) was given at minute 3 of the resuscitation. Defibrillation was 

attempted at minute 4 as discussed above. If ROSC was achieved, P188 (460 mg kg−1) was 

infused over 4 h. 

3.1. Post-ROSC care 

 The details of post-ROSC care have been described in detail elsewhere (74). Both 

groups received post-resuscitation therapeutic hypothermia to simulate best practice and 

optimize neurologic recovery. All animals received 1 L chilled saline (8–10˚C) 

immediately post-ROSC followed by surface cooling with ethanol soaked towels. Target 

temperature (34˚C) was maintained for 4 h with the use of external cooling (Arctic Sun, 

Medivance Inc.). Animals were rewarmed at 0.5˚C/h to 36˚C. In the event of an adverse 

event meeting predetermined criteria including status epilepticus, severe cardiopulmonary 

distress with evidence of agonal breathing, cyanosis, pulmonary edema, or deep coma at 

24 h with the inability to respond to painful stimuli based on the judgment of the 

veterinarian blinded to the intervention, animals were euthanized. 
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3.2. Echocardiographic evaluation 

 A transthoracic echocardiogram was obtained at baseline and again at 15 min, 1, 4, 

24, and 48 h post-ROSC. Parasternal long and short axis views were obtained and analyzed 

by clinical echocardiographers blinded to the intervention as described previously (74). 

3.3. Cardiac biomarkers, liver function tests, and renal function assessment 

 Arterial blood was collected at baseline and from all survivors 4 h post-ROSC. 

Cardiac specific troponin I (cTnI) and creatinine phosphokinase MB (CK-MB) were 

quantified via a two-site sandwich assay (Stratus CS Acute Care, Siemens). Aspartate 

aminotransferase, alanine aminotransferase, total bilirubin, and creatinine were measured 

with standard human assays. Personnel performing the analyses were blinded to the 

treatment. 

3.4. Neurological assessment 

 Neurologic function was assessed using a swine-specific cerebral performance 

category (CPC) at 24 and 48 h post-ROSC by a certified veterinarian blinded to the 

treatment. Clinical assessment of behaviors, reflexes, and coordination are assessed as 

previously described (74) using the following scoring system: 1 = normal, 2 = slightly 

disabled, 3 = moderately disabled but not comatose, 4 = coma, 5 = dead. 

3.5. Statistical analysis 

 Values are expressed as means ± standard error of the mean. The primary end points 

were the incidence of major adverse out-comes at 48 h and the CPC at 24 and 48 h. 

Secondary endpoints included hemodynamics, need for epinephrine and defibrillations, 

LVEF post-ROSC, and biomarkers. Baseline data, hemodynamic parameters, epinephrine 

and defibrillation requirements, LVEF, biomarkers, and mean CPC scores were compared 

using two-tailed unpaired t-tests. Kaplan–Meier survival curves were analyzed via Mantel–

Cox test. A p-value of <0.05 was considered statistically significant. 

 

4. Results 

 All results were obtained after 17 min of untreated VF. There were no significant 

differences in baseline hemodynamic parameters between treatment groups (Fig. 3-2.2). 

4.1. Resuscitation hemodynamics 
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 Systolic and diastolic blood pressures were greater with Bundle therapy vs. Controls 

at minutes 2–4 of CPR (Fig. 3-2.2A). This difference did not persist once ROSC was 

achieved. CPP was significantly lower with Bundle therapy compared to Control therapy 

early in the resuscitation while the increasing aortic pressures observed with Bundle 

therapy translated into higher CPP at minute 3 of the resuscitation (Fig. 3-2.2B). The 

duration of CPR was significantly reduced in the Bundle therapy group (5.0 ± 0.04 min 

vs.11.3 ± 1.5 min, p = 0.0001). 

4.2. Hemodynamic and rhythm support 

 The Bundle therapy group required less epinephrine (0.57 ± 0.08 mg vs. 1.34 ± 0.23 

mg, p = 0.002; Fig. 3-2.3A) and fewer shocks to achieve and maintain sinus rhythm 

compared to the Control group (4.75 ± 0.6 vs. 7.5 ± 1.0, p = 0.019; Fig. 3-2.3B). The use 

of amiodarone was not significantly different between the groups (13.33 ± 5.7 mg vs. 30 ± 

6.6 mg, p = 0.07). 

4.3. Left ventricular ejection fraction 

 LVEF was higher with Bundle therapy compared to Control therapy at 15 min post-

ROSC (63 ± 3.6% vs. 45 ± 10%, p = 0.009; Fig. 3-2.4). Bundle animals maintained a 

significantly higher LVEF at 4-h post-ROSC compared to Control animals (57.3 ± 2.1% 

vs. 42 ± 8.8%). LVEF remained normal in Bundle therapy animals that survived 48 h. No 

Control animals survived to 48 h for comparison. Baseline LVEF was similar between the 

groups (58.3 ± 0.7% vs. 58.8 ± 0.8%, p = 0.89). 

4.4. Biomarkers 

 CK-MB, cTnI, creatinine, and the transaminases were significantly reduced with 

Bundle therapy compared to Controls at 4 h post-ROSC (Table 3-2.1). All baseline values 

were similar between groups and within normal limits. 

4.5. ROSC and freedom from major adverse events 

 ROSC was achieved in 100% of Bundle animals and 50% of Controls (Fig. 3-2.5A 

and Fig. 3-2.6). 75% of Bundle animals remained free of major adverse events at 24 h 

compared to 25% of Controls. Overall, 50% of all Bundle therapy animals remained free 

of major adverse events at 48 h, whereas no Control animals remained free of adverse 

events at 48 h (p = 0.005). 
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4.6. Neurologic function at 24 and 48 h 

 Bundle therapy animals demonstrated significantly better neurologic function at 24 

h (Fig. 3-2.5B; mean CPC score: 3.4 ± 0.4 vs.4.8 ± 0.2, p = 0.015) and 48 h (mean CPC 

score: 3.4 ± 0.5 vs. 5.0 ± 0.0, p = 0.019). Both Control animals had severe disability (CPC 

score of 4) at 24 h while neither of them remained free of major adverse events at 48 h. 

33% of Bundle animals that remained free of major adverse events at 24 h had good 

neurologic function (CPC 1-2) while 33% had moderate disability. 67% of Bundle animals 

free of major adverse events at 24 h remained free from major adverse events at 48 h with 

50% of those demonstrating improved neurologic function between 24 and 48 h. Of all 

Bundle animals, 42% had good neurologic function (CPC 1-2) at 48 h post-ROSC.  

 

5. Discussion 

 This study shows, for the first time, successful resuscitation resulting in good cardiac 

and neurologic function after 17 min of untreated VF cardiac arrest using a combination of 

CPR and medications that could be incorporated into basic and advanced life support 

protocols. Bundle therapy improved hemodynamics during resuscitation, reduced the need 

for epinephrine and defibrillation, preserved cardiac ejection fraction, reduced biomarkers 

of cardiac ischemia, improved freedom from major adverse events, and improved the 

cerebral performance post-resuscitation. Some animals achieved complete recovery to 

normal neurologic function. 

 The most important findings of this study are the large improvement in freedom from 

major adverse events and the extent of neurologic recovery observed despite 17 min of 

untreated VF. ROSC rates were significantly lower in Control animals despite 15 min of 

high quality CPR and continued defibrillation attempts. Of the 12 Bundle animals, 42% 

had good neurologic function with only slight disability while 17% recovered to have 

normal neurologic function within 48 h of resuscitation. Thus, 17 min of ischemia was not 

sufficient to preclude recovery to normal neurologic function. Instead, it was the 

reperfusion process that determined the potential for neurologic recovery. This implicates 

reperfusion injury as an important factor in damage from prolonged cardiac arrest. 

 We have previously shown normal cardiac and neurologic function after 15 min of 
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untreated VF arrest using stutter CPR (74). Allen et al. (157,158) also showed almost 

complete neurologic recovery after 30 min of untreated isolated cerebral ischemia using a 

pig model with controlled reperfusion using high pressure and a reperfusate that was 

hyperosmolar, alkalotic, depleted of calcium, and enriched with magnesium (167). 

However, systemic ischemia may significantly alter the pathology. 

 Normalization of neurologic function with Bundle therapy may be related to 

hemodynamic improvements. Intracranial pressure was not measured in this study; 

however, prior studies using this model observed intracranial pressures between 20 and 30 

mmHg (168). Given the elevated aortic pressures achieved in the animals receiving Bundle 

therapy, cerebral perfusion pressures in excess of 70 mmHg may have been achieved which 

may contribute to the improved neurologic recovery observed. 

 Stutter CPR has previously been shown to improve hemodynamics after 15 min of 

VF arrest (74). However, the mean systolic blood pressure of 150 mmHg in the current 

study exceeds that previously seen suggesting synergism with sevoflurane and P188. 

Bundle therapy resulted in intra-resuscitation systolic pressures that exceeded baseline and 

post-ROSC pressures. This has not been observed with other resuscitation protocols. The 

etiology is unknown. The improvement in hemodynamics reduced the need for 

epinephrine. Epinephrine can reduce microcirculatory blood flow including cerebral 

perfusion (169) while also increasing myocardial oxygen demand (170) and ventricular 

ectopy (171). Therefore, reducing epinephrine use may provide additional benefits to post-

resuscitation cardiac and neurologic function. 

 Diastolic blood pressure also increased to baseline levels with Bundle therapy which 

likely improved cardiac function by increasing CPP. This may contribute to the normal 

post-ROSC LVEF and lower biomarkers of cardiac ischemia observed in Bundle animals. 

 Improved hemodynamics are unlikely to account for all benefits observed with 

Bundle therapy, as ischemic postconditioning, sevoflurane, and P188 are known to have 

effects on cellular processes including membrane stability and mitochondrial function. 

Ischemic postconditioning is believed to protect mitochondria from the effects of 

prolonged ischemia by inhibiting the opening of the mitochondrial permeability transition 

pore which is known to trigger apoptosis in the setting of ischemia and reperfusion (138–
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141). Improved myocardial function has been observed when ischemic postconditioning 

was used in the setting of myocardial infarction and cardiac arrest (74,75,143). Improved 

neurologic function has also been observed with use of ischemic postconditioning in the 

setting of ischemic stroke (142) and more recently in global ischemia such as that 

experienced during cardiac arrest (13,74,75). 

 Sevoflurane has been shown to confer endothelial protection by reducing leukocyte 

activation while also affecting vascular tone (172). Though the specific mechanisms 

remain unclear, sevoflurane has previously been shown to improve myocardial function, 

prevent apoptosis, and reduce cytokine production post-cardiac arrest (112). 

 The mechanism of P188 in cardiac arrest is entirely untested. P188 is hypothesized 

to fill ischemia-induced pores in the plasmamembrane (166). This may prevent unregulated 

exchange of ions between the extracellular and intracellular compartments thereby 

preventing cellular injury and apoptosis (173,174). P188 has been shown to protect neurons 

(175) and skeletal muscle (176,177) against ischemia/reperfusion injury. It also preserves 

blood-brain barrier integrity during traumatic brain injury thereby reducing brain edema 

and neuronal apoptosis (178). P188 has shown mixed results during myocardial infarction 

in humans. Schaer et al. (179) showed reduced infarct size, increased LV function, and 

reduced in-hospital re-infarction rates when P188 was infused immediately after 

thrombolytic therapy. However, a large follow-up study showed no benefit of P188 

following acute myocardial infarction (180). This discrepancy is not fully understood but 

it may relate to proximity of the infusion to reperfusion. 

 Studies of acute myocardial infarction noted that P188 worsened renal function 

acutely in up to 4% of patients (180). It has been hypothesized that creatinine, a marker of 

glomerular filtration rate, is artificially increased by P188 as they compete for excretion in 

the kidneys. However, renal function in this study, indicated by creatinine levels, was 

significantly improved in the pigs receiving Bundle therapy including P188. This 

improvement may be due to improved hemodynamics leading to improved renal perfusion. 

 This study has important limitations. The role of individual components of Bundle 

therapy cannot be determined. The Bundle strategy was chosen based on the observation 

that treatment of complex pathology (e.g. heart failure, acute myocardial infarction, and 
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stroke) often requires multiple agents. Agents with known or probable benefits were chosen 

for inclusion in Bundle therapy with a preference for those that may be integrated into 

standard advanced life support. However, further study will now be necessary to more fully 

understand the contribution and mechanism of each individual constituent. In addition, the 

dose-response relationships are unknown for the individual components. The specific 

regimen of stutter CPR was chosen based on prior published experience (74). The doses of 

sevoflurane and P188 were extrapolated from animal studies and human trials. Further 

dose-response trials will be necessary to understand the pharmacokinetics and maximal 

effect achievable in the setting of cardiac arrest. Similarly, further study is necessary to 

understand the role of these agents in cardiac arrests of very long or short duration, as the 

benefit of one or more of these therapies may depend on the duration of ischemia. Lastly, 

these studies are inherently limited by use of a porcine model. The benefits for humans 

cannot be certain until human trials are conducted. 

 

6. Conclusion 

 Bundle therapy, combining stutter ACD CPR, an ITD, sevoflurane, and P188, 

significantly improved neurologic and cardiac function in a porcine model including 17 

min of untreated ventricular fibrillation cardiac arrest. Compared to Control animals, 

animals receiving Bundle therapy demonstrated significant improvement in hemodynamics 

during CPR, reduction in biomarkers of cardiac ischemia, normalization of ejection 

fraction, and improved 48 h survival with favorable neurologic function. 
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Table 3-2.1 Serum biomarkers assessed 4 h post-ROSC. Values are shown as mean ± 
SEM. Asterisks indicate statistical significance (p < 0.05). CK-MB = creatine kinase MB; 
TpnI = troponin I; Tbili = total bilirubin; ALT = alanine aminotransferase; AST = aspartate 
aminotransferase.  
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Figure. 3-2.1. Bundle therapy and Control protocols with associated representative 

hemodynamic tracings. Therapy was initiated after 17 min of untreated ventricular 

fibrillation(VF). (A) Control therapy included active compression decompression CPR, 

application of an impedance threshold device (ACD CPR + ITD), epinephrine (Epi), and 

defibrillation (Defib). Return of spontaneous circulation (ROSC) was not achieved after 

the initial defibrillation in this representative study leading to continuation of the 

resuscitation. (B)The Bundle therapy protocol included sevoflurane (Sevo), poloxamer 188 

(P188), epinephrine (Epi), stutter ACD CPR + ITD, and defibrillation (Defib). ROSC is 

achieved after a single defibrillation in this representative study. 
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Fig. 3-2.2. Hemodynamic monitoring during resuscitation. Bundle (BND; n = 12) and 

Control (n = 8) therapy are compared. (A) Aortic systolic blood pressure measured at 

baseline (BL), throughout the resuscitation, and after return of spontaneous circulation 

(ROSC) was achieved. (B) Aortic diastolic blood pressure measured during all phases of 

resuscitation. (C) Coronary perfusion pressure is shown as measured during all phases of 

resuscitation. Error bars represent SEM. Asterisk (*) indicates statistical significance (p < 

0.05).  
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Figure 3-2.3. Epinephrine and defibrillation requirements during resuscitation. 

Animals receiving Bundle (BND; n = 12) and Control (n = 8) therapy are shown. (A) The 

mean of the total epinephrine (mg) required during resuscitation. (B) The mean number of 

shocks delivered during resuscitation. Error bars indicate SEM. p values are as indicated. 
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Figure 3-2.4. Serial measurement of the left ventricular ejection fraction (LVEF) for 

animals receiving Bundle versus Control therapy as determined by 

echocardiography. All animals that remained free of major adverse events were assessed 

with echocardiography at the time points noted (BND n = 12 and Control n = 4). Mean 

LVEF was compared at each time point with asterisks noting statistically significant 

differences with p-values as indicated. 
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Figure 3-2.5. Clinical outcomes. (A) Kaplan–Meier curve demonstrating freedom from 

major adverse events during the survival study including baseline, ROSC, and 24and 48 h. 

Animals receiving Bundle (BND; n = 12) and Control (n = 8) therapy are compared. (B) 

Cerebral performance category score for each animal that remained free from major 

adverse events at 24 or 48 h as indicated (1 = normal, 2 = mild deficit, 3 = moderate deficit 

but conscious, 4 = coma). Mean CPC scores are compared with p-values as indicated. NS 

indicates that statistical significance was not reached. 
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Figure 3-2.6. Survival at all stages of the study. Flow chart describing the survival of 

animals at the time of randomization, ROSC, 24 and 48 h. 
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Synopsis 

Background: Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in 

severe injury to the heart and brain and an overall survival of less than 10 percent. 

Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following 

prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA 

and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic 

postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to 

improve cardiac function and neurologically favorable outcomes after fifteen minutes of 

CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged 

CA and can be rescued with IPC during CPR (IPC-CPR). 

Methods: 63 swine were randomized to no ischemia (Naïve), nineteen minutes of 

ventricular fibrillation (VF) CA without CPR (Untreated VF), or fifteen minutes of CA 

with 4 minutes of reperfusion with either standard CPR (S-CPR) or IPC-CPR. 

Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP 

synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) 

production was quantified from fresh frozen heart and brain tissue.  

Results: Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction 

concurrent with decreased mitochondrial respiratory coupling and CRC, as well as 

decreased cardiac ATP synthesis. Compared to VF CA, S-CPR attenuated brain ROS 

overproduction but had no other effect on mitochondrial function in the heart or brain. 

Compared to VF CA, IPC-CPR improved cardiac mitochondrial respiratory coupling and 

rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. 

Conclusions: Fifteen minutes of VF CA results in diminished mitochondrial respiration, 

ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR 

attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4 

minutes of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce 

cardiac injury. However, reperfusion with both CPR methods had limited effect on 

mitochondrial function in the brain, emphasizing an important physiological divergence in 

post-arrest recovery between those two vital organs. 

 



 

 70 

INTRODUCTION 

 Out-of-hospital cardiac arrest (CA) afflicts 395,000 people each year in the United 

States (181). On average, less than 6 percent survive, resulting in more than 360,000 deaths 

per year and an enormous public health burden (2). In the past five decades, improvements 

to cardiopulmonary resuscitation (CPR) and systems-based interventions have resulted in 

only modest improvements to outcomes following prolonged CA. Novel resuscitation 

strategies are necessary to further improve survival. 

 One such novel strategy is ischemic postconditioning (IPC), a therapy delivered upon 

reperfusion after prolonged ischemia to mitigate cellular injury caused by ischemia and 

reperfusion (IR) (11,182). IPC is accomplished using several brief interruptions in blood 

flow at the onset of reperfusion. Our laboratory applied IPC during CPR in a porcine model 

of prolonged whole-body ischemia during ventricular fibrillation (VF) CA. Pauses in chest 

compressions during the first 2 minutes of CPR improved left ventricular ejection fraction 

(LVEF) following return of spontaneous circulation (ROSC) and increased neurologically 

favorable survival after 48 hours (74,75,183). These data demonstrate that the method of 

initial reperfusion with CPR has an impact on the extent of injury after prolonged cardiac 

arrest. 

 Mitochondria are implicated in the pathophysiology of IR injury and also provide a 

nexus for integrating the protective molecular pathways activated by IPC (184,17,18). 

Therefore, we sought to investigate the effect that VF, CPR, and IPC have on mitochondrial 

function in the heart and brain. We hypothesized that mitochondrial function: 1) is 

significantly depressed after prolonged cardiac arrest, and 2) can be improved with IPC at 

the initiation of CPR (IPC-CPR). Mitochondrial responses to ischemia, CPR, and IPC were 

characterized without attempting defibrillations to eliminate confounders such as success 

and timing of ROSC, refractory VF, number of defibrillations, antiarrhythmics, and 

vasopressor support. Understanding the early physiological consequences of the key 

components of cardiac arrest and resuscitation will have significant impact on the direction 

and refinement of future therapies. 
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METHODS 

 All studies were performed with approval from the Institutional Animal Care and 

Use Committee of the Minneapolis Medical Research Foundation and the University of 

Minnesota in accordance with the National Research Council’s Guidelines for the Care and 

Use of Laboratory Animals (185). Animal preparation has been described previously (75). 

See Supplement for full description of methods.  

Experimental Protocols 

 Following surgical preparation and baseline measurements, animals were 

randomized to one of 4 groups (Naïve, Untreated VF, S-CPR, and IPC-CPR) and further 

to either heart or brain isolation (Fig 4-1.1). Twelve animals received no ischemia (Naïve, 

heart isolation [n = 7], brain isolation [n = 5]). In the 3 ischemic groups, VF was induced 

via a pacing wire positioned in the right ventricle. During VF, ventilation and temperature 

management were discontinued. Mitochondria were isolated 19 min after initiation of VF 

in all 3 ischemic groups. To establish the effect of prolonged untreated VF CA, 13 animals 

were randomized to receive 19 min of VF CA without CPR (Untreated VF, heart [n = 8], 

brain [n = 5]). To establish the effect of reperfusion by type of CPR on mitochondrial 

function, 38 animals were randomized to receive 15 min of untreated VF arrest followed 

by either 4 min of standard CPR (S-CPR, heart [n = 11], brain [n = 8]) or 4 min of IPC-

CPR (heart [n = 11], brain [n = 8]). Epinephrine (0.125 µg/kg) was administered after the 

3rd minute of CPR. In the IPC-CPR group, IPC was administered via 3 cycles of 20 seconds 

compressions/ventilations followed by 20 seconds pause in compressions/ventilations 

during the first 2 minutes of CPR. Both CPR groups received asynchronous ventilations at 

10 breaths/min and 10 ml/kg, and 100 chest compressions/min with a target depth of 20% 

AP diameter and 50% duty cycle. Compressions were performed with an automated, 

custom-built, CPR piston device (Caztek Engineering, St. Paul, MN). Coronary perfusion 

pressure (CPP), the gradient between aortic and right atrial blood pressures during chest 

decompression, was calculated as an approximation of coronary blood flow and a measure 

of CPR quality. At the end of the 4th minute of CPR, tissue was sampled for mitochondria 

isolation. No defibrillations were attempted. 

 At the conclusion of the experimental protocol, mitochondria were isolated at 4°C 
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via differential centrifugation from the left ventricle of the heart and brain as described 

previously (186,187). State 3 (S3) and State 4 (S4) respiration, the rate of ATP synthesis, 

and calcium retention capacity (CRC) were quantified as previously described (186). The 

respiratory control index (RCI) was calculated as the ratio of S3 to S4 respiration. 

Production of reactive oxygen species (ROS) was assessed with electron spin resonance 

(ESR) fresh frozen heart and brain tissue. 

Statistics 

 Values are expressed as mean ± standard error of the mean. ANOVA with Newman-

Keuls posthoc test was used for comparisons between treatments. Unpaired two-tailed t-

tests were used to compare hemodynamics during CPR between S-CPR and IPC-CPR. The 

null-hypothesis was rejected for p < 0.05. 

 

RESULTS 

 Baseline hemodynamic parameters did not differ between Naïve, Untreated VF, S-

CPR, or IPC-CPR groups (Table 1). As expected, pauses in chest compressions during 

IPC-CPR resulted in a lower average CPP during each pause compared to S-CPR (Fig 4-

1.2a). However, IPC-CPR resulted in a higher CPP during the 4th minute of CPR after 

administration of epinephrine. Average CPP during CPR did not differ between S-CPR and 

IPC-CPR (Fig 4-1.2b).  

Mitochondrial Function 

 Mitochondria were isolated from the heart and brain to quantify S3 and S4 

respiration, RCI, rate of ATP synthesis, and CRC. ROS production was quantified in fresh 

frozen heart and brain tissue. 

 

Prolonged Ischemia (Untreated VF) 

 a. Heart. Compared to Naïve, Untreated VF resulted in a significant decrease in RCI 

with both complex I and complex II substrates (Fig 4-1.3a,b). The decrease in RCI was 

predominantly driven by a rise in S4 respiration indicating uncoupling of oxidative 

phosphorylation (Fig 4-1.3e,f). The rate of ATP synthesis after Untreated VF was less than 

50% of Naïve hearts, consistent with the respiration profile described above (Fig 4-1.3g,h). 
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Untreated VF resulted in decreased CRC with complex II substrates compared to Naïve 

(Figure 4-1.3j) and caused a significant increase in ROS production compared to Naïve 

hearts (Fig 4-1.5a). 

 b. Brain. Compared to Naïve, Untreated VF significantly decreased RCI for complex 

II substrates (Fig 4-1.4b). Decreased complex II RCI was predominantly driven by a 

substantial decrease in S3 respiration with no change in S4 respiration (Fig 4-1.4d,f), 

whereas complex I stimulated S3 and S4 respiration decreased proportionally (Fig 4-

1.4c,e). The rate of ATP synthesis was unaffected by Untreated VF compared to Naïve 

(Fig 4-1.4g,h). Untreated VF resulted in decreased CRC with both complex I and complex 

II substrates compared to Naïve (Fig 4-1.4i,j). ROS production significantly increased after 

Untreated VF compared to Naïve brain (Fig 4-1.15b). 

 

 Reperfusion with S-CPR 

 a. Heart. Compared to Untreated VF, 4 minutes of reperfusion with S-CPR lead to 

a progressive increase of RCI, particularly for complex II substrates, predominantly driven 

by increased S3 respiration while S4 respiration remained unchanged (Fig 4-1.3a-f). 

However, RCI remained decreased after reperfusion with S-CPR compared to Naïve due 

primarily to increased S4 respiration. S-CPR resulted in a non-significant increase in the 

rate of ATP synthesis compared to Untreated VF (Fig 4-1.3g,h). S-CPR did not affect CRC 

compared to Untreated VF (Fig 4-1.3i,j). ROS production in the myocardium was similar 

between S-CPR and Untreated VF and remained elevated compared to Naïve (Fig 4-1.5a). 

 b. Brain. Four minutes of reperfusion with S-CPR did not alter mitochondrial 

respiration, ATP synthesis, or CRC compared to Untreated VF (Fig 4-1.4). S-CPR 

significantly decreased ROS overproduction in the brain compared to Untreated VF to a 

level that remained elevated compared to Naïve treatment (Fig 4-1.5b). 

 

 Reperfusion with IPC-CPR 

 a. Heart. Compared to Untreated VF and S-CPR, 4 minutes of reperfusion with IPC 

significantly increased RCI for both complexes I and II to values similar to Naïve (Fig 4-

1.3a,b). Increased RCI was a result of significantly decreased S4 respiration combined with 
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non-significant increased S3 respiration, indicating tighter coupling of oxidative 

phosphorylation (Fig 4-1.3c-f). The rate of ATP synthesis normalized to the level of Naïve 

hearts and was significantly increased compared to Untreated VF (Fig 4-1.3g,h). IPC-CPR 

significantly improved CRC with complex I substrates compared to Untreated VF (Fig 4-

1.3i) and decreased ROS production in the myocardium compared to both Untreated VF 

and S-CPR (Fig 4-1.5a). 

 b. Brain. Four minutes of reperfusion with IPC-CPR did not alter mitochondrial 

respiration, ATP synthesis, or CRC compared to Untreated VF (Fig 4-1.4). IPC-CPR 

significantly decreased ROS production in the brain compared to Untreated VF and S-CPR 

to a level that remained elevated compared to Naïve treatment (Fig 4-1.5b). 

 

DISCUSSION 

 To our knowledge, this is the first study investigating the effect of IPC during high-

quality CPR on mitochondrial function after prolonged CA in swine. To determine their 

role in the early pathogenesis and recovery after prolonged CA, mitochondrial responses 

to whole-body ischemia and to CPR reperfusion with and without IPC were characterized 

during ongoing CPR to eliminate the confounding impact of defibrillation attempts and 

independent of success or timing of ROSC. After 4 minutes of reperfusion, IPC-CPR 

attenuated mitochondrial dysfunction compared to Untreated VF and S-CPR. Untreated 

VF resulted in dysfunctional mitochondrial respiration, CRC, and ROS production in the 

heart and brain, as well as decreased cardiac mitochondrial ATP synthesis. S-CPR partially 

restored cardiac mitochondrial respiration and ATP synthesis, but was insufficient to 

decrease ROS overproduction. In contrast, IPC-CPR normalized cardiac mitochondrial 

respiration and ATP synthesis to non-ischemic levels. ROS overproduction in the brain 

decreased with S-CPR and was further attenuated with IPC-CPR, but brain mitochondrial 

function was otherwise unaffected by reperfusion with either method of CPR. 

 RCI quantifies the coupling of oxygen consumption to ATP synthesis during the 

primary mitochondrial function of oxidative phosphorylation. Untreated VF decreased RCI 

with both complex I and complex II substrates in cardiac mitochondria, consistent with 

findings that respiratory dysfunction impedes cardiac recovery after prolonged ischemia 
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(188,189). Compared to Untreated VF, reperfusion with S-CPR increased cardiac 

mitochondrial RCI with both complex I and complex II substrates. IPC-CPR further 

increased cardiac mitochondrial RCI compared to S-CPR, demonstrating a tighter coupling 

of oxygen consumption to ATP synthesis. The increase in cardiac mitochondrial RCI with 

IPC-CPR occurred in tandem with an increase in the rate of ATP synthesis. Maintenance 

of cardiac bioenergetics enhances the probability of successful resuscitation (190–192). 

Tighter coupling of oxidative phosphorylation with IPC-CPR may be critically important 

for efficient oxygen utilization during the hypoxic conditions of CA and hypoperfusion 

with CPR, and may thus minimize myocardial damage and preserve LVEF as previously 

observed (74,75).  

 Increased intracellular and mitochondrial calcium concentrations promote open 

conformation of the mPTP (193). Early, prolonged opening of the mPTP during IR is 

proposed to be a fundamental determinant of cell death (17,194). CRC quantifies the 

amount of calcium-mediated stress necessary to induce mPTP opening (195).  Compared 

to Naïve animals, Untreated VF decreased CRC with complex II substrates in mitochondria 

isolated from the heart. Decreased CRC may be due to ROS overproduction (196,197) or 

may reflect increased mitochondrial calcium levels in vivo during Untreated VF.  

Reperfusion with S-CPR did not affect CRC, whereas IPC-CPR increased CRC with 

complex I substrates compared to Untreated VF. Decreased ROS overproduction or 

decreased in vivo calcium loading could contribute to improved calcium stress tolerance 

with IPC-CPR, though the identity of this mechanism remains unknown from these studies. 

 ESR intensity of oxidized aconitase is a marker of mitochondrial ROS production. 

Oxidized aconitase is inactive (198), potentiating a decreased flux through the TCA cycle. 

Untreated VF and S-CPR showed a significantly increased oxidized aconitase signal in the 

heart compared to Naïve. IPC-CPR dramatically reduced cardiac mitochondrial ROS 

production compared to Untreated VF and S-CPR. Attenuation of ROS overproduction 

improves cardiac contractility in isolated hearts (199) and could be a mechanism through 

which IPC improves LVEF after prolonged cardiac arrest (74,75). 

 In a previous study of cardiac and cerebral recovery in a porcine model of prolonged 

cardiac arrest, IPC-CPR was shown to improve post-resuscitation LVEF and decreased 
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incidence of adverse events compared to S-CPR (74,75). In the present study, cardiac 

mitochondrial respiration decreased dynamically during Untreated VF and S-CPR 

compared to Naïve and could be rescued early during resuscitation with IPC-CPR. Taken 

together, these data suggest a positive association between improved mitochondrial 

function during CPR and post-ROSC cardiac function. These data indicate that CPR is a 

therapeutic opportunity to modify the severity of cardiac IR injury in agreement with 

evidence from myocardial infarction that postconditioning therapies applied at the onset of 

reperfusion confer protection to the myocardium (200,201). S-CPR alone also trended 

toward an increase in both RCI and rate of ATP synthesis compared to Untreated VF, 

corroborating the observation that perfusion with CPR improves probability of ROSC after 

prolonged cardiac arrest (202). Yeh et al. similarly observed preserved cardiac 

mitochondrial function and viability after reperfusion with CPR compared to time-

controlled untreated CA (203). Thus, despite evidence of IR injury as demonstrated by the 

attenuation of mitochondrial dysfunction with IPC-CPR, establishing blood flow with CPR 

after prolonged CA should remain a primary goal of resuscitation.  

 In contrast to the reperfusion response of cardiac mitochondria, brain mitochondrial 

function declined during Untreated VF and did not respond within the first 4 minutes of 

reperfusion with S-CPR or IPC-CPR. S-CPR decreased ROS overproduction in the brain 

compared to Untreated VF, while IPC-CPR further decreased ROS overproduction 

compared to S-CPR. Untreated VF decreased RCI with complex II substrates and severely 

depressed CRC with both complex I and complex II substrates in mitochondria isolated 

from the brain. The rate of ATP synthesis was not significantly affected by treatment. 

Reperfusion with S-CPR had no effect on CRC in the heart or the brain compared to 

Untreated VF. The steep and irreversible decline in CRC may be indicative of increased 

sensitivity to mPTP opening specific to neuronal injury and calcium overload during IR 

(204–206). 

 In previous studies, IPC-CPR improved neurologically favorable survival while 

decreasing neuronal cell death after prolonged cardiac arrest (74,75). IPC also reduced cell 

death and infarct size in models of cerebral ischemia (142,207). In the present 

investigation, IPC-CPR did not alter cerebral mitochondrial function compared to 
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Untreated VF or S-CPR early during resuscitation. This dissociation of early mitochondrial 

function and neurologic outcome may indicate that IPC-CPR does not confer increased 

neurologically favorable recovery via improvements in mitochondrial function during 

reperfusion with CPR. Alternatively, these findings may indicate that cerebral recovery 

does not occur as early as 4 minutes after the onset of reperfusion. In a recent study 

characterizing cerebral recovery from asphyxial arrest in swine, mitochondrial respiration 

remained depressed even after ROSC and 4 hours of recovery (208). Previous experiments 

demonstrated favorable neurologic outcomes after prolonged CA that continued to improve 

24 hours post-ROSC, emphasizing a delayed period of neurologic recovery that may extend 

well beyond the duration of this investigation (74,75,183). 

 Heart and brain mitochondrial responses differed dramatically after reperfusion with 

CPR. Compared to Untreated VF, S-CPR improved coupling of mitochondrial respiration 

in the heart but had no effect in the brain. S-CPR decreased ROS overproduction compared 

to Untreated VF in the brain but not in the heart. IPC-CPR improved cardiac mitochondrial 

RCI and rate of ATP synthesis compared to Untreated VF and S-CPR, but its effect was 

absent in brain mitochondria. Thus, reperfusion with both CPR methods incrementally 

improved cardiac mitochondrial performance but had limited effect on mitochondrial 

function in the brain. This physiological divergence in acute post-arrest recovery may be 

critical for targeted treatment of these two vital organs. 

 CPP is an estimate of coronary blood flow. As expected, IPC-CPR decreased CPP 

during each 20-second pause compared to S-CPR. After completion of the controlled 

pauses and administration of epinephrine, IPC-CPR increased CPP during the 4th minute 

of CPR. A threshold perfusion pressure is hypothesized to be critical for predicting 

successful resuscitation (209). Thus, increased CPP in the 4th minute may be a potential 

mechanism for improved cardiac mitochondrial function during IPC-CPR. Sensitivity to 

exogenous epinephrine may indicate that IPC-CPR protects vascular endothelium and 

smooth muscle. Coronary reflow and endothelial vasodilator response is attenuated after 

ischemia and reperfusion (11,210), and this response can be salvaged with IPC (211). 

During prolonged CA, increased revascularization and systemic vasoconstriction may be 

vital mechanisms through which IPC-CPR improves resuscitation success. 
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 Several limitations to this study need to be acknowledged. The mechanism by which 

IPC-CPR increased cardiac mitochondrial function was not determined. IPC-CPR 

increased perfusion pressure during the 4th minute of CPR. Mitochondrial function may 

have improved as a direct result of obtaining a critical perfusion pressure threshold. 

Equivalent CPPs could not be generated in the control group to test the effect of blood flow 

on mitochondrial function. The high CPP obtained in both CPR groups and the lack of 

underlying coronary disease represent ideal CPR conditions that may limit the clinical 

translation of these outcomes. Intermittent compressions during IPC-CPR may contribute 

to variations in chest compliance and thus improve the mechanics of flow generation. The 

effect of IPC-CPR on thoracic compliance, endothelial function, and coronary flow will be 

the subject of future investigations. Additionally, the acute decrease in mitochondrial 

function described here, and its prevention by IPC-CPR, may be only a portion of the 

pathogenesis of prolonged cardiac arrest. Reperfusion injury can take hours or days to fully 

manifest. The current data were obtained only 4 minutes after the onset of reperfusion and 

prior to ROSC to eliminate confounders such as defibrillation attempts, arrhythmias, or 

refractory VF. Injury may continue to accrue beyond this time, thus contributing to the low 

incidences of neurologically favorable survival even in patients who experience a ROSC.  

 

CONCLUSIONS 

 Prolonged untreated CA induced ROS overproduction concurrent with decreased 

mitochondrial respiratory coupling and CRC in the heart and the brain. Additionally, 

cardiac mitochondrial ATP synthesis was depressed. S-CPR improved coupling of cardiac 

mitochondrial respiration, and partially attenuated ROS overproduction in the brain. After 

4 minutes of reperfusion, IPC-CPR improved cardiac mitochondrial function as indicated 

by increased respiratory coupling and rate of ATP synthesis, as well as decreased ROS 

overproduction. These results indicate potential mechanisms through which IPC-CPR 

improves cardiac performance following prolonged cardiac arrest. In contrast, IPC-CPR 

decreased ROS production but did not otherwise improve mitochondrial function in the 

brain, emphasizing an important physiological divergence in post-arrest recovery between 

these two vital organs.    
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Table 4-1.1. Baseline parameters. There were no differences in hemodynamic or ABG 

values between treatment groups prior to ischemia. MAP, mean arterial pressure; RAP, 

right atrial pressure. Data are shown as mean ± SEM. 
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Figure 4-1.1. Experimental Design. Animals were randomized to receive no ischemia 

(Naïve) or cardiac arrest by ventricular fibrillation (VF), and cardiac arrest groups were 

further randomized to receive no CPR (Untreated VF), standard cardiopulmonary 

resuscitation (S-CPR), or ischemic postconditioning at the initiation of CPR (IPC-CPR). 

After surgical preparation in Naïve or 19 min after induction of VF in ischemic groups, the 

heart or brain was harvested for isolation of mitochondria via differential centrifugation.  
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Figure 4-1.2. Coronary perfusion pressure (CPP) during cardiopulmonary 

resuscitation (CPR) with and without ischemic postconditioning (IPC). IPC was 

achieved via 3 cycles of 20-seconds compressions followed by 20 seconds pause during 

the first 2 minutes of CPR. IPC-CPR increased CPP compared to S-CPR following an 

intravenous bolus of epinephrine (0.125 µg/kg) administered at the start of the 4th minute 

of CPR (a). The 4-minute CPP average did not differ between groups (b). Data are shown 

as mean ± SEM. Data from the same time point were compared across treatment with 

unpaired t-test, * indicates p < 0.05. 
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Figure 4-1.3. Cardiac mitochondrial function tests. 
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Figure 4-1.3. Cardiac mitochondrial function tests. Function tests were assessed with 

complex I substrates pyruvate and malate (left column) or complex II substrate succinate 

plus complex I inhibitor rotenone (right column). RCI (a, b) was calculated as the ratio of 

State 3 (S3; c, d) to State 4 (S4; e, f) respiration. RCI decreased during Untreated VF 

compared to Naïve primarily due to increased S4 respiration. IPC-CPR increased RCI 

compared to Untreated VF and S-CPR mediated by increased S3 and decreased S4 

respiration. The rate of ATP synthesis decreased during Untreated VF compared to Naïve 

and was recovered with IPC-CPR (g, h). CRC increased with IPC-CPR compared to 

Untreated VF in the presence of complex I substrates (i), whereas CRC decreased in all 

ischemic groups compared to Naïve in the presence of complex II substrates (j). Data are 

shown as mean ± SEM brackets indicate p < 0.05 between groups. 
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Figure 4-1.4. Cerebral mitochondrial function tests. 
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Figure 4-1.4. Cerebral mitochondrial function tests. Function tests were assessed with 

complex I substrates pyruvate and malate (left column) or complex II substrate succinate 

plus complex I inhibitor rotenone (right column). RCI (a, b) was calculated as the ratio of 

State 3 (S3; c, d) to State 4 (S4; e, f) respiration. Complex I RCI was unaffected by 

treatment due to proportional decreases in S3 and S4 respiration in all ischemic groups. 

Complex II RCI decreased in all ischemic groups compared to Naïve due to decreased S3 

respiration. The rate of ATP synthesis was unchanged between treatments (g, h). CRC 

decreased in all ischemic groups compared to Naïve (i, j).  Data are shown as mean ± SEM; 

brackets indicate p < 0.05 between groups.  
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Figure 4-1.5. ESR spectra from fresh-frozen heart and brain tissue. Aconitase radical 

intensity for cardiac (a) and brain (b) samples. Untreated VF increased oxidized aconitase 

compared to Naïve treatment. Postconditioning with IPC-CPR decreased aconitase ROS 

production from cardiac and brain biopsies taken during the 4th minute of CPR compared 

to S-CPR. Data are shown as mean ± SEM; brackets indicate p < 0.05 between groups.  
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SUPPLEMENTAL METHODS 

Animal Preparation 

 Female domestic crossbreed swine weighing 42.2±0.4 kg were sedated with 25 

mg/kg ketamine IM. Animals were subsequently intubated, positive-pressure ventilated 

with room air (Dräger 4A, Narkomed, Telford, PA), and anesthetized with isoflurane (1.0-

2.0 Vol%). Tidal volume (8-12 ml kg-1) and FiO2 were administered to maintain end-tidal 

CO2 (ETCO2) between 38-42 mmHg and O2 saturation ≥ 90% (CO2SMO Plus, Novametrix 

Systems, Wallingford, CT). Esophageal temperature was measured and maintained via a 

heating blanket (Bair Hugger, Augustine Medical, Eden Prairie, MN) at 37±0.5 °C 

throughout surgical preparation.  

 The left femoral artery and right external jugular vein were cannulated 

percutaneously with 8 French sheaths and micromanometer tipped catheters (Mikro-Tip 

Transducer, Millar Instruments, Houston, TX) were inserted to continuously measure 

aortic and right atrial pressures, respectively. Echocardiograms (ECG), ETCO2, 

transcutaneous O2 saturation, and temperature were continually recorded (Biopac Systems, 

Goleta, CA and LabView, National Instruments, Austin, TX). An IV bolus of heparin 

(5000 units) was administered once catheters were in place. An arterial blood gas was 

drawn after surgical preparation (Instrumentation Laboratory, Bedford, MA). 

 

Mitochondrial Isolation 

 At the conclusion of the experimental protocol, mitochondria were isolated at 4 °C 

via differential centrifugation from the left ventricle of the heart and brain as described 

previously (186,187). All reagents were purchased from Sigma (St. Louis, MO).  

 Cardiac mitochondria: The heart was removed via lateral thoracotomy immediately 

after chest compression were discontinued. Three g of left ventricular tissue was placed in 

ice-cold isolation buffer (200 mmol mannitol, 50 mmol sucrose, 5 mmol KH2PO4, 5 mmol 

MOPS, 1 mmol EGTA, 0.1% BSA, pH adjusted with KOH to 7.15), minced, and 

homogenized in the presence of 5 U  ml-1 Bacillus Licheniformis. The suspension was 

centrifuged for 10 min at 8,000 g. The pellet was resuspended in 25 ml isolation buffer, 

followed by centrifugation for 10 min at 750 g. The resulting supernatant was centrifuged 
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for 10 min at 8,000 g, and the pellet resuspended in 800 µl isolation buffer and stored on 

ice. Protein concentration was determined via the Bradford method (212). 

 Brain mitochondria: The brain was removed while the animal was supine with 

ongoing chest compressions to maintain cerebral perfusion. An incision was made in the 

scalp and the skull was removed with a bone saw (810 Autopsy Saw, Stryker, Kalamazoo, 

MI). The whole brain was removed and placed in ice-cold saline. Both hippocampi and the 

cerebellar vermis were combined with parietal cortex to a total of 8 g, representing a 

globally distributed sample of brain comprising regions sensitive to ischemia and required 

for executive function. This combination was placed in ice-cold isolation buffer, minced, 

and homogenized via Dounce-style glass homogenizer (885300-0100, Kimble Chase, 

Rockwood, TN). The suspension was centrifuged for 3 min at 1,330 g. The supernatant 

was saved, and the pellet was suspended in isolation buffer and spun at 1,330 g for 3 min. 

The resulting supernatants were combined and spun for 10 min at 21,000 g. The pellet was 

suspended in isolation buffer containing 15% Percoll (GE Healthcare Bio-Sciences, 

Pittsburgh, PA). This solution was layered on top of a Percoll density gradient containing 

40% and 24% Percoll in isolation buffer. The gradient was spun at 30,700 g for 9 min to 

isolate mitochondria from synaptosomes. The mitochondrial fraction was identified as the 

fraction between the 24% and 40% Percoll, and was twice suspended in isolation buffer 

and spun at 16,900 g and 6,900 g for 10 min each to remove excess Percoll. The resulting 

pellet was resuspended in 400 µl isolation buffer. Protein concentration was determined 

via the Bradford method (212). 

 

Mitochondrial Function Tests 

 Respiration: Experiments were conducted at 25 °C with mitochondria suspended (0.5 

mg ml-1) in experimental buffer (130 mmol KCl, 5 mmol K2HPO4, 5 mmol MOPS, 0.1% 

BSA, pH adjusted to 7.15 with KOH). Mitochondrial O2 consumption was measured with 

a Clark-type O2 electrode (Model 1302, Strathkelvin Instruments, North Lanarkshire, 

Scotland) in a water-jacketed 550-µl chamber (Model MT200A, Strathkelvin Instruments) 

monitored by an O2 meter (Model 782, Strathkelvin Instruments). State (S) 2 respiration 

was initiated 60 s after sealing the chamber by adding 10 mM of the complex I substrates 



 

 90 

pyruvate and malate or a combination of 10 mM complex II substrate succinate with 0.5 

µM complex I blocker rotenone. Addition of 250 µM adenosine diphosphate (ADP) at 150 

s initiated S3 respiration, until complete phosphorylation of ADP to ATP led to S4 

respiration (Fig. 4S1a). Chamber O2 concentration in µM was monitored for 60 s after S4 

respiration was achieved or until the O2 concentration was zero. Respiratory control index 

(RCI), a measure of the coupling of oxygen consumption to ATP generation, was 

calculated as the ratio of the rate of S3 to S4 respirations. All individual results are the 

average of duplicate runs. 

 ATP synthesis: The rate of mitochondrial ATP synthesis was determined by 

chemiluminescence (Glomax 20/20, Promega, Madison, WI) utilizing the reaction of 

firefly luciferase and luciferin with ATP. Each reaction contained 30 µM ADP, 10 µg ml-1 

mitochondria, 0.1 mg ml-1 luciferin, and 1.25 µg ml-1 luciferase dissolved in experimental 

buffer. The reaction was measured for 100 s after addition of either 5 mM pyruvate and 

malate or 5 mM succinate. To obtain background activity, each measurement is repeated 

in the presence of ATP synthase inhibitor oligomycin (1 µg ml-1). Data from measurements 

in the presence of oligomycin are subtracted from those obtained in the absence of 

oligomycin. A standard curve was obtained from known ATP concentrations to calculate 

the rate of ATP synthesis. 

 CRC: Mitochondria were suspended (0.5 mg ml-1) in experimental buffer inside a 

cuvette-based spectrofluorometer (QuantaMaster 800, Photon Technology International, 

Edison, NJ) containing 10 mM of the complex I substrates pyruvate and malate or 10 mM 

of the complex II substrate succinate with 0.5 µM of the complex I blocker rotenone (Fig. 

S1b). Extramitochondrial calcium concentration ([Ca2+]em) was monitored using the 

fluorescent probe CaGreen-5N hexapotassium salt (C3737, Life Technologies, Carlsbad, 

CA) at excitation and emission wavelengths of 510 and 531 nm, respectively. After a 1-

min stabilization period, CaCl2 (5 mM) was infused at a rate of 30 µl min-1 until [Ca2+]em 

reached a steady state (equilibrium between Ca2+ infusion and mitochondrial Ca2+ uptake). 

CaCl2 was continuously infused until a rapid increase in [Ca2+]em was observed indicating 

release of mitochondrial Ca2+ from opening of the mitochondrial permeability transition 

pore (mPTP). CRC was quantified as the amount of CaCl2 infused until mPTP opening. 
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Electron Spin Resonance 

 Production of reactive oxygen species (ROS) was assessed with electron spin 

resonance (ESR) in tissue frozen in liquid nitrogen immediately upon harvest. ROS species 

such as superoxide and hydrogen peroxide react with mitochondrial Fe4-S4 clusters 

contributing to aconitase inactivation and resulting in a characteristic aconitase radical with 

g-factor 2.002 (198). Production of ROS was quantified by accumulation of aconitase free 

radical measured by ESR in frozen tissue using quartz Dewar and liquid nitrogen. The ESR 

spectrum of aconitase radical partially overlaps with other radical species. Subtraction of 

background ESR spectra revealed a clear aconitase free radical ESR spectrum (Fig. 4S1g). 

The position of this spectrum (2.002 g-factor), line-width (8 Gauss), and high temperature 

and microwave power dependence confirmed identification as aconitase radical (213).  The 

ESR signals of tissue background bioradicals did not change significantly with treatments 

(Fig. 4S1c-f). ESR spectra were recorded (EMX ESR spectrometer, Bruker Biospin Corp., 

Billerica, MA) with super high Q microwave cavity (Suprasil Nitrogen Dewar Flask, 

Wilmad-Labglass, Vineland, NJ). The ESR settings were as follows: field sweep, 400 

Gauss; microwave frequency, 9.43 GHz; microwave power, 20 milliwatts; modulation 

amplitude, 5 Gauss; sweep time, 80 seconds. 
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Figure 4S1. Mitochondrial function tests. Representative tracings from closed-cell 

respirometry (a), calcium retention capacity (CRC, b), and electron spin resonance (ESR, 

c-f). Respiratory control index was calculated as the ratio of State 3 to State 4 respiration. 

CRC was quantified as the amount of calcium added to the reaction cuvette prior to the 

steepest slope of extramitochondrial calcium fluorescence. The amplitude of oxidized 

aconitase was determined after subtracting background bioradicals from ESR spectra (g). 
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Synopsis 

Introduction: Ischemic postconditioning (IPC) during cardiopulmonary resuscitation (IPC-

CPR) has been shown to increase cardiac and cerebral mitochondrial function prior to 

return of spontaneous circulation (ROSC) compared to standard CPR (S-CPR) in a porcine 

model of ventricular fibrillation (VF) cardiac arrest (CA). IPC-CPR also reduced adverse 

events and improved neurologically favorable survival up to 48 hours after ROSC. 

Objective: We investigated the effect of IPC-CPR after prolonged VF CA on cardiac and 

cerebral mitochondrial function 6 hours after ROSC. 

Methods: Methods have been previously described. Briefly, 24 female swine were 

intubated, anesthetized, and surgically prepared for continuous hemodynamic recording. 

Eight animals received no CA (Naïve, n=8) as a non-ischemic control. The remaining 

animals received 15 minutes of untreated VF CA followed by CPR without (S-CPR, n=8) 

or with IPC (IPC-CPR, n=8). IPC was administered via 3 cycles of 20 seconds 

compressions and 20 seconds pause in chest compressions during the first 2 minutes of 

CPR. After 4 minutes of CPR, defibrillation was attempted. Six hours after ROSC, cardiac 

and cerebral mitochondria were isolated via differential centrifugation for assessment of 

respiration, rate of ATP synthesis, and calcium retention capacity (Fig 4-2.1). 

Results: ROSC was obtained in all animals that received a CA. There were no differences 

in cardiac and cerebral mitochondrial function between Naïve, S-CPR, and IPC-CPR 

treated animals (Fig 4-2.2). 

Conclusions: In a porcine model of prolonged VF CA, cardiac and cerebral mitochondrial 

function normalizes within 6 hours of ROSC. The previously documented reduction in 

adverse events and improvement in survival with IPC-CPR treatment may be mediated by 

acute improvements in cardiac mitochondrial function earlier than 6 hours post-ROSC, or 

by mechanisms independent of mitochondrial function. 
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Figure 4-2.1. Experimental protocol for CPR and six-hour recovery. Animals were 

randomized to receive no ischemia (Naïve), standard CPR (S-CPR), or IPC at the initiation 

of CPR (IPC-CPR). After 4 minutes of CPR, defibrillation was attempted. If return of 

spontaneous circulation was achieved, animals were recovered for 6 hours prior to isolation 

of mitochondria from the heart and brain for function testing.  
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Figure 4-2.2. Cardiac and cerebral mitochondrial function 6 hours after ROSC. 

Cardiac (left two columns) and cerebral (right two columns) mitochondrial function did 

not differ between treatments. Function was assessed with complex I substrates pyruvate 

and malate or complex II substrate succinate plus complex I inhibitor rotenone. RCI = 

respiratory control index calculated as the ratio of State 3 to State 4 respiration; ATP = the 

rate of ATP synthesis; CRC = calcium retention capacity.  Data are shown as mean ± SEM; 

brackets indicate p < 0.05 between groups.   
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Synopsis 

Introduction: Ischemic postconditioning (IPC) has been shown to improve cardiac 

mitochondrial respiration during CPR as well as left ventricular ejection fraction post-

ROSC in a porcine model of prolonged cardiac arrest compared to standard CPR. IPC 

during CPR (IPC-CPR) also increased coronary perfusion pressure (CPP) after bolus IV 

epinephrine. We investigated if increased CPP obtained during resuscitation with IPC-CPR 

is necessary and sufficient to improve cardiac mitochondrial respiration. In Protocol 1, CPP 

during IPC-CPR was decreased to that of standard CPR (S-CPR) by: a) withholding 

epinephrine during CPR, and b) controlling CPP to <30mmHg via shallow chest 

compressions. In Protocol 2, resuscitation with extracorporeal membrane oxygenation 

(ECMO) was implemented to provide high CPP during standard continuous ECMO (S-

ECMO) or with IPC during ECMO (IPC-ECMO). 

Methods: All animals were intubated, anesthetized with isoflurane, and received 15 

minutes of ventricular fibrillation (VF). In Protocol 1, 30 female pigs were randomized to 

receive S-CPR (n=8), IPC-CPR (n=8), IPC without epinephrine (IPC-noEpi, n=6), or IPC 

with controlled CPP (IPC-CTL CPP, n=8). In Protocol 2, 14 female pigs were randomized 

to receive venous-arterial ECMO with continuous flow (S-ECMO, n=7) or with IPC (IPC-

ECMO, n=7). All groups in both protocols, except IPC-noEpi, received 0.5 mg of 

epinephrine at minute 3 of CPR. IPC consisted of 3 cycles of 20 seconds compression / 20 

seconds pause for the first 2 minutes of CPR or ECMO.  Central arterial and venous 

pressures were continuously measured during resuscitation. CPP was calculated as the 

difference between arterial and venous pressure during the decompression phase of CPR 

or continuously during ECMO. Cardiac mitochondria were isolated via differential 

centrifugation 4 minutes after initiation of CPR or ECMO reperfusion. Additionally, a 

Doppler flow probe was surgically placed on the left anterior descending (LAD) coronary 

artery of animals receiving ECMO. Respiration, rate of ATP synthesis, and calcium 

retention capacity (CRC) were measured for complex I (pyruvate+malate) and II 

(succinate+rotenone) substrates. Respiratory control index (RCI) was calculated as the 

ratio of states 3 to 4 respiration. Data were compared between CPR treatment groups with 

ANOVA and between ECMO groups with unpaired, 2-tailed t-test. 
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Results: Protocol 1: CPP during the 4th minute of CPR and complex I RCI were higher in 

the IPC-CPR group compared to all other groups. IPC-CPR also trended toward higher 

complex II RCI compared to S-CPR and IPC-noEpi, but not compared to IPC-CTL CPP. 

CRC was not different between groups. Protocol 2: CPP, LAD coronary blood flow, and 

mitochondrial function did not differ between S-ECMO and IPC-ECMO. 

Conclusion: IPC-CPR with high-quality chest compressions and epinephrine increased 

CPP and cardiac mitochondrial respiration compared to other CPR groups. Resuscitation 

with ECMO provided high CPP similar to IPC-CPR. There were no differences in 

perfusion pressure, coronary flow, or mitochondrial function between S-ECMO and IPC-

ECMO. These findings suggest that elevated CPP during resuscitation is necessary and 

sufficient for salvage of cardiac mitochondrial function after prolonged cardiac arrest. Prior 

observations of improved post-resuscitation organ function and survival conferred by IPC-

CPR may be mediated, in part, by improved hemodynamics during resuscitation. 

 

Introduction 

 Outcomes after out-of-hospital cardiac arrest remain poor despite recent advances in 

care (2). Survival is negatively correlated with time of untreated ischemia, which has led 

to a 3-phase theoretical model for understanding the increasing severe pathophysiology 

during cardiac arrest (214). The model predicts that for cardiac arrests lasting more than 

10 minutes, termed the metabolic phase, reperfusion injury and metabolic derangement are 

principle factors preventing successful resuscitation. Further, the model predicts that 

targeting the underlying pathology of the arrest with the initial resuscitation efforts will 

yield the greatest improvement in outcomes. 

 IPC is a technique of administering short, non-lethal bouts of ischemia during early 

reperfusion after prolonged ischemia to mitigate reperfusion injury (11). When applied at 

the onset of perfusion with CPR, IPC increased CPP after exogenous epinephrine, 

decreased post-ROSC cardiac dysfunction, and increased acute cardiac mitochondrial 

function as well as hemodynamics during resuscitation after exogenous epinephrine 

(74,215).  

 The objective of these studies was to determine if elevated CPP during resuscitation 
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is necessary and sufficient to restore cardiac mitochondrial function following prolonged 

untreated ventricular fibrillation cardiac arrest in a porcine model. 

 

Methods 

 Methods have been described previously (215). Briefly, female Yorkshire domestic 

crossbreed swine were intubated, anesthetized, and prepared for continuous ECG and blood 

pressure monitoring. In Protocol 2, a Doppler flow probe (Transonic Systems, Ithaca, NY) 

was placed around the LAD coronary artery via midline thoracotomy. In both protocols, 

ventricular fibrillation was induced via temporary pacing wire and cardiac arrest was left 

untreated for 15 minutes. CPP was calculated as the difference between arterial and venous 

pressures during the decompression phase of CPR or continuously during ECMO. CPP and 

LAD blood flow were used to determine LAD coronary vascular resistance. IPC was 

administered via 3 cycles of 20 seconds perfusion and 20 seconds pause for the first 2 min 

of CPR or ECMO resuscitation. 

 Protocol 1 - CPR was administered as previously described for S-CPR (n=8) and 

IPC-CPR groups (n=8) (215). The IPC-noEpi group (n=6) did not receive a bolus dose of 

epinephrine during resuscitation. The IPC-CTL CPP group received incomplete chest 

compression depth to target a CPP value of 30 mmHg (Fig 5.1). 

 Protocol 2 – Venous-Arterial ECMO (Maquet Cardiohelp, Rastatt, Germany) 

perfusion was administered via a 21-F venous cannula placed in the inferior venacava at 

the level of the right atrium and a 15-F arterial cannula placed in the femoral artery. 

Animals were randomized to receive S-ECMO (n=7) or IPC-ECMO (n=7). 

 In both protocols, 3 g of left ventricle was obtained after 4 minutes of reperfusion 

and cardiac mitochondria were immediately isolated via differential centrifugation for 

function assays as previously described (215).  

 

Results 

Protocol 1 

 CPP during the 4th minute of CPR was higher in the IPC-CPR group than S-CPR, 

IPC-noEpi, and IPC-CTL CPP (Fig 5.2). Complex I RCI was higher in the IPC-CPR group 
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compared to all other groups (Fig 5.3). IPC-CPR also trended toward higher complex II 

RCI compared to S-CPR and IPC-noEpi, but not compared to IPC-CTL CPP. CRC was 

not different between groups. 

Protocol 2 

 S-ECMO and IPC-ECMO obtained CPPs similar to IPC-CPR. There were no 

differences between ECMO groups in CPP, LAD blood flow, LAD vascular resistance, or 

mitochondrial function (Fig 5.4). 

 

Discussion 

 Increasing blood flow during CPR has been a primary focus of resuscitation science 

for decades. However, IPC-CPR is a therapeutic strategy intended to mitigate reperfusion 

injury, and was anticipated to do so at the expense of blood flow during resuscitation. 

Contrary to predicted outcome, IPC-CPR had the effect of increasing arterial blood 

pressure and calculated CPP during CPR after administration of exogenous epinephrine 

(74,75,183,215). Poloxamer 188, a component of the Bundle postconditioning, 

independently increased blood pressure when administered during CPR (Fig 5.5) (216). 

Thus, hemodynamic stability may contribute to the therapeutic value of IPC-CPR in 

addition to canonical postconditioning pathways (18). In this investigation, we sought to 

determine if the hemodynamic improvement following controlled pauses is a mechanism 

through which IPC-CPR confers protection to cardiac mitochondrial function following 

prolonged cardiac arrest.  

 To determine the contribution of elevated CPP on improvement of acute cardiac 

mitochondrial function, perfusion pressures during the 4th minute of IPC-CPR were 

attenuated to the level of S-CPR via 1) withholding the epinephrine bolus at minute 3 of 

CPR, or 2) incomplete chest compressions. In both groups, lowering CPP to the level of S-

CPR resulted in decreased cardiac mitochondrial respiration compared to IPC-CPR with 

epinephrine and high-quality chest compressions. This finding strongly suggests a role for 

improved coronary perfusion as a mechanism for cardiac mitochondrial salvage provided 

by IPC-CPR after cardiac arrest. 

 Despite high-quality mechanical CPR utilizing active compression-decompression 
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and an impedance threshold device, CPP during S-CPR could not be elevated to that of 

IPC-CPR during the 4th minute of resuscitation. Consequently, we utilized ECMO to 

provide CPP comparable to the IPC-CPR group. We further evaluated LAD blood flow to 

better elucidate perfusion to the myocardium during ECMO perfusion. There were no 

differences between S-ECMO and IPC-ECMO in CPP, LAD blood flow, or LAD vascular 

resistance, suggesting CPP is a faithful indicator of cardiac perfusion during ECMO. There 

were no differences in cardiac mitochondrial respiration, ATP synthesis, or CRC between 

S-ECMO or IPC-ECMO. High cardiac perfusion was sufficient to protect cardiac 

mitochondrial function after prolonged cardiac arrest. It remains to be tested if non-

pulsatile ECMO flow directly affects mitochondrial function or modulates the effect of 

IPC. 

 

Conclusion 

 Cardiac mitochondrial respiration was improved with IPC when administered during 

high-quality CPR with epinephrine compared to CPR groups with lower coronary 

perfusion pressure. IPC did not provide an additional benefit to cardiac mitochondrial 

function when applied during high-pressure perfusion with ECMO. Taken together, these 

data indicate that high coronary perfusion pressure during resuscitation is necessary and 

sufficient to rescue cardiac mitochondrial function after prolonged cardiac arrest. Improved 

hemodynamics during CPR may mediate the beneficial cardiac recovery previously 

observed with IPC-CPR.  
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Figure 5.1. Experimental protocol for standard CPR and IPC subgroups. High-quality 

CPR with epinephrine served as a control for standard CPR (S-CPR). Cardiac mitochondria 

were isolated from left ventricle during CPR prior to defibrillation or return of spontaneous 

circulation. 
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Figure 5.2. Coronary perfusion pressure during S-CPR and IPC-CPR, IPC-CPR 

without epinephrine, and IPC-CPR with incomplete depth of chest compression. 

Representative tracing of aortic blood pressure and chest compression depth during S-

CPR (A), IPC-CPR (B), IPC-CPR noEpi (C), and IPC-CPR CTL CPP (D). Coronary 

perfusion pressure (CPP) during the 4th minute of CPR was higher in the IPC-CPR 

treatment than all other treatments (E). CPP during the 4th minute of CPR was similar 

between remaining treatments. ANOVA with Newman-Keuls posthoc, p < 0.05 

considered significant. 
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Figure 5.3. Cardiac mitochondrial respiration during standard CPR and IPC 

subgroups. S-CPR = high-quality standard CPR; IPC-CPR = high-quality CPR with IPC; 

IPC no Epi = IPC-CPR without exogenous epinephrine; IPC-CTL CPP = IPC with 

incomplete chest compressions; RCI = respiratory control index; S3 = ADP-stimulated 

state 3 respiration; S4 = state 4 leak respiration; Complex I respiration stimulated with 

pyruvate and malate; Complex II respiration stimulated with succinate and complex I 

inhibitor rotenone. Comparisons made with ANOVA with Newman-Keuls posthoc test.  

* indicates p < 0.05 compared to IPC-CPR.  
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Figure 5.4. Hemodynamics and mitochondrial function during ECMO resuscitation. 

Resuscitation with extracorporeal membrane oxygenation (ECMO) resulted in similar 

cardiac perfusion between treatments (A) as evidenced by coronary pressure (CPP), left 

anterior descending coronary artery blood flow (LAD Flow), and LAD coronary vascular 

resistance. Angiographic confirmation (B) of Doppler flow probe placement on proximal 

LAD coronary artery. Mitochondrial function (C) did not differ between treatment groups. 

RCI = respiratory control index; ATP = rate of ATP synthesis; CRC = calcium retention 

capacity. Comparisons made with t-test, alpha 0.05. 
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Figure 5.5. Hemodynamics and cardiac recovery during CPR with P188. 

Representative aortic pressure tracings from CPR with bolus dose of P188 (P188-CPR) or 

standard CPR (S-CPR) depicting the time of P188 (250 mg/kg) and epinephrine (0.5 mg) 

bolus dose administration (A). P188-CPR resulted in higher mean CPP during the 4th 

minute of CPR (B) and trended toward increased left ventricular ejection fraction 

(LVEF%) after resuscitation. N = 6 in each group; * indicates p < 0.05 with unpaired t-test.   

Adapted from Matsuura et al. Circulation 2013;128:A282. 
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CHAPTER 6 

 

SUMMARY 

 

 

 The central hypothesis of this work is that ischemic postconditioning implemented 

at the initiation of CPR can mitigate reperfusion injury that represents the primary 

impedance to resuscitation after prolonged cardiac arrest. This work details experiments 

investigating the feasibility and efficacy of implementing a simple IPC strategy at the onset 

of CPR to mitigate mitochondrial, organ, and whole-animal injury following prolonged 

ventricular fibrillation cardiac arrest. 

 

Major Findings 

• IPC via controlled pauses at the initiation of CPR mitigated cardiac dysfunction and 

improved neurologically favorable recovery after 15 minutes of VF cardiac arrest. 

• IPC alone or in combination with vasodilator therapy significantly improved clinical and 

histopathologic indicators of markers of cardiac and cerebral recovery. Vasodilation 

therapy offered an independent increase in post-ROSC cardiac function and a decrease in 

biomarkers, but did not provide independent or synergistic benefit to favorable neural and 

survival outcomes. 

• A combination of IPC, sevoflurane, and P188 postconditioning improved cardiac and 

neurologic recovery after 17 minutes of untreated cardiac arrest demonstrated by decreased 

cardiac biomarkers of ischemia, increased left ventricular ejection fraction, and increased 

48-hour survival with neurologically favorable outcome. This represents the longest 

duration of untreated cardiac arrest for which favorable neurological survival has been 

documented in a swine model of cardiac arrest. 

• Prolonged untreated VF cardiac arrest results in acute cardiac and brain mitochondrial 

dysfunction evidenced by uncoupled respiration, decreased rate of ATP synthesis, 

decreased calcium retention capacity, and increased ROS production. IPC-CPR attenuated 

cardiac mitochondrial dysfunction, but had limited effect on brain mitochondria. The 
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benefit of IPC-CPR to neural recovery is likely mediated by a different mechanism or on a 

longer temporal scale. 

• Cardiac mitochondrial function normalized to non-ischemic levels within six hours of 

return of spontaneous circulation in animals treated with either S-CPR or IPC-CPR. 

• IPC increased cardiac mitochondrial respiration after prolonged cardiac arrest only in the 

setting of high-quality mechanical CPR with epinephrine. Attenuating the normal increase 

in coronary perfusion pressure during IPC-CPR abrogated the increase in cardiac 

mitochondrial function previously observed. CPP and mitochondrial function were 

comparable to S-CPR, indicating that increased perfusion pressure during IPC-CPR 

mediates improvements in cardiac mitochondrial function. 

• High-quality perfusion with ECMO provides salvage of cardiac mitochondrial respiration 

after prolonged cardiac arrest. In this setting, administration of IPC during ECMO 

perfusion did not provide further benefit to acute cardiac mitochondrial function.  

 

Perfusion versus reperfusion injury 

 Sodium nitroprusside (SNP) enhanced CPR (SNPeCPR) represents the height of 

pharmacologic and mechanical means to generate blood flow during CPR. In addition to 

increased blood flow, SNP may itself offer postconditioning benefits via NO donation 

(87,217). If SNPeCPR does indeed confer some of its benefit via attenuation of reperfusion 

injury, then the only therapeutic strategies shown to successfully resuscitate swine after 15 

minutes of ventricular fibrillation cardiac arrest have involved both postconditioning 

strategies and strong hemodynamic support (7,74,75,84,122,183). Recently, superior 

perfusion with SNPeCPR demonstrated a short-term survival benefit in a novel model of 

refractory VF (218). These findings indicate that survival is positively correlated with both 

intra-CPR perfusion and with postconditioning during CPR, making it difficult to parse 

which therapeutic modality is responsible for the observed benefits. 

 We have also shown that improved cardiac mitochondrial function during IPC-CPR 

is dependent on increased CPP. Diminishing the increase in CPP afforded by IPC-CPR 

abrogated the improvement in acute cardiac mitochondrial function. High-quality 

perfusion with ECMO salvaged cardiac mitochondrial function to a similar extent as IPC-
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CPR or IPC-ECMO. These observations may be critical for understanding the unique 

utility of postconditioning in the setting of cardiac arrest to simultaneously reverse 

hemodynamic stasis and mitigate reperfusion injury. Canonical cellular protection and 

improved blood flow may both be at work, thereby addressing multiple limitations to 

successful resuscitation. A multifocal mechanism may increase the therapeutic value of 

IPC to benefit a diverse patient population with multiple comorbidities and varying 

durations of untreated ischemia, though this potential has yet to be tested. 

 Our results indicate that increasing blood pressure and blood flow during CPR is 

beneficial. This is true even in the combined postconditioning group that attained 

hypertensive pressures during CPR (183). Our data agree with previous findings that blood 

pressure and blood flow during CPR positively correlate with outcomes (219,220). If 

reperfusion injury were the primary factor limiting resuscitation after prolonged cardiac 

arrest, hemodynamics would not be expected to so robustly predict outcomes. Thus, 

restoring adequate vital organ blood flow should remain a primary goal of resuscitation 

techniques.  

 

Differences between heart and brain recovery 

 Cerebral blood flow was not measured in these studies. However, cerebral perfusion 

relies on central arterial pressures and may be assumed to positively correlate with central 

blood pressure under similar treatment conditions. Increased aortic blood pressure during 

IPC-CPR may contribute to improved cerebral perfusion and thus to neural recovery. 

However, enhanced neural recovery occurred independently of improved hemodynamics 

when IPC was compared to vasodilator therapy (75). These findings suggest an 

undetermined mechanism for neural protection conferred by IPC-CPR that may not solely 

be dependent on blood pressure during CPR. 

 In this series of studies, IPC-CPR conferred a benefit to neural recovery when 

measured at 24 and 48 hours as evidenced by decreased neuronal cell death and improved 

cerebral performance category. However, cerebral recovery was not observed via 

mitochondrial function tests measured during resuscitation or at 6 hours after ROSC. This 

may indicate that mitochondrial function does not mediate neural recovery following IPC-
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CPR. Alternatively, this may simply demonstrate that neuronal fate is not immediately 

determined. Both neuronal injury and recovery likely continue to develop for hours and 

days after cardiac arrest (221,222). Further studies are necessary to better define the type 

and timing of injury specific to the vital organs of the heart and brain.  

 

Global postconditioning response 

 Dynamic blood pressure response to exogenous epinephrine during IPC-CPR, the 

initial observation that prompted investigations in Chapter 5, may be evidence of a global 

postconditioning benefit. Following the IPC protocol administered in the first two minutes 

of reperfusion, the vasculature is conditioned to respond more dynamically to exogenous 

epinephrine. This phenomenon is indicative of global postconditioning perhaps targeting 

endothelial cells or vascular smooth muscle. Initial IPC experiments of myocardial 

ischemia demonstrated improved coronary vascular reactivity (11), and increased blood 

pressure response to epinephrine is associated with successful resuscitation (223). In the 

setting of cardiac arrest, increased blood pressure response to exogenous epinephrine may 

be a bioassay demonstrating the health of the animal in addition to mediating vital organ 

perfusion and recovery. Epinephrine by itself may provide additional conditioning via 

alpha adrenergic receptors (211,224). However, epinephrine does not appear to be 

necessary for IPC-CPR to protect the heart and brain. IPC demonstrated a survival benefit 

when administered without epinephrine in a basic life support (BLS) model of CPR (225). 

Even absent epinephrine in this BLS model, IPC increased perfusion pressures compared 

to BLS CPR alone. Additional studies to elucidate the direct effect of IPC-CPR on vascular 

function are warranted.   

 

Ongoing investigations 

 The canonical postconditioning mechanisms of reperfusion injury salvage kinase 

(RISK) and survivor activating factor enhancement (SAFE) will be evaluated in heart and 

brain samples from the experiments described. The combined results from blood pressure 

manipulation during resuscitation and from biochemical characterization of RISK and 

SAFE pathways will better elucidate the roles of blood flow and postconditioning in 
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mediating the cardiac and neural benefits of IPC-CPR. 

 Evidence of mitochondrial permeability transition pore opening in vivo will be 

evaluated via quantification of cytochrome c translocation from mitochondrial to cytosolic 

cellular fractions. Circulating levels of cytochrome c have been shown to correlate with 

survival after cardiac arrest (226,227). Evaluating the extent of cytochrome c release in the 

heart and brain would elucidate a connection between mitochondrial dysfunction and organ 

recovery. Transmission electron microscopy of fixed heart and brain tissue will be 

evaluated for mitochondrial swelling, cristae disorganization, and density (228). These 

morphological assessments may better describe the type of stress experienced in vivo and 

aid in the interpretation of mitochondrial function tests. 

 Cardiac mitochondrial function was transiently increased with IPC-CPR compared 

to S-CPR. However, cardiac mitochondrial function normalized in both groups after 6 

hours of recovery. The effect of the early window of mitochondrial functional recovery 

remains to be fully measured. The extent of mitochondrial-mediated apoptosis, which may 

be initiated early and manifest late, was not measured in the 6-hour recovery studies. 

Preliminary results indicate minimal cell death in the heart and brain with either S-CPR or 

IPC-CPR at 6 hours. TUNEL staining and blotting for caspase and calpain activity will be 

utilized to further identify the extent of apoptosis and necrosis in the heart and brain.  

 

Limitations 

 Many limitations have been named in the preceding chapters. Of overarching 

relevance, it remains unknown if IPC protects the heart and brain via improved 

hemodynamics or via mitigation of reperfusion injury. A full characterization of 

intracellular signaling will be required to complement the completed hemodynamic 

investigation to better describe the relative contributions of each. 

 The mechanisms via which IPC-CPR improved cardiac mitochondrial function as 

well as favorable cardiac and neural recovery were not determined. We selected 

mitochondrial function assays as a starting point because a) we predicted mitochondrial 

function would change dynamically within the time course of interest, and would therefore 

represent an upstream regulator of many protective and pathological processes; b) 
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mitochondrial function must recover for successful resuscitation, and therefore are a 

critical component for understanding limitations to resuscitation after prolonged cardiac 

arrest; and c) mitochondria are a nexus for many signals, and therefore represented a likely 

candidate to begin unraveling treatment differences. This work has begun laying 

foundational knowledge and techniques to better parse specific interactions. Reactive 

oxygen species, shown in our model to be increased during untreated cardiac arrest and S-

CPR and attenuated with IPC-CPR, are a potential candidate for future study. ROS are a 

component of cellular stress during ischemia and reperfusion, and are also implicated in 

mediating the protection of IPC (229,230). Levels of oxidized aconitase, measured via 

EPR, were the only conserved pattern between heart and the brain responses to reperfusion 

with CPR. Further corroboration of these findings can be performed by quantifying 

oxidized lipids and proteins in samples from the heart and brain, as well as future 

experiments quantifying site-specific mitochondrial ROS production in isolated myofibers 

and brain homogenates. Endothelial and smooth muscle signaling are also prime targets 

based on the consistent blood pressure signature we observed during IPC-CPR. Identifying 

a causal link between IPC-CPR and improved mitochondrial function, or between IPC-

CPR and organ recovery, would be valuable for understanding the pathophysiology of 

prolonged cardiac arrest as well as elucidating targeted treatment options. 

 These studies do not demonstrate a causal connection between acute cardiac 

mitochondrial function and long term outcomes. However, we have now shown in separate 

cohorts that IPC-CPR improves acute mitochondrial function, post-ROSC LVEF%, and 

neurologically favorable survival (74,215). Additionally, the mitochondrial function tests 

correlated well with the extent of cardiac injury in an ST-elevation myocardial infarction 

model of cardiac ischemia (231). An early goal of this investigation was to identify 

candidate mediators of protection that could be further interrogated. To date, we have 

explored only the role of improved hemodynamics in mediating cardioprotection. Results 

from ongoing characterization of RISK and SAFE pathways may allow future exploration 

of mechanisms through which IPC affects mitochondrial function, or through which 

mitochondrial function affects organ salvage. If candidate signaling pathways are 

identified, inhibitors and agonists will be applied to interrogate a causal connection.  
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 All experiments were conducted in a swine model of cardiac arrest. The inherent 

advantages of this model are similarities between swine and human cardiovascular 

physiology and close adherence to clinical CPR and resuscitation practices (232). The 

complexity of a whole-animal model may introduce unknown and uncontrolled factors that 

influence results. However, those unknown factors are precisely the validity of an animal 

model by allowing a complex biological system to function independently of all but a few 

experimental treatments. It may be an advantage that only the most robust treatment signals 

will manifest among many unknown variables, as this showcases the potential translation 

to an even more heterogeneous human population. The swine model of cardiac arrest 

remains a vital experimental tool to vet efficacy for human translation and to generate 

hypotheses for more controlled model systems. However, insights may be more efficiently 

determined with a balanced approach utilizing smaller model organisms, isolated organ 

preparations, and cell culture.  

 The clinical translatability of IPC-CPR is yet to be fully tested. The swine were young 

and healthy without comorbidities normally associated with cardiac arrest that will likely 

attenuate the benefit of IPC-CPR (233). Additionally, clinical implementation of an IPC 

strategy will be more difficult than in the controlled laboratory setting. Many attempts at 

translation have been made with muted success, perhaps due to experimental design, 

pharmacological side effects, and protocol limitations (234–236). Unfortunately, IPC 

efficacy may be limited in the most severely diseased patients for whom its benefits are 

most needed. Use of disease models would increase understanding of specific mechanisms 

of IPC and clarify translation potential. Also of importance, IPC-CPR will require rescuers 

trained in advanced resuscitation techniques or the use of mechanical chest compression 

devices. The benefit of IPC-CPR may be abrogated by initial perfusion via bystanders prior 

to arrival of advanced care. The benefit of IPC-CPR has not been investigated in shorter 

intervals of untreated cardiac arrest. Additional investigations are required to properly 

optimize deployment of IPC-CPR in the field.  

 All CPR was performed as technically sound as possible. This does not represent 

clinical reality. Bystander CPR, resuscitation in small spaces or moving vehicles, thoracic 

trauma, patient dimensions, rescuer fatigue, and other factors will diminish the efficacy of 
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chest compressions and rescue breaths. While this limits translatability, it is critical to apply 

prior advancements in CPR techniques to current investigations because treatment effects 

can be masked by unintended protocol deviations (237). Ideally, best practice will be 

utilized in laboratory and clinical settings and thereby become the next standard of care. 

 

Perspective and closing remarks 

 IPC drastically improved cardiac and neurologic outcomes after prolonged 

ventricular fibrillation cardiac arrest. IPC improved hemodynamics during CPR and 

increased cardiac mitochondrial function in the acute phase of resuscitation. The 

mechanisms that mediate cardiac and cerebral protection remain unknown. Mounting 

evidence suggests increased coronary perfusion pressure is necessary and sufficient for 

cardioprotection. Definitive evidence of reperfusion injury is yet to be established in our 

model due to the confounding factor that all postconditioning strategies improve 

hemodynamics when deployed at the onset of CPR following prolonged cardiac arrest. 

This work is vital for demonstrating the therapeutic potential of IPC implemented during 

CPR. Results from these experiments highlight the impact of early CPR interventions on 

long-term outcomes, and emphasize the importance of continued innovation in 

resuscitation therapies. 

 We investigated potential mechanisms responsible for the low rates of survival after 

prolonged cardiac arrest achieved in the field. Characterizing hemodynamic and 

mitochondrial functional responses during the primary stages of cardiac arrest, CPR, and 

post-ROSC recovery may improve understanding of the pathogenesis of lethal reperfusion 

injury and describe the role of IPC in preventing its progression. Results from these studies 

provide the groundwork for future basic science investigations into the underlying 

pathophysiology of cardiac arrest to optimize therapies for resuscitation after prolonged 

cardiac arrest. Every incremental improvement to resuscitation care has the potential to 

save thousands of lives. 
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