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Abstract 

Power-split Hybrid Electric Vehicle (HEV), which accounts for almost 40% of US hybrid-

car total sales in 2013, has the ability to store excess energy during driving and braking, 

and to split the demanded power between the engine and battery. With the advent of 

connected vehicles, traffic information can be shared and utilized to further optimize 

HEV’s energy use, by predicting the demanded power and optimizing the power-split. 

However, traffic conditions, and therefore the demanded power, are constantly 

changing. As a result, the optimization method not only has to account for optimality and 

charge-sustaining conditions, but also driving-cycle sensitivity and speed of calculation 

for real-time implementation. This research therefore proposes fast HEV powertrain 

optimization to improve fuel economy for connected vehicle applications. Additionally, in 

order to measure the performance of connected vehicle applications, a hardware-in-the-

loop system (HiLS), that combines an existing laboratory powertrain research platform 

with a microscopic traffic simulator, is developed. A computationally-efficient analytical 

solution to the HEV powertrain optimization problem utilizing vehicle speed prediction 

based on Inter-Vehicle Communications and Vehicle-Infrastructure Integration is 

proposed for real-time implementation. First, Gipps’ car following model for traffic 

prediction is used to predict the interactions between vehicles, combined with the cell-

transmission-model for the leading vehicle trajectory prediction. Secondly, a 

computationally efficient charge-sustaining (CS) HEV powertrain optimization strategy is 

analytically derived and simulated, based on the Pontryagin’s Minimum Principle (PMP) 

and a CS-condition constraint. A 3D lookup-map, generated offline to interpolate the 

optimizing parameters based on the predicted speed, is also utilized to speed up the 

calculations. Simulations are conducted for 6-mile and 15-mile cases with different 

prediction update timings to test the performance of the proposed strategy against a 

Rule-Based (RB) control strategy on a Toyota Prius engine. Results for accurate-

prediction cases show 9.6% average fuel economy improvements in miles-per-gallon 

(MPG) over RB for the 6-mile case and 7% improvements for the 15-mile case. 

Prediction-with-error cases show smaller average MPG’s improvements, with 1.6% to 

4.3% improvements for the 6-mile case and 2.6% to 3.4% improvements for the 15-mile 

case. For practical purposes, the HEV engine operating range and transient response 

have to be considered, which introduces additional optimization constraints. Solving a 

nonlinear optimization problem with constraints analytically is difficult, while numerically 
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is computational heavy and time consuming. Therefore, the nonlinear HEV optimization 

problem with constraints is expressed and solved as a Separable Programming (SP) 

problem. First, given the flexibility of the power-split HEV powertrain, the relationship 

between the minimum fuel consumption and the power-split levels between the engine 

and battery is calculated and stored offline for all possible vehicle power demands. 

Therefore, the relationship between HEV power-split levels and engine operating points 

with minimum fuel consumption for a given vehicle power demand is obtained. Secondly, 

the problem is formulated with fuel consumption as the cost and power-split level as the 

optimizing input and solved using SP. In SP, the nonlinear fuel cost and battery charging 

rate relationships with the power-split levels are approximated as linear-piecewise 

functions which introduce dimensionless variables that are linear to the input and outputs 

of the nonlinear functions. The input range constraint and the engine transient dynamics 

are also formulated. The optimization problem is then solved as a large-dimension linear 

problem with linear constraints using efficient Linear Programming solvers. The 

proposed optimization method is then simulated in a receding horizon fashion with 

various vehicle speed profiles and a case study was tested on a real John Deere diesel 

engine. Comparable fuel economy with Dynamic Programming is shown with 

significantly less calculation time and fuel savings of 4.0% and 10.4% over PMP and RB 

optimizations are observed. A HiLS testbed to evaluate the performance of connected 

vehicle applications is proposed. A laboratory powertrain research platform, which 

consists of a real engine, an engine-loading device (hydrostatic dynamometer) and a 

virtual powertrain model to represent a vehicle, is connected remotely to a microscopic 

traffic simulator (VISSIM). Vehicle dynamics and road conditions of a target vehicle in 

the VISSIM simulation are transmitted to the powertrain research platform through the 

internet, where the power demand can then be calculated. The engine then operates 

through an engine optimization procedure to minimize fuel consumption, while the 

dynamometer tracks the desired engine load based on the target vehicle information. 

Test results show fast data transfer at every 200 milliseconds and good tracking of the 

optimized engine operating points and the desired vehicle speed. Actual fuel and 

emissions measurements, which otherwise could not be calculated precisely by fuel and 

emission maps in simulations, are achieved by the testbed. In addition, VISSIM 

simulation can be implemented remotely while connected to the powertrain research 

platform through the internet, allowing easy access to the laboratory setup. 



v 

 

Contents 

 

List of Tables  viii 

List of Figures ix 

 

Chapter 1 Introduction and Background 1 

1.1 Introduction of HEV Powertrain and Connected Vehicles ...................... 1 

1.2 HEV Powertrain Optimization Methods ................................................. 3 

1.3 HEV Powertrain Optimization with Traffic Information ............................ 4 

1.4 Powertrain Optimization Evaluation and Hardware-in-the-Loop    
Systems for Traffic Environment ........................................................... 4 

1.5 Thesis Outline and Contributions .......................................................... 6 

Chapter 2 PMP-Based Unconstrained HEV Powertrain Optimization 9 

2.1 Motivation.............................................................................................. 9 

2.2 Vehicle Speed Trajectory Prediction Using VII and IVC ....................... 10 

2.3 Power-Split HEV Model ....................................................................... 11 

2.4 Optimization Problem and Framework ................................................ 12 

2.5 Pontryagin’s Minimum Principles (PMP) Overview .............................. 14 

2.6 Implementation of PMP with Real-Time Traffic Information ................. 15 

2.7 Pbatt Constraints ................................................................................... 18 

2.8 Pbatt Adjustment ................................................................................... 19 

2.8.1 Pbatt Adjustment for Accurate Traffic Prediction  ....................... 19 

2.8.2 Pbatt Adjustment for Traffic Prediction with Error ....................... 20 

2.9 Rule-Based HEV Powertrain Optimization........................................... 21 

2.10 Simulation Setup ................................................................................. 22 



vi 

 

2.11 Simulation Results .............................................................................. 23 

2.11.1 Vehicle Speed Prediction Performance.................................... 23 

2.11.2 Optimization Performance ....................................................... 25 

2.11.3 Case Study: Single Vehicle Simulation .................................... 30 

2.12 Conclusion .......................................................................................... 33 

Chapter 3 SP-Based Constrained HEV Powertrain Optimization 34 

3.1 Motivation............................................................................................ 34 

3.2 Power-Split HEV Model ....................................................................... 35 

3.3 Optimization Problem and Framework ................................................ 36 

3.4 Input Rate Constraint .......................................................................... 38 

3.5 Separable Programming Implementation ............................................ 40 

3.6 Comparisons with Other Optimization Methods ................................... 43 

3.6.1 Dynamic Programming HEV Powertrain Optimization .............. 43 

3.6.2 PMP-Based HEV Powertrain Optimization ............................... 44 

3.6.3 Rule-Based HEV Powertrain Optimization ............................... 45 

3.7 Small-Scale Traffic Simulation ............................................................. 45 

3.7.1 Simulation Network .................................................................. 45 

3.7.2 Optimization Implementation ................................................... 45 

3.7.3 Vehicle Speed Prediction ......................................................... 46 

3.8 Simulation and Experimental Results .................................................. 46 

3.8.1 Comparisons with Dynamic Programming ............................... 46 

3.8.2 Comparisons with PMP and Rule-Based Optimizations ........... 50 

3.8.3 Single Vehicle Simulation and Experimental Results ............... 54 

3.8.4 Effects of Prediction Uncertainties ........................................... 58 

3.9 Conclusion .......................................................................................... 59 



vii 

 

Chapter 4 Hardware-in-the-Loop Testbed for Evaluating Connected 

Vehicle Applications 61 

4.1 Motivation............................................................................................ 61 

4.2 Objective and Scope ........................................................................... 62 

4.3 HIL System Architecture ...................................................................... 62 

4.4 HIL System Components .................................................................... 64 

4.4.1 Powertrain Research Platform ................................................. 64 

4.4.2 VISSIM Microscopic Traffic Simulator ...................................... 66 

4.5 HIL System Middlewares ..................................................................... 66 

4.5.1 Local Communication .............................................................. 66 

4.5.2 Network Communication .......................................................... 68 

4.5.3 Data Synchronization............................................................... 69 

4.6 Experimental Results .......................................................................... 71 

4.6.1 Simple Traffic Network ............................................................. 71 

4.6.2 Complex Traffic Network ......................................................... 74 

4.6.3 Comparison with Simulation Results ........................................ 77 

4.7 Conclusion .......................................................................................... 78 

Chapter 5 Conclusion and Future Work 79 

5.1 Research Summary ............................................................................ 79 

5.2 Future Work ........................................................................................ 81 

Bibliography 84 

Appendix 1 Overview of Pontryagin’s Minimum Principle ........................... 92 

Appendix 2 Rule-Based HEV Powertrain Optimization ............................... 95 

Appendix 3 External Connected Vehicle Controller Architecture............... 100 



viii 

 

 

List of Tables 

 

1.1 Online Iteration For Vehicle Speed Prediction ..................................... 10 

 

  



ix 

 

 

List of Figures 

 

1.1 Connected Vehicle Environment ........................................................... 2 

2.1 Toyota Hybrid System Power-Split Architecture .................................. 11 

2.2 Fuel Consumption Map with fixed �����(�, �) lines ............................... 12 

2.3 Minimum 
� �
�� vs ����� ....................................................................... 13 

2.4 ��-slope Look-up Map ......................................................................... 16 

2.5 ����� Limits and Vehicle Speed ........................................................... 18 

2.6 ����� Adjustment Procedure ................................................................ 19 

2.7 Network Layout in VISSIM (not scaled) for 6-mile (top) and 15-mile         
(bottom) Cases.................................................................................... 22 

2.8 Average Predicted Vehicle Speed RMSE Comparisons for                               
6-mile (top) and 15-mile (bottom) Cases ............................................. 24 

2.9 Comparison of Predicted and Observed Speeds for                                    
Vehicle 12, 6-mile Case ...................................................................... 25 

2.10 Ave. MPG for 6-mile Case without (a) and with (b) Prediction            
Parameters Calibration........................................................................ 26 

2.11 �-MAPE distribution for 6-mile Case without and with Parameters       
Calibration ........................................................................................... 26 

2.12 �-MAPE against 10s-update for 6-mile Case without (a) and with (b) 
Parameters Calibration........................................................................ 27 

2.13 � Comparisons between 10s-Accurate, 10s-Prediction and                            
40s-Prediction ..................................................................................... 28 

2.14 Ave. MPG for 15-mile Case without (a) and with (b) Prediction           
Parameters Calibration........................................................................ 29 

2.15 �-MAPE distribution for 15-mile Case without and with Parameters     
Calibration ........................................................................................... 29 



x 

 

2.16 �-MAPE against 10s-update for 15-mile Case without (a) and with (b) 
Parameters Calibration........................................................................ 30 

2.17 Vehicle Speed, Battery ��� and Cumulative Fuel Consumption ......... 31 

2.18 Engine Torque for Accurate, Predicted and Rule-Based Cases .......... 32 

2.19 Engine Speed for Accurate, Predicted and Rule-Based Cases ........... 32 

3.1 Toyota Hybrid System Power-Split Architecture .................................. 35 

3.2 Minimum 
� �
�� VS Pbatt ....................................................................... 37 

3.3 Pbatt Jump Constraint ........................................................................... 38 

3.4 Linear Piecewise Approximation of Cost ............................................. 41 

3.5 Linear Piecewise Approximation of SOC&  ............................................. 41 

3.6 SP and DP Engine Torque and Speed ................................................ 47 

3.7 Vehicle Speed, Battery SOC, Pbatt Input and Fuel Consumption .......... 48 

3.8 SP-NoIRC and DP Engine Operating Points ....................................... 49 

3.9 MPG Results from Simulation ............................................................. 50 

3.10 Minimum 
� �
�� for Every Pbatt Iterate ................................................... 51 

3.11 SP-IRC and SP-NoIRC Engine Operating Points Comparison ............ 52 

3.12 SP-IRC and SP-NoIRC Input Pbatt and Relative Pbatt Jump ................... 53 

3.13 SP-IRC and SP-NoIRC MPG Difference ............................................. 53 

3.14 Vehicle Speed, Battery SOC, Pbatt Input and Fuel Consumption .......... 54 

3.15 Vehicle 11 Engine Operating Points .................................................... 55 

3.16 Vehicle 11 Engine Operating Points between 240s and 295s.............. 56 

3.17 SP-IRC and PMP Engine Operating Points ......................................... 57 

3.18 Test-Engine SP-IRC Operating Points ................................................ 58 

3.19 Test-Engine RB Operating Points ....................................................... 58 

3.20 Effects of Prediction Uncertainties ....................................................... 59 

4.1 HiLS Architecture ................................................................................ 62 



xi 

 

4.2 Powertrain Research Platform ............................................................. 64 

4.3 Three-Level Controller of Powertrain Research Platform ..................... 65 

4.4 VISSIM Traffic Data Extraction Time as Vehicles Enters Simulated            
Traffic .................................................................................................. 67 

4.5 HiLS Data Synchronization ................................................................. 70 

4.6 Vehicle Speeds for Simple Traffic Network .......................................... 71 

4.7 Vehicle-Powertrain Dynamics and Measured Fuel                                             
(3-stops, Simple Traffic Network) ........................................................ 72 

4.8 Measured Emissions (3-stops, Simple Traffic Network) ....................... 72 

4.9 Total Mass of Measured Fuel Consumed for Simple Traffic Network .. 73 

4.10 Total Mass of Measured Exhaust Gases for Simple Traffic Network ... 74 

4.11 BRT-priority-Texas Traffic Demo from VISSIM .................................... 75 

4.12 Vehicle Speeds for Complex Traffic Network ...................................... 75 

4.13 Vehicle-Powertrain Dynamics and Measured Fuel                                            
(3-stops, Complex Traffic Network) ..................................................... 76 

4.14 Measured Emissions (3-stops, Complex Traffic Network) ................... 76 

4.15 Total Mass of Measured Fuel Consumed for                                            
Complex Traffic Network ..................................................................... 77 

4.16 Total Mass of Measured Exhaust Gases for                                               
Complex Traffic Network ..................................................................... 77 

  



1 

 

 

Chapter 1  

Introduction and Background  

 

1.1 Introduction of HEV Powertrain and Connected Vehicles 

Sustainable energy supply and the environmental impact are the main concerns in the 

transportation sector. The Energy Information Administration reported that in the U.S., 

transportation encompassed a 28% share of energy consumption and a 72 % share of 

total petroleum consumption in 2010 [1]. The concerns are intensified especially with 

escalating traffic congestion problems. According to the 2011 Urban Mobility Report [2], 

in 2010, a driver spent an average of 34 extra hours on the road due to traffic 

congestion, corresponding to $713 of wasted fuel. In response to these problems, the 

government through the Energy Policy and Conservative Act of 1975 (EPCA) introduced 

the Corporate Average Fuel Economy (CAFE) which targets the average fuel economy 

standards for passenger vehicles at 37.8 MPG in 2016 and 54.5 MPG in 2025 [3].  

In response to increasing fuel economy regulation, innovative vehicles with higher fuel 

economy were delivered to the market by automotive manufactures, where the hybrid 

electric vehicles (HEVs) are the first to be introduced and most pervasively available in 

the market today. Different from conventional vehicles with single power source, namely 

gasoline or diesel engine, a HEV powertrain is equipped with an additional power 

storage device, for example, a battery [4,5]. The secondary power source could 

supplement or replace the engine as the source of power to avoid inefficient engine 

operation regions, particularly at low power demands. This is particularly important for 

urban driving conditions with multiple stop-and-go scenarios. Consequently, the overall 

fuel consumption can be potentially improved up to 30% to 40% over conventional 

vehicles [6]. 
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Connected Vehicles (CV) technologies utilizing Inter Vehicle Communication (IVC) and 

Vehicle Infrastructure Integration (VII) [7,8] have gained attentions to improve traffic 

safety and mobility. The Dedicated-Short-Range-Communication (DSRC) used for traffic 

communication has been proven to be reliable [9-11] and field works have been done to 

evaluate the scalability, security and interoperability of DSRC communications in a real 

world setting [12]. Rigorous tests were also done to investigate DSRC communication 

reliability under different cooperative active safety applications [13]. A CV environment 

where IVC and VII work seamlessly through DSRC is shown in Fig. 1.1. Traffic data 

including Signal Phase and Timing (SPaT) from traffic light, vehicle detector from the 

road and vehicles information can be transferred to and from the vehicles and the traffic 

center. Reliable IVC and VII therefore make it possible to utilize the abundance of traffic 

information for numerous connected vehicle applications, including for vehicle fuel 

consumption and emissions improvements by merging traffic information with powertrain 

optimization. 

 

Figure 1.1. Connected Vehicle Environment 

HEV offers a solution to meeting the increasing fuel efficiency requirements by 

combining different power sources and operating them in the most efficient manners for 

any given vehicle load. With the introduction of IVC and VII under the connected vehicle 

(CV) framework [12], vehicle loads across a time horizon can be estimated using shared 

traffic information. Therefore, incorporating traffic information in HEV powertrain 

optimization within a CV environment will increase fuel saving potentials. 
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1.2 HEV Powertrain Optimization Methods 

Numerous optimization methods have been developed for HEVs to optimize fuel use. 

Dynamic Programming (DP) is widely used to optimize the HEV [14-16] but the heavy 

computations and non-causality of the method prevents its application in a transient 

traffic environment. Stochastic-DP is proposed [17] to alleviate the restrictive nature of 

DP, but still does not address the heavy computation issue. High computational burden 

due to the nonlinearities leads to linearization efforts in Model Predictive Control (MPC) 

[18]. In [19] feedback linearization is used in combination with MPC to linearize the plant 

and optimize a quadratic approximated nonlinear cost through Quadratic Programming 

(QP). This however resulted in nonlinear constraints and the problem is solved iteratively 

or using inaccurate approximations. Online implementation of MPC with QP is used in 

[20] by linearizing the plant and constraints at every time step, but the optimality is 

affected by the short prediction to reduce QP computations. Realizing the need for a fast 

optimization strategy, the Equivalent Consumption Minimization Strategy (ECMS) is 

devised where a combined actual-fuel and equivalent-fuel from the motor/generator is 

minimized [14,15,21]. ECMS can be implemented online, but the equivalent-ratio (ER), 

which is a gain multiplied to the electrical energy consumed by the motor/generator to 

find the equivalent-fuel use, has to be iterated offline to ensure Charge-Sustaining (CS) 

HEV operation. In [22], it is pointed out that the Pontryagin’s Minimum Principles (PMP) 

framework can be shown as the underlying optimization principles for ECMS, but online 

implementation is infeasible due to the iterations in finding the initial value of the 

dynamic-ER for CS-operation. Similar PMP based method is also used in [23] with a 

constant ER, which is found numerically for CS-operation using multiple-shooting 

method. Considering the transient traffic system and the need for a fast optimization 

procedure that ensures CS-operation, the Adaptive-ECMS (A-ECMS) is developed 

[15,16] and is further implemented [24,25]. In A-ECMS, the ER is repeatedly adapted for 

the same driving cycle based on the final battery State-Of-Charge (SOC) level. The 

adapted-ER, however, cannot ensure a CS-operation if the subsequent driving cycles 

are different. Numerical methods are also formulated with linearized cost and constraints 

to minimize the computation efforts. In [26] a linear battery model and a two-region 

piecewise linear cost function for a Series-HEV are used to optimize the powers for 

engine, braking and battery using Linear Programming (LP). However, approximating a 

nonlinear battery with a simplified linear model introduces approximation errors which 
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affect the optimization results. Similarly, [27] utilizes the battery current to linearize the 

fuel cost within a range of input values and solve the linear problem with LP. This 

introduces approximation errors in the cost and limits the operating range of the input. 

Results in [28] extend the application of [27] using Mixed Integer Linear Programming 

(MILP) for Parallel-HEV (PHEV) to allow engine declutching for engine shutoff. Similarly, 

in [29] the engine power levels are discretized and MILP is used to optimize the PHEV 

operations. 

1.3 HEV Powertrain Optimization with Traffic Information 

Studies have been conducted to integrate traffic information into HEV powertrain 

optimization in CV settings. In [24], researchers investigated fuel efficiency and emission 

improvements by implementing a VII on a series HEV and plug-in hybrid electrical 

vehicle (PHEV) which is then interpolated to a network-level cost-benefit analysis with a 

15-years projection to determine the minimum penetration rate. In [25], the authors 

analyze improvements of a power-split PHEV across different prediction lengths, total 

mileages, driving cycles and average prediction errors. In [30,31], the authors utilize the 

preceding vehicle speed and simple kinematic equations to recalculate a less aggressive 

future vehicle speed for fuel economy. Authors in [14] rely on road-grade information 

with HEV energy management strategy (EMS) to save fuel. In [32], the authors estimate 

the total change of battery State-of-Charge (SOC) in a pure electric vehicle (EV) by 

calculating the vehicle loads using a constant-acceleration probabilistic model in road 

segments from historical traffic data. Integrating traffic information with powertrain 

optimization can offer fuel benefits, but the transient nature of traffic information 

necessitates the development of a fast HEV optimization for real-time implementation. 

1.4 Powertrain Optimization Evaluation and Hardware-in-the-Loop Systems 

for Traffic Environment 

Current methods to measure the performance of a vehicle’s fuel economy and emissions 

in traffic are done by either simulation, utilizing fuel consumption and emissions maps or 

by instrumenting the vehicle, but there are drawbacks of both approaches. A simulation-

based approach usually employs steady-state fuel-use and emission maps as a function 

of the engine torque and speed, which are inaccurate compared to actual measurements 

especially during engine transients [33,34]. Furthermore, sophisticated CFD model and 
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chemical kinetics are required to model emissions such as NOX and soot accurately 

[35,36]. Averaged emissions rates corresponding to vehicle power demand levels are 

used in the U.S. Environmental Protection Agency’s software package, MOVES, to 

estimate vehicles emissions, but comparisons with actual measurements shows high 

variability [37]. In [38], a driving simulator is utilized with human drivers to investigate the 

benefits of eco-driving, where the fuel use and emissions are estimated from MOVES. 

Similarly, the energy consumption and emissions are estimated from MOVES in an 

integrated traffic and driving simulators in [39]. In [40], high-resolution event data such 

as traffic light status and vehicle queues collected from real roads is used to optimize the 

speed trajectory of a virtual vehicle for fuel benefit, which is estimated from the vehicle 

power demand. The difficulty of conducting real field tests for connected vehicle 

applications prompted the use of simulation approach. Moreover, different components 

of the complex traffic environment need to be simulated accurately to provide realistic 

and meaningful results. 

In order to integrate different components of a traffic environment, integrated simulators 

and HiLS approaches are used. In [39], PARAMICS traffic simulator is integrated with a 

driving simulator in real-time for connected vehicle and Vehicle Ad-hoc Network 

(VANET) studies. Traffic routing strategy based on energy and travel time in MATLAB-

Simulink is implemented in [41], which is coupled with VISSIM traffic simulator for 

simulating traffic dynamics. In order to simulate a realistic car-to-car communication, the 

NS-2 network simulator is integrated and synchronized with CARISMA traffic simulator 

through TCP connection in [42]. Similar platform was developed that synchronized 

PARAMICS traffic simulator with NS-2 network simulator to implement travel-time 

prediction methods using artificial intelligence in [43]. In some cases, a component of 

traffic environment cannot be modeled accurately by simulation, prompting the use of a 

HiLS that integrate actual hardware with simulation packages. For example, in order to 

evaluate the actual performance of implementing complex traffic signal control algorithm 

on actual signal controller, [44] utilizes CORSIM traffic simulator and sends simulated 

detector information to a physical signal controller. Similar HiLS structure is developed 

that integrate VISSIM traffic simulation with Econolite ASC/2-2000 signal controller in 

[45]. The main objective of the proposed HiLS is to accurately evaluate fuel and 

emissions performance of connected vehicle applications. Powertrain dynamics can be 

modeled accurately through simulation such as the ones developed by the NREL 
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[46,47], while calibration of traffic simulation software can provide reasonable estimate of 

actual traffic dynamics [48]. However, as discussed, fuel consumption and emissions 

models are very complex and cannot be accurately simulated. Therefore, a real engine 

has to be utilized to provide accurate fuel and emissions measurements in real-time. 

For accurate measurements, [49] utilized a real engine with an engine loading device to 

measure the fuel and emissions performances of an eco-driving approach with 

predefined standard driving cycles which however lack realistic background traffic 

dynamics. In order to incorporate real traffic dynamics while measuring actual fuel 

consumption and emissions, road vehicles are instrumented. However, instrumenting a 

vehicle is difficult and time consuming [37,50]. With a HiLS, different vehicles can be 

tested quickly and flexibly by changing the engine and the load settings on the 

hydrostatic dynamometer. Equipping large precision measurement devices on large 

vehicles such as buses [51] or trucks [52,53] may be feasible, but would be challenging 

for smaller passenger vehicles. Smaller portable measurement devices can be used, but 

are less accurate, especially during engine transients and require calibrations for 

different driving cycles [54,55]. Finally, testing connected vehicle technologies in a 

simulated but realistic traffic is more economical without having to instrument multiple 

vehicles and safer than in real traffic where uncertainties are present [56,57]. 

1.5 Thesis Outline and Contributions 

In Chapter 2, a combined approach of a time-efficient powertrain optimization strategy, 

utilizing vehicle speed trajectory prediction based on IVC and VII is proposed. A 

computationally efficient charge-sustaining (CS) HEV powertrain optimization strategy is 

analytically derived and simulated, based on the Pontryagin’s Minimum Principle and a 

CS-condition constraint. A 3D lookup-map, generated offline to interpolate the optimizing 

parameters based on the predicted speed, is also utilized to speed up the calculations. 

Simulations are conducted for 6-mile and 15-mile cases with different prediction update 

timings to test the performance of the proposed strategy against a Rule-Based (RB) 

control strategy. This work is also documented in [58,59]. 

In Chapter 3, a fast HEV powertrain optimization that considers the associated 

constraints and engine dynamics is proposed. The HEV powertrain optimization problem 

is solved in two steps. First, given the flexibility of the power-split HEV powertrain, the 
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relationship between the minimum fuel consumption and the power-split levels between 

the engine and battery is calculated and stored offline for all possible vehicle power 

demands. This relationship ensures the engine is operating at the most optimal point for 

every possible HEV power-split level for a given vehicle power demand. Then, the 

nonlinear fuel cost and battery dynamics are approximated by linear piecewise functions 

and formulated as a Separable Programming problem. The piecewise-linear functions 

introduce new dimensionless variables which are solved as a large-dimension 

constrained linear problem with efficient LP solvers. The engine operating range and 

engine transient dynamics are represented as linear constraints in the LP problem to 

ensure the engine operating points are feasible. Traffic information from CV is integrated 

in the optimization by integrating the driving cycle prediction into the powertrain 

optimization. Fast calculation time allows the optimization method to be implemented 

with repeated speed prediction updates due to the transient nature of traffic. Simulations 

results with accurate speed prediction are compared with DP, PMP and RB methods 

and experimental results show the feasibility of the optimized engine operating points. 

Simulation studies with different levels of vehicle speed prediction errors to emulate CV 

settings are also presented. Preliminary work is published in [60] and a more detailed 

simulation and experimental work has been submitted for another publication. 

In Chapter 4, A Hardware-in-the-Loop-System (HiLS) is proposed to offer the flexibility 

and accuracy of evaluating the performance of connected vehicle applications. The HiLS 

is comprised of a microscopic traffic simulator (VISSIM) and a laboratory powertrain 

research platform. VISSIM is used to simulate a traffic network while the powertrain 

research platform, which consists of a real engine, an engine-loading device (hydrostatic 

dynamometer) and a virtual powertrain model is used to represent a single vehicle. A 

connected vehicle application such as the Cooperative Adaptive Cruise Control (CACC) 

can be simulated in VISSIM, where a target vehicle is selected to be represented by the 

powertrain research platform. This is done by sending the simulated target vehicle speed 

and road condition information from VISSIM to the powertrain research platform in real-

time during simulation. This information is used to calculate the vehicle load demand, 

which is realized by the engine and powertrain. Fuel consumption and emissions from 

the engine are measured by precise laboratory equipment. The HiLS utilizes a real 

engine for direct fuel and emission measurements. Furthermore, different vehicles can 

be tested quickly and flexibly by changing the engine and the load settings on the 
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dynamometer. The HiLS can also accommodate large precision measurement devices 

since it is built in a laboratory setting. Testing connected vehicle applications in a 

simulated but realistic traffic is more economical without having to instrument multiple 

vehicles. It is also safer and bypasses the legalities that would otherwise hamper the 

evaluation of connected vehicle applications in real traffic. Experimental results from the 

testbed are documented in in [61,62]. 

Chapter 5 outlines the summary and possible future works. 
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Chapter 2  

PMP-Based Unconstrained HEV 

Powertrain Optimization 

 

2.1 Motivation 

Recent advances in Connected Vehicle (CV) paved ways to real-time information 

sharing between vehicles. With Inter-Vehicle-communication (IVC) and Vehicle-

Infrastructure-Integration (VII), vehicle loads can be better predicted across a future time 

window, which can be utilized in vehicle energy management strategies (EMS) to save 

fuel. This is especially valuable for Hybrid Electrical Vehicle (HEV) where the powertrain 

is equipped with an additional power storage device, namely a battery. The battery could 

assist, store or replace the engine power to avoid the engine from operating at inefficient 

operation regions. Particularly, a HEV with power-split powertrain architecture employs a 

continuous-variable-transmission (CVT), which gives greater flexibility in selecting any 

desired engine operating points for any vehicle load. However, considering the physical 

constraints and nonlinearity of complex systems such as the internal combustion engine 

and the battery, optimizing the HEV powertrain using traditional optimization methods 

are computationally heavy. Furthermore, traffic environment is transient, where traffic 

states change all the time, affecting the vehicle load predictions from IVC and VII. 

Certainly, researches in this area have been done, but tradeoffs between optimality, 

driving-cycle sensitivity, speed of calculation and charge-sustaining (CS) conditions have 

not been cohesively addressed before. In light of this, a combined approach of a time-

efficient powertrain optimization strategy, utilizing vehicle speed trajectory prediction 

based on IVC and VII is proposed. 
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2.2 Vehicle Speed Trajectory Prediction Using VII and IVC 

With recent advances of "Intelligent Drive" utilizing IVC and VII, shared real-time traffic 

information can be made available between vehicles. Using information sharing between 

IVC and VII infrastructures, the proposed trajectory prediction model will mainly be 

based on Gipps’ car following model if there is a leading vehicle within the 

communication range. If the leading vehicle is not in presence, the vehicle will utilize the 

classical cell transmission model (CTM) for trajectory predictions. The details of the 

trajectory prediction iteration are shown in Table 1.1. 

 

Table 1.1. Online Iteration For Vehicle Speed Prediction 

Prediction iterations for individual vehicle 

1. Get current speed and position on the route. 

2. If leading vehicle is available (within communication range of 300 meters), go to Step 

3, else go to Step 5. 

3. Retrieve predicted trajectory from leading vehicle, and use Gipps' model for 

prediction. 

4. If predicted trajectory covers the whole trip to the destination, go to Step 7, else go to 

Step 5 

5. Retrieve speed data along the route from traffic center (CTM). 

6. Predict rest of trip based on speed data from RSU. 

7. Broadcast the predicted trajectory, end this iteration. 

 

Using the information provided by the transmitted future information, each vehicle then 

processes the information independently, by utilizing an optimization algorithm. To 

improve vehicle speed prediction accuracy, an offline parameter learning for individual 

driver with regards to the car following model is implemented. The predicted vehicle 

speeds are used to optimize the HEV powertrain, while the vehicle still follows the 

unperturbed actual vehicle speeds. Detailed models of the vehicle speed prediction can 

be found in [59], which is the work of a co-author of the journal. 
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2.3 Power-Split HEV Model 

The vehicle dynamics in this work utilizes the Toyota Hybrid System (THS) power-split 

architecture [5], indicated in Fig. 2.1. The power-train uses a planetary gear set to 

connect the engine, and two electrical machines, both can either work as a motor or 

generator, to allow two degrees-of-freedom in meeting the speed and torque demands. 

The requested torque at the wheels is given by Eq. (2.1) and static equations relating the 

torques and speeds of the engine and the two electrical machines are given by Eq. 

(2.2)–(2.5) [23,63]. 

 

Figure 2.1. Toyota Hybrid System Power-Split Architecture 

�� = ����� ∙ (�������� + 0.5$����%��&'�(�)�����) +��(� ������)  (2.1) 

(* = +(�  (2.2) (�(� + �) = (&� + (*�  (2.3) 

�* = ,-. − �� 0 12314 (2.4) �& = −�� 0 22314    (2.5) 

Both electrical machines are connected to a battery through an inverter, where the net-

power-from-battery is a function of the speeds and torques of both electrical machines. 

����� = 5*6*(*�* + 5&6&(&�&    (2.6) 

�* and �& determine the efficiency terms of the electrical machines, whether to be 

multiplied or divided with the powers of the electrical machines, depending on the 

electrical machine operation; as a motor (�* or �&= -1) or a generator (�* or �& = +1).  

The power of the electrical machine is positive as a motor and negative as a generator. 

The dynamics of the battery state of charge is a function of �����. 
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���� = − 789:;789< :=1>?@@A>?@@)1>?@@B>?@@     (2.7)  

2.4 Optimization Problem and Framework 

The Confined Optimal Operating Line (C-OOL) framework in [23] is used to find the 

correlation between the minimum 
� �
�� and �����. Given a time window [�� , ��], fuel 

consumption cost can be written as  

E = F 
� �
��G��H�I     (2.8) 

where 
� �
�� is the mass fuel rate which depends on the engine operating points (�� , (�), 
between [�� , ��]. Given (�, the value of �� and (* can be calculated in Eq. (2.1, 2.2). At 

time �, �����(�) candidates can be iterated by first setting the (�� , (�) at the extremes of 

an engine map (from highest to lowest fuel consumption). Using the (�� , (�) point, ��,	(* and Eq. (2.1)–(2.5), the motor/generator torques and speeds can be calculated, 

hence the �����(�) limits K�����_*�M(�), 	�����_*�N(�)O from Eq. (2.6). �����(�, �) values are 

then iterated between these two limits. 

 

Figure 2.2. Fuel Consumption Map with fixed �����(�, �) lines (with asterisks) 
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Figure 2.3. Minimum 
� �
�� vs ����� 
Given a �����(�, �) value, Eq. (2.4)–(2.6) are combined to simultaneously solve the 

torques as in Eq. (2.9). Note that (� is iterated between the engine map speed limits, 

while possible combinations of �* and �& are also iterated to find the working operations 

of the electrical machines. Therefore, for a given �����(�, �) value, (� can be iterated to 

find the pair (�� , (�) with the lowest fuel rate 
� �
��(�, �). Shown in Fig. 2.2 are the 

constant �����(�, �) lines (with asterisks) when (� is iterated across the engine map. The 

engine fuel rate in grams/second is also shown by the contour lines without asterisks, 

while the bold green line is the maximum torque line. The process is repeated for all �����(�, �) candidates between the �����(�) limits. The resulting minimum 
� �
��(�, �) vs 

�����(�, �) plot is shown in Fig. 2.3. Another ����� point is also calculated to represent 

engine shut-off, called �����_PQ
�R��(�), by using (�� , (�) = (0, 0) in Eq. (2.1)–(2.6) with a 

fuel rate of zero, as shown by the lowest point in Fig. 2.3. 

S�&�*�� T = UV
VV
W5&6&(& 5*6*(* 00 1 0 123141 0 0 22314YZ

ZZ
[:\ S�����0,-.40 T   (2.9) 

Therefore, at every time step, there is a fixed mapping between minimum 
� �
�� and 

�����. As a result, Eq. (2.8) can be represented as 

E = F 
� �
��(�����(�))G��H�I     (2.10) 

�����(�) is essentially the input which can be chosen at every time step to minimize the 

cost in Eq. (2.10) and to maintain the battery ��� in Eq.(2.7). An overview of the 

optimization principles and its implementation in this framework are presented next. 
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2.5 Pontryagin’s Minimum Principles (PMP) Overview 

This chapter will explain the optimization problem settings and the PMP necessary 

conditions as discussed in [64]. Readers are invited to refer to detailed derivations in 

Appendix 1. Consider an unconstrained optimization with open final time. The 

augmented cost function is given by 

] = ^_ �̀ , �� , ab + F c(`, d, �)G��H�I    (2.11) 

 c(`, d, �) is the cost function and ^_ �̀ , �� , ab is the augmented terminal cost given by 

^_ �̀ , �� , ab = ^_ �̀ , ��b + a,ψ_ �̀ , ��b   (2.12) 

where ^_ �̀ , ��b and a,ψ_ �̀ , ��b are the soft and hard terminal constraints. a, is the 

Lagrangian multiplier that drives the terminal condition ψ_ �̀ , ��b to zero. In this case, a, 

is constant because it is responsible to drive only the final state to zero. The states 

dynamics are given by 

�̀ = �(`, d, �) with initial conditions `(��) = `�  (2.13) 

Therefore, the Hamiltonian is stated as 

f = c(`, d, �) + �,�(`, d, �)    (2.14) 

where �, is the co-states. Given the problem settings in Eq. (2.11)-(2.14), and assuming 

the problem is convex [23], the necessary conditions that minimize Eq. (2.11) are given 

by the adjoint, system and controls equations, including the terminal and transversality 

conditions in Eq. (2.15)–(2.19). Detailed derivations of these conditions can be found in 

Appendix 1. 

�� = −fN,   and  ^NH = �,_��b (2.15) �̀ = �(`, d, �)  and  `(��) = `�  (2.16) 

f
 = 0 (2.17)  (^� +f)|�H = 0  (2.18) 

ψ_ �̀ , ��b = 0 (2.19) 

 

 



15 

 

2.6 Implementation of PMP with Real-Time Traffic Information 

A fast optimization algorithm is needed to optimize the powertrain with traffic predictions 

in real-time. Therefore, in this chapter, the optimization is carried out by first fitting the 

powertrain optimization framework in Chapter 2.4 into the PMP optimization problem in 

Chapter 2.5. Then the optimization problem is solved analytically using PMP necessary 

conditions in Eq. (2.15)-(2.19). The cost function in Eq. (2.10) is augmented by 

introducing a hard terminal constraint in Eq. (2.12) to ensure ���_��b reaches a desired 

����  at the end of a prediction cycle 

] = hK���_��b − ����O + F 
� �
��[�����(�)]G��H�I   (2.20) 

where the states equation is given by  

�̀ = ���� [�����(�)] = − 789:;789< :=1>?@@A>?@@(�))1>?@@B>?@@    (2.21) 

with `(��) = ���� as the initial conditions. Note that both the cost and the state 

dynamics are functions of the input �����(�). The Hamiltonian in Eq. (2.14) can be 

expressed as 

f = 
� �
��_�����(�)b + ����� _�����(�)b   (2.22) 

Using the Hamiltonian above in the adjoint Eq. (2.15) give 

�� = −fN = −K
� �
��_�����(�)b + ����� _�����(�)bO2ij = 0 (2.23) 

�_��b = ^NH = %%2ij_�Hb Kh_���_��b − ����bO = h  (2.24) 

From Eq. (2.23) and (2.24), it can be deduced that 

�(�) = h = constant      (2.25) 

The derivative of the Hamiltonian with respect to input �����(�) in Eq. (2.17) gives 

f
 = %%A>?@@(�) K
� �
��_�����(�)bO + � %%A>?@@(�) K���� _�����(�)bO  (2.26) 
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The first term cannot be derived analytically and has to use approximation. Recall in 

Chapter 2.4, the C-OOL mapping between minimum 
� �
�� and ����� can be found at 

every time step. The relationship between minimum 
� �
�� and ����� was found to be 

almost linear (Fig. 2.3) 


� �
��(�, �) = ��(�)�����(�, �)     (2.27) 

��(�) is the approximated linear slope for a requested vehicle load at time �, while � is 

the index of the iterated �����(�) candidates (Chapter 2.4). In a sense, the approximated ��(�) represents the impact in fuel use 
� �
�� when choosing different amount of battery 

power, �����,  for a given vehicle power demand. Therefore, a mapping of ��-slope at 

different vehicle power demands, calculated from different vehicle speeds and 

accelerations, can be done offline (Fig. 2.4). 

 

Figure 2.4. ��-slope Look-up Map 

The 2nd term in Eq. (2.26) can be differentiated analytically from Eq. (2.7). Setting Eq. 

(2.26) to zero and solving for �����(�) gives 

�����(�) = \=1>?@@ klRm) − 0 n�I(�)B>?@@4)o    (2.28) 

Note that in Eq. (2.28), the constant-	� from Eq. (33) has not been determined yet. � 

however, can be calculated when charge sustaining operation in Eq. (2.29) is specified 

by setting the sum-of-	��� � between [�� , �� − G�] to be zero as in Eq. (2.30). 
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���_��b = ���(��)  (2.29)  ∑ ��� �(�)�H:%��I = 0  (2.30) 

Replacing �����(�) in Eq. (2.28) into the ���-dynamics in Eq. (2.7) gives 

��� �(�) = k n)B>?@@< 1>?@@�I(�)o − q 789)B>?@@1>?@@r   (2.31) 

Equation (2.31) is the ���-dynamics at a specific time. Summing all ��� �(�) between [�� , �� − G�] 
  ∑ ��� �(�)�H:%��I = k n)B>?@@< 1>?@@∑ 0 \�I(�)4�H:%��I o − q0�H:�I%� 4 789)B>?@@1>?@@r (2.32) 

The left hand side of Eq. (2.32) represents the sum-of-��� �(�) at the end of the predicted 

trip. This term represent the amount of sum-of-��� �(�) that will be reached at the end of 

a predicted trip. This value would be zero for charge sustaining operation if there is only 

a single prediction cycle. However, in this work, the prediction will be updated repeatedly 

at a fixed time intervals before the driving cycle ends. Consequently, the sum-of-��� �(�) 
at the start of the current prediction time will be non-zero because of the sum-of-��� �(�) 
accumulated from the start of the trip, up to the current update time. The amount of sum-

of-��� �(�) that need to be achieved by the end of the current prediction length, to 

compensate the balance from the previous cycles is therefore, the negative of the sum-

of-��� �(�) from initial time to the update time. Therefore, the left hand side term can be 

replaced as the negative of the balance sum-of-��� �(�) at update time. 

−∑ ��� ��I = k n)B>?@@< 1>?@@ ∑ 0 \�I(�)4�H:%��I o − q0�H:�I%� 4 789)B>?@@1>?@@r  (2.33) 

Solving for � from Eq. (2.33) yields 

� = 2t����) ����� q∑ 0 \�I(�)4�H:%��I r:\ q0�H:�I%� 40 789)B>?@@1>?@@4 − ∑ ��� ��I r (2.34) 

Using Eq. (2.34), a constant � is solved from future information of ��(�) between [�� , �� − G�]. � is then used with the current ��(�) to calculate the optimal input at the 

current time �����(�), given by Eq. (2.28). Note that in Eq. (2.33) and (2.34), the term �� 
now represents the current update time. 
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The main contributions of the proposed optimization method come from the explicit 

derivations of a constant � in Eq. (2.34) and control input �����(�) in Eq. (2.28) by 

combining the necessary conditions in Pontryagin’s Minimum Principles in Eq. (2.23, 

2.24, 2.26) and the charge-sustaining condition in Eq. (2.30). This is made possible by 

approximating the constant ��-slopes, found in the C-OOL framework [23], in order to 

solve the first term in Eq. (2.26) analytically. In addition, generating a lookup map of ��-
slopes from different vehicle power demands offline also further reduces the optimization 

computation time. A fast optimization method is necessary to optimize the HEV 

powertrain in real time which utilizes predicted traffic information that changes at short 

time intervals. In [58], the measured max calculation time is 2.6s for a 100s prediction 

cycle with a 1s time-step, using Intel® 2.66 GHz Core-2-Duo™ processor. Given the 

speed, this method could potentially be used in real-time. 

2.7 Pbatt Constraints 

The optimization method explained in Chapters 2.5 and 2.6 is based on an 

unconstrained optimization method. However, due to physical limitations of the engine, 

there exist constraints on input  �����, depending on the power demand. Since ����� is a 

measure of power drawn from the battery, the upper limit represents the maximum 

power that can be drawn from the battery to overcome a power request, or the engine 

shut-down point, �����_PQ
�R��. Slightly below the �����_PQ
�R�� is the �����_*�N point, 

where the engine is operating at its lowest point (lower left corner of engine map in Fig. 

2.2). Note that the engine cannot operate between these two points. The lower limit, �����_*�M is calculated from the highest operating point of the engine (upper right corner 

of engine map in Fig. 2.2). �����_*�M value is negative, meaning the battery is being 

charged.  

 

Figure 2.5. ����� Limits and Vehicle Speed 
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Figure 2.5 shows a sample of the ����� lines for a predicted speed. The green, black, 

blue and red lines represent �����_PQ
�R�� , �����_*�N, calculated ����� and �����_*�M. 

2.8 Pbatt Adjustment 
Since we are using an unconstrained optimization method, some of the calculated ����� 
points could exceed the �����_PQ
�R�� upper limit. This is because ��(�) values, which are 

used when calculating � and �����, do not contain any information on ����� limits. 

Although �����_PQ
�R��, �����_*�N and �����_*�M  limits were calculated before, they were 

used only to define the range for ����� iterations, in order to calculate the slope �� 
(Chapter 2.4). The slope �� represents the impact of changing input ����� to fuel 

consumption for a given vehicle power request and the optimization procedure make use 

of this information in � and ����� calculations in Eq. (2.28) and (2.34) without considering 

the upper or lower limits of �����. It is interesting to see that if the calculated ����� is 

higher than �����_PQ
�R��, the resulting 
� �
�� is negative. However, since the derivation of 

optimal �����  is based on unconstrained optimization formulations, this physical 

limitation of the engine operation to the input ����� is not being considered, as long as 

the calculated input ����� maintain a charge sustaining condition. With the �����_PQ
�R�� 

constraints, ����� points that exceed the �����_PQ
�R�� limit are lowered to the constraints 

values, causing the power drawn out from the battery to be smaller than calculated. Note 

that the calculated ����� ensures charge sustaining and therefore, changing these values 

will cause a non-charge-sustaining condition. Therefore, the ����� values need to be 

adjusted to ensure charge-sustaining operation. 

2.8.1 Pbatt Adjustment for Accurate Traffic Prediction 

 

Figure 2.6. ����� Adjustment Procedure 

(a) (b) (c) 
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In this work, an accurate prediction case is considered first in order to benchmark the 

maximum fuel savings potential from the optimization method. Shown in Fig. 2.6 is the ����� adjustment procedure if the calculated ����� are above �����_PQ
�R��. The blue, red 

and black lines represent the calculated ����� , �����_PQ
�R�� and �����_*�N respectively. In 

Fig. 2.6a, calculated ����� points that exceed �����_PQ
�R�� limit are lowered down to the 

�����_PQ
�R�� line. This change in ����� however will result in a non-zero sum-of-	��� � or 

excess in battery charge. Therefore, other ����� points that are below the �����_*�N line 

are moved higher to utilize the excess battery charge (Fig. 2.6b – 2.6c) to ensure charge 

sustaining condition. Note that higher ����� means higher use of battery power and lower 
� �
��. 
2.8.2 Pbatt Adjustment for Traffic Prediction with Error 

Predicting the behavior of a complex system, such as the speeds of interconnected 

vehicles will result in prediction errors. However, despite the inevitable presence of the 

prediction errors, it would be useful to identify how these errors would impact the 

optimization procedure. First, the ��(�) across the prediction length between [�� , �� − G�] 
is interpolated from the look-up map using the predicted speeds and accelerations. � is 

then calculated from Eq. (2.34) and the input �����(�) is calculated from � and the ��(�) 
at current time. Therefore, prediction errors will affect ��(�) interpolation, � calculation 

and eventually, �����(�) calculations. 

Note that ��(�) at current time can be interpolated using actual vehicle speed and 

acceleration. However, ��(�) across the prediction length are needed to calculate �, 

which introduces errors in ����� calculations. If calculated �����(�) is outside of the ����� 
limits, it will be limited to the ����� limit value. However, due to the absence of accurate 

prediction, the limits can only be approximated using predicted data. Consequently, the ����� limits are inaccurate and in addition, cannot be used to adjust ����� individually 

(Chapter 2.8.1). Since ����� adjustment cannot be performed, the SOC will deviate to a 

high value, which is undesirable (battery overcharge). 

To avoid battery overcharge, the parameter that can be adjusted is �. Although ����� 
cannot be individually adjusted due to the lack of accurate ����� upper limit, predicted ����� upper limit can be used to adjust � to avoid the SOC from deviating too high. First, 
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� is calculated from the predicted cycle using Eq. (2.34). Using this � and the predicted 

cycle, a predicted ����� for [��, �� − G�] is calculated using Eq. (2.28). In addition, the 

predicted upper limit �����_PQ
�R�� for [�� , �� − G�] is also calculated. Any �����(�) that 

exceeds �����_PQ
�R�� will be limited to the �����_PQ
�R�� value. Note from Eq. (2.7), ����� is 

an input to ��� �. Therefore adjusting ����� to �����_PQ
�R�� at time � will cause a change in 

��� �. 

∆��� �(�) = ��� �_�����(�)b − ��� � 0�����_PQ
�R��(�)4  (2.35) 

The summation of all ∆��� � due to ����� adjustments at time � = ��%v, called ∑ ∆��� ��?wx , 

can therefore be treated as an additional sum-of-��� �(�) that need to be compensated to 

ensure charge sustaining, similar to the derivation of � in Eq. (2.32)-(2.34). Therefore 

Eq. (2.34) can be modified as 

� = 2t����) ����� q∑ 0 \�I(�)4�H:%��I r:\ q0�H:�I%� 40 789)B>?@@1>?@@4 − ∑ ��� ��I − ∑ ∆��� ��?wx r (2.36) 

Using this �, the process is repeated several times to reduce the amount of adjusted �����  and hence reducing ∑ ∆��� ��?wx . The resulting � is then used with ��(�) 
interpolated from actual drive cycle at current time to calculate the current input ����� 	(�). 
2.9 Rule-Based HEV Powertrain Optimization  

One way to benchmark the performance of the optimization strategy presented in 

Chapter 2.6 to Chapter 2.8 is by comparing with the Rule-Based method employed in 

HEV. In general, there is a two-level controller in a rule-based strategy. The first selects 

the most efficient engine operating points, and hence the operating points of the 

electrical machines, by interpolating the iso-power curves of the combined power 

demands from the wheels and the battery on the engine map [65-67]. The second 

decides whether or not to implement the commands from the first controller, depending 

on the vehicle’s conditions [63,67,68]. For example, during an all-electric range 

operation, the second controller will over-ride the first controller decision by turning off 

the engine if the power demand is low and the SOC-level is enough. These methods are 

also embedded in a vehicle simulation package, ADVISOR 2003, developed by the 

National Renewable Energy Lab [69]. Simulation results with the UDDS driving cycle is 
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shown to be similar with simulations by [63]. Details of the Rule-Based method used in 

this work can be found in Appendix 2. 

2.10 Simulation Setup 

To test the performance of the proposed traffic prediction and powertrain optimization 

method, a simulation using microscopic traffic simulator VISSIM is conducted, based on 

artificially constructed signalized roads. VISSIM is a commercial microscopic traffic 

simulator, and is built on the Wiedemann’s car following model [70]. It has been utilized 

extensively in various applications, mostly related with the traffic evaluation. We need to 

point out that, the simulated vehicle trajectories from the VISSIM program could only 

reflect simplified driving dynamics to a limited extent, and would not be capable to fully 

capture the complexity of human driving behaviors. Still, the simulation experiment is a 

much more cost-effective alternative over the real world experiment and is useful to gain 

insights regarding the performance of the powertrain optimization algorithm. Two cases 

are constructed with 6 miles and 15 miles roads. The link lengths are randomly selected 

ranging from 600 ft to 4000 ft. Fixed-time signal controllers are used with a common 

cycle length along the road. For simplicity, only one lane highway is simulated without 

turning vehicles at intersections. By doing so, the randomness from lane-changing, as 

well as the inflow and outflow of traffic are eliminated. 

The layouts of both networks are shown in Fig. 2.7. Vehicles are simulated to travel 

through the networks circularly. The trajectory data of each vehicle during the first 

simulation run is collected for parameter learning only. The data from the second run 

with the trained parameters are then used for prediction and powertrain optimization. For 

comparison purposes, prediction and optimization without parameters learning are 

performed as well. 

 

Figure 2.7. Network Layout in VISSIM (not scaled) for 6-mile (top) and 15-mile (bottom) 

Cases 

Travel Direction 
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In order to investigate the effects of optimization frequency, the trajectory prediction for 

every vehicle is updated every 10, 20, 30 and 40 seconds for both the 6-mile and 15-

mile cases. 30 vehicles are selected to test the optimization effectiveness. Two 

categories of prediction update cases are investigated: accurate-prediction and 

prediction-with-error. In accurate-prediction cases, driving trajectories from the VISSIM 

traffic simulator, which represent the actual drive cycles, are used in the optimizations at 

every prediction cycle. The predictions based on Gipps’ and CTM models are called the 

prediction-with-error, and is further divided into two categories, prediction with and 

without parameter calibrations. Finally, the prediction in the last 100 seconds is assumed 

to be accurate to allow a charge-sustaining condition for the prediction-with-error cases 

to get fair fuel economy comparisons with accurate-prediction and Rule-Based. In the 

Rule-Based method, the battery will start to charge or discharge to the initial capacity 

during the 100 seconds before the final time. 

2.11 Simulation Results 

First, the errors from vehicle speed predictions are calculated. Simulation results for all 

30 vehicles in the 6-mile and 15-miles cases are then discussed. Next, a single vehicle 

in the 6-mile case is selected for a more detailed analysis. 

2.11.1 Vehicle Speed Prediction Performance 

The RMSE of time series of the speed is calculated at every update time to quantify the 

traffic prediction error. Since the predictions for 20, 30 and 40 seconds update times are 

sampled in different frequencies from the predictions in the 10 seconds update time, only 

RMSE of 10 seconds update time is shown here. 

For each vehicle, the RMSE along the trip are then averaged, and the results are shown 

in Fig. 2.8. The blue bars show the RMSE with parameter learning and the red bars 

without parameter learning. As shown in the figure, the improvements with parameter 

learning are very modest. The possible explanation is as the following. The prediction 

error for the first vehicle is from the CTM prediction. The error of this leading vehicle's 

trajectory then propagates to its followers' prediction and it will be hard to improve by the 

parameter learning for the followers. The RMSE distribution for the 6-miles case was 

observed to be larger than the 15-mile case, which is most likely due to the different 

densities of intersections in the two layouts (Fig. 2.7). In the 6-mile case, the signal 
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impact is more substantial, with more closely spaced intersections, resulting in more 

frequent speed changes than in the 15-mile case. 

 
 Prediction w learning Prediction w/o learning 

Average RMSE 14.40 14.78 

 
 Prediction w learning Prediction w/o learning 

Average RMSE 7.54 7.87 

Figure 2.8. Average Predicted Vehicle Speed RMSE Comparisons for 6-mile (top) and 

15-mile (bottom) Cases 

To reveal more details of the prediction error, the predicted and observed speeds of 

vehicle 12, 6-mile case is highlighted in Fig. 2.9. The RMSE is 19.3 mph for this 

prediction, which is typical for the 6-mile case. In this case, two main factors contributing 

to the prediction error can be seen. First, the predicted speed is shifted from the 

observed speed, indicated by letter A, which could substantially contribute to the RMSE. 

This indicates delayed maneuver time instances between the prediction and 

observation, even though the predicted maneuvers, e.g. acceleration or deceleration, 
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are correct. Secondly, prediction of signal impact could be biased, especially for long 

term prediction. For instance, as indicated by letter B, the subject vehicle stopped at a 

red traffic signal, while the prediction indicates the vehicle arrived at a different arrival 

time, and passed the intersection smoothly. These types of details would be difficult to 

capture accurately on a microscopic level. However, even with relatively large RMSE, 

consistent patterns of accelerating, decelerating and cruising were found between the 

observed and predicted data. It has to be mentioned that the vehicle speed prediction 

results in this chapter are part of a co-author works in [59], but is presented in this thesis 

for clarity in the powertrain optimization results in the following chapters. 

 
Figure 2.9. Comparison of Predicted and Observed Speeds for Vehicle 12, 6-mile Case 

2.11.2 Optimization Performance 

6-mile Case: Shown in Fig. 2.10 are the comparisons of average MPG for 30 vehicles 

for 10, 20, 30 and 40 seconds prediction update times and the Rule-Based method 

(denoted by RB) for the 6-mile case. Accurate-prediction shows roughly 9.6% 

improvement while Prediction with error cases show 1.6% to 4.3% improvements. 

The MPG’s between prediction without (Fig. 2.10a) and with (Fig. 2.10b) parameters 

calibration are roughly the same. This can be explained by calculating the Mean-

Absolute-Percentage-Error for � (�–MAPE) between prediction-with-error and accurate-

prediction in each vehicle, for every prediction update case. Fairly similar distributions of �–MAPE, between prediction without and with parameters calibration, is shown for every 

prediction update case in Fig. 2.11. As explained in Chapter 2.8.2, prediction errors will 

affect � calculation, which is used to calculate the input �����, causing deterioration in the 

MPG. Therefore, if the �-error (represented by �–MAPE) are similar between prediction 
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without and with parameters calibration, then the MPG’s should also be similar. Also, �–

MAPE’s are shown to be small, ranging from 0% to 7% (Fig. 2.11). 

  

Figure 2.10. Ave. MPG for 6-mile Case without (a) and with (b) Prediction Parameters 

Calibration 

 

 

Figure 2.11. �-MAPE distribution for 6-mile Case without and with Parameters 

Calibration 

(a) (b) 
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Figure 2.12. �-MAPE against 10s-update for 6-mile Case without (a) and with (b) 

Parameters Calibration 

Although parameters calibration has no significant effects on the results, the MPG’s are 

slightly higher with longer update time (Fig. 2.10). The reason can be seen when 

comparing the �-MAPE distributions for every prediction update case, which is 

calculated against the 10s accurate-prediction case (Fig. 2.12). The �-MAPE is 

calculated relative to the 10s accurate-prediction case in order to compare the � errors 

at 20s, 30s and 40s update times with the � error at 10s update time. The figures show 

distribution at lower values with longer update time, indicating lower � errors at longer 

update time, which is caused by prediction accuracy, as will be discussed next.  

Figure 2.13a-2.13c shows the speed predictions at time instances of 50s, 60s and 70s, 

the actual speed and the initially predicted speed. Figure 2.13d shows � for 10s-

Prediction update (accurate and predicted) and 40s-Prediction update (predicted). The 

prediction at every 10s between 50s and 70s does not show much improvement when 

compared to the actual speed, although it captures the general trend (Fig. 2.13a-2.13c). 

This can happen if the vehicle becomes isolated or no new information is transmitted to 

improve the prediction at certain time intervals. Prediction error introduces error in �, as 

shown in Fig. 2.13d at 50s. However, since the prediction error does not improve at 60s 

(Fig. 2.13b), � error at 60s is almost the same as � error at 50s for 10s-Prediction case 

(Fig. 2.13d). � for 40s-Prediction case however does not change between 50s and 70s 

(a) (b) 
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since it is only updated every 40s. In this case, � error for 40s-Prediction case is shown 

to be lower than 10s-Prediction within the time interval. Therefore, if the prediction error 

does not improve at every update time, there will be a steady-state � error with respect 

to the accurate-prediction case, causing higher overall � error, which will impact the 

MPG. However, � error can be reduced if the speed prediction becomes more accurate 

at every update time.  

        

 

Figure 2.13. � Comparisons between 10s-Accurate, 10s-Prediction and 40s-Prediction 

 

 

 

 

 

 

 

 

(a) (b) (c) 

(d) 
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15-mile Case: Shown in Fig. 2.14 are the comparisons of average MPG for 30 vehicles 

for 10, 20, 30 and 40 seconds prediction update times and the Rule-Based method for 

the 15-mile case. Accurate-prediction shows roughly 7% improvement while prediction 

with error shows 2.6% to 3.5% improvements. Similar behaviors found in the 6-mile case 

are also found in the 15-mile case, as shown by the �-MAPE distributions in Fig. 2.15 

and 2.16.  

 

Figure 2.14. Ave. MPG for 15-mile Case without (a) and with (b) Prediction Parameters 

Calibration 

 

Figure 2.15. �-MAPE distribution for 15-mile Case without and with Parameters 

Calibration 

(a) (b) 
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Figure 2.16. �-MAPE against 10s-update for 15-mile Case without (a) and with (b) 

Parameters Calibration 

2.11.3 Case Study: Single Vehicle Simulation 

To further analyze the fuel savings, the dynamics of vehicle 28 with 10s update (6-mile 

case) is selected. Accurate-prediction (AP), Prediction-with-Error (PE) and Rule-Based 

(RB) achieved 47.7552 MPG, 47.6164 MPG and 42.4569 MPG respectively. Figure 

2.17-2.19 show the vehicle speed, battery ���, cumulative fuel consumption and engine 

torque-speed for all three cases. 

Shown in Fig. 2.17, the ��� for PE case follows the AP closely, while the RB shows 

more battery use with lower ��� level. This is also reflected in the cumulative fuel 

consumption plot, where the rule-based consumed less fuel, but at the expense of lower 

battery ���. Note that at the beginning of the simulation, with high vehicle speed 

requests, RB depletes the battery. In contrary, the AP and PE cases both charge the 

battery slightly in order to ensure charge-sustaining operation. The same pattern can 

also be seen between 100s and 140s. These actions allow the RB cumulative fuel 

consumption to be lower before the end of the cycle. At around 380s however, the ��� 

for RB becomes too low at 50%, which then triggers a battery-charging action that saw 

the ��� increased to 55%, and can be seen with higher engine torque and speed (Fig. 

2.18–2.19). Around 650s, the RB is forced to charge the battery back to the initial ���. 

Unfortunately at this point, there is a large acceleration, which therefore forces the RB to 

operate inefficiently to charge the battery and meet the high power demand. It can be 

(a) (b) 
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seen that the RB cumulative fuel starts to increase at a fast rate and becomes larger 

than the AP and PE cases around 670s. The AP and PE cases however maintained the ��� level around 57% before utilizing the future deceleration to charge the ��� back to 

60% at final time. 

 

Figure 2.17. Vehicle Speed, Battery ��� and Cumulative Fuel Consumption 

It can be seen throughout the cycle that the battery assisted the engine at high power 

demands and charges back the battery during decelerations. However, the amount of 

electric power used at a particular time to assist the engine plays a vital role to ensure 

an overall good fuel economy performance. Knowing the future information allows the 

AP and PE cases to make good judgment to avoid discharging the battery too much in 

the middle of the cycle and therefore allowing it to avoid the high fuel costs at the end of 

the cycle. It can also be seen that RB spends a significant amount of fuel towards the 

last 100 seconds in order to maintain a charge-sustaining condition. Since the ratio of 

the charge-sustaining interval over the total travel time for 6-mile case is bigger than 15-

mile case, this could explain why the average MPG for RB is worse for 6-mile case than 

15-mile case (Fig. 2.10 and Fig. 2.14). 
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Figure 2.18. Engine Torque for Accurate, Predicted and Rule-Based Cases 

 

Figure 2.19. Engine Speed for Accurate, Predicted and Rule-Based Cases 
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2.12 Conclusion 

In this work, a real-time hybrid-electrical-vehicle optimization method utilizing a traffic 

prediction model that predicts the vehicle trajectory is proposed. The prediction is done 

by assuming availability of inter vehicle communication (IVC) and vehicle infrastructure 

integration (VII) information. The prediction, optimization and update structure is 

simulated and several conclusions can be made. First, the traffic model parameter 

calibration shows minimal improvements to prediction accuracy due to the error from the 

leading vehicle and has little effects on the MPG of the vehicles. Secondly, results show 

that a frequent update time does not necessarily means better MPG performance. If the 

vehicle trajectory prediction error at an update time does not improve from previous 

update time, the �-error will be inherited, affecting MPG performance. This however is a 

limitation of the IVC and VII network, where the vehicle interconnection with the whole 

prediction network depends on the vehicle’s location. There will be certain durations 

where the information cannot be sent to the vehicle, causing the vehicle’s prediction to 

be unchanging. Therefore, it would better to know when to resume or stop updating � 

when a new prediction is received, depending on the prediction’s accuracy. Thirdly, 

accurate prediction records an averaged 7% to 9.6% MPG’s improvements over Rule-

Based method, which could be significant when translated to a network level savings 

[71], but is modest for a single vehicle. The reason is because an unconstrained 

optimization method is used on a system with physical limitations. Therefore, manually 

constraining the input may not be the best solution and a better result could be gained 

using a constrained optimization derivation. Finally, the impact of prediction errors to the 

optimization comes from � calculation. Therefore, a more robust method to calculate � is 

needed in the presence of these errors. 
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Chapter 3 

SP-Based Constrained HEV Powertrain 

Optimization 

 

3.1 Motivation 

Connected Vehicle (CV) technology allows traffic information sharing between vehicles. 

With Inter-Vehicle-communication (IVC) and Vehicle-Infrastructure-Integration (VII), 

vehicle loads can be better predicted across a future time window and can be utilized in 

vehicle powertrain optimization to save fuel. This is especially true for Hybrid Electrical 

Vehicle (HEV) where the powertrain is equipped with an additional power storage 

device, namely a battery. The battery could assist, store or replace the engine power to 

avoid the engine from operating at inefficient operation regions. Particularly, a HEV with 

power-split powertrain architecture employs a continuous-variable-transmission (CVT), 

which gives greater flexibility in selecting any desired engine operating points for any 

vehicle load. However, considering the physical constraints and nonlinearity of complex 

systems such as the internal combustion engine and the battery, optimizing the HEV 

powertrain using traditional optimization methods are computationally heavy. 

Furthermore, traffic environment is transient, where traffic states change all the time, 

affecting the vehicle load predictions from IVC and VII. In light of this, there is a need for 

a fast HEV powertrain optimization that can be implemented with repeated speed 

prediction updates due to the transient nature of traffic. For practical implementation, the 

engine operating range and the engine transient dynamics also have to be considered. 

Previous researches in this area have not cohesively address the optimality, engine 

constraints, speed of calculation and charge-sustaining (CS) conditions. In this chapter, 

a fast HEV powertrain optimization that considers the associated constraints and engine 

transient dynamics is proposed for practical implementation. 
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3.2 Power-Split HEV Model 

The powertrain dynamics in this work utilizes the Toyota Hybrid System (THS) power-

split architecture [5] (Fig. 3.1). The powertrain uses a planetary gear set to connect the 

engine, and two electrical machines, both can either be a motor or generator, to allow 

two degrees-of-freedom in meeting the speed and torque demands. Static equations 

relating the torques and speeds of the engine and the two electrical machines are given 

by Eq. (3.1–3.5). Notations m and g are used to differentiate between the electrical 

machines. T is the torques, ω is the rotational speeds (notations e, g and m denote the 

engine, generator and motor) while S is the sun-gear teeth, R is the ring gear teeth and 

K is the final gear ratio between the motor and the driveline. Tv in Eq. (3.5) is the 

requested vehicle torque calculated from the rolling resistance, aerodynamic drag and 

vehicle acceleration respectively, while ωv is the vehicle speed. 

 

Figure 3.1. Toyota Hybrid System Power-Split Architecture 
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ηm and ηg are the efficiencies of the electrical machines (assumed constant). km and kg 

value can either be -1 or +1, depending on the operation of the electrical machines (-1 if 

motor or +1 if generator). An electrical machine is either in motoring or generating mode 

if the product of torque and speed is either negative or positive respectively. The 

dynamics of the battery State-of-Charge (SOC) is a function of Pbatt [68]. 

               
battbatt

battbattococ

QR

PRVV
COS

2

42 −−
−=&     (3.7) 

3.3 Optimization Problem and Framework 

Given a time window [t1, tN], fuel consumption cost can be written as  

        
1

Nt

fuel

t

J m dt=∑ &     (3.8) 

where 
� �
�� is the mass fuel rate which depends on the engine operating points (Te, ωe) 

while dt is the time step. With HEV, fuel optimization is achieved by optimizing the power 

split between the engine and the battery for a given vehicle load. For a selected battery 

power, the engine operating point can be optimized to achieve minimum fuel 

consumption while meeting the vehicle load requirement. This correlation between 

minimum fuel consumption, 
� �
�� and input to the battery, Pbatt for any given vehicle load 

is referred to as the Confined-Optimal Operating Line in [23] which will be discussed 

briefly. 

   





























































+










+
=

















−

0
01

10

0

1

K

T

P

RS

S

RS

R

T

T

T
v

battm

km

mg

kg

g

e

m

g

ωηωη

      (3.9) 

Given ωv and αv, ωm and Tv can be calculated in Eq. (3.2,3.5). Pbatt candidates can be 

iterated by first setting the (Te, ωe) at the extremes of an engine map (from highest to 

lowest fuel consumption). Then with Eq. (3.1–3.5) the motor/generator torques and 

speeds can be calculated, hence the Pbatt limits. Pbatt values are then iterated between 
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the Pbatt limits. Given a Pbatt value, Eq. (3.3–3.6) are combined to simultaneously solve 

the torques in Eq. (3.9). 

Note that ωe is iterated between the engine map speed limits, while possible 

combinations of kg and km, are also iterated to find the working operations of the 

electrical machines. Therefore, in this sense, for a given Pbatt value, ωe can be iterated to 

find the pair (Te, ωe) with the minimum fuel rate 
� �
��. The process is repeated for all 

Pbatt candidates between the Pbatt limits. The resulting minimum 
� �
�� vs Pbatt plot for a 

given vehicle load is shown in Fig. 3.2. In essence, for a specific vehicle power demand 

at a time instance, the minimum fuel consumption 
� �
�� for different levels of battery 

charging and discharging in a power-split HEV given by Pbatt is represented by this fixed 

nonlinear relationship. This relationship can be calculated offline and stored as a lookup 

table for all possible vehicle power demand values. 

 

 

Figure 3.2. Minimum 
� �
�� VS Pbatt 

Therefore, Pbatt in Eq. (3.10) is the input that can be chosen between the known 

constraints Pbatt_lo and Pbatt_hi at every time instance ti to minimize the cumulative fuel 

consumption cost represented in Eq. (3.11). 
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1
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t

J m P t dt=∑ &     (3.11) 

Intuitively, to minimize fuel use, the HEV can operate in all-electric mode until the battery 

is depleted. However, since the recommended battery operating range is limited [72], 

and for fair comparisons between different optimization strategies, the battery charge 

sustaining (CS) condition is introduced to ensure the battery SOC is maintained, 

SOC(tN)= SOC(t1). 

     ( )( )
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SOC P t
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The battery SOC dynamics is given in Eq. (3.7). The CS condition represents the 

constraint in the optimization problem.  Therefore, the nonlinear cost function is given by 

Eq. (3.10), the input constraints are given by Eq. (3.11), a nonlinear constraint as a 

function of the input is given by Eq. (3.12) and the state dynamics is given by Eq. (3.7). 

3.4 Input Rate Constraint 

The optimization problem defined so far will suffice in simulations. However, in order to 

implement the optimized engine operating points in actual engine, the engine speed and 

engine torque cannot change too fast between two time steps. Since there is direct 

correlation between input Pbatt and engine operating point, Pbatt jump between two time 

steps is therefore constrained. 

 

Figure 3.3. Pbatt Jump Constraint 
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Figure 3.3 shows the maximum Pbatt-jump ∆Pbatt between two time steps. As discussed 

before, at every time step Pbatt is iterated between Pbatt_lo and Pbatt_hi, which are 

determined based on the highest and lowest engine operating points. Therefore, the 

relative position of Pbatt(ti) between Pbatt_lo(ti) and Pbatt_hi(ti) at time step (ti) and the relative 

position of Pbatt(ti+1) between Pbatt_lo(ti+1) and Pbatt_hi(ti+1) at time step (ti+1) can be directly 

related to the engine operating points at the two time instances. Restricting the Pbatt-jump 

between these two relative Pbatt positions, as shown in Fig. 3.3, will restrict the engine 

transient operation. This constraint is expressed as 

   _ 1( ) ( )batt rel i batt i battP t P t P+ − ≤ ∆  [ ]1 1: ,i Nt t t −∀     (3.13) 

where Pbatt_rel(ti+1) is the Pbatt(ti+1) between Pbatt_lo(ti+1) and Pbatt_hi(ti+1) relative to Pbatt(ti) 

between Pbatt_lo(ti) and Pbatt_hi(ti) 
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The inequality in Eq. (3.13) can be equally written as 2 sets of (N-1) linear constraints 

 _ 1( ) ( )batt rel i batt i battP t P t P+ − ≤ ∆   [ ]1 1: ,i Nt t t −∀   (3.14) 

_ 1( ) ( )
batt rel i batt i batt

P t P t P+− + ≤ ∆  [ ]1 1: ,i Nt t t −∀   (3.15) 

Note in Eq. (3.14, 3.15), if the constraint is enforced by one of the inequalities, the other 

inequality will be complimentary for all positive and negative values of Pbatt. For the 

specific engine used in this work, a ∆Pbatt value of 0.5 kWatts is found to be a good value 

to ensure feasible engine dynamics. 

Overall, the HEV powertrain optimization problem is solved in two steps. First, given the 

flexibility of the power-split HEV powertrain, the relationship between the minimum fuel 

consumption and power-split levels defined by Pbatt is calculated and stored offline for all 

possible vehicle power demands. This relationship ensures the engine is operating at 

the most optimal point for every possible HEV power-split level for a given vehicle power 

demand. Secondly, by utilizing the separable structure found in the reformulated 
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problem, Separable Programming (SP) is used as a fast and effective optimization 

solution to the problem, as will be discussed next. 

3.5 Separable Programming Implementation 

First we consider the optimization problem defined by Eq. (3.10-3.15). Note the cost 

function in Eq. (3.11), the equality constraint in Eq. (3.12) and inequality constraints in 

Eq. (3.14, 3.15) are additive over time where input Pbatt is the sole decision variable. At 

each additive term in the cost and constraints functions, input Pbatt for a specific time 

instance ti appears alone and uncoupled with input Pbatt from other time instances, which 

is common for many dynamical system. Since the cost and constraints functions are 

additive over time and input Pbatt appears separately in each additive term, the problem 

therefore has a separable structure and suitable for Separable Programming 

implementation. 

In SP, the nonlinear cost function and state dynamics are approximated with piecewise 

linear functions with the introduction of new variables λ’s. The λ-method uses actual data 

points for piecewise linear functions fitting [73]. In the example below, sampling points of 

M = 5 is used for better visualization, but M = 10 and 20 are used in the optimization. 

Note however the there is a tradeoff when choosing the number of sampling points. The 

cost and state dynamics are better represented with more sampling points, but will 

increase the dimension of the piecewise-linear problem. 

Figure 3.4 shows the minimum fuel rate interpolated from the engine map as Pbatt(ti) is 

sampled from Pbatt_lo(ti) to Pbatt _hi(ti) using the procedures in Chapter 3.3. Note that the 

shape of the cost function is convex, which guarantees the adjacency criterion for cost 

minimization that requires the actual nonlinear cost to be lower than the approximated 

piecewise-linear cost between the sample points. The battery SOC dynamics is 

calculated for each of the Pbatt(ti) sample point and plotted as shown in Fig. 3.5. The 

sampling values are stored as a lookup table to provide the cost and state-dynamic 

relationship with the input for a given vehicle load at a specific time. 
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Figure 3.4. Linear Piecewise Approximation of Cost 

 

 

Figure 3.5. Linear Piecewise Approximation of SOC&  

The cost, state-dynamic and input are then represented as linear functions of λij at time 

step (ti) in Eq. (3.16-3.18). The sampling values from Fig (3.4-3.5) are replaced as 

(
� �v, ���� �v ,		Pbatt_ij) in Eq. (16-18). Equation (3.19) represents the constraints of the 
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points are represented by subscript j. Vehicle load is incorporated at every time step 

from wv and Tv in Eq. (3.2, 3.5) when deriving the minimum 
� �
�� vs Pbatt plot. 
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From the introduction of new variables λij, the problem in Eq. (3.10-3.15) can be rewritten 

as a linear problem. 
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The linear inequality constraints for [ ]1: ,i Nt t t∀  is given by 

_ _ _
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The linear inequality constraints due to input rate constraint for [ ]1 1: ,i Nt t t −∀  are 

expressed as 
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Pbatt_rel(ti+1) is given by 
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i and N represent the time index and total time, while j and M represent the sampling 

index and total sample. Equations (3.20-3.23) are the cost function, battery charge 

sustaining constraint, input representation at every time step ti, and the linearizing 

variables constraints. (
� �v, ���� �v ,		Pbatt_ij) values can be obtained offline based on 

Chapter 3.3 and stored as a lookup table for any given vehicle power demand. 

Equations (3.24) and Eq. (3.25, 3.26) are the input constraint and the input-rate 

constraints at every time instance ti,. In this linear form, the problem can be solved with 

fast and efficient Linear Programming methods, such as the interior-point method. 

3.6 Comparisons with Other Optimization Methods 

Dynamic Programming, PMP-Based and Rule-Based HEV Powertrain Optimizations are 

implemented as benchmarks to assess the performance of the proposed optimization 

strategy. 

3.6.1 Dynamic Programming HEV Powertrain Optimization 

Dynamic Programming is an offline exhaustive search method to represent the 

maximum achievable MPG to measure the performance of the proposed optimization 

method. It involves iterating all possible inputs for all state candidates at every time step, 

starting from the final time to initial time, and stores the input “path” with minimum cost-
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to-go from all time steps to the final time, to guarantee a global optimal solution [68]. The 

cost, state and input are given by the total fuel consumption in Eq. (3.11), battery SOC in 

Eq. (3.7) and Pbatt in Eq. (3.6, 3.10). In order to enforce battery charge-sustaining, all 

possible ��� � are iterated to calculate input Pbatt candidates using Eq. (3.7). Minimum 
� �
�� for an input Pbatt can be found following the procedures in Chapter 3.3, but it 

involves extremely heavy computation when implemented in DP. Therefore, to reduce 

computation time, a lookup table that correlates the minimum 
� �
�� and Pbatt for any 

given vehicle load is calculated offline and is defined by 20 Pbatt sampling points between 

Pbatt_lo and Pbatt_hi. Minimim 
� �
�� cost can then be linearly interpolated from this table 

using the Pbatt candidates in DP. Considering that SP uses only 10 sampling points in 

this work, DP has better cost estimate with more sampling points and therefore can be 

used as the baseline performance measurement. 

3.6.2 PMP-Based HEV Powertrain Optimization 

The proposed method is also compared with online optimization based on the analytical 

solution of Pontryagin’s Minimum Principles (PMP) [59]. In PMP, in order to derive an 

analytical solution, an unconstrained input case is first assumed. The input Pbatt is then 

manually constrained, unlike Linear Programming where the input constraints can be 

explicitly incorporated in the solver. The main results are summarized here for reference 

and readers are encouraged to refer to Chapter 2 for more detailed derivations. The 

Hamiltonian of the optimization problem is defined as 

      ( )( ) ( )( )tPCOStPmH battbattfuel
&& λ+=        (3.27) 

In the first term, correlation between minimum 
� �
�� and Pbatt(t) for a vehicle load 

demand is approximated by a linear slope a0(t) using 20 sampling points. a0(t) for 

different vehicle loads are pre-calculated as a lookup table and is used when predicted 

vehicle loads are given in the simulation. The co-state � is defined in the second term 

and ��� � is a nonlinear function of Pbatt(t) in Eq. (3.7). � is then derived in terms of a0(t) 

from the battery charge-sustaining condition. The unconstrained optimal analytical input 

is solved by first differentiating the Hamiltonian with respect to input Pbatt(t), setting the 

equation to zero and solving for Pbatt(t) as a function of a0(t) array [59] which depends on 

the predicted vehicle loads. 
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3.6.3 Rule-Based HEV Powertrain Optimization 

The optimization strategy presented in Chapter 3.3 to Chapter 3.5 is also benchmarked 

with ad-hoc Rule-Based method [65]. In general, there is a two-level controller in a Rule-

Based strategy. The first selects the most efficient engine operating points by 

interpolating the iso-power curves of the combined power demands from the wheels and 

from the battery on the engine map [65,67]. Engine transient dynamics is also 

considered to avoid unfeasible engine speed or torque jumps between two time steps. 

The second contains a set of logic controllers that decides whether or not to implement 

the commands from the first controller [65]. For fair fuel comparisons, Rule-Based 

method will try to achieve CS operation within the last 50s of the simulation. Details of 

the Rule-Based method are explained in Appendix 2. 
3.7 Small-Scale Traffic Simulation 

3.7.1 Simulation Network 

A traffic network with a total length of 6 miles and 16 intersections which are spaced 

between 600ft and 4000ft randomly, and a speed limit of 50 mph is built in VISSIM 

software. VISSIM is a commercial microscopic traffic simulator which is based on the 

Wiedemann’s car following model [70] and has been used extensively in various 

applications related to traffic evaluation. Fixed-time traffic signal controllers are used with 

a common cycle length along the road. For simplicity, only one lane highway is 

simulated without turning vehicles at intersections to eliminate the randomness from 

lane-changing, as well as traffic inflow and outflow. All vehicles have total travel times 

between 650s and 800s. 

3.7.2 Optimization Implementation 

The optimization is implemented in a receding horizon manner. First, 20 vehicles speed 

trajectories are extracted from VISSIM simulation. For each vehicle, input Pbatt is first 

calculated for the whole vehicle speed trajectory. Then, the first 40s of the optimized 

input Pbatt are saved. The optimization is then repeated for vehicle trajectory from 40s to 

the final time, where input Pbatt are then saved between 40s and 80s. Input Pbatt is 

recalculated every 40s until the final 50s of the vehicle trajectory to represent the 

repeated optimizations when new vehicle speed trajectory is predicted and updated 
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every 40s. The proposed optimization takes less than 3s for a speed trajectory of 800s 

with 0.1s time step. Note that the optimization calculation time becomes quicker as the 

speed trajectory horizon becomes shorter towards the end of the driving cycle. 

Additional linear constraint is also added in SP, with and without input rate constraint, to 

ensure Pbatt value at the end of 40s in the previous cycle is the same as Pbatt value at the 

start of the current cycle. 

3.7.3 Vehicle Speed Prediction 

In a CV environment, first an ideal case of actual vehicle speed prediction is used to 

study the maximum potential benefits from the optimization. Then, considering that any 

prediction model is prone to errors, different levels of normally-distributed random-noise, 

between 0 to 1 mph, 0 to 3 mph and 0 to 5 mph are added to the actual speed 

trajectories to represent prediction uncertainties. The noises are injected at 5s intervals, 

where the speed trajectory are then re-interpolated based on the perturbed points. 

These predicted vehicle speeds are used by SP to optimize the powertrain, while the 

vehicle still follows the unperturbed actual vehicle speeds. 

3.8 Simulation and Experimental Results 

For comparison purposes, SP is implemented with and without the input rate constraints 

(IRC), denoted as SP-IRC and SP-NoIRC respectively. Note that IRC is given by Eq. 

(3.25, 3.26). First, the result for SP-NoIRC is compared with Dynamic Programming (DP) 

for a short driving cycle. Then, SP-IRC, SP-NoIRC, PMP and Rule-Based (RB) methods 

are implemented and compared for 20 vehicles. Comparisons between PMP and SP are 

then discussed. Next, the performance of SP-IRC, PMP and RB for a single vehicle is 

analyzed. Subsequently, the effects of different levels of vehicle speed prediction 

uncertainties on SP-IRC are presented. Finally, test results using SP-IRC reference 

engine operating points are presented. 

3.8.1 Comparisons with Dynamic Programming 

DP is computationally expensive and takes time to complete. Therefore, only partial 

driving cycle from one of the vehicles is used for comparison with SP-NoIRC. For a short 

driving cycle of 210s with a time step of 0.1s, DP takes 140 hours to solve using Intel i7-
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4790 3.6GHz processor with 24GB of RAM. In contrast, SP-NoIRC only takes about 1.2 

seconds to complete. The results are shown in Fig. (3.6-3.8). 

 

Figure 3.6. SP and DP Engine Torque and Speed 

SP and DP achieve CS operation with comparable cumulative fuel consumption of 82.95 

and 82.37 grams, or 64.16 MPG and 64.61 MPG respectively. DP performance is highly 

dependent of the iteration size of input Pbatt candidate, which was calculated from ��� � 

using Eq. (3.7) to enforce the charge-sustaining condition. ��� � was incremented by 

1	 � 10:= percent-per-second. A finer resolution of ��� � increments will improve DP 

result, but would also increase the computation burden and time. With a small enough 

input iteration for DP, it is shown that SP-NoIRC performance is comparable to DP. 

From Fig. 3.6, the engine operating points for DP and SP-NoIRC have an almost similar 

trend, but there are some differences. SP-NoIRC operates at the highest Pbatt_hi line, or 

engine idling point, during high-speed-low-deceleration and deceleration regions at 100-

110s and 170-178s, while DP operates at engine idling speed with higher engine 

torques. This therefore causes the battery SOC for SP-NoIRC to dip faster than DP in 

these regions from using all-electric mode as shown in Fig. 3.7. Similarly, SP-NoIRC 

also operates at engine idling points during high decelerations at 15-40s, 135-145s, and 

180-200s. DP on the other hand operates at slightly higher engine operating points as 

shown by the higher SOC charging rate at these regions. SP-NoIRC balances this lower 
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SOC by operating at higher engine operating points than DP at high-acceleration regions 

at 80-100s and 150-155s, and high-speed-low-acceleration regions at 110-120s and 

130-138s. 

 

Figure 3.7. Vehicle Speed, Battery SOC, Pbatt Input and Fuel Consumption 

Figure 3.8 shows the engine operating points of SP-NoIRC and DP, bounded above by 

the maximum torque line. First, note that for SP-NoIRC, groups of engine operating 
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points are isolated in different clusters across the map, which shows the engine 

operating points are allowed to move freely due to unconstrained input Pbatt rate. The 

input Pbatt rate in DP is not constrained, but is being limited by the maximum jump of the 

iterated ��� candidates between two time steps, chosen at 1 percent-per-second, which 

is twice as large as the ��� jump from SP-NoIRC result and 10= times larger than the 

iterated ��� � for DP. Scattered data, for example, along the maximum torque line, shows 

the transition points of DP engine operating points. DP operates less frequently than SP-

NoIRC at less efficient engine idling points as shown in Fig. 3.6. This can be attributed 

by a more accurate estimation of the relationship between minimum 
� �
�� cost and input  

 

Figure 3.8. SP-NoIRC and DP Engine Operating Points 

Pbatt for DP by using more sampling points than SP-NoIRC. DP has lower cost estimates 

for sampling points between the SP-NoIRC sample points due to the convexity shown in 

Fig. 3.4. Therefore, Pbatt values for engine operating points slightly above engine idling 

has lower cost estimate for DP than SP-NoIRC. However, overall SP-NoIRC also 

operates at slightly higher engine torque and speed than DP, which are more efficient. A 
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combination of high and low efficiency operating points of SP-NoIRC therefore offers a 

comparable performance with DP, with significantly less computation time. 

3.8.2 Comparisons with PMP and Rule-Based Optimizations 

Overall, SP-NoIRC and SP-IRC results show MPG improvements over PMP and RB in 

Fig. 3.9. On average, SP-NoIRC is 4.89 MPG (10.9%) higher than RB, 2.11 MPG (4.4%) 

higher than PMP and 0.21 MPG (0.4%) higher than SP-IRC. SP-IRC is also 4.68 MPG 

(10.4%) and 1.90 MPG (4.0%) higher than RB and PMP respectively. The improvements 

of SP-IRC and SP-NoIRC over RB method are expected, but the improvements over 

PMP are discussed in the following. 

First, analytical solution from PMP in [59] is derived by assuming input Pbatt is 

unconstrained. Therefore, out-of-bound inputs are manually adjusted to stay within the 

boundaries while maintaining CS operation. On the other hand, Separable Programming 

uses Linear Programming methods such as Interior-Point to incorporate the input 

boundaries in the problem formulation, therefore yielding better optimized inputs than 

PMP. 

 

Figure 3.9. MPG Results from Simulation 

In PMP [59], the optimized unconstrained input Pbatt mainly violates the upper bound 

Pbatt_hi, which is the engine idling point. These points are then constrained at Pbatt_hi line, 

but the summation of ��� � using the reduced Pbatt yields a non charge-sustaining (CS) 

result. To enforce a CS operation, other Pbatt within the bounds are incrementally 

increased until a CS operation is achieved. However, forcing the Pbatt that violates the 
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upper-bounds to be exactly on the Pbatt_hi line may not be beneficial in terms of fuel 

efficiency, as discussed next. 

Figure 3.10 shows the minimum 
� �
�� for each Pbatt values iterated between Pbatt_lo and 

Pbatt_hi, representing the highest and lowest engine operating points respectively. For 

every constant Pbatt value, represented by the grey dashed line, the engine speed is 

iterated from 900RPM to 1700RPM to find the minimum 
� �
��. Pbatt is higher at the 

bottom of the engine map, where the engine power is low, because it represents the 

portion of power from the battery to meet the vehicle demand. The minimum 
� �
�� 
engine operating points are then plotted on the Engine Fuel map as shown in Fig. 3.10. 

The engine operating points are bounded above by the maximum torque line. PMP 

manual-tuning forces Pbatt that violates the Pbatt_hi bound, or engine idling, to stay on the 

bound which has the lowest efficiency as also shown in Fig. 3.8. This can be seen in 

Chapter 3.8.3 where PMP operates more at engine idling compared to SP, therefore 

making it less efficient. 

 

Figure 3.10. Minimum 
� �
�� for Every Pbatt Iterate 
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In general, SP achieves better fuel economy than PMP, but the calculation time takes 

relatively longer. On average, for an 800s drive cycles with 0.1s time step, PMP takes 

less than 1s to solve, while SP takes less than 3s which may offset the time when the 

input can be executed. However, this delay is still relatively small compared to the 40s 

update time. 

 

Figure 3.11. SP-IRC and SP-NoIRC Engine Operating Points Comparison 

On average, SP-IRC performs only slightly worse than SP-NoIRC. This can be explained 

from the engine operating points comparison for vehicle 11 in Fig. 3.11. SP-NoIRC 

resulted in an unconstrained engine dynamics where the engine speed and torque 

change abruptly. The input rate limit in SP-IRC dampens out the transients, which 

resulted in an averaged engine torque and speed dynamics of the SP-NoIRC case. Due 

to the averaging effect of the engine operating points, the fuel consumptions between 

the two cases are similar. Input Pbatt and relative Pbatt-jump between two time steps for 

SP-IRC and SP-NoIRC are shown in Fig. 3.12. The change in Pbatt is more restricted, 

resulting in slower and more practical engine transients, by implementing the constraints 

in Eq. (3.25, 3.26) with ∆Pbatt value of 0.5 kWatts. Note there are slight violations of 

relative Pbatt-jump due to the tolerance value used in the solver, which however does not 

adversely affect the engine dynamics. 
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Figure 3.12. SP-IRC and SP-NoIRC Input Pbatt and Relative Pbatt Jump 

 

Figure 3.13. SP-IRC and SP-NoIRC MPG Difference 

Figure 3.13 shows the comparisons of MPG difference between SP-No-IRC and SP-

IRC, calculated using linear-piecewise cost function and using actual fuel map. SP-

NoIRC achieved higher MPG for all vehicles using the approximated piecewise-linear 

cost. However, when translating the optimized input on actual fuel map, SP-IRC 

achieved slightly higher MPG for vehicle 7, 8, 13, 16 and 17, which is attributed by the 
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approximation error in the cost function. Nevertheless, the difference is less than 0.2 

MPG as shown in Fig. 3.13, which is negligible. 

3.8.3 Single Vehicle Simulation and Experimental Results 

 

Figure 3.14. Vehicle Speed, Battery SOC, Pbatt Input and Fuel Consumption 

Vehicle 11, which has a driving cycle of 831s with 7 stops, is selected to analyze and 

compare the different optimization procedures. Simulation results showed SP-IRC, PMP 
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and RB achieved 43.11 MPG, 42.05 MPG and 38.2 MPG respectively. Figure 3.14 

shows the driving cycle, SOC trajectories, input Pbatt and cumulative fuel consumptions. 

As an ad-hoc method, RB can only rely on the current vehicle load and could not use 

future information to optimize the engine. For example, without knowing the driving cycle 

would end at 831s, RB depletes the battery charge to 60% during an acceleration event 

at 770-800s and has to use engine-only mode the remaining of the cycle to maintain a 

CS operation, causing cumulative fuel to increase drastically in the last 30s. In contrast, 

knowing the future a-priori, SP-IRC and PMP discharges the battery moderately at 770-

831s for CS operation. 

 

Figure 3.15. Vehicle 11 Engine Operating Points 

Shown in Fig. 3.15 are comparisons of engine operating points between SP-IRC and 

PMP which is zoomed-in at 240-295s in Fig. 3.16. Unlike PMP, SP-IRC is shown to 

avoid running at engine idling, which is less efficient for the engine, during high-speed-

low-acceleration regions around 100s, 170s, 270s, 375s, 480s, 570s and 800s. In these 

regions, SP-IRC operates with an engine torque of around 50Nm, while PMP operates at 

the lowest engine operating points. As a result, SP-IRC generally has lower peak engine 

speed and torque compared to PMP during high vehicle accelerations by utilizing more 

battery. SP-IRC however operates the engine more during cruising speed to recharge 

the battery, for example between 261s and 290s, as shown in Fig. 3.16. RB shows 
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higher engine operating points during vehicle cruising in Fig. 3.15. This is because at 

initial vehicle acceleration, where the demanded vehicle power is low, RB utilizes all-

electric operation which keeps the engine operating points low, as shown at the 

beginning of Fig 3.16, which however depletes the battery charge. RB has to recharge 

the battery more afterwards, leading to higher engine operating points. 

 

Figure 3.16. Vehicle 11 Engine Operating Points between 240s and 295s 

Comparisons of engine operating points between SP-IRC, PMP and RB between 240s 

and 295s are shown in Fig. 3.16. Unlike PMP, SP-IRC is shown to avoid running at 

inefficient engine idling during vehicle cruising speeds. RB operates higher during this 

period to maintain battery SOC which is low compared to SP-IRC and PMP at 240s, as 

shown in Fig. 3.14. The engine operating points for SP-IRC and PMP are plotted against 

the engine efficiency map in Fig. 3.17. RB operating points falls along the maximum 

torque line and therefore are not shown. The operating points are bounded above by the 

maximum torque line. PMP engine operating points are concentrated in the extreme 

regions, at the top right and bottom left corners, of the engine map. SP-IRC engine 

operating points are similarly distributed but are more concentrated slightly towards the 

top-left corner, where the engine efficiency is higher. This shows that SP-IRC minimizes 

fuel by operating the engine at higher efficiency regions by utilizing more battery during 

vehicle acceleration, hence lowering peak engine operating points and recharging the 
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battery back during low vehicle demands such as cruising speeds, hence avoiding 

engine idling by increasing the lowest engine operating points. 

 

Figure 3.17. SP-IRC and PMP Engine Operating Points 

In order to show the feasibility of the optimizations, results for SP-IRC and RB are tested 

on a 4.5L John Deere diesel engine as part of a powertrain research platform [61,74] 

that is capable of tracking transient engine operating points. Test results show good 

tracking, with tracking errors of about 10% and 1% for the engine torque and engine 

speed respectively, as shown in Fig. 3.18-3.19. Actual fuel consumption measured for 

SP-IRC and RB are 401.5g and 450.8g respectively, which are only 1.67% and 1.26% 

higher than simulation results. The test results shows that the engine operating points 

from SP-IRC optimization are feasible and can be implemented accurately on a real 

engine, which also shows fuel improvements over an ad-hoc RB optimization method. 
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Figure 3.18. Test-Engine SP-IRC Operating Points 

 

Figure 3.19. Test-Engine RB Operating Points 

3.8.4 Effects of Prediction Uncertainties 

Figure 3.20 shows the average MPG for SP-IRC without and with different levels of 

normally distributed vehicle speed errors added to the actual speeds of 20 vehicles. With 

0-1 mph, 0-3 mph and 0-5 mph added speed errors, the average Mean-Absolute-
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Deviation-Percentage (MADP) calculated against actual vehicle speed are 1.9%, 2.2% 

and 2.7% respectively. 

 

Figure 3.20. Effects of Prediction Uncertainties 

Fuel benefits over RB (44.93MPG) for 0 mph,  0-1 mph, 0-3 mph and 0-5 mph speed 

errors are 10.4%, 8.5%, 8.0% and 7.3% respectively, which shows deterioration as the 

speed errors increase. SP-IRC is formulated without considering prediction 

uncertainties, resulting in evident performance degradation as prediction errors are 

increased. 

3.9 Conclusion 

In this work, the HEV powertrain optimization problem is solved in two steps. First, given 

the flexibility of the power-split HEV powertrain, the relationship between the minimum 

fuel consumption and the power-split levels between the engine and battery is calculated 

and stored offline for all possible vehicle power demands. This relationship ensures the 

engine is operating at the most optimal point for every possible HEV power-split level for 

a given vehicle power demand. Then, the nonlinear fuel cost and battery dynamics are 

approximated by linear piecewise functions and formulated as a Separable 

Programming (SP) problem. The piecewise-linear functions introduce new 

dimensionless variables which are solved as a large-dimension constrained linear 

problem with efficient Linear Programming (LP) solvers. The engine operating range and 

engine transient dynamics are represented as linear constraints in the LP problem to 

ensure the engine operating points are feasible. Traffic information from CV is integrated 
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in the optimization by integrating the driving cycle prediction into the powertrain 

optimization. Fast calculation time allows the optimization method to be implemented 

repeatedly in a CV environment with repeated speed prediction updates due to the 

transient nature of traffic. 

Fuel economy of SP with and without input-rate-constraint (SP-IRC and SP-NoIRC) are 

measured against Dynamic Programming (DP), Pontryagin’s Minimum Principle (PMP) 

and Rule-Based (RB) methods using driving cycles generated in VISSIM traffic 

simulator. First, it is found that SP-NoIRC gives comparable fuel economy as DP for a 

short driving cycle. Then a fleet of 20 vehicles are simulated and optimization results are 

compared between SP-NoIRC, SP-IRC, PMP and RB. It is found that the SP-NoIRC 

achieves average improvements of 4.4% and 10.9% compared to PMP and RB 

respectively. SP-IRC on average is only 0.4% lower than SP-NoIRC due to engine 

dynamics averaging effects from the input rate constraint. SP-IRC test results show the 

feasibility of the optimized engine operating points and the fuel benefits over RB method. 

Despite having better performance, numerical SP optimization takes relatively longer to 

solve than analytical PMP solution. Furthermore, vehicle speed prediction uncertainties 

are shown to deteriorate the performance of SP. Therefore, as future works, reduced 

number of strategically placed sampling points to accurately characterize the cost and 

battery state-of-charge can be used to reduce the number of dimensionless variables in 

the LP solver, hence the SP calculation time. In addition, a robust optimization strategy 

that can handle vehicle speed prediction uncertainties, while maintaining cost optimality, 

is needed to guarantee superior performance in a CV environment. 
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Chapter 4  

Hardware-in-the-Loop Testbed for 

Evaluating Connected Vehicle Applications 

 

4.1 Motivation 

Technologies associated with Inter-Vehicle Communications (IVC) and Vehicle-

Infrastructure Integration (VII) have not only gained traction in research communities, but 

also policy makers with the Department of Transportation’s proposal for installing 

communication devices in new vehicles in the near future. Traffic information sharing 

between vehicles, also known as connected vehicle, is therefore seen as the future of 

road transportation to improve traffic mobility and safety. Connected vehicle technology 

also allows better optimization of a vehicle’s fuel economy and emissions by utilizing 

traffic information such as the traffic light Signal-Phase-and-Timing (SPaT) and 

surrounding vehicles speed information. Researches in utilizing connected vehicle 

technology to optimize fuel use and emissions are mostly done in simulations, while 

actual testing on real vehicles is limited due to safety, cost and technical challenges. 

Consequently, the simulation results may not represent the actual fuel and emissions 

benefits precisely. Currently the performance of a vehicle’s fuel economy and emissions 

in traffic is measured through either simulation or by instrumenting the vehicle. First, a 

simulation-based approach replaces the engine with steady-state fuel-use and emission 

maps and therefore may not be accurate compared to actual measurements. Secondly, 

instrumenting vehicles is time consuming and expensive since it requires major 

modifications of the vehicles. In addition, equipping large precision measurement 

devices on small passenger vehicles is challenging for testing purposes. Therefore, A 

Hardware-in-the-Loop-System (HiLS) is proposed to offer the flexibility and accuracy of 

evaluating the performance of connected vehicle applications. 
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4.2 Objective and Scope 

First, the main objective of the HiLS is to merge a powertrain research platform with a 

traffic simulator, VISSIM. Using the powertrain research platform, a real engine can be 

loaded through an engine-loading device while fuel and emissions are measured in real 

time. VISSIM on the other hand provides the dynamics of a selected vehicle and road 

environment to calculate the engine load, while simultaneously simulating the 

background traffic dynamics. Secondly, remote communication between the powertrain 

research platform and VISSIM has to occur in real-time. Flexible operation of VISSIM in 

a remote location will allow researchers from different locations to conduct traffic 

simulations and collect real fuel and emission measurements quickly without being 

present at the powertrain research platform facility. Real-time communication is needed 

to ensure accurate tracking of the vehicle speed. Utilizing a small enough time-step, 

tracking error is minimized in case of communication delay. Finally, the testbed must be 

capable of tracking various vehicle speed profiles under different traffic scenarios 

accurately through the real engine and virtual powertrain to ensure various connected 

vehicle applications, such as the CACC, can be tested. 

4.3 HIL System Architecture 

 

Figure 4.1. HiLS Architecture 

The HiLS architecture is shown in Figure 4.1. In the diagram, the powertrain research 

platform is located remotely from a computer running VISSIM simulation. VISSIM 

simulation executions and data transfer are handled by VISSIM-COM, which is a 

separate program coded in C# language. VISSIM-COM has three functions: 
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1. Controls the execution timing of VISSIM simulation at fixed time-step intervals to 

ensure real-time execution. 

2. Extracts traffic data from VISSIM simulation at every time-step. 

3. Sends traffic data from remote computer to powertrain research platform through 

internet network at every time-step. 

Details of execution timing, data extraction and data sending for VISSIM-COM will be 

explained in the HiLS Middleware section (Chapter 4.5). On the powertrain research 

platform side, traffic data is received and handled by the Powertrain-COM, which is also 

coded in C#. The Powertrain-COM has two functions: 

1. Receives traffic data from VISSIM-COM through the internet network. 

2. Sends traffic data to the hardware controller in MATLAB-Simulink at fixed time-

step intervals. 

The traffic data received is used to calculate the vehicle load where a powertrain 

optimization method is then used to optimize the engine torque and speed. The desired 

optimal engine operating point is then tracked by the hardware controllers, while fuel 

consumption and emissions from the engine are measured. Actual engine operating 

point readings are then used to calculate the realized vehicle speed in the virtual 

powertrain dynamics. If needed, the realized vehicle speed can also be sent back to 

VISSIM through the middleware to reflect (1) the powertrain dynamics and constraints, 

such as engine and gear shift delay and battery state-of-charge limits, and (2) the 

realized vehicle power from powertrain optimization. Details of the hardware controllers 

will be further discussed in the HiLS Components section (Chapter 4.4). 

In the powertrain research platform, the hardware operates continuously, while 

Powertrain-COM feeds updated traffic data at fixed time-step intervals to the hardware 

controller. This is unlike VISSIM-COM, which controls the executions of VISSIM 

simulation at every time-step. The two COM-softwares also ensure VISSIM and the 

powertrain research platform operations are synchronous. Details of the powertrain 

research platform and VISISM are discussed in the HiLS Components section (Chapter 

4.4). The HiLS Middleware, consisting of the Powertrain-COM, VISSIM-COM and 

network communication between them, is discussed subsequently. 



64 

 

4.4 HIL System Components 

The main components of the HiLS are the Powertrain Research Platform, which 

represents the target vehicle being tested, and VISSIM traffic simulator, which provides 

the target vehicle dynamics and road conditions. 

4.4.1 Powertrain Research Platform 

The proposed HiLS will utilize an existing powertrain research platform that was 

developed in the University of Minnesota [74-77] as shown in Figure 4.2. The platform 

was developed to expedite the investigation of vehicle powertrain architectures and 

control strategies to engine’s fuel consumption and emissions. The platform consists of a 

real engine and a hydraulically actuated engine loading device (dynamometer), while the 

vehicle powertrain dynamics and controls are captured virtually through simulation. A 

real engine is used because the combustion and emission behavior of an engine is too 

complex to be modeled accurately [35,36] for real-time application, while the dynamics 

of a powertrain can be captured accurately with well-developed models. 

  

Figure 4.2. Powertrain Research Platform 

The control and simulation is defined by a three-level closed-loop architecture [74-77] as 

shown in Fig. 4.3. In the high-level controller, given a power demanded from the vehicle, 

the user-defined energy management system (EMS) will select a reference engine 

operating point that optimizes fuel-use and emissions. In the middle-level controller, the 

virtual-torque-controller will control the powertrain torques that realizes the reference 

engine torque from the high-level controller. Well-developed models are used to simulate 

the dynamic responses of the powertrain components, which include the desired engine 
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loading torque. In the low level controller, the dynamometer is then controlled to track 

the desired engine loading torque from the middle-level controller. Fuel consumption and 

emissions from the engine can then be measured by precision measurement 

instruments. 

 

Figure 4.3. Three-Level Controller of Powertrain Research Platform [74] 

Fuel consumption is measured by AVL’s Fuel Measurement System Model P402 with 

measurement uncertainty of 0.1% and output frequency of up to 80kHz. The emissions 

are measured using AVL’s SESAM-FTIR, which can measure up to 25 components of 
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exhaust gas from engine combustion including NOX, CO, CO2 and HCHO with a 

sampling rate of 1Hz. 

4.4.2 VISSIM Microscopic Traffic Simulator 

VISSIM is a commercial microscopic traffic simulator which is based on the 

Wiedemann’s car following model [70] and has been used extensively for various 

applications related to traffic evaluations. The software allows users to access traffic 

simulation states, such as vehicle speed, road conditions and signal phase and timing, 

at every simulation time-step. A simple network communication model is programmed as 

a dynamic-link-library (DLL) in VISSIM, by fitting experimental data from the Safety Pilot 

Model Deployment Program [12], to simulate the BSM packet drop in V2V 

communication. The model provides the probability of BSM data transmission success 

based on the distance between two communicating vehicles. Data transmission success 

or failure between every two vehicles at each time step is then determined as a random 

occurrence based on the probability. 

4.5 HIL System Middlewares 

The HiLS middleware consists of the Powertrain-COM and VISSIM-COM. First, local 

communications which define the interactions of VISSIM-COM with VISSIM simulation 

and Powertrain-COM with the powertrain research platform controller are discussed. 

Then, internet network communication between Powertrain-COM and VISSIM-COM is 

explained. Finally, data synchronization from VISSIM simulation data extraction to data 

transfer to the hardware controller is discussed. 

4.5.1 Local Communication 

Both VISSIM-COM and Powertrain-COM utilize the Component-Object-Model (COM) 

interface which is a standard for inter-software communication [78]. Software packages 

that are built with COM capability allow predefined objects in the software packages to 

be readable and writeable by an external program, which is usually written in a 

programming language. 

VISSIM is a COM-capable software. Traffic data, such as the target vehicle speed and 

road angle, are predefined as COM objects in VISSIM and therefore accessible from an 

external program (VISSIM-COM) after each simulation time-step. In addition, the 
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execution of VISSIM simulation-run at every time-step can be triggered by VISSIM-

COM. Therefore, when executed, VISSIM-COM performs the following: 

1. Initialize VISSIM software and load the simulation files. 

2. Perform a single time-step simulation run. 

3. Extract the desired traffic data and send it to Powertrain-COM over internet 

network. 

4. Wait until the end of the real-clock time-step. 

5. Repeat Step 2 to 4 until the end of simulation. 

For faster extraction of large traffic data (Step 3), instead of accessing COM objects, a 

DLL that runs internally in VISSIM sends the desired traffic data to a User-Datagram-

Protocol (UDP) virtual network port on the local computer that can be accessed by 

VISSIM-COM. For connected and autonomous vehicle applications, VISSIM-COM can 

transfer the large traffic data to an external connected vehicle controller to calculate the 

desired speeds for selected vehicles. The desired vehicles speeds are then sent back to 

VISSIM and the Powertrain-COM through VISSIM-COM. Figure 4.4 shows the time 

measured to extract traffic data from VISSIM using DLL. Extraction time was measured 

at every simulation time-step of 200ms, from 0 to 89 vehicles entering the traffic. 

Extracted traffic data for every vehicle include vehicle ID, road-lane ID, vehicle 

longitudinal and latitudinal coordinate, vehicle speed and vehicle acceleration. Fast data 

extraction time duration of less than 0.06ms for up to 89 vehicles is shown. 

 

Figure 4.4. VISSIM Traffic Data Extraction Time as Vehicles Enters Simulated Traffic 



68 

 

Details of the Powertrain-COM are discussed as follows. COM is also enabled in 

MATLAB through the MATLAB COM Automation Server. Unlike VISSIM whose COM 

objects are predefined, MATLAB COM Automation Server allows access to parameters 

in MATLAB-Simulink blocks and user-defined MATLAB workspace variables. With this 

feature, the Powertrain-COM performs the following: 

1. Requests traffic data from VISSIM-COM over the network. 

2. When traffic data is received, it updates the parameters in the high-level 

powertrain controller in MATLAB-Simulink. 

3. Maintains the value of traffic data until current real-clock time-step is over while 

keep requesting for updated traffic data. 

4. Use updated traffic data received in Step 3 in the next time-step and repeat Step 

2 to 4 until the end of VISSIM simulation. 

5. Throttles down the real engine once VISSIM-COM sends signal to indicate the 

end of simulation. 

Note that before the Powertrain-COM is initiated, the hardware is already running at a 

predefined constant vehicle load. This load will then change when updated traffic data is 

received. 

4.5.2 Network Communication 

Transmission-Control-Protocol (TCP) is used as the network communication transport 

protocol because of the reliability of data transfer and ordered data delivery. In TCP, 

buffer memories are allocated on VISSIM-COM side for data sending and on Powertrain-

COM side for data retrieval. These buffers ensure that data is not lost during the 

transfer. TCP also ensures the order of data is preserved on the receiving side, which is 

important in the HiLS application to distinguish the traffic data contents. User-Datagram-

Protocol (UDP) transport protocol is faster than TCP, but is not used due to unreliable 

data transfer and disordered data. Reliable and ordered data delivery is important 

because data loss will affect the accuracy of the tests, while elements of the received 

traffic data have to be distinguished for calculation purposes. Although TCP is relatively 

slower than UDP, it is fast enough for the HiLS application. 
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At start-up, Powertrain-COM is designed to continuously send requests for a connection 

with VISSIM-COM. In order to establish a connection, VISSIM-COM opens a port in the 

socket of the remote computer running VISSIM to accept connection request from the 

Powertrain-COM. The socket address is defined by the internet protocol (IP) address of 

the remote computer and the port number. Therefore, socket connection is established 

as soon as VISSIM-COM opens the port. 

Utilizing TCP, VISSIM-COM and Powertrain-COM sends and retrieves data from their 

respective buffer memories. However, since network connection is established between 

the two buffers, the COM-softwares will not be informed if interruption occurs in the 

internet network. It is therefore a common practice in TCP applications to include a 

keep-alive data to check the status of the internet connection between the buffers. 

Utilizing the keep-alive data, the Powertrain-COM will throttle down the engine if it 

detects a severe network interruption to ensure the engine is at a suitable operating 

point before shutting down for safety purposes and to avoid hardware damage. 

When VISSIM simulation is completed, VISSIM-COM will close the network socket port 

and notify Powertrain-COM to throttle down the engine for hardware shutdown. 

4.5.3 Data Synchronization 

The process of communication at every time-step is depicted in Figure 4.5. Fixed time-

steps are maintained on both VISSIM and the powertrain research platform by VISSIM-

COM and Powertrain-COM respectively to ensure data synchronicity. Data transfer has 

to be maintained at every time-step to ensure a real-time execution. At the same time, 

the smallest possible time-step needs to be maintained by both VISSIM-COM and 

Powertrain-COM to avoid data aliasing for test accuracy. Note from Fig. 4.5, certain 

tasks need to be executed by both COM-softwares. The time durations to execute these 

tasks need to be considered when choosing the appropriate time-step to be maintained 

by both COM-softwares. For VISSIM-COM, the tasks to be completed in a single time-

step are running a single VISSIM simulation time-step and extracting traffic data (using 

COM) from VISSIM, which takes about 5ms and 7ms respectively. Note however the 

times taken to perform the tasks are dependent on the performance of the computer 

running VISSIM and VISSIM-COM, in our case an Intel® i5 with 2.5GHz processor and 

8GB of RAM. Traffic data is then sent to the Powertrain-COM over internet network. The 
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transfer time takes less than 0.1ms using the University of Minnesota network at a 

distance of 2 miles between the COM-softwares. Once the traffic data is received, 

Powertrain-COM sends the data to the high-level controller in MATLAB-Simulink, which 

takes about 40ms. This latency is due to priority conflict with the executions of data 

plotting in the Graphical User Interface (GUI) used by the powertrain research platform 

controller. The data is then used to calculate the vehicle load for engine operating point 

optimization. 

From the above, the total time to complete all tasks does not exceed 100ms. A time-step 

of 100ms may be used, but a 200ms time-step is instead chosen to take into 

consideration of other possible delays in future HiLS applications. For example, a more 

complicated engine optimization method may increase the processing time on the 

powertrain research platform side, while increased traffic data extraction will delay the 

VISSIM-COM side. Therefore, a wait-time is implemented in both Powertrain-COM and 

VISSIM-COM to maintain a time-step of 200ms. Note however that the processing times 

can also be shortened with faster computers. Figure 4.5 shows the HiLS data 

synchronization between the two COM-softwares. 

 

Figure 4.5. HiLS Data Synchronization 
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4.6 Experimental Results 

Tests were conducted to show the capability of the HiLS. First the experimental setup is 

explained. Then the test results are presented and discussed. Finally, the conclusion of 

current works and future directions of the testbed are presented. 

On the powertrain research platform, a Rule-Based optimization [65] is used in the high-

level controller to optimize the engine operating points based on the vehicle load. The 

test engine is a 115 horsepower, turbocharged diesel engine, which is a representative 

of a small, lightweight diesel vehicle. The virtual powertrain is a hybrid electrical power-

split with a planetary gear set, two electrical motors/generators and a battery as the main 

components. Details of the virtual powertrain model, control strategies and hardware 

setup are documented in the references [74-77]. 

4.6.1 Simple Traffic Network 

A simple unidirectional 1700m traffic network with zero grade angle was built in VISSIM 

with 7 fixed-timing traffic-light intersections at every 200m from 300m to 1500m. VISSIM 

simulations are conducted beforehand to identify the target vehicle ID with the desired 

number of stops (no-stop, 1-stop, 2-stops and 3-stops) as shown in Figure 4.6. 

 

Figure 4.6. Vehicle Speeds for Simple Traffic Network 

4.6.1a Vehicle Dynamics and Measurements of Fuel Consumption and Emissions 

Figure 4.7 shows the reference vehicle speed that is received and tracked by the 

powertrain research platform, the tracked engine operating points, the dynamics of the 

virtual hybrid powertrain and the measured fuel consumption for the 3-stops case. Note 
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the torques and speeds of the generator and motor are generated from the virtual hybrid 

powertrain model. Figure 4.8 shows the measured emissions. Test results show 

accurate tracking of the desired vehicle speed, engine speed and engine torque with 

Mean Absolute Percentage Deviation (MAPD) of 0.4%, 2% and 14% respectively. The 

transient nature of actual engine torque is reflected in the relatively higher MAPD. 

 

Figure 4.7. Vehicle-Powertrain Dynamics and Measured Fuel (3-stops, Simple Traffic 

Network) 

 

Figure 4.8. Measured Emissions (3-stops, Simple Traffic Network) 

4.6.1b Total Fuel Consumptions 

Measured fuel consumptions are shown in Figure 4.9. As the number of stops increases, 

the fuel consumption also increases due to high vehicle acceleration-deceleration and 

engine idling events that waste fuel and energy. The effect of driving behavior is shown 
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between the no-stop and 1-stop cases, where the benefit of having less stops is only 

about 5% due to an aggressive driving behavior of the no-stop case shown in Figure 4.6. 

The fuel use increases around 32-34% between 1-stop, 2-stops and 3-stops cases, all of 

which have similar level of driving aggressiveness. 

 

Figure 4.9. Total Mass of Measured Fuel Consumed for Simple Traffic Network 

4.6.1c Total Mass of Measured Exhaust Gas Components 

Each constituent of the exhaust gas is measured in terms of concentrations (ppm). 

Therefore, the formula below is used to convert the unit to mass-rate in grams per 

second. 

&P = 0 AA�\��*R��P	R�	�NQ�
P�	&�P4 × 0 �NQ�
P�_*�PP_����	�NQ�
P�_*R���_*�PP	4 × ���z���d���_
����_
�zz (4.1) 

��� reading of a constituent is its micromole concentration per mole of the exhaust gas. 

The exhaust gas mole-rate (in moles per second) is found from the exhaust mass-rate 

(in grams per second) and the exhaust molar-mass for diesel fuel (29.4 grams per mole). 

The exhaust mass-rate is the summation of the measured intake-air and fuel mass-

rates. Multiplying the micromole concentration of the constituent with the exhaust mole-

rate gives the mole-rate of the constituent. The mass-rate of the constituent is then 

found as the product of the mole-rate and the molar-mass of the constituent. Figure 4.10 

shows the total mass of the measured exhaust gas components. It can be seen that as 

the number of stops increases, the amount of emissions also increases. 
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Figure 4.10. Total Mass of Measured Exhaust Gases for Simple Traffic Network 

4.6.2 Complex Traffic Network 

A complex traffic scenario was used from VISSIM’s example demo BRT-priority-Texas. 

The main arterial network is based on a 3.5km stretch on Medical Drive between the 

intersections of Babcock Road and Fredericksburg Road in San Antonio, Texas as 

shown in Figure 4.11. The complexity of the network include (1) multiple vehicle types 

such as cars, busses and trucks (2) multiple lanes in each direction with vehicles lane-

changing and bus stops (3) varying speed limits for roads and lanes (4) seven signalized 

intersections and six non-signalized intersections (5) reduced vehicle speeds, right-of-

ways and pedestrian crossings at intersections (6) Ring-and-Barrier Controllers (RBC) 

and right-turn on red at signalized intersections (7) stop signs at non-signalized 

intersections. 

The traffic simulation features are detailed enough that calibration works can be done to 

fit the parameters with real-world data. However, for the purpose of testing the testbed, 

the default parameters in the VISSIM demo are used. Two vehicles with 2-stops and 3-

stops traversing the same path in Figure 4.11 are selected as test cases. Figure 4.12 

shows the vehicle speed trajectories. 

0
.0

4

0
.0

5

0
.0

6

0
.0

9

1
.0

1 1
.2

8 1
.6

0

2
.0

9

2
.0

3 2
.3

7

2
.8

5

3
.4

3

1
8

3
.4

2

1
8

4
.7

9 2
4

2
.8

1

3
2

9
.7

5

0

50

100

150

200

250

300

350

400

0

0.5

1

1.5

2

2.5

3

3.5

4

no-stop 1-stop 2-stops 3-stops

G
ra

m
s 

o
f 

C
O

2

G
ra

m
s 

o
f 

H
C

H
O

, 
C

O
 a

n
d

 N
O

x HCHO CO NOx CO2



75 

 

 

Figure 4.11. BRT-priority-Texas Traffic Demo from VISSIM 

 

Figure 4.12. Vehicle Speeds for Complex Traffic Network 

4.6.2a Vehicle Dynamics and Measurements of Fuel Consumption and Emissions 

Figure 4.13 shows the vehicle, engine and virtual powertrain dynamics and the 

measured fuel of the 3-stops case in a complex traffic network with more transient 

vehicle dynamics than the simple case. The desired vehicle speed, engine torque and 

engine speed are tracked accurately with MAPD of 0.4%, 1.5% and 16% respectively. 

The engine torque MAPD is slightly higher than the simple traffic due to the higher 

dynamics of the reference. Emissions measurements are presented in Figure 4.14. 
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Figure 4.13. Vehicle-Powertrain Dynamics and Measured Fuel (3-stops, Complex Traffic 

Network) 

 

Figure 4.14. Measured Emissions (3-stops, Complex Traffic Network) 

4.6.2b Total Fuel Consumptions 

The total fuel consumptions measured for the 2-stops and 3-stops cases are shown in 

Figure 4.15. The 3-stops case consumes 23% more fuel than the 2-stops case, which is 

about 10% less than the comparison between the 2-stops and 3-stops cases in the 

simple traffic network. This can be attributed to the more transient vehicle dynamics in 

the complex traffic case, where the stop and go is not the only dominant dynamics. 
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Figure 4.15. Total Mass of Measured Fuel Consumed for Complex Traffic Network 

4.6.2c Total Mass of Measured Exhaust Gas Components 

Figure 4.16 shows the total mass of exhaust gas components for the 2-stops and 3-

stops cases in the complex traffic network. As shown, all exhaust gasses mass increase 

as the number of stops increases. Most notable are NOx and CO2 with 33% and 24% 

increases respectively in the 3-stops case. 

 

Figure 4.16. Total Mass of Measured Exhaust Gases for Complex Traffic Network 

4.6.3 Comparison with Simulation Results 

Simulations were performed to calculate total NOX and CO2 emissions using a software 

that estimates vehicle emissions on a policy level, but the results showed significant 

difference compared to measured emissions. This is attributed to the estimation errors 

from using averaged vehicles emissions data for a class of vehicles in the software, 

which is inaccurate to represent a specific vehicle. Furthermore, NOX emission for the 2-
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stops complex traffic case is interpolated using a well calibrated steady-state emission 

map for the specific test engine. Total NOX from simulation was found to be 4.83 grams, 

which is 7% higher than the measured emission in Figure 4.16. This shows that even 

with a well calibrated map, simulation results are still inaccurate due to transient engine 

behaviors that cannot be captured by a steady-state map. 

4.7 Conclusion 

The HiLS has been tested and shown to achieve the followings: 

1. Vehicle data from a remote traffic simulation have been successfully extracted 

and transferred in real-time to the powertrain research platform over the internet 

through COM interfaces and socket programming. 

2. Different vehicle speed profiles are accurately tracked by the powertrain research 

platform to represent the target vehicle in VISSIM simulation. 

3. Rule-Based optimization method has been successfully employed in the 

powertrain research platform to optimize engine operating points in real-time, 

which can be extended to other optimization methods utilizing traffic data [59] in 

the future. 

4. Actual fuel consumption and emissions measurements are recorded, which can 

be used to evaluate various connected and autonomous vehicle applications. 
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Chapter 5 

Conclusion and Future Work 

 

5.1 Research Summary 

The first objective of the thesis is to derive a computationally efficient energy 

management strategy for hybrid electrical vehicle that utilizes vehicle speed prediction to 

optimize fuel consumption while maintaining a battery charge-sustaining condition. 

Secondly, the energy management strategy has to also consider the operating range 

and transient dynamics limitation of an actual engine to ensure the optimized engine 

operating points are feasible. The final objective is to develop a Hardware-in-the-Loop 

System (HiLS) for evaluation of connected vehicle applications. 

In Chapter 2, a combined approach of a time-efficient powertrain optimization strategy, 

utilizing vehicle speed trajectory prediction based on IVC and VII is proposed. A 

computationally efficient charge-sustaining (CS) HEV powertrain optimization strategy is 

analytically derived and simulated, based on the Pontryagin’s Minimum Principle and a 

CS-condition constraint. A 3D lookup-map, generated offline to interpolate the optimizing 

parameters based on the predicted speed, is also utilized to speed up the calculations. 

Simulations are conducted for 6-mile and 15-mile cases with different prediction update 

timings to test the performance of the proposed strategy against a Rule-Based (RB) 

control strategy. The prediction, optimization and update structure is simulated and 

several conclusions can be made. First, the traffic model parameter calibration shows 

minimal improvements to prediction accuracy due to the error from the leading vehicle 

and has little effects on the MPG of the vehicles. Secondly, results show that a frequent 

update time does not necessarily means better MPG performance. If the vehicle 

trajectory prediction error at an update time does not improve from previous update time, 

the �-error will be inherited, affecting MPG performance. This however is a limitation of 
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the IVC and VII network, where the vehicle interconnection with the whole prediction 

network depends on the vehicle’s location. There will be certain durations where the 

information cannot be sent to the vehicle, causing the vehicle’s prediction to be 

unchanging. Therefore, it would better to know when to resume or stop updating � when 

a new prediction is received, depending on the prediction’s accuracy. Thirdly, accurate 

prediction records an averaged 7% to 9.6% MPG’s improvements over Rule-Based 

method, which could be significant when translated to a network level savings [71], but is 

modest for a single vehicle. 

In Chapter 3, a fast charge-sustaining HEV optimization strategy that considers the 

operating range and transient dynamics of an engine is proposed. The HEV powertrain 

optimization problem is solved in two steps. First, given the flexibility of the power-split 

HEV powertrain, the relationship between the minimum fuel consumption and the power-

split levels between the engine and battery is calculated and stored offline for all 

possible vehicle power demands. This relationship ensures the engine is operating at 

the most optimal point for every possible HEV power-split level for a given vehicle power 

demand. Then, the nonlinear fuel cost and battery dynamics are approximated by linear 

piecewise functions and formulated as a Separable Programming (SP) problem. The 

piecewise-linear functions introduce new dimensionless variables which are solved as a 

large-dimension constrained linear problem with efficient Linear Programming (LP) 

solvers. The engine operating range and engine transient dynamics are represented as 

linear constraints in the LP problem to ensure the engine operating points are feasible. 

Traffic information from CV is integrated in the optimization by integrating the driving 

cycle prediction into the powertrain optimization. Fast calculation time allows the 

optimization method to be implemented repeatedly in a CV environment with repeated 

speed prediction updates due to the transient nature of traffic. Fuel economy of SP with 

and without input-rate-constraint (SP-IRC and SP-NoIRC) are measured against 

Dynamic Programming (DP), Pontryagin’s Minimum Principle (PMP) and Rule-Based 

(RB) methods using driving cycles generated in VISSIM traffic simulator. First, it is found 

that SP-NoIRC gives comparable fuel economy as DP for a short driving cycle. Then a 

fleet of 20 vehicles are simulated and optimization results are compared between SP-

NoIRC, SP-IRC, PMP and RB. It is found that the SP-NoIRC achieves average 

improvements of 4.4% and 10.9% compared to PMP and RB respectively. SP-IRC on 

average is only 0.4% lower than SP-NoIRC due to engine dynamics averaging effects 
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from the input rate constraint. SP-IRC test results show the feasibility of the optimized 

engine operating points and the fuel benefits over RB method.  

In Chapter 4, a Hardware-in-the-Loop-System (HiLS) is proposed to offer the flexibility 

and accuracy of evaluating the performance of connected vehicle applications. The HiLS 

is comprised of a microscopic traffic simulator (VISSIM) and a laboratory powertrain 

research platform. VISSIM is used to simulate a traffic network while the powertrain 

research platform, which consists of a real engine, an engine-loading device (hydrostatic 

dynamometer) and a virtual powertrain model is used to represent a single vehicle. A 

connected vehicle application such as the Cooperative Adaptive Cruise Control (CACC) 

can be simulated in VISSIM, where a target vehicle is selected to be represented by the 

powertrain research platform. This is done by sending the simulated target vehicle speed 

and road condition information from VISSIM to the powertrain research platform in real-

time during simulation. This information is used to calculate the vehicle load demand, 

which is realized by the engine and powertrain. Fuel consumption and emissions from 

the engine are measured by precise laboratory equipment. The HiLS has been tested 

and shown to achieve the followings. First, vehicle data from a remote traffic simulation 

have been successfully extracted and transferred in real-time to the powertrain research 

platform over the internet through COM interfaces and socket programming. Secondly, 

different vehicle speed profiles are accurately tracked by the powertrain research 

platform to represent the target vehicle in VISSIM simulation. Thirdly, Rule-Based 

optimization method has been successfully employed in the powertrain research 

platform to optimize engine operating points in real-time, which can be extended to other 

optimization methods utilizing traffic data [59] in the future. Finally, actual fuel 

consumption and emissions measurements are recorded which can be used to evaluate 

various connected and autonomous vehicle applications. 

5.2 Future Work 

In Chapter 2, the impact of prediction errors to the optimization was found to be coming 

from the co-state � calculation. To take into account the impact of prediction 

uncertainties on optimization performance, a more robust method to calculate � is 

needed. One way to address this is to first quantify the speed prediction errors 

statistically [79]. Typically, a 95% confidence interval is used, indicating a 95% chance of 

occurrences between the selected bounds. Then, a robust optimization procedures that 
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considers the speed prediction uncertainties as bounded disturbances can be 

implemented. 

In Chapter 3, despite having better performance, numerical separable programming 

optimization takes relatively longer to solve than analytical PMP solution. Therefore, as 

future works, reduced number of strategically placed sampling points to accurately 

characterize the fuel cost and battery state-of-charge can be used to reduce the number 

of dimensionless variables in the linear programming solver, hence the separable 

programming calculation time. Furthermore, vehicle speed prediction uncertainties are 

shown to deteriorate the performance of separable programming. Similar to Chapter 2, 

in this chapter a robust optimization strategy that can handle vehicle speed prediction 

uncertainties, while maintaining cost optimality, is needed to guarantee superior 

performance in a CV environment. Also as part of future works, the emissions for an 

engine can also be optimized together with the fuel using separable programming. First, 

the combined fuel and emissions cost function is normalized. Then, following the 

procedures in Chapter 3, the minimum emissions for different power split levels for every 

vehicle power demand are calculated offline using steady-state emissions maps [80]. 

With these done, the same procedures in Chapter 3 can be repeated to optimize the 

combined fuel and emission optimization problem using separable programming. 

For both Chapter 2 and 3, the fuel optimization only considers the HEV powertrain. 

However, with the advent of connected vehicle technologies, the vehicle dynamics, 

which determines the vehicle load can also be optimized. There are two ways the 

combined optimization can be implemented. First is by implementing the optimizations in 

serial, which has been done for HEV powertrain in [81], where the vehicle dynamics is 

optimized first before optimizing the powertrain. Secondly, both the vehicle dynamics 

and powertrain can be optimized simultaneously, as implemented in [82] for an 

automatic gear transmission. Combined vehicle dynamics and powertrain optimization 

will increase the optimizing inputs or variables, thus increasing the problem dimension if 

it were to be solved numerically. This may pose a difficulty in achieving real time 

implementation, which however can be fixed by decreasing the prediction window. In this 

thesis, the prediction window is in the range of 700 to 800 seconds with 0.1 second time-

step. If the prediction window is shortened to less than 100 seconds, the size of the 
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problem can be significantly reduced, allowing for a faster integrated vehicle dynamics 

and HEV powertrain optimization. 

For the Hardware-in-the-Loop System, several improvements and additional 

functionalities are planned to improve the functionality of the testbed. First, a more 

comprehensive traffic simulations in VISSIM will be developed, which will be evaluated 

and calibrated with data collected from actual roads. For example, using live data from 

SMART-SIGNAL on Trunk Highway 55, the HiLS can be calibrated. Since SMART-

SIGNAL logs data nonstop, different traffic scenarios can also be used for calibration 

purposes. The information such as time-stamped signal phase change, vehicle detector 

actuation, queue length, delay, arterial travel time and turning movement count are 

stored in a SQL database which can be accessed online [83]. 

For added functionality, the HiLS will include multiple Road-Side-Units (RSU) which are 

traffic data collection devices instrumented along real roads. Using the RSU, traffic data 

such as signal phase and vehicle detector count can be accessed and transferred to the 

VISSIM traffic simulator in real-time to emulate real traffic. In addition, the RSU will also 

be paired with On-Board-Units (OBU) which are installed in on-road vehicles. OBU can 

broadcast vehicle dynamics data to the RSU, which can then send the data to the HiLS. 

The real vehicle dynamics can then be used to represent a vehicle in VISSIM simulation, 

for example as the preceding vehicle to the vehicle represented by the powertrain 

research platform. With RSU and OBU devices, communication between vehicles (OBU 

to OBU) and between vehicle (OBU) and infrastructure (RSU) will also be realistic. 

Overall, with calibrated traffic parameters, real-time traffic data and real vehicle 

dynamics, the HiLS can be used to evaluate different connected vehicle applications 

realistically. An external connected vehicle controller is linked with the HiLS to control 

selected vehicles in VISSIM simulation, as shown in Appendix 3. Finally, with the HiLS, 

connected vehicle applications, such as eco-approach, cooperative adaptive cruise 

control, eco-driving and speed harmonization can be tested. Fuel and emissions can be 

measured in lab, where the benefits for each connected vehicle application can be 

assessed realistically using a real engine. 
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Appendix 1: Overview of Pontryagin’s Minimum Principle 

Discussions below can be found in [64]. Consider an unconstrained optimization with 

open final time. The augmented cost function is given by 

] = ^_ �̀ , �� , ab + F c(`, d, �)G��H�I     (1a) 

c(`, d, �) is the cost function and ^_ �̀ , �� , ab is the augmented terminal cost given by 

^_ �̀ , �� , ab = ^_ �̀ , ��b + a,�_ �̀ , ��b    (2a) 

where  ^_ �̀ , ��b =  soft terminal constraint  

a,�_ �̀ , ��b =  hard terminal constraint 

Where a, is the Lagrangian multiplier that drives the terminal condition �_ �̀ , ��b to 

zero.In this case,  a, is constant because its responsible to drive only the final state to 

zero. The states dynamics are given by 

�̀ = �(`, d, �) with initial conditions `(��) = `�  (3a) 

The Hamiltonianis given by 

f = c(`, d, �) + �,�(`, d, �)     (4a) 

where  �,  =  co-states 

The necessary conditions are derived here as bases to the implementations in 

powertrain optimization in the next section. The augmented cost function in Eq. (1a) can 

thus be re-written as  

] = ^_ �̀ , �� , ab + � �c(`, d, �) + �,[�(`, d, �) − �̀ ]�G��H
�I  

       	= ^_ �̀ , �� , ab + F (f − �, �̀ )G��H�I      (5a) 

We define the candidate signals as : 

d∗(�) = optimal input  `∗(�) = optimal states  ��∗ = optimal final time 
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Time-fixed input variation and its corresponding states variation due to input are given as 

d(�) = d∗(�) + �d(�)  `(�) = `∗(�) + �`(�) 
while final time variations is given by : �� = ��∗ + G��  

Introducing 1st order of variation in the augmented cost function in Eq. (5a) 

G] = ^NHG �̀ + ^�HG�� +^�Ga + � (fN�` + f
�d + fn�� − �,� �̀ − ��, �̀ )G��H
�I+ (f − �, �̀ )|�HG�� 	

						= ^NHG �̀ +^�HG�� + �,Ga + � (fN�` + f
�d + �̀,�� − �,� �̀ − ��, �̀ )G��H
�I+ (f − �, �̀ )|�HG�� 	

= ^NHG �̀ +^�HG�� + �,Ga + � (fN�` + f
�d)G��H
�I 	

																																												− F (�,� �̀ )G��H�I + (f − �, �̀ )|�HG��     (6a) 

Using integration by parts, the second integral term in Eq. (6a) can be rewritten as : 

−� (�,� �̀)G��H
�I = −�,�`|�I�H +� _��,�`bG��H

�I
= −�,_��b�`_��b + �,(��)�`(��) + � _��,�`bG��H

�I  

												= −�,_��b�`_��b + F _��,�`bG��H�I    (7a) 

Since the initial states are normally known, the variations 	�`(��) of the initial states are 

assumed to be zero because. Replacing Eq. (7a) into Eq. (6a) gives  

= ^NHG �̀ + ^�HG�� +�,Ga +� K_fN + ��,b�` + f
�dOG��H
�I − �,_��b�`_��b	

+(f − �, �̀ )|�HG��         (8a) 

Using linear approximation (Fig. A1.1), �`_��b is approximated as 

�`_��b = G �̀ − �̀�G��       (9a)  
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Figure A1.1. Linear Approximation of �`_��b 
Replacing Eq. (9a) into Eq. (8a) 

G] = ^NHG �̀ +^�HG�� + �,Ga +� K_fN + ��,b�` + f
�dOG��H
�I − �,_��b_G �̀ − �̀�G��b

+ (f − �, �̀ )|�HG�� 	
= q^NH − �,_��brG �̀ + ^�HG�� +�,Ga +� K_fN + ��,b�` + f
�dOG��H

�I + �,_��b �̀�G��
+ (f − �, �̀ )|�HG�� 	

= q^NH − �,_��brG �̀ + (^� +f)|�HG�� + �,Ga + � K_fN + ��,b�` + f
�dOG��H
�I

+ q�,_��b �̀� − (�, �̀ )|�Hr G�� 	
										= q^NH − �,_��brG �̀ + (^� +f)|�HG�� + �,Ga + F K_fN + ��,b�` + f
�dOG��H�I   (10a) 

From Eq. (10a), in order to ensure G] = 0, the following equations have to be met : 

1) Adjoint Equations : �� = −fN,   and  ^NH = �,_��b    (11a) 

2) Controls Equation : f
 = 0       (12a) 

3) System Equations : �̀ = �(`, d, �)  and  `(��) = `�    (13a) 

4) Terminal Conditions: ψ_ �̀ , ��b = 0      (14a) 

5) Transversality Cond: (^� +f)|�H = 0     (15a)  

( )tx  

( )tx*  

fdt  

ft ff dtt +
t 

( )ftδx  

fdx  
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Appendix 2: Rule-Based HEV Powertrain Optimization 

Rule-Based Engine Operating Points 

The first controller combines the power request from the wheels and the virtual power 

request by the electrical machines and finds the minimum engine operating points for 

that combined power request [65-67]. Assuming the vehicle velocity and acceleration are 

known, the torque request from the vehicle can be found from Eq. (2.1) of Chapter 2.3 

and the power request is calculated from  

��Q��� = ��(�       (1b) 

The virtual power request by the electrical machines, PSOC, can be found from the 

following equations, based on ADVISOR 2003 Simulink Model [69]. 

�2ij = _������&�� − ���b+���l����5&*:\    (2b) 

Where (SOCtarget – SOC ) term is used to maintain the SOC around SOCtarget, ηgm is the 

efficiency of the electrical machines (assumed constant), Kfit is the fitting constant (to fit 

with experimental results) and Vbatt is given by 

l���� = lRm − ]���������     (3b) 

]���� = 789:;789< :=1>?@@A>?@@
)1>?@@      (4b) 

The combined power request 

���£ = ��Q��� + �2ij      (5b) 

Assuming the combined power request has to be met by the engine, the engine speed 

can be iterated across the engine map and the corresponding engine torques can be 

calculated. The line formed from these points is called the Power Isomer line. 

�� = A¤
¥¤ = A¦¤§

¥¤        (6b) 
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The fuel consumption for all engine operating point candidates along a Power Isomer 

line are interpolated and the one with the minimum 
� �
�� ��� , (�	 is selected. The 

process is repeated to find the minimum engine operating point at every time step. In 

Fig. A2.1, each dashed grey line represents a Power Isomer line where the engine 

power is constant. The background contour map represents the engine mass fuel rate 

with values displayed between 0.2 g/s to 2.5 g/s. The engine operating points are 

bounded above by the maximum torque line. The engine operating points with minimum 

fuel rate for every Power Isomer line are shown as red crosses. 

 

Figure A2.1. Power Isomer Lines on Toyota Prius Engine Map for Rule-Based method 

In this work, the powertrain model does not include other sub components such as 

engine cooling. Therefore, the sub-components conditions involved in the secondary 

controller such as coolant temperature [67] are not implemented. Only the rules involving 

the SOC and power requests, Preq are used [63,67,68] as the following 

1. All-Electric Range : Use only electrical energy if  SOC  ≥ 0.55  and  Preq ≤ 10kW. 

2. Overcharge Avoidance : Turn off battery charging if SOC  = 0.8. 
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3. Undercharge Avoidance : If SOC  ≤  51%, recharge until SOC  = 55%. 

The Rule-Based constant, Kfit in Eq. 2b is tuned such that the result with UDDS cycle will 

be closest with the simulations done in [63]. 

Rule-Based Engine Transient Dynamics Limit 

In Chapter 3, where experimental work is done on an actual 4.5L John Deere diesel 

engine [61,74], the engine transient dynamics have to be considered in Rule-Based 

method. Shown in Figure A2.2. are the engine operating points for Rule-Based method 

on the John Deere engine. Each dashed grey line represents a Power Isomer line where 

the engine power is constant. The background contour map represents the engine mass 

fuel rate with values displayed between 0.3 g/s to 2.5 g/s The engine operating points 

are bounded above by the maximum torque line and the engine operating points are 

selected based on the minimum fuel rate along each Power Isomer line. 

 

Figure A2.2. Power Isomer Lines on John Deere Engine Map for Rule-Based method 
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As can be seen, the engine operating points coincide with the maximum torque line, 

which are three regions of piecewise linear functions with constant slopes. 

 

Figure A2.3. Three Sections of Piecewise-Linear Regions for Rule-Based Engine 

Operating Points 

Fig. A2.3 shows the three Power Isomer regions, separated by two grey dashed lines 

that correspond to Power Isomer lines with values of 13.46 kWatts (bottom line) and 

27.75 kWatts (top line):  

1. Region 1: Between (0, 13.46) kWatts, bottom engine operating region. 

2. Region 2: Between (13.46, 27.75) kWatts, middle engine operating region. 

3. Region 3: Between (27.75, 40) kWatts, top engine operating region. 

The change of engine speed with respect to the change of engine power (or Power 

Isomer) can be calculated for the three regions. The same can also be done for the 

engine torque. By knowing these slopes, the change in power request Preq between two 

time steps can be constrained based on the maximum allowable change in engine 

speed and engine torque between two time steps. Due to the constrained engine 
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dynamics, the difference between power demanded by the vehicle and actual power 

provided by the engine will be compensated by the electrical machines and battery. 

Rule-Based Battery Charge Sustaining 

For fair MPG comparisons, all optimization methods have to ensure battery charge 

sustaining. In Rule-Based method, SOC sustenance at the end of a driving cycle cannot 

be guaranteed as the powertrain operating points depend only on the current loading 

conditions. Therefore, a simple method of adjusting the requested power from the 

engine or Preq, based on the battery SOC  level is used. 

In the last 50s of the driving cycle, if the battery SOC is lower than 60% (initial battery 

charge), Preq calculated in Eq. (5b) will be increased by the maximum allowable change 

in Preq 
 ���£ =	���£ +
�`	(Δ���£)     (7b) 

Note that max(∆Preq) depends on the regions of Preq shown in Fig. A2.3. The maximum 

allowable change in Preq is used to force the engine to operate more than the actual 

requested power in order to charge battery back to 60% as soon as possible. As the 

battery charge gets closer to 60%, ∆Preq is reduced proportionally with respect to the 

difference of actual battery SOC and 60%. 

The same procedure is also used to reduce Preq if the battery SOC is higher than 60% in 

the last 50s of the driving cycle. By reducing Preq, the engine will operate less than the 

actual requested power, therefore draining the battery to meet the actual power demand. 
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Appendix 3: External Connected Vehicle Controller 

Architecture 

Shown in Figure A3.1 is the integration of the Connected Vehicle (CV) Controller in the 

HiLS. In this architecture, VISSIM-COM operation is separated into two threads to 

efficiently handle data transfer. The working procedures are explained below and 

experimental results are reported as part of the work done in [62,84]. 

 

Figure A3.1. Connected Vehicle Controller Integration 

1. VISSIM Traffic Data Extraction 

First, VISSIM-COM Thread-1 starts VISSIM and executes one simulation time-step in 

VISSIM. A VISSIM-Dynamic Link Library (DLL) is programmed to run internally within 

VISSIM software that will extract traffic data and send them to a local virtual network port 

at every VISSIM simulation time step using UDP protocol. UDP is preferred over TCP for 

local network communication because UDP is faster and there is no reliability issue with 

local data transfer. DLL is used as an efficient large data extraction method to avoid time 

bottleneck when extracting traffic information as the traffic network gets bigger and more 

complex. Efficient data extraction is shown in Fig. 4.4, Chapter 4.5.1 which shows 89 

vehicles data extraction in less than 0.06 ms. The data which now sits at the virtual 

network port are now available for VISSIM-COM extraction. 
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2a. VISSIM-COM Traffic Data Transfer to Powertrain COM 

VISSIM-COM Thread-1 extracts all the traffic information from the virtual network port 

and passes only a specific vehicle speed, acceleration and road condition that is 

represented by the powertrain research platform to the Powertrain-COM across an 

internet network using socket programming with TCP protocol. 

2b. VISSIM-COM Traffic Data Transfer to CV-Controller 

VISSIM-COM Thread-1 extracts all the traffic information from the virtual network port 

and passes them using COM interface to the CV-Controller, which is built in MATLAB-

Simulink. CV-Controller contains user-defined functions that can utilize the traffic 

information to calculate the desired/optimized vehicle speeds in order to control multiple 

vehicles in VISSIM traffic simulation. 

2c. VISSIM-COM Traffic Data Transfer to VISSIM 

The desired/optimized vehicle speeds calculated by the CV-Controller are sent back to 

VISSIM. In this process, VISSIM-COM Thread-2 writes the desired/optimized target 

vehicles speeds directly to the COM objects in VISSIM that represent the target vehicle 

speeds. In the next simulation time step, VISSIM will utilize these desired/optimized 

vehicle speeds as the target vehicles speeds. 

3. Powertrain-COM Traffic Data Transfer 

The Powertrain-COM receives the target vehicle data that was sent across an internet 

network by the VISSIM-COM Thread 1 on a virtual network port. Powertrain-COM then 

sorts the data and passes them to the Engine Controller. 

4. Engine Optimization and Execution 

The Engine Controller uses the target vehicle speed, acceleration and road condition to 

calculate the vehicle load and reference desired/optimized engine operating points to be 

tracked by the dynamometer and the engine. Engine fuel and emissions are then 

measured by laboratory measurement devices. 

 


