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Abstract 

Minnesota’s Urban Partnership Agreements (UPA), of which the majority were completed 

in November, 2010, consisted of a series of improvements addressing the congestion on 

Interstate highway I-35W corridor and in Downtown Minneapolis. MnDOT Problem 

Statement NS-329 noted that there was interest in extending some or all of these 

interventions to other corridors and called for an estimation of their safety effects to assist 

in making these decisions. Following the UPA, the frequency of rear-end crashes increased 

substantially in certain regions on I-35W. The objective of this study was to determine if 

the increase in crash frequency was due to changes in traffic conditions or was a direct 

effect of the UPA interventions.  

A preliminary analysis was done to determine priority crash type and study regions. I-35W, 

from its start to its junction with I-94, was divided into 17 one-mile sections, and bi-

directional (northbound and southbound) crash frequencies in Before-UPA (2006-2008) 

and After-UPA periods (2011-2013) were compiled for each one-mile section. Rear-end 

crash turned out to be the most prevalent crash type, but the changing trend of bi-direction 

rear-end crash frequencies from the Before to After period varied among those one-mile 

sections. Our interest lay in those regions where there was an outstanding increase in the 

rear-end crash frequency in the After period, which were approximately the I-35W HOT 

region (from TH-13 to I-494) and the I-35W PDSL region (from 37th Street to 26th Street). 

Both the I-35W HOT and PDSL regions were divided into analysis sections based on 

constant flow and geometry criteria as well as the loop detector availability. Crash, loop 

detector, weather condition, and PDSL activation (only for PDSL sections) were compiled 

for Before and After periods for each analysis section. Rear-end crash records were 

extracted using MNCMAT, and hard copies of the original crash reports were then 

reviewed to verify the crash type, location, direction and time for each crash. Traffic 

conditions came from loop detector data retrieved using MnDOT’s DataExtract tool. The 

source of weather conditions during non-crash hours was MnDOT’s RWIS, while that of 

weather conditions during crash hours were taken from original crash reports. The PDSL 

historical operation data came from MnDOT’s log for the Intelligent Lane Control Signal 

(ILCS) located at 37th Street.  
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Logistic regression models were established to estimate the change in rear-end crash risk 

in a given hour before and after the UPA project controlling for changes in traffic 

conditions and weather conditions.  

The analysis results showed that:  

(1) Most analyzed sections in the I-35W HOT region showed no significant change in rear-

end crash risk associated with the UPA project except for Section S9 (southbound, just 

north of Minnesota River). Section N17 actually experienced fewer crashes after the UPA 

project, but the reduction was not as great as the change in lane occupancy would predict.  

(2) The PDSL region experienced substantial increase in traffic congestion following the 

completion of UPA interventions. This was due to the removal of the old TH 62 & I-35W 

bottleneck, causing the bottleneck move northward to the I-35W & I-94 junction. The 

observed increase in rear-end crash risk was not associated with the operation of PDSL 

when controlling for the changes in traffic conditions.  

(3) An “inverted U” relationship between rear-end crash risk and a proxy for traffic density, 

lane occupancy, when controlling for other factors, were seen in most of the analysis 

sections. Rear-end crashes were most likely when lane occupancies were approximately 

20%-30%.  

This study demonstrated a methodology that could be used to evaluate the safety effects of 

freeway-related projects. To be more specific, this study worked out a way to estimate 

changes in hourly crash risk while controlling for variations in traffic conditions.  
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Chapter 1: Introduction 

The Federal Highway Administration’s (FHWA) Urban Partnership Agreements (UPA) 

was aimed to implement a series of congestion reduction strategies that included what is 

referred to as the “4 Ts”: (1) a tolling (congestion pricing) demonstration, (2) enhanced 

transit services, (3) increased emphasis on telecommuting and flex scheduling, and (4) the 

deployment of advanced technology (FHWA UPA).  In 2007, four metropolitan areas, 

Miami, Minneapolis/St. Paul, San Francisco, and Seattle were announced to be the UPA 

Partners.  

The local partners of Minnesota’s UPA project include the Minnesota Department of 

Transportation (MNDOT), the Twin Cities Metropolitan Council, Metro Transit, the City 

of Minneapolis, Minnesota Valley Transit Authority, Anoka, Dakota, Hennepin and 

Ramsey Counties, Center for Transportation Studies and Hubert H. Humphrey Institute of 

Public Affairs at the University of Minnesota, and four Transportation Management 

Organizations (TMOs) (Turnbull et al., 2013).  

Minnesota’s UPA project consisted of a package of interventions addressing the congestion 

on I-35W corridor and in Downtown Minneapolis. Generally, interventions of four 

categories, tolling, transit, telecommuting, and technology, were implemented (Turnbull et 

al., 2013). 

Figure 1. 1 and Figure 1. 2 show the interventions implemented in Minnesota’s UPA 

project. 
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Figure 1. 1   Minnesota’s UPA project – Northern Portion. 

(source: https://ops.fhwa.dot.gov/congestionpricing/agreements/minneapolismaplg.htm) 
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Figure 1. 2   Minnesota’s UPA project – Southern Portion. 

 (source: https://ops.fhwa.dot.gov/congestionpricing/agreements/minneapolismaplg.htm) 

 

The first intervention of Minnesota’s UPA project, Transit Advantage Bus Bypass, was 

implemented in December, 2009, and the last intervention, Real-Time Transit and Traffic 

https://ops.fhwa.dot.gov/congestionpricing/agreements/minneapolismaplg.htm
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Dynamic Message Signs (DMS), was implemented in May, 2011. The construction of 

Minnesota’s UPA project lasted for approximately 17 months. 

Figure 1. 3 is the timeline of Minnesota’s UPA project.  

 

Figure 1. 3   Timeline of Minnesota’s UPA project. 

(Source: https://ops.fhwa.dot.gov/congestionpricing/docs/fhwajpo11039/) 

 

As is shown, the major improvements of the project, including reconstruction of the 

Crosstown Commons, provision of high-occupancy toll (HOT) lanes, and priced dynamic 

shoulder lanes (PDSL) were launched in September, 2009 and completed in November, 

2010, and the areas affected by these improvements are shown in Figure 1. 4. 

https://ops.fhwa.dot.gov/congestionpricing/docs/fhwajpo11039/
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Figure 1. 4  Portion of I-35W receiving UPA improvements. North is up.  

(Source: Google Map, modified by Gao) 

 

In 2013, MnDOT released Problem Statement NS-329 noting that there was interest in 

extending some or all of these interventions implemented in Minnesota’s UPA project to 

other corridors and called for an estimation of their safety effects to help make these 

decisions. However, since the UPA project consisted of several different interventions, it 

was desirable to untangle the effects of the interventions. For instance, crash frequencies 

appeared to have increased where PDSL had been provided, but it was unclear if this is due 

to the PDSLs themselves or to changes in traffic congestion resulting from the removal of 

the Crosstown (Trunk Highway 62 & I-35W) bottleneck. 
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The study aimed to untangle the indirect safety effects due to changes in traffic conditions 

from the direct effects, if any, due to the UPA improvements.  

A preliminary analysis regarding the UPA interventions’ safety effects was done. I-35W 

from its start to I-94 was divided into 17 one-mile sections, as shown in Figure 1. 5. 

 

Figure 1. 5  17 1-mile sections of I-35W. 

 

Crash records before (2006-2008) and after (2011-2013) the UPA project were extracted 

via the Minnesota Crash Mapping Analysis Tool (MNCMAT). Each crash record was 
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allocated to the corresponding one-mile section based on recorded crash location 

(mileposts), and crash frequencies by crash type were tabulated for each one-mile section. 

Table 1. 1 is an example crash frequency summary from one one-mile section, Section 

Mile-17. 

Table 1. 1  Example Crash Summary: Section Mile-17 

Crash Code Crash Type 
Crash Frequencies by Crash Type 

Before After 

0 Unspecified 2 0 

1 Rear end 160 220 

2 Sideswipe-Same direction 44 53 

3 Left turn 0 1 

4 Ran off road-Left side 38 79 

5 Right angle 7 3 

6 Right turn 0 0 

7 Ran off road-Right side 15 39 

8 Head on 1 1 

9 Sideswipe-Opposing 1 0 

90 Other 24 25 

98 Not applicable 5 4 

99 Unknown 0 0 

 

Figure 1. 6 visualizes the crash summary shown in Table 1. 1. 

 

Figure 1. 6  Histograms of crash summary in section Mile-17. 

As is shown in Table 1. 1, the most frequent crash type in Section Mile-17 was rear-end 

crashes. Similar analyses were done for the other 16 one-mile sections (crash summaries 

shown in Appendix) and the rear-end crash turned out to be the most prevalent crash type 

in those sections as well. Therefore, rear-end crashes became the priority type of crash in 

this study.  

Figure 1. 7 shows Before and After rear-end crash frequencies in each 1-mile section.  
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Figure 1. 7  Before and After frequencies of rear-end crashes in each 1-Mile section. 

The changing trend of rear-end crash frequencies from the Before to After period varied in 

each section. Sections Mile-3 to Mile-5, Mile-7, and Mile-14 to Mile-17 experienced an 

increase in rear-end crash frequency after the UPA project. In Sections Mile-10 to Mile-

13, rear-end crash frequency in the After period actually decreased compared to that in the 

Before period. For the remaining sections, the Before and After rear-end crash frequencies 

were approximately the same.  

The study’s interest lay in the sections where there was an obvious increase in the After 

period’s rear-end crash frequency compared to that in the Before period, which is 

approximately I-35W from TH-13 to I-494 and the I-35W PDSL region.   

Therefore, in what follows, the focus will be on two changes that appear to be associated 

with increases in crash frequencies: the addition of a lane to southbound I-35W as it 

approaches and crosses the Minnesota River and the conversion of the shoulder on 

northbound I-35W to a PDSL.  

The major ideas from freeway crash risk modeling are reviewed in Chapter Two, including 

statistical models for crash prediction and contributing factor analyzes. Chapter Three 

presents the work on data acquisition of crash records, traffic conditions, weather 

conditions, and PDSL activations, followed by one of the most challenging parts in this 

study, data preparation, in Chapter Four. Chapter Four described detailed data processing 
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procedure, including verification, screening, and aggregation. Statistical analyses, included 

model establishing, testing, and, interpretation, are described in Chapter Five. Finally, the 

research findings and possible extensions are summarized in Chapter Six. 
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Chapter 2: Literature Review 

2.1 Association between Crash Risk and Traffic Conditions 

The discussion of the relationship between traffic conditions and traffic accidents can be 

dated back to 1960s. In the early 1960s, the focus of studies in this area was on the 

relationship between average daily traffic (ADT) and accident rates (usually defined as the 

number of accidents per year per million motor vehicle-kilometers). For instance, Lundy 

(1960) conducted analysis of traffic accidents on 659 miles of four-lane, six-lane, and 

eight-lane freeways in California from year 1960 to 1962. He proposed a simple linear 

model depicting the relationship between accident rate as the dependent variable and ADT 

as the independent variable and found that the accident rate increased with increasing ADT. 

Staring from mid 1960s, concerned with the effect of ADT on accident measurements, 

some researchers began to use traffic conditions on hourly basis instead of annual average 

basis. Gwynn (1967) discovered a U-shaped dependency between accident rate and hourly 

traffic flow based on studied four-lane divided sections in New Jersey. Ceder and Liven 

(1982) tried to clarify the interaction between traffic flow and accidents found by Gwynn 

(1967). The authors studied eight four-lane road sections during an 8-year period and 

suggested that separation of components of both types of hourly flow and types of accidents 

could improve the accuracy of accident prediction. Hall and Pendleton (1989) explored the 

relationship between accident rates and volume to capacity (V/C) ratios on rural highways 

and reported that V/C ratios may be useful on accident prediction, especially at higher 

volume levels. Most studies at that time were based on aggregation of crashes and traffic 

conditions. Mensah and Hauer (1998) looked into two averaging-related problems in those 

safety performance functions (SPFs), namely argument averaging issue and function 

averaging issue. They argued that using averaging traffic flows such as annual average 

daily traffic (AADT) in the estimation of SPFs could bring about large bias depending on 

the SPFs. Also, discrepancies due to function averaging over time could lower the accuracy 

of the estimation of expected accident frequencies.  

Although it has been recognized that crash risk probably varies as traffic condition varies 

(Liu 1997), since historical statistical models mainly used the aggregated measurement of 

traffic condition such as annual average daily traffic and hourly volume, ignoring its time-

varying characteristic, the specific association between crash risk and real-time traffic 
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condition could not be pursued. Motivated by such limitation, researchers started to 

develop real-time crash prediction models based on real-time traffic condition prior to a 

crash occurrence. 

Oh et al. (2001) established a nonparametric Bayesian model, using real-time traffic data, 

5-min average and standard deviation of flow, occupancy, and speed, as the measure of 

accident exposure to estimate real-time accident likelihood. Lee et al. (2002) developed a 

log-linear model relating crash rates to the selected crash precursors, 5-min variation of 

speed and traffic density aggregated from loop detector data from 38 sections on a 10-km 

stretch of the Gardiner expressways in Toronto for a period of 13 months. The results 

showed the applicability of real-time traffic conditions as precursors on crash potential 

when controlling for geometry, weather, and time of day. Golob and Recker (2003) 

conducted both linear and nonlinear multivariate statistical analyses to determine 

contributing factors, including traffic flow, weather and lighting conditions, for different 

types of accidents that occurred on six freeway routes in Southern California during 1998. 

Traffic flow was measured by 30-s data from loop detectors in the vicinity of accident 

location prior to accident time. The authors concluded that when controlling for weather 

and lighting conditions, accident severity appeared to be more influenced by traffic volume 

compared to speed. To identify the freeway traffic flow conditions which were precursors 

of certain types of crashes, Golob et al. (2004) used 30-s traffic flow data extracted from 

single loop detectors located on six major freeways in Orange county, California, and found 

the key traffic flow elements affecting safety were mean volume and median speed, and 

temporal variations in volume and speed.  

Abdel-Aty et al. (2004) introduced the matched case-control logistic regression which has 

become something of a methodological standard. Police reports were reviewed to identify 

crashes occurring on a section on Interstate-4 and the real-time traffic data collected from 

loop detectors were used to characterize the traffic conditions in the vicinity of the crash 

location. Each crash became a case, while the corresponding non-crashes became controls. 

Among all selected crash precursors, 5-min upstream average occupancy before a crash 

and the 5-min downstream coefficient for variation in speed during the crash appeared to 

have most significant influence on crash occurrence. The authors reported a 69% crash 

detection rate and a 47% false-positive rate when using those two predictors, 5-min 
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upstream average occupancy before a crash and the 5-min downstream coefficient for 

variation in speed, in their proposed crash prediction model.  

Since 2004, a number of variants on this case-control approach have been reported. Abdel-

Aty et al. (2005) further extended former research where matched case-control logistic 

regression technique was used. The authors developed split models (two separate models) 

for freeway multivehicle crash prediction under high-speed and low-speed operating 

conditions by splitting the whole crash data into two data sets based on the 5-min average 

speeds aggregated from 30-s loop detector data prior to a crash, allowing for different crash 

mechanisms. Abdel-Aty and Pemmanaboina (2006) used matched case-control logit model 

to establish a crash likelihood prediction model based on real-time traffic condition data 

archived in intelligent transportation system and rainfall data from rain stations 

instrumented on I-4 corridor in Florida. 5-min average occupancy and standard deviation 

of volume, and 5-min coefficient of variation in speed 5-10 min prior to the crash were 

found to affect crash occurrence most significantly. Hossain and Muromachi (2012) used 

high-resolution traffic data from loop detectors on Shibuya 3 and 4 expressways in Tokyo 

Metropolitan to develop a real-time crash prediction model with 66% crash detection rate 

and a false-positive rate less than 20%. This study found that the traffic conditions in the 

upstream and the downstream and the difference in the traffic flow parameters in these 

locations had great impact on the crash prediction precision. Roshandel et al (2015) 

reviewed recent studies in this area and provided a meta-analysis. The sensitivity analysis 

results showed that location of loop detectors can be a confounder when studying the 

relationship between freeway crash frequencies and traffic characteristics. 

The previous studies have an emphasis on “prediction function” of the empirical models 

for freeway crashes but less on the explanation of the mechanism of freeway crashes. 

However, there are still several studies which have shed some light on the etiology of 

freeway crashes.   

Hourdos (2005, Hourdos et al. 2006) developed a unique methodology derived from 

standard case-control study to identify the most relevant real-time traffic metrics for 

freeway crash risk in the high crash area. Instead of using archived crash records and loop 

detector data, the he used the top-view video cameras located on a freeway section with 

high crash rate in Minnesota to visually identify freeway crashes and crash-relevant events 
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and measure traffic variables by machine-vision methods. Besides environmental factors 

like lighting, several general undesirable traffic flow conditions, including large speed 

differences among lanes and compression waves leading to abrupt changes in the traffic 

flow, were identified. Stopping shock waves were found to be necessary precursors for 

freeway rear-end crashes. With the detection algorithm based crash risk model established 

in this research, 58% of the crashes were successfully detected with a 6.8% false-positive 

rate. Davis and Swenson (2006) developed a probabilistic causal model to reconstruct and 

analyze individual freeway rear-end crashes. Using the trajectory information for 

individual vehicle extracted from video recordings of crashes, the authors illustrated how 

Brill’s model (Brill, 1972) could be used to explain the occurrence of rear-end crashes. 

Zheng et. al (2010) explored the relationship between traffic oscillations and traffic safety 

during congested periods using high-resolution traffic and crash data from a freeway 

section in the northbound of Interstate-5 in Portland. The authors conducted a matched 

case-control with conditional logistic regression model. Cases and controls were matched 

by similar times, presence of congestion, geometry, and weather. The authors reported an 

8% increase in rear-end crash risk with a one unit increase in the standard deviation of 

speed during congested periods. Xu et al. (2012) collected crash and traffic flow data from 

47 loop detector stations from a northbound section of the Interstate-880 freeway in 

California to evaluate the association between freeway traffic states and crash risk. It was 

a case-control study with conditional logistic regression model and the results showed that 

the impact of traffic flow parameters on crash risk were different in different traffic states. 

Xu et al. (2014) reported that the freeway crash risk reached the highest at the level of 

service (LOS) E, declined in LOS D and F, and was lowest at LOS A. The results indicated 

that, the relationship between freeway traffic flow states and crash risk should be nonlinear. 

To be more specific, freeway crash risk should have a roughly concave relationship to 

traffic density and the maximum crash risk locates at the densities corresponding to the 

capacity flow. Chatterjee (2016) combined Brill’s (Brill, 1972) car-following model with 

Newell’s (Newell, 1993) kinematic wave model, and determined conditions where a 

stopping wave could result in a rear-end crash. The established theoretical condition was 

verified with 41 video-recorded shock waves on I-94 in Minneapolis and successfully 
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distinguished between successful brake-to-stop events and rear-end crashes. This also 

study provided a structural-empirical method for freeway rear-end crash hazard evaluation.  

2.2 Association between Crash Risk and Adding Additional Lane(s) 

As noted in Chapter One, our study focused on two UPA interventions that may be 

associated with the increase in rear-end crash frequency, the implementation of HOT lane 

(number of lanes increased from three to four) and the PDSL (number of lanes increased 

from four to five when the PDSL was operating). Although our literature search turned up 

no reports explicitly addressing those two interventions, some researches could provide 

some clues on the safety effect of adding an additional lane.  

McCasland (1978) studied the safety performance of two sections of U.S. 59 Southwest 

Freeway in Houston where an additional lane was added by narrowing lane widths. The 

number of lanes changed from three to four in one section, while in the other section, the 

number of lanes was four before the project and became five after the project. The Poisson 

comparison of means test results suggested a significant decrease in accident rates (defined 

as accidents per 100 million vehicle kilometers) at 0.05 significance level. An NCHRP 

study (Curren, 1995) evaluated the safety performance of the application of shoulder use 

and narrow lanes on five studied corridors. Although higher accident rates were seen in 

three of the corridors while two showed a decrease, it was difficult to determine the 

association between the change in accident rates and conversion. Both studies chose 

accident rates as the measurement of traffic safety rather than accident frequency.  

Bauer et al. (2004) conducted an observational before-and-after evaluation of the safety 

effects of lane addition projects involving narrow lane and shoulder-use lane conversions 

on urban freeways in California and reported that projects converting four lanes to five 

lanes resulted in increases of 10% to 11% in accident frequency. Cao et al. (2012) studied 

safety benefits associated with conversions of High Occupancy Vehicle (HOV) lanes to 

HOT lanes on I-394 in Minnesota and found a 5.3% decrease in crash frequency following 

the conversion. In both of these studies, the dependent variable was annual crash frequency, 

and neither sought to estimate within-day changes or relate changes in crash frequency to 

traffic conditions. 
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2.3 Association between Crash Risk and Weather Conditions 

Weather is one of the most studied environmental factors that affects crash risk as it may 

reduce road friction, impair visibility, and/or make vehicle handling more difficult (Andrey, 

2010). According to statistics provided by FHWA’s Road Weather Management Program, 

every year, approximately 22% of crashes occurred in adverse weather or on slick 

pavement (FHWA Road Weather Management).  

In previous research, significant effects of adverse weather conditions on traffic accidents 

were found (Brijs et al., 2008). Audrey and Yagar (1993) studied the association between 

rainy weather conditions and crash risk using data from cities of Calgary and Edmonton, 

Canada, for time period 1979-1983, using a matched sample approach. The overall crash 

risk was found to be 70% higher in rainy conditions than normal. Khattak et al. (1998) 

investigated the effects of adverse weather on crash type and injury severity using data for 

North Carolina for time period 1990 to 1995. The analysis showed that overall crash risk 

on wet surfaces increased and adverse weather differentially influenced different types of 

crashes.  Knapp et al. (2000) investigated the impact of winter storm on traffic safety at a 

number of Iowa interstate locations for time period 1995 to 1998. The Poisson modeling 

results suggested a significant positive association between crash frequency and storm 

event duration and snowfall intensity. Eisenberg and Warner (2005) estimated the effects 

of snowfall on US traffic crash rates for time period 1975 and 2000, and the effects were 

found to be substantial. Although snow days had fewer fatal crashes than dry days, there 

were more nonfatal-injury crashes and property-damage-only crashes in snow days than 

dry days. Brijs et al. (2008) used a discrete time-series model to analysis the impact of 

weather conditions on daily crash frequency in Netherlands. The study showed that apart 

from exposure, weather condition, namely precipitation, did have significant effect on daily 

crash number.  

2.4 Statistical Models for Crash Likelihood Prediction 

At the beginning, researchers assumed a linear relationship between crash frequency or 

crash rate and factors such as traffic conditions, geometric conditions, and environmental 

factors. Lundy (1960) conducted analysis of traffic accidents on 659 miles of four-lane, 

six-lane, and eight-lane freeways in California for time period 1960 to 1962. He proposed 
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a simple linear model depicting the relationship between accident rate (dependent variable) 

and ADT (independent variable) and found that the positive association between accident 

rate and ADT. Liu and Popoff (1997) established simple linear regression models to study 

the relationship between travel speed and collisions. Casualties on provincial highways 

was the dependent variable while the average speed, the 85th speed, or the speed differential 

were the independent variables. Average travel speed was found to be closely correlated 

with both the number of traffic casualties and casualty rates. In addition, speed differentials 

were found to be associated with casualty rates on provincial highways, and higher speed 

differentials resulted in higher casualty rates. Ivey et al. (1981) used multiple linear 

regression models and suggested that traffic, geometric, pavement surface, and rainfall 

conditions could be used for wet weather accident rate prediction. In addition, they did 

sensitivity analyses and found that accident rate on highways with speed limits less than 

55 mph were sensitive to ADT, highway access, skid number and the time of exposure to 

rainfall, while that on highways with speed limit equal to 55 mph were sensitive to ADT, 

highway access, skid number and the standard deviation of traffic speeds about the mean 

traffic speed. 

However, the assumption of a linear relationship requires that crash frequency or crash rate 

is normally distributed, which is unrealistic, and the non-negative nature of crash frequency 

or crash rate could not be accounted for (Lee, 2008). To overcome the disadvantages of 

linear model, count data models and their variants were introduced to crash prediction. 

Jovanis and Chang (1986) proposed a Poisson regression model relating daily vehicle miles 

traveled (VMT), hours of snow and rain, and time of a week (weekdays or weekend) to the 

daily crash frequency on the mainline of the 157-mile Indiana Toll Road and found that 

VMT, hours of snow and rain were positively associated with crash occurrence. Miaou and 

Lum (1993) used both linear and Poisson regression models to model the relationship 

between highway vehicle accidents and geometric design. They suggested that, compared 

to linear model, Poisson regression models had better statistical properties in developing 

the relationship. To account for the over-dispersion in crash frequency data where Poisson 

regression models may not fit, Miaou (1994) applied negative binomial (NB) and zero-

inflated Poisson (ZIP) models to the analysis of the relationship between truck accidents 

and geometric design, and evaluated the performance of both models. Several more 
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variants of the count data models came out recently, such as zero-inflated negative 

binomial (ZINB) (Shankar et al. 1997), negative binomial Lindley (Geedipally et al., 2012), 

Poisson-inverse-Gaussion (PIG) (Zha et al., 2016), etc., have been used during past decades. 

By now, Poisson regression is still one of the most well-accepted methods of modeling 

roadway crashes (AASHTO, 2010). Loglinear Poisson models of crash frequency, when 

constrained to take only the values 0 or 1, reduce to logistic regression models (Davis et 

al., 2016) which makes logistic regression a useful tool for investigating crash risk over 

short time and space intervals. 
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Chapter 3: Data Acquisition 

The first task was to compile a master data file to conduct statistical analysis. Such data 

file includes explanatory variables such as relevant traffic volume and lane occupancy, 

PDSL activation, weather conditions, and crash experience on I-35W during both before 

(years 2006-2008) and after (years 2011-2013) UPA project. This chapter is dedicated to 

this first task; that is, the data collection of rear-end crashes, traffic condition, PDSL 

activation, and weather condition. 

3.1 Studied Sections 

The scope of this study can be divided into three sections, the HOT region, Crosstown 

region, and the PDSL region, as shown in Figure 3. 1. 

 
 

Figure 3. 1   MN UPA project intervention map. 

(Source: Google Map, modified by Gao) 
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All three regions were divided in to sections so that traffic demand and lane geometry were 

constant within a section. That is, the section boundaries were determined by junctions 

with on and off ramps or changes in geometric features such as number of lanes. It is worth 

noting that not all sections had loop detectors installed for all 6 study years (2006-2008 and 

2011-2013). The statistical analyses could be done only for those sections with loop 

detector data available. 

The request for the I-35W milepost listing for both before (2006-2008) and after (2011-

2013) periods was made to MnDOT, and the lane counts was verified with GoogleEarth. 

Our studied regions were the HOT region, I-35W from TH-13 to I-494, and the PDSL 

region, northbound I-35W from 37th Street to approximately 200 feet before 26th Street.  

Table 3. 1, Table 3. 2, and Table 3. 3 are the lists of HOT and PDSL region division 

results, respectively. The sections with symbol “*” are those sections with loop detectors 

where statistical analyses could be done. 

Table 3. 1    HOT Region Division (Northbound) 

Section 

No. 

Start Point End Point 
Number of 

Lanes 

Milepost Location Milepost Location Before After 

N1 002+00.244 

NB ENT LOOP FROM 

BURNSVILLE PKWY 

MSAS-102 

002+00.486 
NB EXIT RAMP TO 

MNTH-13 EB 
4 4 

N2 002+00.486 
NB EXIT RAMP TO 

MNTH-13 EB 
002+00.637 

NB ENT LOOP 

FROM MNTH-13 EB 
3 3 

N3 002+00.637 
NB ENT LOOP FROM 

MNTH-13 EB 
002+00.730 

NB EXIT LOOP TO 

MNTH-13 WB 
4 4 

N4 002+00.730 
NB EXIT LOOP TO 

MNTH-13 WB 
002+00.876 

NB ENT RAMP 

FROM MNTH-13 

WB 

3 3 

N5 002+00.876 
NB ENT RAMP 

FROM MNTH-13 WB 
003+00.251 

NB EXIT LOOP TO 

CLIFF RD CSAH-32 
4 4 

N6* 003+00.251 
NB EXIT LOOP TO 

CLIFF RD CSAH-32 
003+00.384 

NB ENT RAMP 

FROM CLIFF RD 

CSAH-32 

3 3 

N7 003+00.384 

NB ENT RAMP 

FROM CLIFF RD 

CSAH-32 

003+00.999 
NB EXIT RAMP TO 

BLACKDOG RD M-1 
3 3 

N8 003+00.999 
NB EXIT RAMP TO 

BLACKDOG RD M-1 
004+00.115 

NB ENT LOOP 

FROM BLACKDOG 

RD M-1 

3 3 

N9-1* 004+00.115 
NB ENT LOOP FROM 

BLACKDOG RD M-1 
004+00.907 

LANE CHANGE 

POINT 
3 3 

N9-2* 004+00.907 LANE CHANGE POIT 005+00.112 

NB EXIT RAMP TO 

W 106TH ST MSAS-

407 

4 4 
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N10 005+00.112 

NB EXIT RAMP TO 

W 106TH ST MSAS-

407 

005+00.385 

NB ENT RAMP 

FROM W 106TH ST 

MSAS-407 

4 4 

N11* 005+00.385 

NB ENT RAMP 

FROM W 106TH ST 

MSAS-407 

006+00.059 
NB EXIT RAMP TO 

W 98TH ST CSAH-1 
3 3 

N12 006+00.059 
NB EXIT RAMP TO 

W 98TH ST CSAH-1 
006+00.360 

NB ENT RAMP 

FROM W 98TH ST 

CSAH-1 

3 3 

N13 006+00.360 

NB ENT RAMP 

FROM W 98TH ST 

CSAH-1 

006+00.579 

NB EXIT RAMP TO 

W 94TH ST MSAS-

136 

4 4 

N14 006+00.579 

NB EXIT RAMP TO 

W 94TH ST MSAS-

136 

006+00.838 

NB ENT RAMP 

FROM W 94TH ST 

MSAS-136 

3 3 

N15 006+00.838 

NB ENT RAMP 

FROM W 94TH ST 

MSAS-136 

007+00.164 

NB EXIT RAMP TO 

W 90TH ST MSAS-

130 

4 4 

N16 007+00.164 

NB EXIT RAMP TO 

W 90TH ST MSAS-

130 

007+00.426 

NB ENT RAMP 

FROM W 90 TH ST 

MSAS-130 

3 3 

N17* 007+00.426 

NB ENT RAMP 

FROM W 90 TH ST 

MSAS-130 

008+00.163 

NB EXIT RAMP TO 

W 82ND ST MSAS-

354 

3 4 

N18* 008+00.163 

NB EXIT RAMP TO 

W 82ND ST MSAS-

354 

008+00.415 

NB ENT RAMP 

FROM W 82ND ST 

MSAS-354 

3 4 

N19 008+00.415 

NB ENT RAMP 

FROM W 82ND ST 

MSAS-354 

008+00.602 
NB EXIT RAMP TO 

ISTH-494 EB 
4 5 

 

Table 3. 2   HOT Region Division (Southbound) 

Section 

No. 

Start Point End Point 
Number of 

Lanes 

Milepost Location Milepost Location Before After 

S1 002+00.253 

SB EXIT LOOP TO 

BURNSVILLE PKWY 

MSAS-102 

002+00.506 
SB ENT RAMP 

FROM MNTH-13 EB 
4 4 

S2 002+00.506 
SB ENT RAMP FROM 

MNTH-13 EB 
002+00.606 

SB EXIT LOOP TO 

MNTH-13 EB 
3 3 

S3 002+00.606 
SB EXIT LOOP TO 

MNTH-13 EB 
002+00.702 

SB ENT LOOP 

FROM MNTH-13 

WB 

4 4 

S4 002+00.702 
SB ENT LOOP FROM 

MNTH-13 WB 
002+00.845 

SB EXIT RAMP TO 

MNTH-13 WB; END 

SB M/O 

3 3 

S5 002+00.845 

SB EXIT RAMP TO 

MNTH-13 WB; END 

SB M/O 

003+00.270 

SB ENT LOOP 

FROM CLIFF RD 

CSAH-5 

4 5 
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S6* 003+00.270 
SB ENT LOOP FROM 

CLIFF RD CSAH-5 
003+00.414 

SB EXIT RAMP TO 

CLIFF RD CSAH-5 
3 4 

S7 003+00.414 
SB EXIT RAMP TO 

CLIFF RD CSAH-5 
004+00.109 

SB ENT RAMP 

FROM BLACKDOG 

RD M-1 

3 4 

S8 004+00.109 
SB ENT RAMP FROM 

BLACKDOG RD M-1 
004+00.198 

SB EXIT LOOP TO 

BLACKDOG RD M-

1 

3 4 

S9* 004+00.198 
SB EXIT LOOP TO 

BLACKDOG RD M-1 
005+00.113 

SB ENT RAMP 

FROM W 106TH ST 

MSAS-407 

3 4 

S10 005+00.113 

SB ENT RAMP FROM 

W 106TH ST MSAS-

407 

005+00.340 

SB EXIT RAMP TO 

W 106TH ST MSAS-

407 

3 3 

S11* 005+00.340 
SB EXIT RAMP TO W 

106TH ST MSAS-407 
006+00.046 

SB ENT RAMP 

FROM W 98TH ST 

CSAH-1 

3 3 

S12 006+00.046 
SB ENT RAMP FROM 

W 98TH ST CSAH-1 
006+00.350 

SB EXIT RAMP TO 

W 98TH ST CSAH-1 
3 3 

S13 006+00.350 
SB EXIT RAMP TO W 

98TH ST CSAH-1 
006+00.581 

SB ENT RAMP 

FROM W 94TH ST 

MSAS-136 

4 4 

S14 006+00.581 

SB ENT RAMP FROM 

W 94TH ST MSAS-

136 

006+00.840 

SB EXIT RAMP TO 

W 94TH ST MSAS-

136 

3 3 

S15 006+00.840 
SB EXIT RAMP TO W 

94TH ST MSAS-136 
007+00.165 

SB ENT RAMP 

FROM W 90TH ST 

MSAS-130 

4 4 

S16 007+00.165 

SB ENT RAMP FROM 

W 90TH ST MSAS-

130 

007+00.400 

SB EXIT RAMP TO 

W 90TH ST MSAS-

130 

3 3 

S17* 007+00.400 
SB EXIT RAMP TO W 

90TH ST MSAS-130 
008+00.182 

SB ENT RAMP 

FROM W 82ND ST 

MSAS-354 

3 3 

S18* 008+00.182 

SB ENT RAMP FROM 

W 82ND ST MSAS-

354 

008+00.387 

SB EXIT RAMP TO 

W 82ND ST MSAS-

354 

3 3 

S19 008+00.387 
SB EXIT RAMP TO W 

82ND ST MSAS-354 
008+00.599 

SB ENT RAMP 

FROM ISTH-494 EB 
4 4 
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Table 3. 3   PDSL Region Division (Northbound) 

Section 

No. 

Start Point End Point 
Number of 

Lanes 

Location Milepost Location Milepost Before After 

N37* 013+00.819 

NB ENT RAMP 

FROM 46TH ST 

CSAH-46 

014+00.651 
NB EXIT RAMP TO E 

36TH ST MSAS-251 
4 5 

N38* 014+00.651 

NB EXIT RAMP TO 

E 36TH ST MSAS-

251 

015+00.171 

NB ENT RAMP 

FROM E 35TH ST 

MSAS-249 

4 5 

N39 015+00.171 

NB ENT RAMP 

FROM E 35TH ST 

MSAS-249 

015+00.312 
NB EXIT RAMP TO E 

31ST ST MSAS-366 
5 6 

N40* 015+00.312 
NB EXIT RAMP TO 

E 31ST ST MSAS-366 
016+00.097 

200 Feet South of 

BR#27870 UNDER 

26TH ST 

4 5 

(N37 is the transition area before physical PDSL) 

Figure 3. 2 and Figure 3. 3 visualized the studied sections for HOT region and PDSL 

region. 

 
 

Figure 3. 2   HOT region studied sections. 

(Source: Google Earth, modified by Gao) 
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Figure 3. 3   PDSL region studied sections. 

(Source: Google Earth, modified by Gao) 

 

3.2 Compiling Crash Data 

Crash data were compiled for a before period, year 2006 to 2008, and an after period, year 

2011-2013, using MnDOT’s Minnesota Crash Mapping Analysis Tool (MNCMAT), and 

the original crash reports were reviewed to confirm the crash type, crash time, and crash 

locations. 

5545 crash records of all crash types were extracted from the MNCMAT database for the 

region from the beginning of I-35W to the I-35W & I-94 junction.  

For each crash record retrieved from the MNCMAT database, the following details 

describing the situation when the crash happened were provided: 

• Crash location (Sys, Route, and Ref_Point)  

• Crash Number consistent with original accident reports (Crash_Num) 

• Crash Time (Year, Month, Date, and Time) 

• Crash type (Diagram Code) 

• Road direction (Rd_Dir) 

• Vehicle direction (V1Dir, V2Dir, V3Dir, V4Dir) 



 

24 

 

• Weather condition (Wthr1, Wthr2) 

All crashes were allocated to the corresponding section based on the milepost information 

provided in MNCMAT database. 

Table 3. 4 is a summary table of the number of crashes originally extracted from 

MNCMAT. 

Table 3. 4   Summary Information of Crash Records Extracted Using MNCMAT 

 

Diagram 

Code 
Crash Type 

Before After 

2006 2007 2008 Total 2011 2012 2013 Total 

0 Unspecified 3 6 8 17 4 1 0 5 

1 Rear End 567 497 449 1513 508 550 599 1657 

2 Sideswipe-Same direction 118 157 150 425 164 141 165 470 

3 Left Turn 1 1 1 3 4 1 1 6 

4 Ran off road-Left side 66 71 67 204 78 86 107 271 

5 Right angle 10 18 24 52 17 18 38 73 

6 Right turn 2 0 1 3 0 1 2 3 

7 Ran off road-Right side 43 49 68 160 63 86 60 209 

8 Head on 13 10 8 31 9 6 12 27 

9 Sideswipe-Opposing 2 2 1 5 0 5 1 6 

90 Other 67 71 70 208 54 42 60 156 

98 Not applicable 14 5 9 28 2 3 5 10 

99 Unknown 2 1 0 3 0 0 0 0 

Total 908 888 856 2652 903 940 1050 2893 

 

Figure 3. 4 is a bar-chart showing the crash frequencies presented in Table 3. 4. 

As is shown in both Table 3. 4 and Figure 3. 4, rear-end crashes were the most prevalent 

crash type on I-35W from its beginning to the I-35W & I-94 junction; thus rear-end crashes 

were chosen as the priority crash type in this study.   
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Figure 3. 4   Number of crash records extracted using MNCMAT by crash type. 

Table 3. 5 shows the number of rear-end crashes from MNCMAT database for each studied 

section. 

Table 3. 5   Number of Rear-end Crashes from MNCMAT Database for Each Studied Section 

Section 

No. 

Number of Rear-end Crashes 

Before After 

With determined* 

road direction 

With unspecified 

road direction* 

With determined 

road direction 

With unspecified 

road direction 

N6 4 4 15 0 

N9-1 17 6 17 1 

N9-2 1 5 1 0 

N11 1 2 1 0 

N17 26 6 21 1 

N18 65 9 41 6 

S6 1 2 0 0 

S9 4 11 13 0 

S11 0 3 6 0 

S17 7 7 23 1 

S18 2 9 9 4 

N37 8 40 64 6 

N38 11 24 69 16 

N40 30 56 148 19 

(* In crash records extracted from MNCMAT, the “road direction” could be “N” for northbound, 

“S” for southbound, “E” for eastbound, “W” for westbound, or “Z” for “unknown”; the latter three 

categories were regarded as “unspecified road direction” and we then tried to determine the actual 

road direction, northbound or southbound, with the aid of DOT/OTIS accident reports.) 
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A request was made to Driver & Vehicle Services (DVS) to review the original crash 

reports of crashes extracted from MNCMAT database. The original crash reports, 

DOT/OTIS accident reports, provide narratives and sketches in addition to the crash details 

recorded in MNCMAT database. By reviewing the crash reports, hopefully the following 

crash information could be verified: 

• Crash type 

➢ If the crash is a rear-end crash 

• Crash location 

➢ If the crash happened on the mainline of I-35W. If not, the crash should be excluded 

from analysis. 

➢ The road direction of the crash location.  

➢ If actual crash location belongs to the section assigned. 

• Crash time 

➢ The actual crash time including year, month, day, and time 

It turned out that there were discrepancies between crash reports and crash records in 

MNCMAT database. In this study, when there was a difference in crash details in 

MNCMAT database and crash reports, the ones in DOT/OTIS accident reports were 

adopted. 

Although there were specified diagram codes, milepost and road directions in crash records 

from MNCMAT database, accident reports for all types of crashes and all road directions 

were still reviewed for all sections, which was about 2000 reports, and crashes with 

following issues were excluded from the analysis: 

• Actual crash type was not “rear-end”. 

• Actual crash location was not the mainline of I-35W but on or off ramps. 

• Actual crash location or time are unspecified or vague. 

• Duplicated crash records where citizen and police reports were merged in DVS motor 

vehicle crash report database. 

• Crash records which were found not to be motor vehicle crashes by MnDOT’s 

Standards  (bike-pedestrian collision, bike-bike collision, suicide, etc.). 

Table 3. 6 shows the number of rear-end crashes for studied sections after review of crash 

reports.  
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Table 3. 6   Number of Rear-End Crashes for Studied Sections after Crash Reports Review 

Section No. 
Number of Rear-end Crashes 

Before After Total 

N6 7 15 22 

N9-1 20 17 37 

N9-2 2 2 4 

N11 1 1 2 

N17 30 21 51 

N18 71 44 115 

S6 1 0 1 

S9 6 13 19 

S11 1 5 6 

S17 8 24 32 

S18 3 10 13 

N37 16 62 78 

N38 17 73 90 

N40 59 148 207 

 

3.3 Compiling Traffic Condition Data  

As noted in Chapter Two, it is reasonable to consider traffic conditions as an important 

factor in rear-end crash risk. The primary data sources for traffic conditions, namely 

volume and lane occupancy, are: 

• All Detector Report (ADR): provided by MnDOT 

• DataExtract tool: http://data.dot.state.mn.us/datatools/dataextract.html.  

Annual ADRs were used to match the detector stations and lane detector numbers to the 

corresponding analysis sections. The relevant lane detector numbers were later used to 

extract traffic condition data using DataExtract tool. Since the locations of loop detectors 

could have been changed during six studied years, all six annual ADRs were reviewed to 

guarantee the consistency in loop detector use in traffic condition data collection. 
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Figure 3. 5   Screenshot of 2006 ADR. 

Table 3. 7 is the matching results of detector stations to the studied sections. 

Table 3. 7   Matching Results of Detector Stations to Studied Sections 

Section No. 
Detector Station No. 

Before After 

N6 35 35 

N9-1 77 77&36 

N9-2 36 37 

N11 38 38&39 

N17 42 42&41 

N18 43 43 

S6 79 79 

S9 31 31 

S11 29 29&28 

S17 25 25&26 

S18 24 24 

N37 57 57 

N38 59 59 

N40 60&61 60&61 

 

The original traffic condition traffic data including lane volume and lane occupancy, 

aggregated over 30-second intervals, the most basic data provided in DataExtract. The total 

numbers of original lane volume or occupancy records each year are as follows: 
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• Year 2006, 2007, 2011, and 2013: 
(1 ℎ𝑜𝑢𝑟)(3600

𝑠𝑒𝑐𝑜𝑛𝑑

ℎ𝑜𝑢𝑟
)

30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
×24 ℎ𝑜𝑢𝑟𝑠×365 𝑑𝑎𝑦𝑠 =

1051200 

• Year 2008 and 2012: 
(1 ℎ𝑜𝑢𝑟)(3600

𝑠𝑒𝑐𝑜𝑛𝑑

ℎ𝑜𝑢𝑟
)

30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
×24 ℎ𝑜𝑢𝑟𝑠×366 𝑑𝑎𝑦𝑠 = 1054080 

3.4 PDSL Operation Historical Data 

The PDSL first opened on Sept 30th, 2009. When initially opened, the standard hours were 

6:00-10:00 AM and 2:00-7:00 PM.  Hours could be extended for heavy congestion due to 

weather, events or incidents. Over time, MnDOT noticed high violation rates for the PDSL 

during the mid-day, thus the PDSL standard hours have been extended to be 6:00 AM-7:00 

PM.  This change started on April 11th, 2012.  

The PDSL activation data came from MnDOT’s log of Intelligent Lane Control Signal 

(ILCS) located at 37th Street, which is right at the beginning of the physical PDSL. In the 

log, an entry was made when the status of the sign changes and the time was accurate to 

seconds.  

 

Figure 3. 6  ILCS Located at 37th Street. 

(Source: Google Street View) 

Below are the standard messages shown on the ILCS: 

• LANE_OPEN: Green arrow, lane is open to traffic. 

• LANE_CLOSED: Red X (“cross”), lane is closed to traffic. 
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• CAUTION: Yellow arrow, lane is open but traffic should use caution. It’s used when 

there is an incident in the adjacent lane or shoulder. This could be a crash or stall.  It 

can also be used for debris in the lane that is not closing the lane. 

• DARK: ILCS is dark, used for general purpose lanes. 

• MERGE_RIGHT: Merge chevron showing lane is closing. 

• VSA: Variable speed advisory is displayed. 

• UNKNOWN: Lane activation status is unavailable. 

As there are 5 ILCS on the structure at 37th Street, the log showed a combination of 

messages of all five lanes.  

 
 

Figure 3. 7   Example ILCS log file. 

 

The message should be read from left to right, and as PDSL is the left most lane, the first 

one listed is the ILCS over the PDSL. In combination, typical messages might appear as 

follows: 

• “LANE_OPEN DARK DARK DARK DARK”: PDSL is open.  Left most ILCS is 

displaying the green arrow.  Other 4 ILCS are dark. 

• “LANE_CLOSED DARK DARK DARK DARK”:  PDSL is closed.  Left most ILCS 

is displaying the red X.  Other 4 ILCS are dark. 

After separating PDSL’s ILCS from other four, a record of PDSL activation was compiled. 

3.5 Compiling Weather Data 

In Minnesota, weather conditions can affect the occurrence of crashes, thus it is necessary 

to control for rainy and snowy weather in analysis. The weather data sources were the 

following: 
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• Road Weather Information System (RWIS) managed by MnDOT: 

http://rwis.dot.state.mn.us/.  

• MNCMAT crash records  

• Hard copy crash reports 

In this study, the weather condition in crash hours were from the weather information 

shown in MNCMAT crash records and verified with crash reports. 

For non-crash hours, RWIS data were used. We first searched for the RWIS sites near our 

studied sections, and the site “I-35 at Minnesota river” was found to be the closest one. 

However, as RWIS database could only provide the weather data from site “I-35 at 

Minnesota river” from year 2011-2013, other sites near “I-35 at Minnesota river” site were 

needed for the weather data during year 2006-2008. Since the “Minneapolis-St. Paul 

International Airport” site only had the weather data for year 2010, thus, finally, site “I-35 

E Cayuga St. Bridge” was chosen as the source of weather condition for year 2006-2008. 

Figure 3. 8 shows the locations of weather information collection sites near studied 

sections.  

 

Figure 3. 8   Weather information site locations. 

By manually inputting the desired date, historical weather information can be retrieved 

form the RWIS database by its searching tool. The rainy and snow weather conditions were 

mainly determined by the precipitation information. When the precipitation information 

was not available, the surface status served as the supplemental information. 

http://rwis.dot.state.mn.us/
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Chapter 4: Data Preparation 

In later statistical analyses, for each hour during 2006- 2008 and 2011-2013, the presence 

or absence of a rear-end crash became the dependent variable while independent variables 

consisted of traffic volume and lane occupancy, the presence or absence of snowy or rainy 

conditions, the before or after period indicator, and the presence or absence of PDSL 

operation. Such analyses required further data processing of the original data, and this 

chapter describes this process. 

Figure 4. 1 and Figure 4. 2 show the screenshots of example data files for HOT and PDSL 

regions, respectively. 

 
 

Figure 4. 1   Example data set for statistical analysis for HOT sections. 

 

 
 

Figure 4. 2   Example data set for statistical analysis for PDSL sections. 

 

4.1 Crash Data 

To avoid possible biases from secondary crashes, in this study, the response variable in the 

statistical model was the presence absence of a rear-end crash in each hour, which is a 

binary variable where “1” was assigned to the hours when there was at least one rear-end 

crash happened and “0” otherwise. There were cases that two consecutive rear-end crashes 

happened in different hours but the crash times were actually within 1 hour. In this case, 

the latter ones were regarded as dependent on the previous ones and deleted from the 

sample. 
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4.2 Traffic Condition Data 

Since hourly traffic condition data were needed for analysis, traffic data were aggregated 

based on the original 30-second raw data.  

To guarantee the effectiveness of the traffic condition data in analysis, a data quality 

checking process was done before data aggregation. The main task in this data quality 

checking process was to identify questionable data that should not be used for analysis.  

Three types of “bad” data were identified: 

• Records with negative volume or occupancy. 

• Records with occupancy greater than 100%. 

• Records with repeated pattern of data (repeating “0” volume and occupancy records 

during 0:00-6:00 AM were not regarded as questionable data).  

Those 30-second traffic condition records with at least one of the three issues above were 

excluded from data aggregation.  

For each hour, summary measures including lane occupancy mean, lane occupancy 

variance, and lane volume mean from the remaining 30-second data were computed as 

follows:  

Non-crash hours’ traffic data were computed by following formulae:  

• Lane occupancy: �̅� =
∑ ∑ 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1

𝑛×𝑚
 

• Lane occupancy variance: 𝜎2 =
∑ ∑ (𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑖𝑗−�̅�)2𝑚

𝑗=1
𝑛
𝑖=1

𝑛×𝑚
 

• Lane volume mean: �̅� =
∑ ∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1

𝑛×𝑚
 

Where 

n - number of lanes open in each hour 

m - number of records left after abnormal records excluded in each hour 

occupancyij – the jth lane occupancy record for the ith lane 

volumeij - the jth lane volume record for the ith lane 

It is worth noting that, since crashes often cause substantial changes in traffic conditions, 

for those hours when crashes occurred the traffic conditions were computed using data 

from the 30-minute periods preceding the reported times of the crashes.  
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Finally, traffic flow, centered 1-hour average lane occupancy and centered lane occupancy 

standard deviation for each section were computed based on the 1-hour lane volume mean, 

lane occupancy mean, and lane occupancy variance as follows:  

• Traffic flow Q = 120×n×�̅� 

• Centered average lane occupancy =  �̅�𝑖𝑗 −
∑ 𝑂𝑘̅̅ ̅̅52608

𝑘=1

52608
 

• Centered lane occupancy standard deviation = 𝜎𝑖𝑗 −
∑ 𝜎𝑘̅̅ ̅̅52608

𝑘=1

52608
 

4.3 PDSL Activation Data 

Proportions of the duration of each PDSL activation status in each hour were calculated 

after a data quality checking process.  

Below are the issues found during the data quality checking process: 

• Missing data including blank records and records with message as “UNKNOWN”. 

• Vague PDSL activation status indicated by message as “DARK” and 

“USE_CAUTION”. 

• Presence of non-zero occupancy and volume during “PDSL-closed” hours. 

• Different messages switched on an ILCS at relative quick pace. 

MnDOT provided relevant explanations for the issues above, and data were processed 

based on this additional information.  

First, the missing data in the ILCS log was due to technical problem and there was no other 

way to regain the PDSL activation data missing in the log. Thus, records with missing data 

were deleted.  

For the second issue, for the log entry “DARK”, it was hard to tell whether the PDSL was 

running as a general purpose lane or if this was due to a technical issue, such as loss of 

communication with ILCS, thus we kept this status in our statistical model. For the entry 

“USE_CAUTION”, mostly it indicated that there was an incident. Obviously, there is 

correlation between this status and the presence of a crash. Thus, records with 

“USE_CAUTION” status were deleted from the analysis. 

Third, traffic data during closed hours were mainly due to violators, snow or ice events, or 

to incidents. We differentiated the causes of abnormal traffic data during PDSL-closed 

hours by looking at the loop detector data trend. If the traffic data in PDSL had 
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“discontinuous” pattern, that is, a non-zero data record presented in the middle of several 

zero records, this non-zero data record was thought to be caused by violators. The non-zero 

traffic data due to violators were ignored in this study. If there was a “continuous” trend in 

the non-zero traffic data during PDSL-closed hours, it is most likely there was snow or ice 

events, or incidents, and ILCS always had non-closed messages. Such non-zero traffic data 

have been taken into consideration in this study. 

The last issue typically happened because of an evolving incident or human error in 

commanding the ILCS in response to an evolving incident. We manually picked out the 

PDSL activation records with such issues and looked at the switching pattern. Those 

records going back and forth between different messages within 2 minutes were considered 

due to human error and were smoothed based on the first and last messages in that switch. 

Otherwise, the original records were kept.  

4.4 Weather Data 

Rainy and snowy weather condition indicators were introduced to the statistical model 

established later. Both indicators were binary variables where “1” was assigned to hours 

when there was rain or snow respectively and “0” otherwise. The weather condition 

indicator data were processed based on the original weather data collected in section 3.5.  

4.5 Other 

In addition to crash, traffic condition, PDSL activation, and weather data, another variable, 

the before or after period indicator was introduced in the statistical model for HOT sections. 

The before or after indicator was a binary variable, with “0” being assigned for hours in 

2011-2013 and “1” for hours in year 2006 to 2008. 
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Chapter 5: Statistical Analyses 

This chapter describes the statistical analysis of how the rear-end crash risk in a given hour 

varies with respect to other conditions prevailing during that hour. Our goal was to 

determine the factors associated with rear-end crash risk on the studied sections during the 

studied years, especially if the change in rear-end crash frequencies was direct effect of 

UPA interventions. Since different UPA interventions were implemented within I-35W 

from TH-13 to I-494 and PDSL region, analyses for those two sections were carried out 

separately. It is worth noting that, for each analyzed section, only those crashes for which 

we were confident that their actual locations were within this given section were considered.  

5.1 Statistical Modeling  

5.1.1 Logistic regression model  

For a given section of freeway, let Yi denote “the presence or absence of a rear-end crash 

during hour i”, with “Yi=1” indicating “the presence of at least one rear-end crash during 

hour i” and “Yi=0” indicating “no rear-end crash during hour i”. 

The variables Yi are assumed to be Bernoulli outcomes with parameters 𝜋𝑖, the “rear-end 

crash risk during hour i” in this study’s content. That is  

Pr{𝑌𝑖 = y} = 𝜋𝑖
𝑦(1 − 𝜋𝑖)1−𝑦, y=0, 1.                                     (Eq. 5.1) 

Logistic regression was adopted for statistical analysis with binary response.  

The logistic regression model assumes that the logarithm of the odds, , of an 

observation  can be expressed as a linear function of K dependent variables: 

E {log
𝑃(𝑌𝑖=1)

𝑃(𝑌𝑖=0)
} = E {log

𝑃(𝑌𝑖=1)

1−𝑃(𝑌𝑖=1)
} = 𝐸 {log

𝜋𝑖

1−𝜋𝑖
} = 𝛽0 + ∑ 𝛽𝑘𝑥𝑘𝑖

𝐾
𝑘=1      (Eq. 5.2) 

Where  are parameters;   

’s = observed value of predictor k associated with hour i.          

Equation 5.2 can also be written as: 

E {P(𝑌𝑖 = 1)} = 𝜋𝑖 =
exp (𝛽0+∑ 𝛽𝑘𝑥𝑘𝑖

𝐾
𝑘=1 )

1+exp (𝛽0+∑ 𝛽𝑘𝑥𝑘𝑖
𝐾
𝑘=1 )

                               (Eq. 5.3) 
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5.1.2 Parameter Estimation 

Maximum Likelihood Estimation (MLE) (Dobson and Barnett, 2008) was used to estimate 

the coefficients, namely the ’s, in the logistic regression model presented in Equation 

5.3.  

The corresponding joint probability function is:  

L(𝛽0, … , 𝛽𝐾) = ∏ 𝜋𝑖
𝑌𝑖(1 − 𝜋𝑖)

1−𝑌𝑖𝑛
𝑖=1                             (Eq. 5.4) 

Substituting (Eq. 5.3) into (Eq. 5.4) and taking the natural logarithm gives: 

𝑙(𝛽0, … , 𝛽𝐾) = ∑ 𝑌𝑖 (𝛽0 + ∑ 𝛽𝑘𝑥𝑘𝑖

𝐾

𝑘=1

) − ∑ log [1 + exp (𝛽0 + ∑ 𝛽𝑘𝑥𝑘𝑖

𝐾

𝑘=1

)]

𝑛

𝑖=1

𝑛

𝑖=1

 

(Eq. 5.5) 

The estimates of (𝛽0, … , 𝛽𝐾)  should be the values that maximize the log-likelihood 

function in (Eq. 5.5). 

Interpretation for  are as follows: 

i) Intercept 𝛽0 

𝛽0 represents the logarithm of the odds of having the event represented by Y, Yi=1, when 

other conditions are fixed at 0.  

ii) Slopes 𝛽𝑘,𝑘≠0 

If 𝑋𝑘 is a binary variable representing a presence, 𝛽𝑘 represents the logarithm of the odds 

of having the event represented by Y associated with the exposure adjusted for other 

predictors.   

If 𝑋𝑘 is on continuous scale, 𝛽𝑘 represents the change in logarithm of the odds associated 

with one-unit increase in the value of 𝑋𝑘 adjusted for other predictors. 

5.1.3 Goodness of Fit as Hosmer-Lemeshow Test 

The Hosmer-Lemeshow (H-L) (Hosmer and Lemeshow, 2000) test is widely used as a 

goodness of fit test for logistic regression, especially for risk prediction models.  

i) Null and alternative hypotheses 
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H0: actual and predicted event rates are similar across G groups (or, the proposed logistic 

model fits the data) 

H1: actual and predicted event rates are not similar across G groups (or, the proposed 

logistic model does not fit the data) 

ii) Test statistic 

To perform the H-L test, after computing maximum likelihood estimates of the coefficients, 

the data is first grouped into G groups by ordered predicted probabilities of “success” 

(Yi=1). Then, the H-L test statistic is calculated by the formula below: 

𝐺𝐻−𝐿
2 = ∑

(𝑂𝑔−𝐸𝑔)2

𝐸𝑔(1−𝐸𝑔/𝑁𝑔)

𝐺
𝑔=1                                           (Eq. 5.6) 

Where 

G = the number of subgroups 

Og = number of observed events in the gth group 

Eg = number of expected events in the gth group 

Ng = the number of observations in the gth group 

For large samples, the test statistic, 𝐺𝐻−𝐿
2 , is approximately Chi-square distribution with 

(G-2) degrees of freedom (𝐺𝐻−𝐿
2 ~ χ𝐺−2

2 ) under the null hypothesis. 

iii) Decision rule: 

Given the null hypothesis, the computed value of the test statistic, 𝐺𝐻−𝐿
2 , is unlikely. Thus: 

If Pr ( ) ≤ α, where α is the significance level, for example the conventional 

0.05, we reject the null hypothesis and conclude there is not enough evidence to show the 

model is a good fit;  

If Pr ( ) > α, we cannot reject the null hypothesis but conclude that either the 

fit is good or that there is not enough data to detect a poor fit. 

In this study, G=10 was used as the number of subgroups for H-L test and α=0.05 was 

chosen as the significance level. 

5.1.4 Goodness of Fit as Likelihood Ratio Test 

The likelihood ratio (L-R) test is commonly used in model comparison for generalized 

linear models (GLM). L-R test helps compare two nested models where the simpler model 



 

39 

 

is a special case of the more complex model. The test can be described as follows (Agresti, 

2014). 

i) Null and alternative hypothesis (assuming current model, M1, holds) 

H0: The reduced (simpler) model, M0 is equivalent to the more complex model.  

H1: The reduced model is not equivalent to the more complex model. 

ii) Test statistic: 

L-R test statistic is defined as below: 

𝐺2(𝑀0|𝑀1) = −2(𝐿0 − 𝐿1)                                               (Eq. 5.7) 

Where  

L0 = the maximum log-likelihood from M0 

L1 = the maximum log-likelihood from M1 

G2(M0|M1) has an approximately chi-squared null distribution with p (p>0) degrees of 

freedom, where p is difference in the number of coefficients between M0 and M1. 

iii) Decision rule: 

Given the null hypothesis, the computed value of the test statistic is unlikely. Thus:  

If Pr (χ𝑘
2 > 𝐺2(𝑀0|𝑀1)) ≤ α where α is the significance level, we reject the null hypothesis 

and conclude that the reduced (simpler) model, M0, is inferior to the more complex model.  

If Pr (χ𝑘
2 > 𝐺2(𝑀0|𝑀1)) > α, we cannot reject the null hypothesis but conclude that the 

simpler model is as good as the more complex) model. 

In this study, α=0.05 was chosen as the significance level. 

5.2 Logistic Regression Results 

5.2.1 I-35W from TH-13 to I-494 

To establish the logistic regression model, for each hour during 2006-2008 and 2011-2013, 

the presence absence of a crash was the dependent variable while independent variables 

consisted of traffic volume and lane occupancy, the presence or absence of snowy or rainy 

conditions, and the Before or After period indicator. 

Table 5. 1 is a list of variables involved in logistic regression model for sections on I-35W 

from TH-13 to I-494. 

Table 5. 1   Variables Selected for Logistic Regression Analysis for I-35W from TH-13 to I-494 
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Symbol Role Name Type Value 

Yi Response 
Rear-end Crash 

Presence Absence 
Binary 

The presence absence of a rear-end crash during 

hour i. 

0 = no rear-end crash during hour i; 

1 = at least one rear-end crash during hour i. 

X1i Predictor Rainy Binary 

Rainy weather condition indicator for hour i. 

1 – Rainy during hour i; 

0 – Otherwise. 

X2i Predictor Snowy Binary 

Snowy weather condition indicator for hour i. 

1 – Snowy during hour i; 

0 – Otherwise. 

X3i Predictor log(vph) Continuous 
Natural logarithm of section traffic flow, in 

vehicles/hour, during hour i. 

X4i
* Predictor Lane Occupancy Continuous Centered average lane occupancy during hour i. 

X5i
* Predictor Lane Occupancy2 Continuous 

The square of centered lane occupancy during 

hour i. 

X6i
* Predictor 

Occupancy Standard 

Deviation 
Continuous 

Centered lane occupancy standard deviation 

during hour i. 

X7i Predictor Before/After Binary 

The time period indicator for hour i.  

1 – Hour occurring 2011-2013; 

0 – Hour occurring 2006-2008. 

 

For each of the section, N6, N9-1, N9-2, N11, N17, N18, S6, S9, S11, S17, and S18, the 

generalized linear model routine glm with MLE implemented in statistical analysis package 

in software R (R, 2015) was used to fit and evaluate logistic regression models containing 

different combinations of independent variables listed in Table 5. 1.  However, it turned 

out that the numbers of rear-end crashes in section N6, N9-2, N11, S6, S11, and S18 were 

insufficient to obtain reliable parameter estimates, thus the analyses of rear-end crash risk 

for those 6 sections was not be pursued. Previous research into short-term prediction of 

freeway crash risk has indicated that risk increases as traffic density increases. Since lane 

occupancy is, to a first approximation, proportional to density the initial set of analyses 

included lane occupancy but did not include the square of lane occupancy. 
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Table 5. 2 is the estimation summary for the initial logistic regression model containing 

predictors X1-X4 and X6-X7. 

Table 5. 2   Estimation Summary for Initial Model of Rear-End Crash Probability on I-35W from 

TH-13 to I-494 

Section No. Variable Estimate Std. Error z value Pr (>|z|) Signif. codes 

N9-1 

Constant -15.76981 4.88482 -3.228 0.00125 ** 

Rainy -0.14798 0.47663 -0.310 0.75621  

Snowy -0.16311 0.57710 -0.283 0.77745  

logvph 0.93626 0.60143 1.557 0.11953  

Lane Occupancy 0.09135 0.04768 1.916 0.05537 . 

Lane Occupancy2 -- -- -- --  

Occupancy Standard Deviation 0.21474 0.07077 3.034 0.00241 ** 

Before/After 0.28421 0.40247 0.706 0.48009  

Null deviance = 491.08 H-L = 12.799, p-value = 0.119 

Residual deviance = 395.40 AIC: 409.4 

N17 

Constant -23.99466 5.55990 -4.316 1.59E-05 *** 

Rainy 0.18507 0.34809 0.532 0.59495  

Snowy 0.19109 0.60987 0.313 0.75403  

logvph 2.04723 0.68085 3.007 0.00264 ** 

Lane Occupancy -0.02572 0.05473 -0.470 0.63833  

Lane Occupancy2 -- -- -- --  

Occupancy Standard Deviation 0.29810 0.06377 4.675 2.94E-06 *** 

Before/After -0.28042 0.37570 -0.746 0.45543  

Null deviance =767.25 H-L =40.814, p-value =2.258E-06 

Residual deviance = 637.76 AIC: 651.76 

N18 

Constant -16.5466 3.21863 -5.141 2.73E-07 *** 

Rainy 0.48311 0.22243 2.172 0.02986 * 

Snowy 0.01569 0.43778 0.036 0.97141  

logvph 1.20496 0.40353 2.986 0.00283 ** 

Lane Occupancy 0.11395 0.02065 5.517 3.44E-08 *** 

Lane Occupancy2 -- -- -- --  

Occupancy Standard Deviation 0.07927 0.01512 5.242 1.59E-07 *** 

Before/After -0.14611 0.22133 -0.66 0.50916  

Null deviance =1527.0 H-L = 15.73, p-value = 0.04642 

Residual deviance = 1270.2 AIC: 1284.2 

S9 

Constant -14.24103 3.09647 -4.599 4.24E-06 *** 

Rainy 1.41656 0.61832 2.291 0.021965 * 

Snowy 2.26803 0.59768 3.795 0.000148 *** 

logvph 0.59299 0.38376 1.545 0.122295  

Lane Occupancy -0.08408 0.06288 -1.337 0.18117  

Lane Occupancy2 -- -- -- --  
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Occupancy Standard Deviation 0.37054 0.0791 4.684 2.81E-06 *** 

Before/After 1.04037 0.54223 1.919 0.055024 . 

Null deviance = 339.04 H-L =3.7801, p-value = 0.8764 

Residual deviance =278.91 AIC: 292.91 

S17 

Constant -35.724636 9.351959 -3.820 0.000133 *** 

Rainy -0.007307 0.635975 -0.011 0.990833  

Snowy 0.797148 0.758764 1.051 0.293448  

logvph 7.684986 2.628153 2.924 0.003455 ** 

Lane Occupancy 0.101498 0.055943 1.814 0.069631 . 

Lane Occupancy2 -- -- -- --  

Occupancy Standard Deviation 0.134789 0.084566 1.594 0.110959  

Before/After 0.477426 0.474381 1.006 0.314214  

Null deviance = 462.66 H-L = 76.3812, p-value = 2.608e-13 

Residual deviance = 358.76 AIC: 372.76 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

N9-1 was used as an example to see how to interpret the information provided in Table 5. 

2: 

i) Intercept 𝛽0 

The maximum likelihood estimate of the coefficient 𝛽0 was -15.76981 and the standard 

error associated with this estimate was 4.88482. A test of the null hypothesis 𝛽0 = 0  

yielded a z-statistic equal to -3.228, and the probability of obtaining a z-value at least this 

large when the null hypothesis was true was 0.0125. Using the rule that we cannot reject a 

null hypothesis when a P-value is greater than 0.05, which indicates that 𝛽0 is statistically 

significant different from 0 at 0.05 significance level. The 95% Wald confidence interval 

of 𝛽0  is (-25.3441, -6.19556), given by (-15.76981-1.96×4.88482, -

15.76981+1.96×4.88482). In a situation where all model predictors were equal to zero the 

estimated probability of a rear-end crash would be exp (-15.76981) / (1+exp (-15.76981)) 

= 0.000000142 with a 95% Wald confidence interval (9.845×10-12, 0.00203), given by (exp 

(-25.3441) / (1+exp (-25.3441), exp (-6.19556) / (1+exp (-6.19556)).  

ii) Slopes 𝛽𝑘,𝑘≠0 

Table 5. 2 shows that the maximum likelihood estimate of the coefficient 𝛽1 was 0.14798 

and the standard error associated with this estimate was 0.47663. A test of the null 

hypothesis 𝛽1 = 0 yielded a z-statistic equal to -0.310, and the probability of obtaining a 

z-value at least this large when the null hypothesis was true was 0.75621. Using the rule 
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that we cannot reject a null hypothesis when a P-value is greater than 0.05, which indicates 

that rainy condition does not have statistically significant association with rear-end crash 

probability at 0.05 significance level. Similar conclusions can be applied to weather 

variable Snowy, the traffic variables Log Flow, and the Before/After predictor. Those four 

predictors showed no clear association with rear-end crash risk at 0.05 significance level.  

On the other hand, the maximum likelihood estimate of the coefficient 𝛽4 was 0.09135 and 

the standard error associated with this estimate was 0.04768. A test of the null hypothesis 

𝛽4 = 0 yielded a z-statistic equal to 1.916, and the probability of obtaining a z-value at 

least this large when the null hypothesis was true was 0.05537. The association that lane 

occupancy has with rear-end crash is marginally non-significant at 0.05 significance level. 

The positive value of the estimate of 𝛽4 indicates that rear-end crash probability could 

increase as lane occupancy increases. The maximum likelihood estimate of the coefficient 

𝛽6 was 0.21474 and the standard error associated with this estimate was 0.07077. A test of 

the null hypothesis 𝛽6 = 0  yielded a z-statistic equal to 3.034, and the probability of 

obtaining a z-value at least this large when the null hypothesis was true was 0.00241. Using 

the rule that we reject a null hypothesis when a P-value is less than 0.05, we see that one 

should clearly reject the null hypothesis that lane occupancy standard deviation has no 

association with rear-end crash probability. The positive value of the estimate of 𝛽6 means 

that rear-end crash probability increases as the standard deviation of lane occupancy 

increases. The odds of having a rear-end crash in a given hour is 𝑒0.21474 = 1.23954 times 

the odds of having a rear-end crash in a given hour with one-unit decrease in standard 

deviation of lane occupancy with a 95% Wald confidence interval (1.0790, 1.4240), 

holding other conditions constant.  

iii) Goodness of fit 

The null deviance and residual deviance are 491.08 and 395.40, respectively. The Hosmer-

Lemeshow goodness of fit statistic was 12.799 with a p-value of 0.119, which indicates the 

actual and predicted rear-end crash risk are similar across 10 subgroups at 0.05 significance 

level. 

Since lane occupancy is, to a first approximation, proportional to traffic density, the 

findings of Xu et al (2014) suggest that the relationship between lane occupancy and crash 

probability should show an “inverted-U” shape with a maximal point where crash 
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probability is greatest and falling off for lane occupancies both less than and greater than 

this maximal point. One way to allow for this is to include the square of lane occupancy, 

our variable X5, as a predictor and Table 5. 3 shows the estimation summary for a model 

using all the predictors listed in Table 5. 1. 

Table 5. 3   Estimation Summary for I-35W from TH-13 to I-494, with Quadratic Occupancy Effect 

Section No. Variable Estimate Std. Error z value Pr (>|z|) Signif. codes 

N9-1 

Constant -6.904828 6.686002 -1.033 0.302  

Rainy -0.246231 0.478694 -0.514 0.607  

Snowy -0.372604 0.597194 -0.624 0.533  

logvph -0.218047 0.860995 -0.253 0.800  

Lane Occupancy 0.298789 0.146963 2.033 0.042 * 

Lane Occupancy2 -0.005544 0.003969 -1.397 0.162  

Occupancy Standard Deviation 0.137832 0.084855 1.624 0.104  

Before/After 0.229706 0.401705 0.572 0.567  

Null deviance = 491.08   H-L = 11.358, p-value = 0.1822 

Residual deviance = 393.26 AIC: 409.26 

N17 

Constant -10.524371    7.018016   -1.500 0.1337  

Rainy 0.183404    0.345895 0.530 0.5960  

Snowy 0.042289    0.615347    0.069 0.9452  

logvph 0.254392    0.915177    0.278 0.7810  

Lane Occupancy 0.382850    0.202204    1.893 0.0583 . 

Lane Occupancy2 -0.009998    0.005047   -1.981 0.0476 * 

Occupancy Standard Deviation 0.094698    0.118116    0.802 0.4227  

Before/After 0.642862 0.572757    1.122 0.2617  

Null deviance = 767.25 H-L = 19.309, p-value = 0.01329 

Residual deviance = 633.57 AIC: 649.57 

N18 

Constant 2.135337 3.36471 0.635 0.52567  

Rainy 0.343696 0.223785 1.536 0.12458  

Snowy -0.142324 0.43293 -0.329 0.74235  

logvph -1.286697 0.449032 -2.865 0.00416 ** 

Lane Occupancy 0.659326 0.113015 5.834 5.41E-09 *** 

Lane Occupancy2 -0.021735 0.004496 -4.834 1.34E-06 *** 

Occupancy Standard Deviation -0.033361 0.040785 -0.818 0.41337  

Before/After 0.349962 0.266592 1.313 0.18928  

Null deviance = 1527 H-L =5.4458, p-value =0.709 

Residual deviance = 1238 AIC: 1254 

S9 

Constant -3.80281 4.3257 -0.879 0.379336  

Rainy 1.29209 0.608289 2.124 0.033659 * 

Snowy 2.096371 0.601594 3.485 0.000493 *** 

logvph -0.861893 0.587604 -1.467 0.142433  

Lane Occupancy 0.340928 0.166932 2.042 0.04112 * 

Lane Occupancy2 -0.010986 0.005308 -2.07 0.038466 * 
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Occupancy Standard Deviation 0.216057 0.088168 2.451 0.014265 * 

Before/After 1.779921 0.612522 2.906 0.003662 ** 

Null deviance = 339.04   H-L = 3.3145, p-value = 0.9131 

Residual deviance =270.99 AIC: 286.99 

S17 

Constant 1.091499 6.47764 0.169 0.8662  

Rainy -0.089735 0.630595 -0.142 0.8868  

Snowy 0.344132 0.762821 0.451 0.6519  

logvph -1.378298 0.829014 -1.663 0.0964 . 

Lane Occupancy 0.870246 0.194617 4.472 7.76E-06 *** 

Lane Occupancy2 -0.020182 0.00501 -4.028 5.62E-05 *** 

Occupancy Standard Deviation -0.218001 0.139777 -1.56 0.1188  

Before/After -0.006204 0.5084 -0.012 0.9903  

Null deviance = 462.66  H-L =24.339, p-value = 0.00201 

Residual deviance = 344.13 AIC: 360.13 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

L-R tests were conducted to determine the better model between a reduced model M0, 

which does not have a quadratic term for lane occupancy, and the more complex model M1, 

which includes a quadratic term of lane occupancy. Table 5. 4 shows the L-R test results 

for each analyzed section between TH-13 and I-494. 

Table 5. 4  Likelihood Ratio Test Results for Analyzed Sections in TH-13 to I-494 Region 

Section 

No. 
Model 

Number of 

coefficients 
Log-likelihood p G2(M0|M1) P-value Significance 

N9-1 
M0 7 -197.70 

1 2.140 1.44E-01  
M1 8 -196.63 

N17 
M0 7 -318.88 

1 4.191 4.07E-02 * 
M1 8 -316.79 

N18 
M0 7 -635.09 

1 32.146 1.43E-08 *** 
M1 8 -619.02 

S9 
M0 7 -139.46 

1 7.922 4.88E-03 ** 
M1 8 -135.50 

S17 
M0 7 -179.38 

1 14.636 1.30E-04 *** 
M1 8 -172.06 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

According to the L-R test results, we reject the null hypothesis that the reduced model 

(without quadratic term) holds and conclude that adding quadratic term improved model 

fit for four of the five analyzed sections at 0.05 significance level.  

Table 5. 5 shows a summary for the model using only the statistically-significant predictors 

from Table 5. 3. 

Table 5. 5   Estimation Summary for I-35W from TH-13 to I-494 for Model Using Only Statistically 

Significant Predictors from Table 5.3 

Section No. Variable Estimate Std. Error z value Pr (>|z|) Signif. codes 
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N9-1 

Constant -7.8831 0.2495 -31.60 <2E-16 *** 

Lane Occupancy 0.1939 0.0177 10.95 <2E-16 *** 

Null deviance = 491.08   H-L = 6.7727, p-value = 0.5613 

Residual deviance = 411.20 AIC: 415.2 

N17 

Constant -8.187874 0.290762 -28.160 <2E-16 *** 

Lane Occupancy 0.464298 0.59993 7.739 1.00E-14 *** 

Lane Occupancy2 -0.011120 0.002601 -4.275 1.91E-05 *** 

Null deviance = 767.25  H-L = 12.456, p-value = 0.132 

Residual deviance = 642.59 AIC: 648.59 

N18 

Constant 0.249152 2.828839    0.088   0.92982      

Log Flow -1.008219 0.369338 -2.730 0.00634 ** 

Lane Occupancy 0.580674 0.068091 8.528 <2E-16 *** 

Lane Occupancy2 -0.019245 0.003544 -5.430 5.64E-08 *** 

Null deviance = 1527 H-L =5.338, p-value =0.7209 

Residual deviance = 1242 AIC: 1250 

S9 

Constant -10.150481 0.678043 -14.970 <2E-16 *** 

Rainy 1.353125 0.608121 2.225 0.026075 * 

Snowy 2.239326 0.588545 3.805 0.000142 *** 

Lane Occupancy 0.143930 0.085466 1.684 0.092169 . 

Lane Occupancy2 -0.005994 0.002741 -2.187 0.028740 * 

Occupancy Standard Deviation 0.293711 0.074220 3.957 7.58E-05 *** 

Before/After 1.487029 0.577951 2.573 0.010084 * 

Null deviance = 339.04   H-L = 2.855, p-value = 0.9431 

Residual deviance =272.98 AIC: 286.98 

S17 

Constant -7.334567    9.236361   -0.794 0.427139  

Log Flow -0.276452 1.158900   -0.239 0.811457  

Lane Occupancy 0.596468 0.112820 5.287 1.24E-07 *** 

Lane Occupancy2 -0.015055 0.004288 -3.511 0.000446 *** 

Null deviance = 462.66  H-L =22.227, p-value = 0.004512 

Residual deviance = 347.53 AIC: 355.53 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

Among all studied sections on I-35W from TH-13 to I-494, only S9 showed a significant 

association between Before/After predictor and rear-end crash risk at 0.05 significance 

level. In S9, the UPA changes were associated with an increase in rear-end crash risk when 

other conditions were controlled for. For S9, the odds of having a rear-end crash in a given 

hour in After period is 𝑒1.487029 = 4.4239321 times the odds of having a rear-end crash in 

a given hour in Before period with a 95% Wald confidence interval (1.4251, 13.7332), 

holding other conditions constant.  
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S9 was the only section showing significant weather effect at 0.05 significance level. The 

odds of having a rear-end crash in a given hour in rainy condition is 𝑒1.353125 = 3.869499 

times the odds of having a rear-end crash in a given hour without rain with a 95% Wald 

confidence interval (1.1749, 12.7438), holding other conditions constant. The odds of 

having a rear-end crash in a given hour in snow condition is 𝑒2.239326 = 9.387002 times the 

odds of having a rear-end crash in a given hour without snow with a 95% Wald confidence 

interval (2.9617, 29.7513), holding other conditions constant.  

As is shown in Table 5. 5, the two coefficients associated with lane occupancy, 𝛽4 and  𝛽5, 

are both significantly or marginal significantly different from zero for all analyzed sections 

except for N9-1; while their signs  𝛽4 > 0  with 𝛽5 < 0 , imply that rear-end crash 

probability does have the inverted-U shape.  

Using the estimates in Table 5. 5, rear-end crash probability for N17, N18, S9, and S17 

were maximized when lane occupancy was approximately equal to 

i) N17:  𝑜𝑚𝑎𝑥 ≈ �̅� −
𝛽1̂

2𝛽2̂
= 5.19 −

0.464298

2(−0.011120)
= 26.07   

ii) N18:  𝑜𝑚𝑎𝑥 ≈ �̅� −
𝛽1̂

2𝛽2̂
= 6.09 −

0.580674

2(−0.019245)
= 21.18 

iii) S9:  𝑜𝑚𝑎𝑥 ≈ �̅� −
𝛽1̂

2𝛽2̂
= 5.04 −

0.143930

2(−0.005994)
= 17.05 

iv) S17:  𝑜𝑚𝑎𝑥 ≈ �̅� −
𝛽1̂

2𝛽2̂
= 5.89 −

0.596468

2(−0.015055)
= 25.70 

Where  denotes the average lane occupancy over all hours in the Before and After period 

for N17, N18, S9, and S17, respectively.  

Figure 5. 1 to Figure 5. 4 show the time-series plots of average lane occupancy in sections 

N17, N18, S9, and S17 for each hour during both the Before and After periods, with the 

vertical lines denoting the Before/After change points. The horizontal lines show the 

approximate values of average lane occupancy where rear-end crash risk is maximal. 
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Figure 5. 1  Time-series plot of hourly average lane occupancy for section N17, showing the Before 

and After UPA periods, and the average lane occupancy with maximal crash probability. 

 

 

Figure 5. 2  Time-series plot of hourly average lane occupancy for section N18, showing the Before 

and After UPA periods, and the average lane occupancy with maximal crash probability. 
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Figure 5. 3  Time-series plot of hourly average lane occupancy for section S9, showing the Before and 

After UPA periods, and the average lane occupancy with maximal crash probability. 

 

Figure 5. 4  Time-series plot of hourly average lane occupancy for section S17, showing the Before 

and After UPA Periods, and the average lane occupancy with maximal crash probability. 

In summary, most analyzed sections on I-35W from TH-13 to I-494 showed no significant 

change associated with UPA project except for southbound S9. The rear-end crash risk of 

S9 (just north of Minnesota River) was a complicated function of weather, traffic and 

Before vs After the UPA improvements. N17 (just south of I-494) actually experienced 

fewer crashes after the UPA project, but the reduction was not as great as the change in 
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lane occupancy would predict. In addition, “Inverted U” relationships between lane 

occupancy and crash risk have been seen in several sections. 

5.2.2 I-35W PDSL region 

As with the HOT region, for each hour during 2006-2008 and 2011-2013, the presence 

absence of a crash became the dependent variable while independent variables consisted 

of traffic volume and lane occupancy, the presence or absence of snowy or rainy conditions, 

Before or After period indicator, and the presence or absence of PDSL operation.  

Table 5. 6 is the list of variables involved in the logistic regression model for I-35W PDSL 

region. 
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Table 5. 6   Variables Selected for Logistic Regression Analysis for I-35W PDSL region 

Symbol Role Name Type Value 

Yi Response 
Rear-end Crash 

Presence Absence 
Binary 

The presence absence of a rear-end crash 

during hour i. 

0 = no rear-end crash during hour i; 

1 = at least one rear-end crash during hour i. 

X1i Predictor Rainy Binary 

Rainy weather condition indicator for hour i. 

1 – Rainy during hour i; 

0 – Otherwise. 

X2i Predictor Snowy Binary 

Snowy weather condition indicator for hour i. 

1 – Snowy during hour i; 

0 – Otherwise. 

X3i Predictor log(vph) Continuous 
Natural logarithm of section traffic flow, in 

vehicles/hour, during hour i. 

X4i
* Predictor Lane Occupancy Continuous Centered average lane occupancy during hour i 

X5i
* Predictor Lane Occupancy2 Continuous The square of lane occupancy during hour i. 

X6i
* Predictor 

Occupancy Standard 

Deviation 
Continuous 

Centered lane occupancy standard deviation 

during hour i 

X7i Predictor Before/After Binary 

The time period indicator for hour i.  

1 – Hour occurring 2011-2013; 

0 – Hour occurring 2006-2008. 

X8i Predictor PDSL Closed Continuous 

The proportion of the duration of “PDSL 

Closed” status during hour i. 

 

X9i Predictor PDSL Open Continuous 

The proportion of the duration of “PDSL 

Open” status during hour i. 

 

X10i Predictor Sign Dark Continuous 

The proportion of the duration of “DARK” 

status during hour i. 

 

X11i Predictor VSA Continuous 

The proportion of the duration of “VSA” status 

during hour i. 
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For each section, N37, N38, and N40, MLE implemented in a statistical analysis package 

for the software R (R, 2015) was used to fit and evaluate logistic regression models 

containing different combinations of independent variables listed in Table 5. 6.   

Table 5. 7 is the estimation summary for the initial logistic regression model containing 

predictors X1-X4 and X6-X7. 

Table 5. 7   Estimation Summary for Initial Model of Rear-End Crash Probability on I-35W PDSL 

Region 

Section No. Variable Estimate Std. Error z value Pr (>|z|) Signif. codes 

N37 

Constant -7.288 0.2738 -26.616 < 2E-16 *** 

Rainy -0.02299 0.3566 -0.064 0.949  

Snowy 0.04992 0.4733 0.105 0.916  

logvph -0.000050 0.000941 -0.053 0.958  

Lane Occupancy 0.1451 0.03245 4.471 7.78E-06 *** 

Lane Occupancy2 -- -- -- --  

Occupancy Standard Deviation 0.05499 0.06699 0.821 0.412  

Before/After 0.06369 0.3537 0.180 0.857  

Null deviance = 1075.53 H-L = 13.9621, p-value = 0.08276 

Residual deviance = 873.95 AIC: 887.95 

N38 

Constant -21.31813 4.48050 -4.758 1.96E-06 *** 

Rainy 0.30636 0.32547 0.941 0.34657  

Snowy -0.12390 0.52151 -0.238 0.81221  

logvph 1.64014 0.52621 3.117 0.00183 ** 

Lane Occupancy 0.08761 0.03530 2.482 0.01307 * 

Lane Occupancy2 -- -- -- --  

Occupancy Standard Deviation 0.08820 0.05542 1.591 0.11151  

Before/After 0.43536 0.31001 1.404 0.16021  

Null deviance = 1178.50 H-L = 20.077, p-value = 0.01005 

Residual deviance = 957.45 AIC: 971.45 

N40 

Constant -6.1828825 0.1505737 -41.062 < 2E-16 *** 

Rainy -0.2567038 0.2407647 -1.066 0.2863  

Snowy 0.2053577 0.2950196 0.696 0.4864  

logvph -0.0000426 0.0006195 -0.069 0.9452  

Lane Occupancy 0.0370454 0.0207568 1.785 0.0743 . 

Lane Occupancy2 -- -- -- --  

Occupancy Standard Deviation 0.1629448 0.0317275 5.136 2.81E-07 *** 

Before/After 0.0840515 0.1869440 0.450 0.6530  

Null deviance = 2437.0 H-L = 52.2, p-value = 1.54E-08 

Residual deviance = 2069.1 AIC: 2083.1 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 
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N37 was taken as an example to see how to interpret the information provided in Table 5. 

7: 

i) Intercept 𝛽0 

The maximum likelihood estimate of the coefficient  𝛽0 is equal to -7.288 and the standard 

error associated with this estimate was 0.2378. A test of the null hypothesis 𝛽0 = 0 yielded 

a z-statistic equal to -26.616, and the probability of obtaining a z-value at least this large 

when the null hypothesis was true was less than 0.001. Using the rule that we cannot reject 

a null hypothesis when a P-value is greater than 0.05, which indicates that 𝛽0 is statistically 

significant different from 0 at 0.05 significance level. The 95% Wald confidence interval 

of 𝛽0  is (-7.7541, -6.8219), given by (-7.288-1.96×0.2378, -7.288+1.96×0.2378), 

indicating 𝛽0 is statistically significantly different from 0 at 0.05 significance level as the 

interval does not contain 0, which is in consistency with the conclusion drawn from the p-

value. In a situation where all model predictors were equal to zero the estimated probability 

of a rear-end crash would be exp(-7.288)/(1+exp(-7.288))=0.00068 with a 95% Wald 

confidence interval (0.0004, 0.0011), given by (exp (-7.7541) / (1+exp (-7.7541), exp (-

6.8219) / (1+exp (-6.8219).  

ii) Slopes 𝛽𝑘,𝑘≠0 

Table 5. 7 shows that, for section N37, the maximum likelihood estimate of the coefficient 

𝛽1, associated with the Rainy condition, was -0.02299 and the standard error associated 

with this estimate was 0.3566. A test of the null hypothesis 𝛽1 = 0 yielded a z-statistic 

equal to -0.064, and the probability of obtaining a z-value at least this large when the null 

hypothesis was true was 0.949. Using the rule that we cannot reject a null hypothesis when 

a P-value is greater than 0.05, which indicates that rainy condition does not have 

statistically significant association with rear-end crash probability at 0.05 significance level. 

Similar conclusions apply to weather variable Snowy, the traffic variables Log Flow, 

Occupancy Standard Deviation, and the Before/After predictor. Those five predictors 

showed no clear association with rear-end crash risk at 0.05 significance level.  

On the other hand, the maximum likelihood estimate of the coefficient 𝛽4 was 0.1451 and 

the standard error associated with this estimate was 0.03245. A test of the null hypothesis 

𝛽4 = 0  yielded a z-statistic equal to 4.471, and the probability of obtaining a z-value at 

least this large when the null hypothesis was true was essentially zero to five decimal places. 
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The association that lane occupancy has with rear-end crash risk is significant at 0.05 

significance level. The positive value of estimate of 𝛽4  indicates that rear-end crash 

probability increases as lane occupancy increases. The odds of having a rear-end crash in 

a given hour is 𝑒0.1451 = 1.1562 times the odds of having a rear-end crash in a given hour 

with one-unit decrease in standard deviation of lane occupancy with a 95% Wald 

confidence interval (1.0849, 1.2321), holding other conditions constant. 

iii) Goodness of fit 

The null deviance and residual deviance are 1075.53 and 873.95, respectively. The 

Hosmer-Lemeshow goodness of fit statistic was 13.9621 with a p-value of 0.08276, which 

indicates the actual and predicted event rates are similar across 10 deciles at 0.05 

significance level. 

Similar to what was done for sections in I-35W from TH-13 to I-494, the relationship 

between lane occupancy and crash probability could show an “inverted-U” shape with a 

maximal point where crash probability is a highest and falling off for lane occupancies 

both less than and greater than this maximal point, the square of lane occupancy, variable 

X5, was included as a predictor. Table 5. 8 shows the estimation summary for a model 

using all the predictors listed in Table 5. 6. 
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Table 5. 8   Estimation Summary for Initial Model of Rear-End Crash Probability on I-35W PDSL 

region, with Quadratic Occupancy Effect 

Section No. Variable Estimate Std. Error z value Pr (>|z|) Signif. codes 

N37 

Constant -5.993853 4.975980 -1.205 0.2284  

Rainy 0.068005 0.354964 0.192 0.8481  

Snowy -0.023336 0.479197 -0.049 0.9612  

logvph -0.203466 0.598580 -0.340 0.7339  

Lane Occupancy 0.459360 0.086809 5.292 1.21E-07 *** 

Lane Occupancy2 -0.009862 0.002374 -4.155 3.25E-05 *** 

Occupancy Standard Deviation -0.010092 0.071139 -0.142 0.8872  

Before/After -0.669111 0.371041 -1.803 0.0713 . 

Null deviance = 1075.53 H-L = 9.4133, p-value = 0.3086 

Residual deviance = 833.71 AIC: 849.71 

N38 

Constant -3.457166 4.683427 -0.738 0.460411  

Rainy 0.239999 0.322963 0.743 0.457411  

Snowy -0.287604 0.523075 -0.550 0.582434  

logvph -0.562941 0.574510 -0.980 0.327154  

Lane Occupancy 0.450058 0.099456 4.525 6.03E-06 *** 

Lane Occupancy2 -0.010118 0.002764 -3.661 0.000252 *** 

Occupancy Standard Deviation -0.055956 0.063082 -0.887 0.375062  

Before/After 0.546829 0.295886 1.848 0.064587 . 

Null deviance = 1178.50 H-L = 3.9974, p-value = 0.8574 

Residual deviance = 944.62 AIC: 960.62 

N40 

Constant -6.492 0.1806 -35.945 < 2e-16 *** 

Rainy -0.1452 0.2394 -0.606 0.544275  

Snowy 0.2933 0.2946 0.996 0.319424  

logvph -0.000095 0.006008 -0.016 0.987331  

Lane Occupancy 0.2534 0.03659 6.925 4.35E-12 *** 

Lane Occupancy2 -0.007953 0.001133 -7.022 2.19E-12 *** 

Occupancy Standard Deviation 0.1102 0.03066 3.594 0.000326 *** 

Before/After 0.2181 0.1809 0.121 0.904052  

Null deviance = 2437.0 H-L = 13.899, p-value = 0.08444 

Residual deviance = 2003.6 AIC: 2019.6 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

The changes in rear-end crash risk associated with UPA project were non-significant for 

all three sections. For N37, rear-end crash risk might have decreased after the UPA project 

holding other conditions constant, while for N38, rear-end crash risk might have increased 

after UPA project holding other conditions constant. Weather effect showed significant 
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effect on rear-end crash risk on none of the three analyzed sections in PDSL region at 0.05 

significance level.  

L-R tests were conducted to determine the better model between the reduced model M0, 

the model without quadratic term of lane occupancy, and the more complex model M1, the 

model with quadratic term of lane occupancy, for each analyzed section in I-35W PDSL 

region. Table 5. 9 shows the L-R test results. 

Table 5. 9  Likelihood Ratio Test Results for Analyzed Sections in I-35W PDSL Region 

Section 

No. 
Model 

Number of 

coefficients 

Log-

likelihood 
p G2(M0|M1) P-value Significance 

N37 
M0 7 -436.98 

1 40.246 2.24E-10 *** 
M1 8 -416.85 

N38 
M0 7 -478.73 

1 12.835 3.40E-04 *** 
M1 8 -472.31 

N40 
M0 7 -1034.5 

1 65.49 5.84E-16 *** 
M1 8 -1001.8 

 

According to the L-R test results, we reject the null hypothesis that the reduced model 

(without quadratic term) holds and conclude that adding the quadratic term has 

significantly improved model fit for all three of the PDSL sections at 0.05 significance 

level. 

As is shown in Table 5. 9, the two coefficients associated with lane occupancy, 𝛽4 and  𝛽5, 

are both significantly different from zero while their signs  𝛽4 > 0 with 𝛽5 < 0, imply that, 

for section N37, N38, and N40, rear-end crash probability does have the inverted-U shape. 

The PDSL does not operate continuously but only when opened by the traffic managers, 

and the rest of the time the PDSL functions as a shoulder. This means that the After period 

contained some hours when the PDSL was operating and other hours when it was not. To 

more clearly isolate the effect of the PDSL operation, the sign logs from MnDOT’s 

Regional Traffic Management Center were reviewed to determine PDSL status, and the 

After period was divided into four mutually exclusive subsets reflecting PDSL status. An 

estimation summary for the model with this subdivided After period is shown in Table 5. 

10. These results are generally similar to those shown in Table 5. 8 except that in N37 

hours when the PDSL was open show a statistically significant reduction in rear-end crash 

probability and the marginally non-significant UPA project effect in N38 is no longer 

significant at 0.05 significance level.  
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Table 5. 10   Estimation Summary for N37, N38, and N40, with PDSL After Period 

Subdivided According to PDSL Status 

Section No. Variable Estimate Std. Error z value Pr (>|z|) Signif. codes 

N37 

Constant -7.728 0.3186 -24.259 < 2E-16 *** 

Rainy 0.08918 0.3544 0.252 0.8013  

Snowy -0.00922 0.477 -0.019 0.9846  

logvph -0.000084 0.006789 -0.012 0.9901  

Lane Occupancy 0.546 0.06441 7.057 1.70E-12 *** 

Lane Occupancy2 -0.009742 0.001833 -5.314 1.07E-07 *** 

Occupancy Standard Deviation -0.003018 0.06474 -0.047 0.9628  

Before/After -- -- -- --  

PDSL Closed -0.3042 0.5364 -0.567 0.5706  

PDSL Open -0.7873 0.3813 -2.065 0.0389 * 

Sign Dark -0.3658 1.148 -0.319 0.7500  

VSA -0.8552 1.568 -0.545 0.5855  

Null deviance = 1075.53 H-L = 7.8064, p-value = 0.4526 

Residual deviance = 832.88 AIC: 854.88 

N38 

Constant -4.329209 5.476106 -0.791 0.429199  

Rainy 0.260577 0.324010 0.804 0.421266  

Snowy -0.323182 0.531028 -0.609 0.542792  

logvph -0.460368 0.666513 -0.691 0.489747  

Lane Occupancy 0.442352 0.104363 4.239 2.25E-05 *** 

Lane Occupancy2 -0.009983 0.002875 -3.472 0.000517 *** 

Occupancy Standard Deviation -0.046633 0.066593 -0.700 0.483761  

Before/After -- -- -- --  

PDSL Closed 0.709386 0.482127 1.471 0.141192  

PDSL Open 0.474689 0.321169 1.478 0.139406  

Sign Dark 1.288526 0.978760 1.316 0.188010  

VSA 1.089694 1.051170 1.037 0.299900  

Null deviance = 1178.50 H-L = 4.3466, p-value = 0.8246 

Residual deviance = 943.48 AIC: 965.48 

N40 

Constant -6.555 0.1821 -35.987 < 2E-16 *** 

Rainy -0.1391 0.2394 -0.581 0.561289  

Snowy 0.2837 0.2981 0.952 0.341204  

logvph -0.000056 0.002604 -0.021 0.982884  

Lane Occupancy 0.2669 0.03747 7.124 1.05E-12 *** 

Lane Occupancy2 -0.008277 0.001154 -7.171 7.46E-13 *** 

Occupancy Standard Deviation 0.1118 0.03051 3.663 0.000249 *** 

Before/After -- -- -- --  

PDSL Closed 0.4127 0.2814 1.467 0.142449  

PDSL Open -0.08432 0.1932 -0.437 0.662434  
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Sign Dark -3.585 4.270 -0.840 0.401118  

VSA 0.1603 0.7982 0.201 0.840889  

Null deviance = 2437.0 H-L = 7.4029, p-value = 0.4939 

Residual deviance = 1998.7 AIC: 2020.7 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

Table 5. 11 shows a summary for the model using only the statistically-significant 

predictors from Table 5. 10. 

Table 5. 11   Estimation Summary for Analyzed PDSL regions for Model Using Only Statistically 

Significant Predictors from Table 5.8 

Section No. Variable Estimate Std. Error z value Pr (>|z|) Signif. codes 

N37 

Constant -7.791773    0.267902 -29.084   < 2E-16 *** 

Lane Occupancy 0.444544    0.051367    8.654 < 2E-16 *** 

Lane Occupancy2 -0.009567    0.001802   -5.309 1.1E-07 *** 

PDSL Open -0.635194    0.319932 -1.985 0.0471 * 

Null deviance = 1075.53 H-L = 7.0154, p-value = 0.535 

Residual deviance = 833.74 AIC: 841.74 

N38 

Constant -7.769015    0.258508 -30.053   < 2E-16  

Lane Occupancy 0.374028    0.045492    8.222 < 2E-16 *** 

Lane Occupancy2 -0.008324 0.001766 -4.714 2.43E-06 *** 

Null deviance = 1178.50 H-L = 10.235, p-value = 0.2489 

Residual deviance = 949.32 AIC: 955.32 

N40 

Constant -6.489315    0.142749 -45.460   < 2E-16 *** 

Lane Occupancy 0.256277    0.036566    7.009 2.41E-12 *** 

Lane Occupancy2 -0.008003    0.001134   -7.054 1.74E-12 *** 

Occupancy Standard Deviation 0.108783  0.030181    3.604 0.000313 *** 

Null deviance = 2437.0 H-L = 11.553, p-value = 0.1723 

Residual deviance = 2005.1 AIC: 2013.1 

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

Section N37 showed a significant negative association between the operation of PDSL and 

rear-end crash risk. For N37, the odds of having a rear-end crash in a given hour when 

PDSL was open in After period is 𝑒−0.635194 = 0.530 times the odds of having a rear-end 

crash in a given hour in Before period with 95% Wald confidence interval (0.2830, 0.9919), 

holding other conditions constant. However, unlike section N37, neither N38 nor N40 

showed a significant effect of PDSL operation. In section N40, the standard deviation of 

lane occupancy also showed a definite association with rear-end crash probability, with 

increases in this standard deviation implying increases in crash probability. 
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All three sections, N37, N38, and N40 showed the “inverted-U” relationship between rear-

end crash probability and lane occupancy. As noted earlier, 𝛽4 > 0 with 𝛽5 < 0 imply an 

“inverted-U” shape to the graph of rear-end crash probability versus lane occupancy. Using 

the estimates in Table 5. 11, rear-end crash probability for N37, N38, and N40 was 

maximized when lane occupancy is approximately equal to 

i) N37: 𝑜𝑚𝑎𝑥 ≈ �̅� −
𝛽1̂

2𝛽2̂
= 6.22 −

0.444544 

2(−.009567)
= 29.45 

ii) N38: 𝑜𝑚𝑎𝑥 ≈ �̅� −
𝛽1̂

2𝛽2̂
= 7.26 −

0.374028

2(−0.008324)
= 29.73 

iii) N40: 𝑜𝑚𝑎𝑥 ≈ �̅� −
𝛽1̂

2𝛽2̂
= 7.43 −

0.256277

2(−0.008003)
= 23.44 

Where  denotes the average lane occupancy over all hours in the Before and After period 

for N37, N38, and N40, respectively.  

Figure 5. 5 to Figure 5. 7 show time-series plots of average lane occupancy in sections 

N37, N38, and N40 for each hour during both the Before and After periods, with the 

vertical lines denoting the change points. The horizontal lines show the approximate values 

of average lane occupancy where rear-end crash risk is maximal. As can be seen, during 

the After period there was a substantial increase in lane occupancy values in the region of 

maximum rear-end crash probability for all three sections. 

 

 
Figure 5. 5  Time-series plot of hourly average lane occupancy for section N37, showing the Before 

and After PDSL periods, and the average lane occupancy with maximal crash probability. 
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Figure 5. 6  Time-series plot of hourly average lane occupancy for section N38, showing the Before 

and After PDSL periods, and the average lane occupancy with maximal crash probability. 

 
Figure 5. 7  Time-series plot of hourly average lane occupancy for section N40, showing the Before 

and After PDSL periods, and the average lane occupancy with maximal crash probability. 

In summary, all three analyzed sections of the I-35W PDSL region, N37, N38, and N40, 

showed substantial increases in lane occupancy following UPA project. The observed 

increases in rear-end crash frequency can be explained by increases in higher-risk traffic 
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conditions. The increase in higher risk traffic conditions were most likely due to removal 

of I-35W & TH-62 bottleneck. 
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Chapter 6: Conclusion 

The objective of this research was to assess safety-related impacts of Minnesota’s UPA 

project implemented on I-35W. To be more specific, this study is aimed to untangle the 

indirect safety effects due to changes in traffic conditions from the direct effects, if any, 

due to the UPA interventions.  

A preliminary analysis was done to determine priority crash type and study regions. I-35W, 

from its start to its junction with I-94, was divided into 17 one-mile sections, and bi-

directional (northbound and southbound) crash frequencies in Before-UPA (2006-2008) 

and After-UPA periods (2011-2013) were compiled for each one-mile section. Rear-end 

crash turned out to be the most prevalent crash type, and I-35W HOT region (from TH-13 

to I-494) and the I-35W PDSL region (from 37th Street to 26th Street) where there was an 

outstanding increase in the rear-end crash frequency in the After period became our 

analysis regions. 

The I-35W HOT region and the PDSL region were divided into analysis sections based on 

constant flow and geometry criteria as well as the availability of loop-detector data. Rear-

end crash, traffic condition, weather condition, and PDSL historical operation data for 

Before and After periods were compiled for each analysis section.  

The literature review revealed that there was a substantial portion of the research focused 

on empirical models for both long-term and short-term crash risk prediction, but  less on 

why crashes come about. Based on limited clues in previous studies related to freeway 

crash mechanism, combined with this project’s data availability and quality reality, a 

logistic regression model was established to estimate the change in rear-end crash risk in a 

given hour Before versus After period in different analysis sections of I-35W, controlling 

for the changes in traffic conditions and weather conditions. For each analysis section, for 

each hour during Before and After periods, the presence or absence of a rear-end crash 

became the response variable while predictor variables consisted of traffic volume and lane 

occupancy, the presence or absence of snowy or rainy conditions, before versus after the 

UPA project, and the presence or absence of PDSL operation. 

According to the results of logistic regression analyses, most sections showed no 

significant change in rear-end crash risk associated with UPA project except for section 

southbound S9 (just north of Minnesota River). The rear-end crash risk in a given hour 
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within section S9 was a complicated function of UPA intervention, traffic condition, and 

weather condition. Although section N17 experienced fewer rear-end crashes in After 

period, the change in lane occupancy itself could not explain such reduction. The PDSL 

region of I-35W experienced substantial increases in both rear-end crash frequency and 

traffic congestion (defined as average lane occupancies exceeding 25%) in After period. 

Rainy condition, snowy condition, and the operation of the PDSL had no direct effect on 

the likelihood of rear-end crashes when controlling for changes in traffic conditions. In 

other words, the observed change in crash frequency was explained by the change in traffic 

conditions. It appeared the operation of PDSL was coincident with removal of the upstream 

bottleneck in the old I-35W & TH-62 commons and moving the bottleneck northward to 

the I-35W & I-94 junction.  

In addition, this study found evidence for a nonlinear relationship between a proxy for 

traffic density, lane occupancy, and the probability a rear-end crash occurs during an hour, 

controlling for traffic volume, weather, and geometry. Rear-end crashes were most likely 

when lane occupancies were approximately 20%-30%, and crash likelihood tended to 

decrease for lane occupancies below and above this range.   

Limitations did exist in this study, and future research may need to address following issues: 

• There were ambiguities in crash locations in crash records and reports reviewed, 

and crashes with ambiguous crash locations could only be excluded from analyses, 

which may affect the analysis results.  

• Analyses of only a limited number of sections could be conducted due to the 

availability of loop detectors or the sufficiency of the number of crashes in Before 

and After periods.  

• This study only focused on the dominant crash type, rear-end crashes. For different 

types of crashes, the relationship between real-time traffic conditions (or weather 

conditions) and crash risk may be different since they may have different crash 

mechanisms. However, the methodology demonstrated in this study could be 

applied and similar analyses could be done for other types of crashes.  

In spite of these limitations, this study demonstrated a methodology that could be applied 

to the evaluation of the safety effects of freeway-related projects. To be more specific, this 
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study worked out a way to estimate changes in hourly crash risk while controlling for 

variations in traffic conditions. 
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Appendix  

Preliminary Analysis Summary 
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Table A. 1  Crash Summary Table for Section Mile-1 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 0 0 

1 Rear end 31 38 

2 Sideswipe-Same direction 15 15 

3 Left turn 1 0 

4 Ran off road-Left side 16 7 

5 Right angle 1 3 

6 Right turn 0 0 

7 Ran off road-Right side 5 13 

8 Head on 2 0 

9 Sideswipe-Opposing 1 1 

90 Other 8 6 

98 Not applicable 1 0 

99 Unknow 1 0 

 

 

 

 

 

 

Figure A. 1 Crash Summary Histogram for Section Mile-1 
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Table A. 2  Crash Summary Table for Section Mile-2 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 0 0 

1 Rear end 16 16 

2 Sideswipe-Same direction 5 7 

3 Left turn 0 0 

4 Ran off road-Left side 9 8 

5 Right angle 0 1 

6 Right turn 0 0 

7 Ran off road-Right side 3 12 

8 Head on 0 1 

9 Sideswipe-Opposing 0 0 

90 Other 0 2 

98 Not applicable 0 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 2  Crash Summary Histogram for Section Mile-2 
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Table A. 3  Crash Summary Table for Section Mile-3 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 1 1 

1 Rear end 45 92 

2 Sideswipe-Same direction 26 34 

3 Left turn 0 0 

4 Ran off road-Left side 24 21 

5 Right angle 1 3 

6 Right turn 0 0 

7 Ran off road-Right side 16 10 

8 Head on 2 0 

9 Sideswipe-Opposing 0 2 

90 Other 17 10 

98 Not applicable 1 1 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 3  Crash Summary Histogram for Section Mile-3 
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Table A. 4  Crash Summary Table for Section Mile-4 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 1 0 

1 Rear end 42 73 

2 Sideswipe-Same direction 22 20 

3 Left turn 0 0 

4 Ran off road-Left side 2 11 

5 Right angle 4 4 

6 Right turn 0 0 

7 Ran off road-Right side 4 10 

8 Head on 1 1 

9 Sideswipe-Opposing 0 0 

90 Other 13 10 

98 Not applicable 1 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 4  Crash Summary Histogram for Section Mile-4  
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Table A. 5  Crash Summary Table for Section Mile-5 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 0 1 

1 Rear end 29 47 

2 Sideswipe-Same direction 14 15 

3 Left turn 0 0 

4 Ran off road-Left side 9 7 

5 Right angle 3 5 

6 Right turn 0 0 

7 Ran off road-Right side 6 7 

8 Head on 3 3 

9 Sideswipe-Opposing 0 0 

90 Other 11 5 

98 Not applicable 1 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 5  Crash Summary Histogram for Section Mile-5  
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Table A. 6  Crash Summary Table for Section Mile-6 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 0 0 

1 Rear end 40 33 

2 Sideswipe-Same direction 16 10 

3 Left turn 1 0 

4 Ran off road-Left side 6 3 

5 Right angle 8 2 

6 Right turn 0 0 

7 Ran off road-Right side 11 9 

8 Head on 1 1 

9 Sideswipe-Opposing 0 0 

90 Other 5 5 

98 Not applicable 2 1 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 6  Crash Summary Histogram for Section Mile-6  
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Table A. 7  Crash Summary Table for Section Mile-7 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 2 0 

1 Rear end 90 114 

2 Sideswipe-Same direction 20 28 

3 Left turn 0 0 

4 Ran off road-Left side 4 15 

5 Right angle 7 5 

6 Right turn 1 0 

7 Ran off road-Right side 9 6 

8 Head on 0 1 

9 Sideswipe-Opposing 0 0 

90 Other 10 4 

98 Not applicable 1 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 7  Crash Summary Histogram for Section Mile-7  
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Table A. 8  Crash Summary Table for Section Mile-8 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 1 0 

1 Rear end 70 67 

2 Sideswipe-Same direction 12 15 

3 Left turn 1 1 

4 Ran off road-Left side 4 9 

5 Right angle 1 5 

6 Right turn 0 0 

7 Ran off road-Right side 10 6 

8 Head on 2 1 

9 Sideswipe-Opposing 0 0 

90 Other 11 7 

98 Not applicable 1 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 8  Crash Summary Histogram for Section Mile-8  
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Table A. 9  Crash Summary Table for Section Mile-9 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 0 1 

1 Rear end 170 177 

2 Sideswipe-Same direction 50 49 

3 Left turn 0 1 

4 Ran off road-Left side 14 11 

5 Right angle 4 6 

6 Right turn 1 1 

7 Ran off road-Right side 18 18 

8 Head on 2 4 

9 Sideswipe-Opposing 0 0 

90 Other 23 14 

98 Not applicable 1 1 

99 Unknow 1 0 

 

 

 

 

 

 

Figure A. 9  Crash Summary Histogram for Section Mile-9  
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Table A. 10  Crash Summary Table for Section Mile-10 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 1 0 

1 Rear end 16 8 

2 Sideswipe-Same direction 4 5 

3 Left turn 0 0 

4 Ran off road-Left side 2 2 

5 Right angle 1 0 

6 Right turn 0 0 

7 Ran off road-Right side 2 3 

8 Head on 1 0 

9 Sideswipe-Opposing 0 0 

90 Other 4 1 

98 Not applicable 2 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 10  Crash Summary Histogram for Section Mile-10  
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Table A. 11  Crash Summary Table for Section Mile-11 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 2 0 

1 Rear end 108 48 

2 Sideswipe-Same direction 34 26 

3 Left turn 0 2 

4 Ran off road-Left side 20 23 

5 Right angle 4 3 

6 Right turn 0 0 

7 Ran off road-Right side 15 19 

8 Head on 3 3 

9 Sideswipe-Opposing 0 1 

90 Other 22 13 

98 Not applicable 1 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 11  Crash Summary Histogram for Section Mile-11 
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Table A. 12  Crash Summary Table for Section Mile-12 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 2 0 

1 Rear end 170 80 

2 Sideswipe-Same direction 36 30 

3 Left turn 0 0 

4 Ran off road-Left side 18 25 

5 Right angle 2 6 

6 Right turn 0 0 

7 Ran off road-Right side 10 18 

8 Head on 2 3 

9 Sideswipe-Opposing 0 1 

90 Other 18 12 

98 Not applicable 2 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 12  Crash Summary Histogram for Section Mile-12  

2

170

36

0
18

2 0 10 2 0
18

2 00

80

30

0
25

6 0
18

3 1
12

0 0
0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 90 98 99

C
ra

sh
 f

re
q

u
en

cy

Crash code

Mile-12

Before

After



 

82 

 

Table A. 13  Crash Summary Table for Section Mile-13 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 1 1 

1 Rear end 129 82 

2 Sideswipe-Same direction 31 25 

3 Left turn 0 0 

4 Ran off road-Left side 7 10 

5 Right angle 1 11 

6 Right turn 0 0 

7 Ran off road-Right side 16 10 

8 Head on 4 2 

9 Sideswipe-Opposing 1 1 

90 Other 9 5 

98 Not applicable 2 0 

99 Unknow 0 0 

 

 

 

 

 

 
Figure A. 13  Crash Summary Histogram for Section Mile-13  
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Table A. 14  Crash Summary Table for Section Mile-14 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 1 0 

1 Rear end 96 136 

2 Sideswipe-Same direction 31 46 

3 Left turn 0 0 

4 Ran off road-Left side 4 15 

5 Right angle 0 10 

6 Right turn 0 1 

7 Ran off road-Right side 5 7 

8 Head on 4 2 

9 Sideswipe-Opposing 1 0 

90 Other 9 13 

98 Not applicable 2 2 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 14  Crash Summary Histogram for Section Mile-14  
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Table A. 15  Crash Summary Table for Section Mile-15 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 0 1 

1 Rear end 149 205 

2 Sideswipe-Same direction 33 45 

3 Left turn 0 0 

4 Ran off road-Left side 15 12 

5 Right angle 5 3 

6 Right turn 0 1 

7 Ran off road-Right side 6 12 

8 Head on 1 0 

9 Sideswipe-Opposing 1 0 

90 Other 8 12 

98 Not applicable 1 1 

99 Unknow 1 0 

 

 

 

 

 

 

Figure A. 15  Crash Summary Histogram for Section Mile-15 
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Table A. 16  Crash Summary Table for Section Mile-16 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 3 0 

1 Rear end 152 221 

2 Sideswipe-Same direction 32 47 

3 Left turn 0 1 

4 Ran off road-Left side 12 13 

5 Right angle 3 3 

6 Right turn 1 0 

7 Ran off road-Right side 9 10 

8 Head on 2 4 

9 Sideswipe-Opposing 0 0 

90 Other 16 12 

98 Not applicable 4 0 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 16  Crash Summary Histogram for Section Mile-16 
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Table A. 17  Crash Summary Table for Section Mile-17 

Crash Code Crash Type 
Crash Frequency 

Before After 

0 Unspecified 2 0 

1 Rear end 160 220 

2 Sideswipe-Same direction 44 53 

3 Left turn 0 1 

4 Ran off road-Left side 38 79 

5 Right angle 7 3 

6 Right turn 0 0 

7 Ran off road-Right side 15 39 

8 Head on 1 1 

9 Sideswipe-Opposing 1 0 

90 Other 24 25 

98 Not applicable 5 4 

99 Unknow 0 0 

 

 

 

 

 

 

Figure A. 17  Crash Summary Histogram for Section Mile-17 
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