
Supplementary material

Constrained clamped-clamped Elastica of constant length

We consider next the case of a constrained elastica clamped at both ends. There are two

important di�erences between this case and the pinned-pinned elastica analyzed above. First, there

exist two distinct roots for the �rst buckling mode of a clamped-clamped elastica, with the smaller

root corresponding to a stable symmetric con�guration and the larger root to an unstable anti-

symmetric con�guration. Second, the �rst symmetric buckling mode con�guration with continuous

contact is unstable, while it was stable for a pinned-pinned elastica. We analyze separately the

symmetric, anti-symmetric, and asymmetric con�gurations.

0.1 First Buckling Mode (Symmetric Case)

0.1.1 Unconstrained Buckling

Referring to Figure 1, the unconstrained elastica is divided into four identical segments for the

�rst symmetric buckling mode. More generally, there are m = 4k with np = 2k for the symmetric

k-buckling mode, with the inclination θ1(s) and the horizontal force R1 of the �rst segment given

by

θ1(s) = θ[2]

{
cos

[
2kπ

(
s− s[2]

)]
+
θ2[2]
192

(
cos

[
2kπ

(
s− s[2]

)]
− cos

[
6kπ

(
s− s[2]

)])}

R1 = 4(kπ)2
[
1 +

θ2[2]
8

]
(1)

with θ[2] viewed here as the loading parameter. Using symmetry considerations, the solution is

trivially extended to the other segments.

0.1.2 Constrained Buckling with Discrete Contact

This �rst contact event is characterized by contact force F[j] = 0, j ∈ Iw and ∆yi = c/2, i ∈ I`
for each segment. Past this �rst contact event, increasing θ[2] leads to the build-up of contact force

F[j] > 0, j ∈ Iw at the discrete contacts and the progressive decrease of the moment at the location

of the contacts. The derivation is similar to the pinned-pinned case and is thus omitted.
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Figure 1: Symmetrical �rst buckling mode of clamped-clamped elastica

0.1.3 Secondary Buckling

With increasing θ[2] , the moment at the discrete contact eventually vanishes. In contrast to the

pinned-pinned elastica, this condition does not mark the onset of continuous contact, as this con�g-

uration of the elastica become unstable (n
(l)
p = 2m

(l)
e ). In addition the same holds for the secondary

buckling described below, for which n
(d)
p = m

(d)
e + 2. Due to vanishing moments of both ends, the

secondary buckling corresponds to a change in the sign of the moment at the clamped ends, as

re�ected in the deformed con�guration shown in Fig. 2.

To construct the solution for the secondary buckling with one discrete contact, only one half of

the elastica needs to be considered. As shown in Fig. 2, there are two distinct clamped-clamped

segments with an in�ection point at the midpoint of each segment. Two distinct canonical problems

have thus to be solved, corresponding to segments 2 (bounded by nodes 2 and 3) and 3 (bounded

by nodes 3 and 4), with a combined length `2 + `3 = 1/4. The segments have relative inclinations

ψ2(s) = θ2(s) + α2 and ψ3(s) = θ3(s) − α3, respectively with α2 ≥ 0, α3 > 0. As the resultant

force Ri, i ∈ I` is uniform, αi = αi+1, i ∈ I`. Due to continuity of the bending moment at node 3,

β2 = −β3, and a relation between length `i and angle βi is derived

`i =
1

4π
arccosβi (2)

Hence, Ri = 16π2, i ∈ I`.
The contact constraints for the segments are ∆y1 = ∆y2 = −γc/2 and ∆y3 = ∆y4 = c (1 + γ) /2

with 0 ≤ γ < 1. Number γ increases with end-displacement δ, starting at 0 at the onset of secondary

buckling up to 1 when the elastica contacts the opposite wall at two symmetric points. With three

discrete contacts, the segmentation remains the same. However the relative inclination for the

second segment is modi�ed according to ψ2(s) = θ2(s) − α2 and the transverse components of the

force transmitted by the segments are related by

R2 sinα2 = R3 sinα3 + F[3] (3)

This means that the inclination angles α2 6= α3 are di�erent. Using the continuity of the bending

moment at node 3 and uniformity of horizontal horizontal force , the complete solution can be easily

derived.
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Figure 2: Secondary buckling of clamped-clamped elastica.

0.2 First Buckling Mode (Anti-symmetric Case)

The anti-symmetric case of the second root di�ers remarkably from the symmetric one. It is a double

clamped-pinned case, which requires some special consideration. An asymmetrical deformation

shape similar to the anti-symmetric case is also discussed.

0.2.1 Unconstrained Buckling

The second root of the �rst buckling mode of a clamped-clamped elastica corresponds to the anti-

symmetric con�guration illustrated in Fig. 3. Thus only one-half of the elastica has to be solved.

Using the segmentation technique, one half of the elastica is divided into three distinct segments,

with segments 1 (bounded by nodes 1 and 2) and 2 (bounded by nodes 2 and 3) being identical;

the combined lengths 2`2 + `3 = 0.5. Considering that the node 4 lies along the centerline, the sum

of the vertical o�sets of the segments satisfy

3∑
i=1

∆yi = 0 (4)

In the absence of contact, the force in the elastica is uniform. The solution can be obtained by

applying continuity of the bending moment at node 3.

0.2.2 Constrained Buckling with Discrete Contact

The contact event occurs when the contact force F[3] = 0 and ∆y3 = c. The de�ection of the

segments is then constrained by 2∆y1 = 2∆y2 = ∆y3 = c and the segment lengths by 2`2+`3 = 0.5.

Further increase of δ leads to F[3] > 0 and thus to a jump in the transverse component of the force

transmitted by segments 2 and 3.

3



7
65

4

32

c
y x

C l a m p e d
P i n n e d

1−δ
1

Figure 3: Asymmetrical �rst buckling mode of clamped-clamped elastica

0.2.3 Asymmetrical con�guration (displacement controlled)

For a displacement-controlled loading, an asymmetrical con�guration of the elastica is observed

beyond the point of vanishing moment at the discrete contact 3, as shown in Figure 4. It is similar

to the second root of �rst buckling mode but in an asymmetrical manner and with a single discrete

contact. With increasing δ an abrupt decrease of the horizontal force Ro occurs. The position of

the discrete contact varies (i.e., s[3] ≤ 0.5), while the vertical displacement of the two last segments

(i.e., ∆y5 + ∆y6) increases until a second discrete contact develops at node 5 .

To derive the solution for the asymmetrical con�guration, the elastica should be divided into

three clamped-clamped segments with an in�ection point at the midpoint of each segment. Three

canonical problems should be solved, e.g., segments 2 (bounded by nodes 2 and 3), 4 (bounded by

nodes 4 and 5) and 5 (bounded by nodes 5 and 6) with combined length `2 + `4 + `5 = 1/2. The

segments have relative inclinations ψ2(s) = θ2(s)− α2, ψ4(s) = θ4(s)− α4 and ψ5(s) = θ5(s) + α5,

respectively, assuming positive inclinations. The horizontal applied force Ri cosαi, i ∈ I` is uniform.

In addition, R4 = R5 and thus α4 = α5. Due to continuity of the bending moment at node 5,

β4 = −β5 and a relation between lengths `4, `5 and their resultant force is obtained

`4 + `5 =
π√
R4

(5)

Continuity of bending moment at the discrete contact at node 3 has also to be satis�ed. The

contact constraints for the segments are ∆y1 = ∆y2 = −c/2 , ∆y3 = ∆y4 = c (1 + γ) /2 and

∆y5 = ∆y6 = γc/2 with 0 ≤ γ < 1. For γ = 1 the deformation con�guration is characterized by

two discrete contactst and the elastica should be divided di�erently as explained in Section 0.2.2.
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Figure 4: Asymmetrical con�guration of clamped-clamped elastica
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