
Improving Data Management and Data Movement
Efficiency in Hybrid Storage Systems

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Xiongzi Ge

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

David H.C. Du

July, 2017

c© Xiongzi Ge 2017

ALL RIGHTS RESERVED

Acknowledgements

There are numerous people I would like to express my gratitude for their impact on me

and the contributions to my research over the years. First of all, I would like to thank

my advisor Professor David H.C. Du for supervising me over the past nine years, both

on site and remotely, and thus I grow personally and professionally. I also would like to

thank the other committee members, Prof. Tian He, Prof. Rui Kuang and Prof. Soheil

Mohajer for their flexibility and insightful suggestions.

I would like to thank Dennis Hahn and Pradeep Ganesan from NetApp for their

mentorship. Special thanks go to Yi Liu and Liang Zhang from Huawei, Chengtao Lu,

Zhichao Cao and Xuchao Xie for the collaboration and friendship. I would like to thank

the sponsorship and the members I met in the Center for Research in Intelligent Storage

(CRIS) for their help: Xiang Cao, Jim Diehl, Ziqi Fan, Alireza Haghdoost, Weiping

He, Bingzhe Li, Manas Minglani, Yaobin Qin, Fenggang Wu, Hao Wen, Jinfeng Yang,

Baoquan Zhang and Meng Zou. In particular, I would like to thank the support from

National Science Foundation (NSF awards 1305237, 1421913, 1439622 and 1525617).

I am grateful to the Advanced Technology Group in NetApp for their cutting-edge

research and the brilliant researchers. I would like to give special thanks to my manager

Albert Andux, Andrew Klosterman, John Strunk, Chris Dragga and Ardalan Kangarlou

for their help when I had to cope with job, thesis and life in a new place.

Finally, I especially would like to thank my family. Without them, I could not reach

this far.

i

Dedication

To my family.

ii

Abstract

In the big data era, large volumes of data being continuously generated drive the

emergence of high performance large capacity storage systems. To reduce the total cost

of ownership, storage systems are built in a more composite way with many different

types of emerging storage technologies/devices including Storage Class Memory (SCM),

Solid State Drives (SSD), Shingle Magnetic Recording (SMR), Hard Disk Drives (HDD),

and even across off-premise cloud storage.

To make better utilization of each type of storage, industries have provided multi-

tier storage through dynamically placing hot data in the faster tiers and cold data in

the slower tiers. Data movement happens between devices on one single device and

as well as between devices connected via various networks. Toward improving data

management and data movement efficiency in such hybrid storage systems, this work

makes the following contributions:

To bridge the giant semantic gap between applications and modern storage systems,

passing a piece of tiny and useful information (I/O access hints) from upper layers

to the block storage layer may greatly improve application performance or ease data

management in heterogeneous storage systems. We present and develop a generic and

flexible framework, called HintStor, to execute and evaluate various I/O access hints on

heterogeneous storage systems with minor modifications to the kernel and applications.

The design of HintStor contains a new application/user level interface, a file system

plugin and a block storage data manager. With HintStor, storage systems composed of

various storage devices can perform pre-devised data placement, space reallocation and

data migration polices assisted by the added access hints.

Each storage device/technology has its own unique price-performance tradeoffs and

idiosyncrasies with respect to workload characteristics they prefer to support. To explore

the internal access patterns and thus efficiently place data on storage systems with fully

connected (i.e., data can move from one device to any other device instead of moving

tier by tier) differential pools (each pool consists of storage devices of a particular

type), we propose a chunk-level storage-aware workload analyzer framework, simplified

iii

as ChewAnalyzer. With ChewAnalzyer, the storage manager can adequately distribute

and move the data chunks across different storage pools.

To reduce the duplicate content transferred between local storage devices and devices

in remote data centers, an inline Network Redundancy Elimination (NRE) process with

Content-Defined Chunking (CDC) policy can obtain a higher Redundancy Elimination

(RE) ratio but may suffer from a considerably higher computational requirement than

fixed-size chunking. We build an inline NRE appliance which incorporates an improved

FPGA based scheme to speed up CDC processing. To efficiently utilize the hardware

resources, the whole NRE process is handled by a Virtualized NRE (VNRE) controller.

The uniqueness of this VNRE that we developed lies in its ability to exploit the redun-

dancy patterns of different TCP flows and customize the chunking process to achieve a

higher RE ratio.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background and Motivations . 1

1.2 Contributions . 5

1.3 Organization . 7

2 A Flexible Framework to Study I/O Access Hints in Heterogeneous

Storage Systems 8

2.1 Introduction . 8

2.2 Background . 12

2.3 HintStor . 14

2.3.1 Prerequisite . 14

2.3.2 HintStor framework . 15

2.4 Evaluation . 22

2.4.1 File System Data Classification 22

2.4.2 Stream ID . 27

v

2.4.3 Cloud Prefetch . 31

2.5 Related work . 33

2.6 Conclusion . 35

3 Workload-Aware Data Management across Differentiated Storage Pool-

s 37

3.1 Introduction . 37

3.2 I/O Workload Analysis and Motivations 40

3.2.1 Preliminary of I/O workload analysis 41

3.2.2 I/O Traces . 42

3.2.3 Observations, Analysis and Motivations 42

3.3 The Framework of ChewAnalyzer . 46

3.3.1 Overview . 46

3.3.2 ChewAnalyzer . 47

3.3.3 Storage Manager . 52

3.3.4 Enhancements: ChewAnalyzer++ 53

3.4 Case Study with A 3-Pool Architecture 54

3.5 Evaluation . 60

3.6 Related work . 65

3.6.1 Tiered Storage Management . 65

3.6.2 IO Workload Characterization 66

3.6.3 SSD and SCM Deployment in Storage Systems 66

3.7 Conclusion . 67

4 Flexible and Efficient Acceleration for Network Redundancy Elimina-

tion 68

4.1 Introduction . 69

4.2 Background and Motivations . 71

4.2.1 FPGA Accelerator and Quick Prototyping 73

4.2.2 The Role of Chunking Policy . 73

4.2.3 Flexibility in Configuring Chunking Policy 76

4.3 VNRE Design . 77

4.3.1 VNRE Controller . 77

vi

4.3.2 Computation Process . 79

4.3.3 Monitor . 84

4.4 VNRE Evaluation . 85

4.4.1 Speedup Ratio of CDC Throughput by Using FPGA Accelerator 85

4.4.2 Improvements from Flexibly Configured Chunking Policy 87

4.4.3 Overhead Analysis . 90

4.5 OpenANFV: Accelerating Network Function Virtualization with a Con-

solidated Framework in OpenStack . 90

4.5.1 Architecture and Implementation 92

4.5.2 OpenANFV Evaluation . 94

4.6 Related Work . 94

4.7 Conclusion . 96

5 Conclusion 97

Appendix A. Glossary and Acronyms 114

A.1 Acronyms . 114

vii

List of Tables

1.1 Summarization of diverse storage devices/techniques. 2

2.1 I/O access hints categories and some examples. 22

2.2 Two-level file system data classification example. 23

3.1 Storage I/O workload characterization dimensions. 41

3.2 Chunk access pattern classification examples. 41

3.3 Summarization of I/O traces. 42

3.4 Summarization of different write access pattern ratios of pxy 0 and backup15. 46

3.5 Notations in ChewAnalzyer. 49

4.1 Throughput and RE ratio of an NFSv4 server using different chunking

policies and average chunk size. 74

4.2 Composition of our testing environment. 75

4.3 An example of customized chunking policy. 76

4.4 Description of four TCP flows. 87

A.1 Acronyms . 114

viii

List of Figures

2.1 Block redirector and migrator targets in device mapper. 15

2.2 HintStor framework. 16

2.3 The average latency on a hybrid SSD and HDD volume. 24

2.4 The average latency on a hybrid SCM, SSD and HDD volume. 25

2.5 The average latency with different migration intervals for ext4. 26

2.6 The average latency with different migration intervals for btrfs. 26

2.7 Diagram of the enhanced stream ID. 28

2.8 System throughput improvement with stream ID. 29

2.9 The total amount of data migrated in HintStor with Stream ID and without. 29

2.10 YCSB throughput for redis with three fsnyc polices. 31

2.11 Execution time of cp a set of files which are placed across local and cloud

storage. 33

2.12 Normalized total read I/O size from cloud storage. 34

3.1 Chunk access frequency cumulative distribution function. 43

3.2 The diagram of chunk access pattern in consecutive time windows for

backup15 trace. 44

3.3 Overview of ChewAnalyer. 48

3.4 Chunk pattern classification diagram of Hierarchical Classifier. 51

3.5 Diagram of using HC to classify data into different access pattern groups.

(The weight of each chunk associated with each pattern is calculated in

each level, so they can be ordered by their weight numbers) 55

3.6 Trace-driven storage prototype for evaluating ChewAanlyzer. 61

3.7 Normalized average I/O latency for the four policies. 62

3.8 Overwritten pattern ratio at different time window (prxy 0). 63

ix

3.9 Overwritten pattern ratio at different time window (hadoop13). 63

3.10 Overwritten pattern ratio at different time window (proj 2). 63

3.11 Overwritten pattern ratio at different time window (backup15). 63

3.12 Normalized total data migration size. 64

3.13 The average latency on a hybrid SSD and HDD volume. 65

4.1 Simplified flow diagram of a NRE process. 72

4.2 Throughput and RE ratio (%) in an NFSv4 file server. 75

4.3 Three basic modules in VNRE. 78

4.4 Data structure of the TCP flow table. 78

4.5 Architecture of the FPGA-based accelerator. 79

4.6 Rabin fingerprinting module. 81

4.7 Rabin fingerprinting computation process. R is set to 16 and M is set

to 32 in our implementation. Q is initialized as a large 64-bit prime. . . 82

4.8 Format of the chunking log file. 85

4.9 Average CDC throughput with FPGA Accelerator (PR) and without

(vCPU). 86

4.10 Accumulated throughput of CDC and 128-bit MurmurHash for FP gen-

eration with FPGA CDC offloading (PR=1) and without (PR=0). . . . 87

4.11 Overview of the experimental configuration. 88

4.12 NRE throughput and RE ratio (%) of four sample chunking policies com-

pared to customized VNRE control. 89

4.13 Comparison of expected throughput over time for client requests with

VNRE and without using VNRE. 89

4.14 RE ratio (%) of four TCP protocols using three chunking polices. 90

4.15 Brief OpenANFV architecture. 92

4.16 Performance results on throughput with or without adopting NFAP. . . 95

x

Chapter 1

Introduction

1.1 Background and Motivations

Traditional spinning hard disk drives (HDDs) dominate the storage world for more

than half a century. Over the past decade, several new storage technologies emerge and

become mature. For examples, Seagate recently announced the Perpendicular Magnetic

Recording (PMR) based enterprise 12 TB drives [1]. The Shingle Magnetic Recording

(SMR) [2] technology increases the areal density by overlapping adjacent write tracks.

Flash-based Solid State Drives (SSDs)[3] make storage incredibly faster. Today, there

are even more high performance storage devices/ technologies like phase change-memory

(PCM), spin-torque transfer RAM (STT-RAM) and memristors [4] that not only offer

non-volatile memory [5] but also promise high performance non-volatile storage [6]]

(termed Storage Class Memory (SCM)). In addition, cloud storage (e.g. Amazon S3

and Azure) emerges as a mainstream for reducing cost and increasing data reliability.

Each of the above devices/technologies has its own unique performance character-

istics. Table 1.1 shows the summary of a set of the off-the-shelf storage technologies.

SSDs and SCM fundamentally differ from the traditional HDDs. They can read/write

data randomly without moving the mechanical arm and heads. In addition, flash based

SSDs have to erase a data block before serving new incoming write requests to the

block. This makes SSDs have asymmetric read/write speeds. SCM like Phase Change

Memory (PCM) and STT-RAM is referred as a high-speed, non-volatile storage device.

Although SCM has an impressive performance (hundreds of thousands IO per second),

1

2

Table 1.1: Summarization of diverse storage devices/techniques.
Storage Throughput IOPS Pros vs. Cons

Intel 3D XPoint
Technology

1000x faster than
NAND Flash

1000x faster than
NAND Flash

The highest
performance vs.
high price, low

density

Samsung 950
PRO NVMe SSD
(PCI-e) 256GB

Read:2200MBps
Write:900MBps

Read: 270 000
Write:85 000

High performance
but high price vs.

limited write times

Samsung 850
PRO 2.5S̈SD

SATA III 512GB

Read:550MBps
Write:220MBps

Read:10 000
Write:90 000

Better performance
than HDD vs.

limited write times

Seagate 600GB
15k SAS HDD

(ST600MP0005)

160-233MBps ∼500 (latency:
2ms)

High density vs. low
performance

Seagate SMR
Archive HDD

8TB

150MB/s ∼200
(latency:5.5ms)

Cheap, high density
vs. low performance

IBM TS1150
tape drive 4TB

360MBps Very low Cheap, high density,
long-term

preservation vs. low
performance

its cost is still very expensive, even exceeding that of a many-core CPU [6]. For cloud

storage, the latency over the internet is 100-1000 times higher than that of accessing

data from local servers [7]. For instances, both Amazon S3 and Azure have high GET

latency (average 200ms or more per operation) [8]. This results from the long distance

and unpredictable and disconcertingly inconsistent connection. More seriously, cloud la-

tency may cause serious data corruption, data unreachable transiently and more terribly

even data vanishings all of a sudden [7].

To reduce the total cost of ownership, storage systems are built in a more composite

way incorporating the above emerging storage technologies/devices, including Storage

Class Memory (SCM), Solid State Drives (SSD), Shingle Magnetic Recording (SMR) and

even across off-premise cloud storage. This makes enterprise storage hierarchies more

interesting and diverse. To make better utilization of each type of storage, industries

have provided multi-tier storage through dynamically placing hot data in the faster

3

tiers and cold data in the slower tiers. Data movement happens between devices on one

single device and as well as between devices connected via various networks. Managing

data and achieving efficient data movement become challenging in such hybrid storage

systems.

Firstly, the current storage stack is designed to mainly accommodate the properties

of HDDs. Multiple independent layers are developed and exist in the storage stack

in a hierarchical manner. For examples, the existing I/O stack provides a series of

homogenous logical block addresses (LBAs) to the upper-level layers like filesystems,

databases, or applications. A filesystem is always built on a virtualized logical device.

Such a logical device may consist of several different types of storage devices (e.g. SSDs

and HDDs). The block layer that managing the storage space lacks necessary informa-

tion about file data, such as file metadata and data blocks belonging to the file. This

makes block layer storage manager hard to appropriately allocate resources and place

data blocks across different storage devices. The gap between applications and block

storage is even larger for applications have no clue of what types of storage devices

they are accessing. To narrow the gap between storage system and its upper layers, one

of the promising approaches is using I/O access hints [9, 10]. When an application is

reading a file, it may have no clue of the physical location of the file. This file may be

scattered over several devices even with a portion of the blocks in a low performance

device. If the upper layers can send hints to the storage system, the storage controller

may proactively load the associated blocks of the requested files from a low-performance

device to a high-performance tier.

The previous work related to I/O access hints mainly focuses on the two-layer stor-

age architecture (memory and storage). A classifier was proposed in [10] which allows

the storage controller to employ different I/O policies with each storage I/O command.

For example, an SSD device can prioritize metadata and small files for caching in a

file system. Sonam Mandal [9] studied block-layer data dedupliation by using hints

from upper layers to guide the dmdedup engine to bypass certain types of data (e.g.

metadata) and prefetch the associated index data of the data chunks. However, these

investigations do not study storage layer data management like data migration across

different devices. In addition, one of the major challenges of research in storage ac-

cess hints is lacking a common platform for evaluation. In order to send hints to the

4

storage layer, different applications require to have an efficient way of communicating

with storage layer (e.g. sysfs, SCSI commands). Developing hints and evaluating their

effectiveness may need to change the applications, file systems and the block storage

management software. This results in tedious work before a particular access hint can

be evaluated for its effectiveness.

Secondly, in the past, storage tiering has been viewed as a method of getting both

performance and affordability, however, moving data tier by tier may be not efficient in

such hybrid storage systems. The legacy two-layer architecture, such as hybrid cache

[11] combining flash-based SSD [12] and main memory, hybrid SSD and HDD storage

[13], has been extensively studied. Data tiering is also used in local and cloud storage,

such as FabricPool which is built on NetApp’s ONTAP system combining with the

remote on-premise cloud storage [14].The expected process of data placement is that

fast tiers serve a group of intensive workloads for better performance while slow tiers are

persistently storing the rest of data blocks to provide lower cost [15]. Data migration

happens tier by bier when data access frequency changes. However, moving data tier

by tier may not be efficient and even worse it may lead to unnecessary data movements.

Accurate chunk level workload characterization can help the system understand

what resources are adequate for the associated requests. However, conventional storage

workload analysis methods oriented to tier by tier cases are not applicable on multiple

differentiated storage pools. The classical hot and cold data classification methodology

is employed in the tier-by-tier case [16]. Each data chunk is characterized as certain pat-

tern, typically, high or low IOPS in a period, and followed by a greedy migration policy

to be moved between different storage pools [17]. However, employing different dimen-

sions and granularities may generate entirely different access patterns. We investigate a

set of enterprise block I/O workloads using different chunk sizes and different taxonomy

rules. Typically, smaller chunk size incurs more metadata management while larger

chunk size reduces the flexibility of data management. Different taxonomy rules may

partition data into totally different categories. Moreover, workload profiling is highly

related to the device technology. For example, it is valuable to pay more attention to

write requests when both SSDs and SCM are available. Although both offer better

random I/Os per second (IOPS) than HDDs, the not-in-place-update and lifetime issue

still drive researchers and developers to reduce and even eliminate random write I/Os

5

on flash based SSDs [18, 19]. Furthermore, applications like big data processing (e.g.

Hadoop) have their own characters (e.g. streaming or batch processing) [17].

Thirdly, as data is moving between local severs and remote cloud centers, a huge

amount of duplicate information transferring causes network congestion. Network Re-

dundancy Elimination (NRE) aims to improve network performance by identifying and

removing repeated transmission of duplicate content from remote servers [20–22]. For

an inline NRE process, the content of network flows is first segmented into a set of

data chunks. Then these data chunks will be identified to be redundant (i.e., has been

recently transmitted and buffered) or not. Generally, a higher Redundancy Elimination

(RE) ratio can save more bandwidth [23]. Chunking policies based on either fixed or

variable sizes determine the RE ratio [20]. Compared with a fixed-size chunking policy,

a variable-size chunking policy can more efficiently identify repetitive chunks.

Content Defined Chunking (CDC) [24], a variable chunking policy, has been widely

used by many NRE solutions [21, 25, 26]. However, some components of CDC consume

significant CPU time (e.g., the Rabin hash process). For instance, considering a stan-

dard software-based NRE MB (Intel E5645 CPU, 2.4 GHz, 6 cores, exclusive mode),

the CDC chunking throughput is about 267 Mbps for each core and totals around 1.6

Gbps [27]. This overhead will affect the server performance and eventually decrease the

overall NRE throughput. For a CDC scheme, there is also a tradeoff between RE ratio

and the expected data chunk size. The smaller the expected chunk size, the higher the

RE ratio. However, the smaller expected chunk size will require higher computational

cost.

1.2 Contributions

To improve data management and data movement efficiency in hybrid storage systems,

this thesis mainly makes the following three contributiions:

• A generic and flexible framework, called HintStor, is proposed and developed in

the current Linux system, to execute and evaluate various I/O access hints on

heterogeneous storage systems with minor modifications to the kernel and appli-

cations. The design of HintStor contains a new application/user level interface,

6

a file system plugin and a block storage data manager. The block storage da-

ta manger implements four atomic access hints operations in Linux block level,

which can perform storage layer data management like data replication and data

migration. The file system plugin defines a file level data classification library for

common file systems. A new application/user level interface allows users to define

and configure new access hints. With HintStor, storage systems composed of var-

ious storage devices can perform pre-devised data placement, space reallocation

and data migration polices assisted by the added access hints, such as file system

data classification, stream ID and cloud prefetch.

• To explore the internal access patterns and thus efficiently place data on storage

systems with fully connected (i.e., data can move from one device to any other de-

vice instead of moving tier by tier) differential pools (each pool consists of storage

devices of a particular type), we propose a chunk-level storage-aware workload an-

alyzer framework, simplified as ChewAnalyzer. Access patterns are characterized

as a collective I/O accesses in a chunk composed of a set of consecutive data block-

s. The taxonomy rules are defined in a flexible manner to assist detecting chunk

access patterns. In particular, ChewAnalyzer employs a Hierarchical Classifier to

exploit the chunk patterns step by step. With ChewAnalzyer, the storage man-

ager can adequately distribute and move the data chunks across different storage

pools.

• To reduce the duplicate content transferred between local storage devices and de-

vices in remote data centers, we build an inline NRE appliance which incorporates

an improved FPGA based scheme to speed up CDC processing. To efficiently u-

tilize the hardware resources, the whole NRE process is handled by a Virtualized

NRE (VNRE) controller. The uniqueness of this VNRE that we developed lies in

its ability to exploit the redundancy patterns of different TCP flows and customize

the chunking process to achieve a higher RE ratio. Through the differentiation of

chunking policies for each flow, the overall throughput of the VNRE appliance is

improved.

7

1.3 Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents HintStor, a generic and flexible framework to study I/O access

hints in heterogeneous storage systems.

• Chapter 3 describes ChewAnalyzer, which targets workload-aware data manage-

ment across differentiated storage pools

• Chapter 4 shows VNRE, to achieve flexible and efficient acceleration for NRE.

• Chapter 5 concludes the thesis.

Chapter 2

A Flexible Framework to Study

I/O Access Hints in

Heterogeneous Storage Systems

To bridge the giant semantic gap between applications and modern storage systems,

passing a piece of tiny and useful information (I/O access hints) from upper layers to

the block storage layer may greatly improve application performance or ease data man-

agement in storage systems. This is especially true for heterogeneous storage systems.

Since ingesting external access hints will likely involve laborious modifications of legacy

I/O stacks, thus making it is very hard to evaluate the effect of access hints. In this

chapter, we present and develop a generic and flexible framework, called HintStor, to

quickly play with a set of access hints and evaluate their impacts on heterogeneous

storage systems.

2.1 Introduction

Conventional hard disk drives (HDDs) dominate the storage world for more than half

a century. In the past decade, several new storage technologies emerged and became

mature. Perpendicular Magnetic Recording (PMR) aligns the poles of each magnetic

8

9

element vertically and thus allows manufacturers to reduce the size of each bit and in-

crease the capacity of a single HDD. For example, Seagate recently announced the PMR

based enterprise 12 TB drives [1]. Shingle Magnetic Recording (SMR) [2] technology

increases the areal density by overlapping adjacent write tracks. For example, Western

Digital plans to announce the 14TB SMR based HDDs [28]. Both PMR and SMR are

the variants of HDDs. Besides, some high-performance storage devices, like flash-based

Solid State Drives (SSDs)[3] and Storage-level Class Memory (SCM)[6] make storage

faster. SSDs and SCM fundamentally differ from the traditional HDDs. They can

read/write data randomly without moving the mechanical arm and heads. In addition,

flash based SSDs have to erase a data block before serving new incoming write requests

to the block. This makes SSDs have asymmetric read/write speeds. SCM like Phase

Change Memory (PCM) and STT-RAM is referred as a high-speed, non-volatile stor-

age device. Although SCM has an impressive performance (hundreds of thousands IO

per second), its cost is still very expensive, even exceeding that of a many-core CPU

[6]. Taking into consideration of performance, capacity and cost, storage systems are

built in a more composite way incorporating the emerging storage technologies/devices,

including SCM, SSD, SMR and even across off-premise cloud storage. We consider this

type of storage systems heterogeneous.

The current storage stack is designed to mainly accommodate the properties of

HDDs. Multiple independent layers are developed and exist in the storage stack in a hi-

erarchical manner. For examples, the existing I/O stack provides a series of homogenous

logical block addresses (LBAs) to the upper-level layers like filesystems, databases, or

applications. A filesystem is always built on a virtualized logical device. Such a logical

device may consist of several different types of storage devices (e.g. SSDs and HDDs).

The block layer that managing the storage space lacks necessary information about file

data, such as file metadata and data blocks belonging to the file. This makes block

layer storage manager hard to appropriately allocate resources and place data blocks

across different storage devices. The gap between applications and block storage is even

larger for applications have no clue of what types of storage devices they are accessing.

For example, a maintenance task, like backup or layout optimization, which may be

designed to improve data availability or system performance [29]. Such maintenance

I/O requests may be mixed with the foreground I/O requests. Storage systems should

10

prioritize the latter ones if they can. In addition, those backup data blocks are good

candidates to reside on low speed storage devices. However, when I/O requests arrive

at the block layer, the storage controller usually is not able to fully recognize the data

properties and differentiate them from the foreground requests. To balance the storage

capacity and performance, in a tiered-storage the storage manager tries to move cold

data from a fast-tier to a slow-tier after the data blocks become less frequently accessed.

The decision is mainly based on the statistics of data access frequency. If the storage

manager moves cold data too conservatively, the I/O latency may suffer when there is

not sufficient space for hot data to be migrated to the fast-tier. On the other hand,

an aggressive data migration may lead to unnecessary data traffics between layers and

eventually degrade the overall performance. Note that we are using fast-tier and slow-

tier to simplify our discussion. A heterogeneous storage system may consist of several

types of storage devices with different performance and access properties.

To narrow the gap between storage system and its upper layers, one of the promising

approaches is using I/O access hints [9, 10]. When an application is reading a file, it may

have no clue of the physical location of the file. This file may be scattered over several

devices even with a portion of the blocks in a low performance device. If the upper

layers can send hints to the storage system, the storage controller may proactively load

the associated blocks of the requested files from a low-performance device to a high-

performance tier. A classifier was proposed in [10] which allows the storage controller

to employ different I/O policies with each storage I/O command. For example, an

SSD device can prioritize metadata and small files for caching in a file system. Sonam

Mandal [9] studied block-layer data dedupliation by using hints from upper layers to

guide the dmdedup engine to bypass certain types of data (e.g. metadata) and prefetch

the associated index data of the data chunks. However, these investigations do not

study storage layer data management like data migration across different devices. In

addition, one of the major challenges of research in storage access hints is lacking a

common platform for evaluation. In order to send hints to the storage layer, different

applications require to have an efficient way of communicating with storage layer (e.g.

sysfs, SCSI commands). Developing hints and evaluating their effectiveness may need

to change the applications, file systems and the block storage management software.

This results in tedious work before a particular access hint can be evaluated for its

11

effectiveness.

In this chapter, we design a generic and flexible framework, called HintStor, to study

access hints in heterogeneous storage systems. The purpose of HintStor is not trying

to design and deliver a dozen of access hints mechanisms. The major goal is devising a

framework for access hints evaluation. The major goal is devising a framework for access

hints evaluation. To perform access hints in storage systems, we design and implement

a new application/user level interface, a file system plugin and a block storage data

manager in HintStor. The block storage data manger implements four atomic access

hints operations in Linux block level, which can perform storage layer data management

like data replication and data migration. The file system plugin defines a file level data

classification library for common file systems. A new application/user level interface

allows users to define and configure new access hints. With HintStor, we can quickly

play with various access hints and evaluate their efficiency and effectiveness on storage

level data management.

Generally, HintStor divides the access hints into two categories, static hints and

dynamic hints. The model is not only relevant to the T-10 SCSI hint proposal from

Frederick Knight et al.[30], but also extend to user defined APIs not restricted to SCSI

commands. In the static model, the information of I/O access hints contains the file

data information (e.g. metadata vs. data blocks, small size file vs. large size file) like

the legacy hints model. HintStor calculates the ratio of different types of storage devices

and makes data placement decision at the block layer with the help of hints. With the

dynamic model, HintStor monitors the real-time data access and usage, and aided by

applications to provide dynamic hints to the storages system. In addition, application

level interface allows applications to define storage requirements for the data (e.g. low

latency, backup data, archival data, etc.). HintStor triggers data migration aided by

application hints and the block-level statistics (e.g. heatmap).

We implement a prototype of HintStor in Linux 3.13.0. All implemented interfaces

only require few modifications to file systems and applications. Various access hints can

be implemented and evaluated quickly using HintStor. To show the flexibility of our

framework, we evaluate different configurations with various storage (e.g. SSD, HDD,

SCM and cloud based storage). Specifically, we play and evaluate the following access

hints using HintStor:

12

• File system internal data classification: We use internal file system information to

classify the data via different dimensions like metadata/data, file size, and etc. In

our experiments, we modify two modern file systems in Linux, ext4 and btrfs to

employ such kinds of access hints. The results show that efficient intelligent data

placement is achieved by several file system level static hints.

• Stream ID: The stream ID is used to classify different data and make the asso-

ciated ones storing together or closely located on one device. It helps storage

systems to improve caching efficiency, space allocation and system reliability (in

flash memory-based storage devices), etc. HintStor exposes an interface in user

space so that applications can assign a stream ID for writes in each application

as well as across applications. We run both a synthetic workload and a key-value

database with different levels of journaling policies to evaluate stream ID as access

hints.

• Cloud prefetch: In this case, we study the hints to efficiently integrate local storage

with off-premise cloud storage. Data blocks are expected to automatically transfer

from local servers to remote cloud storage. We simulate a heuristic cloud prefetch

mechanism with pre-reserved local cache space. When data transfer from cloud to

local, the latency may degrade the overall performance dramatically. We mimic

different network bandwidths in the experiment. The results show that HintStor

provides the ability to evaluate I/O access hints in a hybrid cloud environment.

The remaining of this chapter is organized as follows. In Chapter 2.2, we present the

background of our work. Chapter 2.3 describes the design of HintStor. In Chapter 2.4

we demonstrate three different access hints with several storage configurations and show

the evaluation results. Chapter 2.5 summarizes the related work. Finally, we conclude

this chapter in Chapter 2.6.

2.2 Background

I/O access hints seem like a promising way of improving performance and easing man-

agement for future heterogeneous storage systems. In the previous studies of access

hints [9, 31], caching and prefetching in the host machine are mainly considered. Some

13

off-the-shelf system calls in Linux, such as posix fadvise() [32] and ionice() [33], may

be used for access hints. For example, sys fadvise64 64() [32] can specify the ran-

dom access flag to the kernel so that the kernel can choose appropriate read-ahead and

caching techniques to improve access speed to the corresponding file.

However, this flag in sys fadvise64 64() [32] is used in the Linux kernel and per-

formed in the page cache level.Page cache usually refers to the storage of main memory.

While in enterprise storage systems, storage itself may contain storage devices with dif-

ferent storage media like flash and SCM, which can be served as a portion of the storage

volume. Unlike OS-level storage virtualization, to achieve better QoS for different ap-

plications in a hybrid or heterogeneous storage environment, intelligent data movement

plays an essential role to make use of different types of storage devices. However, the

existing prefetching engine in Linux does not support dynamic data movement in such

a storage configuration. Thus, fadvise() and ionice() both used for read-ahead purpose

are not applicable.

Some of the previous work concentrated on the classification of file data (file type, file

size, metadata), which are called static hints in this chapter. For real-time data requests,

the access patterns change from time to time. To make the storage system react quickly,

it requires data movement across different devices. Thus, we need to design a framework

that can evaluate a composited storage volume for persistence which is different from

flashcache [34] and bcache [35]. After applying various I/O access hints, the underlying

storage system performance can be improved via storage level data management like

data migration.

Some existing file systems support customized classifications. For example, btrfs can

support different volumes in the same file system [36]. However, btrfs asks the user to

statically configure the volume for the storage. The host may have several applications.

Different file systems have different storage requirements. The users may use one logical

volume to support multiple applications. Thus, to achieve efficient data management,

we need to consider dynamic access hints instead of the static information pre-configured

in volume level.

To apply hints, without standard APIs, we may need to modify each application and

even the whole OS. The current SCSI T-10 and T13 organization have proposed some

standardized interfaces for access hints [30], but storage industry is still trying finding a

14

way to make all the stakeholders agreeing with these new standards/protocols. Our work

is trying to design and implement a framework for both legacy and modern computing

systems to design and evaluate the access hints from different layers. By means of slight

modification of each layer, we may design/build a flexible framework to achieve this

goal.

2.3 HintStor

2.3.1 Prerequisite

To manage and implement I/O access hints, the prerequisite is that we can manipulate

data in the block storage layer. The modularized kernel allows inserting new device

drivers into the kernel. Device Mapper (DM) [37] is an open source framework in almost

all Linux systems to provide a composited volume with differentiated storage devices

using various mapping polices (e.g. linear and mirror). We implement two generic block

level mapping mechanisms as two new target drivers in DM (kernel version 3.13.0) as

shown in Figure 2.1. These two mechanisms in data storage management can be used

to response to and take advantages of enabled access hints. They in total contain

∼600 lines of C code in the kernel. The two targets named redirector and migrator are

described below:

• Redirector: With the redirector target, the target device (bio → bdev) can be

reset to the desired device (e.g. /dev/sdd). A mapping table is used to record

the entries of the devices for each request where the original address has been

changed. As a result, the destination of the write requests associated with bio

data structure can be reassigned to any appointed device as long as it belongs to

the composited volume.

• Migrator: We implement the Migrator target driver in DM using the ”kcopyd”

policy in the kernel which provides the asynchronous function of copying a set of

consecutive sectors from one block device to other block devices [38]. Data blocks

in the migrator are grouped and divided into fixed-size chunks. Each time the

data blocks in a chunk associated with the I/O requests can be moved from one

device to another device. Besides, migrator can also carry out data replication

15

Figure 2.1: Block redirector and migrator targets in device mapper.

function. In the target driver interface, a flag REPLICA is used to mark whether

keeping or removing the original copy pointers after the migration. The mapping

table records the entry changes with each operation.

We modify dmsetup in LVM2 [39] to call the above two new drivers. Once the

incoming data blocks arrive at the block level, the volume manager can choose either

placing them on the original location or redirecting to a new location. Even after the

data blocks have been placed, they can be migrated to a new location (different or the

same device) or replicated with duplications. With the new functions in DM, we will

show how we design HintStor to carry out I/O access hints in Chapter 2.3.2.

2.3.2 HintStor framework

In legacy Linux operating systems, each block driver registers itself in the kernel as a

device file. Each request structure is managed by a linked list bio structure [40]. The

core of bio, bi io vec, links multiple fixed-size pages (4KB). Developers can build logical

device drivers with various mapping policies in DM. However, these drivers manipulate

data blocks with small sizes and no data migration policy is implemented. We have

16

Figure 2.2: HintStor framework.

developed HintStor with the following new features: 1) To control data management of

large size chunks and perform chunk level movement/migration, HintStor implements

a new block driver in kernel. 2) To extract file system semantics of a chunk, HintStor

hooks a plugin in file system level to exploit internal file data structure and the file

data location. 3) To connect the applications and block storage manager, an interface is

exposed in the user space for users and applications to exploit and receive information

from both file systems and block storage manager. Moreover, this interface allows

users/application to send access hints to storage layer. The new block driver is enabled

to parse external access hints and execute certain commands. Figure 2.2 depicts the

hierarchy of HintStor which is mainly composed of three levels including new interfaces

and plugins in application level, file system level and block storage level (all the shaded

components). In the following we will elaborate them from bottom to top.

1.) Block Storage Data Manager

HintStor treats data placement and data movement as essential functions in im-

proving the performance of a heterogeneous storage system. To make the underlying

block layer carry out data movement operations and perform access hints, we devise

17

and implement a block storage data manager extending from DM using the two basic

target drivers described in Chapter 2.3.1. Block storage data manager mainly contains

a chunk mapping table, a chunk-level I/O analyzer and a model of access hint atomic

operations.

Chunk mapping table: Block storage maintains the Logical Block Address (LBA)

to Physical Block Address (PBA) mapping. HintStor implements a block-level data

management with the granularity of fixed-size chunks. This simulates the scenario of

enterprise storage management [17]. The size of a chunk is usually much larger than

4KB. For example, HintStor configures 1 MB as the chunk size in our experiments.

Chunk-level I/O analyzer: HintStor monitors the I/O access statistics based on each

chunk. To measure the access frequency of each chunk, a heatmap is used to represent

the data access information in a period. In the user-level, a tool by Perl is developed to

visualize the real-time access statistics.

Access hints atomic operations: One of the potential ways of passing access hints is

using SCSI level commands based on T10 and T13 standard proposal [30, 41]. In [10],

they associate each block I/O request a classifier in OS via using the 5-bit SCSI field.

HintStor does not implement the real SCSI commands. Alternatively, HintStor emulates

the SCSI based command through inserting new APIs to represent hints in each level.

One reason of doing so is for a quick prototyping. For example, to use the new SCSI

commands, we have to modify each driver like iSCSI target driver. The other reason

is to make HintStor more flexible by avoiding laborious block driver modifications.

Each access hint command is a four-item tuple as (op, chunk id, src addr, dest addr),

which contains the operation type, the chunk ID number, the source address and the

destination address in the logical volume. The data management in block level mainly

contains four fundamental atomic operations, REDIRECT, MIGRATE, REPLICATE

and PREFETCH.

• REDIRECT: The REDIRECT operation happens when the real I/O has not fin-

ished but the length of the waiting list queue is larger than a predefined threshold.

The redirection function mainly calls the redirector driver in DM. When the bio

request comes into device mapper, REDIRECT will reassign the data chunk to

the destination location. For example, in a composited logical volume with SSD

and HDD, if the HDD is overloaded with many random writing I/O requests, data

18

manager can issue multiple REDIRECT operations to send data chunks to SSD

instead of HDD.

• MIGRATE: Data migration plays a crucial role in HintStor. To enable data

migration, a data migrator daemon is running on the background. When data

blocks are originally placed in a storage with differentiated storage devices, the

data access frequencies may change from time to time. The MIGRATE operation

moves the data chunk from the original place to the destination place via call

the migrator target driver in DM. To guarantee consistency, during the migration

process, the chunk is locked regardless of the incoming requests on this chunk.

HintStor provides two different types of data migration. One is triggered either

by users or by applications. The other one is timer-based heuristic migration

policies. For example, the user can configure the data migration every two hour

to migrate the top-k frequently accessed chunks in the heatmap to the fastest

device.

• REPLICATE: The replication function is used to keep replicas of a data chunk

which is assigned by the applications. It is similar like the mirror target of the

Linux software RAID, but we use large chunk size (1MB or bigger) to manage

the replicas. HintStor makes use of the migrator target driver in DM by slightly

modifying the return process. That is making the mapping table keep the original

copy pointer. Many distributed data storage systems recommend the user to keep

at least three copies of the data such like some big data processing platforms (e.g.

HDFS[42], Kafka[43]). In a distributed storage environment, adding more replicas

of the hot chunks across multiple devices will improve data availability and reduce

the mean response time. We can use REPICATE to create multiple duplications

to emulate such cases. Similarto MIGRATE, the REPLICATE operation locks

the chunk during the execution process.

• PREFETCH: The PREFETCH operation is similar to buffering. In the initial

configuration, HintStor supports reserving a portion of space for the prefetching

buffer. The PREFETCH operation will load data chunks from the original space to

the buffer space. The implementation of PREFETCH is similar to REPLICATE

and MIGRATE. The major difference is that PREFETCH does not need to finish

19

copying the chunk before serving new incoming I/O to this chunk.

2.) File System Plugins

File systems usually encapsulate the internal data management of files, to provide a

few POSIX APIs such as read(), stat()[44]. Each filesystem is implemented in its own

way [44]. A filesystem usually consists of metadata blocks and data blocks. The meta-

data information includes block bitmap, inode, superblock, and so on. When the block

level storage is enabled to execute chunk level data operation, HintStor first considers

using access hints from filesystems. To improve filesystem performance, the metadata

location is expected on a faster storage device since this information is accessed more

frequently. To help users classify filesystem internal data blocks, HintStor provides a

plugin in VFS level, called FS HINT . In FS HINT , a filesystem attribute library

including different dimensions like file size, metadata/data, is pre-configured. To date,

FS HINT supports the mainstream filesystems in current Linux, like ext2, ext4 and

btrfs. For example, ext4 allocates a block for metadata via ext4 new meta blocks()

according to the multiblock allocation mechanism, and FS HINT captures the re-

turned block group number (ext4 fsblk t). The information collected from this library

is exposed to both user-space and applications. Since we design HintStor as a flexible

framework, it allows the researchers to enrich new features and use the basic components

for I/O access hints study. Thus, FS HINT is open for adding more attributes.

Continuing, a filesystem usually does not have the knowledge of the underlying block

storage component (e.g. a hybrid storage logical volume with SSD and HDD). Thus, file

systems generally do not manage the data across different storage devices by themselves.

Btrfs allows users to configure a sub-volume with a certain block device or logical device

for special use cases. However, btrfs does not deal with data block placement across d-

ifferent volumes. To control the block allocation, ext2 uses ext2 new blocks() (balloc.c)

to allocate new blocks from the block group. However, for ext4 and btrfs, the imple-

mentation is much more complicated when the plugin involves kernel code modification.

In Linux, the file ioctl() interface manipulates the block device parameters of special

files based on the file descriptor. The users and applications can query the approximate

file boundary in a logical volume via ioctl() interface. We use the fiemap ioctl() method

from user-space to retrieve the file extent mappings [45]. Most filesystems like ext4 and

btrfs support extent. Without block-to-block mapping, fiemap returns the associated

20

extents to a file. To make the underlying block storage understand the physical location

of a file, we expose this interface to applications to map the logical block address and

the addresses inside the logical volume. The returned locations of each extent are sent

to the block level.

As HintStor manages the block level data in chunk level, the chunk to extent map-

ping may be unaligned. Depending on the size of the file, HintStor will prioritize the

extents from small size files to characterize the chunks. HintStor mainly studies the

data management in storage level with multiple storage devices, each of which has large

capacity compared with OS cache study. Thus, even we sacrifice a little accuracy of

a small portion of data blocks, the results are still closely representing the real cases.

As a result, FS HINT may not contain all the accurate mappings of each file but this

does not affect the I/O access hint evaluation. This approach helps us quickly prototype

HintStor. In addition, FS HINT is compatible on most of Linux platforms. We make

the LBA to PBA mapping in a file as a function in FS HINT . The major function con-

tains only about ∼50 LoC. Furthermore, FS HINT supports querying the mappings

for multiple files without complex kernel code modification.

3.) Application/User Level Interface

In the traditional Linux OS, applications generally do not directly send extra in-

formation to the back-end storage controllers. Applications and users access data via

interfaces like file or object in the past decades. To accept and parse user defined access

hints, HintStor makes use of the sysfs interface [46] to build an attribute library for ap-

plications to communicate with block storage, file system and block storage. sysfs works

as a pseudo file system in Linux kernel which exports brief message from different kernel

subsystems. In HintStor, we add the kernel part in the block level as shown in Figure

2.2. Then, the predefined commands from user space can be triggered and performed

in the kernel. For example, if the user makes the MIGRATE request, the command

will be passed from the user space to the kernel. In the kernel, the migrator daemon

will trigger the LBA to PBA retrieval process and finally block storage will be informed

which data chunks and where they are going to be migrated. HintStor calculates the

ratio of different types of storage. For an application, if a file is created, the application

can selectively apply the hints to this file. We have a hints-wakeup program to ask the

application to confirm this information. For example, if the file is supposed to be a hot

21

file in a period, HintStor will try to load this file into a fast storage. For a period of

time, this file is not used, and also the application may be unsure how long it will keep

hot. The block storage will connect the application to see if this file is not going to be

used. In the contrast, if a file is initially a cold file, but the application may not be

aware of this, in the block storage, the block storage will wake up the hints-generator

to produce a hint to the block storage. In the current version, HintStor supports basic

Linux operations like cp, dd, fsck, redis key-value database, benchmark tools (e.g. fio

[47] and filebench [48]). In addition, HintStor supports user defined APIs such like

stream ID and cloud prefetch. We will demonstrate some use cases in Chapter 2.4.

4.) I/O Access Hint Classification in HintStor

Basically, I/O access hints can be either statically extracted from the existing sys-

tems or dynamic captured in the systems and even added by the users/applications.

Table 2.1 shows the two categories of access hints and some examples. The filesystem

plugin allows the system designers to send the filesystem information to block storage

and applications. The information includes the metadata/data, file size, etc. HintStor

can decide the initial location of different types of data, according the static access

hints. To achieve better QoS for the applications, intelligent data movement plays an

essential role to make use of the large low cost storage space (e.g. cloud storage and

HDD) and also avoid the longer network latency. HintStor is designed to further study

data migration, space relocation and prefetch operation controlled by the I/O access

hints. Dynamic access hints are aiming to help block storage manage data placement

in the running time. For a cold file is opened again, such system call will be captured

to help block storage make prefetching decision. Dynamic I/O access hints can be ob-

tained through analyzing the workload or assisted by the applications and users during

the running time. Such access hints go across different layers in the host OS from user

space to kernel space using the user defined APIs. HintStor leaves this design open and

makes it flexible for developers. In Chapter 2.4, we will show how we use HintStor to

carry out some of them and evaluate their effectiveness on storage systems.

22

Table 2.1: I/O access hints categories and some examples.
I/O access hints classification Examples

metadata/data
Static I/O access hints file size

file type

open a file
Dynamic I/O access hints write/read a file

stream ID
cloud prefetch

2.4 Evaluation

In this subchapter, we will show how we perform and evaluate I/O access hints in

HintStor with three types of I/O access hints.

2.4.1 File System Data Classification

In this evaluation, we will show how HintStor plays with file level static hints. We

assume a hybrid storage system with a faster device and a slower device. To study

file system access hints, we define a two-level file data classification model as shown in

Table 2.2. Block storage layer manager can make data placement decisions based on the

data classification of each chunk. Based on level-1-hints (metadata or data), the block

storage data manager will place the chunks of metadata info on a faster device. In most

cases, HintStor will reserve some space on faster device for metadata related chunks.

The data blocks are placed on the other slower device. For the cases of level-2-hints,

data manager not only places the blocks with file metadata information on faster device

using Level-1-hint but also further selects the chunks from the smallest size files to place

on the fastest device. For example, if the underlying devices are SSD and HDD, the

data manager can select the file size smaller than a certain value (e.g. 1MB) to store

on SSD. We change the sys read() system call to monitor file operations. HintStor

will take actions to call the REDIRECT function if the corresponding data chunks are

not allocated to the desired location. For the No-hint case, the composed volume is

configured using the linear target driver in Device Mapper. FS HINT in HintStor is

disabled in the No-hint cases.

23

Table 2.2: Two-level file system data classification example.
Level-1-hint metadata (e.g. inode, bitmap, superblock), data blocks

Level-2-hint File size range ([0,256KB), [256KB,1MB), [1MB,10MB),
[10MB,100MB), [100MB,1GB), [1GB, ∞)

We use filebench [48] to create a set of files in this hybrid storage. The file sever

contains 10248 files in 20 directories. We create 48 files with 1GB size and 200 files

with 100MB size. The sizes of the rest files are uniformly distributed among 1KB, 4KB,

6KB, 64KB, 256KB, 1MB, 4MB, 10MB and 50MB. The total capacity of the files is

about 126 GB. The workload is similar to the Fileserver workload in Filebench. Chunk

size is set to 1 MB. We run each test for 500 seconds. Each time Filebench runs the

same number of operations. In addition, each test is running 3 times and we take the

average value as the result. In the end of each test, Linux will trigger the flush() and

sync() command to clear the cached pages.

We first test a storage configuration with two different storage devices, HDD (120G-

B) and SSD (40GB). With Level-1-hints, all the chunks with metadata will be placed

on SSD. With Level-2-hints, HintStor chooses the file size smaller than 10MB to store

on SSD. We compare the results with three mechanisms including no-hint, Level-1 hints

and level-2 hints on ext4 and btrfs. As shown in Figure 2.3, the average I/O latency

in both btrfs and ext4 is reduced by adding file system data classification hints. Com-

pared with the No-hint cases, by adding Level-1-hints, the latency on ext4 and btrfs is

reduced by 48.6% and 50.1%, respectively. By further adding Level-2-hints, the latency

is reduced by 12.4% and 14.8% compared with the cases only using Level-1-hints.

To demonstrate the flexibility with different types of devices in HintStor, we build

a heterogeneous storage with HDD (120GB), SSD (35GB) and SCM (5GB). We use a

fixed DRAM space (10GB) to emulate an SCM device. HintStor reserves 2 GB space

on SCM to keep metadata chunks. Based on Level-1-hints, the data manager will first

place the data blocks on SCM unless SCM is out of space and then data will go to SSD.

Based on Level-2-hints, files with sizes smaller than 256KB will be placed on SCM. SSD

is used to keep files with sizes from 256KB to 100MB. The files with sizes larger than

100MB will be placed on HDD. As shown in Figure 2.4, by adding Level-1-hints, the

average request latency is reduced by 42.1% and 43.3%, compared with the No-hint

24

ext4 btrfs
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 I/
O

 L
at

en
cy

 (m
s)

Performance on Two Filesystems with Fileserver Workload

 No-hint Level-1-hint Level-2-hint

Figure 2.3: The average latency on a hybrid SSD and HDD volume.

cases. With Level-2-hints, the average I/O latency is reduced by 40.4% and 46.1%,

compared with the Level-1-hint cases.

The previous study on access hints were focusing on cache improvement, such as

SSD caching. HintStor can evaluate the effect of access hints on data movement across

different storage devices. In the next experiment, we show the combination of data

migration. As presented in Chapter 2.3.2, HintStor can perform data migration inside

the virtual disk by calling the MIGRATE function. We configure a heuristic data

migration policy by moving the Top-1000 frequently accessed chunks into the SCM in

a fixed period. We can configure various migration intervals to investigate how data

migration affects the performance. HintStor calculates the accumulated statistics at the

end of each interval and triggers data migration if it is needed. Figure 2.5 and Figure

2.6 show the average latency for ext4 and btrfs when data migration in the block level

is triggered in different intervals. We run the test for two hours. As shown in Figure 2.5

and Figure 2.6, the average I/O latencies in both ext4 and btrfs are reduced by adding

access hints. Compared with the above case, there is more improvement in this case

where the storage system provides data migration management. Without hints, both

performance can be improved with moving frequently accessed data into the fastest

25

ext4 btrfs
0

5

10

15

A
ve

ra
ge

 I/
O

 L
at

en
cy

 (m
s)

Performance on Two Filesystems with Fileserver Workload

 No-hint
 Level-1-hint
 Level-2-hint

Figure 2.4: The average latency on a hybrid SCM, SSD and HDD volume.

storage. However, block level storage does not know the internal file data distribution.

By recognizing the file data structure, the initial data placement can be improved via

Level-1-hint. Through further exploiting Level-2-hint, the small size files are placed on

the faster pool. Both reduce the data migration load.

Each sys read() operation will trigger the execution process of access hints. The

computation complexity related to access hints generation is O(1). To measure the

resources used by access hints, we calculation the average CPU utilization for the above

cases. The average cpu utilization caused by Level-1-hint and Level-2-hint in all the

cases is less than 2%. Thus, access hints operations are lightweight in HintStor.

From the experiments in Chapter 2.4.1, we evaluate access hints from two file systems

by exploiting their internal data structure and attributes in HintStor. To demonstrate

its flexibility, we configure the storage system with different types of devices. Differing

from the previous study [9, 10], HintStor can evaluate access hints with various block

level data migration polices. Moreover, access hints execution in storage system brings

very slight computation overhead.

26

5 10 15 20 25 30

6

8

10

12

14

16

A
ve

ra
ge

 I/
O

 L
at

en
cy

 (m
s)

Migration Interval (minute)

 No-hint

 Level-1-hint

 Level-2-hint

Figure 2.5: The average latency with different migration intervals for ext4.

5 10 15 20 25 30
4

6

8

10

12

14

16

A
ve

ra
ge

 I/
O

 L
at

en
cy

 (m
s)

Migration Interval (minute)

 No-hint
 Level-1-hint
 Level-2-hint

Figure 2.6: The average latency with different migration intervals for btrfs.

27

2.4.2 Stream ID

Employing application-level data classification usually requires modifications of each

application. We take the idea of stream ID [49] as an example of the application level

access hints. Stream ID is used to aggregate the associated data into one stream and

assist the storage controller to make proper data placement. We use a mapping table

in HintStor to record all the stream ID numbers.

There are several ways of employing stream IDs in the current I/O stack. One way is

using the existing Linux POSIX APIs like posix advise(). I/O optimization is achieved

by means of providing prefetching and caching recommendations to Linux kernel. If the

system wants to distinguish the data based on a file system, then it needs to modify each

file system. However, the application may be designed to run on different file systems.

In this case, simply exposing an interface in the user space for applications in HintStor

may be better than changing the file systems. The applications just inform the devices

the access pattern of the I/O requests so that the devices can allocate space based on

each stream (files).

HintStor exposes a user/application interface in the user space to let users define

their own access hints with few modifications. Although the API implementation in-

cludes both functions in user space and kernel space, for general API like file name

and access patterns, they are implemented in kernel and do not need further kernel

level modification. Here, we configure the stream ID for write requests. The storage

manager layer can allocate appropriate storage space for different streams by taking

the information of stream identifiers. In our implementation, we define and design an

enhanced stream ID hints including two fields as shown in Figure 2.7. The first field

indicates the I/O access pattern. The application can specify an access pattern de-

scriptor based on the pattern list (e.g. write intensive, read intensive, archival/backup

data). The application can either set the first field or leaves it as default (unknown).

The second field is the tag which records the stream ID number. We use both synthetic

workload and a real key-value database to evaluate stream ID.

Case 1: Synthetic Workload. We modified the FB open() interface in filebench [48]

to execute the user level access hint API. HintStor takes the file descriptor to construct

the stream ID when FB open() is called. As in the beginning there is no clue of the

access pattern of each file, the access pattern field is configured as ünknown̈. Note this

28

Figure 2.7: Diagram of the enhanced stream ID.

does not require any further file system modification. We create multiple data streams

in the user level, each of which has different properties. For all the streams created

by the I/O generator, each will be given a stream ID number. Each time filebench

creates a new file, a stream ID will be generated and passed to HintStor. In this test

environment, we create four types of files. Each type of files is tested using one of

the four predefined workloads: Webserver, Fileserver, Singlestreamwrite (iosize is set to

20GB) and Randomwrite. In total, we create 1560 files, with total capacity of 125GB.

The hybrid volume is configured with 150 GB using 20 GB SSD, 125GB HDD and

5GB SCM. The access hints associated with the data blocks will be analyzed by the

data manager in block level. Data manager will look up the hints as well as storage

pool free space. For initial data placement, data blocks will be placed based on the

stream ID hints. To leverage the properties of each device, the data manager will place

the Singlestreamwrite data on HDD, Webserver data on SSD, Randomwrite data on

SCM. The data associated the fileserver workload will be place either on SSD or SCM,

depending on the remaining capacity of each storage device. Internally, HintStor will

migrate the data chunks based on the heuristic migration policy described in Chapter

2.3. Random write pattern is prioritized to reside on SCM. SSD is more appropriate

for random read data. HDD is serving sequential patterns and as well as cold data.

The migration timer is set to happen every 10 minutes. We run the test for 2 hours.

We measure the system throughput with stream ID and without, respectively. As shown

29

ext4 btrfs
0

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

B
/s

)

 with stream ID without stream ID

Figure 2.8: System throughput improvement with stream ID.

ext4 btrfs
0

50

100

150

200

To
ta

l M
ou

nt
 o

f D
at

a
M

ig
ra

te
d

(G
B

) with stream ID without stream ID

Figure 2.9: The total amount of data migrated in HintStor with Stream ID and without.

in Figure 2.8, system throughput in the case with stream ID outperforms the result of

no stream ID case by 3.2X and 2.7X in ext4 and btrfs, respectively. Figure 2.9 shows

the total amount data migrated in these two cases. For ext4, adding stream ID, the

total data during migration is reduced by 93.5% and 92.4% for ext4 and btrfs. With

the enhanced stream ID model, the storage manager can make better initial storage

allocation decisions for different application data. Thus, the migration cost is alleviat-

ed dramatically. In addition, migration traffic affects the incoming I/O requests and

increases the response time.

The overhead of adding the stream ID information is similar as the modification

30

of sys open(). Hence, there is little impact on the system performance by performing

access hints in filebench.

Case 2: redis database. redis is a popular in-memory key value store [50]. Although

redis is running in memory, it provides two persistency policies [51]. One is called RDB

persistence which performs point-in-time snapshots of the dataset at certain intervals

(e.g. every 24 hours). The other is AOF which can log every write with different fsync

policies: no fsync, fsync every second, fsync at every query, etc.

In HintStor, we add stream IDs for redis database. To run multiple redis instances

in a composited logical volume efficiently, there are multiple AOF and RDB files. To use

the Stream ID API in HintStor, each AOF and RDB file in each instance is configured

with a number as a tag. The AOF files are tagged using the access pattern descriptor

”frequently write”. The RDB files use the ”cold data” access pattern descriptor. Based

on the stream ID, block storage data manager can allocate the low speed storage to

keep the large size backup file which is used by RDB, but use the high-speed storage to

store the short-term snapshot files for AOF. If the volume contains a portion of storage

from the off-premise cloud, the short-term files do not need to be transferred to cloud.

We configure the volume with a local SSD with 50GB capacity and a 200GB re-

mote iSCSI HDD storage. Ext4 is running on top of the volume. We use Workload A

(update-heavy) from the YCSB framework suite [52]. We simulated 50 clients running

on a single machine. This machine generates about 10 million operations per second.

Both AOF and RDP are enabled. In total, we run 6 redis instances on an 8-core server

with 48 GB memory. Different fync frequencies of logging and journaling mechanism

in redis’s persistence configuration achieve different levels of reliability. However, fre-

quently committing message to storage leads to system performance degradation. The

fsync policies are set to be per query, per second and every 30 seconds. As shown in

Figure 2.10, the throughput in the case with stream ID outperforms the one without

stream ID by 475%, 365% and 204% for the three fsync policies. Workload A mostly

consists of write requests which also produce many logs for AOF. Thereby, if the AOF

file is on the high latency storage device, the performance will be very poor. Thus, the

per-query fsync policy without stream ID has very low performance. Adding stream

IDs, redis with different levels of persistence can achieve much better performance by

efficiently utilizing the underlying heterogeneous storage devices.

31

fsnyc-1-query fsync-1-second fsync-30-second
0.0

0.5

1.0

1.5

2.0

Y
C

S
B

 T
hr

ou
gh

pu
t (

m
ill

io
n

re
co

rd
s/

se
co

nd
)

 with stream ID
 without stream ID

Figure 2.10: YCSB throughput for redis with three fsnyc polices.

In Chapter 2.4.2, we run two cases and show the ability of HintStor to implement

and evaluate the stream ID access hints based on the user/application level interface.

System designers can define and configure their own access hints in user space even

without touching the kernel.

2.4.3 Cloud Prefetch

Cloud storage emerges as a mainstream for reducing cost and increasing data relia-

bility. We can build storage services which is based on the integration of on-premise

local storage and off-premise cloud storage. Such hybrid cloud is one of the appealing

solutions to embrace cloud. The storage interface provided from a hybrid storage can

either be a high level file interface or a block interface. In the following, we will show

an example to build a block level volume in a simple hybrid cloud environment with

HintStor framework to evaluate potential access hints.

Cloud infrastructure is always deployed in the remote site and thus, network latency

is one of the major bottlenecks for leveraging cloud storage. To preload the data into

local servers, one of the strategies is explicitly sending prefetching hints to the cloud.

We define and implement cloud prefetch in HintStor to evaluate storage management

in the cloud environment. With the user/application level interface, applications can

appoint which files to buffer either on local side or cloud side. Cloud prefetch calls

the PREFETCH operation in HintStor to fetch the data blocks to the local devices.

32

HintStor supports reserving a portion of the local storage as a buffer in the volume.

This prefetching space for cloud storage can be released when the storage space is close

to use up.

In the experiment, we configure the local storage with 10 GB HDD and 1GB SSD.

HintStor currently does not support S3 interface. We use the iSCSI based storage with

one remote HDD to emulate the cloud storage. The capacity for the iSCSI target is

40 GB. The local and cloud storage is configured as a single volume on top of which

ext4 file system is mounted. We use the Linux traffic control tool tc [53] to mimic the

network latency.

We use dd (generated from /dev/zero) to create two 1GB files and 100 1MB files

in a single directory. Without access hints, the ext4 filesystem has no clue to place the

data and will allocate free extents for these two 1 GB files. With the file-level data

classification hints, the metadata will be place on the local storage (on SSD), the small

size files are placed on the local HDD while the two large size files will be placed in

the cloud. During the file creation process, a portion of the local storage from HDD is

used for cloud prefetching based on the network latency. We instrument a set of user

level access hints with the dd command. In this test, the data manager reserves 1 GB

local storage buffer for 1Gbps connection and 2 GB local storage buffer for 200Mbps

connection. For 1Gbps network, when we start to create the first 1 GB file, a cloud

prefetch hint is send to block level. While for the 200 Mbps network, cloud prefetch is

triggered along with the creations of both 1 GB files.

Then, we use cp to copy the whole directory into the local /tmp directory and in

the meantime the prefetching thread is triggered to prefetch the data blocks from the

cloud to the local storage. We test the total elapsed time of copying all the 102 files

in three access hints configurations, no-hint, Level-2-hint (described in Chapter 2.4.1)

and cloud-prefetch-hint. Figure 2.11 shows the total execution time of each case. In the

case of 1Gbps network connection, compared with the no-hint case, the execution time

of using Level-2-hint and cloud-prefetch-hint is reduced by 13% and 66%. For 200Mbps

connection, the total elapsed time is decreased by 34% and 71% with these two access

hints.

We summarize the normalized total read I/O amount from cloud storage in Figure

2.12. Assisted by the cloud prefetch, the file data is buffered on the local storage. As

33

1Gbps 200Mbps
0

200

400

600

800

1000

E
xe

cu
tio

n
Ti

m
e

of
 C

op
yi

ng
 a

 S
et

 o
f F

ile
s

 No-hint
 Level-2-hint
 Cloud-prefetch-hint

Figure 2.11: Execution time of cp a set of files which are placed across local and cloud
storage.

we issue user defined cloud prefetch according to different network speeds and buffer

sizes, the total data read from cloud in the 200 Mbps case is less than that of the 1

Gbps case. As the network latency increases, the cloud prefetch hint plus user defined

access hints can improve more of read performance.

In the above cloud prefetch example, access hints are performed like the file system

data classification. Thus, the computation overhead is very low for access hints execu-

tion. We use a small portion of the local storage as a buffer to prefetch the data blocks.

If there is no free space in local storage after the storage system is fully used, cloud

prefetch hint will be disabled.

Concluding from this example, with HintStor, we can emulate a storage system with

local and off-premise cloud storage. The access latency from network can be simulated.

We can configure the internal buffer space of the volume to play with different user

defined cloud prefetch hints.

2.5 Related work

As aforementioned, more new storage technologies are emerging and (e.g. SMR [2, 54],

SCM [6, 55]) making the storage systems more heterogeneous. Each storage media

has their own idiosyncrasies with different cost and performance. To efficiently make

use of hybrid storage devices in a storage system, the legacy way is building a tired

34

1Gbps 200Mbps
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
ot

al
 R

ea
d

I/O
 S

iz
e

fro
m

 C
lo

ud No-hint Level-2-hint Cloud-prefetch-hint

Figure 2.12: Normalized total read I/O size from cloud storage.

storage system [13, 17]. Such systems always make data tiering via data movement via

monitoring I/O in block/chunk level. The limitation of legacy data tiering is lack of

sufficient information to distinguish block boundaries from different applications so as

not being able to place relative data blocks together.

Researchers started to pay attention to introduce access hints into storage systems

by enhancing caching and prefetching [9, 10, 31]. Linux uses readahead system call or

related mechanisms to help the OS to adapt the conventional hard drives, in general, to

do conservative sequential prefetching. Aggressive prefetching is an effective technique

for reducing the running time of disk-bound applications. Through speculatively pre-

execute the code in an application, the OS may exploit some hints for its future read

requests [31]. Even host-side cache is considered to improve write access to network

based storage [56]. To achieve full benefit of Non-volatile write cache, a request-oriented

admission policy associated with critical processes in the OS to represent upper level

applications is proposed to cache writes awaited when the request is the process of

execution [57]. As mentioned in the beginning of this chapter, Sonam Mandal [9] studied

block-layer data deduplication by using hints. OneStore tries to integrate local and cloud

storage with application level access hints [58].

In addition, most existing access hint research usually focuses on static access hints.

They mainly study using hints extracted from the existing components, like file system

[10] or database [59], to assist OS prefetching and caching (external caching disks). Some

35

researchers have studied static SCSI-level hints for SSD caching in [10]. In [59], they

exploited how the database level can modify the existing system to perform the hints

commands. While data accesses change from time to time, the underlying system should

move data across different devices adaptively. If system designers and applications can

input dynamic information to the storage systems, this will help data blocks stay at the

appropriate layer combining the tradeoff between cost and performance.

Du et.al. implemented T10 based object-based storage [60] which tries to combine

both block and file interfaces. Recently, there are standardization efforts in T10 [30, 61]

and T13 [41] by using a portion of SCSI command descriptor block (CDB) to execute I/O

hints. Such new block I/O commands involve numerous efforts of I/O stack modification.

Choi from Samsung suggested exposing a new interface in user space so that applications

can directly design and configure the stream ID for their writes [49]. To date, we

have not seen an open source framework which can provide such ability for users and

applications to employ access hints. The major contribution in this work is designing

and implementing a flexible framework to evaluate I/O access hints from various levels.

2.6 Conclusion

Putting hints on existing storage systems looks fancy but maybe painful for system

designers. This chapter presents a generic and flexible framework, called HintStor, to

quickly play with a set of access hints and evaluate their impact in heterogeneous storage

systems. The design of HintStor contains a new application/user level interface, a file

system plugin and a block storage data manager. With HintStor, storage systems com-

posed of various storage devices can perform pre-devised data placement, space reallo-

cation and data migration polices assisted by the added access hints. HintStor supports

hints either statically extracted from the existing components (e.g. internal file system

data structure) or defined and configured by the users (e.g. streaming classification).

In the experiments, we evaluate three types of access hints: file system data classifica-

tion, stream ID and cloud prefetch in a Linux platform. The results demonstrate that

HintStor is able to execute and evaluate various I/O access hints under different scenar-

ios at a low cost of reshaping the kernel and applications. Our HintStor is open-sourced

and available for download at: https://github.com/umn-cris/accessHints. In the

https://github.com/umn-cris/accessHints

36

future, we are planning to enrich the access hints library and as well as support more

platforms (e.g. containers) and protocols (e.g S3).

Chapter 3

Workload-Aware Data

Management across

Differentiated Storage Pools

Moving data tier by tier may not be efficient and even worse it may lead to unnecessary

data movements. In this chapter, we study the storage architecture with fully connected

(i.e., data can move from one device to any other device instead of moving tier by tier)

differential pools (each pool consists of storage devices of a particular type) to suit

diverse types of workloads. To explore the internal access patterns and thus efficiently

place data in such a fully connected topology, we propose a Chunk-level storage-aware

workload Analyzer framework, simplified as ChewAnalyzer.

3.1 Introduction

Internet applications and cloud computing generate a huge amount of data, driving

the emergence of large capacity high performance storage systems. To reduce the total

cost of ownership (TCO), enterprise storage is seeking a way to efficiently incorporate

different storage technologies/devices, each of which forms as a storage pool, into one

storage system. The architecture of combining flash-based Solid-Stated Drives (SSD)

[12] and Hard Disk Drives (HDD) has been extensively studied [13]. Today, there are

37

38

more emerging storage devices/ technologies like phase change-memory (PCM), spin-

torque transfer RAM (STT-RAM) and memristors [4] that not only offer non-volatile

memory but also promise high performance non-volatile storage [6]] (termed Storage

Class Memory (SCM)). The performance of SCM is close to memory. However, the

price of SCM, even exceeds that of a many-core CPU [6]. In the foreseeable future,

the cost per bit of SCM is still much more expensive than the traditional storage like

flash-based or spinning disks. Different devices/technologies may have their own unique

performance characteristics. Such diverse storage technologies make enterprise storage

hierarchies more interesting and diverse. What used to be two-tiered (dynamic random

access memory (DRAM) and HDD) is quickly broadening into multiple tiers.

In the past, storage tiering has been viewed as a method of getting both performance

and affordability. The expected process of data placement is that fast tiers serve a

group of intensive workloads for better performance while slow tiers are persistently

storing the rest of data blocks to provide lower cost [15]. Data migration happens tier

by bier when data access frequency changes. However, moving data tier by tier may

not be efficient and even worse it may lead to unnecessary data movements. Thus,

with multiple storage pools, storage tiering needs not be either linear or side by side if

diverse storage technologies/devices are used. With proper initial data placement and

efficient data migration, storage systems may consist of multiple storage pools that are

fully connected with data to be stored at a tier to suit its current workload profile.

Please note that workload profile may change from time to time. Nevertheless, it is

challenging to decide how data to be placed in a storage pool and when to migrate

data from one storage pool to another. Each storage pool has its own unique price-

performance tradeoffs and idiosyncrasies with respect to workload characteristics they

support the best.

To control data movements, data are managed either at file-level or at block-level. In

file-level, data movements between storage tiers are usually made transparent to upper-

level applications through a Hierarchical Storage Management (HSM) software [62, 63].

In block-level, data blocks are divided into fixed-size or variable-size data chunks (or

called extent) [17]. Compared with file-level management, block-level management is

more transparent but challenging due to its limited access information. Current com-

mercial multi-tier storage systems from Dell-EMC [64, 65], IBM [66], HPE [67] and

39

NetApp [68] provide a block-level interface to customers. In this chapter we focus on

dealing with data blocks in chunk-level, which has been employed in the fields of Storage

Area Network (SAN), Virtual Machine (VM) storage management, etc.

Accurate chunk level workload characterization can help the system understand

what resources are adequate for the associated requests. The classical hot and cold data

classification methodology is employed in the tier-by-tier case [16]. Each data chunk is

characterized as certain pattern, typically, high or low IOPS in a period, and followed

by a greedy migration policy to be moved between different storage pools [17]. However,

employing different dimensions and granularities may generate entirely different access

patterns. We investigate a set of enterprise block I/O workloads using different chunk

sizes and different taxonomy rules. Typically, smaller chunk size incurs more metadata

management while larger chunk size reduces the flexibility of data management. Our

experimental analysis shows that chunk sizes play an essential role in a fast but small

capacity device. Different taxonomy rules may partition data into totally different

categories. Through our experiments in Chapter 3.2, it can be seen that they do impact

greatly in the accuracy of chunk-level workload profiling. Moreover, workload profiling is

highly related to the device technology. For example, it is valuable to pay more attention

to write requests when both SSDs and SCM are available. Although both offer better

random I/Os per second (IOPS) than HDDs, the not-in-place-update and lifetime issue

still drive researchers and developers to reduce and even eliminate random write I/Os

on flash based SSDs [18, 19]. Furthermore, applications like big data processing (e.g.

Hadoop) have their own characters (e.g. streaming or batch processing) [17]. As a

result, conventional storage workload analysis methods oriented to tier by tier cases are

not applicable on multiple differentiated storage pools.

In this chapter, to explore data access patterns in such a fully connected topology,

we propose a Chunk-level storage-aware workload Analyzer framework, simplified

as ChewAnalyzer. Our trace-based experimental observations and findings motivate

the design of ChewAnalyer, which leverages different storage techniques and workload

transformations to conduct cost-effective data placement. The chunk pattern is charac-

terized as the accesses in the associated data blocks in a chunk. ChewAnalyzer works

like a middleware to exploit and detect both coarse- and fine- grained I/O access pat-

terns. Then, it performs the cross-matching to place the associated data chunks into

40

the appropriate storage media. Moreover, the overall cost, capacity and performance

are considered in the design.

Specifically, in this chapter we make the following contributions:

• We employ a detailed experimental study of several enterprise block I/O traces and

show the shortcomings of the existing methods of profiling block level workloads,

and as well as argue the limitations of managing data tier by tier.

• To reduce system overhead but guarantee profiling accuracy, we propose the Chew-

Analyzer framework to conduct cost-effective data management across multiple

differentiated storage pools. We use a Hierarchical Classifier to gradually perfor-

m flexible access pattern classification for each data chunk according to different

taxonomy rules. In each classification step, the Chunk Placement Recommender

looks up the pools status and Pattern-to-Pool chunk placement library to check if

it can advise better chunk placement. Otherwise, the classification and detection

process shifts to the next hierarchy.

• ChewAnalyzer++ is enhanced to make ChewAnalyzer achieve more accurate pro-

filing through selecting a portion of data chunks to split them into small ones and

then characterize them to better utilize the resources.

• We build a prototype equipped with Storage Class Memory (SCM), Solid State

Drive (SSD) and Hard Disk Drive (HDD). We use trace-driven approach to evalu-

ate our design in a Linux platform. Our experimental results show ChewAnalyzer

outperforms the conventional dynamical tiering [17] with less latency and less

write times in the flash pool. ChewAnalyzer++ can further reduce latency. The

total data being migrated are also reduced.

3.2 I/O Workload Analysis and Motivations

In this subchapter, we investigate the access patterns of different enterprise block I/O

traces. Differing from the workload analysis for caching, we focus on data access charac-

teristics over longer durations. Page level cache replacement policies are usually making

quick and heuristic decisions based on the temporal changes to impel memory. The deci-

sions of data movements in large scale heterogeneous storage systems are more cautiously

41

Table 3.1: Storage I/O workload characterization dimensions.
I/O size

I/O Intensity

Read/Write ratio

Randomness/Sequentiality

Local-Access

Table 3.2: Chunk access pattern classification examples.
Taxonomy rule 1 Non-access Inactive Active

Taxonomy rule 2 Sequential Random

Taxonomy rule 3 Sequential Random Read Random Write

Taxonomy rule 4 Sequential write Fully random write Overwritten

and generally performing at predetermined intervals (by hour or by day) or on-demand.

For the on-demand data migration, as long as the new placement has been completed,

the status is expected to be persistent for a long period of time.

3.2.1 Preliminary of I/O workload analysis

To analyze the I/O traces, we divide the whole storage space into fixed-size or variable-

size chunks. Each chunk contains a set of consecutive data blocks. Then, we char-

acterize the collective I/O accesses to each chunk in a constant epoch (time window).

The major dimensions we used are summarized in Table 3.1. I/O intensity means the

average number of accesses in a time window. Read and write ratios are used to classify

read or write dominated patterns. We study I/O Randomness/Sequentiality through

different sequential detection policies [69]. High Local-Access ratio [70] describes the

scenario that most of the requests concentrate on certain data blocks in a chunk. For

example, overwritten pattern means high degree of local access of write requests. The

access patterns are defined from one or multiple dimensions. To quantify the internal

characteristics, we define four different classifications of chunk access patterns in Ta-

ble 3.2. Taxonomy rule 1 is based on the intensity. Taxonomy rule 2 is based on the

sequential and random degree. Taxonomy rule 3 combines two dimensions, random-

ness/sequentiality and read/write ratio. Taxonomy rule 4 differentiates various write

patterns, considering sequentiality and local-access simultaneously.

42

Table 3.3: Summarization of I/O traces.
Trace R/W (GB) R/W IO

Ratio
Access
to Top
5% IO

Access
to Top
20% IO

Access
to Top

5% Data

Access
to Top
20%
Data

proj 2 1015.95/168.68 7.07 0.21 0.48 0.14 0.45

prxy 0 3.04/53.80 0.03 0.65 0.94 0.54 0.89

hadoop13 189.31/422.31 4.17 13.31 43.27 31.27 56.67

backup15 161.98/194.9 1.55 59.79 96.39 59.63 97.67

3.2.2 I/O Traces

We characterize a set of block level IO traces collected from two kinds of enterprise

storage systems. The IO traces used in ChewAnalyzer include:

1. MSRC traces

The Microsoft Research Cambridge (MSRC) block-level IO traces are collected I/O

requests on 36 volumes in 13 servers in about one week [71].

2. NetApp traces

Two kinds of NetApp block-level IO traces are collected on NetApp E-Series disk

arrays [72]. One is from the Hadoop HDFS server running for about 8 hours. The other

comes from the backup server running for about one day.

3.2.3 Observations, Analysis and Motivations

Observation 1: Access patterns in chunk level may be highly predictable over long

durations.

Table 3.3 summarizes the I/O traces from the two storage systems. In most cases,

most of the accesses concentrate on a small portion of the data. The IOPS of them are

very high and we can use SCM or SSD to serve these chunks. Thus, we can improve

data movements by mainly paying more attention to the active chunks. We set a tuple

of thresholds to distinguish I/O intensities of taxonomy rule 1 in Table 3.1 (Non-access

means zero access, while inactive means less than 2 accesses in a time window and the

rest are active). Figure 3.1 shows the chunk access frequency cumulative distribution

function for different I/O workloads. It shows the inactive data chunks, in most cases,

43

Figure 3.1: Chunk access frequency cumulative distribution function.

taking more than 90% of the total I/Os, are rarely accessed (less than twice in a 30-

minute epoch). Therefore, we can place them on HDDs. More surprisingly, most of

the data chunks have never been accessed in most of the periods. These data chunks,

not only can be resided in HDDs, but also can be grouped together and managed with

bigger chunk size to reduce metadata management overhead. For those few accessed

chunks, we can group them together and maintain them in the slow speed but large

capacity pools.

Previous work of workload analysis shows the active data set remains for long periods

in most of the workloads [73]. This is similar to taxonomy rule 1 in Table 3.1. We

study the access patterns of different workloads based on taxonomy rule 3. Sequential

detection is implemented by identifying the distance of the Logical Block Address (LBA)

of two consecutive requests (512 KB used in [17]). The results of analytical chunk-level

characterization of these IO traces show that the access patterns of many chunks and

some of the adjacent chunks are somehow inerratic in a period of time, which can

potentially be utilized to optimize the data management in a heterogeneous storage

system.

On the one hand, repetitive patterns happen in many chunks. For traces like

hadoop13, backup15 and proj 2, the patterns are repetitive on a 10-minute, or 1-hour,

or 1-day duration, we can somehow predict the future access pattern and do the corre-

sponding data migration. The access patterns we analyze in this model tend to be stable

over long durations. For example, the random write access pattern always concentrates

on certain chunks and repeats from time to time. In prxy 0, we find 10% chunks are

almost staying in a random write pattern. If the storage system remains enough free

SCM space, thus it is the best that we can place them on SCM. On the other hand,

44

Window (Time interval=1-hour)

C
h

u
n

k
 ID

 (S
iz

e
=

1
G

B
)

S
p

a
tia

l c
o

rre
la

tio
n

Repetitive

Figure 3.2: The diagram of chunk access pattern in consecutive time windows for
backup15 trace.

the correlation between chunk accesses is similar as the spatial locality in cache study

but in much longer periods. This observation inspires us to define proper patterns and

match each of them to certain type of devices. Finally, we can use the pattern detection

results to trigger new data placement.

Observation 2: Chunk access pattern may not change linearly.

The previous study of tiered storage always employs a heat-based approach [16]

to guide the data movements between tiers. The most common metric is the access

frequency (i.e., the heat) of a chunk [17]. Then data are moved based on the chunk

temperature. Data access intensity is supposed to increase gradually. This makes the

data movements in a safe and conservative way. However, the access intensity in certain

chunks may not increase or decrease linearly due to bursty I/O. In some cases, the

access pattern is only moderately hot and stable for a while without appearance of

obvious intensive or cold patterns. Moreover, there are many cases that certain access

patterns occur all of a sudden but disappear also quickly. Current big data processing

applications have their own access characteristics. On a HDFS data server, IO requests

are usually read sequentially from disks and accessed randomly over and over as shown

in Figure 3.2. To analyze such cases, it is unsuitable to presume data access pattern

will follow a hot to warm to cold manner.

45

Limitations of tier by tier data management: Data flows tier by tier may not be

efficient when a storage system incorporates diverse storage pools. The overhead of

moving data from one tier to the next tier involves not only data migration cost, but

also the potential negative downstream/upstream data movement in the next tier. This

may waste the I/O bandwidth between tiers. The data chunks in the downstream flow

may lead to unnecessary data movement in a middle tier. If a chunk initially in the

slow tier is becoming hot, it may be selected to move to the fast tier. If the fast tier

is full, then one of the chunks in this tier may be affected. Applications or data which

should run on this tier may be forced to migrate to the slow tier. If lots of chunks in

one tier are selected to do migration, then the circumstance may be more exacerbating.

Moreover, this tier by tier movement may result in higher latency if performed in long

intervals.

Key insights: From our experiments, we observe that there are many access pattern-

s, such as sequential-write-only, write-once-random-read, moderate-intensive-random-

read, etc. These patterns if detected to be predictive are proper candidates for directly

mapping them to dedicated storage pools (one-to-one or one-to-several) without tier-by-

tier data movements.

Observation 3: Different dimensions and granularities affect profiling accuracy.

Using different dimensions in Table 3.1, we can get different workload profiling re-

sults. Following taxonomy rule 1 with different I/O intensities, the chunk accesses can

be partitioned into certain groups. In a HDD + SSD system, we can use IO intensity to

balance I/Os between these two pools [13]. According to Classification 2, we can parti-

tion data chunks into two groups, sequential and random patterns. When we study the

architecture with HDD, SSD and SCM, some more parameters are to be considered.

For SCM, overwritten (update) is not a critical issue. For SSD, random writes may

increase internal write amplification and impact flash lifetime. While, for HDD, serving

sequential write or write-once pattern improves system throughput and free the SCM

and SSD space for intensive I/O patterns. In addition, different chunk sizes may gener-

ate obvious different results. Table 3.4 summarizes the ratios of different write patterns

following taxonomy rule 4 for prxy 0 and hadoop13 traces. We use two different chunk

sizes, 20 MB and 100 MB.

46

Table 3.4: Summarization of different write access pattern ratios of pxy 0 and backup15.

Chunk size
prxy 0 backup15

Seq. W Fully
Rdm W

Overwritten Seq. W Fully
Rdm W

Overwritten

1GB 0.00 67.48% 13.34% 49.02% 10.36% 4.76%

128MB 0.00 49.66% 8.08% 52.30% 6.68% 4.03%

Key insights: Traditional approaches of I/O workload characterization for a two-

tiered architecture are not sufficient for multiple storage pools. Accurate IO workload

characterization is essential to fully utilize the capacity of each storage pool. The

profiling accuracy is relative to which storage pools the workloads are running on. Thus,

accurate storage-aware pattern exploration is useful to detect interior access patterns

and eventually help the storage manager to place data into the best appropriate storage

pools.

For some interesting chunks, we may need to further analyze and determine where

they should go. In addition, as workloads move between the storage pools, the workload

characteristics may be changed quickly. For examples, high frequently accessed small

IO blocks may be better directed to flash-based SSDs. Infrequently but bustily accessed

large IO blocks may be better kept on HDD or preloaded to high performance storage

pools. Hence, the workload profiling should be aware of these changes and takes proper

dimensions and granularities in each step of profiling.

3.3 The Framework of ChewAnalyzer

In this subchapter, we describe the ChewAnalyzer framework to conduct cost-effective

data management across differentiated storage pools. To fully exploit the capability of

each storage pool, the core part is devising an effective method of storage-aware chunk

level workload profiling.

3.3.1 Overview

We consider the configuration with multiple storage pools, each of which is based on

a different storage technology such as SMR, tape, traditional HDD, SLC-based SSD,

47

MLC-based SSD, SCM, etc. To overcome the shortcomings of tier by tier data manage-

ment, they are fully connected so that data can move in between any two storage pools.

Suppose we have n storage pools. Figure 3.3 describes the overview of ChewAnalyzer.

The I/O Monitor keeps collecting the necessary I/O access statistical information in

real time. It not only monitors the incoming I/O requests but also tracks the perfor-

mance results of request executions on the storage devices such as the latency of each

request and the queue length of each storage pool. Then, ChewAnalyzer analyzes the

I/O access information through mainly two components, a Hierarchical Classifier (HC)

and a Chunk Placement Recommender (CPR).

The Hierarchical Classifier [74, 75] is used to perform flexible access pattern classifi-

cation for each chunk according to a set of taxonomy rules. ChewAnalyzer uses HC to

find the proper chunks to place on the fastest pool (e.g. SCM) and then select chunks

to place on the second-fastest pool until all the data chunks have been placed. A whole

HC process is triggered during selecting data chunks on multiple storage pools (target

pools). The HC groups data chunks into a set of categories on the basis of one taxonomy

rule at each level. A taxonomy rule is defined by a certain dimension.

We build a benchmark tool to calculate the relative weight value in one dimension

on various types of devices. Then we use a threshold to partition the chunks based

on their weight value. After one classification level is finished, CPR will look up the

status of the target pools and advises data placement policies based on the Pattern-to-

Pool chunk placement library. If the available storage space and available performance

capability in the targeted pools are sufficient for CPR to generate final data placement

policies, chunk pattern classification and detection in HC will be stopped at this level.

Otherwise, the next hierarchical classification in HC is triggered. After the HC ends,

each chunk will be selected to place on a certain targeted pool. Finally, the placement

policies are delivered to the Storage Manager that will make the final decisions of data

movements. In the next we will describe these in details.

3.3.2 ChewAnalyzer

To classify a large set of chunks into different access patterns, ChewAnalyzer uses Hier-

archical Classifier (HC) [74, 75] instead of flat classifier to group chunks level by level.

To explain the HC methodology, we first introduce several notations shown in Table

48

I/O Monitor

Hierarchical Classifier
(I/O Pattern Taxonomy Rules)

Chunk Placement Recommender
(Pattern-to-Pool Chunk Placement Library)

Storage Manager
(Chunk Placement Decisions)

Pool 1

Pool 2

Pool n

I
/
O

F
e
e
d
b
a
c
k

Incoming I/O Requests

P
o
o
l

S
t
a
t
u
s

ChewAnalyzer

Pool 3

Figure 3.3: Overview of ChewAnalyer.

3.5.

We use the set, D, to represent all the used workload characterization dimensions

in ChewAnalyzer, denoted as:

D = {dimensioni}, 1 ≤ i ≤ d (3.1)

D includes the normal dimensions (e.g. intensity) in Table 3.1 for chunk level I/O

access characterization. Then, at each level we define a taxonomy rule to partition the

chunks into different groups on the basis of their access patterns. The dimension used

in each taxonomy rule determines the results of partitions. The idiosyncrasies of each

storage pool are respected on defining the taxonomy rules. To define a taxonomy rule,

we introduce a metric, the relative weight in this paper.

Weight measurement: In [76], Michael Mesnier et.al. propose the relative fitness

method of given a workload running on two different devices. To quantify the access

differences among diverse storage devices, we develop a benchmark tool with preconfig-

ured access patterns and run it on different devices to measure the performance. For

49

Table 3.5: Notations in ChewAnalzyer.
Notation Definition

chunk(i) The i− th chunk

n The total number of pools

x The total number of chunks

Size(i) The size of chunk i

d The total number of dimensions for chunk characteri-
zation

n The total number of storage pools

Size(i) The size of chunk i

FreeSpace(i) The total free space on the i− th pool

Performance(i) The current required performance value on the i− th
pool [17] (IOPS + throughput)

Peak(i) The peak performance of the i− th pool

dimension i The i− th dimension for workload profiling

h The depth of HC

PoolStatus(i) The status of the i− th pool

each dimension, we calculate the relative weight for each type of devices. This pro-

cess is called pattern-to-pool assertion, by treating each storage device as a black box.

Then we compare the performance results to get the performance differences or namely

weights. For example, if we have two storage pools, SSD and SCM read/write accesses

perform differently on SSD. We run our benchmark tool to find the average read and

write performance for SSD and SCM. Then we get the weights of a write request and a

read request on SSD and SCM, respectively. Other factors, such as device lifetime, are

also considered. For example, flash-based SSDs are more sensitive and fragile for write

patterns. We amplify the weight value by w0. For example, the weight of write to read

on SSD can be calculated as:

Weight ssd(write)′ = Weight ssd(write) ∗ w0 (3.2)

The weight is calculated in a composited way. For example, we can get the weight of

dimension read/write. If HC goes to the next level using dimension random/sequential,

we use the weight combining both dimensions. When all the relative weight values are

measured, we can calculate the total weight of the chunk in each level.

For example, in Level 1, for each chunk(i), if we use dimension(j) to characterize

50

the access pattern, the total weight value of this chunk can be calculated as:

Weight(i)(1) = The tota lweights based on dimension(j)

of all the accesses on chunk(i)
(3.3)

In Level k, for each chunk(i), if we use dimension(m) to characterize the access

pattern, we need to combine the previous k − 1 levels to calculate the relative weight

value. Thus, the total weight value of this chunk can be calculated as:

Weight(i)(k) = The total weights based on all dimensions used

fromLevel 1 to Level k of all the accesses on chunk(i)
(3.4)

In the next, we will present pool status.

Pool Status: Chunk placement decisions are highly related to the pool status. If

and only if the required resources of all the chunks have met in a pool, the placement

decisions are valid. The performance ability of the pool is considered to achieve accept-

able Quality of Service (QoS) for the requests. We employ the approximate performance

metric [17], considering both IOPS and throughput. We define the current pool sta-

tus as a AND operation of both free space and the available performance of this pool,

denoted as:

Poolstatus(i) = FreeSpace(i)&&(Peak(i)− Performance(i)), 1 ≤ i ≤ n (3.5)

This includes the remaining free space of each pool as FreeSpace(i) and the total

available performance ability of each pool. If both are positive numbers, the placement

policies are valid.

After we finish the computation of the weight value at a certain level, a set of

thresholds based on the storage space of each pool are used to partition the chunks.

These thresholds are usually set based on the Pattern-to-Pool chunk placement library.

Pattern-to-Pool Chunk Placement Library: We build a Pattern-to-Pool chunk

placement library to guide ChewAnalyzer to make data placement decisions. This li-

brary takes into consideration of the idiosyncrasies of each storage pool. For example,

an SSD pool may be suitable for random read accesses, but also proper for sequential

read I/Os. For SLC-based flash pool, random write I/Os are still good candidates.

There may be priorities for CPR to determine which one should be selected first. To

51

set each weight value, we can also consider the penalty of putting the chunks with such

pattern into the pool, like the lifetime impact, power consumption and so on.

Figure 3.4 depicts the chunk pattern classification flow. When the chunk-level I/O

access information arrives, ChewAnalzyer will choose one dimension to divide the chunks

into several pattern groups. For example, if HC uses the I/O intensity dimension, it

will partition the data chunks into n groups at most (as we have n pools) based on the

number of I/O accesses. It may contain less then n groups as long as the storage pools

can keep all the chunks. If the results are not sufficient for storage manager to make

a data placement decision, another dimension will be added to partition the chunks in

the next level. In Figure 3.4, if HC goes to the final (h − th) level, ChewAnalzyer will

select the chunks to different pools in the final level.

Chunk-level I/O

Statistics

Group(11)

Group(21)

Classification 1
Pool Status

Fine-grained

Group(12)
?

Classification 2
Pool Status

Classification h
Pool Status

Group(1k1)

Group(2k2)Group(22)

Group(h1) Group(hkh)Group(h2)

?

Figure 3.4: Chunk pattern classification diagram of Hierarchical Classifier.

The ordering of taxonomy rules to build the HC plays an important role on

classification efficiency. ChewAnalzyer would like to fill with chunks on the fastest pool

to fully make use of the resources. Thus, an ideal dimension list in HC first chooses one

dimension to sieve the chunks which can be served the best on the fastest pool than

52

on the rest pools. If the sieved chunks cannot be kept on the fastest pool, HC will go

to next level using another dimension. For example, for SCM pool, it is appealing to

keep as many as data chunks which are going to be accessed, so we use I/O intensity

to select the most active data chunks into SCM. Chunks with random write pattern

are more proper to be placed on SCM than the ones which are random reads if both

intensities are almost the same. In the next section, we will show a concrete example

on how ChewAnalzyer implements HC.

ChewAnalyzer employs hierarchical taxonomy rules to classify and characterize

chunks. The major advantage of using HC is to divide the chunks into different cate-

gories progressively. When HC has reached at the highest level, there may exist chunks

that have not satisfied all the top placement policies from the Pattern-to-Pool library.

Then, the placement decisions start from the fastest pool to the slowest pool to select

a chunk based on the weight on that pool in the remaining list until that pool is full.

Finally, each chunk will be placed on a certain pool. In most cases, without sufficient

fast storage space, the rest ones will be placed on the large size storage pools. To make

the ChewAnalyzer more flexible, the system designers may indicate more than one pool

as the top priority placement decisions for certain patterns.

Chunk Placement: The placement decision of chunk(i) in the j − th pool is

denoted as:

Placement(i) = j, 1 ≤ i ≤ x, 1 ≤ j ≤ n (3.6)

where x is the total number of chunks and n is the total number of pools.

The goal of HC aims to exploit internal characteristics to assist the system identifying

how well a chunk stays on each pool. As mentioned above, the detected patterns

repeated in long durations can help the system to make decisions for data placement.

The Chunk Placement Recommender (CPR) can perform cross-matching to place the

chunk into the best appropriate pool. The cross-matching or namely storage-aware

mapping depends on the properties of the pools.

3.3.3 Storage Manager

The placement policies are advised by CPR and then delivered to the Storage Manager.

There may be urgent requests from the applications, while data movements may cause

53

the pool performance degradation for a while. In some worst cases, the migration

requests may occupy the whole I/O communication and storage pools are not capable

of completing the application requests. To respect the incoming I/O requests and the

pool utilization, Storage Manager makes the final placement decisions. It periodically

looks up the current status of all the storage pools. It also asks for the information of

workload statistics from the I/O Monitor.

The way of scheduling migration depends on the current workload burden. To avoid

I/O traffic of the foreground requests, the migration requests are first appended into a

separate background process. Data migration process is wakened up when the target

pool and the source pool both are available to allow performing data migration requests.

A deadline is given to each migration request. If the deadline is expired before the next

idle period, the new data migration policies will be re-considered. Moreover, we can use

proactive migration [77] to first migrate a portion of the data for a big chunk. Then,

I/O monitor can check the latency of the I/O requests in this chunk to confirm that

the expected performance has been reached. Then, the reactive process is triggered to

complete the rest migration.

3.3.4 Enhancements: ChewAnalyzer++

To make ChewAnalyzer more applicable and achieve more accurate profiling, we enhance

ChewAnalyzer by dynamically changing the group granularity. If the chunk size becomes

smaller, more interior information may be exploited. We call this enhanced process as

ChewAnalyzer++. However, this may lead to too many smaller chunks in the system.

To make this process more efficient and reduce the total complexity of chunk metadata

management, we can select a subset of the chunks to do further characterization. The

selected chunks are usually the candidates which are competitive for fast speed pool

resources. For example, SCM is much expensive than SSD and HDD and we have to

cautiously move new data into SCM, so it is valuable to use small chunk sizes in this

type of storage pools. The splitting process could be recursive if the chunk placement

recommender still has difficulty to make placement decisions. After the completion of

partition, ChewAnalyzer++ can still follow the same procedure in HC and use CPR to

advise new placement policies for the smaller chunks. We may define some fine-grained

taxonomy rules to enhance the basic HC. Such fine-grained rules always employ more

54

than one dimension to represent the access patterns.

Although ChewAnalyzer++ can enhance the profiling accuracy by partitioning a

big size into smaller chunks, it leads to more complicated data management. To avoid

the size of most of the chunks becoming too small, we can merge the smaller size chunks

into larger size chunks if they do not change their access patterns in a long period.

3.4 Case Study with A 3-Pool Architecture

In this subchapter, we will show the design and implementation of a 3-pool architecture

as an example of employing ChewAnalyzer. We build a storage system composed of

SCM, SSD and HDD pools. To make them fully connected, we first enable chunk level

data movement between any of the two pools. The approximate performance numbers

of the three pools are taken from Table 1. Their major features are summarized below:

• HDD pool: Concerning capacity, HDD provides large size storage pool with cheap

price. A single HDD only supports 200∼500 IOPS for random requests, but

sequential r/w throughput reaches 150MB/s.

• SSD pool: In SSD pool, the random performance is much better than that of

HDD pool. IOPS for a single SSD arrives at ∼10k or more. However, random

write requests bring extra garbage collection operations which not only decrease

the performance but also influence the lifespan of flash memory. Thus, SSD pool

prefers to serve random read pattern compared to random write requests.

• SCM pool: SCM pool provides the performance close to that of memory, but the

price is the highest. SCM has good performance for requests with small size (less

than 512 B) since it is byte addressable. We mount tmpfs on a fixed 4 GB DDR3

memory to build a ramdisk, which can achieve more than 1 million IOPS.

To calculate the peak performance Peak(i) of each pool, we use the combined IOPS

and throughput model [17]. From the above analysis, the performance of HDD pool is

mainly decided by throughput, while both SSD and SCM are much faster to support 10k

∼ 1million random IOPS. When sequential I/Os happen on the chunk which is placed on

HDD, the remaining performance capacity is calculated based on the throughput. In the

55

contrary, if most of the I/Os are random on HDD, we use the IOPS metric to calculate

the performance need. To identify the chunks which have the best suitability to stay

in SCM pool, ChewAnalyzer deliberates the features of each pool and the workload

pattern. In each level, ChewAnalyzer will use the pattern-to-pool mapping rules to

make data placement decisions. In the meantime, we considers the total capacity and

performance of the three pools.

To calculate the weight of various access patterns using a set of dimensions, we need

to first design the HC. In the following, we will present the process of using HC to select

chunks on the three pools.

To fully utilize system resources, ChewAnalzyer tries to use SCM to serve the in-

coming I/O requests as many as possible. This includes warming up SCM pool quickly

by directly placing the chunks on SCM. Then if SCM is full, use SSD to place the proper

chunks. To partition the chunks, we build a HC in Figure 3.5 using four taxonomy rules.

Chunk-level I/O

Statistics

Top I/Os

Intensive

write

I/O intensity
Pool Status

.

2
nd

high I/Os

?

R/W
Pool Status

Low I/Os

Low I/Os
Intensive

read

Overwritten

Fully

random

write

Intensive

random

write

Low I/Os

Intensive

random

read

?

Seq/Random
Pool Status

?
Rewrite ratio
Pool Status

Moderate

read/write

Sequential

access

Intensive

random

read

Sequential

access
Low I/Os

Very

intensive

Very

intensive

Very

intensive

Moderate

read/write

Moderate

read/write

Figure 3.5: Diagram of using HC to classify data into different access pattern groups.
(The weight of each chunk associated with each pattern is calculated in each level, so
they can be ordered by their weight numbers)

As SCM has the best performance for both read/write I/Os in these three pools. We

use I/O intensity as the first dimension to sieve the chunks which needs high performance

pool. The requests are split into the same size of requests in our benchmark tool

56

(e.g. 512B). By descending the average I/Os per second (IOPS) on a chunk, we can

group the chunks into these three groups, Top I/Os, 2ndhigh I/Os and Low I/Os. For

example, we use the three IOPS ranges [300, +oo), [10, 300), [0, 10), to define Top I/Os,

2ndhigh I/Os and Low I/Os, respectively. If all the three pools can meet the Equation

3.5, the intensive data chunks are expected to be allocated on SCM, the second intensive

data chunks are placed on SSD. The HDD pool is serving the chunks with few I/Os.

If data placement decision cannot meet the free space constraint, HC goes to the next

Level.

As SSD has better read performance than write performance. In addition, too many

writes may cause SSD worn-out. We use the write/read dimension in Level 2 to further

analyze the access pattern. The weight of each read operation is set to 1 unit. We

amplify the weight of each write request by bringing a relative factor Weight(w). If

Weight(w) is set to 2.0, the weight of each write operation is 2.0 unit. Then we can

calculate all the weights of each chunk. Here, we do not calculate the Low I/Os chunks

for these chunks will be placed on HDD pool. We first select the chunks with fair

large weights (weight in range [500, +oo)) to group into V ery Intensive pattern (e.g

placing them on SCM). Then, we select the chunks with less weight value (e.g weight

in range [300, 500), and partition them into two different patterns. If more than 50%

of the accesses are write requests, they will be grouped into Intensivewrite pattern.

Otherwise, they will be grouped into Intensive read pattern. The rest ones will be

grouped into Moderate read/write pattern (weight in range [10, 300)). We can place

the V ery intensive ones into SCM. The Moderate read/write and Intensive read ones

go to SSD. The Intensivewrite ones will be suggested to stay on SCM. Then, we check

the pool status to see if they can meet all the requirements. For example, if we have a

very small SCM, only a part of the chunks in the V ery intensive group will be place on

SCM. The rest ones will be place on SSD.

In Level 3, we use the randomness dimension to select the random access patterns

from the Intensivewrite and Intensive read ones. The weight factor weight(random)

is used to amplify random access requests and filter out the Sequential access chunks to

HDD pool. Then we will check if SCM has enough space for the Intensive randomwrite

ones. The Intensive randomread ones are placed on SSD.

57

In Level 4, ChewAnalzyer uses the rewrite ratio dimension to carefully allocates write

requests on SCM and SSD. Overwritten pattern may produce more GC operations in

SSD. Although, there may be asymmetric read and write problem for SCM, compared

with SSD, SCM serves write requests much better. For the Overwritten pattern, a

weight w(overwrite) is used to amply their impact. If SCM does not have enough free

space for the fully random write ones, they will be placed on SSD.

In previous tier by tier storage system or multi-level cache hierarchies, write-back

strategy is always used to simplify this issue [17]. However, write back cannot solve the

problem when write I/Os dominate in such a system. Write-back policies may incur

synchronization overhead and consistency issue. To achieve peak performance, write

requests may form a long queue and eventually increase the system latency. Moreover,

write and read becomes more complex in a large scale storage environment when more

and more applications are running. In some cases, data are written once but have few

been accessed later, such as archival or back up applications. Some internet applications,

updating may be very frequent, such as transaction processing, online-editing, etc.

We measure the weights of all these four dimensions using our benchmark tools. The

benchmark tool incorporates all the typical I/O access patterns. We define the typical

I/O access pattern in the benchmark program. The HC used in our design is based on

a heuristic rule. Based on the HC design, we use the combined dimensions to get the

relative weights.

Discussion of HC ordering: We can use different orderings to calculate the

weights and do data placement. Each time the dimension used in the program makes

a solution that is the best we can have. Though different HCs may generate different

results, if HC stops in the mid-level, the results are valid data placement polices for this

configuration. We still get the right data placemen. In the above description (Figure

3.5), we ignore the calculation of a portion of chunks. For example, ChewAnalzyer does

not compute the write weight for the Low I/Os pattern in Level 2. Theoretically, we

can calculate all the weight values of all the available dimensions. In the above design,

we can still compute the Low I/Os chunks from Level 2 to Level 4. If HC stops at the

last level, we will get the same results for different HCs.

We use the following pseudocode to describe the implementation of ChewAnalyzer

and ChewAnalyzer ++.

58

Algorithm 1 ChewAnalyzer

Input: chunk(i), 1 ≤ i ≤ x
Output: {Placement(i), 1 ≤ i ≤ x}
1: k ← 0
2: while k <= h do //h is the maximum level in HC
3: for Each chunk(i) in the current HC do
4: Add chunk(i) to a pattern group ← Pattern detection algorithm
5: end for
6: for Each chunk(i) do //placement policy based on the top priority decision
7: j ← the first priority pool based on the Pattern-to-Pool Chunk Placement

Library
8: if Equation 3.5 is TRUE then
9: Placement(i)← j //Place chunk(i) on pool(j)

10: else
11: k ← k + 1
12: goto nextLevel
13: end if
14: end for
15: if k ≤ h then
16: goto RETRUN
17: end if
18: nextLevel:
19: end while
20: do greedy sorting all the rest of the chunks which have not been placed based on

their weights
21: RETURN:
22: return {Placement(i), iε{1, n}}

In Algorithm ChewAnalyzer, the input data is a set of chunks in a time based sliding

window, which keeps moving after an epoch (e.g. 10-minute) in the run-time. At the

end, ChewAnalyzer outputs the placement decisions of all the chunks. The core of HC

is implemented from Step 1 to Step 19. Based on the I/O pattern taxonomy rule in

each level, the chunk detection model is used to decide the chunk pattern value (step

4). If chunk(i) is not affected, it will remain in the previous pattern group. In Step 7,

the placement decision is based on the pattern-to-pool library. If Equation 3.5 returns

TRUE (Step 8), then chunk(i) is placed in pool j (Step 9). If all the chunks with the

pattern in a certain level in HC can be placed based on the pattern-to-pool library, HC

will be ended up (Step 16) and directly goes to Step 21. After performing the chunk

59

Algorithm 2 ChewAnalyzer++

Input: A set of chunks with initial pattern value of chunk(i) from Algorithm 3.4 (Chew-
Analyzer) iε {1, x}

Output: {Placement(i), iε{1, y}} //chunk placement policies (y >= x)
1: SubChunkSet← ∅
2: for Each chunk(i) in the current chunk set do
3: if pool(j) is SSD or SCM then
4: for every chunk(i) in pool(j) do
5: if chunksize(i) > Ch0 then
6: Partition chunk(i) into p sub chunks evenly //p-partition
7: SubChunkSet ← add new sub chunks //remove the original
chunk(i)

8: Update Poolstatus(j)
9: end if

10: end for
11: end if
12: end for
13: Call: Algorithm3.4(SubChunkSet)
14: return {Placement(i), iε{1, y}}

pattern classification in HC and pattern-to-pool mapping, each chunk will be given a

certain access pattern, which may be composited with different dimensions. If a portion

of chunks cannot be placed based on the first priority at the end of HC, in Step 20, a

greedy sorting algorithm is used to select the chunks with the most matched patterns

to reside in each pool. If there is not enough space in the fastest pool, the following

chunks will be placed on the less high performance pool. Eventually, all the chunks will

be placed in a certain pool. The placement decisions are returned in Step 22 at the

beginning of each sliding window.

In Algorithm ChewAnalyzer++, it first selects the chunks whose size is larger than

Ch0 in SCM and SSD and add them into the SubChunkSet (Steps 1-5). Then, these

chunks are partitioned into p sub chunks (Step 6). Here, we can change the partition

parameter p to divide big size chunks to different numbers of sub chunks each time.

This can be improved by treating SSD and SCM pool using different granularities in

ChewAnalyzer++. We can also do recursive partition to reach the optimal solution.

When the partition process is finished, the original chunk is replaced with p new sub

chunks in SubChunkSet (step 7). In addition, the freespace and performance of each

60

pool are updated (step 8). In step 13, ChewAnalyzer++ will call ChewAnalyzer by

inputting all the chunks in the SubChunkSet. In step 14, the new data placement

polices based on the selected sub chunks are returned.

3.5 Evaluation

We evaluate ChewAnalyzer by means of replaying real enterprise block I/O traces on

a Linux platform as shown in Figure 3.6. We build a three-pool prototype based on

Linux device mapper (DM) [37]. The Linux kernel version is 3.13.0. The heterogeneous

storage controller works as a standard Linux block driver in DM which manages the

block devices in a linear manner. Our trace replay engine is implemented via libaio[78]

in user level in Linux. We enhance the heterogeneous storage controller to perform

chunk level data migration using the ”kcopyd” mechanism in DM [38]. Chunk migration

manager communicates with ChewAnalyzer though sysfs [46]. Data chunks are triggered

to be migrated from one pool to another. To maintain the mapping after migration, we

record the chunks using a mapping table in memory. Each tuple contains the logical

chunk ID and physical address chunk ID on a pool. The Dell Power Server used in our

experiment is configured with a Seagate 8 TB HDD drive, a Samsung 850 pro 512 GB

SSD, 48 GB DDR3 memory and an Intel Xeon E5-2407 2.20 Ghz CPU.

Sequential detection is non-trivial. In our evaluation, sequential I/O patterns have

been carefully classified and detected [69]. The baseline methods we use to compare

with ChewAnalyer and ChewAnalyzer ++ contain the following two existing policies:

• Greedy IOPS-only Dynamic Tiering (IOPS-only): IOPS-only is used widely as a

heuristic approach to group hot data. This policy measures the IOPS on each

chunk to migrate data chunks tier by tier.

• EDT [17]: EDT migrates fixed size data chunks tier by tier based on the combined

weight from throughput and IOPS on each chunk.

We run the four policies with four different data traces and compare the results in

the next. Table 3.2 summarizes the four traces, prxy 0, proj 2, hadoop13 and backup15.

The first two are from a data center in Microsoft Cambridge in 2008. The other two

traces are from the E-series array of NetApp [72] in 2015. One was running with a

61

ChewAnalyzer

Trace Replay
Engine

Block-level Hybrid Storage
Controller

User

Kernel

libaio

Chunk Migration
Manager

Data Placement
Policies

SCM Pool SSD Pool HDD Pool

I/O Traces

Figure 3.6: Trace-driven storage prototype for evaluating ChewAanlyzer.

Hadoop server and the other was running with a backup server. To carry out migration,

time is divided into fixed-size epochs (sliding windows; 45-minute for prxy 0, 1-hour for

proj 2, 20-minute for hadoop13 and backup15). In addition, the total number of requests

in window is set to less than 20k. Chunk size is set to 256 MB. The minimal size of a

chunk in ChewAnalzyer++ is set to 64 MB.

ChewAnalzyer only uses fewer dimensions to classify data chunks. This reduces

the metadata management cost for storage. In the following experiments, the storage

configurations as (SCM, SSD) for hadoop13, backup15, proj 2 and prxy 0 are (10 GB,

100 GB), (10 GB, 100 GB), (10 GB, 40 GB) and (2 GB, 10 GB) respectively.

Let us look at the performance results after employing the four different policies.

Figure 3.7 shows the normalized average I/O latency when we replay the four traces.

In these four cases, IOPS-only have longer latency than the other three policies. Both

ChewAnalyzer and ChewAnalyzer++ outperform EDT and IOPS-only by shorter I/O

latency. Compared with IOPS-only, ChewAnalzyer accelerates I/O access by 26%, 13%,

24% and 23% respectively for 4 different configurations. ChewAnalzyer++ further

reduces I/O waiting time by 4.5%, 5.4%, 8.4% and 16.7% respectively. The major

reason is that both IOPS-only and EDT do not perform fine-grained access pattern

62

Figure 3.7: Normalized average I/O latency for the four policies.

classification. With HC, ChewAnalyzer (++) exploits more access pattern dimensions

to assist data placement across different storage devices. ChewAnalzyer++ selectively

partitions chunks to profile their internal patterns so as to make better utilization of

SCM and SSD.

As the prototype emulates SCM by DRAM, which is regarded as the costliest part.

Decoupling small overwritten I/Os and placing them on SCM not only increases the

overall performance but also reduce the write load on SSD. ChewAnalyzer++ further

improve profiling accuracy by looking into a portion of chunks which may require high

performance storage resources. ChewAnalzyer (++) makes decisions at the beginning

of each sliding window. This helps the storage manager filter out the data which does

not need to run on high performance pool. Let us look the pattern ratio distribution

in ChewAnalyzer and ChewAnalzyer++. Figure 3.8,3.9,3.10,3.11 show the accumu-

lated overwritten pattern ratio change in each sliding window when replaying the four

traces,respectively. The x axis represents the t-th sliding window. For the backup trace,

accesses are mainly read or sequential write, so both have almost the them same ratios

of overwritten pattern chunks. In hadoop trace, both recognize a small portion of data

chunks as overwritten, ChewAnalzyer++ still exploits deeper than ChewAnalzyer. In

some cases, there is no overwritten pattern. Part of the reason is that HC returns before

Level 4. For proj 2 trace, overwritten ratio greater than 5% happens only in 3 sliding

windows. As random writes dominate in prxy 0, ChewAnalzyer++ reduces overwritten

ratio in each sliding window from 58% to 45%.

In all the four policies, data migration is triggered at the start of each sliding window.

Moving data from one pool to another pool leads to extra read and write cost for the

63

Figure 3.8: Overwritten pattern ratio at different time window (prxy 0).

Figure 3.9: Overwritten pattern ratio at different time window (hadoop13).

Figure 3.10: Overwritten pattern ratio at different time window (proj 2).

Figure 3.11: Overwritten pattern ratio at different time window (backup15).

64

Figure 3.12: Normalized total data migration size.

storage system. In addition, the migration overhead hurts overall performance if storage

devices are connected via external network (e.g. remote cloud). Figure 3.12 depicts the

normalized total amount of data being migrated. Both IOPS-only and EDT performs

data movement tier by tier which may incur extra migration load on the moving path.

With fine-grained access pattern classification, both ChewAnalzyer and ChewAnalzy-

er++ can directly move data chunks and thus alleviate the migration load. For the

backup trace, both IOPS-only and EDT have almost the same amount of migration

load. While, ChewAnalzyer and ChewAnalyzer++ have 45% and 55% less migration

load compared with IOPS-only respectively. ChewAnayzer and ChewAnalyzer++ re-

duce the total amount of data migrated by 46% and 64% compared with IOPS-only in

prxy 0 trace respectively.

Flash based SSD drives have asymmetric read and write speeds. Moreover, flash

has the wear-out problem which affects the lifetime of the drives. In the configuration

of the Chunk-to-Pattern data placement library, ChewAnalzyer prioritizes the write-

dominated chunks on SCM to reduce the write load on SSD. Finally, let us calculate the

write requests distribution on the three pools. Figure 3.13 shows the normalized write

request distribution on each pool for the prxy 0 trace. ChewAnalzyer (++) increases

the write load in SCM and reduces the total write times on SSD. ChewAnalyzer++

aggregates almost 85% of write I/Os on SCM and makes the least number of write

requests on SSD (∼ 10%). This significantly reduces the write load on SSD and improves

its lifetime.

In summary, our experiments show that both ChewAnalzyer and ChewAnalzyer++

65

Figure 3.13: The average latency on a hybrid SSD and HDD volume.

outperform the other two policies by shorter average I/O latency. In addition, they re-

duce the migration load and the random write load on SSD. ChewAnalzyer++ partitions

the data chunks on SCM or SSD to further assist efficient data placement decisions.

3.6 Related work

In the following, we summarize the related work and compare them with ChewAnalyzer.

3.6.1 Tiered Storage Management

Recent research has focused on improving storage cost and utilization efficiency in d-

ifferent storage tiers. Guerra et al.[17] build a dynamic tiering system that combines

SSDs with SAS and SATA disks to minimize cost and power consumption. IOPS and

throughput are considered to carefully control the overhead due to extent migration.

CAST [16] provides insights into the design of a tiered storage management framework

for cloud-based data analytical workloads. File level based HSM [62, 63] takes advan-

tage of the fact that data are not the same value during any given period of time for

applications. In HSM, data migration conditions are typically based on ages of files,

types of files, popularity of files and the availability of free space on storage device [62].

However, the mechanism used in prior approaches cannot be directly applied to the

fully connected differentiated storage pools that including SCM, SSD and HDD, mainly

becuase they generally ignore the special read and write properties between SSD and

SCM.

66

3.6.2 IO Workload Characterization

The theory of IO workload characterization provides a useful abstraction for describing

workloads more concisely, particularly with respect to how they will behave in hier-

archical storage systems. A large body of work from the storage community explores

methods for representing workloads concisely. Chen et al. [79, 80] exploit workload fea-

tures via machine learning techniques. Tarasov et al. extract and model large block I/O

workloads with feature matrices [81]. Delimitrou et al. model network traffic workloads

using Markov Chains [82]. Bonfire [83] accelerates the cache warm up by using more ef-

ficient preload methods. Windows SuperFetch [84] preloads the frequently used system

and application information and libraries into memory based on the usage pattern in

history to reduce the system boot and application launching time. Cast [16], a storage

tiering framework performs cloud storage allocation and data placement for analytical

workloads to achieve high performance in a cost-effective manner. While these related

work focuses mostly on identifying the data that should be brought into the fast tier for

higher efficiency only based on IOPS and intensity of workloads, ChewAnalyzer concen-

trates on seeking a chunk level data management to efficiently incorporate differentiated

storage pools, including SCM, flash-based SSD, and HDD, which can make enterprise

storage hierarchies more efficient with diverse storage pools.

3.6.3 SSD and SCM Deployment in Storage Systems

NAND flash memory based solid state drives (SSD) see an increasing deployment in

storage systems over the last decade, due to its advantages, such as light weight, high

performance and low power consumption. However, the limited P/E cycles may accel-

erate wear-out of flash chips in SSDs, which is always a potential reliability issue in

SSD based storage systems [18, 19]. The relative high cost of write operations is still

the performance bottleneck of flash memory. Hybrid HDD and SSD storage sytems

have been extensively studied [85]. GREM presents dynamic SSD resource allocation

in a virtural machine envrioments [86]. Today’s PCI-e based SCMs represent an as-

tounding 3X performance increase compared with traditional spinning disks (∼100K

IOPS versus ∼100) [6]. To maximize the value derived from high-cost SCMs, storage

67

systems must consistently be able to saturate these devices. Despite the attractive per-

formance of these devices, it is very challenging to effectively slot them into existing

systems. Hardware and software need to be designed together with an aim of max-

imizing efficiency. In ChewAnalyzer, we better utilize the unique price-performance

tradeoffs and idiosyncrasies of SCM, SSD, and HDD in a fully connected differentiated

storage system. ChewAnalyzer also allocates/migrates data with respect to workload

characteristics each storage device prefer to support.

3.7 Conclusion

In this chapter, we study the architecture with differentiated storage pools fully con-

nected to suit diverse workload profiles. To explore the internal access patterns and thus

efficiently place data in such a complete topology, we propose a Chunk-level storage-

aware workload analyzer framework, simplified as ChewAnalyzer. Access pattern is

characterized as the collective accesses in a chunk composed of a set of consecutive data

blocks. The taxonomy rules are defined in a flexible manner to assist detecting the

chunk patterns. In particular, ChewAnalyzer employs Hierarchical Classifier to exploit

the chunk patterns step by step. In each classification step, the chunk placement recom-

mender advises new data placement policies according to the device properties. Both

pool status and device properties are considered on making placement decisions. Chew-

Analyzer++ is designed to enhance the workload profiling accuracy by partitioning

selective chunks and zooming in their interior characteristics. According to the analy-

sis of access pattern changes, the storage manager can adequately distribute the data

chunks across different storage pools. ChewAnalyzer improves initial data placement

and if needed migrates data into the proper pools directly and efficiently. We build our

prototype equipped with Storage Class Memory (SCM), Solid State Drive (SSD) and

Hard Disk Drive (HDD) in a Linux platform. Through trace driven approach, our ex-

perimental results show ChewAnalyzer outperforms the conventional dynamical tiering

by less latency and less write times on the flash pool. The total amount of data being

migrated is also reduced. In this study, we did not consider the connection costs and

the available bandwidths between different storage pools. These considerations will be

included in our future studies.

Chapter 4

Flexible and Efficient

Acceleration for Network

Redundancy Elimination

To reduce the duplicate content transferred between local storage devices and devices in

remote data centers, Network Redundancy Elimination (NRE) aims to improve network

performance by identifying and removing repeated transmission of duplicate content

from remote servers. Using a Content-Defined Chunking (CDC) policy, an inline NRE

process can obtain a higher Redundancy Elimination (RE) ratio but may suffer from a

considerably higher computational requirement than fixed-size chunking. Additionally,

the existing work on NRE is either based on IP packet level redundancy elimination or

rigidly adopting a CDC policy with a static empirically-decided expected chunk size.

These approaches make it difficult for conventional NRE MiddleBoxes (MB) to achieve

both high network throughput to match the increasing line speeds and a high RE ratio

at the same time. In this chapter, we present a design and implementation of an

inline NRE appliance which incorporates an improved FPGA-based scheme to speed up

CDC processing to match the ever increasing network line speeds while simultaneously

obtaining a high RE ratio.

68

69

4.1 Introduction

More and more emerging Internet applications are driving a boom of Wide Area Network

(WAN) bandwidth requirement. Wide Area Network (WAN) Optimization Accelerators

(WOAs) have been widely developed in the form of MiddleBoxes (MBs) by multiple

vendors to optimize network transmission efficiency between data centers and clients

[87, 88]. A considerable amount of network traffic is usually repeatedly transferred

across networks when different users on the Internet access the same or similar content

[20, 21]. To reduce the overall network bandwidth requirements, Network Redundancy

Elimination (NRE) plays a primary role in a WOA by identifying and removing repet-

itive strings of bytes across WAN connections. Glancing ahead to Figure 4.11 will help

the reader visualize how NRE MBs fit into a WAN. Generally, a higher Redundancy

Elimination (RE) ratio can save more bandwidth [23].

For an inline NRE process, the content of network flows is first segmented into a set

of data chunks. Then these data chunks will be identified to be redundant (i.e., has been

recently transmitted and buffered) or not. Chunking policies based on either fixed or

variable sizes determine the RE ratio [20]. Compared with a fixed-size chunking policy,

a variable-size chunking policy can more efficiently identify repetitive chunks. Content

Defined Chunking (CDC) [24], a variable chunking policy, has been widely used by many

NRE solutions [21, 25, 26]. However, some components of CDC consume significant CPU

time (e.g., the Rabin hash process). This overhead will affect the server performance and

eventually decrease the overall NRE throughput. For instance, considering a standard

software-based NRE MB (Intel E5645 CPU, 2.4 GHz, 6 cores, exclusive mode), the

CDC chunking throughput is about 267 Mbps for each core and totals around 1.6 Gbps

[27]. Now consider two typical examples of NRE-based WOA products: the Cisco WAE-

7371 [89] and the Infineta DMS [90]. While both these accelerators are faster than the

software-based MBs, the WAE-7371’s throughput is about 2.5 Gbps and lags far behind

that of the DMS, which is about 10 Gbps. This is because the DMS adopts a fixed-size

chunking policy to guarantee high throughput at the expense of lowering the RE ratio

while the WAE-7371 uses CDC for a higher RE ratio. For a CDC scheme, there is

also a tradeoff between RE ratio and the expected data chunk size. The smaller the

expected chunk size, the higher the RE ratio. However, the smaller expected chunk size

70

will require higher computational cost.

Some effort has been made to balance the tradeoff between throughput and RE

ratio in NRE [20, 91], but improvement is still limited when attempting to achieve

both using software alone. Separately, one trend in networking research is the use

of field-programmable gate arrays (FPGAs) to improve the performance of specified

network functions [92–94]. However, combining these ideas to make an FPGA-based

NRE appliance still needed to be explored. In addition, previous work on NRE design

usually employs an immutable CDC policy with an empirically-decided expected chunk

size [21, 23, 25, 95]. For some TCP flows, however, the CPU-bound CDC scheme is not

necessary when the fixed-size chunking policy performs only a little worse than CDC in

RE ratio but provides much better network throughput. One of our goals is to design an

NRE that can dynamically decide between CDC or fixed-size chunking policies, and also

accelerate CDC when in use, therefore improving RE ratio and throughput for varying

workloads.

This chapter presents a specially-designed NRE appliance with an FPGA substrate.

We design a Virtualized Network Redundancy Elimination (VNRE) controller to effi-

ciently and flexibly utilize the hardware resources. During the computation process,

VNRE uses an improved FPGA-based scheme to accelerate the CDC process. The Ra-

bin fingerprint (FP) computation [24] is offloaded through a record table and the FPGA

registers. To our knowledge, this work is the first to implement Rabin FP and CDC

in an FPGA in a reconfigurable fashion with dynamically-adopted chunking policies.

That is, our novel VNRE monitors each TCP flow and customizes the following two

NRE parameters:

• Chunking policy. The chunking policy can be either fixed-size or CDC. Var-

ious network flows show differing degrees of redundancy [20, 91]. The fixed-size

chunking policy performs well for multimedia file transmission (e.g., disk images

[96], video and audio [97], etc.), while the CDC chunking policy is preferable for

HTTP and other text-based file transmission [20, 26].

• Expected chunk size. This tuning parameter determines both network through-

put and RE ratio. Some applications (e.g., HTTP) are sensitive to chunk size,

while others (e.g., RTSP and encrypted HTTPS) get little RE ratio improvement

71

when using smaller chunk sizes [91]. In general, however, the smaller the expected

chunk size, the higher the RE ratio and the lower the network throughput.

We complete a prototype of the VNRE controller in a standard x86 server with a

Partially Reconfigurable (PR) FPGA card [27, 98]. Through trace-driven evaluations,

our experimental results can be concluded as follows:

• Compared with the baseline configuration (1 virtual CPU (vCPU), 16 GB RAM,

and a 1 TB disk as a software based NRE MB), the CDC scheme performed by a

PR unit improves the network throughput by nearly 3X.

• For each TCP flow under the VNRE-controlled configuration, the overall through-

put outperforms multiple static configurations by 6X to 57X.

The rest of this chapter is organized as follows. Chapter 4.2 provides the back-

ground and motivations. Chapter 4.3 describes our VNRE design. In Chapter 4.4, we

present the performance evaluation method and discuss the experimental results. Chap-

ter 4.6 summarizes the related work. Chapter 4.5, we present OpenANFV to accelerate

Network Function Virtualization (NFV) with a consolidated framework in OpenStack.

Finally, we conclude this work in Chapter 4.7.

4.2 Background and Motivations

As shown in Figure 4.1, a typical NRE process includes three basic stages. In Stage 1,

a network flow is split into a sequence of data chunks through a customized chunking

policy. Within a chunking policy, a critical factor is a pre-determined expected chunk

size. In Stage 2, an FP is usually generated by a cryptographic content-based hash

algorithm, such as SHA-1 or MurmurHash [99], consuming much CPU time. In Stage

3, NRE can determine whether or not the current data chunk exists and is being stored

locally based on the index. Stage 1 and Stage 2 are usually processed on the server side

while Stage 3 is processed on the client side.

Stage 1: Chunking. A network flow is split into a sequence of data chunks through

a customized chunking policy (fixed-size or variable-size). Within a chunking policy, an

important factor is a pre-determined expected chunk size. Technically, we can adopt

72

Figure 4.1: Simplified flow diagram of a NRE process.

fixed-size chunking and variable-size content-based chunking to define the chunk bound-

ary. Usually, the granularity of a flow unit is either on the IP packet level or TCP flow

level.

Stage 2: Generating Fingerprint (FP). The FP of a chunk is regarded as the key for

comparison and identification. A FP is usually generated by a cryptographic content-

based hash algorithm, such as SHA-1, MD5, or MurmurHash [99]. A FP needs to

be large enough to uniquely identify the represented data chunk, and the process of

generating FP is time consuming. The probability of hash collision in those widely-used

hashing algorithms can be neglected. Although content-based hashing algorithms are

CPU-bound, the computation cost of FPs and using them for chunk comparisons is still

much faster than comparing chunks bit by bit.

Stage 3: Indexing and Storing Data Chunks. The purpose of indexing is to quickly

determine whether or not the current data chunk exists and is being stored. If a data

chunk already exists, it does not need to be delivered again. If a data chunk is unique

(does not currently exist), it can be stored and indexed. Of course, the number of

data chunks that can be indexed and stored depends on the available storage space.

Additionally, an inline process for fast indexing and retrieval always incurs intensive

I/Os.

73

4.2.1 FPGA Accelerator and Quick Prototyping

A field-programmable gate array (FPGA) is comprised of an array of programmable

logic blocks with a series of reconfigurable interconnects. Leveraging the hardware

parallelism of FPGA devices, we present an FPGA-based acceleration scheme that is

applied to speed up the CDC algorithm in the NRE process. FPGA technology can pro-

vide the flexibility of on-site programming and re-programming without going through

re-fabrication of a modified design. One of our design goals is to fully exploit this ca-

pability by building our prototype on a Partially Reconfigurable FPGA (PR-FPGA) to

quickly verify and evaluate multiple alternative acceleration schemes and adopt the one

that is the most beneficial. A PR-FPGA contains several modular and isolated pro-

cessing units, which we will call PRs, that allow heterogeneous functions to be switched

and reloaded quickly. This transition can occur in the same FPGA by loading a partial

configuration file, usually a partial bit file, without affecting other PRs and the static

regions. Reload time of a partial reconfiguration is much smaller (3-5 ms) than full

reconfiguration (10-15 ms). Therefore, the application of this PR-FPGA technology

in our prototype further enhances system flexibility. Since this chapter primarily con-

centrates on how to selectively and efficiently accelerate the NRE process by using an

FPGA substrate, we do not discuss the details of the resource management for different

PRs and the further components of PR reconfiguration cost.

4.2.2 The Role of Chunking Policy

The chunking policy is used to identify chunk boundaries. Fixed-size chunking is very

sensitive to content updates. If only one byte is inserted into the data flow, all the

remaining fixed-size chunks behind the updated region look different. CDC segments a

flow into variable-size chunks through the canonical Rabin hash algorithm [100]. In the

Rabin hash generation process, a small and fixed-size sliding window (usually 12∼64

bytes) is used to calculate the hash value F. Let us denote the window size as M

bytes and the numerical ASCII value of each byte in the first M -bytes in sequence

as t1, t2, ..., tM . The initial hash value F1 of the first sliding window is calculated as

Equation 4.1, where R indicates the digital base value (e.g., R = 10 if the ASCII is

represented as decimal or 16 for hexadecimal as is our case). Q is set as a large prime

74

Table 4.1: Throughput and RE ratio of an NFSv4 server using different chunking policies
and average chunk size.

Chunking
policy

Expected
chunk Size

Processing
Unit

Throughput RE Ratio
(%)

MODP (32 B) IP packet 52.0 Mbps 56.2%
MAXP (32 B) IP packet 46.4 Mbps 59.7%

Rabin hashing CDC (128 B) TCP flow 113.6 Mbps 48.8%
based CDC (512 B) TCP flow 507.2 Mbps 45.7%

CDC (2 KB) TCP flow 2.46 Gbps 32.4%
CDC (8 KB) TCP flow 7.63 Gbps 24.8%

128 B TCP flow 246.4 Mbps 29.2%
Fixed-size 512 B TCP flow 979.2 Mbps 24.6%

based 2 KB TCP flow 4.81 Gbps 19.7%
8 KB TCP flow 28.0 Gbps 17.5%

number. The hash value of the (i + 1)th window, Fi+1, is calculated via Equation 4.2

according to the previously calculated value Fi and Horner’s rule [24]. A record table

can be established to record all 256 possible values of (ti · RM−1 mod Q) and allows

the use of a lookup operation to speed up the whole calculation. Supposing that the

total length of a text string is S bytes, the number of generated Rabin hash values is

(S−M+1). This amount of hashing makes CDC a CPU-bounded application. However,

for content updates, CDC is more robust and flexible because only a few chunks close

to the updated region need to be modified.

F1 = (t1 ·RM−1 + t2 ·RM−2 + ...+ tM) mod Q (4.1)

Fi+1 = ((Fi − ti ·RM−1) ·R+ t(i+M)) mod Q (4.2)

As summarized in Table 4.1, background experiments involving ten chunking policies

with different average chunk size show diverse results in terms of chunking throughput

and RE ratio. Our background testing environment is shown in Table 4.2 and uses

only CPUs, not an FPGA, for computation. The 128-bit variant of MurmurHash [99]

is applied to generate an FP for each chunk. We use a Bloom Filter (BF) as the

space-efficient indexing data structure [101]. A BF has a controllable and acceptable

false positive rate. The drawback of false positives is that some chunks are actually

75

Table 4.2: Composition of our testing environment.
Component Description

CPU 2×Intel E5-2670 @ 2.60 GHz
Hardware RAM DDR SDRAM/64 GiB

components DISK 2×2 TB 4K-stripe RAID-0 Flash based SSD
NIC 2× 10-gigabit Ethernet NIC

FP MurmurHash 128 bits
NRE processing Indexing Bloom Filter

components Caching LRU-based

not duplicates but the index reports they are. Our solution is to record FPs of those

misguided chunks to guarantee further fetches from the server side while setting the

false positive rate to be extremely low, such as 0.025%. Since the size of each chunk

generated by CDC may be variable, we use a chunk-based LRU caching policy in the

client. That is, when a new data chunk is to be stored, the least recently used data

chunk will be removed from the cache. The cache size is set to 32 GB. MODP and

MAXP, both of which are IP packet-level NRE solutions, are discussed in [20, 23]. We

specify the same sliding window size M = 32 bytes and sampling period p = 32 as the

previous work [20]. The CDC policy is adopted from the solution of LBFS [25]. The

tuple of 〈min, avg,max〉 is used to decide the minimum, expected, and maximum chunk

size which satisfies max = 4 · avg = 16 ·min and is used as the default configuration.

The NFSv4 server contains 17.6 TB of files including collected HTTP text data, AVI

video files, and Linux images. Tens of simulated clients request these files following a

Zipf-like distribution.

Figure 4.2: Throughput and RE ratio (%) in an NFSv4 file server.

76

Table 4.3: An example of customized chunking policy.
Data Type Chunking policy Expected chunk Size

HTTP CDC 1 KB
AVI video fixed-size 32 KB

Linux images fixed-size 8 KB

From Table 4.1, we can observe:

(i) The chunk size determines chunking throughput and RE ratio. Usually, a chunk-

ing policy with a smaller chunk size guarantees high RE ratio but sacrifices throughput.

(ii) Compared with fixed-size chunking, CDC with the same expected chunk size

improves RE ratio by 9.5% to 16.4% but degrades throughput by 50% or more.

(iii) MODP and MAXP can achieve the best RE ratio but have the worst throughput

(only tens of Mbps). Unfortunately, the throughput requirement of most MBs is on the

order of Gbps [26], and such IP-level NRE solutions are unable to tune the expected

chunk size to achieve both high RE ratio and adequate system throughput.

We conclude that CDC with a reasonable expected chunk size is capable of achieving

both high RE ratio and throughput. Moreover, we can speed up the throughput of CDC

using an FPGA accelerator without compromising RE ratio.

4.2.3 Flexibility in Configuring Chunking Policy

Many vendors developed their WOAs as NRE MBs preferentially operating in the TCP

layer [87, 88]. Woo et al. [26] suggested that TCP-based solutions are more suitable

than IP packet-based solutions for NRE. At the IP packet level, the NRE process is

slowed down due to the processing burden of extremely small chunks. Another merit of

a TCP-based NRE solution is that we can differentiate the chunking policy on a TCP

flow basis. It has been well studied that various network flows show different degrees of

redundancy [20, 26, 91].

We use different chunking policies to do a set of RE sampling and select a proper

one for each data set as shown in Table 4.3. We call this approach customized chunking

policy and it considers both the RE ratio and computation cost on a TCP flow basis.

With the same experimental environment in Table 4.2, Figure 4.2 shows the throughput

and RE ratio of the customized policy and four sample chunking polices from Table 4.1.

77

As shown in Figure 4.2, the throughput of the customized chunking policy outperforms

the other four policies by 4.5X to 43X. Moreover, the RE ratio is only a little less than

that of CDC with a 512 byte expected chunk size and outperforms the others. The

major reasons are as follows:

(i) Nearly all redundant data often belongs to the same application rather than

scattered across different applications.

(ii) CDC performs well for frequently modified and small-size applications, such as

text-based HTTP files, while the fixed-size chunking policy is always a better choice

than CDC for mostly read and large data size applications, such as virtual machine

images and AVI video.

(iii) The chunking policy with a more coarse-granularity chunk size can dramati-

cally reduce the demand on resources without losing much RE ratio for a mostly read

application.

In short, when tailored to the redundancy characteristics of each TCP flow, a flex-

ibly configured chunking policy with a suitable customized average chunk size can im-

prove both network throughput and RE ratio. VNRE generates these optimized custom

chunking policies automatically.

4.3 VNRE Design

Our VNRE design consists of three basic modules, and Figure 4.3 depicts their relation-

ships. The VNRE Controller module imposes a customized chunking policy for each

TCP flow and assigns the computation resources (i.e., either FPGA or CPU). The com-

putation process is responsible for generating data chunks according to the configured

chunking policy. The chunking throughput and RE ratio can be delivered to the monitor

which uses this information to advise the controller to flexibly re-configure the chunking

policy as further desired. The detailed design of the three basic models is presented in

the following subchapters.

4.3.1 VNRE Controller

As shown in Figure 4.4, a flow table is built on the TCP socket layer to assist the

VNRE controller to customize the chunking policy. Each item of the TCP flow table is

78

Figure 4.3: Three basic modules in VNRE.

Figure 4.4: Data structure of the TCP flow table.

comprised of two elements: Flow Classifier and Chunking Rule.

The Flow Classifier differentiates TCP flows where the customized chunking policy is

flexibly assigned. Specifically, we use four tuple elements, 〈Source (Src) IP, Destination

(Dst) IP, Src Port Num, Dst Port Num〉, to identify TCP flows. The Flow Classifier

occupies 12 Bytes. In the default configuration, Src Port Num specifies a concrete

network application on the server side. We consider the source port number to be our

primary measurement to classify TCP flows.

Chunking Rule is used to differentiate chunking policies on a TCP flow basis. A

Chunking Rule contains three sub-parts: Chunking Policy, Expected Chunk Size, and

Resource Demands. The Chunking Policy is initialized as CDC (state bits: “11”), fixed-

size chunking (state bits: “01”), or no chunking (state bits: “00”). The Expected Chunk

Size is initialized in the kilobyte range when a chunking policy has been configured. To

customize a proper expected chunk size, in the beginning we use a warm-up process to

decrease the chunk size until arriving at a certain RE ratio. The Resource Demands

specifies the computation resource type, i.e., FPGA or CPU. If the fixed-size chunking

policy is adopted, it is processed by the server’s CPUs. For CDC, the number of

PR-FPGA units is configured based on the performance requirement. In the current

implementation, VNRE will assign the PRs equally to the flows which are in CDC mode.

79

4.3.2 Computation Process

FPGA Architecture

We propose an FPGA-based hardware acceleration solution for CDC as shown in Figure

4.5. As mentioned in Chapter 4.2.1, the PR-FPGA is used to quickly verify and evaluate

multiple acceleration schemes. In this subchapter, we mainly present a generic FPGA-

based scheme for the CDC process. The architecture primarily consists of six logic

modules: a PCI Express (PCIe) module, an Avalon Memory Mapped (Avalon-MM)

to PCIe TLP (Transaction Layer Packet) bridge module, a DMA engine, an on-chip

RAM module, a Rabin fingerprinting module, and a modulo module. These modules are

interconnected with each other by an Avalon-MM fabric. The role of each module is

listed as follows:

Figure 4.5: Architecture of the FPGA-based accelerator.

80

(1) The PCI Express (PCIe) module is used to interconnect upper-level commodity

hardware components with the FPGA accelerator. The module is composed of three

layers: a physical layer, a data link layer, and a transaction layer. The role of the

transaction layer is using a packet as the basic I/O unit to communicate with all the

computing components. As an intermediate stage, the data link layer is responsible for

link management, data integrity, and link states. The physical layer is used to finish

the underlying communication circuitry.

(2) The Avalon-MM to PCIe TLP bridge module connects the PCIe transaction layer

to our user-defined CDC application layer. The bridge includes a protocol translator

and a DMA engine. The role of the protocol translator is to interpret PCIe TLPs and

then spawn semantically-conformable Avalon-MM transactions, and vice versa.

(3) The DMA engine moves data from the host memory to the accelerator’s local

memory, and vice versa. To improve the efficiency of RE, our design makes the DMA

engine work in a chaining mode which leverages descriptors to specify source/destination

addresses of data movement.

(4) The on-chip RAM is dual-ported and is used to fetch/store pending data into

memory.

(5) The Rabin fingerprinting module is used to compute FPs of pending TCP flows.

As shown in Figure 4.6, it consists of a central control logic, a bus interface logic, and

some auxiliary registers. Based on the model of a Finite State Machine (FSM), the

central control logic is designed to direct the computation of Rabin FPs step by step.

The bus interface logic abides by the Avalon-MM specification and is used to interface

the Rabin module with the on-chip bus. The auxiliary registers fulfill the functionalities

of data storage (such as general data registers and Rabin FP registers), logic start or

stop control commands, and status indication.

In addition, we take some measures to further optimize the performance of the

Rabin fingerprint algorithm in terms of the analysis of the structure and properties

of the algorithm. For example, as we previous mentioned, some constants involved in

the fingerprinting are pre-calculated and stored into a recorded lookup table in a ROM

logic. Thus, this module is finished by a group of logical units to finish two baseline

operations: adding and bit shifting in Equation 4.2.

81

Figure 4.6: Rabin fingerprinting module.

Without acceleration, the traditional large number summation for hashing in Equa-

tion 4.1 costs much time and may have a larger margin of error. For example, using

hexadecimal base 16 representation and a window size of 32, the equation’s constants

can generate exceedingly large numbers, like (255 · 1631), with values that exceed the

upper limit of an unsigned long (264 − 1) or even a float. Thus, we take some measures

to further optimize the performance of the Rabin FP calculation through analysis of the

structure and properties of the algorithm. First, we calculate the 256 possible constants.

Exploiting the addition property of modular arithmetic, the ith constant in the array

table is computed as (i ·1631%Q), where “%” denotes the mod operation, and fits in the

range of an unsigned long variable. The table involved in the fingerprinting is stored

in a ROM logic block as a constant instantiated in the FPGA. Figure 4.7 demonstrates

the FPGA computation process of Equation 4.1 and Equation 4.2. To get the result of

Equation 4.1, we use the right shift operation (“�”) and the constant table to quickly

compute each value VM−i(1 ≤ i ≤ 32) in the FPGA. Each VM−i is accumulated by the

Adder operator, and then a modulus operation (%Q) obtains the final result F1. As

the sliding window shifts, we use Equation 4.2 to recursively calculate the subsequent

FP value. This process includes the Subtracter, Left shift (“�”), Adder, and Modulo

operations. Consequently, the Rabin FP computation process can be finished within a

constant time by the single computation (Fi → Fi+1).

(6) The modulo module is applied to conduct the modulo operations of CDC. Cal-

culated by Equation 4.2, we have a FP value to logically AND in the FPGA with the

average chunk size (e.g., 4 KB). When the result matches a predefined constant value

82

Figure 4.7: Rabin fingerprinting computation process. R is set to 16 and M is set to
32 in our implementation. Q is initialized as a large 64-bit prime.

(e.g., 0x01), we refer to the last bit of the Rabin window as a cut point. This is how

a CDC scheme statistically decides its chunk boundary. However, this variability may

bring some unexpected conditions. If the cut point is less than the minimal or greater

than the maximal chunk size, the minimal or maximal chunking size is chosen as the

final value, respectively.

CDC Operation

For convenience, we suppose that: 1) the Deduplication-Pending Data (DPD) has been

stored in the host memory; 2) the descriptors used for DMA transfers have been pop-

ulated in a descriptor table in the host memory to differentiate TCP flows, and the

descriptor table is managed by the device driver; and 3) the accelerator initialization

has been completed during the boot period. The process of RE encompasses three

stages: Stage I aims to transfer DPD to the local I/O buffer, which is initialized as 256

KB. For a TCP flow, the device driver is used to establish the mapping relationship

between its buffer and corresponding items in the descriptor table. Prior to the transfer

of pending data blocks, the DMA engine copies the entire descriptor table into the local

memory on the hardware accelerator under the guidance of the descriptor controller.

83

Each descriptor item includes source and destination addresses of a data transfer. Based

on the descriptor information, the DMA engine transfers data between the host memory

and the accelerator memory.

The data flow slicing is performed during the Stage II period. When the DMA

engine completes the transfer of a pending data block, the upper-layer application can

program the registers in the Rabin fingerprinting module to start computing the data

FPs. According to the computation process in Equation 4.2, the Rabin fingerprinting

module reads data from the local buffer with a regular-size window.

After completing the chunking of the whole data buffer, the acceleration goes to

Stage III. The accelerator interrupts the CPU and then passes back the information

about cut-points to the host memory via the DMA engine. As soon as one round

finishes, the NRE process will launch a new round and iteratively fulfill the remaining

pending data.

Algorithm 3 Rabin fingerprinting start control.

1: always@(posedge clk or negedge reset)
2: begin
3: if (reset == 1′b0)
4: control reg <= 0;
5: else
6: begin
7: if (chipselect & write & control reg select)
8: begin
9: if (byteenable[0])

10: control reg[7 : 0] <= writedata[7 : 0];
11: end if
12: if (byteenable[1])
13: control reg[15 : 8] <= writedata[15 : 8];
14: end if
15: end
16: ...
17: end if
18: end
19: end if
20: end

For the purpose of demonstration, we describe two representative blocks in the

Rabin fingerprinting module’s Verilog. When the three signals, chipselect, write, and

control reg select, are valid simultaneously and the start-bit in the control register is

set to 1 by the VNRE controller, the following deduplication operations of the pending

data are swiftly launched once the state machine detects the set event. The procedure

where the data on the Avalon-MM bus are written to the control register is depicted

84

Algorithm 4 Rabin fingerprinting lookup operation.

1: always@(posedge clk or negedge reset)
2: begin
3: if (reset == 1′b0)
4: tab data reg <= 64′b0;
5: else
6: begin
7: if (nxt state == S2)
8: tab data reg <= mem[p1 data reg[7 : 0]];
9: end if

10: end
11: end if
12: end

in Algorithm 3. Algorithm 4 illustrates that when prior operations are finished and

the finite state machine is in State 2, the logic block uses the value in an intermediate

register p1 data reg as an index to fetch a constant from the lookup table. Then, the

stored value p1 data reg is assigned to another auxiliary register tab data reg for reuse

on a rising edge of the clock.

4.3.3 Monitor

In the beginning, each flow can be configured with a chunking policy and the expected

chunk size. To make VNRE adaptively adjust the parameters, we use a Monitor to cap-

ture the RE ratio and this kind of throughput. For some extreme cases, the throughput

of a TCP flow becomes the bottleneck when the flow pattern changes. To satisfy the

overall performance demand, we can make the expected chunk size larger. Conversely,

when the RE ratio of a TCP flow cannot satisfy our expectation, we can make the

expected chunk size smaller. For some flows, if the RE ratio is near zero, we can turn

off NRE to maximize throughput.

The format of the chunking log file is shown in Figure 4.8. The Monitor records a

line of metadata items for each TCP flow. The time item is formatted as the global

Greenwich Mean Time (GMT) at the start of chunking. The srcPort is used to identify

a TCP flow. The average throughput of a TCP flow in a period is calculated as
∑

(Data

Size)/
∑

(Processing Time) where all the items have the same srcPort. The RE ratio is

calculated as 1−
∑

(Sending Data Size)/
∑

(Data Size) where Sending Data Size is the

amount of data sent over the network after RE and Data Size is the original amount

of data requested. At the end of a constant period (e.g., 10 minutes), the Monitor will

85

Figure 4.8: Format of the chunking log file.

calculate and send the RE ratio and the average throughput of each flow to the VNRE

Controller, which will decide the reconfiguration polices.

4.4 VNRE Evaluation

We consider three main aspects in the evaluation: 1) measuring the speedup of CDC

throughput due to the FPGA accelerator, 2) determining the improvement in both RE

ratio and throughput through our VNRE controller, and 3) analyzing overhead when

adding a NRE service.

Our experimental hardware platform is built on a Terasic DE5-Net Stratix V GX

FPGA [102] in a standard x86 server. The hardware resources including CPUs, memory,

disks, and the FPGA are managed by OpenStack in OpenANFV[27]. A Virtual Machine

(VM) can access a certain number of PRs via the Single Root I/O Virtualization (SR-

IOV) technique. Our baseline testing components are described in Table 4.2.

4.4.1 Speedup Ratio of CDC Throughput by Using FPGA Accelerator

Data Set Description. About 320 files including metadata, string-texts, videos, and

Linux images are sampled. The file size ranges from 0.4 KB to 1.96 GB. When a file is

less than the predefined minimum chunk size, this file will not be processed by CDC.

The average file size is 15.6 MB and the total size of the data set is about 4.87 GB.

To evaluate the performance in terms of hardware speedup, we test CDC by assigning

four distinct computing configurations. The expected chunk sizes of CDC are initialized

as 512 bytes, 1 KB, and 2 KB. From the results shown in Figure 4.9, we can observe:

(1) Compared to assigning one virtual CPU (vCPU), the throughput of assigning

one PR to handle the CDC process is improved by 2.7X-2.8X. For example, when the

expected chunk size is 512 bytes, the throughput of CDC using one PR is 200.6 Mbps;

while using one vCPU the throughput only reaches 70.7 Mbps.

(2) CDC throughput grows nearly linearly when the number of PRs for processing

86

Figure 4.9: Average CDC throughput with FPGA Accelerator (PR) and without
(vCPU).

CDC is increased linearly. The growth trend of CDC throughput is slower when the

number of vCPUs processing CDC is increased linearly. For example, when the expected

chunk size is 1KB, CDC throughput using four PRs is 1692.7 Mbps, nearly fourfold that

when using one PR (430.8 Mbps). The throughput using four vCPUs is 324.8 Mbps,

while using one vCPU can only provide 156.9 Mbps. Consequently, in our platform,

the CDC throughput obtained by using one PR is still faster than that of using four

vCPUs.

CDC handled by the FPGA can alleviate the server’s CPU burden since both CD-

C and the chunk’s FP computation are CPU-bound. As shown in Figure 4.10(a), we

compare the accumulated throughput when both MurmurHash and CDC are comput-

ed by one vCPU to that of when one PR is added to offload CDC processing. When

MurmurHash is computed by one vCPU and CDC is computed by one PR unit, the

accumulated throughput is improved by 6.3X. The throughput of CDC has improved

9.5X and the MurmurHash throughput speedup is 4.3X. As shown in Figure 4.10(b),

when the number of vCPUs is four, offloading CDC to one PR unit improves the accu-

mulated throughput 4.9X. The CDC throughput speedup is 5.0X, and the throughput

of MurmurHash is improved 4.8X.

87

Figure 4.10: Accumulated throughput of CDC and 128-bit MurmurHash for FP gener-
ation with FPGA CDC offloading (PR=1) and without (PR=0).

Table 4.4: Description of four TCP flows.
Application Server Port Data Size

HTTP 80 3.6 TB
RTSP 554 1.2 TB
SMTP 25 0.6 TB

FTP-data 20 2.4 TB

4.4.2 Improvements from Flexibly Configured Chunking Policy

Testing Environment Description. As shown in Table 4.4, we collect four typical

data sets. We set up an FTP server that only contains Linux images. The CDC

process is performed by the FPGA substrate. The number of PRs is limited to four

in our testing. Both fixed-size chunking and 128-bit MurmurHash are calculated by

vCPUs. The number of vCPUs is also set to four. The interval of sending results from

the Monitor module to the VNRE Controller module is set to 10 minutes when using

VNRE.

Figure 4.11 shows an overview of the experimental configuration. The first procedure

is to simulate the client network request behavior. There are four kinds of clients that

generate network data access requests: HTTP client, RTSP client, SMTP client, and

FTP client. Each client access pattern obeys a Zipf-like distribution [103] where the

ranking argument is set to 0.99. The generating period lasts for three days. Moreover,

each flow has a diurnal pattern with distinguishable light and heavy load periods to

simulate daily access trends. The local cache size of the MB proxy for indexing and

88

Figure 4.11: Overview of the experimental configuration.

storing chunks is set to 32 GB. The data link and its infrastructure (switches and

routers) support gigabit Ethernet. Both CDC and FP generation processes are handled

by the NRE MB on the remote data center side. All the network files are chunked inline

and stored in a backup database storage system.

A comparison of our TCP flow-based VNRE to four fixed-policy approaches in terms

of NRE throughput and RE ratio is shown in Figure 4.12. The two CDC and two

fixed-size chunking configurations, as well as our VNRE customized scheme when it is

in a CDC mode, use FPGA acceleration. The throughput of the VNRE customized

chunking policy is 6X to 57X that of the four predefined policies. This substantial

increase is because that VNRE can select proper chunking sizes for different flows based

on the feedback of the Monitor. Based on the port number, VNRE will select HTTP

and SMTP flows to work in CDC mode while the other two work in fixed-size mode.

After VNRE decides the basic chunking policy for each flow, it will assign the PRs to

the flows which are in CDC mode. After running for a period of time, the expected

chunk sizes are tuned to 512 bytes for HTTP, 16 KB for RTSP, 4 KB for SMTP, and

8 KB for FTP-data. Regarding RE ratio, the percent reduction from VNRE is only a

little less, about 4.2%, than that of the CDC policy with a 512 byte expected chunk size,

and our method beats the other three policies by 7.9% to 30.2%. In summary, varying

the chunking policy and the expected chunk size based on the TCP flow in VNRE can

dramatically improve chunking throughput while maintaining a high RE ratio.

Figure 4.13 demonstrates the average throughput improvement for client requests

when using VNRE compared to no NRE of any kind. Measured at 3-hour intervals over

a 72-hour period, the average throughput improvement due to VNRE is 1.4X to 6.5X.

89

Figure 4.12: NRE throughput and RE ratio (%) of four sample chunking policies com-
pared to customized VNRE control.

Figure 4.13: Comparison of expected throughput over time for client requests with
VNRE and without using VNRE.

This faster response time shows that VNRE allows clients to get the requested content

with less latency. Moreover, VNRE flattens the throughput curve. As labeled in Figure

4.13, the difference between ”peak” throughput and ”bottom” throughput using VNRE

is smaller than without using NRE. This flattening occurs because VNRE is able to

provide an even better throughput improvement during periods of fewer client requests.

To further analyze the effect on RE ratio of chunking policy, we compare the RE

ratio of four TCP flows using three chunking polices and summarize the results in Figure

4.14. CDC and fixed-size are configured as shown in Table 4.4, while ”Optimal” is a

CDC with an unlimited chunk cache for a theoretical reference. Compared to fixed-

size chunking, CDC has a much better RE ratio in the HTTP and SMTP traces but

outperforms less obviously in RTSP and FTP-data. This result is because the RE ratio

depends on the access behavior and degree of redundancy of different applications. For

90

Figure 4.14: RE ratio (%) of four TCP protocols using three chunking polices.

example, the tested HTTP files are mostly writes and have more redundant chunks.

The RTSP files are mostly reads and share few repeated chunks in different files. RE

ratios are high when clients access the same files within a certain period of time, but

only the ”Optimal” CDC with its hypothetical unlimited chunk cache can retain a high

RE ratio over longer periods between same-file access.

4.4.3 Overhead Analysis

According to our experimental setup, the acceleration system spends about 2000 clock

cycles, on average, including around 1500 cycles transferring a 4 KB page from the

system memory to the local memory, roughly 310 cycles passing back the chunking

results, and approximately 190 cycles for the acceleration algorithm itself. The average

processing latency of a packet due to the VNRE process is 11.5 µs. In the worst case,

the latency is up to 25 µs. However, as shown in Figure 4.13, clients get responses

for the requested content with much less latency when using the VNRE process. The

descriptor table occupies on the order of tens of kilobytes in main memory, and a data

buffer of 4 MB is sufficient.

4.5 OpenANFV: Accelerating Network Function Virtual-

ization with a Consolidated Framework in OpenStack

As aforementioned, we use the FPGA accelerator to speed up NRE process. This

subchapter will extend the above work and use such dedicated hardware for multiple

91

functions. Specified appliances or middleboxes (MBs) have been explosively used to

satisfy a various set of functions in operational modern networks, such as enhancing

security (e.g. firewalls), improving performance (e.g. WAN optimized accelerators),

providing QoS (e.g. Deep Packet Inspection (DPI)), and meeting the requisite others

[104]. Network Function Virtualization (NFV) recently has been proposed to optimize

the deployment of multiple network functions through shifting the MB processing from

customized MBs to software-controlled inexpensive and commonly used hardware plat-

forms (e.g. Intel standard x86 servers) [105]. However, for some functions (e.g. DPI

and Network Deduplication (Dedup) or NRE, Network Address Translation (NAT)),

the commodity shared hardware substrate remain limited performance. For a standard

software based Dedup MB (Intel E5645, 2.4GHZ, 6 cores, exclusive mode), we can only

achieve 267Mbps throughput in each core at most. Therefore, the resources of dedicated

accelerators (e.g. FPGA) are still required to bridge the gap between software-based

MB and the commodity hardware.

To consolidate various hardware resources in an elastic, programmable and reconfig-

urable manner, we design and build a flexible and consolidated framework, OpenANFV,

to support virtualized acceleration for MBs in the cloud environment. OpenANFV is

seamlessly and efficiently put into Openstack to provide high performance on top of

commodity hardware to cope with various virtual function requirements. OpenANFV

works as an independent component to manage and virtualize the acceleration resources

(e.g. cinder manages block storage resources and nova manages computing resources).

Specially, OpenANFV mainly has the following three features.

• Automated Management. Provisioning for multiple VNFs is automated to

meet the dynamic requirements of NFV environment. Such automation alleviates

the time pressure of the complicated provisioning and configuration as well as

reduces the probability of manually induced configuration errors.

• Elasticity. VNFs are created, migrated, and destroyed on demand in real time.

The reconfigurable hardware resources in pool can rapidly and flexibly offload the

corresponding services to the accelerator platform in the dynamic NFV environ-

ment.

92

Figure 4.15: Brief OpenANFV architecture.

• Coordinating with OpenStack. The design and implementation of the OpenAN-

FV APIs coordinate with the mechanisms in OpenStack to support required vir-

tualized MBs for multiple tenancies.

4.5.1 Architecture and Implementation

Figure 4.15 briefly shows the architecture of OpenANFV. From the top-to-down prospec-

tive view, when a specific MB is needed, its required resources are orchestrated by Open-

Stack. There are sufficient northbound APIs in this open platform. Each VNF of MB

is instantiated by a Virtual Machine (VM) node, running on the common x86 platform.

Once deployed, these MBs aim to provide services as well as the original appliances.

The role of VNF controller is to leverage the resource demand of VMs associated with

underlying virtual resource pools.

NFV Infrastructure (NFVI) comes from the concept of IaaS to virtualize corre-

sponding hardware resources. In NFVI, the Network Functions Acceleration Platform

93

(NFAP) provides a heterogeneous PCIe based FPGA card which supports isolated Par-

tial Reconfigure (PR) [106]. PR can virtualize and reconfigure the acceleration functions

shortly in the same FPGA without affecting the exiting virtualized accelerators. Using

PR, different accelerators are placed and routed in special regions.

The FPGA is divided into static and partially reconfigurable regions (PR). When

the network requirements are changed, the function of PR could be replaced with a new

one. The PR is implemented to support different accelerators, and controlled by one VM

exclusively. When one accelerator is reloading without affecting the other accelerators

are not affected. The PR and VM can communicate through PCIe SR-IOV efficiently.

The static region contains the shared resources (e.g. the storage and network interfaces).

The responsibility of NFAP is dispatching the rules to the two modules of FPGA,

the classifier and the switch. The classifier identifies the flow where the rule format

conforms to 〈group id, tag〉, when the flow matches the condition group id, classifier will

add an item to the flow table in the classifier. Based on the flow table, the classifier

could divide the traffic into different NFs. The switch get the MB chain configuration

[〈Tag,Port〉:Outport], and forward the encapsulated head (EH) based packet combining

with the tag and income port. The packets are redirected to the MB in the chain in

sequence until to the last one. The encapsulated packet with its tag can transfer more

than one PRs, moreover, the tag could also support the load balancing between the

NFs. Compared with FlowTags [107], we use the tag in the encapsulation to expand

flexibly without affecting the field of the original packet header.

We have implemented the prototype of integrating NFAP into OpenStack following

the methodology which is proposed by the ETSI standards group [108]. The K-V pair

of <vAccelerator, number of running vAccelerators> is ued to track the current status

of NFAP. vAccelerator is the aliased key to identify the PCIe device and number of

running vAccelerators is to identify the current virtual accelerators. The scheduler has

been finished in the VNF controller which is followed by the standard nova scheduler.

Finally, the extended VM.xml generation includes allocation of a PCIe device virtual

function to a VM.

94

4.5.2 OpenANFV Evaluation

We evaluate the prototype of NFAP in a demo FPGA cards (Altera FPGA Stratix A7,

8GB DDR3, 8M QDR, 4 SPF+). The experimental environment consists of one x86-

based server (2.3GHz 8Core Intel Xeon E5, 96GB RAM, 40G NIC) with Altera FPGA

card, two x86-based servers running the controller and OpenStack, respectively. The

IXIA XM2(with NP8 board) is used as the source and the sink of packets. The server

with the NFAP runs KVM hypervisor, and each NFAP could provide three empty PRs

for the server. The VMs used for the test have the same configuration (1 vCPU, 16G

RAM and 1TB Disk).

Our tests include three VNFs, NAT, DPI, and Dedup. Each VNF has two versions,

with and without adopting NFAP. Without NFAP, the computing resources of VNFs

are completely provided by nova in OpenStack. For NFAP assisted NAT, the software

in the VM has an Openflow-like API with the NFV controller and configures the policy

using a hardware abstract API. The hardware part in the NFAP offloads the flow table,

the header replacement, and the checksum calculation from the VM. The packet will

be merely processed in the NFAP, if the flow is matched in the flow table. For NFAP

assisted DPI, we offload all the string match (Mutihash Algorithm and Bloomfilter),

regular match, and the rules table in the NFAP, and the VM keeps the rule compiler

and the statistics which are needed by the controller. The rule compiler compiles perl

compatible regular expression to Deterministic Finite Automata (DFA) rule. For NFAP

assisted Dedup, we offload the rabin hash, Marker select algorithm and chunk hash

(Murmur hash). As the TCP is too complex to implement in the FPGA, the tcp-stack

is still in the VM and the packets are received and sent out via the software tcp-stack.

We still do some optimizations like using the Data Plane Development Kit (DPDK)

driver and use space tcp-stack. As shown in Figure 4.16, the performance of DPI,

Dedup, and NAT with adopting NFAP in OpenANFV outperforms the scheme without

NFAP by 20X, 8.2X, and 10X, respectively.

4.6 Related Work

VNRE builds upon the following previous work.

Network Redundancy Elimination. Various network systems are well designed

95

Figure 4.16: Performance results on throughput with or without adopting NFAP.

for eliminating redundancy for WAN links. Some of them operate at the object or

application levels, such as web proxy servers [109]. In recent years, protocol-independent

NRE services have been developed to provide better redundancy elimination [20]. This

approach was first pioneered by Spring et al. [21], and later many network service

vendors developed their WOAs as MBs as we previously mentioned. IP packet-level

NRE solutions like MODP and MAXP [20, 23] are unable to tune the expected chunk

size to achieve both high RE ratio and system throughput. LBFS [25] is a network

file system designed for low-bandwidth networks and uses a typical NRE solution to

reduce traffic burdens. Cloud computing emerges in recent years [110, 111]. Zohar et

al. presented a novel receiver-based end-to-end NRE mechanism, namely PACK, to

eliminate redundant traffic between the cloud and its end-users [112]. CloudNet [113]

used a content-based NRE solution to eliminate the redundant data while transferring

VM memory and disk state in a virtualized cloud system. Research on NRE solutions

in WOAs is well studied on common x86-based platforms [23, 26, 95]. NRE has also

been studied in network backup systems [114] and in Software-Defined Networks [115].

Network Function Acceleration by FPGA. NetFPGA [93] provides a standard

interface among FPGA stages. In our work, an internal NetFPGA is managed by the

VNRE controller. As designed for high-performance and scalable networks, NetFPGA

has been applied to many virtual network infrastructures such as virtual routers [116],

virtual network data planes [94], and virtual switches [117]. The NetFPGA-based PR-

FPGA substrate has been proposed in various virtualized cloud platforms [98].

96

Network Function Virtualization Network Function Virtualization (NFV) be-

comes a prevalent trend in cloud computing. A variety of virtualized functions are built

in a shared hardware resources including FPGA substrate through centralized software-

controlled pooling management [118]. OpenNF [119] builds a consolidated control plane

to manage both network forwarding state and internal NFV states. Software-based

control for MB platform has been studied extensively [120–122]. The Arrakis OS [123]

supports hardware I/O Virtualization, whose kernel is operated as the control plane, dy-

namically configuring the data path to each application including NFVs. ClickOS [124]

rapidly manipulates a variety of NFVs in a software controlling manner on inexpensive,

commodity hardware (e.g., x86 servers with 10Gb NICs).

4.7 Conclusion

In summary, this chapter presents a specially-designed NRE appliance with a unique

intelligent controller and FPGA-based acceleration to provide improved throughput

and RE ratio. The VNRE controller is designed to tune the chunking policy and its

expected chunk size on a TCP flow basis. Compared with an empirical chunk size,

adjusting chunking policies to accommodate the features of each flow shows exceptional

improvement in throughput. We validate that the throughput of client requests can be

greatly improved with VNRE versus a selection of static configurations. Moreover, we

propose an improved FPGA-based scheme to speed up CDC while retaining its high

RE ratio. The FPGA Verilog code of our CDC accelerator (as well as a MurmurHash

accelerator not discussed in this work) is openly available for future study at https://

github.com/xiongzige/VNRE. Furthermore, to consolidate various hardware resources

in an elastic, programmable and reconfigurable manner, we design and build a flexible

and consolidated framework, OpenANFV, to support virtualized acceleration for MBs

in the cloud environment.

https://github.com/xiongzige/VNRE
https://github.com/xiongzige/VNRE

Chapter 5

Conclusion

Large volumes of data being continuously generated drive the emergence of large capac-

ity high performance storage systems. Recently more new storage devices/technologies

have emerged. To reduce the total cost of ownership, storage systems are built in a

more composite way incorporating the emerging storage technologies/devices, including

Storage Class Memory (SCM), Solid State Drives (SSD), Shingle Magnetic Recording

(SMR) and even across off-premise cloud storage. This makes enterprise storage hierar-

chies more interesting and diverse. To make better utilization of each type of storage,

industries have provided multi-tier storage through dynamically placing hot data in the

faster tiers and cold data in the slower tiers. Data movement happens between devices

on one single device and as well as between devices connected via various networks.

This thesis aims to improve data management and data movement efficiency in such

hybrid storage systems.

To bridge the giant semantic gap between applications and modern storage systems,

passing a piece of tiny and useful information (I/O access hints) from upper layers to

the block storage layer may greatly improve application performance or ease data man-

agement in storage systems. This is especially true for heterogeneous storage systems.

Since ingesting external access hints will likely involve laborious modifications of legacy

I/O stacks, thus making it is very hard to evaluate the effect of access hints.

This thesis presents and develops a generic and flexible framework, called HintStor,

to quickly play with a set of access hints and evaluate their impacts on heterogeneous

storage systems. The design of HintStor contains a new application/user level interface,

97

98

a file system plugin and a block storage data manager. With HintStor, storage system-

s composed of various storage devices can perform pre-devised data placement, space

reallocation and data migration polices assisted by the added access hints. HintStor

supports hints either statically extracted from the existing components (e.g. internal

file system data structure) or defined and configured by the users (e.g. streaming classi-

fication). We demonstrate the flexibility of HintStor by evaluating three types of access

hints: file system data classification, stream ID and cloud prefetch on a Linux platform.

The results show that HintStor is able to execute and evaluate various I/O access hints

under different scenarios with minor modifications to the kernel and applications.

Industries have provided multi-tier storage through dynamically placing hot data

in the faster tier and cold data in the slower tier. However, each kind of storage de-

vice/technology has its own unique price-performance tradeoffs and idiosyncrasies with

respect to workload characteristics they prefer to support. Moving data tier by tier may

not be efficient and even worse it may lead to unnecessary data movements.

This thesis studies the storage architecture with fully connected (i.e., data can move

from one device to any other device instead of moving tier by tier) differential pools (each

pool consists of storage devices of a particular type) to suit diverse types of workloads.

To explore the internal access patterns and thus efficiently place data in such a fully

connected topology, we propose a chunk-level storage-aware workload analyzer frame-

work, simplified as ChewAnalyzer. Access patterns are characterized as a collective I/O

accesses in a chunk composed of a set of consecutive data blocks. The taxonomy rules

are defined in a flexible manner to assist detecting chunk access patterns. In particular,

ChewAnalyzer employs a Hierarchical Classifier to exploit the chunk patterns step by

step. In each classification step, the chunk placement recommender advises new data

placement policies according to the device properties. Both pool status and device prop-

erties are considered in making placement decisions. ChewAnalyzer++ is designed to

enhance the workload profiling accuracy by partitioning selective chunks and zooming

in their interior characteristics. According to the analysis of access pattern changes,

the storage manager can adequately distribute the data chunks across different storage

pools. ChewAnalyzer improves initial data placement and migrations of data into the

proper pools directly and efficiently if needed. We build our prototype for a storage

system composed of Storage Class Memory (SCM), Solid State Drive (SSD) and Hard

99

Disk Drive (HDD) in a Linux platform. Through trace driven approach, our experimen-

tal results show ChewAnalyzer outperforms the conventional dynamical tiering by less

latency and less write times on the flash pool. The total amount of data being migrated

is also reduced.

To reduce the duplicate content transferred between local storage devices and devices

in remote data centers, NRE aims to improve network performance by identifying and

removing repeated transmission of duplicate content from remote servers. Using a CDC

policy, an inline NRE process can obtain a higher RE ratio but may suffer from a

considerably higher computational requirement than fixed-size chunking. Additionally,

the existing work on NRE is either based on IP packet level redundancy elimination or

rigidly adopting a CDC policy with a static empirically-decided expected chunk size.

These approaches make it difficult for conventional NRE MiddleBoxes to achieve both

high network throughput to match the increasing line speeds and a high RE ratio at

the same time.

This thesis presents a design and implementation of an inline NRE appliance which

incorporates an improved FPGA-based scheme to speed up CDC processing to match

the ever increasing network line speeds while simultaneously obtaining a high RE ratio.

The overhead of Rabin fingerprinting, which is a key component of CDC, is greatly

reduced through the use of a record table and registers in the FPGA. To efficiently

utilize the hardware resources, the whole NRE process is handled by a VNRE con-

troller. The uniqueness of this VNRE that we developed lies in its ability to exploit

the redundancy patterns of different TCP flows and customize the chunking process

to achieve a higher RE ratio. VNRE will first decide if the chunking policy should be

either fixed-size chunking or CDC. Then VNRE decides the expected chunk size for

the corresponding chunking policy based on the TCP flow patterns. Implemented in

a partially reconfigurable FPGA card, our trace driven evaluation demonstrates that

the chunking throughput for CDC in one FPGA processing unit outperforms chunk-

ing running in a virtual CPU by nearly 3X. Moreover, through the differentiation of

chunking policies for each flow, the overall throughput of the VNRE appliance out-

performs one with static NRE configurations by 6X to 57X while still guaranteeing a

high RE ratio. In addition, to consolidate various hardware resources in an elastic, pro-

grammable and reconfigurable manner, we design and build a flexible and consolidated

100

framework, OpenANFV, to support virtualized acceleration for MBs in the cloud envi-

ronment. OpenANFV is seamlessly and efficiently put into Openstack to provide high

performance on top of commodity hardware to cope with various virtual function re-

quirements. OpenANFV works as an independent component to manage and virtualize

the acceleration resources.

References

[1] Enterprise capacity 3.5 hdd (helium). http://www.

seagate.com/enterprise-storage/hard-disk-drives/

enterprise-capacity-3-5-hdd-10tb/.

[2] Fenggang Wu, Ming-Chang Yang, Ziqi Fan, Baoquan Zhang, Xiongzi Ge, and

David HC Du. Evaluating host aware smr drives. In 8th USENIX Workshop on

Hot Topics in Storage and File Systems (HotStorage 16). USENIX Association,

2016.

[3] Jim Gray and Bob Fitzgerald. Flash disk opportunity for server applications.

Queue, 6(4):18–23, 2008.

[4] Ahmadshah Waizy, Dieter Kasper, Jürgen Schrage, Bernhard Höppner, Felix

Salfner, Henning Schmitz, Joos-Hendrik Böse, and SAP Innovation Center Pots-

dam. Storage class memory evaluation for sap hana. HPI Future SOC Lab:

Proceedings 2013, 88:63, 2015.

[5] Ziqi Fan, David HC Du, and Doug Voigt. H-arc: A non-volatile memory based

cache policy for solid state drives. In Mass Storage Systems and Technologies

(MSST), 2014 30th Symposium on, pages 1–11. IEEE, 2014.

[6] Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. Non-

volatile storage. Communications of the ACM, 59(1):56–63, 2015.

[7] Latency of cloud storage. http://www.securstore.com/blog/

latency-of-cloud-storage/.

101

http://www.seagate.com/enterprise-storage/hard-disk-drives/enterprise-capacity-3-5-hdd-10tb/
http://www.seagate.com/enterprise-storage/hard-disk-drives/enterprise-capacity-3-5-hdd-10tb/
http://www.seagate.com/enterprise-storage/hard-disk-drives/enterprise-capacity-3-5-hdd-10tb/
http://www.securstore.com/blog/latency-of-cloud-storage/
http://www.securstore.com/blog/latency-of-cloud-storage/

102

[8] Zhe Wu, Curtis Yu, and Harsha V Madhyastha. Costlo: Cost-effective redundancy

for lower latency variance on cloud storage services. In NSDI, pages 543–557, 2015.

[9] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun Shastry, Philip Shilane, Sun

Zhen, Vasily Tarasov, and Erez Zadok. Using hints to improve inline block-layer

deduplication. In FAST, pages 315–322, 2016.

[10] Michael Mesnier, Feng Chen, Tian Luo, and Jason B Akers. Differentiated stor-

age services. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, pages 57–70. ACM, 2011.

[11] Yi Liu, Xiongzi Ge, Xiaoxia Huang, and David HC Du. Molar: A cost-efficient,

high-performance ssd-based hybrid storage cache. The Computer Journal, page

bxu156, 2015.

[12] Michael Cornwell. Anatomy of a solid-state drive. Commun. ACM, 55(12):59–63,

2012.

[13] Hui Wang and Peter J Varman. Balancing fairness and efficiency in tiered storage

systems with bottleneck-aware allocation. In FAST, pages 229–242, 2014.

[14] Fabricpool preview: Building a bridge from the all-flash data cen-

ter to the clouds. https://community.netapp.com/t5/Technology/

FabricPool-Preview-Building-a-Bridge-from-the-All-Flash-Data-Center-to-the/

ba-p/124388/.

[15] Ji Xue, Feng Yan, Alma Riska, and Evgenia Smirni. Storage workload isolation

via tier warming: How models can help. In ICAC, pages 1–11, 2014.

[16] Yue Cheng, M Safdar Iqbal, Aayush Gupta, and Ali R Butt. Cast: Tiering

storage for data analytics in the cloud. In Proceedings of the 24th International

Symposium on High-Performance Parallel and Distributed Computing, pages 45–

56. ACM, 2015.

[17] Jorge Guerra, Himabindu Pucha, Joseph S Glider, Wendy Belluomini, and Raju

Rangaswami. Cost effective storage using extent based dynamic tiering. In FAST,

volume 11, pages 20–20, 2011.

https://community.netapp.com/t5/Technology/FabricPool-Preview-Building-a-Bridge-from-the-All-Flash-Data-Center-to-the/ba-p/124388/
https://community.netapp.com/t5/Technology/FabricPool-Preview-Building-a-Bridge-from-the-All-Flash-Data-Center-to-the/ba-p/124388/
https://community.netapp.com/t5/Technology/FabricPool-Preview-Building-a-Bridge-from-the-All-Flash-Data-Center-to-the/ba-p/124388/

103

[18] Qiao Li, Liang Shi, Chun Jason Xue, Kaijie Wu, Cheng Ji, Qingfeng Zhuge,

and Edwin Hsing-Mean Sha. Access characteristic guided read and write cost

regulation for performance improvement on flash memory. In FAST, pages 125–

132, 2016.

[19] John Colgrove, John D Davis, John Hayes, Ethan L Miller, Cary Sandvig, Russell

Sears, Ari Tamches, Neil Vachharajani, and Feng Wang. Purity: Building fast,

highly-available enterprise flash storage from commodity components. In Pro-

ceedings of the 2015 ACM SIGMOD International Conference on Management of

Data, pages 1683–1694. ACM, 2015.

[20] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and Ramachandran Ramjee.

Redundancy in network traffic: findings and implications. In Proceedings of the

Sigmetrics’09, pages 37–48. ACM, 2009.

[21] Neil T Spring and David Wetherall. A protocol-independent technique for elimi-

nating redundant network traffic. In ACM SIGCOMM Computer Communication

Review, volume 30, pages 87–95. ACM, 2000.

[22] Xiongzi Ge, Yi Liu, Chengtao Lu, Jim Diehl, David HC Du, Liang Zhang, and Jian

Chen. Vnre: Flexible and efficient acceleration for network redundancy elimina-

tion. In Parallel and Distributed Processing Symposium, 2016 IEEE International,

pages 83–92. IEEE, 2016.

[23] Bhavish Agarwal, Aditya Akella, Ashok Anand, Athula Balachandran, Pushkar

Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and George Varghese.

Endre: An end-system redundancy elimination service for enterprises. In NSDI,

pages 419–432, 2010.

[24] Udi Manber et al. Finding similar files in a large file system. In Usenix Winter,

volume 94, pages 1–10, 1994.

[25] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth

network file system. In ACM SIGOPS Operating Systems Review, volume 35,

pages 174–187. ACM, 2001.

104

[26] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin Lee, Sunghwan Ihm, and

KyoungSoo Park. Comparison of caching strategies in modern cellular backhaul

networks. In Proceeding of the 11th annual international conference on Mobile

systems, applications, and services, pages 319–332. ACM, 2013.

[27] Xiongzi Ge, Yi Liu, David HC Du, Liang Zhang, Hongguang Guan, Jian Chen,

Yuping Zhao, and Xinyu Hu. Openanfv: accelerating network function virtualiza-

tion with a consolidated framework in openstack. In Proceedings of the SIGCOMM

2014, pages 353–354. ACM, 2014.

[28] Western digital teases 14tb ultrastar hard drive. https://www.bit-tech.net/

news/hardware/2016/12/07/wd-14tb-ultrastar/1.

[29] George Amvrosiadis, Angela Demke Brown, and Ashvin Goel. Opportunistic

storage maintenance. In Proceedings of the 25th Symposium on Operating Systems

Principles, pages 457–473. ACM, 2015.

[30] Scsi storage interfaces. http://www.t10.org/.

[31] Fay Chang and Garth A Gibson. Automatic i/o hint generation through specula-

tive execution. In OSDI, volume 99, pages 1–14, 1999.

[32] fadvise(2). https://linux.die.net/man/2/fadvise.

[33] ionice(1). https://linux.die.net/man/1/ionice.

[34] A general purpose, write-back block cache for linux. https://github.com/

facebookarchive/flashcache.

[35] bcache. https://www.kernel.org/doc/Documentation/bcache.txt.

[36] btrfs. https://btrfs.wiki.kernel.org.

[37] Device-mapper resource page. https://www.sourceware.org/dm/.

[38] kcopyd. https://www.kernel.org/doc/Documentation/device-mapper/

kcopyd.txt.

[39] Lvm2 resource page. https://sourceware.org/lvm2/.

 https://www.bit-tech.net/news/hardware/2016/12/07/wd-14tb-ultrastar/1
 https://www.bit-tech.net/news/hardware/2016/12/07/wd-14tb-ultrastar/1
http://www.t10.org/
https://linux.die.net/man/2/fadvise
https://linux.die.net/man/1/ionice
https://github.com/facebookarchive/flashcache
https://github.com/facebookarchive/flashcache
https://www.kernel.org/doc/Documentation/bcache.txt
https://btrfs.wiki.kernel.org
https://www.sourceware.org/dm/
https://www.kernel.org/doc/Documentation/device-mapper/kcopyd.txt
https://www.kernel.org/doc/Documentation/device-mapper/kcopyd.txt
https://sourceware.org/lvm2/

105

[40] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device

Drivers: Where the Kernel Meets the Hardware. ” O’Reilly Media, Inc.”, 2005.

[41] Technical committee t13 at attachment. http://www.t13.org/.

[42] Hdfs users guide. https://hadoop.apache.org/docs/stable/

hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html.

[43] kafka:a distributed streaming platform. http://kafka.apache.org/.

[44] P Daniel, Cesati Marco, et al. Understanding the linux kernel, 2007.

[45] Fiemap ioctl. https://www.kernel.org/doc/Documentation/filesystems/

fiemap.txt.

[46] sysfs - the filesystem for exporting kernel objects. https://www.kernel.org/

doc/Documentation/filesystems/sysfs.txt.

[47] fio. https://github.com/axboe/fio.

[48] filebench. https://github.com/filebench/filebench/wiki.

[49] Stream ids and i/o hints. https://lwn.net/Articles/685499/.

[50] Redis. https://redis.io.

[51] Redis persistence. https://redis.io/topics/persistence.

[52] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM symposium on Cloud computing, pages 143–154. ACM, 2010.

[53] tc(8). https://linux.die.net/man/8/tc.

[54] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and Peter Desnoyers. Evolving

ext4 for shingled disks. In Proceedings of FAST’17: 15th USENIX Conference on

File and Storage Technologies, volume 1, page 105, 2017.

http://www.t13.org/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://kafka.apache.org/
https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://github.com/axboe/fio
https://github.com/filebench/filebench/wiki
https://lwn.net/Articles/685499/
https://redis.io
https://redis.io/topics/persistence
https://linux.die.net/man/8/tc

106

[55] Zev Weiss, Sriram Subramanian, Swaminathan Sundararaman, Nisha Talagala,

Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Anvil: Advanced vir-

tualization for modern non-volatile memory devices. In FAST, pages 111–118,

2015.

[56] Ricardo Koller, Leonardo Marmol, Raju Rangaswami, Swaminathan Sundarara-

man, Nisha Talagala, and Ming Zhao. Write policies for host-side flash caches. In

FAST, pages 45–58, 2013.

[57] Sangwook Kim, Hwanju Kim, Sang-Hoon Kim, Joonwon Lee, and Jinkyu Jeong.

Request-oriented durable write caching for application performance. In USENIX

Annual Technical Conference, pages 193–206, 2015.

[58] Xiongzi Ge, Zhichao Cao, Pradeep Ganesan, David Du, and Dennis Hahn. On-

estore: Integrating local and cloud storage with access hints. In SoCC poster

session, 2014.

[59] Tian Luo, Rubao Lee, Michael Mesnier, Feng Chen, and Xiaodong Zhang.

hstorage-db: heterogeneity-aware data management to exploit the full capability

of hybrid storage systems. Proceedings of the VLDB Endowment, 5(10):1076–1087,

2012.

[60] David Du, Dingshan He, Changjin Hong, Jaehoon Jeong, Vishal Kher, Yongdae

Kim, Yingping Lu, Aravindan Raghuveer, and Sarah Sharafkandi. Experiences

in building an object-based storage system based on the osd t-10 standard. In

Proceedings of MSST, volume 6, 2006.

[61] A storage standards update. https://lwn.net/Articles/684264/.

[62] Dingshan He, Xianbo Zhang, David HC Du, and Gary Grider. Coordinating

parallel hierarchical storage management in object-base cluster file systems. In

Proceedings of the 23rd IEEE Conference on Mass Storage Systems and Technolo-

gies (MSST), 2006.

[63] Tracy F Sienknecht, Richard J Friedrich, Joseph J Martinka, and Peter M Frieden-

bach. The implications of distributed data in a commercial environment on the

https://lwn.net/Articles/684264/

107

design of hierarchical storage management. Performance Evaluation, 20(1-3):3–25,

1994.

[64] Application tiering and tiered storage. https://partnerdirect.dell.com/

sites/channel/en-us/documents/cb120_application_tiering_and_tiered_

storage.pdf.

[65] Fully automated storage tiering (fast). https://www.emc.com/corporate/

glossary/fully-automated-storage-tiering.html.

[66] Ibm ds8880 hybrid storage. https://www-03.ibm.com/systems/storage/

hybrid-storage/ds8000/index.html.

[67] Adaptive optimization for hpe 3par storeserv storage. https://www.hpe.com/

h20195/V2/GetPDF.aspx/4AA4-0867ENW.pdf.

[68] Netapp virtual storage tier. http://www.netapp.com/us/media/ds-3177-0412.

pdf.

[69] Cheng Li, Philip Shilane, Fred Douglis, Darren Sawyer, and Hyong Shim. Assert

(! defined (sequential i/o)). In HotStorage, 2014.

[70] The disksim simulation environment (v4.0). http://www.pdl.cmu.edu/

DiskSim/.

[71] Msr cambridge traces. http://iotta.snia.org/traces/388.

[72] Netapp e-series product comparison. http://www.netapp.com/us/products/

storage-systems/e5400/e5400-product-comparison.aspx.

[73] Alberto Miranda and Toni Cortes. Craid: online raid upgrades using dynamic hot

data reorganization. In FAST, pages 133–146, 2014.

[74] Ishwar Krishnan Sethi and GPR Sarvarayudu. Hierarchical classifier design using

mutual information. IEEE Transactions on pattern analysis and machine intelli-

gence, (4):441–445, 1982.

https://partnerdirect.dell.com/sites/channel/en-us/documents/cb120_application_tiering_and_tiered_storage.pdf
https://partnerdirect.dell.com/sites/channel/en-us/documents/cb120_application_tiering_and_tiered_storage.pdf
https://partnerdirect.dell.com/sites/channel/en-us/documents/cb120_application_tiering_and_tiered_storage.pdf
https://www.emc.com/corporate/glossary/fully-automated-storage-tiering.html
https://www.emc.com/corporate/glossary/fully-automated-storage-tiering.html
https://www-03.ibm.com/systems/storage/hybrid-storage/ds8000/index.html
https://www-03.ibm.com/systems/storage/hybrid-storage/ds8000/index.html
https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA4-0867ENW.pdf
https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA4-0867ENW.pdf
http://www.netapp.com/us/media/ds-3177-0412.pdf
http://www.netapp.com/us/media/ds-3177-0412.pdf
http://www.pdl.cmu.edu/DiskSim/
http://www.pdl.cmu.edu/DiskSim/
http://iotta.snia.org/traces/388
http://www.netapp.com/us/products/storage-systems/e5400/e5400-product-comparison.aspx
http://www.netapp.com/us/products/storage-systems/e5400/e5400-product-comparison.aspx

108

[75] Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th

international conference on Computational linguistics-Volume 1, pages 1–7. Asso-

ciation for Computational Linguistics, 2002.

[76] Michael P Mesnier, Matthew Wachs, Raja R Sambasivan, Alice X Zheng, and Gre-

gory R Ganger. Modeling the relative fitness of storage. In ACM SIGMETRICS

Performance Evaluation Review, volume 35, pages 37–48. ACM, 2007.

[77] Gong Zhang, Lawrence Chiu, Clem Dickey, Ling Liu, Paul Muench, and Sangeetha

Seshadri. Automated lookahead data migration in ssd-enabled multi-tiered storage

systems. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, pages 1–6. IEEE, 2010.

[78] Kernel asynchronous i/o (aio) support for linux. http://lse.sourceforge.net/

io/aio.html.

[79] Bumjoon Seo, Sooyong Kang, Jongmoo Choi, Jaehyuk Cha, Youjip Won, and

Sungroh Yoon. Io workload characterization revisited: A data-mining approach.

IEEE Transactions on Computers, 63(12):3026–3038, 2014.

[80] Yanpei Chen, Kiran Srinivasan, Garth Goodson, and Randy Katz. Design im-

plications for enterprise storage systems via multi-dimensional trace analysis. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-

ples, pages 43–56. ACM, 2011.

[81] Vasily Tarasov, Santhosh Kumar, Jack Ma, Dean Hildebrand, Anna Povzner,

Geoff Kuenning, and Erez Zadok. Extracting flexible, replayable models from

large block traces. In FAST, volume 12, page 22, 2012.

[82] Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos Kozyrakis. E-

cho: Recreating network traffic maps for datacenters with tens of thousands of

servers. In Workload Characterization (IISWC), 2012 IEEE International Sym-

posium on, pages 14–24. IEEE, 2012.

http://lse.sourceforge.net/io/aio.html
http://lse.sourceforge.net/io/aio.html

109

[83] Yiying Zhang, Gokul Soundararajan, Mark W Storer, Lakshmi N Bairavasun-

daram, Sethuraman Subbiah, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-

Dusseau. Warming up storage-level caches with bonfire. In FAST, pages 59–72,

2013.

[84] Windows superfetch. https://msdn.microsoft.com/en-us/library/windows/

hardware/dn653317(v=vs.85).aspx.

[85] Lipeng Wan, Zheng Lu, Qing Cao, Feiyi Wang, Sarp Oral, and Bradley Settlemyer.

Ssd-optimized workload placement with adaptive learning and classification in

hpc environments. In Mass Storage Systems and Technologies (MSST), 2014 30th

Symposium on, pages 1–6. IEEE, 2014.

[86] Zhengyu Yang, Jianzhe Tai, and Ningfang Mi. Grem: Dynamic ssd resource al-

location in virtualized storage systems with heterogeneous vms. In 35th IEEE

International Performance Computing and Communications Conference (IPCC-

C). IEEE, 2016.

[87] Juniper wx/wxc series. http://www.juniper.net/support/eol/wx_hw.html.

[88] Riverbed wan optimization. http:http://www.riverbed.com/products/

steelhead/.

[89] Cisco wae-7371. http://www.cisco.com/c/en/us/td/docs/app_ntwk_

services/waas/wae/installation/7341-7371/guide/7341gd/7300spec.

html.

[90] Infineta dms. http://www.infostor.com/imagesvr_ce/4166/ESG%20Lab%

20Validation%20Infineta%20Data%20Mobility%20Switch%20June%2011.pdf.

[91] Emir Halepovic, Carey Williamson, and Majid Ghaderi. Enhancing redundant

network traffic elimination. Computer Networks, 56(2):795–809, 2012.

[92] Haoyu Song and John W Lockwood. Efficient packet classification for network

intrusion detection using fpga. In Proceedings of the FPGA’05, pages 238–245.

ACM, 2005.

https://msdn.microsoft.com/en-us/library/windows/hardware/dn653317(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn653317(v=vs.85).aspx
http://www.juniper.net/support/eol/wx_hw.html
http:http://www.riverbed.com/products/steelhead/
http:http://www.riverbed.com/products/steelhead/
http://www.cisco.com/c/en/us/td/docs/app_ntwk_services/waas/wae/installation/7341-7371/guide/7341gd/7300spec.html
http://www.cisco.com/c/en/us/td/docs/app_ntwk_services/waas/wae/installation/7341-7371/guide/7341gd/7300spec.html
http://www.cisco.com/c/en/us/td/docs/app_ntwk_services/waas/wae/installation/7341-7371/guide/7341gd/7300spec.html
http://www.infostor.com/imagesvr_ce/4166/ESG%20Lab%20Validation%20Infineta%20Data%20Mobility%20Switch%20June%2011.pdf
http://www.infostor.com/imagesvr_ce/4166/ESG%20Lab%20Validation%20Infineta%20Data%20Mobility%20Switch%20June%2011.pdf

110

[93] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. Netfpga: reusable

router architecture for experimental research. In Proceedings of the ACM workshop

on Programmable routers for extensible services of tomorrow, pages 1–7. ACM,

2008.

[94] Muhammad Bilal Anwer and Nick Feamster. Building a fast, virtualized data

plane with programmable hardware. In Proceedings of the 1st ACM workshop on

Virtualized infrastructure systems and architectures, pages 1–8. ACM, 2009.

[95] Ashok Anand, Vyas Sekar, and Aditya Akella. Smartre: an architecture for co-

ordinated network-wide redundancy elimination. In ACM SIGCOMM Computer

Communication Review, volume 39, pages 87–98. ACM, 2009.

[96] Keren Jin and Ethan L. Miller. The effectiveness of deduplication on virtual

machine disk images. In Proceedings of the SYSTOR 2009, SYSTOR ’09, pages

7:1–7:12, New York, NY, USA, 2009. ACM.

[97] Jaehong Min, Daeyoung Yoon, and Youjip Won. Efficient deduplication techniques

for modern backup operation. IEEE Transactions on Computers, 60(6):824–840,

2011.

[98] Dong Yin, Deepak Unnikrishnan, Yong Liao, Lixin Gao, and Russell Tessier.

Customizing virtual networks with partial fpga reconfiguration. ACM SIGCOMM

Computer Communication Review, 41(1):125–132, 2011.

[99] Austin Appleby. Murmurhash 64 bits variant. https://sites.google.com/

site/murmurhash/.

[100] Michael O Rabin. Fingerprinting by random polynomials. Center for Research in

Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[101] Yi Liu, Xiongzi Ge, David Hung-Chang Du, and Xiaoxia Huang. Par-bf: a parallel

partitioned bloom filter for dynamic data sets. The International Journal of High

Performance Computing Applications, 30(3):259–275, 2016.

[102] De5-net fpga development kit. http://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English&No=526.

https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=526
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=526

111

[103] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching

and zipf-like distributions: Evidence and implications. In Proceeding of the IEEE

INFOCOM’99, volume 1, pages 126–134. IEEE, 1999.

[104] Aaron Gember, Robert Grandl, Junaid Khalid, and Aditya Akella. Design and

implementation of a framework for software-defined middlebox networking. In

Proceedings of the ACM SIGCOMM 2013, pages 467–468. ACM, 2013.

[105] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Hon-

da, Roberto Bifulco, and Felipe Huici. Clickos and the art of network function

virtualization. In Proceedings of the 11th NSDI, pages 459–473. USENIX, 2014.

[106] Dong Yin, Deepak Unnikrishnan, Yong Liao, Lixin Gao, and Russell Tessier.

Customizing virtual networks with partial fpga reconfiguration. ACM SIGCOMM

Computer Communication Review, 41(1):125–132, 2011.

[107] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C.

Mogul. Enforcing network-wide policies in the presence of dynamic middlebox

actions using flowtags. In Proc. 11th USENIX NSDI, pages 543–546. USENIX

Association, 2014.

[108] Enhanced platform awareness for pcie devices. https://wiki.openstack.org/

wiki/Enhanced-platform-awareness-pcie.

[109] Sean C Rhea, Kevin Liang, and Eric Brewer. Value-based web caching. In Pro-

ceedings of the 12th international conference on World Wide Web, pages 619–628.

ACM, 2003.

[110] Dingde Jiang, Lei Shi, Peng Zhang, and Xiongzi Ge. Qos constraints-based energy-

efficient model in cloud computing networks for multimedia clinical issues. Multi-

media Tools and Applications, pages 1–22, 2016.

[111] Dingde Jiang, Zhengzheng Xu Xu, Jindi Liu, and Wenhui Zhao. An optimization-

based robust routing algorithm to energy-efficient networks for cloud computing.

Telecommunication Systems, pages 1–10, 2015.

https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie
https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie

112

[112] Eyal Zohar, Israel Cidon, and Osnat Ossi Mokryn. The power of prediction: Cloud

bandwidth and cost reduction. In Proceedings of the SIGCOMM 2011, volume 41,

pages 86–97. ACM, 2011.

[113] Timothy Wood, KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der Mer-

we. Cloudnet: dynamic pooling of cloud resources by live wan migration of virtual

machines. In ACM SIGPLAN Notices, volume 46, pages 121–132. ACM, 2011.

[114] Phlip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. Wan-optimized

replication of backup datasets using stream-informed delta compression. ACM

Transactions on Storage (TOS), 8(4):13, 2012.

[115] Sejun Song, Daehee Kim, Hyungbae Park, Baek-Young Choi, and Taesang Choi.

Co-reduce: Collaborative redundancy reduction service in software-defined net-

works. In Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics in

Middleboxes and Network Function Virtualization, pages 61–66. ACM, 2015.

[116] Deepak Unnikrishnan, Ramakrishna Vadlamani, Yong Liao, Abhishek Dwaraki,

Jérémie Crenne, Lixin Gao, and Russell Tessier. Scalable network virtualization

using fpgas. In Proceedings of the FPGA’10, pages 219–228. ACM, 2010.

[117] Muhammad Bilal Anwer, Murtaza Motiwala, Mukarram bin Tariq, and Nick

Feamster. Switchblade: a platform for rapid deployment of network protocols on

programmable hardware. ACM SIGCOMM Computer Communication Review,

41(4):183–194, 2011.

[118] NM Chowdhury and Raouf Boutaba. A survey of network virtualization. Com-

puter Networks, 54(5):862–876, 2010.

[119] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert

Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. Opennf: Enabling inno-

vation in network function control. In Proceedings of the 2014 ACM Conference

on SIGCOMM, SIGCOMM ’14, pages 163–174, New York, NY, USA, 2014. ACM.

[120] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi.

Design and implementation of a consolidated middlebox architecture. In NSDI,

pages 323–336, 2012.

113

[121] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-

nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: network

processing as a cloud service. ACM SIGCOMM Computer Communication Re-

view, 42(4):13–24, 2012.

[122] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and

Minlan Yu. Simple-fying middlebox policy enforcement using sdn. In Proceedings

of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 27–38. ACM, 2013.

[123] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Kr-

ishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating

system is the control plane. In 11th USENIX Symposium on Operating System-

s Design and Implementation (OSDI 14), pages 1–16, Broomfield, CO, October

2014. USENIX Association.

[124] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Hon-

da, Roberto Bifulco, and Felipe Huici. Clickos and the art of network function

virtualization. In 11th USENIX Symposium on NSDI, pages 459–473, Seattle,

WA, April 2014. USENIX Association.

Appendix A

Glossary and Acronyms

A.1 Acronyms

Table A.1: Acronyms

Acronym Meaning

SCM Storage Class Memory

SSD Solid State disk

SMR Shingle Magnetic Recording

NRE Network Redundancy Elimination

CDC Content-Defined Chunking

VNRE Virtualized NRE

RE Redundancy Elimination

HDD Hard Disk Drive

PMR Perpendicular Magnetic Recording

PCM Phase Change Memory

IOPS I/Os per second

SCSI Small Computer Systems Interface

LBA Logical Block Address

HTTP Hyper Text Transfer Protocol

Continued on next page

114

115

Table A.1 – continued from previous page

Acronym Meaning

HTTPS HTTP over Transport Layer Security

DRAM Dynamic Random Access Memory

DM Device Mapper

LVM Logical Volume Manager

API Application Program Interface

POSIX Portable Operating System Interface

HSM Hierarchical Storage Management

SAN Storage Area Network

VM Virtual Machine

FPGA Field-Programmable Gate Arrays

TCP Transmission Control Protocol

FP Finger Print

WAN Wide Area Network

WOA Wide Area Network Optimization Accelerators

PR Partially Reconfigurable

MB Middle Box

AVI Audio Video Interleaved

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

DMA Direct Memory Access

SMTP Simple Mail Transfer Protocol

FTP File Transfer Protocol

RTSP Real Time Streaming Protocol

DPI Deep Packet Inspection

NFV Network Function Virtualization

NFVI NFV Infrastructure

IaaS Infrastructure as a Service

TLP Transaction Layer Packet

DPD Deduplication-Pending Data

Continued on next page

116

Table A.1 – continued from previous page

Acronym Meaning

DPDK Data Plane Development Kit

DFA Deterministic Finite Automata

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background and Motivations
	Contributions
	Organization

	A Flexible Framework to Study I/O Access Hints in Heterogeneous Storage Systems
	Introduction
	Background
	HintStor
	Prerequisite
	HintStor framework

	Evaluation
	File System Data Classification
	Stream ID
	Cloud Prefetch

	Related work
	Conclusion

	Workload-Aware Data Management across Differentiated Storage Pools
	Introduction
	I/O Workload Analysis and Motivations
	Preliminary of I/O workload analysis
	I/O Traces
	Observations, Analysis and Motivations

	The Framework of ChewAnalyzer
	Overview
	ChewAnalyzer
	Storage Manager
	Enhancements: ChewAnalyzer++

	Case Study with A 3-Pool Architecture
	Evaluation
	Related work
	Tiered Storage Management
	IO Workload Characterization
	SSD and SCM Deployment in Storage Systems

	Conclusion

	Flexible and Efficient Acceleration for Network Redundancy Elimination
	Introduction
	Background and Motivations
	FPGA Accelerator and Quick Prototyping
	The Role of Chunking Policy
	Flexibility in Configuring Chunking Policy

	VNRE Design
	VNRE Controller
	Computation Process
	Monitor

	VNRE Evaluation
	Speedup Ratio of CDC Throughput by Using FPGA Accelerator
	Improvements from Flexibly Configured Chunking Policy
	Overhead Analysis

	OpenANFV: Accelerating Network Function Virtualization with a Consolidated Framework in OpenStack
	Architecture and Implementation
	OpenANFV Evaluation

	Related Work
	Conclusion

	Conclusion
	 Appendix A. Glossary and Acronyms
	Acronyms

