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Abstract 

Sleep is a universal part of human physiology yet sleep disturbances such as short 

sleep duration and sleep apnea are common. Cardiovascular disease and its risk factors 

are also common, and it has been hypothesized that sleep disturbances may be linked to 

greater cardiovascular risk. This dissertation reports on epidemiological associations of 

sleep duration with eating behaviors and obesity, as well as associations between 

obstructive sleep apnea and cardiovascular events. 

 Using data from Project EAT, the first manuscript examines the association 

between several self-reported sleep indices and problematic eating behaviors in young 

adults. Late sleep timing was most consistently associated with poor eating behaviors, 

while fewer associations were found for other sleep indices. 

 In the second manuscript, data from the Multi-Ethnic Study of Atherosclerosis 

were used to evaluate the association between actigraphy-measured sleep indices and 

adiposity in older adults. Those sleeping less than 5 hours per night had higher BMIs, 

larger waists, and more kilograms of body fat than those who slept 7-8 hours a night. 

Those with low sleep efficiency and high sleep variability also had greater adiposity. 

 Using data from the Sleep Heart Health Study, the third manuscript examines the 

relationship between daytime sleepiness and obstructive sleep apnea in relation to 

incident coronary heart disease and stroke. We found no significant interaction or 

synergy, indicating that measuring both sleep characteristics provides little additional 

information about cardiovascular disease incidence. 
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 In the fourth manuscript, we examine the association between diagnosed sleep 

apnea and atherosclerotic cardiovascular disease among patients with atrial fibrillation in 

the MarketScan administrative databases. Counterintuitively, we found that sleep apnea 

was associated with reduced risk of stroke and myocardial infarction, potentially due to 

error in the measurement of the exposure.  

 This dissertation explores the epidemiology of sleep and cardiometabolic disease, 

including its clinical and public health implications.  
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Chapter 1: Overview of sleep and health 

Sleep is a universal aspect of human physiology that is essential for health. Sleep 

health is defined in terms of five dimensions: duration, continuity or efficiency, timing, 

alertness/sleepiness, and satisfaction/quality.1 Due to its importance, there is now a 

Healthy People 2020 topic devoted to sleep health. Its objectives include increasing 

treatment of sleep apnea, decreasing drowsy driving related car crashes, and increasing 

hours of sleep for both adults and high school students.2  

An estimated 25-30% of American adults suffer from sleep problems3 such as 

sleep apnea, insomnia, narcolepsy, restless leg syndrome, or sleep deficiency.4 On the 

individual level, sleep deprivation/disorders have been associated with cardiovascular 

risk factors and diseases, loss of productivity, increased injuries, and billions of dollars in 

direct medical costs.5 On a larger scale, disasters such as Three Mile Island, Chernobyl, 

and the grounding of the Exxon Valdez oil tanker have been attributed to individual 

errors stemming from fatigue, sleep loss, or night shift failures. 6 

Because sleep apnea and short sleep duration are highly prevalent, have adverse 

health effects, and are included in Healthy People 2020, they will be the primary focus of 

this dissertation.  Since children and adolescents have different sleep needs, this 

dissertation will focus on adults.  

Introduction to sleep duration 

Sleep duration refers to the amount of sleep an individual gets in a day. 

Definitions for research vary, but for adults short sleep is often defined as <6 or <7 hours, 
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while long sleep often refers to >8 or 9 hours.  Currently, the American Academy of 

Sleep Medicine and the Sleep Research Society recommends that adults should sleep at 

least 7 hours a night for optimal health.7 However, Behavioral Risk Factor Surveillance 

System (BRFSS) data from 2014 demonstrated that 33.8% of Americans were not 

meeting this recommendation.8 From 1985 to 2012, mean sleep time in the United States 

decreased from 7.4 hours/night to 7.2 hours/night and the percent of adults sleeping less 

than 6 hours/night increased from 22.3% to 29.2%, though the numbers have been stable 

since 2004.9 69.2% of Americans reported that they did not get enough sleep at least one 

day in the previous month.10 Possible explanations for the decreases in sleep duration 

since the 1980s include new technologies, environment lighting, and long working 

hours.11  

Due to decreases in sleep duration over time, many studies on sleep duration 

focus on short sleep duration or sleep deprivation, while fewer examine long sleep. Long 

sleep duration is less common (5.0-20.1%) and often occurs concurrently with other 

comorbidities, such as depression, though the causal relationship is unclear.12-14 

Measurement of sleep duration (in research settings) 

Sleep duration can be measured either subjectively using self-report methods or 

objectively with actigraphy or polysomnography. Each of the different methods varies in 

terms of cost, burden, and validity and the choice of measurement can affect a study’s 

results. 

Self-report methods of sleep duration range from a single question to sleep diaries 

to validated questionnaires. Survey questions may include anything from one question 
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asking about usual sleep time to several questions inquiring about differences in weekday 

and weekend sleep, sleep quality, and difficulty falling asleep. In a sleep diary/log, 

participants are asked to record the exact time they turn off the lights for sleep and the 

time they wake up in the morning. A variety of validated sleep questionnaires exist, 

including the Pittsburgh Sleep Quality Index (PSQI),15 among others. Although it is 

assumed that more questions lead to more valid measures of sleep duration, there is no 

research comparing the different types of questions in adults. Early epidemiological 

studies relied on self-reported measures of sleep duration due to ease and cost-

effectiveness.  

One objective measure of sleep duration is actigraphy. An actigraph is a watch-

like device that uses an acceleration sensor to continuously monitor activity with little 

interference from sleep medicine physicians or study staff. Activity can be measured 

every one-tenth of a second and several weeks worth of movements can be measured and 

stored.16 Software algorithms are then used to download the raw data onto a computer 

and translate it into usable sleep and wake time information, such as total sleep time, 

percent of time spent asleep, total wake time, percent of time spent awake, and number of 

awakenings.17,18 Many actigraphs employ event markers, which participants use to mark 

bed and wake times. Actigraphy is often used in combination with sleep logs for 

verification. To increase reliability and minimize individual differences, actigraphy is 

best used for at least five days.19 Because it measures sleep at home for a longer time 

period, actigraphy can provide information on typical sleep patterns. 
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Polysomnography is the gold standard for measurement of sleep duration. This 

procedure, which can occur either in a sleep lab or at home, records multiple 

physiological measures, including the electroencephalogram (EEG), electrooculogram 

(EOG), and chin electromyogram (EMG) to determine the stages of sleep.  For sleep 

duration, relevant parameters recorded through polysomnography include lights out, 

lights on, total recording time, total sleep time, sleep efficiency, sleep latency, and wake 

after sleep onset (See Table 1.1 for definitions).20 Because it requires extensive 

equipment, polysomnography is more expensive than self-report questionnaires or 

actigraphy. Another limitation of polysomnography is that it is generally used to assess 

one night of sleep, so it cannot detect habitual sleep patterns. 

Table 1.1: Dictionary of select sleep terms 
Total recording time 

(TRT) 

Time from lights out to lights on  

Total sleep time (TST) All REM and NREM sleep during a sleep episode  

Sleep efficiency (TST x 100)/TRT 

Sleep latency Time from lights out to the start of sleep 

Wake after sleep onset Stage W sleep after sleep onset until lights on, formerly 

duration of wake during the sleep period 

NREM Sleep Non-rapid eye movement sleep 

N1 Sleep Characterized by slow eye movements and decreased 

muscle activity 

N2 Sleep  Makes up half of sleep, characterized by sleep spindles and 

K complexes 

N3 Sleep Slow-wave sleep, characterized by high-amplitude and low-

frequency waves and spindles 

REM Sleep Rapid eye movement sleep, characterized by low amplitude 

and high-frequency waves 

Arousal Index Number of arousals per hour of sleep  

 

Several studies have compared the validity of the different measurements of sleep 

duration. Self-reported and objectively measured sleep are moderately correlated (r = 
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0.43-0.55),21-23 with mean subjective sleep being almost an hour more. Actigraphy and 

polysomnography measured sleep duration have been highly correlated (r = 0.89-

0.97)16,18,24,25 though the association is less strong among people who have sleep 

disorders.26,27 Compared to polysomnography, actigraphy has high sensitivity but low 

specificity, as its ability to detect wakefulness is limited in some populations.17 However, 

because polysomnography uses many sensors and sometimes occurs away from home, its 

use may affect sleep. Specifically, the first night a participant is monitored in a sleep 

study, he or she may experience lower sleep efficiency, less REM sleep, and longer REM 

latency.28-30  

In sum, each sleep measurement has inherent strengths and limitations and the 

determination of the appropriate method depends on the needs and budget of the study as 

well as participant burden.  

Correlates of short sleep duration 

Sex 

In most studies, sleep duration was about 0.4-0.8 hours longer for women than 

men, whether it was measured by self-report, actigraphy, or polysomnography.13,31-34 The 

longer sleep duration consistently observed in women may be due to levels of hormones 

during menstruation, pregnancy, and menopause, or sociological factors such as gender 

roles.35  
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Age 

In most studies, sleep duration declined with increasing age by approximately ten 

minutes per decade.31,34,36 Wake after sleep onset (WASO) also increases with age.31 

Relative to younger individuals, older adults tend to have higher N1 and N2 stage sleep, 

lower N3, lower sleep efficiency, and higher arousal index (see table 1.1 for 

definitions).37  

Figure 1.1: Total Sleep Time by Age  
 

 

(from Ohayon et al 2004) 

Race/ethnicity 

Previous research has found racial/ethnic differences in sleep duration. In most 

studies, using both self-report and objective measures of sleep, Whites slept longer than 

other racial minorities. 32,38,39 Several studies have found that relative to other 

racial/ethnic groups, a greater percentage of African Americans were more likely to sleep 



 

 7 

both shorter (<6 hours) and longer durations (>9 hours), compared to the recommended 

amount (7-8 hours),33,40-43 though others found no differences.34 In the MESA sleep 

study, White participants slept more than Hispanic and Chinese participants, who slept 

more than Blacks.13 Similarly, in NHIS, a greater proportion of Blacks slept less than six 

hours compared to Mexican Americans, Other Hispanics and Other Non-Hispanics, while 

Whites had the smallest proportion. 41 

Other 

Associations between short sleep duration and measures of socioeconomic status, 

such as income and education, have not been consistent across studies. Although most 

studies have found that short sleep is associated with lower education and 

income,34,36,42,44 one study found a weak association between more education and income 

and less sleep.40 Additionally, individuals who are unmarried have a greater likelihood of 

short sleep, compared to married individuals.36,40,45 Single parents also had a shorter sleep 

duration than adults in two parent families.46 For alcohol, binge drinking has been 

associated with short sleep.36 Both short and long sleep duration have been longitudinally 

associated with depression.47  

Introduction to sleep apnea 

Obstructive sleep apnea (OSA) is a form of sleep-disordered breathing 

characterized by the repetitive partial or total collapse of the upper airway during sleep. 

In severe cases, patients suffer from hypoxia (low oxygen in tissues), arousal, and sleep 

fragmentation, which influence daytime functioning by leading to daytime sleepiness, 
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reduced cognitive function, and lower quality of life.48 This contrasts with central sleep 

apnea, where there is no obstruction and no effort to breathe.49 Symptoms of OSA 

include loud snoring and visible pauses in breathing while sleeping, although 85% of 

people are asymptomatic and unaware that they have the condition.50  

Pathophysiology 

In humans, the upper airway consists of the extrathoracic trachea, pharynx, 

larynx, and nose, and is used for speech, digestion, and respiration.51,52 In contrast to 

other mammals, the upper airway in humans has little support due to a floating hyoid 

bone, so the pharynx is only supported on its ends. During waking hours, it relies on 

muscle activity to remain open, but during sleep this activity ceases or is diminished, 

which results in narrowing or collapsing of the pharynx.53 Specifically, the airway can 

collapse for two reasons: intraluminal negative pressure during inspiration and 

extraluminal pressure resulting from the soft tissue and bony structure surrounding the 

airway.54 This collapse results in hypoxia and hypercapnia (high carbon dioxide), which 

often stimulates arousal from sleep. 
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Figure 1.2: Pathophysiology of sleep apnea 
 

 

White 2005 

Diagnosis 

An OSA diagnosis begins with a sleep history and physical examination, which 

focuses on signs of obesity, upper airway narrowing, and other OSA risk factors.55 If the 

questioning and physical examination indicate the patient is at risk, the patient will 

undergo full-night polysomnography. In addition to the EEG, EOG, and EMG used in the 

measurement of sleep duration, the measurement of sleep apnea also requires oronasal 

airflow, arterial oxygen saturation, respiratory effort, and ECG or heart rate.20 This 

procedure identifies obstructive apneas, defined for research as a clear decrease of greater 

than 50% in airflow at the nose or mouth that occurs for at least ten seconds, and 

hypopneas, which are a reduction in breathing associated with oxygen desaturation or 

arousal.20 The exact reduction in breathing and oxygen desaturation used to define 

hypopneas varies across studies.  
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Apneas and hypopneas are then used to calculate the apnea-hypopnea index 

(AHI), the number of apneas and hypopneas per hour of sleep. AHI cutpoints of 5, 15, 

and 30 events per hour have been used to indicate mild, moderate, and severe OSA, 

respectively.50 A diagnosis of OSA syndrome is given if the AHI exceeds 5 and there are 

symptoms of daytime sleepiness. Alternatively, the respiratory disturbance index (RDI), 

defined as the number of apneas, hypopneas, and respiratory effort-related arousals 

(RERAs) per hour of sleep, is sometimes used.   

Although polysomnography is the gold standard, it has several limitations. 

Polysomnography sometimes requires use of a sleep lab, though it can be done at home. 

It is also expensive because of the cost of the equipment, and trained staff are needed to 

interpret the data. Additionally, the sensors can make normal sleep difficult. Due to these 

limitations, epidemiological studies have often used other definitions of sleep apnea, 

including self-reported diagnosis, administrative billing codes, and habitual snoring as a 

surrogate. Survey measures, such as the Berlin Questionnaire, have also been developed 

to categorize people as being at high or low risk for sleep apnea without the use of 

polysomnography.56 However, self-report and administrative data measures only capture 

those who were actually screened for sleep apnea, and with sleep apnea symptoms strong 

enough to present for diagnosis, not those with high AHIs but no symptoms. OSA and 

OSA syndrome are underdiagnosed in the community, with approximately 2-3 times as 

many people experiencing symptoms than have a diagnosis.57 Thus, using self-reported 

diagnosis or administrative data to measure sleep apnea may misclassify individuals 

whose AHI would meet the criteria for sleep apnea as not having the condition.  
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Prevalence/Incidence 

Because polysomnography is required to diagnose sleep apnea, its prevalence in 

the population has only been known for approximately twenty-five years. Previously, 

OSA was only measured among people that presented to sleep clinics because there is no 

national monitoring system for tracking OSA prevalence. Now, numerous studies in 

countries across the world have used polysomnography to estimate the prevalence of 

OSA in the general population.58-71 In these studies, the prevalence of OSA, defined as an 

AHI ≥ 5 ranges from 9-37% in men and 4-50% in women, while the prevalence of those 

with an AHI ≥ 15 was 5-16% in men and in 1-20% women.72 The prevalence of OSA has 

differed across these studies due to differences in equipment, definitions, study design, 

and study populations. Using 2011-2013 data from the Multi-Ethnic Study of 

Atherosclerosis, which included a community-based sample of men and women aged 54-

93, the prevalence of AHI ≥ 15 was 33.8%, the prevalence of AHI ≥ 30 was 15.0% and 

prevalence of OSA syndrome was 9.8%.13 Over the past 2 decades, the prevalence of 

OSA has increased by 14-55%, depending on age, sex, and severity.65 This may be due in 

part to the obesity epidemic. 

Little data exists on the incidence of OSA, but one study of younger, healthier 

adults found that 10% of participants with an AHI<5 at baseline had an AHI >15 five 

years later.73 

Risk factors 

 A rich body of literature exists on the risk factors for OSA. However, many 

studies are outdated and rely on case studies, animal models, or small sample sizes. 
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Herein we will focus on key, widely-recognized risk factors, which include sex, weight, 

age, and anatomy, among others. 

Sex 

Both clinical and epidemiological studies have shown that men have a higher 

prevalence of OSA than women.58,60,62-64,68-71,74 though the male-to-female ratio is much 

higher in clinical populations where all have a diagnosis of sleep apnea, compared to 

population-based epidemiological studies where fewer study participants have a 

diagnosis. 75 

A smaller percentage of women present with symptoms such as snoring than 

men,75 however, some limited evidence suggests that women may present with different 

symptoms, including fatigue and lack of energy.76,77 Women also have a lower AHI than 

men in NREM but not REM sleep.78 

There are pathophysiological reasons why there are differences in OSA 

prevalence between men and women. Men have longer upper airways than women, 

which may make them more likely to collapse.79 Limited evidence has also shown that 

men have more upper airway fat than women,80 though there has been no difference in 

other measures such as upper airway collapsibility and pharyngeal muscle activation.81-83 

Weight 

Evidence from a variety of studies and an array of study designs strongly suggest 

that obesity is causally associated with OSA. A dose-response relationship has been 

found in many epidemiological studies, where higher BMIs are associated with higher 

AHI.58,59,61-64,68,74,84 Longitudinal studies have demonstrated that both high baseline 
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weight and weight change can speed up the development of more severe OSA.65,73,85 In 

randomized trials, weight loss has been associated with decreases in the severity of 

OSA.86 Weight loss has also been associated with decreased upper airway collapsibility.87  

It is currently unclear what measure of obesity is most related to OSA. Neck 

circumference has been used in prediction models for OSA,88 likely because it has been 

more strongly associated with OSA than body mass index.89 However, there may be sex 

differences; in one study neck fat was more strongly associated with AHI in women, 

while abdominal obesity was stronger in men.90 In another study, OSA had a significant 

positive association with visceral fat for men, but not women.91 

Excess body weight may exacerbate OSA through several different pathways. 

Animal studies suggest that parapharangeal neck fat may directly compress the upper 

airway.92 Additionally, abdominal adiposity may lead to displacement of the diaphragm, 

making the airway more likely to collapse.93  

Age 

The higher prevalence of sleep apnea among older adults has been consistent 

across studies.49,59,60,62,94,95 The prevalence increases steadily until around age 60, after 

which it remains constant. OSA’s prevalence is thought to be higher in older adults due to 

age-related decreases in the negative pressure reflex, increases in parapharyngeal fat 

pads, lengthening of the soft palate, and changes in the bones around the pharynx.96 

There is some disagreement over whether OSA in older adults is a separate entity as 

many of its symptoms occur naturally with aging.  
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Anatomy 

Imaging studies have found several anatomic features more common among 

people with OSA. The most common physical abnormality is a small upper airway, 

which makes it collapse more easily.53 The upper airway collapse can be due to skeletal 

abnormalities, such as short mandible and maxilla length, as well as an inferiorly 

displaced hyoid bone.97,98 Soft tissue abnormalities, such as a large tongue or soft palate, 

may also make the upper airway smaller. Among people with obesity, pharyngeal fat 

deposits can also narrow and collapse the upper airway. Those who have poor control 

over upper airway muscles during sleep and a low arousal threshold may also be more 

likely to develop OSA.54  

Other 

Some studies have found racial differences in OSA, but not all adjusted for 

important confounders like age and BMI.  It has been reported that African Americans 

have more severe OSA than whites, 99 but results were not consistent across studies, 

where some found no association95 or associations only among younger adults.100 In 

MESA Sleep, Hispanics and Chinese Americans had a higher mean AHI (16.6 and 16.0, 

respectively than whites (13.3) and blacks (14.9) before BMI adjustment.13  

Moderate alcohol consumption has been associated with increases in AHI in both 

experimental studies that administered alcohol before bedtime101 and epidemiological 

studies on habitual alcohol use in men but not women.102 Alcohol is also associated with 

longer duration of apnea events,103,104 though mechanisms are unknown.   
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Limited evidence exists on the relationship between smoking and OSA, despite 

many hypothesized pathways.105 Compared to non-smokers, current, heavy smokers are 

at greater risk of sleep disordered breathing.106  

Postmenopausal women have a higher AHI than pre-menopausal women.107 The 

prevalence of OSA is lower among women on hormone replacement therapy,108 though 

this association is likely due to the healthy user effect and thus not causal.109 

Hypothyroidism has been associated with higher AHI, although the relationship 

may be confounded by obesity. 110 111 Mechanistically, hypothyroidism may make the 

upper airway more likely to collapse.111  

Treatment 

The gold standard treatment for OSA is continuous positive airway pressure 

(CPAP), which was first described in 1981.112 CPAP works by using air pressure to keep 

the upper airway open during sleep.113-115 This allows the upper airway to increase in size 

through positive intraluminal pressure. Normally, optimal pressure is identified through 

adjustment during an attended polysomnography session at a sleep clinic.116 CPAP has 

been used to treat mild, moderate, and severe OSA, but difficulties persist with uptake 

and compliance. Within the first two weeks of diagnosis and titration, around 25-30% of 

patients discontinue or fail to begin CPAP treatment.117 Adequate long-term adherence is 

often defined as ≥ 4 hours on 70% of nights,118 however only 50-90% of patients on 

CPAP meet this guideline.119-122  

Because of CPAP’s adherence problems, other methods of PAP treatment have 

been developed. In contrast to CPAP, which delivers a constant pressure, BPAP (bilevel) 
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delivers inspiratory and expiratory positive airway pressure separately. Although some 

patients tolerate BPAP better than CPAP,123 there is no difference in adherence.124 APAP 

(autoadjusting/autotitrating) can automatically select the appropriate level of PAP 

without an attended titration session. Although some individuals may better tolerate 

APAP, there is no consistent evidence that adherence is better than CPAP.125,126 

Oral appliances, including tongue retaining/stabilizing devices and mandibular 

repositioning devices can also be used to treat OSA, especially for those who did not 

respond to or are not good candidates for CPAP.127 For those with severe OSA, oral 

appliances should only be used after trying CPAP due to their lower efficacy.   

Many surgical treatments for OSA exist, including tracheostomy, which can be 

used as a single solution in patients with life-threatening symptoms who don’t respond to 

other treatments.128 Although most data is based on case series, tracheostomies have been 

associated with large decreases in AHI (~80) and oxygen desaturation, and improvements 

in subjective sleepiness.129 Other surgical treatments include radiofrequency ablation, 

palatal implants, uvulopalatal flap (tucks uvula under soft palate), gengioglossus 

advancement, laser-assisted uvuloplasty (removes small portion of uvula or soft palate), 

uvulopalatopharyngoplasty, (removes the uvula, residual tonsillar tissue, part of the soft 

palate, and excess pharyngeal tissue) and maxillomandibular advancement. 

Radiofrequency ablation, which is often used to reduce snoring, and has been associated 

with long-term decreases in AHI, though smaller than PAP treatment.130 Since palatal 

implants are a relatively new treatment option, limited evidence makes its efficacy and 

effectiveness unknown.128 Evidence for the effectiveness of treatments such as laser-
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assisted uvuloplasty, uvulopalatopharyngoplasty, and maxillomandibular advancement is 

based mostly on case series, but suggests that PAP more effectively improves AHI, 

sleepiness, and quality of life.128 

Secondary therapies also exist. Because obesity has such a strong effect on OSA, 

weight loss is a recommended treatment, preferably in combination with PAP or 

surgery.131 Bariatric surgery is one option for weight loss, though research on its effects 

on OSA are limited.131 Positional therapy, which prevents patients from sleeping in the 

supine position, is recommended as a secondary therapy, as the upper airway may 

increase in size in the lateral position. Modafinil can also be used to treat daytime 

sleepiness, as frequent symptom of OSA, among those with OSA that has no discernable 

cause. 

Sleep duration and cardiovascular disease  

Sleep duration has been linked to a variety of cardiovascular outcomes and risk 

factors, especially obesity. Many of the previous studies of sleep duration and 

cardiovascular disease (CVD) and/or risk factors have been cross-sectional or used self-

reported measures of sleep. For the purpose of this review, we will focus on objectively 

measured sleep and/or longitudinal studies. In the Coronary Artery Risk Development in 

Young Adults study (CARDIA), no longitudinal association was found between objective 

short sleep and BMI, though a cross-sectional association was found.132 However, 

CARDIA found that objective short sleep has been longitudinally associated with greater 

c-IMT in men,133 higher kidney filtration rates,134 higher systolic and diastolic blood 
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pressures and increased risk of incident hypertension,135 while longer continuously 

measured objective sleep has been associated with lower incident CAC,136 and higher 

total and LDL cholesterol.137  

Other longitudinal studies, including several meta-analyses, have examined self-

reported sleep and cardiovascular risk factors and outcomes. Several systematic reviews 

and meta-analyses have found prospective associations between short sleep duration and 

obesity (pooled ORs=1.45 [95%CI 1.25-1.67] and 1.55 [95%CI 1.43-1.68]).33,138-141 Short 

sleep duration has been associated with higher levels of C-reactive protein and 

interleukin-6.142 A meta-analysis has indicated that both short and long sleep was 

associated with hypertension, though effects seem to be stronger in younger adults.143 In 

a meta-analysis of prospective studies, a U-shaped relationship was found between sleep 

duration and incident diabetes, with the lowest risk among those who slept 7-8 hours a 

night.144 Meta-analyses have also found that self-reported short and long sleep are 

associated with a variety of cardiovascular outcomes, including coronary heart disease 

and stroke.145 For example, the pooled risk ratio for short sleep and coronary heart 

disease (CHD) was 1.48 (95% CI 1.22-1.80), while for long sleep and CHD it was 1.38 

(95%CI 1.15-1.66). Many studies have found associations between both self-reported146-

148 and actigraphic149-151 short and long sleep and mortality. The vast majority of studies 

included in these meta-analyses relied on self-report assessment of the exposure.  

Pathophysiology of sleep duration and cardiovascular risk factors and disease 

There are many hypothesized mechanisms between sleep duration and 

cardiovascular disease outcomes and risk factors. Much has been written about the 
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potential pathways through which sleep duration can influence obesity.152 In 

experimental studies, short sleep compared to normal street has been associated with 

increased food intake, including both self-reported and biological changes in hunger and 

appetite, and increases in ghrelin and decreases in leptin.139,153 Insufficient sleep may also 

increase central neuronal responses to high caloric foods, increasing behaviors leading to 

overeating, as brain imaging data has demonstrated.154 Short sleepers may also have more 

opportunities to eat due to the addition of more hours available for eating.  In another 

potential pathway, lack of sleep may lead to fatigue,155 which can lead to decreased 

physical activity.  

Other potential pathways exist that explain the relationship between sleep 

duration and CVD. During normal NREM sleep, sympathetic nervous activity decreases 

and vagal tone increases, which can lead to decreases in metabolic rate, blood pressure, 

and heart rate.156,157 Experimental studies have found that acute sleep deprivation is 

associated with increases in blood pressure,158,159 heart rate,160 c-reactive protein,161 

norepinephrine,160 pulse wave velocity,162 cardiac output, 162 and endothelial dysfunction, 

although findings have not been consistent across studies. Short sleep in laboratory 

studies has also been associated with decreases in muscle sympathetic nervous activity 

and glucose tolerance.163 Sleep deprivation has also been shown to attenuate nocturnal 

blood pressure dipping and increase morning surge,164 both of which have been 

associated with CVD.165 Additionally, a crossover study has shown that sleep deprivation 

can affect left ventricular diastolic function and QT intervals.166  
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Long sleep had no significant impact on any outcome in experimental studies, 

indicating that the relationship between long sleep and CVD may not be causal.11 Long 

sleep may be a consequence of disease or part of the dying process, and associations in 

observational studies may be due to residual confounding. It may also reflect 

measurement error due to a reliance on self-reported measures of sleep duration. 

OSA and Cardiovascular Disease 

OSA has been linked to a variety of CVD risk factors and outcomes. Many of the 

early population-based studies were cross-sectional and used self-reported or 

administrative data to measure sleep apnea, but more longitudinal studies using 

polysomnography have been published in recent years. These include both studies on the 

associations between sleep apnea and cardiovascular risk factors/disease and studies on 

CPAP treatment and cardiovascular risk factors/disease, including some trials of 

randomized CPAP treatment.  Challenging interpretation, categorization of the sleep 

apnea exposure often differs across studies.  

Meta-analyses have shown that those with OSA have higher levels of total 

cholesterol,167 triglycerides and LDL and lower HDL,168 while RCTs of CPAP treatment 

have been associated with lower total cholesterol, but no change in triglycerides, LDL, 

and HDL.169 Longitudinal studies have shown that OSA is associated with an increased 

risk of diabetes,170 though CPAP trials to improve glycemic control among OSA patients 

with diabetes have been mixed.171,172 Additionally, randomized controlled trials have 

demonstrated lower rates of incident hypertension among CPAP users.167,173 Associations 
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have also been found between OSA measured via polysomnography and risk of coronary 

heart disease,174 stroke,175 heart failure,174 and mortality,176-178 while only self-reported 

OSA has been linked to atrial fibrillation. 179  

Although studies randomizing OSA patients to CPAP have been conducted for 

hypertension, few studies have examined the effect of CPAP on cardiovascular events 

due to difficulties with CPAP adherence and sample size.167,180 In the SAVE trial, there 

was no association between CPAP use compared to usual care and incident CVD events, 

though adherence to CPAP was poor.180 

In general, studies on OSA and CVD show a dose-response relationship, where 

associations with CVD were stronger among those with severe OSA and weaker among 

those with mild OSA.181 Meta-analyses have also indicated that these associations are 

stronger in men than women.182 Furthermore, better adherence to CPAP has been 

associated with lower risk of CVD mortality.183   

Pathophysiology of sleep apnea and cardiovascular risk factors and disease 

There are several potential pathways that may explain the relationship between 

OSA and CVD though many are interrelated. In general, OSA alters the normal 

cardiometabolic functions that occur during NREM sleep. The hypercapnia and 

hypoxemia that occur during an apneic event cause an increase in sympathetic nervous 

system activity,184 which persists during waking hours.185 Additionally, those with OSA 

have more blood pressure variability but less heart rate variability,186 which is linked to 

CVD and its risk factors. Hypoxia can also release endothelin,187,188 which may raise 

blood pressure in people with OSA.189 Sleep apnea has also been associated with higher 
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levels of a variety of different inflammatory markers, including plasma cytokines, C-

reactive protein, leukocyte activation,190 among others, which have also been associated 

with CVD risk. Because of sleep apnea’s frequent hypoxia and re-oxygenation, an effect 

on oxidative stress has been hypothesized, though several CPAP trials have found no 

relationship.191-193 A similar relationship is hypothesized between sleep apnea and 

endothelial dysfunction, possibly operating through increased sympathetic nervous 

system activity, inflammation, oxidative stress, and reductions in the bioavailability of 

endothelial nitric oxide. 194 Figure 1.3, taken from the “Fundamentals of Sleep 

Medicine” text, illustrates hypothesized pathways between OSA and CVD. 

Figure 1.3: Pathways between OSA and CVD 
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Chapter 2: Manuscript 1 - Sleep indices and eating behaviors 

in young adults: Findings from Project EAT  

Abstract 
 

Objective: To test the associations between sleep indices and eating behaviors in young 

adults, a group vulnerable to suboptimal sleep. 

 

Design: Cross-sectional analysis of survey measures of sleep (i.e., time in bed, 

variability, timing, and quality) and dietary patterns (i.e., breakfast skipping, eating at 

fast-food restaurants, sports and energy drinks, sugar-free, sugar-sweetened, and 

caffeinated beverages).  

 

Setting: Minneapolis/St. Paul metropolitan area of Minnesota (USA) 

 

Subjects: A total of 1854 respondents (20-30 years, 55.6% female) to the 2008-2009 

survey conducted for the third wave of the population-based Project EAT (Eating and 

Activity in Teens and Young Adults) study. 

 

Results: After adjustment for demographic and behavioral covariates in linear regression 

models, those who went to bed after 12:30 AM consumed 0.3 more servings per day of 

sugar-sweetened beverages, consumed 1.7 times more energy drinks, skipped breakfast 

1.8 more times per week, and consumed fast food 0.3 more times per week compared to 
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those who went to bed before 10:30 PM.  Reported sleep quality in the lowest versus 

highest quartile was associated in adjusted logistic regression models with more intake of 

energy drinks, (Q4 vs Q1 Prevalence Ratio: 1.86, 95% CI: 1.29-2.42) sports drinks, (Q4 

vs Q1 PR: 1.28, 95% CI: 1.00-1.55) and breakfast skipping.  Time in bed and sleep 

variability were associated with only a few eating behaviors. 

 

Conclusions:  Some, but not all, sleep indices were related to problematic eating 

behaviors. Sleep habits may be an important behavior to address in interventions and 

policies that target improvements in eating patterns and health outcomes.  
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Background 
 

Currently, the American Academy of Sleep Medicine and the Sleep Research 

Society recommend that adults should sleep at least seven hours per night.195 Failing to 

meet this recommendation has been associated with poor physical health,145 mental 

health,47 and quality of life.196-198 National survey data indicate that young adults, aged 

25-34, are particularly likely to get insufficient sleep; in 2014, 28% reported sleeping 

fewer than 7 hours per night.8 Although short sleep duration and its relation to dietary 

intake has been examined in adolescents,199,200 there is scant research on this relationship 

in young adults, who are undergoing major life transitions and engaging in independent 

decision-making for the first time.  

Most research among adults has involved short-term experiments conducted in 

sleep labs,201 which do not provide information on habitual behaviors among free-living 

adults. The few observational studies of adults have examined how sleep duration may be 

related to obesity and energy intake with inconsistent results, 139,202 but the specific 

aspects and patterns of dietary intake correlated with short sleep duration have scarcely 

been explored.203,204 Even less is known about the association of sleep quality, variability, 

and timing with dietary factors.205 Furthermore, most prior studies were conducted in 

predominantly white populations, despite previous research exposing racial/ethnic33,40,42 

and socioeconomic differences in sleep duration.206,207 A recent American Heart 

Association scientific statement named the inclusion of more diverse populations a top 

sleep research priority.208 
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The Project EAT (Eating and Activity in Teens and Young Adults) study provides 

an opportunity to investigate the potentially bidirectional relationship between several 

sleep indices and dietary factors in a racially, ethnically and socioeconomically diverse 

population of young adults. We hypothesized that young adults who reported inadequate 

versus recommended amounts of sleep would consume more caffeinated and sugar-

sweetened beverages and report more frequent breakfast skipping and eating at fast-food 

restaurants.   

Methods 

 Project EAT was designed to study dietary intake, physical activity, and weight 

among young people. Baseline data were collected in 1998-1999, when 4,746 middle and 

high schools students aged 11-18 years from 31 socioeconomically and racially/ethnically 

diverse schools in the Minneapolis/St. Paul metropolitan area of Minnesota completed 

questionnaires and anthropometric measures.209 A 10-year follow-up survey (EAT-III) 

was completed in 2008-2009 by mailing all original participants an invitation to complete 

questionnaires on paper or online. A total of 2,287 young adults completed this third 

wave of data collection, representing 66.4% of those who could be contacted.210 At the 

time of EAT-III, participants were 20-30 years old. For the present analysis, we limited 

the sample to participants whose third wave survey data included plausible reports of 

dietary intake and sleep (n = 1,854). The University of Minnesota IRB approved all study 

protocols, and participants provided informed consent.  

The original Project EAT survey was modified for EAT-III to improve the 

relevance of items for young adults and to investigate new research areas. Focus groups 
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tested an initial draft and feedback was used to alter problematic survey measures and to 

expand on areas of importance. A revised survey was tested in a different sample to 

examine test-retest reliability over one to three weeks. Additional details of the survey 

development process have been described elsewhere.211 

Sleep variables 

Participants were asked about their usual bedtime and wake time on both 

weekdays and weekends, which were used to calculate average weekday and weekend 

time in bed.212 These items were drawn from a questionnaire previously used in studies of 

adolescent sleep,213,214 and similar questions have been significantly correlated with both 

sleep diaries and actigraphy. 215 Average daily time in bed was calculated using the 

following formula: weekday time in bed*5/7 + weekend time in bed*2/7, and was 

modeled categorically (<7 hours, 7-8 hours, 8-9 hours, and >9 hours).  

We also examined sleep variability by calculating the absolute value of the 

difference between weekday and weekend time in bed, which was modeled in quartiles 

(<0.5 hours, 0.5-<1 hour, 1-1.5 hours, >1.5 hours). Sleep timing was measured by 

averaging weekend and weekday bedtimes and modeling them in four categories (before 

10:30 PM, 10:30-11:30 PM, 11:30 PM-12:30 AM, after 12:30 AM).  Sleep quality was 

measured using the following question on the Kandel and Davies depressive symptoms 

questionnaire:216 “During the past 12 months, how often have you been bothered or 

troubled by having trouble going to sleep or staying asleep?” (test-retest r = 0.64). 

Possible responses to this question include not at all, sometimes, or very much.  
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Dietary variables 

 Questions on frequency of skipping breakfast and eating at a fast-food restaurant 

were assessed on the Project EAT-III survey. Breakfast was assessed with the following 

question: “During the past week, how many days did you eat breakfast?” with five 

possible responses ranging from never to every day (test-retest r = 0.82). Fast food was 

assessed with the following question: “In the past week, how often did you eat something 

from a fast food restaurant (like McDonald’s, Burger King, Hardee’s etc.)?” (test-retest r 

= 0.48). Six possible responses were given, ranging from never to more than 7 times. 

Both variables were treated as continuous. 

Questions on energy and sports drink consumption were also assessed on the 

Project EAT-III survey. Energy drink consumption was assessed with the following 

question: “In the past year, how many times did you usually drink an energy drink (such 

as Red Bull, Full Throttle, Rockstar, etc.)?” Sports drink consumption was assessed with 

the following question: “In the past year how many times did you usually drink a sports 

drink (such as Gatorade, PowerAde, etc.)?” Seven possible responses were given, ranging 

from less than once per month to 2 or more per day. Based on the distribution of the 

variables,217 energy and sports drinks were dichotomized into two categories: at least one 

drink per week and less than one drink per week (test-retest agreement = 94% for sports 

drinks, 97% for energy drinks). 

Information on beverages including sugar-sweetened beverages (SSBs), sugar-

free beverages, and caffeinated beverages, was taken from a semi-quantitative food-

frequency questionnaire (FFQ) that was administered at the same time as the Project 
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EAT-III survey. This FFQ measured multi-vitamins, dietary supplements, and intake of 

151 foods. The reproducibility and validity compared to diet records for measuring 

beverages has been assessed, and moderate correlations have been found (mean r for 

reproducibility =  0.59, mean validity r = 0.63).218 Sugar-sweetened, sugar free, and 

caffeinated beverages were assessed with 9 response categories, ranging from never or 

less than once a month to 6+ per day. This was translated into daily servings with a single 

serving defined as one glass, bottle, or can. The sugar-sweetened beverages variable was 

created by summing the responses to questions on carbonated beverages with caffeine 

and sugar (e.g., Coke, Pepsi, Mountain Dew, Dr. Pepper), other carbonated beverages 

with sugar (e.g., 7-Up, Root Beer, Ginger Ale, Caffeine-Free Coke), and other sugared 

beverages (punch, lemonade, sports drinks, or sugared ice tea). The sugar-free beverages 

variable was created by summing responses to questions on low-calorie beverages with 

caffeine (e.g., Diet Coke, Diet Mountain Dew) and other low-calorie beverages without 

caffeine (e.g., Diet 7-Up). The caffeinated beverages variable was created by summing 

the responses to the questions on low-calorie beverages with caffeine and carbonated 

beverages with caffeine and sugar along with additional items that assessed intake of tea 

with caffeine including green tea (8 oz), coffee with caffeine (8 oz), and dairy coffee 

drink (e.g. cappuccino, 16 oz). These variables were treated as continuous. 

Covariates 

Demographic characteristics including sex, ethnicity/race, age, education, and 

marital status were self-reported. Depressive symptoms were assessed via a six-item scale 

validated for use in young people.216 Items on this questionnaire related to sleep were not 
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included as covariates, and the remaining items on sadness, hopelessness, nervousness, 

and worry were summed and categorized into three groups. Physical activity was 

assessed with the 3-item Godin Leisure-time Exercise questionnaire, which calculates a 

weekly leisure activity score.219 Alcohol was measured in grams. These variables were 

included as covariates due to their bidirectional relationships with sleep. 220,221  

Analysis 

Descriptive statistics were calculated to examine sociodemographic and 

behavioral characteristics by time in bed category. Based on the outcome, either linear or 

logistic regression was used to model the cross-sectional relationship between each sleep 

exposure and each dietary outcome. Adjusted probabilities standardized to the total 

population were calculated for each sleep category in the logistic models, and these 

probabilities were used to calculate prevalence ratios for each outcome. Model 1 adjusted 

for age, sex, race/ethnicity, education, marital status, while Model 2 added depressive 

symptoms and physical activity. For models with sleep variability, timing, and quality as 

the exposure, model 3 added time in bed. We also examined effect modification by 

gender, as previous research has found different relationships between sleep habits and 

dietary intake for men and women.222 A sensitivity analysis with an additional time in 

bed category of less than six hours per night was also performed. All analyses used 

inverse probability weighting to account for differential loss to follow up.223  

Results 
 

 The mean age in the analytic sample was 25.4 years (SD=1.6), and 55.6% were 

female. Participants self-reported sleeping a mean of 8.3 (SD=1.2) hours per night. The 



 

 31 

distribution of sleep times was: 11.5% slept fewer than 7 hours per night, 26.6% slept 7-8 

hours, 36.2% slept 8-9 hours, and 25.8% slept more than 9 hours. In regards to daily 

dietary intake, on average, participants consumed 0.9 servings of sugar-sweetened 

beverages, 0.7 servings of caffeinated beverages, and 0.4 servings of sugar-free 

beverages. Per week, participants consumed breakfast an average of 3.9 times and ate 

something from a fast food restaurant on 1.6 occasions. The proportion of the sample that 

reported consuming at least one energy drink per week was 18.0%, and consuming at 

least one sports drink per week was reported by 30.2%. 

 Table 2.1 shows sociodemographic and behavioral characteristics by time in bed 

category. Those who slept fewer than 7 hours per night were more likely to be male, non-

white, have less formal education, and have a higher mean depressive symptoms score 

relative to those who slept longer. Those with later bedtimes were more likely to be male, 

have less formal education, and report higher mean depressive symptoms. Good sleep 

quality was more common among men and those with more education (data not shown).  

 Table 2.2 shows the mean intake of beverages and mean frequency of skipping 

breakfast and eating at a fast-food restaurant by categories of sleep variables (time in bed, 

variability, timing, and quality). After adjustment for demographics, some associations 

were found between sleep indices and eating behaviors, particularly for sleep timing, 

though many associations were not significant. Those who went to bed after 12:30 AM 

consumed 0.3 more servings per day of sugar-sweetened beverages, skipped breakfast 1.8 

more times per week, and consumed fast food 0.3 more times per week compared to 

those who went to bed before 10:30 PM. No strong associations were found between 
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sleep timing and caffeinated or sugar-free beverages. Results were similar after 

adjustment for depressive symptoms, physical activity, alcohol, and time in bed. 

For the remaining sleep indices, there were few strong statistically significant 

associations with the continuous eating behaviors after adjustment for demographics. 

Compared to those who slept 7-8 hours per night, those who slept < 7 hours consumed an 

average of approximately 0.2 more servings per day of caffeinated beverages [0.87 

(95%CI 0.71-1.04) servings vs 0.66 (95%CI 0.57-0.75) servings] (p = 0.03). Compared to 

those with low sleep variability, those in the highest sleep variability quartile consumed 

fast food 0.25 more times per week (p = 0.02). As an indicator of sleep quality, those 

reporting ‘very much’ difficulty falling/staying asleep skipped breakfast approximately 

one additional time every ten days compared to those who reported no trouble 

falling/staying asleep (p < 0.001).  

Effect modification by sex was also examined and stratified analyses for 

significant multiplicative interaction terms can be found in Table 2.3.  Although the 

frequency with which men skipped breakfast was unrelated to time in bed, women who 

slept <7 hours per night skipped breakfast nearly one additional time per week compared 

to women who slept 7-8 hours (p for interaction < 0.01). Men who went to bed after 

12:30 AM consumed 0.5 more caffeinated beverages and 0.25 more sugar-free beverages 

than men who went to bed before 10:30 PM, while women consumed approximately the 

same amount of those beverages regardless of bedtime (p for interaction < 0.01). 

 Table 2.4 shows prevalence ratios (PR) for intake of energy and sports drinks 

(modeled dichotomously: ≥1 drink per week and <1 drink per week) by sleep exposure 
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category. After adjustment for demographics, those who slept fewer hours, had more 

sleep variability, reported later bedtimes, and reported ‘very much’ difficulty 

falling/staying asleep were more likely to consume energy drinks, although the 

associations were not statistically significant across all models. For sleep timing, those 

who reported going to bed after 12:30 AM were 1.83 (95% CI 1.10-2.55) times more 

likely to consume at least one energy drink per week than those who went to bed at 10:30 

PM or earlier. Those who reported >8 hours of sleep were less likely to consume sports 

drinks than those who slept 7-8 hours per night, while those who reported ‘very much’ 

difficulty falling/staying asleep were more likely to consume sports drinks that those who 

reported no difficulty [PR =1.24 (95% CI 0.99-1.49)]. 

 Sensitivity analyses were also performed for all outcomes with an additional time 

in bed category: < 6 hours (Supplemental Table 2.1).  Although precision was poor, 

those who slept < 6 hours drank approximately 0.35 more daily servings of caffeinated 

drinks, 0.45 more daily servings of sugar-sweetened beverages, and skipped breakfast 

one additional time every ten days compared to those who slept 7-8 hours. Those who 

slept fewer than 6 hours were also more likely to consume energy drinks (PR=1.55 [0.59, 

2.50]). No statistically significant associations were found for sugar-free beverages, fast 

food, or sports drinks. 

Discussion 
 

In this population-based study of young adults, we provide new evidence that 

sleep characteristics beyond time in bed are associated with selected eating behaviors. 

Late sleep timing was most consistently associated with poor eating behaviors, including 
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consumption of energy drinks, sugar-sweetened beverages, fast food, and breakfast 

skipping. Fewer associations were found for other sleep indices.  

In this study, going to sleep late was directly associated with four of the seven 

poor eating behaviors, including more frequent consumption of energy drinks and sugar-

sweetened beverages, and frequency of eating at fast food restaurants, as well as 

breakfast skipping. These findings are consistent with another small cross-sectional 

study, where actigraphy-measured late sleep timing was associated with more servings of 

full-calorie soda and fast food per week, though results were not adjusted for 

confounders.205 Previous research also found that delaying bedtimes was not associated 

with more caffeine use, 224 while we found a small association between sleep timing and 

caffeinated beverages that was no longer significant after adjustments for depressive 

symptoms, alcohol, and physical activity. Research on other dietary measures has found 

actigraphy-measured sleep timing was not associated with the Alternative Healthy Eating 

Index-2010 or any of its components.225  

Less time in bed, an approximation of sleep duration, was associated with more 

caffeinated beverage consumption, while more time in bed was associated with less 

sports drink consumption. The relationship between sleep duration (or time in bed) and 

eating behaviors has been examined more frequently in previous literature than the 

relationships between other sleep indices and eating behaviors. Observational studies on 

time in bed or sleep duration and caffeinated beverages have similarly found inverse 

associations,203,224,226,227 although one found no association.227 Additionally, those who 

slept fewer than six hours a night were more likely to skip breakfast203 and consume 
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sugar-sweetened beverages, including caffeinated beverages, than those who slept 7-8 

hours a night.228 In the current study, the proportion sleeping at least 7 hours per night 

was 88.5%, which contrasts with national survey data where only 67.8% of 18-24 year 

olds and 62.1% of 25-34 year olds reported sleeping at least seven hours per night, 

though the self-report methods of these two studies were different.8 Because of the 

narrow distribution of sleep in our sample, we did not have sufficient precision to 

consider more extreme categories of shorter sleep duration as the primary exposure, 

though in sensitivity analyses we showed that those who slept fewer than six hours a 

night skipped more breakfast and consumed more SSBs than those sleeping 7-8 hours per 

night. Studies of adults and adolescents have reported that those with short sleep duration 

ate fast food more often than those meeting sleep recommendations,204,229 a finding not 

replicated in our study. 

In this study, poor sleep quality was significantly associated with six of the seven 

poor eating behaviors, but associations only remained for energy drinks, sports drinks, 

and skipping breakfast after adjustment for depressive symptoms, alcohol, and physical 

activity. Previous research on sleep quality and intake of caffeine/energy drinks has been 

mixed, with studies finding null226,230 or inverse associations.231-234 However, a study of 

Japanese female workers found that poor sleep quality was associated with greater sugar-

sweetened beverage consumption and breakfast skipping.235 Studies involving other 

dietary and eating measures have found associations between poor sleep quality and low 

intake of vegetables and fish235 as well as lower adherence to the Mediterranean diet.   
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Sleep variability has been rarely measured in population-based studies, especially 

in relation to diet. In the present study high sleep variability was associated with greater 

fast food and energy drink consumption. Previous studies have found positive 

associations between sleep variability and obesity, 236,237 including a mediating influence 

of diet variables,238 though no association with obesity was found in a previous Project 

EAT analysis.212  

Overall, in this study, associations between sleep and eating behaviors were not 

consistent across indices. This may reflect measurement error, as described below, or 

may indicate unique dimensions of sleep. While some aspects of sleep, like duration, can 

be measured objectively, self-reported sleep quality is inherently subjective, and thus 

may capture a different aspect of the sleep process or reflect differences in self-reporting. 

In this study, the four sleep indices used were weakly correlated (r’s <0.2). Future 

research should continue to focus on multiple dimensions to obtain a complete picture of 

sleep. Prospective data are also needed to further elucidate the relationship between sleep 

and dietary intake. 

We observed effect modification by sex for some exposure-outcome 

combinations. Previous laboratory research also found differences, where men consumed 

more daily calories than women after sleep restriction.222 Differences could be due to 

gender biology (e.g. levels of hormones), differences in social desirability that impact 

self-reporting, or ways that society influences coping during sleep restriction periods 

differentially by gender.35 In general, sleep duration is longer in women than men.13,32  
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The relationship between sleep and diet is likely complex, and potentially 

bidirectional. Caffeinated drinks, such as soda and energy drinks, block adenosine 

receptors, which prevent the sleep promoting effects of adenosine, and thus reduce sleep 

duration. However, people who are sleep deprived may consume more caffeinated drinks 

to feel more alert.239 Short sleep duration may also influence diet by providing more time 

and opportunities for eating, allowing people to be more sensitive to food rewards, 

decreasing restraint, and changing concentrations of hormones that influence appetite, 

such as leptin and ghrelin.240 However, limited evidence also suggests that nutrients that 

help synthesize serotonin may also promote sleep.241   

Other sleep indices likely act through similar pathways. Although the mechanisms 

for associations between sleep timing and diet are not fully elucidated, possible 

mechanisms include circadian disruption and greater exposure to light at night.242,243 

People with high sleep variability may also have irregular eating patterns due to variation 

in their sleep-wake pattern, which may contribute to irregularity in the synchronization of 

eating and sleep timing.236   

This study has several limitations, including measurement error in the sleep and 

dietary variables, which were both assessed via survey.  Self-reported and objectively 

measured sleep are moderately correlated,21-23 but the degree of correlation varies by 

important confounders such as obesity and depression. Dietary intake was self-reported 

and likely represents an underestimation of intake.  Previous research has found moderate 

to high reproducibility and validity of FFQs compared to diet records, though both 

measures are self-reported.218 Combined, these errors in measurement may have biased 
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the estimates towards (likely) or away from the null (less likely). Additionally, this cross-

sectional study inherently offers no information on temporality and the causal pathway 

between sleep and diet is at times unclear, particularly for caffeine and energy drinks. 

These associations between sleep and diet may also be due to a shared cause.  We also 

performed many statistical tests, so it is possible that some of the results may be due to 

chance. 

Despite these limitations, this study has several strengths. Quality observational 

studies on sleep duration and dietary intake are limited, due to an emphasis on short-term 

experiments conducted in sleep labs, which do not provide information on habitual 

behaviors among free-living adults. Another strength of this study is the diverse and 

population-based sample of young adults. Use of this sample aligns with the 2016 

American Heart Association Scientific Statement that highlighted the need for sleep 

studies to include diverse populations.208 Additionally, the measurement instruments used 

in this study employed multiple indices of sleep and diet, which allowed the capture of 

these behaviors in several different dimensions.  

Sleep and diet are both inherently vital health behaviors. Short sleep duration is 

highly prevalent, especially among young adults.8 Dietary quality may be improving,244 

but the vast majority of the US population is still not meeting dietary recommendations. 

Though this study found some cross-sectional associations between sleep and eating 

behaviors, particularly as related to sleep timing, many associations were not significant, 

and further longitudinal and randomized studies with objective measures of sleep are 

needed to clarify the directionality of the sleep-diet relationship. Young adults often 
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experience significant changes in their establishment of an independent life, including 

attainment of higher education, new employment, getting married, and having children. 

As such, if the relationships found between sleep and eating behaviors in this study are 

causal, sleep-friendly interventions and policies may have the potential, along with other 

risk factors, to reduce obesity in this population. Identifying effective obesity prevention 

measures for young adults is particularly important, as at this age range there is the 

potential to set long-term health habits.
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Table 2.1: Participant characteristics by sleep duration category: 

Project EAT 
 <7 hours 7-8 hours 8-9 hours ≥ 9 hours 

N (%) 203 (11.5) 471 (26.6) 642 (36.2) 457 (25.8) 

Demographics     

Age, mean years ± SD 25.5 ± 1.7 25.6 ± 1.5 25.3 ± 1.5 25.1 ± 1.8 

 

% Female, n (%) 

 

 

87 (42.8) 

 

240 (51.0) 

 

366 (57.0) 

 

292 (64.0) 

Race/Ethnicity, n (%)*     

 White 93 (9.8) 255 (27.0) 384 (40.6) 214 (22.6) 

 Asian 39 (12.1) 90 (28.5) 92 (29.1) 95 (30.1) 

 Black 44 (16.1) 64 (23.1) 82 (29.6) 86 (31.1) 

 Hispanic 9 (10.0) 27 (30.2) 37 (40.8) 17 (19.1) 

 Mixed/Other 15 (12.1) 31 (23.9) 43 (33.4) 39 (30.6) 

     

Education, n (%) *     

 Less than high school 11 (16.2) 8 (11.2) 18 (25.7) 32 (46.9) 

 High school/GED 86 (12.8) 178 (26.6) 216 (32.2) 191 (28.4) 

 Vocational or associates degree 60 (13.4) 115 (25.6) 153 (33.9) 122 (27.1) 

 College graduate 45 (7.8) 169 (29.0) 255 (43.9) 112 (19.2) 

     

     

Married, n (%) 38 (18.6) 131 (28.1) 166 (25.9) 83 (18.1) 

     

Behavioral Characteristics, 

Mean ± SD 

    

Physical activity, hrs MVPA/wk 4.4  ± 4.4 4.1 ± 3.7 4.3 ± 3.7 3.5 ± 3.8 

Depression Scale 19.2 ± 5.0 17.9 ± 4.9 18.0 ± 4.6 19.0 ± 4.8 

     

Outcomes, mean servings ± SD     
§Caffeinated drinks per day 0.9  ± 1.3 0.7 ± 1.0 0.7 ± 1.0 0.7 ± 1.2 
¶Sugar-sweetened beverages per 

day 

1.1  ± 1.4 0.8 ± 1.2 0.8 ± 1.1 0.9 ± 1.5 

Sugar-free beverages per day 0.4  ± 1.1 0.4 ± 0.8 0.4 ± 0.7 0.3 ± 0.8 

Breakfast consumption per week 3.6 ± 2.4 3.9 ± 2.3 4.2 ± 2.3 3.6 ± 2.5 

Fast food consumption per week 1.7 ± 1.8 1.5 ± 1.6 1.5 ± 1.6 1.7 ± 1.6 

     
†Energy drinks, n (%)  70 (26.8) 58 (13.1) 93 (17.0) 98 (18.7) 
†Sports drinks, n (%) 101 (38.6) 125 (28.3) 167 (30.5) 143 (27.3) 

*Row percentages 

MVPA: moderate-vigorous physical activity, SD: standard deviation  
§Caffeinated beverages were defined as low-calorie beverages with caffeine (e.g. Diet 

Coke, Diet Mountain Dew), carbonated beverages with caffeine and sugar (e.g., Coke, 

Pepsi, Mountain Dew, Dr. Pepper), tea with caffeine including green tea, coffee with 

caffeine, and dairy coffee drink (e.g. cappuccino) 
¶Sugar-sweetened beverages were defined as carbonated beverages with caffeine and sugar, 

other carbonated beverages with sugar (e.g. 7-Up, Root Beer, Ginger Ale, Caffeine-Free 

Coke), and other sugared beverages (punch, lemonade, sports drinks, or sugared ice tea) 

Sugar-free beverages were defined as low-calorie beverages with caffeine and other low-

calorie beverages without caffeine (e.g. Diet 7-Up) 
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†Energy and sports drink consumption defined as ≥ one drink per week compared to < one 

drink per week 
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Table 2.2: Adjusted mean dietary intake (95% confidence interval) by categories 

of sleep duration, variability, timing, and quality: Project EAT 
Time in Bed 

N 

<7 hours 

203 

7-8 hours 

471 

8-9 hours 

642 

>9 hours 

457 

 

  (Referent)    

Caffeinated drinks per day      

 Model 1 0.87* 

(0.71, 1.04) 

0.66 

(0.57, 0.75) 

0.68 

(0.60, 0.77) 

0.74 

(0.63, 0.85) 

 

 Model 2 0.87* 

(0.71, 1.04) 

0.67 

(0.58, 0.76) 

0.70 

(0.61, 0.78) 

0.71 

(0.61, 0.82) 

 

Sugar-sweetened beverages      

 Model 1 0.99 

(0.79, 1.18) 

0.85 

(0.74, 0.97) 

0.83 

(0.73, 0.93) 

0.94 

(0.79, 1.09) 

 

 Model 2 0.99 

(0.80, 1.17) 

0.86 

(0.74, 0.98) 

0.85 

(0.75, 0.95) 

0.91 

(0.76, 1.05) 

 

Sugar-free beverages      

 Model 1 0.47 

(0.33, 0.62) 

0.36 

(0.29, 0.43) 

0.33 

(0.28, 0.39) 

0.33 

(0.26, 0.40) 

 

 Model 2 0.47 

(0.32, 0.61) 

0.36 

(0.29, 0.43) 

0.34 

(0.28, 0.40) 

0.32 

(0.25, 0.39) 

 

Breakfast consumption per 

week 

     

 Model 1 3.78 

(3.41, 4.14) 

3.94 

(3.72, 4.15) 

4.07 

(3.87, 4.27) 

3.66 

(3.39, 3.92) 

 

 Model 2 3.77 

(3.42, 4.12) 

3.92 

(3.70, 4.14) 

4.04 

(3.84, 4.24) 

3.69 

(3.43, 3.95) 

 

Fast food consumption      

 Model 1 1.56 

(1.27, 1.85) 

1.53 

(1.38, 1.69) 

1.58 

(1.44, 1.71) 

1.72 

(1.56, 1.89) 

 

 Model 2 1.56 

(1.27, 1.85) 

1.55 

(1.39, 1.70) 

1.60 

(1.47, 1.73) 

1.71 

(1.54, 1.88) 

 

Sleep variability < 0.5 hours 0.5 - <1 hour 1 – 1.5 hours > 1.5 hours  

N 339 364 571 500  

 (Referent)     
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Caffeinated drinks      

 Model 1 0.71 

(0.59, 0.84) 

0.72 

(0.60, 0.83) 

0.67 

(0.59, 0.75) 

0.76 

(0.66, 0.86) 

 

 Model 2 0.72 

(0.60, 0.84) 

0.71 

(0.60, 0.83) 

0.68 

(0.60, 0.77) 

0.75 

(0.66, 0.84) 

 

 Model 3 0.72 

(0.59, 0.84) 

0.71 

(0.60, 0.83) 

0.69 

(0.60, 0.77) 

0.75 

(0.65, 0.84) 

 

Sugar-sweetened beverages      

 Model 1 0.95 

(0.79, 1.10) 

0.86 

(0.73, 1.00) 

0.86 

(0.74, 0.98) 

0.88 

(0.76, 0.99) 

 

 Model 2 0.95 

(0.80, 1.10) 

0.86 

(0.73, 0.99) 

0.88 

(0.76, 1.00) 

0.86 

(0.75, 0.97) 

 

 Model 3 0.95 

(0.79, 1.10) 

0.86 

(0.73, 0.99) 

0.88 

(0.76, 1.00) 

0.86 

(0.75, 0.97) 

 

Sugar-free drinks      

  Model 1 0.29 

(0.22, 0.36) 

0.38 

(0.29, 0.47) 

0.34 

(0.28, 0.40) 

0.39* 

(0.32, 0.47) 

 

  Model 2 0.30 

(0.22, 0.37) 

0.38 

(0.29, 0.47) 

0.35 

(0.28, 0.41) 

0.39 

(0.32, 0.46) 

 

  Model 3 0.30 

(0.23, 0.38) 

0.38 

(0.29, 0.47) 

0.35 

(0.28, 0.41) 

0.39 

(0.31, 0.46) 

 

Breakfast consumption      

 Model 1 3.81 

(3.52, 4.10) 

4.10 

(3.85, 4.33) 

3.95 

(3.73, 4.17) 

3.74 

(3.51, 3.97) 

 

 Model 2 3.77 

(3.49, 4.06) 

4.09 

(3.85, 4.33) 

3.93 

(3.71, 4.15) 

3.77 

(3.54, 4.00) 

 

 Model 3 3.81 

(3.52, 4.10) 

4.07 

(3.83, 4.31) 

3.94 

(3.72, 4.16) 

3.75 

(3.52, 3.98) 

 

Fast food consumption      

 Model 1 1.47 

(1.30, 1.64) 

1.60 

(1.41, 1.79) 

1.53 

(1.40, 1.67) 

1.77* 

(1.60, 1.93) 

 

 Model 2 1.49 

(1.31, 1.66) 

1.61 

(1.42, 1.79) 

1.55 

(1.41, 1.68) 

1.76* 

(1.59, 1.93) 

 

 Model 3 1.45 

(1.28, 1.63) 

1.62 

(1.43, 1.80) 

1.55 

(1.41, 1.68) 

1.77* 

(1.60, 1.94) 

 

Sleep Timing ≤ 10:30 PM 10:30-11:30 PM 11:30 PM- > 12:30 AM  
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12:30 AM 

N 327 497 390 560  

 (Referent)     

Caffeinated drinks      

 Model 1 0.64 

(0.53, 0.75) 

0.66 

(0.57, 0.75) 

0.72 

(0.61, 0.82) 

0.80* 

(0.71, 0.90) 

 

 Model 2 0.66 

(0.55, 0.77) 

0.67 

(0.57, 0.76) 

0.71 

(0.61, 0.82) 

0.79 

(0.69, 0.88) 

 

 Model 3 0.67 

(0.56, 0.78) 

0.68 

(0.58, 0.77) 

0.71 

(0.61, 0.82) 

0.77 

(0.68, 0.87) 

 

Sugar-sweetened beverages      

 Model 1 0.73 

(0.60, 0.87) 

0.78 

(0.68, 0.87) 

0.88 

(0.75, 1.02) 

1.05** 

(0.93, 1.18) 

 

 Model 2 0.75 

(0.61, 0.88) 

0.79 

(0.69, 0.90) 

0.88 

(0.75, 1.01) 

1.04** 

(0.92, 1.16) 

 

 Model 3 0.75 

(0.61, 0.88) 

0.80 

(0.69, 0.90) 

0.88 

(0.75, 1.02) 

1.04** 

(0.91, 1.16) 

 

Sugar-free beverages      

 Model 1 0.36 

(0.28, 0.45) 

0.32 

(0.26, 0.39) 

0.38 

(0.29, 0.47) 

0.36 

(0.29, 0.43) 

 

 Model 2 0.38 

(0.29, 0.46) 

0.33 

(0.27, 0.39) 

0.38 

(0.29, 0.47) 

0.35 

(0.29, 0.42) 

 

 Model 3 0.39 

(0.31, 0.48) 

0.34 

(0.27, 0.40) 

0.37 

(0.28, 0.46) 

0.34 

(0.27, 0.41) 

 

Breakfast consumption      

 Model 1 4.98 

(4.70, 5.25) 

4.11*** 

(3.88, 4.35) 

3.73*** 

(3.48, 3.98) 

3.18*** 

(2.97, 3.39) 

 

 Model 2 4.94 

(4.66, 5.22) 

4.10*** 

(3.87, 4.33) 

3.72*** 

(3.48, 3.98) 

3.21*** 

(3.00, 3.42) 

 

 Model 3 4.99 

(4.70, 5.27) 

4.11*** 

(3.87, 4.34) 

3.71*** 

(3.47, 3.96) 

3.19*** 

(2.97, 3.40) 

 

Fast food consumption      

 Model 1 1.43 

(1.26, 1.60) 

1.51 

(1.36, 1.66) 

1.73* 

(1.54, 1.91) 

1.70* 

(1.54, 1.86) 

 

 Model 2 1.46 

(1.28, 1.63) 

1.52 

(1.37, 1.67) 

1.73* 

(1.54, 1.91) 

1.69 

(1.53, 1.85) 
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 Model 3 1.43 

(1.26, 1.61) 

1.51 

(1.36, 1.66) 

1.74* 

(1.55, 1.92) 

1.70* 

(1.54, 1.86) 

 

Sleep Quality+ Not at all Somewhat Very much   

N 604 811 358   

 (Referent)     

Caffeinated beverages      

 Model 1 0.63 

(0.55, 0.71) 

0.72 

(0.65, 0.80) 

0.83** 

(0.71, 0.95) 

  

 Model 2 0.70 

(0.61, 0.79) 

0.72 

(0.64, 0.80) 

0.73 

(0.61, 0.85) 

  

 Model 3 0.70 

(0.62, 0.79) 

0.72 

(0.64, 0.80) 

0.71 

(0.59, 0.83) 

  

Sugar-sweetened beverages      

 Model 1 0.82 

(0.73, 0.92) 

0.85 

(0.75, 0.95) 

1.06* 

(0.89, 1.22) 

  

 Model 2 0.89 

(0.78, 1.00) 

0.85 

(0.75, 0.94) 

0.95 

(0.79, 1.12) 

  

 Model 3 0.89 

(0.78, 1.00) 

0.85 

(0.75, 0.95) 

0.94 

(0.77, 1.10) 

  

Sugar-free beverages      

 Model 1 0.30 

(0.24, 0.35) 

0.37 

(0.31, 0.43) 

0.42* 

(0.33, 0.52) 

  

 Model 2 0.33 

(0.27, 0.39) 

0.36 

(0.30, 0.41) 

0.40 

(0.30, 0.49) 

  

 Model 3 0.33 

(0.27, 0.39) 

0.36 

(0.31, 0.42) 

0.39 

(0.29, 0.48) 

  

Breakfast consumption      

 Model 1 4.15 

(3.93, 4.37) 

3.99 

(3.80, 4.16) 

3.27** 

(3.02, 3.51) 

  

 Model 2 4.04 

(3.81, 4.27) 

3.98 

(3.80, 4.16) 

3.42** 

(3.16, 3.68) 

  

 Model 3 4.04 

(3.81, 4.26) 

3.98 

(3.80, 4.16) 

3.43** 

(3.17, 3.69) 

  

Fast food consumption      

 Model 1 1.50 

(1.36, 1.63) 

1.64 

(1.52, 1.76) 

1.70 

(1.49, 1.92) 
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 Model 2 1.59 

(1.44, 1.74) 

1.62 

(1.50, 1.74) 

1.60 

(1.37, 1.82) 

  

 Model 3 1.59 

(1.44, 1.74) 

1.62 

(1.50, 1.74) 

1.60 

(1.37, 1.82) 

  

*p-value <0.05 **p-value <0.01 

Model 1 adjusted for age, sex, race/ethnicity, education, marital status 

Model 2 added depression, and physical activity 

Model 3 added time in bed 

Beverages measured in servings per day, breakfast and fast food servings per week 

Caffeinated beverages were defined as low-calorie beverages with caffeine (e.g. Diet Coke, Diet Mountain Dew), 

carbonated beverages with caffeine and sugar (e.g., Coke, Pepsi, Mountain Dew, Dr. Pepper), tea with caffeine 

including green tea, coffee with caffeine, and dairy coffee drink (e.g. cappuccino) 
¶Sugar-sweetened beverages were defined as carbonated beverages with caffeine and sugar, other carbonated 

beverages with sugar (e.g. 7-Up, Root Beer, Ginger Ale, Caffeine-Free Coke), and other sugared beverages 

(punch, lemonade, sports drinks, or sugared ice tea) 

Sugar-free beverages were defined as low-calorie beverages with caffeine and other low-calorie beverages 

without caffeine (e.g. Diet 7-Up) 
+Sleep quality was assessed via the following questions: During the past 12 months, how often have you been 

bothered or troubled by having trouble going to sleep or staying asleep 
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Table 2.3: Mean dietary intake (95% confidence interval) by sleep indices 

stratified by sex: Project-EAT 
Time in Bed <7 hours 

 

7-8 hours 

 

8-9 hours 

 

>9 hours 

 

P for 

interaction 

Breakfast consumption      0.01 

Men      

 Model 1 3.90 

(3.40, 4.39) 

3.44 

(3.14, 3.74) 

3.83 

(3.51, 4.15) 

3.15 

(2.76, 3.53) 

 

 Model 2 3.78 

(3.30, 4.25) 

3.35 

(3.05, 3.65) 

3.71 

(3.37, 4.04) 

3.08 

(2.70, 3.46) 

 

Women      

 Model 1 3.49** 

(3.00, 3.98) 

4.36 

(4.05, 4.66) 

4.23 

(3.98, 4.49) 

3.99 

(3.65, 4.32) 

 

 Model 2 3.60** 

(3.10, 4.10) 

4.41 

(4.11, 4.71) 

4.28 

(4.03, 4.53) 

4.12 

(3.78, 4.46) 

 

Sleep variability < 0.5 hours 0.5 - <1 hour 1 – 1.5 hours > 1.5 hours P for 

interaction 

Breakfast consumption     0.006 

Men      

 Model 1 3.84 

(3.44, 4.25) 

3.42 

(3.06, 3.77) 

3.75 

(3.43, 4.08) 

3.38 

(3.02, 3.74) 

 

 Model 2 3.71 

(3.30, 4.12) 

3.32 

(2.97, 3.68) 

3.66 

(3.34, 3.99) 

3.28 

(2.93, 3.64) 

 

 Model 3 3.75 

(3.35, 4.16) 

3.25 

(2.89, 3.60) 

3.63 

(3.31, 3.95) 

3.27 

(2.92, 3.61) 

 

Women      

 Model 1 3.77 

(3.37, 4.16) 

4.62** 

(4.29, 4.96) 

4.10 

(3.81, 4.39) 

4.02 

(3.73, 4.31) 

 

 Model 2 3.83 

(3.44, 4.21) 

4.73*** 

(4.41, 5.06) 

4.14 

(3.85, 4.43) 

4.15 

(3.86, 4.44) 

 

 Model 3 3.83 

(3.44, 4.22) 

4.73*** 

(4.41, 5.04) 

4.12 

(3.83, 4.41) 

4.14 

(3.84, 4.44) 

 

Sleep Timing      

Caffeinated beverages     0.0003 

Men      

 Model 1 0.43 

(0.30, 0.55) 

0.79*** 

(0.58, 0.82) 

0.80*** 

(0.63, 0.97) 

0.93*** 

(0.78, 1.07) 

 

 Model 2 0.56 

(0.41, 0.71) 

0.76* 

(0.63, 0.89) 

0.89** 

(0.72, 1.07) 

0.97*** 

(0.82, 1.11) 

 

 Model 3 0.60 

(0.44, 0.75) 

0.78 

(0.65, 0.91) 

0.89** 

(0.71, 1.06) 

0.94** 

(0.80, 1.09) 

 

Women      

 Model 1 0.70 

(0.57, 0.84) 

0.64 

(0.51, 0.77) 

0.67 

(0.53, 0.81) 

0.72 

(0.60, 0.84) 

 

 Model 2 0.67 

(0.54, 0.81) 

0.63 

(0.50, 0.75) 

0.61 

(0.48, 0.75) 

0.67 

(0.55, 0.79) 

 

 Model 3 0.68 

(0.54, 0.81) 

0.63 

(0.50, 0.76) 

0.62 

(0.48, 0.76) 

0.66 

(0.54, 0.78) 

 

Sugar-free beverages     0.0005 

Men      

 Model 1 0.14 

(0.06, 0.22) 

0.32** 

(0.24, 0.41) 

0.32** 

(0.23, 0.48) 

0.39** 

(0.28, 0.49) 
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 Model 2 0.16 

(0.08, 0.25) 

0.34** 

(0.25, 0.44) 

0.38** 

(0.24, 0.51) 

0.40*** 

(0.29, 0.50) 

 

 Model 3 0.20 

(0.10, 0.29) 

0.35* 

(0.25, 0.45) 

0.36* 

(0.23, 0.49) 

0.37* 

(0.27, 0.47) 

 

Women      

 Model 1 0.47 

(0.36, 0.57) 

0.35 

(0.26, 0.44) 

0.42 

(0.29, 0.55) 

0.35 

(0.26, 0.44) 

 

 Model 2 0.47 

(0.37, 0.58) 

0.35 

(0.26, 0.44) 

0.41 

(0.28, 0.53) 

0.34 

(0.25, 0.43) 

 

 Model 3 0.48 

(0.37, 0.58) 

0.35 

(0.26, 0.44) 

0.41 

(0.28, 0.53) 

0.34 

(0.24, 0.43) 

 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Caffeinated beverages were defined as low-calorie beverages with caffeine (e.g. Diet Coke, Diet 

Mountain Dew), carbonated beverages with caffeine and sugar (e.g., Coke, Pepsi, Mountain Dew, Dr. 

Pepper), tea with caffeine including green tea, coffee with caffeine, and dairy coffee drink (e.g. 

cappuccino) 

Sugar-free beverages were defined as low-calorie beverages with caffeine and other low-calorie 

beverages without caffeine (e.g. Diet 7-Up)  
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Table 2.4: Prevalence ratios (95% confidence intervals) for intake of 

energy drinks and sports drinks by sleep duration, variability, timing, 

and quality: Project EAT 
Time in Bed 

N 

<7 hours 

203 

7-8 hours 

471 

8-9 hours 

642 

>9 hours 

457 
†Energy drinks     

  Model 1 1.45 

(0.95, 1.94) 

Ref. 1.09 

(0.79, 1.39) 

1.03 

(0.71, 1.35) 

  Model 2 1.39 

(0.91, 1.87) 

Ref. 1.08 

(0.79, 1.38) 

1.01 

(0.71, 1.32) 
†Sports drinks     

  Model 1 0.97 

(0.74, 1.20) 

Ref. 0.86 

(0.71, 1.02) 

0.80* 

(0.62, 0.97) 

  Model 2 0.94 

(0.71, 1.17) 

Ref. 0.85* 

(0.70, 0.99) 

0.80* 

(0.63, 0.98) 

Sleep variability < 0.5 hours 0.5 - <1 hour 1 – 1.5 hours > 1.5 hours 

N 339 364 571 500 

Energy drinks     

 Model 1 Ref. 1.59** 

(1.04, 2.14) 

1.30 

(0.88, 1.73) 

1.40* 

(0.93, 1.87) 

 Model 2 Ref. 1.54* 

(1.02, 2.07) 

1.29 

(0.87, 1.70) 

1.36 

(0.90, 1.81) 

 Model 3 Ref. 1.52* 

(1.01, 2.04) 

1.29 

(0.87, 1.71) 

1.35 

(0.89, 1.81) 

Sports drinks     

 Model 1 Ref. 1.08 

(0.84, 1.33) 

1.01 

(0.80, 1.23) 

0.93 

(0.71, 1.14) 

 Model 2 Ref. 1.06 

(0.82, 1.30) 

0.99 

(0.79, 1.20) 

0.92 

(0.71, 1.13) 

 Model 3 Ref. 1.02 

(0.79, 1.24) 

0.95 

(0.76, 1.15) 

0.87 

(0.68, 1.07) 

Sleep Timing ≤ 10:30 PM 10:30-11:30 PM 11:30 PM- 

12:30 AM 

> 12:30 AM 

N 327 497 390 560 

Energy drinks     

 Model 1 Ref. 1.44 

(0.86, 2.01) 

1.63* 

(0.97, 2.29) 

1.83** 

(1.10, 2.55) 

 Model 2 Ref. 1.36 

(0.82, 1.90) 

1.53* 

(0.92, 2.15) 

1.71** 

(1.04, 2.38) 

 Model 3 Ref.  1.35 

(0.82, 1.89) 

1.50* 

(0.90, 2.11) 

1.65** 

(0.99, 2.30) 

Sports drinks     

 Model 1 Ref. 1.07 

(0.80, 1.34) 

1.07 

(0.79, 1.35) 

1.22 

(0.92, 1.51) 

 Model 2 Ref. 1.03 

(0.78, 1.28) 

1.04 

(0.77, 1.30) 

1.18 

(0.90, 1.46) 

 Model 3 Ref.  1.01 

(0.76, 1.26) 

1.01 

(0.75, 1.26) 

1.15 

(0.87, 1.43) 

Sleep Quality+ Not at all Somewhat Very much  

N 604 811 358  

Energy drinks     
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 Model 1 Ref. 1.42** 

(1.06, 1.78) 

1.96*** 

(1.40, 2.51) 

 

 Model 2 Ref. 1.38* 

(1.01, 1.75) 

1.86*** 

(1.29, 2.42) 

 

 Model 3 Ref. 1.37* 

(1.01, 1.74) 

1.79*** 

(1.24, 2.34) 

 

Sports drinks     

 Model 1 Ref. 1.00 

(0.83, 1.17) 

1.24* 

(0.99, 1.49) 

 

 Model 2 Ref. 0.99 

(0.82, 1.17) 

1.28* 

(1.00, 1.55) 

 

 Model 3 Ref. 1.00 

(0.83, 1.18) 

1.28* 

(1.00, 1.56) 

 

*p-value <0.05 **p-value <0.01 

Model 1 adjusted for age, sex, race/ethnicity, education, marital status 

Model 2 added depression, and physical activity 

Model 3 added sleep duration 
+Sleep quality was assessed via the following questions: During the past 12 months, how often 

have you been bothered or troubled by having trouble going to sleep or staying asleep? 
†Energy and sports drink consumption defined as ≥ one drink per week compared to < one drink 

per week 
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Supplemental Table 2.1: Mean dietary intake by categories of sleep duration, with the 

inclusion of a <6 hours/night category: Project EAT 
Time in Bed 

N 

<6 hours 

59 

6-7 hours 

144 

7-8 hours 

471 

8-9 hours 

642 

>9 hours 

457 

   (Referent)   

Caffeinated drinks      

 Model 1 1.01* 

(0.70, 1.33) 

0.82 

(0.62, 1.01) 

0.66 

(0.57, 0.75) 

0.68 

(0.60, 0.77) 

0.74 

(0.63, 0.85) 

 Model 2 0.94 

(0.62, 1.25) 

0.85 

(0.65, 1.04) 

0.67 

(0.58, 0.76) 

0.70 

(0.61, 0.78) 

0.71 

(0.61, 0.82) 

Sugar-sweetened beverages      

 Model 1 1.29 

(0.85, 1.74) 

0.86 

(0.67, 1.06) 

0.85 

(0.74, 0.97) 

0.83 

(0.73, 0.93) 

0.94 

(0.79, 1.09) 

 Model 2 1.22 

(0.78, 1.65) 

0.89 

(0.70, 1.09) 

0.86 

(0.74, 0.98) 

0.85 

(0.75, 0.94) 

0.91 

(0.76, 1.05) 

Sugar-free beverages      

 Model 1 0.39 

(0.16, 0.61) 

0.51 

(0.32, 0.69) 

0.36 

(0.29, 0.43) 

0.33 

(0.28, 0.39) 

0.33 

(0.26, 0.40) 

 Model 2 0.36 

(0.13, 0.58) 

0.51 

(0.33, 0.70) 

0.36 

(0.29, 0.43) 

0.34 

(0.28, 0.40) 

0.32 

(0.25, 0.39) 

Breakfast consumption      

 Model 1 3.20* 

(2.60, 3.79) 

4.01 

(3.56, 4.46) 

3.94 

(3.72, 4.16) 

4.07 

(3.87, 4.27) 

3.65 

(3.39, 3.92) 

 Model 2 3.33 

(2.74, 3.92) 

3.95 

(3.51, 4.38) 

3.92 

(3.70, 4.14) 

4.04 

(3.84, 4.24) 

3.69 

(3.43, 3.95) 

Fast food consumption      

 Model 1 1.69 

(1.08, 2.30) 

1.50 

(1.18, 1.83) 

1.53 

(1.38, 1.69) 

1.58 

(1.45, 1.71) 

1.72 

(1.56, 1.89) 

 Model 2 1.59 

(1.02, 2.16) 

1.54 

(1.21, 1.87) 

1.55 

(1.39, 1.70) 

1.60 

(1.47, 1.73) 

1.71 

(1.54, 1.88) 

* p < 0.05 

Model 1 adjusted for age, sex, race/ethnicity, education, marital status 

Model 2 added depressive symptoms and physical activity 
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Supplemental Table 2.2: Prevalence ratios for intake of energy drinks and sports drinks by sleep duration 

with the inclusion of a <6 hours/night category: Project EAT 
Time in Bed 

N 

<6 hours 

59 

6-7 hours 

144 

7-8 hours 

471 

8-9 hours 

642 

>9 hours 

457 
†Energy drinks      

 Model 1 1.55 

(0.59, 2.50) 

1.41 

(0.90, 1.92) 

Ref. 1.09 

(0.79, 1.39) 

1.03 

(0.72, 1.35) 

 Model 2 1.44 

(0.54, 2.34) 

1.37 

(0.86, 1.87) 

Ref. 1.08 

(0.79, 1.38) 

1.01 

(0.71, 1.32) 
†Sports drinks      

 Model 1 1.12 

(0.69, 1.56) 

0.91 

(0.66, 1.16) 

Ref. 0.86 

(0.71, 1.02) 

0.80* 

(0.62, 0.98) 

 Model 2 1.11 

(0.67, 1.55) 

0.88 

(0.63, 1.12) 

Ref. 0.85* 

(0.70, 0.99) 

0.80* 

(0.63, 0.98) 

*p-value <0.05  

Model 1 adjusted for age, sex, race/ethnicity, education, marital status 

Model 2 added depressive symptoms and physical activity 
†Energy and sports drink consumption defined as ≥ one drink per week compared to < one drink per week 
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Abstract  
 

Study Objectives: To investigate the cross-sectional relationship between objectively 

measured sleep characteristics and multiple indices of adiposity in racially/ethnically 

diverse older adults within the MESA Sleep study (n = 2,146). 

 

Methods: 7-day actigraphy was used to assess sleep duration, sleep efficiency, and night-

to-night variability. Body mass index (BMI), waist circumference, and total body fat 

were modeled continuously and according to obesity cut-points. Models were adjusted 

for demographic, socioeconomic, and behavioral variables.   

 

Results: Participants who slept less than 6 hours a night had significantly higher BMI, 

waist circumference, and body fat relative to those who slept 7-8 hours. Those who slept 

less than 5 hours had a 16% higher prevalence of general obesity (BMI ≥30 vs. <25 

kg/m2) (95% [CI]: 0.08-0.24) and a 9% higher prevalence of abdominal obesity (waist 
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circumference: women ≥88 centimeters, men ≥102 centimeters; 95% CI: 0.03-0.16) 

compared to those who slept 7-8 hours. Results were similar for sleep efficiency and 

night-to-night sleep variability.  

 

Conclusions: Among an older multi-ethnic cohort, we found robust associations across 

multiple indices of sleep and adiposity. Targeting sleep characteristics may be of benefit 

in obesity interventions, but more research is needed to rule out reverse causality. 
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Introduction  

According to the most recent data, 69.2% of Americans self-reported that they did 

not get enough sleep at least one day in the previous month,245 and 68.5% of American 

adults were overweight or obese (2011-2012).246 Because the prevalence of these 

conditions is high, Healthy People 2020 objectives include increasing the proportion of 

adults who get sufficient sleep and are at a healthy weight.2 These co-occurring high 

prevalences, together with pathophysiologic evidence,152 have suggested that sleep and 

obesity are interrelated. Although there is a strong inverse association between sleep and 

obesity in children,247 the relationship is less consistent in adults, and studies have 

reported inverse associations, U-shaped associations, or no association.138-141,202 Most 

studies, however, have used self-reported measures of sleep duration, only one measure 

of obesity, and racially/ethnically homogenous populations.  

Literature on other measures of sleep, such as sleep efficiency and night-to-night 

sleep variability, is more limited because it cannot be assessed well with self-report 

measures. Previous studies have found that lower sleep efficiency and higher sleep 

variability are associated with higher levels of obesity.236,248,249 

The Multi-Ethnic Study of Atherosclerosis (MESA) provides an opportunity to 

evaluate the relationship between actigraphy-measured sleep indices and multiple 

measures of adiposity in a racially diverse population. We hypothesized that short sleep 

duration, low sleep efficiency and high sleep duration variability will be associated with 

higher levels of adiposity independently of other confounders. We also evaluated whether 

the association differed by age, sex, or race/ethnicity. 
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Methods 
 

MESA is a cohort study designed to study risk factors for clinical and subclinical 

cardiovascular diseases in four racial/ ethnic groups.250 The study began in July 2000 and 

recruited 6,814 adults free of clinical CVD and aged 45-84 years from 6 field centers 

across the United States: Baltimore, MD; Chicago, IL; Los Angeles, CA; New York, NY; 

Saint Paul, MN; and Winston-Salem, NC. Five exams have now taken place, with the 

most recent occurring from April 2010 to February 2013. All of the 4,077 participants 

who attended Exam 5 were approached for participation in MESA Sleep, an ancillary 

study of objective measures of sleep and their relationship to cardiovascular disease. The 

median time interval between Exam 5 and MESA Sleep was 301 days (range 0-1024 

days). Sleep data was received from 2,261 participants, and the current cross-sectional 

analysis included 2,146 participants with data on both sleep and adiposity measures. 

Local institutional review boards approved study protocols, and all participants gave 

written informed consent. 

Exposures  

 

Sleep measures were assessed using at home 7-day actigraphy. All participants 

wore the Actiwatch Spectrum wrist actigraph (Philips Respironics, Murrysville, PA) on 

the non-dominant wrist. Output was scored by a certified technician using an event 

marker, a self-reported sleep diary, and data on light levels at the Sleep Reading Center at 

Brigham and Women’s Hospital in Boston, Massachusetts.13 Sleep interval start and end 

time were determined by activity count increases and decreases, respectively. These 

times were compared to the event marker, sleep journal bed and wake times, and light 
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level changes. The Cole-Kripke algorithm was used to generate data on sleep duration 

and sleep efficiency.251 Sleep duration was defined as the average sleep time in main 

sleep periods across all days, defined as the sum of the sleep time over each night divided 

by the total number of days. This variable was modeled in 5 categories: <5 h, 5-6, 6-7, 7-

8, and >8 hours. Sleep efficiency was defined as the percentage of time spent asleep in 

the sleep interval (“lights off” to “lights on”). For modeling purposes, we first 

categorized sleep efficiency according to quartiles of the distribution, then we further 

divided the lowest category according to the commonly used threshold of less than 85. 

The 5 categories were then <85%, 85-87.9%, 87.9-90.4%, 90.4%-92.4%, and >92.4%. 

Night-to-night variability in sleep duration was measured in minutes using the within 

person between-night standard deviation (SD) of the sleep duration variable, and was 

modeled in approximate quartiles (≤48, 48-70, 70-99, and 99-262).  

Outcomes  

 

All measures of adiposity were obtained during the MESA Exam 5 clinic visits. 

Participants wore light clothing and no shoes. Height was measured to the nearest 0.5 cm 

using an Accu-Hite measure device and weight was measured to the nearest 0.5 kg using 

a Detecto Platform Balance Scale. BMI was calculated in kg/m2. Waist circumference 

was measured at the umbilicus to the nearest 0.1 cm using a Gulick II 150 cm 

anthropometric tape. Total body fat was measured in kilograms via full body bioelectrical 

impedance analysis (BIA) using the Valhalla BCS-2 Body Composition scale and printer. 

In validation studies, bioelectrical impedance was highly correlated with dual-energy X-

ray absorptiometry and was a much better estimator of body fat than BMI.252   
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Covariates  

Additional information on sociodemographics and behaviors was assessed via 

questionnaire at Exam 5. Alcohol use was characterized as present drinking of alcoholic 

beverages or not. Smoking status was categorized as current, former, or never smoker. 

Depressive symptoms were assessed with the Center for Epidemiological Studies 

Depression Scale (CES-D) and was modeled dichotomously with a cutpoint at 16; scores 

at this point or higher are typically indicative of clinically significant symptomatology.253 

Antidepressant use was categorized as yes based on use of tricyclic antidepressants, 

selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and 

other depressants. Sleeping pill use was categorized as no use in the past 4 weeks, less 

than once a week, 1 or 2 times a week, 3 or 4 times a week, or ≥5 times a week. Sleep 

apnea was measured using in-home overnight polysomnography, as has been previously 

described.13 It included all central and obstructive apneas and hypopneas ≥4% 

desaturation and was modeled in 4 categories according to apnea-hypopnea index: 0 to 

<5, 5 to <15, 15 to <30, and 30+ per night. 

Analysis  

Descriptive statistics were calculated for the exposure variables, stratified by 

sleep duration category. We used linear regression and logistic regression to model the 

relationship between the sleep indices and each anthropometric measure. Outcome 

measures were modeled both as continuous variables (linear regression) and according to 

dichotomous categories (logistic regression). Using the margins command in Stata, 

adjusted probabilities standardized to the total population were calculated for each 
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category of the sleep exposure in the logistic models, and these probabilities were used to 

calculate prevalence differences for each obesity outcome.254 In the models with 

dichotomized outcomes, cutoffs for each measure were chosen according to standard 

guidelines. Participants with a BMI ≥30 kg/m2 were categorized as having overall 

obesity, those with a BMI between 25 and 29.9 kg/m2 were categorized as overweight, 

and those with a BMI <25 kg/m2 were categorized in the normal weight reference group. 

Abdominal obesity was defined as ≥88 cm for women and ≥102 cm for men.  

We explored a series of models. The first model controlled for age, field center, 

race/ethnicity, and sex. Model 2 added socioeconomic and behavioral variables, 

including marital status, income, education, smoking, depressive symptoms, sleeping pill 

use, and alcohol use. Model 3 included covariates in Model 2 plus sleep apnea. For 

models with sleep efficiency and night-to-night variability as an exposure, we also 

adjusted for sleep duration (Model 4). Interactions between sleep and age, sex, and race/ 

ethnicity on indices of adiposity were tested using cross-product terms in the linear 

models and stratified results were reported, as appropriate. Sensitivity analyses excluded 

individuals with long sleep (duration >9 h) or sleep apnea (AHI ≥15). 

Results 

The mean age in the analytic sample was 68.6 (SD 9.2) years, and 53.7% were 

female. Mean hours of sleep were 6.5 (SD 1.4). The mean BMI in the sample was 28.8 

(SD 5.6), and mean waist circumference was 99.7 cm (SD 14.5); these indicators were 

approximately normally distributed. Indices of adiposity varied by race/ethnicity; general 

obesity (BMI ≥30 kg/m2) was present in 30.1% of whites, 49.2% of African Americans, 
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4.9% of Chinese, and 44.3% of Hispanics. For abdominal obesity (waist circumference: 

women ≥88 cm, men ≥102 cm) these proportions were 56.7%, 69.9%, 27.1%, and 65.0%, 

respectively.  

Table 3.1 shows sociodemographic and behavioral characteristics by sleep 

duration category. Those averaging <5 h of sleep per night were more likely to be male, 

African American, and current smokers. There was also important variation by race/ 

ethnicity, with a range of 7.9% (whites) to 20.8% (African Americans).  

Table 3.2 shows adjusted means of adiposity measures by categories of the sleep 

indices from the linear models. Overall, we found significant associations between each 

sleep exposure and BMI, waist circumference, and total body fat. For example, after 

accounting for demographics, BMI was 1-2 units larger among those with short sleep 

duration (<5 h), low sleep efficiency, or high sleep variability relative to those who slept 

7-8 h/night, had high sleep efficiency, or low sleep variability, respectively. Similar 

results were found for waist circumference and total body fat, where those with short 

sleep duration, low sleep efficiency, or high sleep variability had a waist circumference 

2.5 to 5 cm larger and body fat 2 to 3 kg more than those who slept 7-8 h/night, had high 

sleep efficiency, or low sleep variability. Further adjustment for socioeconomic and 

behavioral variables did not significantly alter the estimates, though the effect of sleep 

efficiency and variability was reduced with adjustment for sleep duration. Models where 

each exposure was treated continuously per one standard deviation can be found in 

Supplemental Table 3.1. Results were similar to the exposures modeled categorically. 

Results were also similar in sensitivity analyses when we removed from the analysis the 
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41 individuals who slept >9 h/night (data not shown). Associations were attenuated, but 

some retained statistical significance, when sleep apnea was added into the model and 

when analyses were restricted to those with AHI<15 (Table 3.2 and Supplemental 

Table 3.2). 

Effect modification by age, sex, and race/ethnicity was also tested in each linear 

model. Significant interaction terms were found between sleep efficiency and sex for 

each outcome; sex-stratified results are presented in Supplemental Table 3.3. Across 

sleep efficiency categories, men had similar BMIs, while for women lower sleep 

efficiency was associated with higher BMI. Similar results were found for waist 

circumference, where men had similar waists across sleep efficiency categories, but for 

women lower sleep efficiency was associated with higher waist circumference. 

Significant interaction terms were also found between age (dichotomized at the median) 

and sleep efficiency when waist circumference was the outcome (p = 0.03). Across sleep 

efficiency categories, those over age 68 had similar waists, while for those younger than 

68, lower sleep efficiency was associated with higher waist circumference 

(Supplemental Table 3.4). Although interactions terms approached significance for sex 

and sleep duration when the outcomes were BMI and waist circumference, no major 

differences between men and women were detected (Supplemental Table 3.5). No 

significant interactions were found between sleep variability and the adiposity outcomes. 

Additionally, no significant interactions were found by race/ethnicity for any of the 

exposures or outcomes.  
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Figure 3.1 shows the prevalence differences for models with dichotomous 

outcomes. After accounting for demographics, those who slept <5 h/night had a 16% 

higher prevalence of obesity (BMI ≥30 vs. <25 kg/m2; P < 0.001) and a 7% higher 

prevalence of overweight (P = 0.133) compared to those who slept 7-8 h/night (Fig. 3.1, 

Panel A; Supplemental Table 3.6). They also had a 10% higher prevalence of abdominal 

obesity (defined as waist circumference ≥102 cm in men, ≥88 cm in women) (P = 0.002). 

Participants with lower sleep efficiency tended to be more obese by all definitions, 

though associations did not always achieve statistical significance (Fig. 3.1, Panel B). 

Those in the highest quartile of sleep variability had a 5% higher prevalence of general 

obesity (P = 0.167) and a 6% higher prevalence of abdominal obesity (P = 0.037) 

compared to those in the lowest quartile (Fig. 3.1, Panel C). For all exposures, further 

adjustment for socioeconomic and behavioral variables slightly reduced the estimates, 

while adjustment for sleep apnea resulted in substantial attenuation (Supplemental Tables 

3.6, 3.7).  

Discussion 
 

 In this older, multi-racial/ethnic population of 2,146 adults from the MESA study, 

we found robust evidence that actigraphy measured sleep characteristics are cross-

sectionally associated with several markers of adiposity. Those sleeping less than 5 hours 

per night had higher BMIs, larger waists, and more kilograms of body fat than those who 

slept 7-8 hours a night. Those with low sleep efficiency and high sleep variability also 

had higher BMIs, larger waists, and more body fat. Effects were smaller for sleep 

efficiency and variability once sleep duration was considered. There was also some 
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evidence that effects were stronger in women compared to men, and for younger 

compared to older participants. 

Previous research examining the cross-sectional relationship between sleep and 

obesity in adults has mainly focused on sleep duration, and has found a variety of 

different associations, including inverse, U-shaped, and no association.138,139,202 The 

majority of these studies use self-report questionnaires to assess sleep duration.255 

Notably, self-reported and objectively measured sleep are only moderately correlated, 

and discrepancies between the two are related to a variety of pertinent confounders.22,256 

Studies that did use objective measures of sleep duration also had mixed results with 

some finding inverse and U-shaped associations.132,248,257 Importantly, the only two 

longitudinal studies on this topic that used objective sleep measures found no 

association,132,258 which may suggest that this relationship is not causal in adults. 

Prospective studies using self-reported sleep data have found inverse, U-shaped, and no 

associations.202,255,259,260 However, there is strong and consistent evidence for a causal 

association between sleep duration and obesity among children and adolescents,139,261 

including findings from a randomized crossover trial.262 More longitudinal and 

experimental studies with standardized measures are needed to determine whether the 

association between short sleep duration and adiposity is causal in adults. 

Because few published studies used actigraphy, most did not evaluate the 

relationship between sleep efficiency, sleep variability, and obesity. Previous research 

has found that low sleep efficiency and high sleep variability are associated with both 

general and abdominal obesity.236,248,249 Better characterizing the associations between 
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specific sleep disturbances, such as those that relate to short sleep duration vs. 

inconsistent sleep patterns, may be useful when designing future interventions.   

In this study, the relationship between actigraphy-measured sleep characteristics 

and obesity was substantially attenuated with both adjustment for sleep apnea and 

restriction to those without sleep apnea. Few studies on sleep duration and obesity have 

examined sleep apnea because most relied on self-reported measures of sleep duration. 

Those that have examined it found that the relationship between sleep duration and 

obesity remained even after adjustment for OSA.258 The causal pathways between sleep 

duration, sleep apnea, and obesity are complicated. Obesity has been strongly and 

consistently associated with sleep apnea, with randomized trials of weight loss 

demonstrating that weight loss is causally associated with a reduction in AHI.86 It has 

also been suggested that weight loss may increase sleep duration through attenuating 

sleep apnea. However, the current evidence to support this hypothesis is limited and 

inconsistent, finding null or small associations.263-265 Patients with sleep apnea treated 

with CPAP may actually gain weight.266 Because the direction and strength of these 

relationships is complex, models with adjustment for sleep apnea require careful 

interpretation. More research is needed to disentangle the components of the relationship 

between sleep characteristics, sleep apnea, and obesity. 

There are several potential pathways through which sleep indices can influence 

obesity.152 One possible mechanism is that short sleep duration may lead to increased 

food intake. Experimental studies have demonstrated that short sleep can lead to both 

self-reported and biological changes in hunger and appetite, including increases in ghrelin 
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and decreases in leptin.139,153 Recent brain imaging data also suggest that insufficient 

sleep may increase central neuronal responses to high caloric foods, increasing behaviors 

leading to overeating.154 With more hours available in the day, short sleepers may also 

have more opportunities to eat. In another potential pathway, lack of sleep may lead to 

fatigue, which can lead to decreased physical activity. Pathways for efficiency and 

variability are less clear, but likely act through similar mechanisms. People with low 

sleep efficiency also may have selective deprivation of deep sleep (stage N3), which has 

been linked to central obesity,267 likely through effects on the hypothalamic pituitary 

adrenal axis and the autonomic nervous system.268 People with high sleep variability may 

represent those who engage in short sleep certain nights of the week and then compensate 

on other nights. Additionally, those with high sleep variability may have irregular eating 

patterns due to variation in their sleep-wake pattern.236 Thus, sleep variability may 

increase risk of adiposity through exposure to both periodic insufficient sleep, as well as 

by contributing to irregularity in the synchronization of eating and sleep timing, which is 

increasingly recognized to be important in energy balance.236   

Existing studies of sleep and obesity have often relied on BMI as the sole 

measurement of the adiposity. Although BMI is easy to measure, it does not differentiate 

between lean and fat mass. Other measures, such as waist circumference better quantify 

the distribution of body fat. Studies that have examined sleep duration and other 

measures of adiposity have found inverse associations though there were some 

differences by sex.248,269,270 In this study, we measured adiposity with BMI, waist 
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circumference, and total body fat measured through full body bioelectrical impedance 

and found that all behaved similarly within each sleep measure.  

Prior research on sleep and obesity has also been conducted in mostly Caucasian 

populations. In our sample, as has been shown by others,33,40 minority groups slept for a 

shorter duration compared to white populations. Likewise, in our population, as is well 

established,271 obesity varied by race/ ethnicity. However, in our sample the relationship 

between sleep duration and efficiency with obesity was not modified by race. This is 

consistent with a National Health and Nutrition Examination Survey analysis of whites, 

African Americans and Mexican Americans, which found an inverse linear association 

between self-reported sleep duration and obesity that did not vary by race/ ethnicity.270 

Notably, the Insulin Resistance Atherosclerosis Study (IRAS) previously reported that 

among 332 Hispanic and 775 African American participants, a U-shaped association was 

observed between self-reported sleep duration and change in adiposity, though only 

among participants less than 40 years old.259 Additional studies conducted in racially/ 

ethnically diverse populations are needed to make more definitive conclusions. 

 However, we did find effect measure modification by sex and age. Our finding 

that the relationship between sleep efficiency and obesity was stronger in women than 

men has been reported by others.236,248 In the current study, we also found effect 

modification by age for the relationship between sleep efficiency and waist 

circumference, whereby the association was stronger among younger individuals. More 

studies are needed to confirm this finding.  
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 This study has several strengths. The use of actigraphy instead of self-reported 

sleep duration resulted in less measurement error of the exposure, and allowed for the 

ascertainment of both sleep efficiency and sleep variability. However, actigraphy has 

high sensitivity and low specificity because it detects wakefulness less accurately. 

Another strength of this study is its use of multiple measures of adiposity, instead of 

relying solely on BMI. The study also uses a population-based sample of four different 

racial/ethnic groups instead of a homogenous population. 

 This study also has several weaknesses. Foremost, no single observational study, 

particularly a cross-sectional one, allows establishing causality. Since measures of sleep 

and obesity were taken at the same time, temporality cannot be determined so the 

possibility of reverse causation exists. Because the pathway between sleep duration and 

obesity is not fully understood, it is possible that we neglected to control for all 

confounders. Additionally, residual confounding may have remained despite our attempts 

at adjustment.  

 Overall, this cross-sectional study found associations between multiple measures 

of objectively measured sleep and adiposity. The National Sleep Foundation presently 

recommends that adults aged 26-64 years get 7 to 9 hours of sleep per night, and that 

adults aged 65 or older get 7 to 8 hours of sleep per night.272 If short sleep is causally 

associated with the development of obesity in adults, as it is believed to be in 

children,262,273 increasing sleep duration among individuals with short sleep could 

represent an important public health intervention because a large proportion of the US 

population reports short sleep,274 and this is especially true among African Americans 
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and Hispanics.33,40 Our study also identifies the potential importance of sleep efficiency 

and sleep variability as contributors to obesity. Future interventions that target one of 

more of these sleep traits in obesity prevention programs may yield novel insights into 

approaches for achieving the Healthy People 2020 health objectives. 
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Table 3.1: Participant characteristics by sleep duration category: The 

MESA Study 2010-2013 
 <5 hours 5-6 hours 6-7 hours 7-8 hours >8 hours 

N total 284 388 679 559 241 

Demographics      

Age, mean years ± 

SD 

69.5 ± 9.9 67.9 ± 8.9 67.8 ± 8.9 68.3 ± 9.1 72.2 ± 9.3 

 

% Female, n (%) 

 

 

104 (36.6) 

 

197 (50.8) 

 

352 (51.8) 

 

347 (62.1) 

 

155 (64.3) 

Race/Ethnicity, n 

(%)* 

     

White/Caucasian 64 (7.9) 93 (11.5) 266 (33.0) 267 (33.1) 116 (14.4) 

Chinese American 40 (16.4) 50 (20.5) 70 (28.7) 66 (27.1) 18 (7.4) 

Black/ 

African American 

124 (20.8) 140 (23.5) 191 (32.0) 100 (16.8) 42 (7.0) 

Hispanic 56 (11.1) 105 (20.8) 152 (30.2) 126 (25.0) 65 (12.9) 

      

Education, n (%)      

< High school 39 (13.8) 52 (13.4) 90 (13.3) 79 (14.2) 52 (21.6) 

High school 48 (17.0) 76 (19.6)  104 (15.3) 91 (16.3) 38 (15.8) 

> High school 196 (69.3) 260 (67.0) 484 (71.4) 387 (69.5) 151 (62.7) 

      

Married, n (%) 151 (54.5) 209 (54.6) 434 (64.7) 354 (63.9) 128 (54.5) 

      

Behavioral 

Characteristics 

     

Sleeping pill use 

5+ times a week, 

n(%) 

17 (6.1) 19 (5.0) 39 (5.8) 43 (7.7) 18 (7.5) 

Smoking, n (%)      

Current 35 (12.5) 31 (8.1) 46 (6.8) 23 (4.1) 21 (8.8) 

Former 136 (48.4) 172 (44.7) 304 (45.0) 274 (49.1) 101 (42.3) 

Never 110 (39.2) 182 (47.3) 326 (48.2) 261 (46.8) 117 (49.0) 

Presently drinking 

alcohol, N (%) 

112 (39.9) 152 (39.5) 314 (46.4) 263 (47.1) 88 (36.8) 

CES-D ≥16, n (%) 51 (18.5) 73 (19.1) 83 (12.4) 68 (12.3) 37 (15.7) 

      

Outcomes, mean 

± SD 

     

Body mass index 

(kg/m2) 

29.9 ± 5.7 29.4 ± 5.8 28.8 ± 5.6 28.1 ± 5.4 28.1 ± 5.3 

Waist 103.1 ± 101.1 ± 99.6 ± 97.4 ± 98.7 ± 14.6 
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circumference 

(cm) 

14.4 14.9 14.6 13.8 

Total body fat (kg) 26.3 ± 

11.6 

25.9 ± 

11.3 

25.0 ± 

11.0 

24.4 ± 

10.6 

25.2 ± 10.9 

      

BMI ≥30, n(%) 128 (45.2) 149 (38.5) 243 (35.8) 175 (31.4) 75 (31.4) 

BMI 25-29.9, 

n(%) 

99 (35.0) 159 (41.1) 250 (36.8) 211 (37.8) 87 (36.4) 

Abdominal 

obesity, n(%) 

176 (62.2) 235 (60.7) 388 (57.1) 319 (57.3) 146 (61.3) 

* Percentages represent row percentages 

Abbreviations: CES-D, Center for Epidemiological Studies-Depression; SD, 

standard deviation.  
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Table 3.2: Adjusted means of adiposity measures by categories of sleep duration, efficiency 

and variability: The Multi-Ethnic Study of Atherosclerosis 2010-2013 

 

Sleep Duration 

                        

  N 

<5 hours 

 

288 

5-6 hours 

 

388 

6-7 hours 

 

679 

7-8 hours 

(Referent) 

559 

>8 hours 

 

241 

P for linear 

trend 

BMI (kg/m2)       

     Model 1 30.1***  29.3**  28.7 28.2 28.2 <0.001 

     Model 2 30.1*** 29.5 *** 28.7 28.2 28.3 <0.001 

     Model 3 29.4** 29.4** 28.9 28.3 28.1 <0.001 

       

Waist 

circumference 

(cm) 

      

     Model 1 102.7*** 100.9** 99.4 98.0 98.7 <0.001 

     Model 2 102.2*** 101.2** 99.6 98.0 98.9 <0.001 

     Model 3  100.9* 101.0** 99.8* 98.2 98.3 0.001 

       

Total body fat 

(kg) 

      

     Model 1 27.4*** 25.9* 25.0 24.3 24.2 <0.001 

     Model 2 27.3*** 26.1* 25.1 24.4 24.3 <0.001 

     Model 3 26.1* 26.1* 25.4 24.5 23.9 0.002 

Sleep Efficiency 

                       

  N 

<85% 

 

208 

85-87.9% 

 

329 

87.9-90.4% 

 

544 

90.4%-92.4% 

 

523 

>92.4% 

(Referent) 

547 

 

BMI (kg/m2)       

     Model 1 29.3** 29.5*** 28.8* 28.7 28.2 <0.001 

     Model 2 29.2* 29.6** 29.0* 28.7 28.3 0.001 

     Model 3 28.8 29.4** 28.9 28.8 28.3 0.028 
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     Model 4 28.6 29.3* 28.9 28.9 28.4 0.171 

       

Waist 

Circumference 

(cm) 

      

     Model 1 101.4** 101.4*** 99.6* 99.8* 97.9  <0.001 

     Model 2 100.9* 101.6** 99.8* 99.8* 98.1 0.001 

     Model 3 100.0 101.0** 99.7* 100.2* 98.0 0.015 

     Model 4 99.5 100.8* 99.7 100.2* 98.2 0.080 

       

Total Body Fat 

(kg) 

      

     Model 1 26.3** 26.6*** 25.4** 25.3*  23.8 <0.001 

     Model 2 26.0* 26.6 *** 25.6* 25.2 24.0 0.001 

     Model 3 25.3 26.3** 25.4* 25.5* 24.1 0.020 

     Model 4 24.9 26.2* 25.3 25.5 24.3 0.105 

Sleep duration 

Variability 

  N 

≤48 

(Referent) 

535 

48-70 

 

554 

70-99 

 

523 

99-262 

 

539 

  

BMI (kg/m2)       

     Model 1 28.3 28.7 29.0* 29.2**  0.004 

     Model 2 28.4 28.8 29.0 29.3**  0.003 

     Model 3 28.4 28.8 28.8 29.2*  0.026 

     Model 4 

 

28.6 28.8 28.8 29.0  0.220 

Waist 

Circumference 

(cm) 

      

     Model 1 98.1 99.5 100.3* 100.7**  0.002 

     Model 2 98.3 99.6 100.2* 101.0**  0.002 
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     Model 3 

     Model 4 

 

98.5 

98.8 

99.7 

99.8 

99.7 

99.6 

100.5* 

100.2 

 0.026 

0.171 

Total Body Fat 

(kg) 

      

     Model 1 24.2 24.9 25.7* 26.0**  0.001 

     Model 2 24.3 25.0 25.7* 26.3**  0.001 

     Model 3 24.5 25.0 25.4 26.0*  0.015 

     Model 4 24.7 25.0 25.3 25.8  0.098 

Sleep duration variability is defined as the within-person standard deviation of sleep duration and is measured in minutes  

*P < 0.05, **P < 0.01, ***P < 0.001 

 

Model 1 adjusted for age, sex, race, and field center 

 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, alcohol use, sleep medication, smoking, 

income, marital status, and education 

 

Model 3 adjusted for model 2, plus sleep apnea 

 

Model 4 adjusted for model 3, plus sleep duration 
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Figure 3.1: Prevalence differences* for obesity, overweight, and abdominal 

obesity by sleep duration, sleep efficiency, and sleep variability 
Panel A: Sleep duration 

  

 
Panel B: Sleep efficiency 
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Panel C: Sleep variability (in minutes) 
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* Interpretation:  Sleeping less than five hours per night was associated with an additional 16 cases of 

obesity per 100 individuals studied. 

Models adjusted for age, sex, race, field center, depressive symptoms, anti-depressants, alcohol use, 

sleep medication, smoking, income, marital status, and education 

Obesity was defined as ≥30 kg/m2, overweight was defined as 25-29.9 kg/m2, abdominal obesity was 

≥88 cm for women and ≥102 cm for men 
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Supplemental Table 3.1: Adiposity measures by continuous sleep duration, efficiency, and variability per 1 SD:  

The Multi-Ethnic Study of Atherosclerosis 2010-2013 
 Sleep Duration Sleep Efficiency Sleep Duration Variability 

 Continuous 

per 1 SD 

P for linear trend Continuous 

per 1 SD 

P for linear trend Continuous 

per 1 SD 

P for linear 

trend 

BMI (kg/m2)       

 Model 1 -0.58 <0.001 -0.45 <0.001 0.29 0.012 

 Model 2 -0.56 <0.001 -0.43 <0.001 0.34 0.005 

 Model 3 n/a  -0.33 0.008 0.23 0.062 

       

Waist 

circumference (cm) 

      

 Model 1 -1.30 <0.001 -1.27 <0.001 0.84 0.005 

 Model 2 -1.17 <0.001 -1.21 <0.001 0.94 0.003 

 Model 3 n/a  -1.00 0.002 0.73 0.025 

       

Total body fat (kg)       

 Model 1 -0.88 <0.001 -0.90 <0.001 0.64 0.004 

 Model 2 -0.81 0.001 -0.82 <0.001 0.73 0.002 

 Model 3 n/a  -0.68 0.004 0.58 0.014 

Sleep duration variability is defined as the within-person standard deviation of sleep duration and is measured in minutes  

Model 1 adjusted for age, sex, race, and field center 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, alcohol use, sleep medication, smoking, income, 

marital status, and education 

Model 3 adjusted for model 2, plus sleep duration 
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Supplementary Table 3.2: Adjusted means of adiposity measures by categories of sleep 
duration, efficiency and variability restricted to those without sleep apnea (AHI<15): The Multi-
Ethnic Study of Atherosclerosis 2011-2013  
Sleep 

Duration 

                         

N 

<5 hours 

135 

5-6 hours 

241 

6-7 hours 

427 

7-8 hours 

354 

(Referent) 

>8 hours 

143 

P for trend 

BMI       

     Model 1 28.4*  28.3 ** 27.7 27.2 27.7 0.009 

     Model 2 28.3* 28.4** 27.8 27.2 27.8 0.028 

       

Waist 

Circumference 

      

     Model 1 98.2* 98.2* 96.9 95.4 97.2 0.058 

     Model 2 

  

97.6 

 

98.2* 

 

97.1 

 

95.5 

 

97.8 

 

0.214 

 

Total Body Fat       

     Model 1 24.5 24.7* 23.8 22.9 23.6 0.049 

     Model 2 24.3 24.8* 23.9 23.0 23.9 0.128 

         

Sleep 

Efficiency 

                           

N 

<85% 

105 

 

85-87.9% 

175 

87.9-90.4% 

321 

90.4-92.4% 

341 

>92.4% 

358 

(Referent) 

 

BMI       

     Model 1 27.5 29.0*** 27.9 27.6 27.3 0.010 

     Model 2 

     Model 3 

27.4 

27.2 

29.1*** 

29.1*** 

28.0 

28.0 

27.5 

27.6 

27.4 

27.4 

0.018 

0.043 
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Waist 

Circumference 

      

     Model 1 96.8 100.1*** 97.3 96.6 95.3 0.003 

     Model 2 

     Model 3 

96.1 

95.9 

100.3*** 

100.3*** 

 

97.5 

97.5 

96.6 

96.6 

 

95.5 

95.6 

 

0.015 

0.021 

       

Total Body Fat       

     Model 1 23.8 25.9*** 24.0 23.5  22.8 0.005 

     Model 2 

     Model 3 

23.4 

23.2 

26.1*** 

26.1** 

24.2 

24.2 

23.4 

23.4 

23.0 

23.0 

0.014 

0.026 

Sleep 

Duration 

Variability 

                   N 

<=48 

335 

(Referent) 

48-70 

348 

70-99 

301 

99-262 

316 

  

BMI       

     Model 1 27.5 27.8 27.8 28.0  0.245 

     Model 2 27.6 27.8 27.8 28.1  0.272 

     Model 3 

     

27.7 

 

27.9 

 

27.7 

 

27.9 

 

 0.670 

 

Waist 

Circumference 

      

     Model 1 95.8 97.1 97.2 97.6  0.090 

     Model 2 96.0 97.1 97.0 97.9  0.110 

     Model 3 

      

96.2 

 

97.2 

 

97.0 

 

97.7 

 

 0.239 

 

Total Body Fat       

     Model 1 23.2 23.7 23.9 24.3  0.124 

     Model 2 23.3 23.8 23.8 24.5  0.139 
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     Model 3 23.5 23.9 23.8 24.4  0.306 

Sleep duration variability is defined as the within-person standard deviation of sleep duration and is 

measured in minutes  

*p<0.05, **p<0.01, ***p<0.001 

Model 1 adjusted for age, sex, race, and field center 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, alcohol use, sleep medication, 

smoking, income, marital status, and education 

Model 3 adjusted for model 2, plus sleep duration 
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Supplemental Table 3.3: Sleep efficiency and adiposity stratified by sex: The Multi-Ethnic Study of 

Atherosclerosis   
BMI <85% 85-87.9% 87.9-90.4% 90.4%-92.4% >92.4% P for 

interaction 

Model 1      0.0074 

Men 28.7 

(28.0, 29.5) 

28.5 

(27.9, 29.1) 

28.2 

(27.6, 28.7) 

28.5 

(28.0, 29.1) 

28.2 

(27.6, 28.7) 

 

Women 30.0* 

(28.7, 31.3) 

30.5*** 

(29.6, 31.5) 

29.4* 

(28.7, 30.0) 

28.9 

(28.3, 29.6) 

28.3 

(27.7, 28.9) 

 

Model 2      0.0050 

Men 28.5 

(27.7, 29.3) 

28.6 

(27.9, 29.2) 

28.3 

(27.7, 28.9) 

28.6 

(28.0, 29.2) 

28.3 

(27.7, 28.9) 

 

Women 30.0* 

(28.6, 31.3) 

30.6*** 

(29.6, 31.5) 

29.6* 

(28.9, 30.2) 

28.8 

(28.2, 29.5) 

28.4 

(27.8, 29.1) 

 

Waist 

Circumference 

      

Model 1      0.0069 

Men 103.1 

(101.1, 105.2) 

101.8 

(100.1, 103.6) 

100.6 

(99.1, 102.1) 

102.4 

(100.8, 104.0) 

101.0 

(99.4, 102.6) 

 

Women 100.0* 

(96.6, 103.4) 

101.5*** 

(99.1, 103.9) 

98.6** 

(96.9, 100.3) 

97.8* 

(96.1, 99.5) 

95.4 

(93.7, 97.0) 

 

Model 2      0.0058 

Men 102.4 

(100.2, 104.5) 

102.0 

(100.2, 103.9) 

101.0 

(99.4, 102.6) 

102.4 

(100.7, 104.1) 

101.2 

(99.5, 102.8) 
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Women 100.1* 

(96.5, 103.6) 

101.6*** 

(99.1, 104.2) 

98.8* 

(97.1, 100.5) 

97.7 

(95.9, 99.4) 

95.6 

(93.9, 97.4) 

 

Total Body Fat       

Model 1      0.0490 

Men 22.5 

(21.0, 24.1) 

22.0 

(20.7, 23.3) 

21.0 

(19.8, 22.1) 

21.9 

(20.7, 23.1) 

20.8 

(19.6, 22.0) 

 

Women 29.3 

(26.8, 31.7) 

30.6*** 

(28.9, 32.3) 

29.1** 

(27.9, 30.3) 

28.1 

(26.9, 29.3) 

26.5 

(25.4, 27.7) 

 

Model 2      0.0467 

Men 22.1 

(20.4, 23.8) 

22.0 

(20.7, 23.4) 

21.1 

(19.9, 22.4) 

22.0 

(20.7, 23.3) 

20.9 

(19.6, 22.2) 

 

Women 29.2 

(26.7, 31.8) 

30.5** 

(28.7, 32.3) 

29.3** 

(28.1, 30.6) 

27.9 

(26.7, 29.1) 

26.9 

(25.7, 28.1) 

 

p<0.05, **p<0.01, ***p<0.001 

Model 1 adjusted for age, sex, race, and field center 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, alcohol use, sleep medication, smoking, 

income, marital status, and education 
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Supplemental Table 3.4: Sleep efficiency and waist circumference stratified by age:  The Multi-Ethnic 

Study of Atherosclerosis  
 <85% 85-87.9% 87.9-90.4% 90.4%-92.4% >92.4% P for 

Interaction 

Model 1      0.0349 

Age <=68 102.5*** 

(99.7, 105.3) 

102.3*** 

(100.3, 104.4) 

99.4* 

(97.8, 101.0) 

99.9** 

(98.2, 101.6) 

96.6 

(94.9, 98.3) 

 

Age > 68 100.2 

(97.7, 102.7) 

100.2 

(98.0, 102.4) 

99.9 

(98.2, 101.5) 

99.7 

(98.0, 101.3) 

99.2 

(97.6, 100.7) 

 

Model 2      0.1274 

Age <=68 102.2** 

(99.3, 105.1) 

102.5*** 

(100.3, 104.6) 

99.7* 

(98.1, 101.4) 

99.7* 

(98.0, 101.4) 

96.9 

(95.1, 98.7) 

 

Age > 68 99.7 

(97.1, 102.3) 

100.4 

(98.0, 102.8) 

99.9 

(98.2, 101.6) 

99.9 

(98.2, 101.6) 

99.3 

(97.6, 100.9) 

 

p<0.05, **p<0.01, ***p<0.001 

Model 1 adjusted for age, sex, race, and field center 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, alcohol use, sleep medication, smoking, 

income, marital status, and education 
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Supplemental Table 3.5: Sleep duration and adiposity stratified by sex: The Multi-Ethnic Study of 

Atherosclerosis  
BMI <5 hours 5-6 hours 6-7 hours 7-8 hours >8 hours P for 

interaction 

Model 1      0.0612 

Men 29.6*** 

(29.0, 30.3) 

28.3 

(27.7, 28.9) 

28.4 

(27.9, 28.9) 

27.6 

(27.1, 28.2) 

27.9 

(26.9, 28.8) 

 

Women 30.5** 

(29.4, 31.6) 

30.2** 

(29.4, 31.0) 

28.8 

(28.2, 29.4) 

28.7 

(28.1, 29.3) 

28.5 

(27.6, 29.4) 

 

Model 2      0.0462 

Men 29.6*** 

(28.9, 30.3) 

28.5 

(27.8, 29.1) 

28.4 

(27.9, 28.9) 

27.7 

(27.1, 28.3) 

28.0 

(27.0, 29.0) 

 

Women 30.7** 

(29.5, 31.9) 

30.4** 

(29.5, 31.2) 

29.0 

(28.4, 29.6) 

28.7 

(28.0, 29.3) 

28.4 

(27.5, 29.4) 

 

Waist 

Circumference 

<5 hours 5-6 hours 6-7 hours 7-8 hours >8 hours P for 

interaction 

Model 1      0.0885 

Men 105.1*** 

(103.4, 106.9) 

101.2 

(99.5, 102.9) 

101.4 

(100.1, 102.6) 

99.9 

(98.2, 101.5) 

100.7 

(98.2, 103.3) 

 

Women 100.1* 

(97.1, 103.0) 

100.8** 

(98.7, 102.9) 

97.5 

(95.9, 99.1) 

96.5 

(94.9, 98.1) 

97.0 

(94.6, 99.4) 

 

Model 2      0.0988 

Men 104.8*** 

(102.9, 106.7) 

101.5 

(99.7, 103.3) 

101.4 

(100.1, 102.8) 

100.0 

(98.3, 101.7) 

101.2 

(98.4, 103.9) 

 

Women 100.1* 

(97.1, 103.2) 

101.0** 

(98.8, 103.2) 

98.0 

(96.4, 99.7) 

96.4 

(94.7, 98.0) 

96.9 

(94.4, 99.4) 

 

p<0.05, **p<0.01, ***p<0.001 
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Model 1 adjusted for age, sex, race, and field center 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, alcohol use, sleep medication, smoking, 

income, marital status, and education 
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Supplementary Table 3.6: Prevalence of obesity by sleep exposure: The 

Multi-Ethnic Study of Atherosclerosis 
Sleep Duration 

                        

  N 

<5 hours 

 

288 

5-6 hours 

 

388 

6-7 hours 

 

679 

7-8 hours 

(Referent) 

559 

>8 hours 

 

241 

Overweight      

Model 1 0.07 

 

0.09* 

 

0.00 

 

Ref. -0.04 

 

Model 2 0.07 0.09* 0.01 Ref. -0.02 

      

Model 3 0.03 0.07 0.01 Ref. -0.04 

Obese      

Model 1 0.16*** 

 

0.12** 

 

0.04 

 

Ref. -0.02 

 

Model 2 0.16*** 0.14*** 0.05 Ref. 0.00 

      

Model 3 0.08 0.11** 0.04 Ref. 0.00 

Waist 

circumference 

     

Model 1 0.10** 0.05 0.01 Ref. 

 

0.01 

Model 2 

 

Model 3 

0.09** 

 

0.05 

0.05 

 

0.04 

0.02 

 

0.02 

Ref. 

 

Ref. 

0.01 

 

0.01 

Sleep Efficiency 

                       

  N 

<85% 

 

208 

85-87.9% 

 

329 

87.9-90.4% 

 

544 

90.4-

92.4% 

 

523 

>92.4% 

(Referent) 

547 

Overweight      

Model 1 0.06 

 

0.07 

 

0.02 

 

-0.03 

 

Ref. 

Model 2 0.06 0.04 0.03 -0.04 Ref. 

      

Model 3 0.05 0.03 0.02 -0.04 Ref. 

Obese      

Model 1 0.10* 

 

0.12** 

 

0.09** 

 

0.02 

 

Ref. 

Model 2 0.09 0.10* 0.09** 0.01 Ref. 

      

Model 3 0.04 0.05 0.07* 0.02 Ref. 

Waist 

Circumference 
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Model 1 0.06 0.09** 0.07* 0.02 Ref. 

      

Model 2 0.04 0.10** 0.07* 0.03 Ref. 

      

Model 3 0.01 0.07* 0.06* 0.04 Ref. 

Sleep duration 

Variability 

  N 

<=48 

(Referent) 

535 

48-70 

 

554 

70-99 

 

523 

99-262 

 

539 

 

Overweight      

Model 1 Ref. 0.04 

 

0.00 

 

0.01 

 

 

Model 2  Ref. 0.02 -0.02 0.01  

      

Model 3 Ref. 0.04 0.00 0.02  

Obese      

Model 1  Ref. -0.01 

 

0.04 

 

0.05 

 

 

Model 2 Ref. -0.01 0.03 0.05  

      

Model 3 Ref. -0.04 -0.01 0.00  

Waist 

circumference 

     

Model 1 Ref. 0.03 0.06 0.06*  

      

Model 2 Ref. 0.02 0.05 0.06*  

      

Model 3 Ref. 0.02 0.04 0.04  

Reference is normal weight (BMI<25) 

*p<0.05, **p<0.01, ***p<0.001 

Sleep duration variability is defined as the within-person standard deviation of sleep 

duration and is measured in minutes  

Model 1 adjusted for age, sex, race, and field center 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, alcohol 

use, sleep medication, smoking, income, marital status, and education 

Model 3 adjusted for model 2, plus sleep apnea 
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Supplementary Table 3.7: Prevalence of obesity by sleep exposure 

among those with AHI<15: The Multi-Ethnic Study of Atherosclerosis 
Sleep Duration 

                         N 

<5 hours 

135 

5-6 

hours 

241 

6-7 

hours 

427 

7-8 hours 

354 

(Referent) 

>8 hours 

143 

Overweight      

Model 1 0.02 

 

0.08 

 

0.03 

 

Ref. -0.04 

 

Model 2 0.00 0.07 0.03 Ref. -0.04 

Obese      

Model 1 0.15* 

 

0.14** 

 

0.07 

 

Ref. 0.06 

 

Model 2 0.15* 0.17** 0.08* Ref. 0.09 

Waist 

circumference 

     

Model 1 0.06 0.07 0.03 Ref. 

 

0.08 

Model 2 0.05 0.06 0.04 Ref. 0.08 

Sleep Efficiency 

                           

N 

<85% 

105 

 

85-

87.9% 

175 

87.9-

90.4% 

321 

90.4-

92.4% 

341 

>92.4% 

358 

(Referent) 

Overweight      

Model 1 0.05 

 

0.07 

 

0.09* 

 

-0.04 

 

Ref. 

Model 2 0.06 0.07 0.08 -0.05 Ref. 

Obese      

Model 1 0.04 

 

0.13* 

 

0.09* 

 

0.00 

 

Ref. 

Model 2 0.04 0.12* 0.09* -0.01 Ref. 

Waist 

Circumference 

     

Model 1 -0.01 0.12** 0.08* 0.01 Ref. 

      

Model 2 -0.04 0.13** 0.08* 0.02 Ref. 

Sleep Duration 

Variability 

                   N 

<=48 

335 

(Referent) 

48-70 

348 

70-99 

301 

99-262 

316 

 

Overweight      

Model 1 Ref. 0.08 

 

0.01 

 

0.01 

 

 

Model 2  Ref. 0.06 0.00 0.02  

Obese      
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Model 1  Ref. -0.01 

 

0.00 

 

0.02 

 

 

Model 2 Ref. -0.02 -0.01 0.01  

Waist 

circumference 

     

Model 1 Ref. 0.05 0.06 0.08*  

      

Model 2 Ref. 0.04 0.05 0.08*  

Reference is normal weight (BMI<25) 

*p<0.05, **p<0.01, ***p<0.001 

Sleep duration variability is defined as the within-person standard deviation of 

sleep duration and is measured in minutes  

Model 1 adjusted for age, sex, race, and field center 

Model 2 adjusted for model 1, plus depressive symptoms, anti-depressants, 

alcohol use, sleep medication, smoking, income, marital status, and education 
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Chapter 4: Manuscript 3 - Joint effects of OSA and self-

reported sleepiness on incident CHD and stroke 

Abstract 
 

Background: Although daytime sleepiness is a common symptom of obstructive sleep 

apnea (OSA), and both daytime sleepiness and OSA have separately been associated with 

increased risk of cardiovascular disease (CVD), their joint association with CVD risk is 

unknown. Consideration of both OSA and daytime sleepiness may help refine the OSA 

phenotype. 

 

Methods: Among 3,504 Sleep Heart Health Study participants, OSA was assessed by at-

home polysomnography and daytime sleepiness by the Epworth Sleepiness Scale. 

Outcomes included total CVD events (coronary heart disease (CHD) and stroke), as well 

as CHD and stroke separately. Cox proportional hazard regression was used. 

 

Results: Over a median of 11.5 years of follow-up, 627 cohort participants developed 

incident CVD, 533 incident cases of CHD and 181 incident cases of stroke. Compared to 

those without OSA (apnea hypopnea index (AHI) <5) and without adjustment for 

daytime sleepiness, the hazard ratios (95% CI) for the association of moderate-severe 

OSA (AHI ≥15) were for CVD 1.20 (0.97-1.49), for CHD 1.22 (0.97-1.53), and for 

stroke 1.30 (0.87-1.93). There also were weak associations between daytime sleepiness 

(yes vs. no) and risk of CVD [1.19 (0.99-1.43)] and CHD [1.22 (1.01-1.49)], and none for 
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stroke [0.99 (0.69-1.42)]. When modeled jointly, having both AHI ≥15 and daytime 

sleepiness (compared with having AHI <5 and no sleepiness) was associated with HRs of 

1.34 (0.96-1.87) for CVD, 1.41 (0.99-2.00) for CHD and 1.30 (0.69-2.47) for stroke. For 

all outcomes, there were no statistically significant interactions between daytime 

sleepiness and OSA on the multiplicative or additive scales. 

 

Conclusions: These findings suggest that routine assessment of daytime sleepiness, in 

addition to OSA, may not provide additional information about sleep related risk of 

developing CVD. 
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Background 
 

Obstructive sleep apnea (OSA) is a form of sleep-disordered breathing 

characterized by the repetitive partial or total collapse of the upper airway during sleep. 

In severe cases, patients suffer from hypoxia, arousal and sleep fragmentation, which 

may lead to reduced cognitive function and lower quality of life.48 OSA is highly 

prevalent among older adults; recent data from the Multi-Ethnic Study of Atherosclerosis 

suggests 15% have severe OSA, defined as an apnea-hypopnea index (AHI) ≥ 30.13 

Although daytime sleepiness is the most common symptom of OSA,275 neither the 

relationship between OSA and daytime sleepiness, nor the impact of presenting with both 

OSA and daytime sleepiness, is well understood. Daytime sleepiness is higher among 

individuals with more severe OSA,276 but the majority of people with OSA do not report 

daytime sleepiness.49 In prior work from the community-based Sleep Hearth Health 

Study (SHHS), greater non-rapid eye movement (REM) but not greater REM sleep 

disordered breathing was associated with excessive daytime sleepiness.277 Daytime 

sleepiness may be more common among individuals who attend sleep clinics to be 

screened for OSA, because the sleepiness symptoms may be prompting them to seek 

formal OSA evaluation.  

Both OSA and daytime sleepiness have been associated with adverse health 

outcomes. OSA has been associated positively with cardiovascular risk factors and 

outcomes, including diabetes,170 hypertension,167,173 coronary heart disease,174 stroke,175 

heart failure,174 atrial fibrillation,179 and mortality,176,178 though some studies are limited 

by measurement error and/or selection bias. Although studied less frequently, daytime 
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sleepiness has also been associated with increased incident cardiovascular morbidity and 

mortality.278,279 Few studies have explored the joint associations or interactions between 

OSA and daytime sleepiness in relation to risk of cardiovascular disease (CVD). In prior 

research, those with both snoring, a surrogate of OSA, and daytime sleepiness had a 

significantly increased rates of incident CVD280 and mortality281, compared to those who 

had neither. It is possible that having both OSA and daytime sleepiness may be a marker 

of more severe OSA, and thus possibly greater CVD risk. However, it is presently 

unknown whether OSA and daytime sleepiness are independent risk factor for CVD 

incidence or whether there is a statistical or biological interaction between OSA and 

daytime sleepiness in relation to CVD incidence. 

Examining the interrelation of OSA and daytime sleepiness with CVD risk may 

help refine the OSA phenotype, and possibly result in stronger associations with risk of 

CVD events than when either OSA or daytime sleepiness is evaluated alone. Therefore, 

the objectives of this study were to, among participants of the community-based SHHS 

study, determine the joint association of habitual daytime sleepiness and OSA with risk 

of CVD events, and to evaluate whether statistical or biological interaction is present 

between OSA and daytime sleepiness in relation to CVD. 

Methods 

The SHHS is a longitudinal study designed to determine whether sleep disordered 

breathing is an independent risk factor for CVD. At its inception, it included participants 

from six different already existing cohort studies: the Atherosclerosis Risk in 

Communities Study (ARIC), the Cardiovascular Health Study (CHS), the Framingham 
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Heart Study, the Strong Heart Study, the New York Hypertension Cohort, the Tucson 

Epidemiologic Study of Airways Obstructive Diseases, and the Health and Environment 

Study. Participants invited to take part in SHHS were at least 40 years of age, had no 

CPAP, oral device treatment, oxygen therapy, or tracheostomy. Young snorers were 

oversampled. A total of 6,441 participants were recruited for the baseline examination in 

1995-1998.  

Our analytic sample excluded all participants from the New York site (n = 760) 

due to data quality issues, those missing data on exposures (n = 222 for ESS, n = 703 for 

AHI), those who reported CPAP use (n = 7), and those missing or without follow-up time 

(n = 17). We also excluded, from relevant analyses, participants with prevalent 

myocardial infarction (n = 240), revascularization (n=125) or stroke (n = 117) as defined 

by the parent cohorts, as well as those missing data on myocardial infarction, 

revascularization, CHD death, and stroke (n = 411). This left a final analytic sample of 

3,504 participants for the combined CVD analysis, 3,599 participants for the CHD 

analysis and 3,791 participants for the stroke analysis.  

Sleep variables 

The Epworth Sleepiness Scale (ESS) was used to measure daytime sleepiness.282 

This eight-item questionnaire asks about the likelihood of falling asleep on a scale from 

0-3. These items are then summed, with scores ≥11 representing abnormal sleepiness. 

SHHS used a modified version of the scale that performed similarly to the original 

version.283 For analysis, daytime sleepiness was represented dichotomously. 
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At-home polysomnography was performed with the Compumedics P Series 

System (Abbotsford, Victoria, Australia). All sensors were placed and equipment 

calibrated during the home visit. Channels were recorded as follows: 

electroencephalogram, chin electromyogram, thoracic and abdominal displacement, 

airflow, finger pulse oximeter, a single bipolar electrocardiogram, body position by an 

Hg gauge sensor, and ambient light level. Data were stored in real time, reviewed locally, 

and forwarded to the central reading center at Case Western Reserve University 

(Cleveland, OH). Apneas were defined as the absence or near absence of airflow (<25% 

of baseline) for at least ten seconds. Hypopneas were defined as below 70% of the 

baseline amplitude for at least ten seconds.283 For defining both apneas and hypopneas, 

also required was 4% or higher oxyhemoglobin desaturation. AHI was calculated as the 

average number of apneas and hypopneas per hours of sleep and was modeled 

categorically (<5, 5-14.9, ≥15). 

Outcome ascertainment 

All incident CVD events were defined as the first occurrence between baseline 

(the date of overnight polysomnography) and the end of follow-up, which ranged from 

2008-2011 depending on the parent cohort. Event definitions were similar to those used 

in previous SHHS analyses.174,175 Within SHHS, event surveillance occurred according to 

individual cohort protocols, which included participant phone calls and mailings as well 

as surveillance of death certificates and hospital discharge records. Physicians classified 

events according to cohort specific protocols.284-290  
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For the present analysis, three separate CVD endpoints were considered. Incident 

CHD was defined as first myocardial infarction (MI), CHD death, or coronary 

revascularization.  MI occurrence was classified similarly across the cohorts, and was 

based on symptoms of cardiac pain, electrocardiograms suggesting ischemia, and/or 

elevated cardiac biomarker patterns.283 Incident stroke was defined as the first fatal or 

nonfatal ischemic stroke. Stroke classification used computed tomography and magnetic 

resonance images when available. Incident CVD included all CHD and stroke events as 

defined above.   

Covariates 

Demographic data, including information on age, sex, race/ethnicity, and 

education, were self-reported. Weight and height were measured at the baseline SHHS 

visit using a standardized protocol. Body mass index (BMI) was calculated in kg/m2. 

Smoking status was categorized as current, former, or never smoker. Habitual alcohol 

intake was measured in drinks per week in the parent cohorts.  

Analysis 

Descriptive statistics were calculated for exposure variables at baseline. Cox 

proportional hazards models were used to model time to each CVD event relative to 

baseline. Person-time was calculated from the baseline examination until an event, loss to 

follow-up, death, or the end of the follow-up period for each cohort. The proportional 

hazards assumption was checked using interactions with time and tests of correlations of 

the residuals, and no meaningful violations were found.  The main associations of 

daytime sleepiness and OSA, separately, on CVD, CHD, and stroke are presented, as well 
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as the joint associations.  We then evaluated independence of the associations in the main 

models by controlling jointly for OSA categories and daytime sleepiness in a proportional 

hazards (multiplicative) model. Interactions were also tested on both the additive scale 

using the relative excessive risk due to interaction (RERI) and on the multiplicative scale 

using cross-product terms and presented in accordance with published 

recommendations.291 To further demonstrate the joint associations, we presented hazard 

ratios (HRs) with confidence intervals (CIs) and p-values for each stratum of daytime 

sleepiness and OSA with one reference category, as well as the association of OSA with 

the outcomes within strata of daytime sleepiness and the association of daytime 

sleepiness on the outcomes within strata of OSA. For the joint models, categorization of 

the exposures were as follows: AHI <15 & ESS < 11, AHI ≥ 15 & ESS < 11, AHI < 15 & 

ESS ≥ 11, and AHI ≥ 15 & ESS ≥ 11. Effect modification by sex was also examined, and 

sex-stratified results are reported in supplemental material.  

Potential confounders included age, race, sex, education, alcohol, smoking status, 

and BMI. Diabetes, dyslipidemia, and hypertension are likely to lie on the causal pathway 

between sleep disorders and CVD and were thus not included in the models. SAS version 

9.3 (SAS Institute, Cary, NC) was used to analyze the data. 

Results 

 The mean age at baseline was 63.8 years and 55.5% of the sample was female. 

Mean AHI at baseline was 9.4 events/hour; 19.2% had an AHI value ≥15 indicating 

moderate or severe OSA, and 6.5% had an AHI ≥30, indicating severe OSA. The mean 

ESS score was 7.6, and 23.3% had values >11, indicating daytime sleepiness. OSA and 
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daytime sleepiness were somewhat correlated: among those with AHI < 5, mean ESS 

score was 7.3, while mean ESS score for those with AHI ≥15 was 8.3. Among those with 

no daytime sleepiness, mean AHI was 8.8 events/hour, while mean AHI was 11.5 among 

those with daytime sleepiness. AHI also increased with BMI category; while normal 

weight adults had an AHI of 5.8 ± 10.3, while mean AHI for overweight was 8.0 ± 10.0 

and 14.2 ± 16.1 for obese. 

  Table 4.1 shows sociodemographic and behavioral characteristics by AHI 

category. Those with AHI ≥ 15 were more likely to be male, older, and have a higher 

BMI, and have daytime sleepiness than those with AHI < 15.  

Over a median of 11.5 years of follow-up, we identified 627 incident cases of 

CVD, 533 incident cases of CHD, and 181 incident cases of stroke. The crude incidence 

rate per 1000 person-years was 17.6 (95% CI: 16.2-19.0) for CVD, 14.4 (13.2-15.7) for 

CHD and 4.5 (3.9-5.2) for stroke. 

Table 4.2 shows adjusted HRs and 95% CIs of the association between OSA and 

incident CVD, CHD and stroke, without considering daytime sleepiness.  After 

adjustment for demographics and compared to no OSA (AHI <5), the HRs (95% CIs) for 

moderate/severe OSA (AHI ≥15) and risks of CVD, CHD, and stroke were 1.20 (0.97-

1.49), 1.22 (0.97-1.53) and 1.30 (0.87-1.93), respectively. Overall, compared to no OSA 

(AHI < 5), the magnitudes of the associations for mild OSA (AHI 5-<15) were slightly 

larger than for moderate or severe OSA (AHI ≥ 15); however, they were only statistically 

significant for CVD (HRmild vs no OSA: 1.27 (1.05-1.53)) and CHD (HRmild vs no OSA: 1.27 

(1.03-1.56)), but not for stroke (HRmild vs no OSA: 1.37 (0.97, 1.94)). Most associations were 
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attenuated after adjustment for alcohol, smoking, and BMI in Model 2. When stratified 

by sex, the OSA-stroke associations were larger for men than for women, though the sex 

interaction was not statistically significant (p = 0.18, Supplemental Table 4.1). 

Adjusted HRs and 95% CIs of the association of daytime sleepiness with incident 

CVD, CHD, and stroke can be found in Table 4.3. After adjustment for demographics, 

there were modest associations between daytime sleepiness (yes vs. no) and risk of CVD 

(HR: 1.19 (0.99-1.43)) as well as CHD (HR: 1.22 (1.01-1.49)). There was significant 

effect modification by sex for daytime sleepiness and stroke, whereby men were at higher 

risk of stroke with daytime sleepiness (HR: 1.36 (0.84-2.20)), whereas women were at 

lower risk (HR: 0.67 (0.38-1.21)), though confidence intervals were wide (Supplemental 

Table 4.2). Results were similar after adjustment for alcohol, smoking, and BMI.  

Figure 4.1 shows the crude incidence rates for incident CVD by daytime 

sleepiness and OSA status jointly. Although those with mild and moderate-severe OSA 

had much higher incidence rates than those with no OSA, those with daytime sleepiness 

had only slightly higher CVD incidence rates across OSA categories.  This is consistent 

with Table 4.2 Model 3, where the hazard ratio for OSA was altered little by adjustment 

for daytime sleepiness. 

Supplemental Tables 4.3-4.5 show in more detail adjusted hazard ratios and 95% 

confidence intervals for the joint associations of OSA and daytime sleepiness with CVD, 

CHD, and stroke. On both the additive and multiplicative scales, there were no 

statistically significant interactions between OSA and daytime sleepiness for any 

outcomes. Compared to those without daytime sleepiness and less than moderate OSA 
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(AHI <15), those with daytime sleepiness and at least moderate OSA (AHI ≥ 15) had a 

slightly higher risk of incident CVD (HR: 1.34 (0.96-1.87)), CHD (HR: 1.41 (0.99-2.00)), 

and stroke (HR: 1.30 (0.69-2.47)) that did not reach statistical significance.  

Discussion 
 

In this prospective community-based cohort, we present some of the first 

information on the joint association of daytime sleepiness and polysomnography-

measured OSA with risk of incident CVD. In a multiplicative proportional hazards 

model, daytime sleepiness added little beyond OSA as a risk factor for CVD, and 

similarly there was no statistically significant interaction between daytime sleepiness and 

OSA with any of the CVD outcomes. The associations with CVD for both OSA and 

daytime sleepiness were rather modest, and our study was not big enough to rule out a 

small independent or synergistic association for daytime sleepiness. Specifically, after 

adjustment for potential confounding CVD risk factors, there were modest (but not 

statistically significant) associations between OSA and all outcomes, while for daytime 

sleepiness, there were weak positive associations with CVD and CHD, but none for 

stroke.  

As mentioned, we found no statistically significant interaction between 

polysomnography-measured OSA and daytime sleepiness with incident CVD, CHD, and 

stroke. Previous research evaluating the interrelationship between OSA and daytime 

sleepiness on CVD used snoring as a surrogate for OSA and did not examine statistical 

interaction.280,281,291 In one study of older adults, those reporting both snoring and 

sleepiness were significantly more likely to develop an incident CVD event compared to 
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those reporting no snoring or sleepiness, while there was no association when either 

snoring or sleepiness occurred in isolation.280 Another study of middle-aged men found a 

nearly two-fold HR of overall mortality for the combination of snoring and daytime 

sleepiness (versus having neither), but a smaller non-significant association with CVD 

mortality (HR=1.2).281 Both joint associations were associated with a nearly three-fold 

higher risk of overall and CVD-specific mortality for those under the age of sixty, but 

were null among those over age sixty.  

Counter to expectation, the associations between OSA and incident CHD and 

stroke did not display a dose-response and were statistically significant only for mild 

OSA, though the results were independent of daytime sleepiness. It is possible that more 

serious OSA was treated after baseline, since treatment later during the follow-up period 

was not captured in the dataset. Treatment may have lowered CVD risk among those with 

higher AHI while those with lower AHI remained untreated. In meta-analyses, OSA has 

been associated with greater risk of CVD,181,292 with associations stronger and more 

consistent for stroke than CHD. However, many of these studies contain threats to 

validity, including non-objective measurement of OSA, clinic-based samples, and short 

follow-up. Few community-based studies exist that used polysomnography-measured 

OSA in association with incident CHD and stroke.174,175,293 Published SHHS data only 

showed positive associations between OSA and CHD among men with AHI ≥ 30, but 

there was no association among women or men with mild or moderate OSA. For stroke, 

OSA was associated with a two to three-fold higher risk in men but not women, similar to 

what we found in the main effects analyses. In the younger Wisconsin Sleep Cohort 
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consisting of both men and women, severe OSA was associated with nearly 2.5 times 

greater risk of incident CHD, 293 suggesting that the association may be stronger and 

more consistent among middle-aged adults. 

In main effect analyses we also found daytime sleepiness to be associated with 

slightly greater risk of incident CVD and CHD, independent of OSA. When both sexes 

were included, there was no association between daytime sleepiness and risk of incident 

stroke, however in stratified analyses men with daytime sleepiness had a higher risk of 

incident stroke, but women did not. Several community-based cohorts have found 

significant positive associations between daytime sleepiness and CVD events, including 

CHD and stroke,278,294-296 with a variety of different measures of daytime sleepiness.  

One limitation of this analysis is that the Sleep Heart Health Study participants 

had a relatively low prevalence of both OSA and daytime sleepiness, resulting in small 

cells in the joint category (5% of sample). This limited precision and thus statistical 

power to detect as statistically significant the weak associations observed. However, 

given our findings, large associations are unlikely. In addition, the low prevalence of 

OSA in this sample made it necessary to categorize OSA using the combination of 

moderate and severe OSA (AHI ≥15), so we are unable to provide information about the 

joint association of severe OSA (AHI ≥30) and daytime sleepiness with CVD risk. Other 

study limitations include only one night of polysomnography, so the obtained data may 

not be indicative of habitual sleep patterns due to the “first-night effect”, where sleep 

architecture and efficiency are altered as a result of measurement.297 Additionally, those 

with OSA may have obtained treatment, and if protective, it could have depressed the 
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magnitude of the associations. We removed those reporting treatment at baseline, but we 

lacked information on those who started treatment during follow-up. Despite these 

weaknesses, the study also has several strengths, which include OSA assessed via 

polysomongraphy, a longitudinal design, and physician review and classification of CVD 

events. 

OSA is a common condition associated with moderately greater risk of CVD 

events and risk factors in many observational studies, and experimental studies in both 

human and animal models suggest a pathophysiological role.181 Although symptoms of 

daytime sleepiness can prompt patients to go to the doctor for diagnosis, the majority of 

those with OSA do not have daytime sleepiness.49 Because daytime sleepiness is easy to 

assess and represents habitual sleepiness, it could be useful as a clinical screening tool for 

identifying OSA. If a strong interaction between daytime sleepiness and OSA were found 

for risk of developing CVD, and causality could be established, it could suggest that it 

may be useful to add daytime sleepiness to OSA screening with an aim to reduce CVD 

events, though further research on the effectiveness of OSA screening is necessary.  

However, in the present study there was no statistically significant interaction between 

daytime sleepiness and OSA on CVD risk and the joint associations suggested that 

collecting information on daytime sleepiness adds little beyond OSA in relation to 

incidence of CVD.  
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Table 4.1: Participant characteristics by Apnea-Hypopnea Index  

(AHI) category: The Sleep Heart Health Study 
 AHI <5 AHI ≥ 5 & < 15  AHI ≥ 15  

N total 1772 1058 674 

Demographics    

Age, mean years ± SD 

 

61.9 ± 10.5 65.2 ± 10.3 66.7 ± 9.7 

% Female, n (%) 

 

1182 (66.7) 508 (48.0) 253 (37.5) 

Race, n (%)*    

 White 1508 (49.9) 915 (30.3) 601 (17.2) 

 Black 133 (52.2) 70 (27.5) 52 (20.4) 

 Other 131 (58.2) 73 (32.4) 21 (9.3) 

    

Ethnicity, n (%)*    

 Hispanic/Latino 

 Not Hispanic/Latino 

97 (57.4) 

1675 (50.2) 

55 (32.5) 

1003 (30.1) 

17 (10.1) 

657 (19.7) 

    

Education, n (%)*    

 Less than high school 113 (39.8) 106 (37.3) 65 (22.9) 

 High School 862 (49.5) 536 (30.8) 343 (19.7) 

 College 529 (52.9) 276 (27.6) 195 (19.5) 

 Post-college 66 (42.6) 57 (36.8) 32 (20.7) 

    

Behavioral 

Characteristics 

   

 Daytime Sleepiness, n 

(%) 

365 (20.6) 263 (24.9) 189 (28.0) 

 Smoking status, n (%) *    

 Current Smoker 

 Former Smoker 

 Never Smoker 

 

211 (63.9) 

700 (46.0) 

855 (52.1) 

75 (22.7) 

508 (33.4) 

472 (28.8) 

44 (13.3) 

313 (20.6) 

314 (19.1) 

Body mass index, mean 

± SD 

 

27.1 ± 4.5 29.0 ± 4.8 30.8 ± 5.6 

Alcohol use, drinks per 

day 

2.2 ± 4.6 2.9 ± 5.9 2.9 ± 6.7 

* Row percentages    
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Table 4.2: Adjusted hazard ratios (95% confidence interval) of 

sleep apnea with risk of incident cardiovascular disease, overall 

and by sex: The Sleep Heart Health Study 
OSA 

category 

Normal 

(AHI <5) 

Mild 

(AHI ≥5 to <15)  

Moderate/Severe 

(AHI ≥15)  

CVD    

 N event 237 234 156 

 N total 1772 1058 674 

    

 Model 1 Ref. 1.27* 

(1.05, 1.53) 

1.20 

(0.97, 1.49) 

 Model 2 Ref. 1.20 

(0.98, 1.46) 

1.10 

(0.87, 1.38) 

 Model 3 Ref. 1.19 

(0.98, 1.46) 

1.09 

(0.87, 1.37) 

CHD    

 N event 200 200 133 

 N total 1814 1092 693 

    

Model 1 Ref. 1.27* 

(1.03, 1.56) 

1.22 

(0.97, 1.53) 

Model 2 Ref. 1.18 

(0.95, 1.47) 

1.11 

(0.86, 1.43) 

Model 3 Ref.  1.17 

(0.94, 1.45) 

1.11 

(0.87, 1.42) 

Stroke    

 N event 63 72 46 

 N total 1873 1156 762 

    

Model 1 Ref. 1.37 

(0.97, 1.94) 

1.30 

(0.87, 1.93) 

Model 2 Ref. 1.46* 

(1.01, 2.10) 

1.25 

(0.82, 1.93) 

Model 3 Ref. 1.46* 

(1.01, 2.10) 

1.25 

(0.82, 1.93) 

* p < 0.05 

Model 1 adjusted for age, race, sex, ethnicity, and education. 

Model 2 added alcohol, smoking status, pack-years, and BMI 

Model 3 added daytime sleepiness 

Abbreviations: OSA – obstructive sleep apnea, AHI – apnea-hypopnea 

index, CVD – cardiovascular disease, CHD – coronary heart disease 
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 Table 4.3: Adjusted hazard ratios (95% 

confidence interval) of daytime sleepiness with 

risk of incident cardiovascular disease: The 

Sleep Heart Health Study 
 ESS < 11 ESS ≥ 11 

CVD   

 N events 463 164 

 N total 2687 817 

 Model 1 Ref. 1.19 

(0.99, 1.43) 

 Model 2 Ref. 1.24* 

(1.03, 1.50) 

CHD   

 N events 386 147 

 N total 2760 839 

Model 1 Ref. 1.22* 

(1.01, 1.49) 

Model 2 Ref. 1.27* 

(1.04, 1.56) 

Stroke   

 N events 142 39 

 N total 2890 901 

Model 1 Ref. 0.99 

(0.69, 1.42) 

Model 2 Ref. 1.05 

(0.72, 1.52) 

* p < 0.05 

Model 1 adjusted for age, race, sex, ethnicity, and 

education. 

Model 2 added alcohol, smoking status, pack-years, 

and BMI 
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Figure 4.1: Crude incidence rates per 1000 person-years for cardiovascular 

disease by daytime sleepiness and obstructive sleep apnea status 

 
Abbreviations: AHI – apnea-hypopnea index, OSA – obstructive sleep apnea 
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Supplemental Table 4.1: Adjusted hazard ratios (95% 

confidence interval) of sleep apnea with risk of incident 

cardiovascular disease by sex: The Sleep Heart Health Study 
OSA 

category 

Normal 

(AHI <5) 

Mild 

(AHI ≥5 to <15)  

Moderate/Severe 

(AHI ≥15)  

CVD    

Men    

 Model 1 Ref. 1.38 

(1.07, 1.79) 

1.32 

(1.01, 1.74) 

 Model 2 Ref. 1.30 

(1.00, 1.71) 

1.21 

(0.90, 1.63) 

Women    

 Model 1 Ref. 1.10 

(0.83, 1.46) 

1.03 

(0.73, 1.47) 

 Model 2 Ref. 1.09 

(0.81, 1.46) 

0.95 

(0.65, 1.38) 

CHD    

Men    

 Model 1 Ref. 1.29 

(0.98, 1.68) 

1.30 

(0.98, 1.72) 

 Model 2 Ref. 1.19 

(0.90, 1.58) 

1.22 

(0.90, 1.65) 

Women    

 Model 1 Ref. 1.21 

(0.87, 1.67) 

1.04 

(0.68, 1.58) 

 Model 2 Ref. 1.07 

(0.83, 1.38) 

0.85 

(0.61, 1.19) 

Stroke    

Men    

 Model 1 Ref. 2.29 

(1.23, 4.26) 

1.87 

(0.97, 3.60) 

 Model 2 Ref. 2.53 

(1.30, 4.95) 

1.74 

(0.83, 3.64) 

Women    

 Model 1 Ref. 1.02 

(0.66, 1.58) 

1.10 

(0.64, 1.87) 

 Model 2 Ref. 1.05 

(0.66, 1.66) 

1.06 

(0.60, 1.87) 

* p < 0.05 

Model 1 adjusted for age, race, sex, ethnicity, and education. 

Model 2 added alcohol, smoking status, pack-years, and body mass index 

Model 3 added daytime sleepiness 
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Abbreviations: ESS – Epworth Sleepiness Scale, CVD – cardiovascular 

disease, CHD – coronary heart disease, AHI – apnea-hypopnea index 
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Supplemental Table 4.2: Adjusted hazard 

ratios (95% confidence interval) of daytime 

sleepiness with risk of incident cardiovascular 

disease by sex: The Sleep Heart Health Study 
 ESS < 11 ESS ≥ 11 

CVD   

Men   

 Model 1 Ref. 1.16 

(0.92, 1.45) 

 Model 2 Ref. 1.24 

(0.98, 1.57) 

Women   

 Model 1 Ref. 1.29 

(0.95, 1.75) 

 Model 2 Ref. 1.32 

(0.96, 1.82) 

CHD   

Men   

 Model 1 Ref. 1.15 

(0.90, 1.45) 

 Model 2 Ref. 1.22 

(0.96, 1.56) 

Women   

 Model 1 Ref. 1.41 

(1.00, 1.98) 

 Model 2 Ref. 1.47 

(1.03, 2.11) 

Stroke   

Men   

 Model 1 Ref. 1.36 

(0.84, 2.20) 

 Model 2 Ref. 1.59 

(0.97, 2.61) 
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 Women   

 Model 1 Ref. 0.67 

(0.38, 1.21) 

 Model 2 Ref. 0.62 

(0.33, 1.18) 

* p < 0.05 

Model 1 adjusted for age, race, sex, ethnicity, and 

education. 

Model 2 added alcohol, smoking status, pack-years, 

and BMI 

Abbreviations: ESS – Epworth Sleepiness Scale, 

CVD – cardiovascular disease, CHD – coronary heart 

disease 
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Supplemental Table 4.3: Joint association of daytime sleepiness and sleep 

apnea with risk of incident cardiovascular disease: The Sleep Heart Health 

Study 
  

 

 

AHI <15  

 

 

 

AHI ≥ 15 

HR (95% CI); 

P for AHI ≥ 

15 vs AHI < 

15 within ESS 

strata 

 N with/ 

without 

outcome 

HR  

(95% CI); P 

N with/ 

without 

outcome 

HR  

(95% CI); P 

 

ESS <11 353/1849 

 

Referent 110/375 0.94 

(0.74-1.20); 

p = 0.64 

 

0.94 

(0.74-1.20); 

p = 0.64 

 

ESS ≥ 11 118/510 1.20 

(0.96-1.49);  

p = 0.11 

 

46/143 1.34 

(0.96-1.87); 

p = 0.09 

1.16 

(0.80-1.68); 

p = 0.44 

HR (95% 

CI); P for 

ESS ≥ 11  

vs ESS < 

11  

within AHI 

strata 

 

 1.20 

(0.96-1.49);  

p = 0.11 

 

 1.39 

(0.96-2.02); 

p = 0.08 

 

Measure of interaction on additive scale (95% CI); P RERI = 0.19 (-0.31, 0.69); p = 

0.46 

Measure of interaction on multiplicative scale (95% CI); chi-square = 0.59, p = 0.44 

Hazard ratio is adjusted for age, sex, race, ethnicity, education, alcohol, smoking status, 

pack-years, and BMI 

Abbreviations: ESS – Epworth Sleepiness Scale, AHI – apnea-hypopnea index, HR – 

hazard ratios, CI – confidence intervals 
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Supplemental Table 4.4: Joint effect of daytime sleepiness and sleep apnea 

and risk of incident CHD: The Sleep Heart Health Study 
  

 

 

AHI <15  

 

 

 

AHI ≥ 15 

HR (95% 

CI); P for 

AHI ≥ 15 vs 

AHI < 15 

within ESS 

strata 

 N with/ 

without 

outcome 

HR  

(95% CI); P 

N with/ 

without 

outcome 

HR (95% CI); P  

ESS <11 295/1971 

 

Referent 91/409 0.97 

(0.75-1.26); 

p = 0.81 

 

0.97 

(0.75-1.26); 

p = 0.81 

 

ESS ≥ 11 105/543 1.24 

(0.98-1.57);  

p = 0.08 

 

42/154 1.41 

(0.99, 2.00); 

p = 0.06 

1.16 

(0.78-1.72); 

p = 0.46 

HR (95% CI); 

P for ESS ≥ 

11  

vs ESS < 11  

within AHI 

strata 

 

 1.24 

(0.98-1.57);  

p = 0.08 

 1.36 

(0.91-2.02); 

p = 0.13 

 

Measure of interaction on additive scale (95% CI); P RERI = 0.18 (-0.37, 0.72) p =0.53 

Measure of interaction on multiplicative scale (95% CI); p = 0.52 

Hazard ratio is adjusted for age, sex, race, ethnicity, education, alcohol, smoking status, 

pack-years, and BMI 

Abbreviations: CHD – coronary heart disease, ESS – Epworth Sleepiness Scale, AHI – 

apnea-hypopnea index, HR – hazard ratios, CI – confidence intervals 
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Supplemental Table 4.5: Joint effect of daytime sleepiness and sleep 

apnea and risk of incident stroke: The Sleep Heart Health Study 
  

AHI <15  

 

AHI ≥ 15 

HR (95% 

CI); P for 

AHI ≥ 15 vs 

AHI < 15 

within ESS 

strata 

 N with/ 

without 

outcome 

HR (95% 

CI); P 

N with/ 

without 

outcome 

HR (95% 

CI); P 

 

      

ESS <11 108/2238 Referent 34/510 0.90 

(0.58-1.39); 

p = 0.64 

0.90 

(0.58-1.39); 

p = 0.64 

      

ESS ≥ 11 27/656 0.93 

(0.59-1.45); 

p = 0.74 

12/206 1.30 

(0.69-2.47); 

p = 0.42 

1.39 

(0.66-2.95); 

p = 0.39 

     

HR (95% 

CI); P for 

ESS ≥ 11 

vs ESS < 11 

within AHI 

strata 

 

 0.93 

(0.59-1.45); 

p = 0.74 

 1.61 

(0.79-3.30); 

p = 0.19 

 

 

Measure of interaction on additive scale (95% CI); P RERI = 0.55 (-0.39, 1.49); p 

= 0.25 

Measure of interaction on multiplicative scale (95% CI); p=0.20 

Hazard ratio is adjusted for age, sex, race, ethnicity, education, alcohol, smoking 

status, pack-years, and BMI 

Abbreviations: ESS – Epworth Sleepiness Scale, AHI – apnea-hypopnea index, HR 

– hazard ratios, CI – confidence intervals 
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Chapter 5: Manuscript 4 - Diagnosed OSA/CPAP and Risk of 

Atherosclerotic Cardiovascular Disease among those with 

Atrial Fibrillation 

Abstract 
 

Background: Atrial fibrillation (AF) and obstructive sleep apnea (OSA) are common 

conditions that frequently coexist. Both AF and OSA are strongly associated with 

increased risk of stroke and other cardiovascular diseases. However, little is known about 

the relationship between OSA and atherosclerotic cardiovascular disease among AF 

patients. 

 

Methods: We used the Truven Health MarketScan databases to construct a prospective 

cohort of patients with AF from 2007-2014. AF, OSA, stroke, myocardial infarction, and 

relevant confounders were defined using ICD-9-CM codes. Those with an OSA diagnosis 

were matched by age, sex, and enrollment date to those without a diagnosis. Cox 

proportional hazards models adjusted for pre-defined confounders and high-dimensional 

propensity scores. Migraines were included as a ‘control’ outcome. 

 

Results: We matched 90,274 individuals with a diagnosis of OSA to 446,903 without. 

During a mean follow-up of 16 months, there were 4,725 incident ischemic stroke cases 

and 6,500 incident myocardial infarction cases. After adjustment, an OSA diagnosis was 
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strongly (and unexpectedly) associated with reduced risk of incident stroke (hazard ratio 

(HR) = 0.59, 95% confidence interval (CI) 0.53, 0.66) and myocardial infarction (0.49, 

[0.45, 0.54]). Similar results were found in sensitivity analyses using different definitions 

of OSA. No association was observed with migraines (HR = 0.87 [95%CI 0.70, 1.08]).  

 

Conclusions:  Counterintuitively, an OSA diagnosis in patients with AF was strongly 

associated with reduced risk of incident atherosclerotic cardiovascular disease. Potential 

explanations for these paradoxical results, such as low sensitivity and specificity of ICD-

9-CM codes to identify OSA or selection bias, deserve further study.  
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Background 
 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. For men 

and women over 40, the lifetime risk of AF is 1 in 4298 and the prevalence of AF is 

expected to reach 12.1 million cases in the United States by the year 2030.299 Those with 

AF are at increased risk of stroke and myocardial infarction (MI),300-302 among other 

complications. Because of AF’s high burden, it is necessary to better understand 

modifiable factors that are associated with adverse outcomes. 

Obstructive sleep apnea (OSA) is also increasing in prevalence,65 potentially due 

to the obesity epidemic. In the general population, OSA has also been associated with 

increased risk of AF179,303-307 as well as stroke and coronary heart disease,175,181,308 though 

limitations include study samples, cross-sectional designs, and OSA measurement. AF 

patients are at especially elevated risk of atherosclerotic cardiovascular disease (CVD) 

such as ischemic stroke and MI,300-302 and it is possible that OSA may further increase the 

risk. Although OSA has been associated with AF,179,303,304 and stroke and MI are 

common outcomes among AF patients,300-302 the few studies examining the relationship 

between OSA and atherosclerotic CVD in AF patients have reported mixed results, with 

one finding a positive association and two finding no association.309-311 Additional 

research is needed, as these studies had small sample sizes, short follow up time, and/or 

did not employ optimal methodology to control for important confounders in 

administrative data. Identification of an association between OSA and atherosclerotic 

CVD in AF patients may have implications for screening and treatment, in order to 

prevent atherosclerotic CVD. 
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Using a large administrative claims database we examined the longitudinal 

association between diagnosed OSA and risk of MI and ischemic stroke in a large cohort 

of patients with non-valvular AF. We hypothesized that those AF patients with diagnosed 

OSA would have an increased risk of ischemic stroke and MI compared to those without 

an OSA diagnosis.  

Methods 

The present analysis utilized commercially available de-identified data from two 

databases licensed by Truven Health MarketScan. The Commercial Claims and 

Encounters Database is a commercially available de-identified data source for privately 

insured healthcare plan enrollees under age 65, while the Medicare Supplemental 

database consists of adults 65 and older with employer-paid Medicare supplemental 

insurance. The databases contain individual-level information on enrollment and health 

insurance claims for inpatient and outpatient services, as well as outpatient pharmacy 

claims. We used these healthcare claims to conduct a prospective cohort study of patients 

with AF from January 1st, 2007 to December 31st 2014 among those aged 22-99. Because 

this secondary data is de-identified and commercially available, the University of 

Minnesota Institutional Review Board deemed it exempt from review. 

Sample Selection and Matching 

All participants in the analytic sample had non-valvular AF, which was defined as 

at least one inpatient or two outpatient claims 7 to 365 days apart using the ICD-9-CM 

codes 427.3, 427.31, or 427.32. Those with ICD-9-CM codes for valvular AF or 

procedural codes for valvular repair or replacement were excluded from the sample. The 
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use of administrative claims data to identify AF was summarized in a systematic review, 

which found the algorithms had a median positive predictive value of 87% and a median 

sensitivity of 79%.312 In order to be included in the present analysis, we also required at 

least 90 days of continuous enrollment before first AF diagnosis, in order to obtain 

adequate information on confounding variables. For those participants who discontinued 

enrollment and then re-enrolled, only the first enrollment period was included in the 

analysis. Additionally, those with a prevalent stroke, MI, or TIA prior to the start of 

follow-up (index date) were excluded from the analysis.  

Individuals identified as having diagnosed OSA were matched by age, sex, and 

enrollment date with up to five patients with no OSA diagnosis. The index date was 

defined as the date of the sleep diagnosis for those exposed, while the index date for the 

unexposed was the same date as the exposed person to whom they were matched.  

Sleep variables 

 

For the primary exposure definition, claims for diagnosed OSA were identified 

from the inpatient and outpatient databases using the following ICD-9-CM codes: 327.20 

(organic sleep apnea, unspecified), 327.23 (obstructive sleep apnea adult pediatric), 

327.29 (other organic sleep apnea), 780.51 (insomnia with sleep apnea, unspecified), 

780.53 (hypersomnia with sleep apnea), and 780.57 (unspecified sleep apnea). We 

required that all claims occur after the AF diagnosis. Two sensitivity analyses with 

different exposures definitions were also performed. One, a more specific definition, 

required both the above listed ICD-9 codes as well as Current Procedural Terminology 

(CPT) codes for polysomnography and PAP devices (G8759, G8839, G8846, G8848, 



 

 120 

95808, 95810, 95811, G0398, G0399, G0400). The other sensitivity analysis used a 

broader definition of ICD-9 defined OSA (327.2x and 780.5x) similar to other 

publications.313,314 Validation studies comparing ICD-9 codes to polysomnography found 

codes for polysomnography + PAP device had better performance, with sensitivities 

ranging from 0.02-0.70 and specificities ranging from 0.36-0.99, depending on definition 

and data source.313,314  

Outcome ascertainment 

 

Ischemic stroke was defined using the ICD-9-CM codes 434.xx (occlusion of 

cerebral arteries) and 436.xx (acute but ill-defined cerebrovascular disease) in the 

primary position. These algorithms had a positive predictive value of 80% or greater in a 

systematic review.315 MI was defined using the ICD-9-CM codes 410.xx in the first or 

second position. Positive predictive values for this algorithm range from 88-94%.316,317 

Migraines, defined using ICD-9-CM codes 346.xx, were selected as a control outcome, 

because no association with OSA was expected. Thus, if rates of migraines were different 

between those with and without diagnosed OSA it would suggest residual confounding.  

Covariate ascertainment 

 

Information on pre-determined covariates was identified using claims. In order to 

have adequate covariate information, a minimum of 90 days of enrollment was required 

prior to the participant ‘index’ date. Claims information came from inpatient, outpatient 

and pharmacy databases, and included information on demographics, comorbidities, and 

medications. Validated algorithms318 were used to define pre-specified comorbidities 

such as depression and alcohol abuse. Prescription medications included hypnotics, anti-
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depressants, thyroid medications, smoking cessation medications, and weight loss 

medications. CHA2DS2-VASc score was also calculated.319 

Analysis 

To control for differences between patients with OSA and without OSA and, 

therefore, reduce confounding, we calculated high-dimensional propensity scores (HDPS) 

using SAS macros.320 To assemble these scores, database information was categorized 

into 5 domains: inpatient diagnostic codes, inpatient procedure codes, outpatient 

diagnostic codes, outpatient procedure codes, and medications. The algorithm identified 

the top 200 most prevalent claims from each of the five domains, which resulted in 1,000 

covariates. These covariates were ranked based on their potential to control for 

confounding. In addition to the variables identified by HDPS, we forced the pre-

determined covariates described above into HDPS calculation, and ignored potential 

mediators of the OSA-CVD relationship such as hypertension, heart failure, diabetes, and 

CHA2DS2-VASc. Based on this prioritization, we selected the top 500 variables and 

included them in a logistic regression model to estimate the probability of OSA exposure. 

The HDPS was then used to adjust the models as a continuous covariate.  

Cox proportional hazards models were used to model time to incident ischemic 

stroke, MI, and migraine events according to diagnosed OSA status. Person-time was 

calculated by using the time from the index date until an outcome event, health plan 

disenrollment, or the end of the follow-up period. For each outcome, models were 

adjusted for age, sex, pre-specified covariates, and HDPS (continuous). SAS version 9.3 

(SAS Institute, Cary, NC) was used to analyze the data.  
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Exposure misclassification, through the use of ICD code-defined OSA, is 

unavoidable when using administrative data. We conducted bias analyses321,322 to 

estimate rate ratios adjusted for misclassification, using sensitivities and specificities that 

have been reported in the literature. Because prior literature reported a range of 

sensitivities and specificities,313,314 we repeated our bias analysis at sensitivities from 

0.02-0.58 and specificities from 0.36-0.99.  

Results 

 The mean age at baseline was 64.8 years and 29.7% of the sample was female. 

There were 4725 new cases of ischemic stroke and 6500 new cases of MI over an average 

of 16 months of follow-up. This incidence rate was 6.7 (95% CI 6.5-6.9) stroke cases and 

9.3 MI cases (95%CI 9.0-9.5) per 1000 person-years.  

 Table 5.1 shows characteristics of AF patients by diagnosed OSA status.  Due to 

matching, age and sex were similar in both groups. Compared to those without an OSA 

diagnosis, a greater proportion of those with an OSA diagnosis had diabetes, heart failure, 

hypertension, and depression. Additionally, a greater proportion of those with diagnosed 

OSA had a claim for hypnotics and anti-depressants.   

Table 5.2 shows, among AF patients, adjusted hazard ratios and 95% confidence 

intervals for ischemic stroke, MI and migraines, according to diagnosed OSA status. 

After adjustment for age, sex, depression, alcohol, medications, and propensity score, an 

OSA diagnosis was strongly and significantly associated with a reduced hazard of 

ischemic stroke (HR = 0.59, 95%CI 0.53, 0.66) and MI (HR = 0.49, 95%CI 0.45, 0.54). 



 

 123 

Results were similar when OSA was defined by both ICD-9 and CPT codes, as well as 

when the broad definition of OSA was used.  

Table 5.2 also shows adjusted hazard ratios and 95% confidence intervals for 

migraines, the control outcome by diagnosed OSA status. After adjustment for age, sex, 

confounders, and propensity score, there was little evidence of an association between 

OSA diagnosis and migraines (HR= 0.87, 95% CI 0.70, 1.08). Similar results were found 

with varying definitions of OSA.  

Bias analysis was used to evaluate the influence that misclassification of OSA 

diagnosis based on ICD codes may have had on our results (Table 5.3). Equations321,322 

using estimates of sensitivity and specificity from validation studies313,314 were used to 

correct for misclassification, allowing for estimation of expected observed frequencies by 

exposure (OSA) and outcome (e.g. stroke) category, as well as rate ratios. Application of 

these equations resulted in some expected observed frequencies having negative values, 

and therefore errors when attempts were made to calculated relative rates adjusted for 

misclassification. In exploratory analyses where we randomly selected values from the 

range of published sensitivities and specificities, without errors, corrected rate ratios 

ranged from 0.25 to 14.31 (Table 5.3). 

Discussion 
 

In this analysis of a large administrative database of AF patients, counter to our 

hypothesis, an OSA diagnosis was associated with a strikingly lower risk of incident 

stroke and MI. We rigorously attempted to mitigate uncontrolled confounding by using 

high dimensional propensity scores. Additionally, we incorporated into the analysis a 
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control outcome, migraines, which showed little evidence of residual confounding. As 

such, our findings raise questions about whether administrative data can be used to test 

hypotheses about exposures which are believed to be grossly underdiagnosed, such as 

OSA.57 Approximately 85% of individuals who meet the diagnostic criteria for OSA are 

unaware of their status.50 

Comparison to prior literature 

Previous research exploring the association between OSA and atherosclerotic 

CVD risk among AF patients are summarized in Table 5.4. In one study of 17,000 AF 

patients, a Taiwanese national health insurance database found no statistically significant 

association between ICD-9 defined OSA and stroke, though similar to our findings, 

hazard ratios were in a protective direction (HR~0.80).311 In a study using the ORBIT-AF 

registry, OSA defined via clinician diagnosis or history was not associated with a 

composite cardiovascular outcome, which included cardiovascular death, MI, and 

stroke/TIA.310 However, in a small study of patients referred for polysomnography, OSA 

was strongly associated with first-time stroke among AF patients (OR~3.84).309 Thus, 

large studies using administrative or self-reported measures of OSA found protective or 

no associations, while a study with a small number of cases that used polysomnography 

found a greatly increased risk of stroke among those with OSA.   

Our finding of OSA being associated with decreased atherosclerotic CVD risk is 

counterintuitive, as pathophysiology suggests that OSA results in the hypoxia, 

hypercapnia, changes in autonomic nervous system activity, and inflammation, all of 

which could act in AF patients to increase atherosclerotic CVD risk.53 Additionally, 
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epidemiologic studies in ‘healthy’ population-based samples without AF also suggest that 

OSA is associated with increased risk of stroke and CHD.181,308 

Potential influence of measurement error 

A plausible explanation for these unexpected results is measurement error in the 

exposure. The gold standard for measuring OSA is polysomnography; however, this 

method is too expensive and burdensome to implement in a sample this large. Two 

papers have examined the validity of administrative data as compared to 

polysomnography for defining OSA. Applying several different ICD-code definitions of 

OSA, one sample of Canadian surgical patients found a range of mostly high specificities 

(e.g. 36-99%) and low sensitivities (e.g. 2-70%) that varied due to the case definition,313 

while a second study of patients referred for sleep studies found that sensitivity decreased 

and specificity increased when multiple claims were required (e.g. with 1 code the 

sensitivity = 44-47% and specificity = 39-49%, with multiple codes sensitivities were 12-

16% and specificities 82-87%).314 In a secondary analysis, we tried to increase the 

specificity of our OSA definition, by requiring both ICD and CPT codes. The low 

sensitivity of ICD-defined OSA is not surprising given that 85% of individuals who meet 

the diagnostic criteria for OSA are unaware of their status50 and approximately two to 

three times more people experience OSA symptoms than have a diagnosis.57  

In Table 5.3, we attempted to use the published sensitivities and specificities to 

generate rate ratios adjusted for misclassification, in order to estimate the expected 

association between OSA and atherosclerotic CVD among AF patients. Unfortunately, 

applying the published estimates of sensitivity and specificity to the misclassification bias 
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analysis equations resulted in errors.  This incompatibility can occur if the validation data 

is based on a population with different classification characteristics or there is some form 

of bias leading to the inconsistency. 

On average, non-differential biases results toward the null and correction for 

nondifferential misclassification results in measures of association further away from the 

null.321 In this study, we specified a non-differential misclassification, which would 

appear unlikely to explain the unusual protective result we found (since the 

misclassification adjusted result would be even more protective). However, if the 

sensitivities and specificities add up to less than one, indicating that the classification is 

worse than random, it is possible for the direction of the association to be reversed, and 

thus correction for this kind of misclassification could change associations from 

protective to harmful.321 Several combinations of sensitivities and specificities from the 

validation papers add up to less than one, including exposure definitions most similar to 

the ones used in this study. In addition, our exploratory analysis demonstrates that 

choosing sensitivities and specificities similar to the published validation figures, that 

sum to less than one, produce rate ratios suggesting OSA is adversely associated with 

atherosclerotic CVD among AF patients. As such, it is conceivable that misclassification 

bias as a result of the low sensitivity and specificity of ICD-defined OSA may have led to 

our surprising result of OSA being associated with strikingly lower risk of stroke and MI.  

The bias analyses we conducted focused on nondifferential misclassification, 

however, as the validity of defining OSA using ICD codes has not been examined with 

regard to any outcome, it is possible that measurement error in the OSA exposure is 
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differential (i.e. different for those with and without CVD in this sample). An example of 

how differential misclassification could occur is if those who were obese were more 

likely to be screened for OSA, and also more likely to experience an atherosclerotic CVD 

event during follow-up. In addition to uncertainty about whether measurement error was 

differential or non-differential, it is also unclear how the validity of using administrative 

data to define OSA compares to other measurement methods used in some prior 

publications in the absence of polysomnography (e.g. self-reported physician’s diagnosis 

of OSA, or snoring as a surrogate). 

Potential influence of selection bias 

Another possible explanation for our unanticipated results is selection bias. 

Because participants are older, it is possible that those with OSA had already died of MI 

or stroke before the beginning of the study. As a result, those with OSA in this study may 

be healthier and thus less likely to develop atherosclerotic CVD than those in the general 

population, resulting in the counterintuitive associations. However, in our sample a 

greater proportion of those with diagnosed OSA compared to those without OSA had 

diabetes, heart failure, and depression, making this explanation less likely.  

Additionally, our unexpected finding that OSA is associated with lower risk of 

atherosclerotic CVD may be analogous to the established “obesity paradox’, where 

overweight or obese patients are at lower risk for outcomes compared to those who are 

normal weight. This phenomenon has been has been documented for some CVD events 

in AF patients.323 Selection bias is one plausible explanation for this sort of occurrence, 

due to conditioning on a collider.324  
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Strengths and additional limitations 

Other limitations of this study include the possibility that those diagnosed with 

OSA may also have received treatment over the follow-up period, which may have 

reduced the incidence of stroke or MI. However, though OSA treatment such as CPAP 

improves OSA and daytime sleepiness,325,326 adherence is low as patients do not always 

find the treatment acceptable.117,120 Thus, those prescribed treatment may not be at 

reduced risk. In the MarketScan dataset information on some potential confounders (e.g. 

BMI) was not present, however high-dimensional propensity score methodology helped 

to control for residual confounding.320 Besides the use of propensity scores, other 

strengths of this study include a large real world sample with extensive information on 

medications and comorbidities. 

Conclusions  

In this study, diagnosed OSA was strongly associated with reduced risk of 

incident atherosclerotic CVD, a counterintuitive finding possibly attributable to error in 

the measurement of OSA. More longitudinal studies or trials with valid and reliable 

measurements of sleep apnea are thus needed to provide more definitive evidence on this 

association. The present findings also raise questions about the validity of research using 

administrative data to define OSA, and possibly other exposures that are known to be 

highly underdiagnosed.   
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Table 5.1: Characteristics of atrial fibrillation patients by 

sleep apnea status, MarketScan 2007-2014 
 Sleep apnea (ICD)* No Sleep apnea 

N 90,274 446,903 

Age 64.6 ± 11.9 64.8 ± 12.0 

      >65 21,130 (23.4) 107,319 (24.0) 

      >75 20,295 (22.5) 102,186 (22.9) 

% Female 26,407 (29.3) 133,317 (29.8) 

CHA2DS2-VASc score 2.4 ± 1.9 2.3 ± 1.9 

 Diabetes 23,367 (26.2) 92,052 (20.6) 

 Heart Failure 21,670 (24.0) 80,275 (17.8) 

 Ischemic Stroke 10,451 (11.6) 52,924 (11.8) 

 Hypertension 50,743 (56.2) 232,110 (51.9) 

 Vascular Disease 

History 

13,392 (14.8) 65,938 (14.8) 

   

Comorbidities   

 Depression 7,528 (8.3) 31,216 (7.0) 

 Alcohol abuse 339 (0.4) 2,663 (0.6) 

   

Medications    

 Hypnotics 8.337 (9.2) 33,742 (7.6) 

 Anti-depressants 17,621 (19.5) 69,670 (15.6) 

 Varenicline 468 (0.5) 2,318 (0.5) 

 Weight loss 

medication 

773 (0.9) 1,963 (0.4) 

 Thyroid medication 10,284 (11.4) 46,645 (10.4) 

*Primary exposure definition  



 

 130 

Table 5.2: Adjusted hazard ratios (95% confidence intervals) for atherosclerotic cardiovascular disease by sleep 

apnea among patients with atrial fibrillation: MarketScan 2007-2014 
 OSA ICD Only  

(Primary definition) 
OSA ICD + CPT 

(More specific definition) 
OSA Broad ICD 

(Less specific definition) 

 No OSA OSA No OSA OSA No OSA OSA 

Ischemic Stroke       

       

N Events 4,023 702 1,192 203 5,376 1,159 

N Total 446,903 90,274 130,826 25,942 575,347 124,287 

       

Model 1 Ref. 0.58 (0.53, 0.63) Ref. 0.59 (0.51, 0.68) Ref. 0.60 (0.56, 0.64) 

Model 2 Ref. 0.57 (0.53, 0.62) Ref. 0.57 (0.49, 0.67) Ref. 0.60 (0.56, 0.64) 

Model 3 Ref. 0.59 (0.53, 0.66) Ref. 0.56 (0.45, 0.68) Ref. 0.71 (0.66, 0.76) 

Myocardial 

Infarction 

      

       

N Events 5,619 881 1,656 273 6,903 1,250 

N Total 446,903 90,274 130,826 25,942 575,347 124,287 

       

Model 1 Ref. 0.53 (0.49, 0.57) Ref. 0.58 (0.51, 0.66) Ref. 0.51 (0.48, 0.55) 

Model 2 Ref. 0.53 (0.49, 0.56) Ref. 0.57 (0.50, 0.65) Ref. 0.52 (0.49, 0.55) 

Model 3 Ref. 0.49 (0.45, 0.54) Ref. 0.47 (0.40, 0.55) Ref. 0.48 (0.45, 0.51) 

Migraine       

       

N Events 859 216 266 75 869 310 
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N Total 446,903 90,274 130,826 25,942 575,347 124,287 

       

Model 1 Ref. 0.86 (0.74, 1.00) Ref. 1.06 (0.82, 1.37) Ref. 0.99 (0.87, 1.13) 

Model 2 Ref. 0.81 (0.69, 0.94) Ref. 1.01 (0.78, 1.31) Ref. 0.89 (0.78, 1.02) 

Model 3  Ref. 0.87 (0.70, 1.08) Ref. 0.88 (0.60, 1.30) Ref. 1.00 (0.87, 1.15) 

Abbreviations – OSA: obstructive sleep apnea, ICD: International Classification of Diseases, CPT: Current Procedural Terminology  

Model 1 adjusted for age and sex 

Model 2 added depression, alcoholism, sleep medications, anti-depressants, thyroid medication, weight-loss medication, and anti-

smoking medication 

Model 3 added continuous high dimensional propensity score 
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Table 5.3: Bias analysis for the association between OSA and risk of ischemic stroke using sensitivities and 

specificities for OSA defined by ICD codes versus gold-standard polysomnography*  
  Sensitivity  Specificity Corrected Rate Ratio 

Current data Primary OSA definition:  

ICD-9-CM codes 327.20, 

327.23, 327.29, 780.51, 

780.53, 780.57 

Observed Observed 0.58 

Sensitivities and 

specificities from 

McIsaac, et al313 

Polysomnography + 

prescription for CPAP 

0.19 0.98 Error: negative cell*** (-0.60) 

 ICD-10: 4730 (hospital 

discharges) 

0.07 0.99 Error: negative cell (1.28) 

 ICD-10: G4738 (hospital 

discharges) 

0.02 0.99 Error: negative cell (1.03) 

 Any ICD-10 code 

(hospital discharges) 

0.09 0.98 Error: negative cell (1.46) 

 ICD-9 780.5 (hospital 

discharges) 

0.03 0.98 Error: negative cell (1.03) 

 ICD-9 780.5 0.58 0.38 Error: negative cell (0.98) 

 Polysomnography + PAP 

or any ICD code 

0.70 0.36 Error: negative cell (1.02) 

Sensitivities and 

specificities from 

Laratta, et al314 

RDI ≥ 5 h−1 1 claim or 

discharge code (780.5) 

0.465 0.394 Error: negative cell (0.90) 

 RDI ≥ 5 h−1 2 claims or 

discharge codes (780.5) 

0.241 0.678 Error: negative cell (0.22) 
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 RDI ≥ 5 h−1 3 claims or 

discharge codes (780.5) 

0.124 0.817 Error: negative cell (-3.14) 

 RDI ≥ 15 h−1 1 claim or 

discharge code (780.5) 

0.442 0.464 Error: negative cell (0.91) 

 RDI ≥ 15 h−1 2 claims or 

discharge codes (780.5) 

0.260 0.746 Error: negative cell (1.19) 

 RDI ≥ 15 h−1 3 claims or 

discharge codes (780.5) 

0.138 0.866 Error: negative cell (1.32) 

 RDI ≥ 30 h−1 1 claim or 

discharge code (780.5) 

0.442 0.490 Error: negative cell (0.93) 

 RDI ≥ 30 h−1 2 claims or 

discharge codes (780.5) 

0.285 0.753 Error: negative cell (2.38) 

 RDI ≥ 30 h−1 3 claims or 

discharge codes (780.5) 

0.164 0.874 Error: negative cell (-0.93) 

Exploratory 

sensitivities and 

specificities 

  

  0.57 0.89 0.26 

  0.11 0.59 4.55 

  0.14 0.54 14.31 

  0.05 0.38 2.22 

  0.52 0.89 0.25 

  0.03 0.69 3.43 
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  0.07 0.69 4.14 

  0.50 0.92 0.35 

  0.07 0.71 4.85 

  0.04 0.42 2.16 

 Excel tables used for calculations obtained from https://sites.google.com/site/biasanalysis/ 

RDI – respiratory disturbance index, OSA – obstructive sleep apnea, CPAP – continuous positive 

airway pressure 

*Estimates from published validation studies 

**Primary exposure definition 

*** Negative cells indicate false positive proportion is higher than the prevalence of OSA among 

those with cardiovascular disease 

https://sites.google.com/site/biasanalysis/
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Table 5.4:  Summary of previous studies on OSA and atherosclerotic cardiovascular disease among atrial 
fibrillation patients  
Authors Sample Size AF Population Measurement of 

OSA 

Outcome Length of follow-

up 

Results 

Current 

study 

100,000 + U.S. 

Administrative 

Claims data 

ICD-9 Stroke and 

myocardial 

infarction via ICD-9 

~ 500 days HR~0.60 

Chang et 

al.311 

17,375 Taiwan health 

insurance claims 

ICD-9 Stroke via ICD-9 2.5 years HR~0.80 

Holmqvist 

et al.310 

10,132 ORBIT-AF 

registry 

Physician report 

and medical 

records 

Composite of 

cardiovascular 

death, coronary 

heart disease, 

stroke/TIA 

2 years HR~1.10 

Yaranov 

et al.309 

332  Patients referred 

for sleep study 

Polysomnography Stroke via electronic 

medical records 

4.4 years OR~3.84 
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Conclusions 
 

Sleep problems, including short sleep duration and OSA, are prevalent and 

associated with a variety of adverse health outcomes. The objective of this dissertation 

was to explore the relationship between these sleep disturbances and cardiometabolic risk 

factors and outcomes. Manuscripts 1 and 2 examined the relationship between sleep 

duration related indices and eating and obesity, while manuscripts 3 and 4 focused on 

OSA and risk of atherosclerotic cardiovascular events. 

Manuscript 1 
 

Although young adults are particularly likely to fail to meet published sleep 

duration recommendations,8 few studies have evaluated the influence of sleep on health 

in this age group. In manuscript 1, we examined the cross-sectional association between 

several sleep indices and risky eating behaviors in young adults. Late sleep timing was 

most consistently associated with poor eating behaviors, including consumption of 

energy drinks, sugar-sweetened beverages, fast food and breakfast skipping, while fewer 

associations were found for the other sleep indices (i.e. time in bed, sleep quality, and 

sleep variability). The inconsistencies across indices may indicate measurement error or 

may represent unique independent dimensions of sleep. However, these findings must be 

interpreted cautiously, as the study was cross-sectional and the causal pathway may be 

bidirectional. 
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Manuscript 2 
 

Among older adults, prior research on sleep and obesity has been limited by self-

reported measures of a single sleep index and racially and ethnically homogenous 

populations. In manuscript 2, we examined the cross-sectional association between 

objectively measured sleep indices and adiposity among older adults in MESA. Those 

sleeping less than 5 hours per night had higher BMIs, larger waist circumferences, and 

more kilograms of body fat than those who slept 7-8 hours a night. Those with low sleep 

efficiency and high sleep variability also had higher BMIs, larger waist circumferences, 

and more body fat, though associations were smaller after adjustment for sleep duration. 

Combined, both manuscripts 1 and 2 demonstrate the importance of examining sleep 

indices beyond just sleep duration or time in bed, though both analyses were cross-

sectional, thus the temporal nature of the relationship is unclear. 

Manuscript 3 
 

Although daytime sleepiness is the most common symptom of OSA,275 neither the 

relationship between OSA and daytime sleepiness, nor the impact of presenting with both 

OSA and daytime sleepiness, is well understood. The aim of manuscript 3 was to 

determine if there was a joint effect and/or a statistical interaction between daytime 

sleepiness and OSA in relation to incident CVD, including CHD and stroke, in the 

prospective SHHS. Although there were small associations for OSA and daytime 

sleepiness that did not always reach statistical significance, we found no evidence of a 

statistically significant interaction between daytime sleepiness and OSA on either the 
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additive or multiplicative scales, and no meaningful joint associations, indicating that 

measuring both sleep characteristics provides little additional information about CVD 

incidence.  

Manuscript 4 
 

Although OSA has been associated with AF,179,303,304 and stroke and MI are 

common outcomes among AF patients,300-302 the few studies examining the relationship 

between OSA and atherosclerotic CVD in AF patients have reported mixed results. In 

manuscript 4, we examined the association of OSA and atherosclerotic CVD among 

patients with AF in a large administrative claims database. Contrary to our hypothesis, 

we found that an OSA diagnosis was associated with a lower risk of incident stroke and 

MI, even after using high dimensional propensity scores to control for residual 

confounding. It is possible that these findings are attributable to either measurement error 

or selection bias. 

Overall conclusions 
 

Overall, this dissertation provides cross-sectional and longitudinal information 

about the associations between sleep characteristics and cardiometabolic disease in both 

younger and older adults, using a variety of measurements to assess sleep. The findings in 

these manuscripts have enhanced the understanding of these sleep quality, sleep quantity, 

and CVD risk factors and outcomes.  
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