NONPARAMETRIC STATISTICS *

I. Richard Savage

Special Report No. 7

University of Minnesota
Minneapolis, Minnesota

* A condensed version of this manuscript is to appear in the second edition of the International Encyclopedia of The Social Sciences.
0. Introduction.

Nonparametric techniques are characterized by their applicability to data not assumed to have specialized distributional properties, e.g., normality. These techniques have been devised for problems in descriptive statistics, testing of hypotheses, point estimation, interval estimation, tolerance intervals, and to a lesser extent, decision theory and sequential analysis. There is a substantial body of knowledge for making inferences nonparametrically about the location parameter of a single population and the difference between the location parameters of two populations. At the present time, research is directed towards developing aids to ease the application of nonparametric techniques, extending the range of knowledge of the operating characteristics of nonparametric techniques and providing additional techniques for more involved experimental situations and deeper analysis.

Historically many of the first statistical techniques were applied to massive quantities of data. The statistics arising in these techniques had effectively known probability distributions since the techniques were usually based on sample moments, which have approximate normal distributions. These techniques were nonparametric in that they did not require special assumptions about the data. As the applications of statistics increased, important situations arose where a statistical analysis was called for, but the data available was severely limited. Then, under the leadership of "Student" (W. S. Gossett) and R. A. Fisher, the exact distributions of many statistics were derived when the underlying distributions were assumed to have a particular form, usually normal. This led to the t, chi square, and F tests. In the
multivariate normal case, the mathematics led to the exact distribution of the
standard correlation coefficient and the multiple correlation coefficient.
There arose a formalization of the kinds of inference that can be made from
data: the work of R. A. Fisher on estimation (maximum likelihood methods) and
fiducial inference, and the work of Neyman and Pearson on tests of hypotheses
and confidence intervals. Procedures developed for small samples from specified
families of distributions have wide applicability because carefully collected
data often have the required properties. Also, these procedures continue to
have properties almost the same as their exact properties when the underlying
distributional assumptions are approximately satisfied. This form of stability
is being studied by many under the descriptive title "robustness".

The next stage of development yielded procedures that have exact properties
even when special assumptions about the underlying form of the data are not made.
These developments often arose from the work of people involved with data that
definitely did not come from the standard distributions. Some examples are:
the formalization of the properties of Spearman's (a psychologist) rank
correlation coefficient by Hotelling (a statistician, with deep interests in
economics) and Pabst; the development of randomization tests by R. A. Fisher
(a man of prominence in biology and statistics); the introduction of rank sum
tests by Deuchler and Festinger (psychologists) and Wilcoxon (a statistician and
bio-chemist); and the development of rank analysis of variance by M. Friedman
(an economist) and M. G. Kendall (a statistician much involved with economic
data).

Nonparametric procedures are definitely concerned with parameters of
distributions. In the discussion there will be emphasis on such parameters
as the median, and the probability that the difference of observations from
two populations will be positive. "Nonparametric" refers to the fact a
specified (parametric) functional form is not prescribed for the data generating process. Typically, the parameters of interest in nonparametric analysis have "invariance" properties, e.g., (1) The logarithm of the median of a distribution is equal to the median of the distributions of logarithms—this is not true for the mean of a population. (2) The population value of a rank correlation does not depend on the units of measurement used for the two scales. (3) The probability that an individual selected from one population will have a higher score than an independently selected individual from a second population does not depend on the common scale of measurements used for the two populations. Thus, in nonparametric analysis, the parameters are transformed in an obvious manner—possibly remaining constant—when the scales of measurement are changed.

The distinction between parametric and nonparametric is not always clearcut. Problems involving the binomial distribution are parametric (the functional form of the distribution is easily specified), but such problems can have a nonparametric aspect. The number of responses might be the number of individuals with measurements above a hypothetical median value. Distribution free, and parameter free, are terms used in about the same way as nonparametric. In this article, no effort is made to distinguish between these terms.

In Section 1, the nonparametric analysis of experiments consisting of a single sample is examined. A particular collection of artificial data is discussed. This set of data is used in order to concentrate on the formal aspects of the statistical analysis without the necessity of justifying the analysis in an applied context. Also, the data are of limited extent which permits several detailed analyses within a restricted space. In looking at this particular set of data it is hoped that general principles, as well as specific problems of application, will be apparent. Section 2 is a less detailed discussion, without numerical data, of problems in the two sample case. Section 3 briefly
mentions some additional important nonparametric problems. Finally, Section 4 contains key references to the nonparametric literature.

1. One-Sample Problems.

In the following, a sample (7 observations) will be used to illustrate how, when, and with what consequences nonparametric procedures can be used. Assume the following test scores have been obtained: (A) -1.96, (B) -.77, (C) -.59, (D) +1.21, (E) +.75, (F) +4.79, (G) +6.95.

There are several kinds of statistical inferences for each of several aspects of the parent population. Also, for each kind of inference and each aspect of the populations several nonparametric techniques are available. The selection of kind of inference about an aspect by a particular technique, or possibly several combinations, is guided by interests of the experimenter and his audience, objectives of the experiment, available resources for analysis, relative costs, relative precision or power, the basic probability structure of the data, and the sensitivity (robustness) of the technique when the underlying assumptions are not satisfied perfectly.

POINT ESTIMATION OF A MEAN

Assume a random sample from a population. As a first problem, a location parameter (the mean) is the aspect of interest, the form of inference desired is a point estimate, and the technique of choice is the sample arithmetic mean. Denoting the sample mean by \(\bar{x} \), one obtains

\[
\bar{x} = \frac{(-1.96) + (-.77) + ... + (+6.95)}{7} = 1.483
\]

Justifications for the use of \(\bar{x} \) are

a. If the sample is from a normal population with mean value \(\theta \), then \(\bar{x} \) is the maximum likelihood estimate of \(\theta \). (In a Bayesian framework \(\bar{x} \) is near the value of \(\theta \) which maximizes the posterior probability density when sampling
from a normal population with a diffuse prior distribution for \(\sigma \).

b. If the sample is from a population with finite mean and finite variance, then \(\bar{x} \) is the Gauss-Markoff estimate of the mean, i.e., among linear functions of the observations which have the mean as expected value, it has smallest variance.

c. Even if the data are not a random sample \(\bar{x} \) is the least squares value, i.e., \(\bar{x} \) is the value of \(y \) which minimizes \((-1.96-y)^2 + \ldots + (+6.95-y)^2\).

Result a is parametric in that a specific functional form is selected for the population, and in direct contrast, b is nonparametric. The least squares result c, is neither, since it is not dependent on probability.

POINT ESTIMATION OF A MEDIAN

The sample median, +.75, is sometimes used as the point estimate of the mean. This is justifiable when the population median and mean are the same, e.g., when sampling from symmetric distributions. When sampling from the two-tailed exponential distribution the median is the maximum likelihood estimator. The median minimizes the mean absolute deviation, \(|-1.96-y| + \ldots + |+6.95-y|\). The median has nonparametric properties, e.g., the sample median is equally likely to be above or below the population median. There does not, however, appear to be an analogue to the Gauss-Markoff property for the median.

CONFIDENCE INTERVALS FOR A MEAN

As an alternative form of estimating, confidence intervals are used. When it can be assumed that the data are from a normal population (mean = \(\theta \) and variance = \(\sigma^2 \), both unknown), to form a two-sided confidence interval with confidence level 1-\(\alpha \), first compute \(\bar{x} \) and \(s^2 \) (the sample variance, with divisor \(n-1 \), where \(n \) is the sample size), and then form the interval \(\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \) where \(t_{n-1,\alpha/2} \) is that value of the t-population with \(n-1 \) degrees of freedom which is exceeded with probability \(\alpha/2 \). For the present data \(\bar{x} = 1.483 \), \(s^2 = 10.44 \),
and the 95% confidence interval is (-1.508, 4.474).

CONFIDENCE INTERVALS FOR A MEDIAN

The following nonparametric analysis is exact for all populations with density functions. In a sample of size n let $x(1) < x(2) \ldots < x(n)$ be the observations ordered from smallest to largest. $x(i)$ is the i^{th} order statistic. If M is the population median, then the probability of an observation being less (greater) than M is $\frac{1}{2}$; in a sample of n, the probability of all of the observations being less (greater) than M is 2^{-n}. The event $x(i) < M < x(n-i+1)$ occurs when at least i of the observations are less than M and at least i of the observations are greater than M. Hence, $x(i) < M < x(n-i+1)$ has the same probability as obtaining at least i heads and at least i tails in n tosses of a fair coin. From the binomial distribution, one obtains

$$P(x(i) < M < x(n-i+1)) = \sum_{x=1}^{n-i} \binom{n}{x} 2^{-n} = 1 - \sum_{x=0}^{i-1} \binom{n}{x} 2^{-n+1}.$$

In words, $(x(i), x(n-i+1))$ is a confidence interval for M with confidence level given by the above formula; $(x(1), x(n))$ is a confidence interval for M with confidence level $1-2^{-n+1}$. Thus for the present data with $i=1 (-1.96, +6.95)$ is a confidence interval with confidence level $= \frac{63}{64} = .984$ and $(-.77, +4.79)$ has confidence level $= \frac{7}{8} = .875$.

Confidence intervals for the mean of a normal population are available at any desired confidence level. For the nonparametric procedure given above, particularly for very small sample sizes, there are definite restrictions on the confidence level. This type of restriction often arises, and occasionally is awkwardly restrictive. The restriction occurs because nonparametric procedures usually change problems involving random variables with density functions to problems involving random variables with discrete distributions. (An exception is the one-sample Kolmogorov-Smirnov goodness-of-fit procedure.)
In the example above, the emphasis was changed from the continuously distributed test scores, to the numbers of observations above and below the population median.

COMPARISONS OF CONFIDENCE INTERVALS FOR LOCATION PARAMETERS

If there are several ways of constructing confidence intervals, each with the same confidence level, a criterion of their relative merits is needed. The confidence statement appears more definitive the shorter the confidence interval. This property is, for example, reflected in the expected value of the squared length of the confidence interval. The value of this expectation for the confidence interval based on the t-distribution is $\frac{4n^{-1}2t^2}{n-1,\alpha/2}$. The t-procedure yields the confidence interval with the smallest expected squared length for a specified confidence level under normality. If the normal assumption is relaxed, then the interval will no longer have exactly the desired confidence level (it would have approximately the desired level for large samples) although the formula for expected squared length remains correct. If the population were very different from normal, say uniform on the interval $(M-\Delta, M+\Delta)$, then in small samples the confidence level could be in error, and an interval with the desired form and confidence level could be found with a much smaller expected squared length. The expected value of the squared length of the confidence intervals based on the order statistics is given by the following formula

$$2[\text{Ex}^2(i) - \text{Ex}(i)^2(n-1,i+1)]$$

when the sampled population is symmetric.

It is interesting to compare the two kinds of confidence intervals when, in fact, the population sampled is normal. The ratio of the expected squared length of the confidence interval based on the t-distribution to the expected squared length of the confidence interval based on the order statistics is .796 when $n=7$ and the confidence level is .984; and .691 when $n=7$ and the confidence level is .875. If n_0 is the sample size used with order statistics, and n_t is the sample size used with the t-distribution (both samples assumed
large), then the corresponding ratio is approximately \((\pi n_t)/(\pi n_0) = .637(n_0/n_t)\).

This result is independent of the confidence level. If a sample size of 1000 was required using order statistics, equivalent results could be obtained with a sample of 637 using the \(t\)-distribution. In large samples, it is reasonable to use the parametric procedure whenever the population is approximately normal. But for small samples, when the normality assumption cannot be precisely examined, one can proceed with the nonparametric procedure which is known to be exact and to yield a good value for expected squared length, even when not sampling from a normal population. To make this argument complete, one should examine the difference in behavior between the \(t\)-confidence intervals and the nonparametric confidence intervals for other populations. Also comparisons between the \(t\)-procedures and nonparametric procedures should be made with the best procedures for other populations. 6/

TESTS OF HYPOTHESES ABOUT A MEAN

Aside from point and interval estimation of the location parameter, one often wishes to test hypotheses about it.

If the data are from a normal population, then the best procedure (uniformly most powerful and unbiased of similar tests) is based on \(t = \frac{(\bar{x} - \theta_0) n^{1/2}}{s}\) where \(\theta_0\) is the hypothetical value for the location parameter. In testing the null hypothesis that \(\theta_0 = -.5\), the value of the \(t\) statistic is 1.21, significant at the .1575 level when using a two-sided test based on six degrees of freedom. 7/

The power of this test depends on the quantity \((\theta - \theta_0)^2/\sigma^2\) where \(\theta\) is the location parameter for the alternative hypothesis. The power can be found from tables of the non-central \(t\)-distribution. These results will be correct provided the data are from a normal population, and for large samples they will be approximately correct for any population.
SIGN TEST FOR A MEDIAN

Several nonparametric tests will now be introduced and then will be compared near the end of the discussion.

The nonparametric test for which it is easiest to obtain data, is the sign test. The sign test is easily applied, which makes it useful for the preliminary analysis of data, for the analysis of incomplete data, or for the analysis of data of passing interest. (The sign test and the nonparametric confidence intervals described above are related in the same manner as the t-test and confidence intervals based on the t-distribution.) The null hypothesis is that the population median is \(M_0 \), for example \(M_0 = -0.5 \). The test statistic is the number of observations greater than \(M_0 \). In the example with \(M_0 = -0.5 \), the value of the statistic is 4. (This is called a sign test because it is based on the number of differences, observation minus \(M_0 \), which are positive.) If the null hypothesis is rejected whenever the number of positive signs is less than \(i \) or greater than \(n-i \), where \(i \leq n/2 \), the significance level will be

\[
\sum_{j=0}^{i-1} \left(\begin{array}{c} n \\end{array} \right) 2^{-n+1}
\]

In this example the possible significance levels are 0.0 (\(i=0 \)), 0.0 (\(i=1 \)), 0.0 (\(i=2 \)), 0.0 (\(i=3 \)), 0.0 (\(i=4 \)). For these data, the results are only significant with an error of the first kind equal to one, i.e., one would reject the null hypothesis here only if one would reject the null hypothesis no matter what data were contained in the sample. The sign test leads to exact significance levels when the observations are independent and each has probability \(\frac{1}{2} \) of exceeding the hypothetical median, \(M_0 \). It is not necessary to measure each observation, but to compare each observation with the hypothetical median. It need not even be possible to make the measurements in principle. It is not necessary to have each observation from the same population; some test scores could come from men and some from women, so long as for each individual sampled,
under the null hypothesis, the probability of exceeding the median is \(\frac{1}{2} \). (In the discussion, however, it will be assumed that the observations are all from the same population and are mutually independent.) Let \(p \) be the probability of an observation exceeding \(M_0 \). The power is given by

\[
1 - \sum_{j=0}^{n} \binom{n}{j} p^j (1-p)^{n-j} + \sum_{j=n+1}^{n} \binom{n}{j} p^j (1-p)^{n-j}
\]

When \(p \neq \frac{1}{2} \), the power of the sign test approaches 1 as the sample size increases; results should improve as more extended experiments are conducted. This approach of the power to 1, as the sample size increases, is called consistency. All reasonable tests, in particular all discussed below, are consistent. When \(p \neq \frac{1}{2} \), the power of the sign test is greater than the significance level; the null hypothesis rejected more probably when it is false than when it is true. Tests that have this property are said to be unbiased. Most of the two sided tests discussed here are for many alternatives biased, although their one sided version will usually be unbiased.

The significance level can be found from a binomial table with \(p = \frac{1}{2} \) and the power from a general binomial table. If \(z \) is the number of positive results in an experiment with moderately large \(n \), the associated significance level can be found by computing \(t' = \frac{2z-n}{n^{\frac{1}{2}}} \) and referring \(t' \) to a normal table. A somewhat better approximation is obtained by replacing \(z \) with \(z+1 \) in computing \(t' \); this is called a continuity correction which arises when a discrete distribution is approximated by a continuous distribution, e.g., in this problem the discrete binomial distribution is being approximated by the continuous normal distribution.

The sign test for the median can be generalized to apply to other quantiles, e.g., quartiles. For each case, the number of positive signs will be counted. The resulting random variable will have a known binomial distribution under the
null hypothesis. When working with quantiles other than the median, it is usually desirable to use two numbers i_L, i_U instead of the single number i, rejecting if the number of positive signs is less than i_L or is greater than i_U. If under the null hypothesis the probability of exceeding the hypothetical quantile is p, it is often useful so to choose i_L and i_U that

$$\sum_{j=0}^{i_L-1} \binom{n}{j} p^j (1-p)^{n-j}$$

and

$$\sum_{j=i_U+1}^{n} \binom{n}{j} p^j (1-p)^{n-j}$$

are each approximately equal to half the desired level of significance. This choice eases the interpretation of the corresponding confidence intervals.

CONVENTIONALIZED DATA: SIGNED RANKS

The sign statistic can be thought of as the result of replacing the observations by conventional numbers, 1 for a positive difference and 0 otherwise, and then analyzing the resulting conventionalized data. A more interesting example of such coding is to replace the observations by signed ranks, i.e., replace the smallest observation in absolute value by +1 if it was positive, and by -1 if it was negative; replace the second smallest observation in absolute value by +2 if it was positive, and by -2 if it was negative, etc. (Interpret "observation" as "difference between observation and hypothetical value of the location parameter"). Thus, for the present data, with $M_0 = -0.5$: A (-4), B (-2), C (-1), D (+5), E (+3), F (+6), and G (+7)--the identification letter of an observation being followed parenthetically by the signed rank.

SIGNED RANK TEST OR WILCOXON TEST FOR A MEDIAN

The one-sample signed-rank Wilcoxon statistic or more simply the Wilcoxon statistic or W, is the sum of the positive ranks. In this case $W = 21$. The null hypothesis is rejected by the Wilcoxon test when W is excessively large or small.
The exact distribution of \(W \) can be found when the observations are mutually independent and it is equally likely that the \(j^{th} \) smallest absolute value has a negative or positive sign, e.g., when the observations come from populations which are symmetrical about the value specified by the null hypothesis. This requirement of symmetry is more stringent than the requirements for the sign test. It is necessary to be able to compare the observations as well as compare them with the null value of the location parameter. (Once more it is not necessary to obtain the numerical value associated with each individual.) When the null hypothesis is true, each of the numbers \(1, \ldots, n \) is equally likely to have a positive or negative sign. There are \(2^n \) equally probable samples.

There are \(n!2^n \) possible configurations for the data, but it is not relevant to know which rank came from which individual. Just the signs and the ranks are used. (For instance, the same inferences should be made on the basis of the current data, or the following data: \(A (+7), B (+3), C (-1), D (-4), E (+5), F (-2), \) and \(G (+6) \).)

When the null hypothesis is true, the probability of the Wilcoxon statistic being exactly equal to \(w \), \(\Pr(W=w) \), is found by counting the number of possible samples which yield \(w \) as the value of the statistic and then dividing the count by \(2^n \). When \(n=7 \), the largest value for \(W \) is 28 which arises in the sample having all positive ranks. Thus \(\Pr(W=28) = 2^{-7} = \frac{1}{128} \). (Incidentally, \(W \) has a distribution symmetric about \(n(n+1)/4 \), so that \(\Pr(W=w) = \Pr(W = \frac{n(n+1)}{2} - w) \). Thus for \(n=7 \), \(\Pr(W=21) = \Pr(W=7) \).) A value of 7 can be obtained when the positive ranks are \((7), (1,6), (2,5), (3,4), \) or \((1,2,4)\)--each parenthesis represents a sample. Thus \(\Pr(W=21) = \Pr(W=7) = \frac{5}{2^n} \) whenever \(n \) is \(\geq 7 \). By enumerating, the probability of \(W \geq 21 \) or \(W \leq 7 \) can be seen to be \(\frac{36}{128} = .281 \). The present data are significant at the .281 level when using the Wilcoxon (two-sided) test. The sign test has about \(n/2 \) possible significance levels, and the Wilcoxon test has about \(n(n+1)/4 \)
possible significance levels.

For small sized samples, tables of the exact distribution of W are available. Under the null hypothesis the mean of W is $\frac{n(n+1)}{4}$ and the variance of W is $\frac{n(n+1)(2n+1)}{24}$, and the standardized variable

$$t' = \frac{W - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$

has a distribution that is approximately normal for large n.

For small samples, W is easy to compute. As the sample size increases, ranking the data becomes more difficult than computing the ordinary t-statistic, which can be done when all of the measurements are actually available. Also for large samples, the t-test will give satisfactory results.

The procedure to compute W by making comparisons will now be made explicit. Represent the observations by x_1, \ldots, x_n. Denote by N the number of positive observations and denote by M the number of negative observations. Let u_1, \ldots, u_N be the values of the positive and v_1, \ldots, v_M be the absolute values of the negative observations; let $\Delta_{ij} = \Delta(u_i, v_j) = 1$ if $u_i > v_j$ and 0 otherwise; and let

$$S = \sum_{i=1}^{N} \sum_{j=1}^{M} \Delta_{ij}.$$

Then $W = S + \frac{N(N+1)}{2}$. The computation of S requires the determination of the signs of observations and the determination of which of two observations of unlike sign is the larger in absolute value.

When M and N are both positive, the quantity $\frac{S}{MN}$ is a natural unbiased estimate of the probability that a positive observation will be larger than the absolute value of a negative observation.

The relationship between S and W involves the random quantity N. Thus the inferences drawn from S and W need not be the same. Although W is the statistic of choice, its evaluation in an electronic calculator would be facilitated by first computing S. In large samples, S and W have approximate normal distribu-
tions. If the alternative hypothesis is true, the moments, means and variances of S and W are complicated. Except in the case of the sign test, it is usually difficult to compute the power functions of nonparametric tests. Most statements about the power of the W test are based on very small samples, Monte Carlo results, or asymptotic theory. 10/

CONFIDENCE INTERVALS FOR A MEDIAN FROM THE WILCOXON STATISTIC

The Wilcoxon test generates confidence intervals for the location parameter M. The significance level $\frac{10}{128}$ corresponds to rejecting the null hypothesis when $W \geq 25$ or $W \leq 3$. The interval consisting of values of M for which $4 \leq W \leq 24$ has confidence $1 - \frac{10}{128} = \frac{118}{128}$. An examination of the original data (the ranks are not sufficient) yields for this interval all M values between -1.28 and 4.08. An examination of some trial values of M will help in understanding this result. Thus if $M = 4.2$, F has rank 1, G has rank 2, no other observation has positive rank and $W=3$, which means this null hypothesis would be rejected. If $M=4$, then F has rank 1, G has rank 3, no other observation has positive rank, and $W=4$, which means this null hypothesis would be accepted.

RANDOMIZATION TESTS FOR A LOCATION PARAMETER

As a final test for the location parameter, we will consider a randomization test. Under the null hypothesis the observations are mutually independent and come from populations symmetric about the median M_0. This includes the cases where the signed ranks are the basic observations and where the signs are the basic observations (scoring +1 for a positive observation and -1 for a negative observation). Given the absolute values of the differences between the observations and M_0, under the null hypothesis there are 2^n equally likely possible assignments of signs to the absolute values. The nonparametric test to be considered rejects large values of the total, T, of the positive observations. 11/

The relevant distribution is the conditional distribution of T given the absolute
values of the observed differences. Using $M_0 = -.5$, for the present data $T = 15.70$. There are 13 configurations of the signs that will give a value of T which is at least this large and another 13 configurations for which T is $17.52 - 15.70 = 1.82$ or smaller; the latter being the lower tail of the symmetrical distribution of T. Thus the level of significance of the randomization test on the present data is $\frac{26}{128} = .2031$. With the test, each multiple of 64^{-1} is a possible significance level. The computations for this procedure are prohibitive except for very small sample sizes. Even with an electronic calculator this computation is not feasible with more than twenty observations. A partial solution is to use only some of the assignments of signs (say a random sample of them) to estimate the conditional distribution of T. T and the ordinary t-statistic are monotone functions of each other; thus a significance test based on large values of t is equivalent to one based on large values of T. The distribution of t under randomization is approximately normal for large values of n. The normal table can be used to approximate the significance level of t or of T. Actually, the randomization which occurs in the design of experiments yields the nonparametric structure discussed here. (Most applications of the t-test are based on the large sample theory appropriate to the randomization technique.) The power of the randomization test is approximately the same as that of the t-test. Hence, when the data are from a normal population, the tests will have good power. Among nonparametric tests, the randomization tests are uniformly most powerful for one-sided normal alternatives. (The randomization test is nonparametric in that the associated level of significance can be determined exactly for a large class of distributions.)

Finally, confidence intervals can be constructed for M_0 by using the randomization procedure. The procedure is analogous to that used with the Wilcoxon statistic. The confidence interval with level $\frac{122}{128} = .955$ is $(-1.107, 4.376)$.

-15-
Throughout this discussion it is assumed that under the null hypothesis observations are equally likely to be positive or negative. The Wilcoxon and randomization procedures assume the distributions are symmetric about M_0 under the null hypothesis. These conditions are automatically satisfied in the following important experimental situation. The observation x_i is a difference $y_{i1} - y_{i2}$ where y_{ij} is the result of applying treatment j to one of a pair of experimental units. The element of the pair to receive treatment 1 is selected by a random procedure. 12/

COMPARISONS OF TESTS FOR A LOCATION PARAMETER

The tests are consistent, i.e., for a particular alternative and large sample size, each of the tests will have power near one. To compare the large sample power of the tests, a sequence of alternatives approaching the null hypothesis is introduced. In particular, let M_N be the alternative for experiment N, and assume $M_N - M_0 = \frac{c}{N^k}$ where c is a constant. This framework is appealing since larger sample sizes should be used to make finer distinctions. 13/

The efficiency of a test II compared to a test I is defined as the ratio $E_{I,II} = \frac{n_1(N)}{n_{II}(N)}$ where n_1 and n_{II} are the sample sizes yielding the same power functions for test I and for test II. It is interesting that $E_{I,II}$ does not depend appreciably on the significance level or the value of c. $E_{I,II}$ does, however, depend on the distributions of the populations being sampled.

The measure of efficiency $E_{I,II}$ can be used thus: With sample size $n_1(N)[n_{II}(N)]$ assume the cost of conducting a test based on test I (II) is $\gamma_1^n_1(N)[\gamma_{II}^{n_{II}}(N)]$. 14/ When $\frac{\gamma_1 n_1(N)}{\gamma_{II}^{n_{II}}(N)} = \frac{\gamma_1}{\gamma_{II}} : E_{I,II} : is > 1$, procedure II costs less than procedure I, and the two procedures have almost the same power functions, i.e., procedure II is more economical than procedure I. When $\frac{\gamma_1}{\gamma_{II}} E_{I,II} < 1$, procedure I is preferred over procedure II and when $\frac{\gamma_1}{\gamma_{II}} E_{I,II} = 1,$
there is almost no basis for choosing.

The γ associated with the sign test can be much smaller than the γ's associated with the Wilcoxon and randomization tests. The γ of a particular procedure can become infinite when there is no experimental technique available to obtain the necessary data. Thus $E_{I,II}$ is not an absolute measure of efficiency; it is meaningful only when costs are taken into consideration and the relevant alternative hypotheses are clearly specified.

For normal alternatives, where the parameter is the mean:

E_{t} test, randomization test $= 1$, E_{t} test, Wilcoxon test $= 3/\pi = .955$, and

E_{t} test, sign test $= 2/\pi = .637$.

Additional E values can be obtained from

$$E_{II,III} = \frac{E_{I,III}}{E_{II,II}}.$$

TESTS OF INDEPENDENCE

It has been assumed that the observations are mutually independent and come from the same distribution (or at least distribution with the same median). This assumption can be examined. A procedure for this is based on the number of runs above and below the (sample) median, the Wald-Wolfowitz run test. For the present data, scoring 1 for an observation above the median (.75) and 0 for an observation below the median, yields the sequence 000111. The order of the elements in this sequence is the order (A, B, ..., G) in which the observations were made. A run consists of a sequence of like elements whose termini are either unlike elements or a terminus of the sequence, e.g., 01100110 has 5 runs; a run of 0's of length 1, then a run of 1's of length 2, then a run of 0's of length 2, then a run of 1's of length 2 and finally a run of 0's of length 1. For the data under consideration there are 2 runs. There is one other sequence
of 2 runs (111000). There are \(\binom{6}{3} = 20 \) equally likely sequences under the null hypothesis. For a critical region based on a small number of runs, the present data are significant at the \(\frac{2}{20} = .1 \) level. This test has intuitive appeal for several kinds of alternatives, e.g., a trend for higher measurements to occur in the latter observations, as with a learning effect.

TOLERANCE INTERVALS

Tolerance intervals are inferences about future observations. They are confidence intervals for future observations. A form of nonparametric tolerance interval statement asserts that the expected probability is \(\frac{(n-2i+1)}{(n+1)} \) that a future observation will be in the interval \((x(1), x(n-i+1)) \). Alternatively, when sampling from a population with distribution function \(F(x) \), the expected value of \(F(x(n-i+1)) - F(x(1)) \) is \(\frac{n-2i+1}{n+1} \). Thus for the particular data, \((-1.96, 6.95)\) is expected to contain \(\frac{7-2+1}{7+1} = 75\% \) of the population. (The last statement is a loose use of words of the same kind as saying that an observed confidence interval has confidence coefficient 95\%. Of course, once the data are obtained, there is no random element left in the problem. In the same way the expected proportion in this interval depends on the unknown distribution function. Nevertheless, the loose way of speaking, in a Bayesian framework, is approximately correct provided the prior distribution is diffuse.\(^{15/}\))

GOODNESS-OF-FIT TESTS

It is possible to make inferences about the entire distribution with goodness-of-fit procedures. These procedures can be used to test the hypothesis that the data came from a particular population or to form confidence belts for the whole distribution. Two well known procedures used in goodness-of-fit are based on the chi-square goodness-of-fit statistic and the Kolmogorov-Smirnov statistic.

TIED OBSERVATIONS

The discussion has presumed that no pairs of observations have the same
value and that no observation equals M_0. In practice such ties will occur. If ties are not extensive their consequence will be negligible even if the procedure based on the assumption of no ties is used. If exact results are required, the analysis can be performed given the data in the same manner as suggested for the randomization procedure.

2. Two-Sample Problems

Experiments with two unmatched samples easily allow comparisons between the sampled populations. With matching, the same kind of comparisons can be made as with one sample procedures. Usually, however, one sample procedures allow inferences about absolute quantities, i.e., properties of a single population. Comparisons arise naturally when considering the relative advantages of two experimental conditions or two treatments, e.g., a treatment and a control. Comparisons are advantageous when absolute standards are unknown or are not available.

Most of the procedures of Section 1 have analogues relevant for comparisons, the exceptions being tests of randomness and tolerance intervals. These procedures can be used for each population separately. With two samples, the central interest is again on location parameters, in particular, the difference between location parameters of the two populations is of interest.

This section will be less detailed than Section 1; the emphasis will be on the kinds of procedures, and on the analogous aspects of these procedures to the corresponding one-sample procedures. To be specific, let x_1, \ldots, x_m be the observed values in the first sample, and y_1, \ldots, y_n be the observed values in the second sample and let M_x and M_y be the corresponding location parameters with $\Delta = M_y - M_x$.

ESTIMATION OF DIFFERENCE OF TWO MEANS

The difference in the sample averages $\overline{y} - \overline{x}$ is often used as a point estimate
When all of the observations are independent and come from normal populations, this is the maximum-likelihood estimate of \(\Delta \); if the observations are independent, this is the Gauss-Markoff estimate; and it is always the least squares estimate. With the normal assumption, confidence intervals for \(\Delta \) can be obtained, utilizing the t-distribution. If the parent populations can have different variances, then the confidence intervals obtained from the t-distribution will not be exact, i.e., they will not have the desired confidence level. Constructing confidence intervals in this situation has been the subject of much discussion (the Behrens-Fisher problem). Also, the nonparametric confidence intervals for \(\Delta \) will not have the prescribed confidence level, unless the two populations differ in location parameter only.

BROWN-MOOD TESTS AND CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO MEDIANS

The analogue of the confidence procedure based on signs, i.e., the Brown-Mood procedure, is constructed in the following manner: let \(w_1, \ldots, w_{m+n} \) be all the observations from the two samples arranged in increasing order, e.g., \(w_1 \) is the smallest observation in both samples; \(w_2 \) is the second smallest observation in both samples, etc. Denote by \(w^* \), the middle value of the \(w \)'s, i.e., \(w^* \) is the median of the combined sample. (To simplify the discussion, it will be assumed that \(m+n \) is odd, which insures the existence of a middle observation.) Let \(m^* \) be the number of \(w \)'s greater than \(w^* \), that came from the \(x \)-population. When the two populations are the same, \(m^* \) has a hypergeometric distribution, i.e.,

\[
\Pr(m^* = k) = \binom{m}{k} \binom{n}{m-k} \binom{m+n}{k}^{-1} \quad \text{where } N = (m+n-1)/2.
\]

Thus, a nonparametric test of the hypothesis that the two populations are the same, specifically that \(\Delta = 0 \), is based on the distribution of \(m^* \), i.e., reject the null hypothesis when \(m^* \) is either too large or too small, computing the
probabilities from the above distribution. To obtain confidence intervals: replace the x-sample with \(x'_i = x_i + \Delta (i=1, \ldots, m) \), form a new sequence out of the x' values and the y values analogous to the w sequence and call it the w' sequence; compute the median \(w'^* \) and \(m'^* \) and see if the null hypothesis of no difference between the x' and y population can be accepted; if it is accepted then \(\Delta \) is in the confidence interval, and if it is rejected then \(\Delta \) is not in the confidence interval. (A graphical procedure can be used.)

WILCOXON TWO-SAMPLE TESTS AND CONFIDENCE INTERVALS

The analogue to the Wilcoxon procedure is to assign ranks (a set of conventional numbers) to the w's, i.e., \(w_1 \) is given rank 1; \(w_2 \) is given rank 2, etc. The test statistic is the sum of the ranks of those w's which came from the x-population. When the two populations are identical except for location, this test statistic will be nonparametric; its distribution under the hypothesis will not depend on the underlying common distribution. The null hypothesis is rejected when the statistic is excessive in the appropriate directions. This procedure is called the two-sample Wilcoxon test or the Mann-Whitney test.

The Wilcoxon procedure for two samples can be used if it is possible to compare each observation from the x-population with each observation from the y-population. The Mann-Whitney version of the Wilcoxon statistic (it is a non random linear function of the Wilcoxon statistic) is the number of times an observation from the y-population exceeds an observation from the x-population. When this number is divided by \(mn \), it becomes an unbiased estimate of \(\Pr(Y > X) \), i.e., the probability that a randomly selected y will be larger than a randomly selected x. This parameter has many interpretations and uses, e.g., if stresses (one from each of two populations) are brought together by random selection, it is the probability that the stress from one population will exceed that of the other (the system will function). In estimating this parameter, it is not
necessary to assume that the two populations differ in location only.

RANDOMIZATION TESTS AND CONFIDENCE INTERVALS

FOR THE DIFFERENCE OF TWO LOCATION PARAMETERS

The randomization procedure is based on the conditional distribution of the sum of the observations in the x-sample given the w sequence, when each selection of m of the values from the w sequence is considered equally likely. There are \(\binom{m+n}{m} \) such possible selections. The sum of the observations in the x-sample is an increasing function of the usual t-statistic. The importance of the randomization procedure is that it gives a method for handling any problem; for most sets of data, it is practically the same as the optimal procedures for the parametric situation (normal); yet it has exact nonparametric properties.

COMPARISONS OF SCALE PARAMETERS

To compare spread, or scale, parameters, the observations can be ranked in terms of their distances from \(w^* \), the combined sample median. If the populations have the same median, the sum of ranks corresponding to the x-sample is a useful statistic. When the populations are identical, this sum of ranks has a distribution which does not depend on the underlying distribution. If the x-population is more (less) spread out than the y-population, then this sum will tend to be larger (smaller) than under the null hypothesis. When the null hypothesis does not include the assumption that both populations have the same median, the observations can be replaced in each sample by their deviations from their medians, and then the w-sequence can be formed from the deviations in both samples. Proceeding from there, the ranking procedures will not be exactly nonparametric but should yield results with significance and confidence levels near the nominal levels.

3. Other Problems

Many other problems and techniques have been presented for the one and two
sample situations, and many other situations have been discussed. A selection of these topics will be mentioned.

SEQUENTIAL PROCEDURES

Sequential experiments often save money or time in experimentation. The sign procedure is easily put into a sequential form. Sequential forms of other nonparametric procedures are being investigated.

INVARIANCE, SUFFICIENCY, AND COMPLETENESS

Such concepts as invariant statistics, sufficient statistics, and complete statistics arise in nonparametric theory. In the two-sample problem, the ranks of the first sample considered as an entity, have these properties when only comparisons are obtainable between the observations of the x- and y-samples or if the measurement scheme is unique only up to monotone transformations. (The measurement scheme is unique up to monotone transformations if there is no compelling reason why particular scales of measurement should be used. Nonparametric confidence intervals (for percentiles) are invariant under monotone transformations. If a nonparametric confidence interval has been formed for a location parameter, the interval with end points cubed will be the confidence interval which would have been obtained if the original observations had been replaced by their cubes. Maximum likelihood estimation procedures have a similar property.)

MULTIVARIATE ANALYSIS

Although correlation techniques have not been described in this article, it is important to realize that Spearman's rank correlation procedure acted as a stimulus for research in nonparametric analysis. Problems such as partial correlation and multiple correlation have not received adequate nonparametric treatment. For these more complicated problems, the most useful available techniques are associated with the analysis of multi-dimensional contingency tables.
MULTIPLE USES OF A STATISTIC

Often, a particular test statistic can be used in widely different contexts. Thus the total number of runs, Wald-Wolfowitz test, discussed above as a test of randomness, was originally proposed as a test of goodness-of-fit. (It is not recommended as a goodness-of-fit test because more powerful tests, such as the Kolmogorov-Smirnov test, are available.)

MULTIPLE USES OF A WORD

The same words are often used for different procedures. Thus rank correlation does not specifically refer to the Spearman rank correlation which is an analogue to the standard correlation coefficient. It can refer to Kendall's tau. Many kinds of runs have been discussed in the literature, e.g., runs up and down; runs of different lengths; runs above and below a population median. These statistics have different uses and may have different distributions.

ANALYSIS OF VARIANCE (ANALOGUES)

A substantial body of nonparametric procedures has been proposed for the analysis of experiments involving several populations. Analogues have been devised for the standard analysis of variance procedures. One such analogue involves the ranking of all of the measurements in the several samples, and then performing an analysis of variance of rank data (Kruskal-Wallis procedure). Another procedure involves each of several judges ranking all populations (the Friedman-Kendall technique).

DECISION THEORY

Other decision procedures than estimation and testing have not received extensive nonparametric attention. An example, however, is the Mosteller procedure of deciding whether or not one of several populations has shifted, say to the right. It can be thought of as a multiple decision problem since if one rejects the null hypothesis (the populations are the same), it is natural to decide that the "largest" sample comes from the "largest" population. (Most
users of statistics, when rejecting a null hypothesis with a two sided test, act as if the parameter is in the direction of the observed difference.\footnote{17}{Analysis of the several Wilcoxon statistics which can be obtained by considering pairs of samples when observations are obtained from several populations will lead to multiple decision procedures.}

4. \textbf{References}

The extensive literature of nonparametric statistics is indexed in the bibliography of Savage (1962). Detailed information for applying many nonparametric procedures has been given by Siegel (1956) and Walsh (1962). The advanced mathematical theory of nonparametric statistics has been outlined by Fraser (1957) and Lehmann (1959).

\begin{itemize}
\end{itemize}

5. \textbf{Footnotes}

\footnote{1}{The general plan of writing is to decrease detail as we move to latter parts of the paper. In particular such topics as "continuity corrections" and "ties" are not mentioned each time they could be relevant.}

\footnote{2}{The considerations of this sentence (in the text) are of course interrelated. It is clear that a good experiment and a good analysis will be able to accomplish several things. An item such as costs, of course, can refer to}
a multiplicity of things, e.g., cost of conducting the experiment, cost of analysis, or costs of making incorrect decisions. The audience is often not of a common mind and thus compromises in presentations might be required. The emphasis is on the fact that the good application of statistics is seldom a clear cut use of text book directions without the consideration of many related matters.

Assume that \(\theta \) has a prior density function, \(p(\theta) \). Then the posterior density of \(\theta \) given the sample data is of the following form

\[
Cp(\theta)\exp \left(-\frac{n}{2\sigma^2} (\bar{x} - \theta)^2 \right)
\]

where \(C \) does not depend on \(\theta \) and \(\bar{x} \) is the average of the \(n \) observations. If \(n/\sigma^2 \) is large the exponential term of this expression will be very small except for values of \(\theta \) near \(\bar{x} \). Then the maximizing value of \(\theta \) must be near \(\bar{x} \) unless \(p(\theta) \) has a very large peak away from \(\bar{x} \). The diffuseness of the distribution of \(\theta \) is intuitively associated with the lack of high peaks in \(p(\theta) \). Under similar circumstances \(\bar{x} \) is near the posterior mean of \(\theta \).

In the Bayesian framework, one would not report an estimate but would either give the posterior distribution of \(\theta \) or recommend a decision.

The method of least squares is an algebraic computing device. The least squares estimates can be computed without making any probabilistic assumptions about the source of the data. It is important in statistical inference since under specified conditions the least squares estimates have good (in a probabilistic sense) properties. In particular, the least squares estimates are often the minimum variance unbiased estimates based on linear functions of the data, i.e., the Gauss-Markoff estimates.

A population is symmetric about a point \(M \) if the probability of an observation more than \(X \) units below \(M \) is the same as the probability of an observation more than \(X \) units above \(M \) for each \(X > 0 \).

Generalities are likely to obscure a good part of detail. Thus if one really had a very large sample and were interested in the population median, it might be best to work with the sample median even if you were quite sure that population was nearly normal. The sample median is sure to do the job
and if the sample size is large there is not much possible loss of information by using the median instead of the mean. On the other hand even if you are sure about the population being near normal, the slight deviation might cause the mean and median not to be the same so that even with a large sample one could not get convergence to the correct answer using the mean.

A common practice is to select a level of significance before the experiment is conducted and then to report whether or not the sample was significant at that level. Here, the report states the smallest level of significance at which the obtained data would be found significant.

Here and in several later places, it is stressed that nonparametric procedures often do not require actual measurements, i.e., comparisons of individuals with norms or with each other might be sufficient. Occasionally, there is a real cost savings in making the comparisons rather than the measurements, e.g., using go-no-go gauges in quality control rather than actual measurements. In the social sciences, the precise thing to measure is often very obscure and at best one can make comparisons.

The irrelevance of which signed rank is associated with which individual, depends on the assumptions that the individual scores are independently distributed and that each individual has the same probability of exceeding the null value of the parameter. A discussion of tests of these hypotheses is indicated in TESTS OF INDEPENDENCE later in the text.

When n, the sample size, is very small, say less than 6, it is sometimes possible to compute the value of the power function by the analytic evaluation of integrals or the numerical evaluation of integrals in an electronic computer. For intermediate sized samples Monte Carlo experiments are useful. That is, one draws a sample from the population of interest and evaluates the test statistic. This process is done many times. The resulting sample of values of the test statistic is used to approximate the distribution of the test statistic. Usually the experiment is performed in an electronic computer. For large samples, it is known that the test statistic has approximately a normal distribution with mean and variance determined by the hypothesis and the sample size. A table of the normal distribution can then be used to evaluate the approximate probability of the test statistic being in a specified range.
Large values of T are used when the alternative hypothesis asserts that the median is larger than M_0. Small values of T would be used if the alternative asserted the median was less than M_0. If a two sided alternative is under consideration, the null hypothesis would be rejected for either excessively large or small values of T.

It is being assumed that the values of the y_{ij}'s are not affected by the treatments being used. Thus y_{ij} represents the untreated value of the individual plus measurement error. If both treatments have the same effect the model will still be applicable.

In this discussion "N" indicates the element in a sequence of experimental situations. As N increases the situation approaches the null hypothesis. In the next paragraph of the text, two sequences of tests are described. There is an element in each test sequence for each experimental condition. In particular the experimental situation (with other conditions) determines the sample sizes for each test. The other conditions being that the two tests have (approximately) the same significance level regardless of the sample sizes and that for each experimental situation the tests have (approximately) the same power. Alternative useful analyses require the significance level to decrease as more data are obtained or, the matching of the slopes of the power functions at the null hypothesis, etc.

The γ's measure the costs of obtaining a single observation to be used in the computation of the relevant test statistics.

The statement is misleading in that the research required to give a detailed description of "diffuse" and "approximately" has not been performed.

Another interesting scheme is to replace w_1 with the expected value of the smallest observation in a sample of size $m+n$ from a normal distribution with mean 0 and variance 1, replace w_2 with the expected value of the second smallest observation from the same population, etc. The sum of the expected values corresponding to the x-sample has properties similar to the t-statistic when the two samples in fact come from normal distributions differing in location only.

Such behavior is not in agreement with the strict logic of the Neyman-Pearson theory of tests of hypotheses. That theory, however, is not action oriented. The actual behavior is consistent with a Bayesian framework for this problem.