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Abstract A class of scalar semilinear parabolic equations possessing absorbing sets,
a Lyapunov functional and a global attractor is considered. The gradient structure of the
problem implies that, provided all steady states are isolated, solutions approach a steady
state as t — 0o. The dynamical properties of various finite difference and finite element
schemes for the equations are analysed. The existence of absorbing sets, bounded indepen-
dently of the mesh size, is proved for the numerical methods. Discrete Lyapunov functions
are constructed to show that, under appropriate conditions on the mesh parameters, nu-
merical orbits approach steady state solutions as discrete time increases. However, it is
shown that insufficient spatial resolution can introduce deceptively smooth spurious steady
solutions and cause the stability properties of the true steady solutions to be incorrectly
represented. Furthermore, it is also shown that the explicit Euler scheme introduces spu-
rious solutions with period 2 in the time-step. As a result, the absorbing set is destroyed
and there is initial data leading to blow-up of the scheme, however small the mesh param-
eters are taken. To obtain stabilization to a steady state for this scheme, it is necessary to
restrict the time step in terms of the initial data and the space step. Implicit schemes are
constructed for which absorbing sets and Lyapunov functions exist under restrictions on
the time-step which are independent of initial data and of the space step; both one-step
and multi-step (BDF) methods are studied.
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1. Introduction

In this paper we consider the following semilinear parabolic initial value problem:

u =yAu— f(u), 2€Q, t>0, (1.1)
u=0,2 €09, t>0, (1.2)
u(z,0) = uo(z), 2z € Q. (1.3)

Here Q is a bounded domain in R? (d < 3) with a Lipschitz boundary 8Q and y > 0.
We shall assume that the initial data ug € L7, 1 = 1 or 2 where K7 = {n € L%(Q)} and
Ky ={ne L*9Q):||n]lcc < M}. The assumptions on the nonlinear function f(u) are:

(F1) f(e) € C*(R,R) and f(0) = 0.
(F2) 3 @ > 0 such that f—(rﬂ > 0 for any r : |r| > @.
(F3) F"(u) > —CF where
Flu) = / F(u)du. (1.4)

Assumptions (F1), (F2) and (F3) are made throughout the paper unless otherwise
stated. Under these assumtions the following global existence result may be proved. For
initial data in K this result requires an additional growth assumption such as

(G1) If(r)] £ colr[®~! +c1.

(see [Temam, 1988]) whereas for initial datain L’ the result utilises the theory of invariant
regions (see [Smoller, 1983]).

(R1) For each ug € K; there exists a unique solution of (1.1)-(1.3) which satisfies, VT > 0,
u € L¥(0,T; H(®) 0 C[0,T; L))

and the mapping ug — wu(t) is continuous for each ¢t > 0. Hence the family of solution
operators {S5(t)};>o defined by S(t)uo = u(t) forms a continuous semigroup on L?(2). In
addition, if ug € H}(Q) N K; then VT > 0

u € C([0,T); H)(Q)) n L*(0,T; H*(Q)).

It is possible to show the following results about the semigroup S(t) (see [Henry, 1981],
[Hale, 1988), [Matano, 1979], [Zelenyak, 1968], [Temam, 1988]):

(R2) There exist balls By = {v € L) : |[v| < p1} and By = {v € H}(Q) : ||v|| <
p2} which are absorbing sets for the semi-group {S(t)}:>0; that is there exist t; and ¢,
depending on {|uo|,p1} and {|uo|, p2 } respectively such that S(t)ug € B; Vt > t; (i = 1,2).
Here | o | and || o || denote the standard L? and Hj norms respectively.

(R3) There exists a global attractor A C L?() for the semi-group {S(t)}s>0; that is A
attracts the bounded sets of L?(Q), and A is bounded in H}(Q) U L®(£) and compact
and connected in L%(Q).
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(R4) The functional
1(v):= [ [FI90(z) + Flo(z)))ds, (15)

where F(u) is defined by (1.4), is a Lyapunov functional for {S(t)}:>0, that is
I(i) 3¢; such that I(v) > ¢ V v € H}(Q), and for every c there exists p = p(c) such
that the diameter of {v: I(v) < ¢} is bounded by p.
1ii) 1(S(t)v) < I(S()w) ¥t > ' > 0, ¥ v € HY(Q)
I(iii) If I(S(t)v) = I(v) V¢t > 0 then v € £ where £ is the set of equilibrium points v
satisfying
—vAv+ f(v) =0,2€Q, v=20,2 € Q. (1.6)

Furthermore, for any up € L%(Q) the w-limit set
w(ug) = {v € L*(Q): 3t, — o0 : Jim S(tn)uo = v} (1.7)

is contained in the set of equilibrium solutions (1.6), denoted E, and, if the equilibria are
isolated, then
A= W)
ves

where W4(v) denotes the unstable manifold of v. O

It is our purpose in this paper to consider discrete dynamical systems generated by
temporal and spatial discretisation of (1.1). We study the existence of absorbing sets,
Lyapunov functions and attractors for the approximations and, in addition, describe vari-
ous spurious features introduced by both spatial and temporal discretisation. We suppose
that semi-discretisation in space yields a system of ordinary differential equations in time
of the form:

M% + AU + ME(U)=0, t >0, (1.8)

U(0) = U,. (1.9)

Here U = (Uy,...,U;)T and {f(U)}; = f(U;). We use the notation that, for any ¢:
R—-R
{¢(U)}i = ¢(Uy).

M is a diagonal matrix with positive entries and A is a symmetric positive definite matrix.

If @ = (0,1)? then such a system arises from finite difference approximations on a
uniform grid {(ih, jh,kh) : i,5,k € [0,N],h = 1/N} with the elements of M being h¢
and h—larA being the matrix arising from a central difference approximation to —A. The
system also arises from a finite element approximation based on piecewise linear functions
on a triangulation of 2. Denoting by {d).}fi"l the set of piecewise linear basis functions
associated with the internal vertices of the elements, then

My =< i, 1 >" A =< Vi, Vap; Sh,

where < .,. >" denotes a discrete L? inner product defined by lumped mass integration.

Section 2 contains various general results on dissiptive dynamical systems which will be
required throughout the paper. In section 3 we analyse the semi-discrete problem (1.8)-
(1.9). Semi-discrete analogues of (R1)-(R4) are proved. However, it is also shown that
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insufficient spatial resolution can lead to the existence of deceptively smooth spurious
steady solutions and also to incorrect stability properties for the true steady states —
there exist many more discrete stable steady states than true stable steady states. In
section 4 we study the spurious dynamics of the explicit Euler scheme. It is shown that
the method can produce period 2 solutions in n, the time-step, for arbitrarily small At.
Furthermore it is shown that, however small At and Az are taken, the scheme blows-up
with appropriate choice of initial data. Thus a global attractor cannot exist for the Euler
method considered as a dynamical system on the whole of R7. We derive a restriction
on the time step in terms of both the spatial grid and the magnitude of the initial data,
under which discrete analogues of (R1)-(R4) hold. In section 5, various implicit schemes
are considered. Discrete analogues of (R1)-(R4) are proved under far less restrictive
conditions on the time step than for the explicit Euler scheme; in particular schemes
are constructed for which the time-step restriction is independent of initial data and of h.
Section 6 is concerned with multistep backward differentiation formulae and similar results
to those in section 5 are proved. Finally, in section 7, numerical results are presented to
illustrate the theory.

Similar questions to those addressed in this paper have been discussed for spectral
approximations of (1.1) in [Shen, 1989] and for finite difference approximations to the
Kuramoto-Sivashinsky equation in [Foias et al, 1991]. The question of spurious steady
states for such problems has been simultaneously studied in [Bence et al, 1991]. The
treatment of discrete Lyapunov functionals, which are used extensively in this paper, is
motivated by studies of the Cahn-Hilliard equation [Elliott, 1989].

2. Dissipative Dynamical Systems

In this section we review the theory of dissipative dynamical systems sufficient for our
needs. It is convenient to consider discrete and continuous dynamical systems simultane-
ously. Let H be a complete metric space and ¢ be a real parameter taking values in R
or Z. Let {S(t)}:>0 be a family of operators from H into itself satisfying the semigroup
properties

S(t+s)=S5(t)S(s),Vs,t >0,

S(0) =1

and S(t) : Ry XxH — H is continuous. In the case of a discrete dynamical system then
t € Z and S(t) = S* where S : H — H is a continuous operator so that the semigroup
properties are automatic.

For each v € H we denote the positive orbit

U S(t)v

>0
by vt (v) and by w(v) the w—limit set defined by
w(v) = ﬂ U S(t)v

s>0t>s
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which is equivalent to definition (1.7) with L?(Q) replaced by the general metric space H.
For a set B € H we define the w-limit set w(B) by

w(B)=[US@®B

820t>s
which is equivalent to

{we H:3t;j > o0 andv; € B:w= lim S(t;)v;}.
J—o0

A set B is said to be invariant if S(t)B = B,Vt > 0. A set A is said to attract a set B
under S if, for any € > 0 there exists to = to(€, B, A) such that, for t > to S(¢)B C N¢(A),
an e—neighbourhood of A. A set B C U, where U is an open set, is said to be absorbing in
U under S if for any bounded set By C U there exists tg = to(Bg) such that S(t)By C B
for t > to. A set A is said to be a global attractor for an open set U C H under S if

a) A is a compact invariant set.
b) Every compact invariant set of S belongs to A
¢) A attracts every bounded set B C U under S.

We say that v is an equilibrium point of S if S(t)v = v,V t > 0. The set of all equilibria
is denoted by £. A continuous functional I : H — R is said to be a Lyapunov functional
on U under S if

I(i) 3¢ such that I(v) > ¢ V v € U, and for every c¢ there exists p = p(c) such that the
diameter of {v : I(v) < ¢} is bounded by p.

I(i)) I(S(t)v) < I(S( o)Vt >t' >0,VvelU

I(iii) If I(S(t)v) = I(v) Vt > 0 then v € £.

S is said to be point disstpative on an open set U C H if there exists a bounded set
B C U which attracts each point of U. S is said to be uniformly compact on an open set
U C H if for each bounded set B C U there exists tg = to(B) such that

U s@B

t>to
is relatively compact.

Lemma 2.1 Let H be finite dimensional and U C H be open. Then each of the properties

(i) There ezists a bounded set B which is absorbing in U under S;
(ii) There ezists a Lyapunov functional, I, on U under S

implies that S is uniformly compact on U.

Proof Since H is finite dimensional it is sufficient to show that there exists to = to(B)
such that, for each bounded set Bo C U, U;»;, S(t)Bo is bounded. If (i) holds then this is
immediate since |J;5,, S(t)Bo C B is a bounded set.

If (ii) holds, by I(iii), we have that for each v € By, I(S(t)v) < I(v) < M(Bo)Vt > 0
and by I(7) it holds that S(t)Bg is bounded V¢ > 0. O

Lemma 2.2 [Temam, 1989, p28] Let B C H be non-empty and |J,,, S(t)B be relatively
compact for some tg. Then w(B) is non-empty, compact and invariant. O
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Proposition 2.3 [Temam, 1988, p23] Let there ezist an open set U C H and a bounded
set B C U such that B is absorbing in U under S. Suppose that S is uniformly compact
on U. Then A = w(B) is a global attractor for U under S. Furthermore, if H is a Banach
space and U is convez and connected, then A is connected. O

Proposition 2.4 Suppose that vt (ug) is relatively compact for each ug € U and that
there ezists a Lyapunov functional I on U under S. Then w(ug) C & for each ug € U.
Furthermore, if £ is bounded then S is point dissipative on U.

Proof By I(i) and I(iii), I(S(t)uo) is a bounded decreasing continuous functional for
t € (0,00) (or sequence for t € Z) and so has a unique limit

e= tljm I(S(t)uo).

Since y*(up) is relatively compact there exists a cluster point v € w(ug) = limp_ o0 S(r)uo
and, because I is continuous, I(v) = limg—e I(S(tx)up) = €. Thus I(v) = e V v € w(up).
The invariance of w(ugp) (Lemma 2.2) implies that for v € w(ug) S(t)v € w(up) V¢t > 0.
Therefore I(S(t)v) = e = I(v) for all ¢t > 0 and, by I(iii) it follows that v € £.

We have for each ug € U that

tlim I(S(t)up) = e
which implies that for ¢ > to = to(uo), I(S(t)uo) < e + 1. Therefore by I(i) there exists a
bounded set B such that S(t)ug € B V't > to(ug). Thus S is point dissipative. O
Proposition 2.5 Suppose that

(i) S has a Lyapunov functional I on U.
(1) S is uniformly compact on U.
(iir) € is bounded.

Then there ezxists a global attractor A for U under S. Furthermore, if H is a Banach
space and U is convez and connected, then A is connected.

Proof It follows from Proposition 2.4 that S is point dissipative on U. Furthermore, by
I(ii) and I(iii) the orbits of bounded sets are bounded. The existence of a connected global
attractor is then a consequence of Hale [1988; p39 Theorem 3.4.6]. O.

3. The Semi-Discrete Approximation: Spurious Steady Solutions

In this section we study the ordinary differential equations (1.8)- (1.9). We start by
introducing some notation and making explicit some assumptions about the structure of
the spatial discretization. We introduce a discrete L? inner product

<U,V>=UTMV



Discrete parabolic equations 7

and a discrete Dirichlet inner product
< U,V >,4=0T4V,

together with the associated norms
L
Ul =< U,U>?, |U|=<U,U>%.

It is convenient to let L% be the normed vector space {R7,| e |}. We assume that the
eigenvalue problem
A = A\ My,

has eigenvalues \; satisfying
C% < A < Coh™2,

Under this assumption it is possible to show (see Appendix 1) that the following Poincare
and inverse inequalities hold for all U € R’, where Cp and Cp are independent of A,

Ul < Gllull, (3.1)
JulP < 2o, (32)
Ul < GylM~1 4T, (3.3)
and
274U < 22U, (3.4)
We set

L=M14 E=(1,1,...,1)7
and we assume that c
1 .,
0< Lii S ﬁ’ Lij S Oa] ?é 2, (35)

where C; is independent of h. In addition, we assume that

{AE}; >0, fori=1,...,J. (3.6)
The assumptions (3.5) and (3.6) imply that

A < U,0(U) >42 [l4(U)]1%, (3.7)

[Nochetto, 1991] for monotone ¢ with Lipschitz constant A, satisfying ¢(0) = 0.

The assumptions that we make about the matrices M and A are reasonable and will
be satisfied by standard second order finite difference approximations and piecewise linear
finite element discretisations on “acute triangulations” of 2.

3.1 Equilibrium Problem and Steady Solutions
We say that U* € L%(Q) is an equilibrium of (1.8) provided

yAU" + Mf(U") = 0, (3.8)
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and we let £" denote the set of all solutions to (3.8). Clearly 0 € £" so that £® is nonempty.
Furthermore, if U* € £* then U™ is a critical point of the functional

I"V)i= 1 <V,V>,+ <F(V),E>. (3.9)
By (F2) there exists, for each € > 0 a C, > 0 such that
F(ry>—-er? = C, Vr (3.10)
(see Hale[1988, p76]) and hence it follows that
V) > % <V, V>4 V2= C.C(Q) > %||V||2 —Cc,VVel (3.11)

where C(Q) is an h—independent upper bound for |E|2. Therefore, since (F1) implies that
I"(e) is continuous, classical arguments show that there exists at least one U* € £" such
that

Uy = inf I"(V).
(U”) v”eLg (V)

Lemma 3.1 The set £" is uniformly bounded, independent of h, in the discrete H} and
in the mazimum norm.

Proof Taking the inner product of (3.8) and U* gives
Y| U*|I’ 4+ < U, f(U*) >=0
and, since by (F1),(F2)
$)r > i f(r)r = -C, (3.12)

it follows that £" is bounded in the discrete H} norm, viz

IU7)l < \J(Cse(R)/7), YU* € €,

Furthermore, taking the inner product of (3.8) with (U* — zE)4, where the + denotes
positive part, and using (3.7), it follows that

(U —2E)4[| =0

since
F(r)(r = @)y 2 0Vr.

Similarly
(0" + 4E)_| = 0.

and hence we have that £" is uniformly bounded in the maximum norm
U < 7,YU* € EM. D

Our next result concerns the number of steady solutions (equilibria) of (1.8)—-(1.9). We
make an additional assumption on f(u), namely (F4).
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(F4) f(=1) = f(0) = f(1) = 0 and f'(-1), f’(1) > 0 and f'(0) = —1.

The canonical example of a function with such properties is f(u) = u3 — u. With this
choice of f equation (1.1) is sometimes known as the Ginzburg-Landau or Allen-Cahn
equation. Similar results can be proved if the number of zeros of f is different, with the
obvious modification. In the case f(u) = u? — u [Iserles, 1990] has numerical examples
which illustrate an analogous result. Simultaneously, a result similar to Theorem 3.2
has been proved by [Bence et al, 1991]. Their proof of existence is identical, but their
proof of stability is different, relying on the structure of the discrete Laplacian, leading
to explicit estimates for (/). A similar method was also used by [Stephens and Shubin,
1981] to study the existence of spurious solutions of the viscous Burgers’ equation when
the dissipation is small.

In the following, a steady state U* is said to be asymptotically stableif it is stable in the
sense of Lyapunov and, in addition, U(t) — U* as t — oo for all U(0) in a neighbourhood
of U~.

Theorem 3.2 Under conditions (F1) and (F4) 3 ~o(h) > 0 such that, for v € [0,70(h))
(1.8) has at least 37 steady solutions and 2’ of these are asymptotically stable.

Proof Let W be one of the 37 solutions of (3.8) with ¥ = 0 which are generated by
choosing

W;=+41,-1or 0.

To show that each W generates an equilibrium solution for v sufficiently small, we employ
the implicit function theorem. Set

G(v,U):= vAU + M{(U).

Since f'(W;) # 0 and since M has positive elements we deduce that the Jacobian Dy G
evaluated at (0, W) is a diagonal matrix with non-zero diagonal entries and so is non-
singular. Hence, by the implicit function theorem, we generate a family of solutions U*(7)
parameterised by v for v € [0,70) with U*(0) = W.

The stability of these steady solutions is governed by the eigenvalues of DyG(7y, U).
Now consider the 27 steady solutions of (1.8) generated by the choice U7(0) = £1.1t follows
from (F4) that DyG(0, W) is a diagonal matrix with strictly positive entries defining its
eigenvalues. By the implicit function theorem U(y) is C!, and so the eigenvalues of
DyG(y,U(y)) depend continuously on v and thus are positive for v sufficiently small.
This demonstrates that 27 solutions are stable.D

Many of these steady states constructed for v « 1 are spurious and the stability
properties of approximations of genuiune steady solutions are often incorrect; for example
the Ginzburg-Landau equation has only two stable steady states (for 4 small) whereas the
numerical approximation has 27 for 4 sufficiently small. This issue is discussed in detail
in section 7, where numerical results are presented.

However, as h — 0 for fixed 7 the structure of the discrete steady solution set converges
to that of the continuous steady solution set; we refer to [Crouzeix and Rappaz ,1990] for
an account of the numerical solution of bifurcation problems. In Appendix 3 we show
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that when (1.1)-(1.3) has N isolated solutions then the same is also true of (3.8) for h
sufficiently small. See also [Khalsa, 1986].

3.2 Existence of Absorbing Sets, Attractors and Stabilization.

The appropriate analogues of (R1)—(R4), which we establish in Theorem 3.4 are stated
below; note that B is an absorbing set in the discrete H} norm even though the initial
data is only bounded uniformly in h in {L%,]e |}:-

(R1)* For each Up € L% there exists a unique solution of (1.8)-(1.9) U € C%([0,T]; L})
for all T > 0. The mapping Uy — U(t) is continuous in L% for each ¢ > 0. Hence the
family of solution operators {S"(t)}:>0, defined by S*(t)Uo = U(t), forms a continuous
semigroup on LA. O

(R2)" There exist constants {;}?_, independent of  and J such that the balls
B ={VeL;:|VI<p}
By ={VeL3:|VII< )

are absorbing sets for the semigroup {S"(t)}:>0; that is, for each Uy € L% there exists
{t;}2_, (depending on {Uyg, p;} and {Ug, p2} respectively) such that

SMt)Upe B, Vt>t;,(1=1,2). O

(R3)" There exists a global attractor A" C L} for the semigroup {S*(t)};>0. Furthermore
AP is connected and there exists a constant g4 independent of h such that

max{|V|,[V|,|Vlx} < ;2 VV € A*. O

(R4)" The functional defined by (3.9) is a Lyapunov functional for {S*(#)};50. In addition,
for any Ug € L’z‘, the w—limit set is contained in £*. O

We now prove these results.

Lemma 3.3 Let m > u. If U(t) solves (1.8)—(1.9) then, fort > to > 0

|(U(t) — mE)4| < |(U(to) — mE) 4| exp(—(t — to)v/C2), (3.13)
|(U() + mE)| < |(Ulto) + mE)_| exp(~(t - t0)7/C2), (3.14)
and
|U(t)]oo £ max(u,|Upleo)- (3.15)
Proof Set

Z(t) = U(t) - mE
and define Z(t)y by {Z(t)+}: = Zi(t)+. It follows that

dZ
< —JZ_’Z“L >4+Y< 2,24 >4+ <f(U),Zy >=-m<E,Z; >4.
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Since m > u we have
f(r)(r=m);y >0,Vr.

Combining with the assumptions (3.6),(3.7) on the matrix A yields

1d

=—|Z4|? Z4|* <o. 3.

S SNB P+ 242 < (3.10)
Inequality (3.13) is an immediate consequence of (3.16) and the Gronwall inequality. The
proof of (3.14) is very similar. We obtain the maximum norm bound (3.15) by taking

m = max(%,|Up|e ) and to = 0 in (3.13),(3.14). O
Theorem 3.4 (R1)"-(R4)" hold for (1.8)-(1.9).

Proof
(R1)P:- local existence and uniqueness follows from the standard theory of ordinary
differential equations, by (F1). Existence for any T' > 0 follows from the a priori estimate

(3.15). In order to prove continuity with respect to initial data, it is sufficient to consider
U(t) — V(t) where V() solves (1.8) with initial data V. Clearly

1d
2dt
and the inequality

U=V +9||U=V|?+ < f(U)-f(V), U=V >=0

[U(t) — V(t)| < C(T,Ug, Vo)|Up — V|

follows from the a priori estimate (3.15) in Lemma 3.2 and Gronwalls inequality.
(R2)P:- taking the inner product of (3.8) with U(t) implies that

1d
;;ﬁ|U(t)|2 +9/[U)I*+ < U,f(U) >=0
and, by (3.12),
d
= U +29|[U]* < 2¢,C(Q). (3.17)
Using Poincare’s inequality (3.1),
d o 27, .9
— “Liup<e .

From this we obtain, using Gronwall’s inequality,
[U)]* < [Uol* exp(-27t/C) + CrC(Q)C[L ~ exp(-27t/C})] /-

Therefore,
limsup |U(t)| < 6,62 = C,«C(Q)Cg/’y
t—o0
and we can take gy to be any number larger than 6; to define the absorbing set BY.
In order to show that there is an absorbing set uniformly bounded in the discrete H}
norm we pre-multiply equation (1.8) by A ~! and take the < e,® >4 inner product with

U to obtain
1d 2 1 2
5O +[M7 AU+ < £(U), U >4=0,
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so that 14
57U+ < f(U)+ CrUU >4 = < CrU,U >4=0.

Using the monotonicity of f(U) 4+ CrU implied by (F3) and (3.7) we obtain

1d

EE”UW < Cr|[U]%.
Integrating (3.17) we obtain

t4r cCiC(V)r 1
Ul(s 2ds<f—+—Ut 2
| IuPas < == 4 o)

Taking t sufficiently large and using the absorbing set in L% this gives
t4r CiC(V)r  p?
[ o pas < SERE L 20

t v 2y

Thus, applying the uniform Gronwall lemma [Temam 1989, p89] we obtain

CiC() | m
2 f
Ut +r)]|” < [T + W]GXP(ZCFT)-

Since t may be arbitrarily large, this yields the absorbing set in the || e || norm.

(R3)":- We set ourselves in the framework of section 2. Since L% is finite dimensional,
the existence of a global attractor A" = wh(B") is an immediate consequence of Proposi-
tion 2.3. The existence of p4 is an immediate consequence of the bounds obtained in the
proof of (R2)" and from the following maximum norm bound: since

(U(to) - mE)4| < [U(to)| + mC(Q),

it follows from (3.13),(3.14) in Lemma 3.3 with m = @ and the previous estimate on the
absorbing set in the L norm that

limsup |U(t)]eo < @.
t—oo

R4)P:- Taking the inner product of (1.8) with dU/dt yields
g

|dU

dt

Facts I(i)-I(iii) concerning I"(e) follow immediately from (3.11) and (3.18). Thus Propo-
sition 2.3 yields w(Uyp) C eh.

d h

I* + - 1"(U) =0. (3.18)

4. The Explicit Euler Approximation

In this section we consider the Euler discretisation of (1.8)—(1.9). Let U,, denote the
approximation to U(nAt). We obtain, for n > 1,

MU, + 74U, + Mf(U,) = 0, (4.1)
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where
IV, = (V, = V,_1)/At.

The convergence of solutions of (4.1) to solutions of (1.1) on a finite time interval as
h, At — 0 is well-understood; see [Richtmyer and Morton, 1967]. Such results require that
At be restricted by the square of the space step h. Here we are concerned with the long
time dynamics of (4.1), that is n — oo, with fixed At and h. We show that the temporal
discretisation (4.1) introduces spurious solutions with period 2 in the time-step and that,
furthermore, under certain assumptions on f(u), these periodic solutions can be found for
At arbitrarily small. We then discuss the effect of these periodic solutions on the dynamics
of the problem. If At is restricted in terms of the initial data then the effect of the periodic
solutions is avoided, a gradient structure ensues and the existence of absorbing sets and
attractors is proved. However, if At is not restricted sufficiently in terms of the initial
data the scheme may be shown to blow-up, indicating that the unstable manifolds of the
spurious periodic solutions are connected with infinity.

4.1 Spurious Dynamics

Period 2 solutions of (4.1) are pairs {U,V} with U # V which satisfy the equations
M(V - U) + AtyAU + AtM£(U) = 0, (4.2)

M(U - V) 4+ AtyAV + AtM£(V) = 0. (4.3)
Existence of period 2 solutions can be established by a local bifurcation argument, treating
At as a bifurcation parameter. See [Griffiths and Mitchell, 1988] and [Stuart, 1989].
Fixed points (i.e. equilibria of (4.1)) are solutions of (4.2)-(4.3) with the symmetry U =
V. Genuine period 2 solutions can by constructed as local bifurcations which break this
symmetry as At varies.

Suppose that U* is an equilibrium solution and let df(e) denote the Jacobian of f so
that

d(U*) = diag(f'(U7)).
Applying Theorem 4.1 in [Stuart, 1989] we obtain the following result.
Lemma 4.1 Let U* be an equilibrium point of (4.1) (i.e. a solution of (3.8)) such that all
the eigenvalues of vL + df(U*) are non-zero. Assume that (F1) holds and d = 1. Then

the eigenvectors {¢y}]_, and distinct eigenvalues {ni}]_, of vL + df(U*) generate period
2 solutions of (4.1) with the form

U(p) == U" + pdy + O(|ul?),
V(p) :=U" - ugy + O(|pl?),
Atp(p) == 2/ + O(|p)),

for p sufficiently small which are C! in pu. O

Note that most of the 7 are positive since the largest eigenvalues of L = M~1'A4
scale like h~2. Here p parameterises the branches of period 2 solutions locally in the
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neighbourhood of the bifurcation points. Having constructed these branches of spurious
solutions locally in the neighbourhood of the bifurcation points Aty, it is natural to ask
what happens to these branches of solutions far from the bifurcation points. In particular,
it is of interest to know whether such solutions exist for At arbitrarily small. For simplicity
we consider the case of f(e) being odd. It is then possible to seek period 2 solutions with
the symmetry U = —V under which (4.2),(4.3) become

2U — Atf(U) - AtyLU = 0. (4.4)
Setting v = 0, equation (4.4) admits solutions W with the form
{W}i=£R(At), (4.5)
where R(At) solves
r = Atf(r)/2. (4.6)
Suppose that f satisfies (F'1), (F2) and that, in addition,
(F5) |f(r)/r]| = 0 as T — o0,
then (4.6) has solutions + R(At) for arbitrarily small At which satisfy

im |R(At)| = oo.
Jim, I8 = o

These two solutions generate 27 solutions of (4.4), and hence 2’ period 2 solutions of
(4.1) in the case of zero diffusion (y = 0.) These solutions exist for At arbitrarily small
but, in accordance with the results of [Humprhies, 1991}, they tend to infinity as At — 0.
We now show that these solutions persist for ¥ > 0 sufficiently small under appropriate
conditions on f(u). These conditions allow, for example, arbitrary superlinear polynomial
power growth. In the following theorem the norm |e| on matrices denotes that subordinate
to the related norm on vectors.

Theorem 4.2 Let f satisfy (F1), (F2), (F5) and be odd. Assume that f satisfies the
following two growth conditions: At satisfying 0 < At < 1:

(i) |2 — Atf'(R(At))] > dy > 0,V 0 < At < At, where dy is independent of At and R(At)
solves equation (4.6);

(ii) define
D = 21d — Atdf(W)

where Id is the identity matriz and note that D! is defined for 0 < At < At by (i). Let
Bi= (V:V - W|<p)

where
p=7|L||ID7H|W].
Then we assume AtK < dy VAt < At where K is the Lipschitz constant for df on B.

Assume also that v is chosen sufficiently small so that

dy| D7V p + At(1 + 4|L||ID7) < 1
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and
2d2|D7|p + Aty|L||D7Y| < 1.

Then, for each of the 27 solutions W defined by (4.5),(4.6), there ezists a unique solution
U,V to equations (4.2), (4.3) satisfying V = —U and

U - W] <p.

Proof Solutions of (4.4) are fixed points of the iteration
Ukt =Up — D_I[QUk - Atf(Uk) — At’)’LUk].

By (i), this map is well-defined and |D~'| is bounded independently of At.
We first show that the map takes B into itself. Let U € B. Clearly

W =W — D7I[2W — Atf(W)].
Subtracting and exploiting the diagonal nature of f we obtain
ert1 = —AtD(dF(W) — df(&))er — 7LUy),
where e = Uy — W and & € B. Using the Lipschitz constant for df we find that
lexs1| < At/ D7 K |ex|? + Aty|L|D7H|W]| + Aty|L|| D7 ||ek|
< do| D7 |p? + Atp(1 +4|L|| D7)

< [da| D7 p + At(1 + 4|L||D7Y)p

and hence, by assumption on v the mapping takes B into itself.
Now consider a second sequence of iterates Vy satisfying the same iteration scheme
and assume that Ug and V € B. Defining dy, = U — V. we obtain

dyy1 = —AtDY(AE(W) — df(ni))dy — yLdy),
where 7, € B. Thus
|di1] < At|DHE|di|? + Aty|L|| D7 |dk|
< [2d2]D7Yp + Aty|L|| DY) |d4 -

Hence, by assumption on v the mapping is a contraction on B. By the contraction mapping
theorem, the proof is complete. O

We now counsider the effect of these spurious period 2 solutions on the dynamics of the
Euler scheme. It is clear that, if the scheme is to inherit the gradient structure of the
underlying PDE, then some restriction will be required on At in terms of the magnitude
of the initial data — this is because, for any At sufficiently small, it is possible to choose
initial data in the domain of attraction of a period 2 solution which precludes stabilisation
to the set of equilibria and hence a gradient structure cannot hold. Furthermore, we




16 C.M. Elliott and A.M. Stuart

conjecture that the unstable manifolds of the period 2 solutions are connected to infinity.
To substantiate this conjecture, we prove that, for all At sufficiently small there is initial
data which blows up under the Euler iteration (4.1). This should be contrasted with the
underlying partial differential equation and its semi-discretisation, for which arbitrarily
large initial data is mapped into an absorbing set under the evolution semigroup.

The following relationships are needed in the analysis:

[U| < C(Q)|Ule, YU € R’ (4.7)
and
|U|? > CohYU%, YU e RY. (4.8)

Here C; is independent of &, and d is the spatial dimension of the problem. In the following
set 7 = At/h%.

Theorem 4.3 Consider (4.1) under conditions (F1), (F2) and (F5) with initial data Uy
satisfying the property that |f(u)| > Cs|u| for all u : |u| > |Ug|eo, where C3,h and v are
chosen so that

At?y?

Cp

AtC3[AtCoh4Cs — 2C(2)? = 2rCoyC(2)?] > C(Q)}(1 4+ k) — (1 — 2ryCo + YC2he,

for some k > 0 and
AtC3[AtChACs — 2C(2)? - 2rCovC(2)?] > 0.

Then
[Unl2, > (1+ k)" |Uol2,.

Proof The proof is by induction. Re-arranging (4.1) gives
MU, = MU, - AtyAU, — AtM{(U,,).
Taking the inner product of each side of this equation with itself yields
|Upg1? = |UR 2 = 2A87]|UL)|% - 24t < U, £(U,) > +

2At%y < £(U,), U, >4 +A822MTAUL 1% + A2|(U,)2
Using (3.1),(3.2),(3.3), (4.7) and (4.8) we obtain

At? 2
|Un41l? > (1-27yCo+ C] U P =244 U, |[f(U,) |- 2482y || UL || |£(Un) ||+ A2 £(U,)[?
p
At?y? 2 2 2
> (1= 2r7Co+ =) |Unl? = 22 Uy [f(Un)] — 28trCon U (U] + AFI(U,,)|
P

At2’)’2

> (1-2rmyCo+ Ci
P

)|Un* = 24tC(2)?[Unoo| £(Un)loo
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—2AtrCovC ()% Uploof(U)nloo + At2C2RAF(UL)|A

At?y?

= NU 2+ AtE(UL) oo [AEC41£(U,) oo
P

=(1-2ryCo +

—2C(2)?|U, ] — 27CovC(2)*|Upoo)-
Assume for the purposes of induction that |U,,| satisfies
Unleo > (14 £Y/*Ugloo- (4.9)

Now
f(Un)leo > |f(v)]

where |v]| = |Uy|o and hence
[f(Un)loso > C3|Unloo-
By assumption on Cj3 it follows that
AtCyh%C3 — 2C(R)? — 2rCoyC(N)? > 0.

Thus we have

At2y?

Gy

|Upga|? > (1= 2r7Co + —=)|Un|? + AtC3[AtChYCs — 2C(02)? - 2rCoyC(02)?]|UL|%.

2

> Cohd(1 - 2r4Co + 2LL

oI )|Un|2 + AtC3[AtCh4C; — 2C(Q)? — 2rCorC(Q)%]|UL|%.

By assumption this yields
[Until® > C(Q)P(1+ k)| U, 2.

Hence
[Ups1l% > (14 k)| UL,

Thus, since k > 0, (4.9) holds for n = n 4+ 1 and the induction is complete. O

The magnitude of the data required to prove blow-up in Theorem 4.3 is very large: a
rough estimate shows that C3 = O(At~1h~9/2). The analysis is very crude since it is based
in the maximum norm and no attempt is made to determine the most unstable spatial
structure required for blow-up. In the case of one-dimensional finite difference schemes,
the analysis can be tightened to yield a critical C3 = O(At~!). In this case a scheme of
the form (4.1) may be written

UMt = rU + (1= 20U 4+ 1U%, — Atf(UF), for j=1,...,J, (4.10)
together with the boundary conditions

Uy = Uy, = 0. (4.11)
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Consider initial data U} satisfying
UL, <0V i=1,...,J-1 (4.12)

This choice of initial data is very unstable and is motivated by the most unstable mode
according to linear theory [Richtmyer and Morton, 1967]. Note that the condition we
derive for blow-up may be re-formulated as

(24 k)h?

At>—2+hzc.

where C is defined below. This should be contrasted with the bound (4.15) on At in
Lemma 4.5 which ensures boundedness of the numerical solution as n — oo.

Theorem 4.4 Consider (4.10)—(4.11) under conditions (F1), (F2) and (F5) together with
initial data satisfying (4.12). In addition, assume that the initial data satisfies the property
that f(u)/u > C for all w: |u| > min;|{Ug};| and where C is chosen so that

2-2r+k
C> —Fm——,
- At

for some k > 0. Then
[Unloo 2 (14 k)" [Uoloo-
Proof The proof proceeds by induction. We assume that
Uanl'-‘f-l <O V l=1,...,J—1. (413)
and that
fIUNU; > C for j=1,...J. (4.14)

Both (4.13) and (4.14) hold by assumption for n = 0. Consider any U > 0. From (4.10)
and (4.13) we deduce that

n+1 . n n
UM < (1-2r)UT — AtF(UD).

Hence, by (4.14),
D)

u;

n+1 n

<[1-2r - AtCIUT.

By assumption on C we obtain
n+1 . n
Uim < =(1+k)UF.

Similarly, for U} < 0, we obtain

n+1
U;

(A

—(1+ k)UP.
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Thus (4.13)-(4.14) are true for n = n + 1. Furthermore we have
U5 2 (1 + R)ITF

and the result follows by induction. O

4.2 Existence of Absorbing Sets, Attractors and Stabilization

We now set (4.1) in the context of dissipative dynamical systems. For fixed h and At
let Sg : L'; — Lg be defined by

Sh(V) = (I = AtyL)V — Atf(V).

The continuity of SR follows directly from (F2); the equilibria of S% are given by the
set &M of solutions to (3.8). In order for SZ to yield a dissipative dynamical system it is
necessary to restrict the initial condition to the set

Kl ={Vell:|V|e<a},
for any a > 4. In the following we set

K = max{|f'(")]}.

Ir|<a

We derive the following discrete analogues of (R1)—(R4) under appropriate restrictions
on the time step which are dependent upon initial data and h and detailed in Theorem
4.10.

(RE1)" For each Ug € K% there exists a unique solution of (4.1) U, € L% for all n > 0.
The mapping Uy — U, is continuous in L% for each n > 0 and hence the family of
solution operators {(Sg)"}nzo, defined by (S%)"Ug = U, forms a continuous semigroup
on Kb DO

(RE2)" There exist constants {p;}?_, independent of h and At such that the balls
By ={Vel;:|V|<n}
By ={VeL;:||V| < »}

are absorbing sets for the semigroup {(S4)"}n>0, that is, for each Uy € K} there exists
{ni}%_, (depending on {Up, p1} and {Uyg, p2} respectively) such that

(S8)y"Uy e B, Vn>n;,(i=1,2). O
(RE3)" There exists a global attractor A" C L} for the semigroup {(S2)"},.>0. Further-
more AP is connected and there exists a constant g4 independent of h and J such that

max{|[V[,||V|,|Vlx} < pa V V € A"

(RE4)* The functional defined by (3.9) is a Lyapunov functional for {(S2)"}i>0. In addi-
tion, for any Ug € Ii';',f, the w—limit set is contained in £".
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We proceed by obtaining some estimates of U, = (S%)"U,. We begin by proving a
time discrete version of the maximum norm bounds of Lemma 2.1. The first bound is a
special case of Theorem 3.3 in [Hoff, 1978].

Lemma 4.5 If the initial data and mesh parameters satisfy

Uy € Ii'g
and
h2
< — .
ALS eI IR (4.15)
then
|Unloo < a, Vn>0.
If, for 6 € (0,2)
h? 2 — §)h?
At < min{ ( ) (4.16)

vCy + Kh?’ (Cov)
and a > m > 4 then
|(Un = mE)4|> < (14 Aty6/CE)7!|(Up — mE)4 |

and
|(Un + mE)_|* < (14 Aty6/C2)"|(Ug + mE)_|?

Proof We write (4.1) componentwise as
J
UMl —a=Ur—a- Aty 2 Lij(U} — a) — Aty(LE)ia — Atf(UT).

=1

Let us assume that |U,|, < a. Re-writing we obtain

J
UM —a=[1- AtyLi; — Atf/(EDIUP —a) - Aty Y Lij(UF —a) — Aty(LE)ia — At f(a).
i

Since [€7| < a it follows from the fact that f(a) > 0, the assumptions (3.5), (3.6) on L
and the restriction (4.15) on the time step that

Urt! —a<o

and it follows that
Ul'<a

by induction. Similarly it may be shown that

Uur > —a.

1
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For a > m > u, it holds that

J
UMt —m = (1 - AtyLy)(UP = m) — Aty Y Li;(UF — m) — Aty(LE);m — Atf(U})
J#i

J
< (1 - AtyLi)(U = m) — Aty Y Lij(UF — m) — Atf(UF)

J#i

J

< (L= AtyLi — Atf/(E1))(U] = m) = Aty Y Lij(Uj = m) — At f(m)
I#i
where |€7| < a. Thus, if U? < m, then by (4.15) and (3.5)
UPH < (1 - AtyLi — MPE)UR —m)y - Aty Y L(UF - )
J#i

= (U —m)y — Aty ) Li(UF — m)y.
i

Alternatively, if U® > m then f(U) > 0 and we again obtain

U € (U7 = )y Ay Y LU = ).

J
Multiplying by (U"*! — m)4 and summing gives
<Zny1=2p,Z2p41 > +AY < ZpyZpyq >4<0

where
Zn = (Un — mE)+

This is the time discrete analogue of (3.16). Re-arranging we obtain, by (3.2),
|Zn+l|2 - |Zn|2 + |Zn+1 - Zn|2 + 2A17“Zn+1“2 < 2At7|lzn+l - Zn””Zn+1”

‘)’At C(]
S5 5m

and, provided that (4.16) holds, we obtain

1Znt1 = Zn|? + 7AU2 = 6)||Zpya|?

|Znsa*(1 + 6748/ CF) < |Zn*.
Similarly we estimate (U,, + mE)_ and obtain the desired results. O

Remark The preceding lemma is also true with the same proof if we set

a = max{|Ug|eo, @}-
Lemma 4.6 If, for § € (0,1)

1
At < min{2(1 — §)yh*/(yCE + REKCp)?, h?[/(vCy + Kh*)} (4.17)
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then
CfC(Q)C2

[Un|? < [Uo (1 + 28t76/C1) ™" + v El1- (14 24t98/C2)™").

Proof Taking the inner product of (4.1) with Up4y yields

1 At
S0Unp]* + —-10U0ns1|* + 9[Unpa[I*+ < £(Uns1), Ungr >

=< f(Unt1) = f(Un), Ung1 > +7 < Upy1 = Uy, Upg1 >4
1
AtCEy
h

Here we have used Lemma 4.5 and (3.2). Using Poincares inequality (3.1) and (3.12) we
find that

< I(AtlaUnH”UnHl + laUn+1|”Un+1”'
1 At
S0 Uns1* + —-10Unsa]* + 9| Unsa||?
1
AtCZy
hO )OUn41][[Una|

and completing the square on the left-hand side of this inequality yields

< Ci0(Q) + (KALC, +

1
S0lUni? + /(2885(1 - 6)0Unal[Unia| + 78] Unia

1
AtCGy
h
Under the time-step restriction (4.17) we have that

< CrC(Q) + (KAC, + )NOUnt1][[Unsa .

N Uns1]? +298[|Unya |* < 2C,C(Q) (4.18)
so that
(14 2At76/C2)|Unpa|? < [Unl? + 2AtC,C(Q)
and application of the standard discrete Gronwall lemma gives the result. O

For any € > 0, let
p1=C;C(Q)Ch/(18) + €.

It follows from Lemma 4.6 that there exists ng depending only on |Up| and |Ug|x such
that

|U,| < p1, Vo > ng

provided that (4.17) holds. Thus the following statement about absorbing sets has been
established.

Proposition 4.7 There ezists a constant p; independent of h and J such that the ball

B ={Vel}:|V|<p)
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is absorbing in UM under S Z provided the time-step restriction (4.17) holds. O

We now prove the existence of an absorbing set in the || ¢|| norm. To do this we employ
a discrete version of the uniform Gronwall lemma, which is stated and proved in Appendix
2.

Proposition 4.8 There ezists a constant p, independent of h such that the ball
By ={VeLy: |Vl <p}
is absorbing in K} under SR provided the time-step restriction (4.17) and

2’)’]12 1- 51
’ 2Ck

At < min{ T
(vCZ& + KC,h)?

} (4.19)

holds for 6, € (0,1). O
Proof Taking the < o, >4 inner product of M ~! times (4.1) with U, gives

< Upny1,0Unp >4+ < M7YAU,, M7 AU > + < £(U,), Upyy >4=0.
Hence

1 At
50Tn]* + Z-l10Unsa]|* +7|M 7 AUnpa[*+ < £(Un41), Unia >4

=vAt < M7'A0U 111, M7 AU 41 > + < f(Uppr) = £(UL), Uy >4
< YAYM AU 1 ||M 1 AU s | + KA|0U i1 ||| Unta |-
Using (3.3),(3.4) and splitting f as the difference of two monotone functions f(u) = f(u)+
Cru — Cru and applying (3.7) we obtain

1 At B
;aﬂUnHH2 + T”aUn+1”2 +|MT AU

1
yCg At
h

Under restriction (4.19) we obtain

< CF“UnH”2 + HaUnH”l‘M_IAUnHl + I(CpAt”aUnH”|M_1AUn+1|~

1
3MUniall* < CrI|U[% (4.20)

From equation (4.18) we have that

N+Ko
276 Z AtHUn+1||2 <2C4C()r + |UI\'0|2
ﬂ=1\’0
where
N+Ko
r= Y At=(N+1)At

n=Kpy
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By taking K, sufficiently large and using Proposition 4.7 we obtain

N+Ky
2986 Y Atl[Unsa?* < 2C,C(Q)r + i

Ko
Application of the discrete uniform Gronwall lemma to (4.20) (Appendix 2) gives

2C;C(Y)r + p¥]
29ré

IUNsKos1]* < exp(2CFr/61)]

for all Ky sufficiently large. This completes the proof. O
Proposition 4.9 Let the mesh parameters satisfy

h? 2(1 — §)h?
vCy 4+ Kh?’ yCo + Kh?

At < min{ 1 (4.21)

for 6 € (0,1) then I"(e) is a Lyapunov functional for SZ on Ix’é‘.
Proof Since 1
f(s)(r = 5) = F(r) = F(s) = 5 £(€)(r - 5)?
it follows that, after taking the inner product of (4.1) with 8U,,4; and using Lemma 4.5,
KAt?
2

Therefore, using (3.2) and the time-step resctriction (4.21) we obtain

v At?

A‘tlaUﬂ+1!2 + Ih(Un+l) < Ih(Un) + 2

10U nsa]® +

laUn+1|2-

6AOU ngr |2 4 IM(Upyy) < IM(U,). (4.22)

Clearly I"(U,,) is non-increasing in n and if I*(Upy;) = I"(U,) then [dU,4;| = 0 by
(4.22) which implies that Upy; = U, and by (4.1) U, = U* € £, Thus I'(e) is a
Lyapunov functional for S&(e). O

It follows from Lemma 2.1, Propositions 2.3,4.7,4.8,4.9 that the following Theorem
holds, noting that the boundedness of the attractor in | e |, follows from Lemma 4.5.

Theorem 4.10 Setting
AP = w (B}

(RE1)"~(RE4)" hold under restrictions (4.15),(4.16),(4.17),(4.19),(4.21). O

5. One Step Implicit Approximations: Existence of Absorbing Sets, At-
tractors and Stabilization

Given U, _; € L’z‘ we consider the following schemes to find U, € L’2' forn >1:

(51) MU, + yAU, + Mf(U,) = o. (5.1)
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(52) MOU, +vAU, + Mf(U,_1) = 0. (5.2)
(53) MU, + 2 A(Up + Up_y) + ME(Uy, Uny) = 0. (5.3)
(54) MAU, +vAU, + M{(U,,U,_;) = 0. (5.4)
where
{f(U, V)i = f(U:, Vi)
fla,0) = (F(a)- F(b))/(a—b) a#b
f(a,b) = f(a) a=1b
and
{f(U, V)Y = £(U)-fi(V)

f(r)

fo(r) = fi(r).

Under condition (F3) we may choose fy(e) and f;(e) to be monotone increasing; for

example fo(r) = f(r) + rCF, fi(r) = rCr. We assume that such a choice has been made
throughout this section. As in section 4,

K} = {VeL:|Vle < a},

where a > % and we set

K = max|f'(r)|.
max|(r)

We also set
Kt =1}
for notational convenience.

Replacing U,,_; by V and U,, by W in each of (5.1)-(5.4) yields systems of algebraic
equations for W, given V. Provided they have unique solution then we write W = Sk (V).
Under appropriate restrictions (see Theorems 5.6 and 5.10) we show below that schemes
(S1) and (S2) satisfy (RI1)"~ (RI4)" with j = 1 for (S1) and j = 2 for (S2). We show that
schemes (S3) and (S4) satisfy (RI1)", (RI3*)" and (RI4)" with j = 1.

(RI1)" For each Uy € I\"]’~‘ there exists a unique solution U,, € L% for all n > 0. The map-

ping Ug — U, is continuous in L% and hence the family of solution operators {(SZ ) }n>o0,
defined by (S Z )*Ug = U,,, forms a continuous semigroup on I{;-‘. 0

(RI2)" There exist constants {p;}?_, independent of A and J such that the balls
By ={Vel:|VI<pm}

By ={VeL;:|VI<pm)
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are absorbing sets for the semigroup {(S%)"}n>0, that is, for each Ug € K]'-‘ there exists
{n:}2_, (depending on {Ug, p1} and {Upg, p2} respectively) such that

(SR)"Uo € B!, Vn > n,,(i=1,2). O

(RI3)" There exists a global attractor A" C L} for the semigroup {(S%)"}n>0. Further-
more A" is connected and there exists a constant gy independent of & and J such that

max{|V],||[V|,|V]e} < pa YV € A" O

(RI3*)" Let H" be the normed vector space {R7,|| o ||}. Then {(S&)"}.>0 is point dis-
sipative on H" and there exists a connected global attractor A" C L% for the semigroup

{(58)"}n0. O
(RI4)" The functional defined by (3.9) is a Lyapunov functional for {(S%)"}:>0. In addi-
tion, for any Ug € Ix"}‘, the w—limit set is contained in £k, O

5.1 Schemes (S1) and (S2)

We establish that (S1) and (S2) define dynamical systems and prove the existence of
absorbing sets, a global attractor and a Lyapunov functional.

Lemma 5.1 Suppose that the time-step restriction

At< 1/Cp (5.5)

holds for (S1) and the restriction
At<1/K (5.6)

holds for (S2). Then (S1) and (S2) generate continuous solution operators SR and unique
sequences {Uy }n>0 such that

[Unloo <@, Vn2>0. (5.7)
Furthermore, for 2 < m < a and any integer k > 1
(Unyor — mE)4| < (14 29At/C3)~*|(U,, — mE)4| (5.8)
and
|(Untax + mE)_| < (14 27At/C2)*|(Up + mE)4|. (5.9)

Proof First we show that (S1) generates a continuous operator Sk under the restriction
(5.5). Existence of a solution follows from a well known variational argument based on
minimising the functional

1 2,7 2
over L% given V € L% (cf. [Elliott, 1989]).
Let
MW + AtyAW! + AtME(W) = MV', i=1,2,
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and
E,=W!'-W? E,=V!_-VZ&

It follows that
|Ew|? + At]|Ey||? + At < f(W!) — f(W?),E,, >=< E,,E,, > .

Using
< (W) — f(W?),E, >> —Cp|E,|?
and (5.5) we have
At7||Etv|l2 < Ey||Ewl.

Hence, under the restriction (5.5) the scheme (S1) generates a unique sequence {U,} and
defines a continuous solution operator S%. We now turn to the proof of (5.7)~(5.9) for

(S1).

For n > 0set Z, = U, — mE. It follows that
<O0Zn,(Zn)y >+7< Zpn,(Zn)y >4 + < f(Upn),(Zn)y >= - m < E,(Zp)+ >4 .
Noting (F2), (3.6), (3.7) and the inequality
(b= c)by > ([b4]* = |e+]?)/2, Vb,c € R

we have 1
;f)I(Zn)+I2 +71(Za)+?/CE <0, (5.10)

or

(14 28t /CO(Zn)4I* < [(Zn-1)+]?

and (5.8) is an immediate consequence. (5.9) is proved similarly by consideration of
Z, = U, + mE and then (5.7) is a consequence of (5.8),(5.9) thus completing the proof
of the Lemma for (S1).

Since M + AtA is positive definite the system of equations (5.2) always has a unique
solution so that (S2) trivially generates a unique sequence {U,} and the continuity of f
implies that S% is continuous because of the finite dimensionality of L. Again, introducing
Z, = U, — mE it follows from (3.6) that

< azna(zn)‘i' >+ < va(Zn)+ >4+ < f(U""l)’(Zn)+ >< 0. (511)
Either
Z:I_l = U{n-l -m2>0
and so
(=Z271 + AU = m)y > =272+ = —(207 1)+ (Z)+
or
Zl."_1 = U'-n_l —-—m < 0
and

(=277 + AtfUPH)(UF — m)y
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> (=20 AU = ((m))UP—m)y = (~1+ALF(E)Z21 (21 > 0 = (271 (Z0),
provided
[Un_1ll < a (5.12)

since (5.6) holds and f(m) > 0. Thus we have shown that
At < f(Upc1),(Zn)+ >2 = < (Zn1)4+(Zr)4 > 4+ < Zp1,(Z0)4 > .

Hence (5.10) follows from (5.11) provided (5.12) holds. By induction we deduce that (5.7)
holds and then (5.8),(5.9) by arguments similar to those used for (S1). O

Remark As for the explicit scheme, the preceding Lemma is also true (with an identical
proof) if ¢ = max{|Ug|w, @}.

From Lemma 5.1 we have

Proposition 5.2 For each Uy € K} (resp. K%) there ezists a unique solution of (5.1)
(resp. (5.2)) U, € L% provided (5.5) holds (resp. (5.6)). The mapping Uy — U, is
continuous in L% for each n > 0 and hence the family of solution operators {(S%)" >0
defined by (S Z *Ug = U, forms a discrete continuous semi-group on K{‘ (resp. K 5‘ ). -

Lemma 5.3 For schemes (S1) and (52)

CyC(Q)C?

2 ¢ 2 2Aty6/CE) "
[Un|® < [Uol*(1 4 2At76/C;)™" + o

[1-(1+2Aty6/C2)™"], (5.13)

where § = 1 for (S1) and 6 € (0,1) for (S2), provided that the time-step restriction

At < min{1/K,2y(1 - §)/(K*C})} (5.14)
holds for (S2).
Proof Taking the inner product of (5.1) with U,, and using (3.1) yields

1 1
SOIULI" + S AU, |* 4+ 9| Ua|* < C4C(Q) (5.15)

1 1
= 50Unl* + 580U +4|UL[*/C] < C,C(9)

where we have used (3.12) and Poincare’s inequality. The bound (5.13) follows from
application of Gronwall’s inequality. Similarly for (S2) we find, using (5.7),

1 1
591Un|* + 540U + 9| Ua|? < C,C(Q) + K AtaU|[U,| (5.16)
so that ) 1
§a|U,,|2 + EAt|aU,,|2 +9|Ua}/CE < C;C(Q) + K At|0U,||U,,|

and under the time-step restriction, completing the square on the left hand side it follows
that

SOlULJ? + 53]U2/C2 < C/C(Q).
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Applying the Gronwall inequality, the proof of the Lemma is complete. O
We may now prove

Proposition 5.4 For scheme (S1) (resp. (S2)) there erist constants py,ps independent
of h such that the balls

Bhi={VelLl:|VI<m}, Bi={VelLl:|V|]<p)}

are absorbing in K} (resp. K%) for S% provided the time-step restriction
A<t e 0
ST €(0,1), (5.17)

holds (resp.
.1 1=061 29(1-69)
< — 6; 0,1)). .
at < min{, et Bt b€ 0,1) (518)

Proof The absorbing sets in | o | follow from Lemma 5.3. Taking the < e, >4 inner
product of M~! times (5.1) with U, yields, using the monotonicity of f(u) + Cpu

[Un41lf? = [[Ual? < 2A8CR||Unya |

By (5.15) we have
N+Ko

2Aty Z ||Un+l“2 < 2rC.fC(Q) + |UK0|27

n=Ko

where r = (N + 1)At. Hence, for Ky sufficiently large, Lemma 5.3 gives

N+Ko 2
csC(V)r  p

S AtUu|? < 2L 4 A

n=Kjy 7 7

Applying the discrete uniform Gronwall Lemma (Appendix 2) we obtain

2Cpr  C;C(Q)  p?
. 2 ¢ oex F f 1
[0 +cpall < exp(2SED 2 4 AL

for arbitrarily large Ko. The statement of the Lemma follows for (S1).
For (S2) a similar analysis as for (S1) yields

At
SOIUI? + 510U +91M 7 AU+ < £(Un), Un >4=< £(Un) = £(Un1), Un >

< KAoUL|[||Unll-

Using the monotonicity of f(u) + Cru and inequality (3.3) we obtain, under restriction
(5.18),

1
SOl|ULI1? < Crl|U1%
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From (5.16) we have
1 At 1-6
20U + Zhjua + 2 Dju 4 w2 < s0(9) + KA, U,
p

Completing the square on the left-hand side under restriction (5.18) we obtain
1
;(9|U"|2 + "/52HUn”2 < CyC(Q)

and the argument now proceeds as for (S1) to obtain

2Cfpr

CC(Q 2
HUN+K°+1H2SGXP( ; )[ f ( ) P1

6, 21‘762]

for arbitrarily large Ko. The statement of the Lemma follows for (S2). O

Proposition 5.5 Suppose that the time-step restrictions (5.5) (resp. (5.6)) hold for (S1)
(resp. (S2).) Then for (S1) (resp. (52)) I"(e) is a Lyapunov functional for Sk on Kh
(resp. KP.)

Proof Taking the inner product of (5.1) with U, yields
AtoU, | + %[llUnll2 ~Un-all* +1Un = Unca|P]+ < £(Un), Up = Upy >=0,

Note that ,
F)(r - 8) = F(r) = Fs) + T8 — oy

Hence for (S1),

Aty

2

CrAt

2
0U 2 + :

10U + 0I"(U,) < 10U, |2

Under the restriction (5.5) SR defines a dynamical system and, in addition,
h 1 2
or'(u,) < —§|3U2|

and the statament of the Theorem follows.
An identical argument holds for (S2) if we note that

F(r)(r =) > F(r) = F(s) = 5-(r — 5)’

for |r|,|s| < a. O
By Lemma 2.1 and Propositions 2.3,5.2 and 5.5 we have proved the following

Theorem 5.6 Let A = w(B?}) for (S1) and (S2). Then, under the restrictions (5.5),(5.17)
for (S1) and (5.6), (5.18) for (S2) (RI1)*-(RI4)* hold with j =1 for (S1) and j = 2 for
(S2).
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5.2 Schemes (S3) and (S4)

We establish that (S3) and (S4) define dynamical systems on L% and prove the existence
of a global attractor by establishing a Lyapunov functional structure. We note that the
proof of uniqueness can be used to prove continuity of S& as for the scheme (S1).

Lemma 5.7 There ezist unique sequences generated by (S3) and (S4) for any Uy € LA
provided, in the case of (S3), that for some § € (0,1),

8v(1-46) 2

At S lnau‘i{m, C_F

}. (5.19)

Proof We consider (S3) first. The analysis of existence and uniqueness is identical to that
used by [Elliott,1989] for a similar scheme applied to the Cahn-Hilliard equation. Set
Wi |
{F*"(W)}; = ; f(UR, s)ds + ¢;

where ¢; is chosen so that {F*(W)}; > 0. A standard argument in the calculus of variations
yields a minimiser of the functional

1 2., 7 2,7 n
Q_A—t'w -Unal*+ Z”W” t5 < U, W>4 4+ <E,F'(W)>
which satisfies the Euler-Lagrange equations (5.3). Furthermore, from [Elliott, 1989]
(F(r,51) = f(r,82))(51 — 82) = Fls1,7,82)(s1 — 82)% > —Cp(s1 — 52)*/2

where F([s1,7,s2] denotes the second divided difference. Thus, denoting the difference of
two solutions to (5.3) by Y for given U,,_; we obtain

At
Y12+ Y] < ACFIYP/2 < AICRG,|[YY /2.

Uniqueness under the condition (5.19) on At follows.
Because of (F3), fo(e) is monotone increasing and the existence and uniqueness of
solutions to (5.4) is an immediate consequence of the method of monotonicity. O

Thus we have established

Proposition 5.8 For each Uy € L% there ezists a unique solution of (5.3),(5.4) U, € L}
provided (5.19) holds for (S3). The mapping Ug — U,, is continuous in L% for each n > 0
and hence the family of solution operators {(SX)"}n>0 defined by (S4)"Uo = U, forms a
discrete continuous semi-group on L}).

Proposition 5.9 Under the restriction (5.19) for scheme (S3) and no restriction for (54),

I"(e) is a Lyapunov functional on L% for the dynamical systems generated by schemes (S3)
and (S4).

Proof Taking the inner product of (S3) with AtdU,, yields
At)dU, |2 + I"(U,) - I"(U,_;) = 0.
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This is the discrete analogue of (3.18) and the conclusion of the Lemma is evident for (S3).
For (S4) we use the inequality

fo(f)

(fo(r)=F()r=s) = Folr)= o)+ 28 sy B (5)- B+ B 2 > Py )

bl

which holds as a result of (F3) and the monotonicity of fy and f;. Taking the inner product
of (5.4) with AtdU,, yields

7At2

At|0U, 2 4+ Th(U,) - I"(U,_y) + 10U,.|1? < o,

and the conclusion follows for (S4). O

Applying Lemmas 2.1 and 2.4 and Propositions 2.5,5.8 and 5.9 we establish the fol-
lowing

Theorem 5.10 Then, under the restriction (5.19) for ($3) and no restriction for (S4),
(RI1), (RIS*)* and (RI4)* hold with j = 1.

6. Multi-Step Backward Differentiation Methods

In this section we consider backward differentiation formulae. Given {U; € L%,j =
0,1,...,¢9 — 1} we define the sequence {U, € L%} by

M(Z

where ¢ > 1is a given integer and 97 is defined recursively by

J— v, -1y
OV, _9 —9 n-l > 1.
At
This scheme is the result of applying the ¢—step backward differentiation formula to (1.8).
For g € [1,6] the formula is known to be A(a)— stable [Lambert, 1991]. Since in order to

find U,, one solves a system of the form

t_l

U, + 74U, + Mf(U,) =0, (6.1)

(agM + AtyA)W + AtMEf(W)=Db
it is straightforward to apply the proof of Lemma 5.1 to show
Lemma 6.1 Suppose that the time-step restriction
At < ay/CF (6.2)
holds. Then there ezists a unique sequence {U,} satisfying (6.1) for given {U;}¢™'. O
Since knowing {GjUn}‘J’;(l) is equivalent to knowing {Un_]'}‘};é the system (6.1) is
equivalent to

q-1
M(Z :
=0t

g-1
aJU )+ Aty AU, + ALME(U,) = M(Z A

-U,),  (63)
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AtYU, - &0, = -9 U,_,,j=1,2,...,¢- L. (6.4)
Welet V = (V) ... V(@) be an arbitrary element of L5 := (L%)9 and set
U, := (U,,AtdU,,...,At9719971U,,).

I:c fo]{ows t}}a,t, under the conditions of Lemma 6.1, there exists a continuous mapping
Sh . LB — L% defined by

5a(V)
where
M(Z ﬂ) + Aty AW 4 AtME(W zq: V—- (6.5)
o = J
w0 _wl-D = _vU-1 =92 g (6.6)
and
U, =54(0n1),n > 1. (6.7)

Thus (6.1) defines a discrete dynamical system on L% via (6.7). We now proceed to
show the properties of the dynamical system. Clearly a fixed point U* of 5'2 satisfies

yAU W 4 ME(U- D) =0, U0 =0 j=2,...,q. (6.8)

It follows that the set of equilibria £* is given by U* = (U*,0,0,...,0) where U* € £" is
defined by (3.8). Thus &" is bounded and it follows that, by Proposition 2.5, the existence
of a Lyapunov functional is sufficient to ensure the existence of a global attractor. In the
case ¢ = 1 we set

Ii(e) = I*(e).

For ¢ = 2,3 we set
PO 1
V)= — VA2 4 hv) 6.9
(V) = o VO + I (V) (69)
and
—|vO)2
6At

We introduce the following norms on L} :

+ = VAP + 1MVD), (6.10)

(V) = 12At

q .
VEIOM\CURE

i=1

and .
- V24
IVIE= V@2
1=1
It is clear that I(7) of section 2 is satisfied. Taking the inner product of (6.1) with AtdU,

yields
9 J , C At?
S 28 < 070,00, > + 2AR0UL + I%(Ua) < IM(Uno) + =5
; J

1=1

|0U %, (6.11)
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where we have used the argument of Proposition 5.5. It remains to evaluate the first term

on the left-hand side of (6.11) which we call Ty/At. We set Z,, = U, — U,_; and consider
the cases ¢ = 2 and ¢ = 3 in turn.

q=2 It may be shown that
1
P? =< Un - Un—l + ,‘)‘(Un - 2Un—l + Un—2)aUn - Un—l >
1 1
=< Zn+5(Zn = Zno1), Zn >= |2l + Z(1Zn]* ~ |Zna|® + |Zn = Zosa ).
Hence (6.11) becomes

CFAt

At3 .
At|aun|2+—4_|aQUn|2+%Ati’“aUn”?Hg(U ) < FR(O._1) + |0U,[%. (6.12)

q=3 It is a calculation to show that
1 1
F3 =< Zn + ;(Zﬂ - Zn-l) + §(Zn - 2Zn-—l + Zn—?)vzn >
1
= |Zn|2 + Z(lznl2 - lZn—ll2 + |Zn - Zn—l[2)
1.1 1 1 1
+§[;(|Zn|2 - |Zn—1!2+ IZn - Zn—1|2) - glznlz - Elzn—l - Zn—-2!2+ glzn + Zn—2 - Zn—llz]
5 5 1
= Elzn|2 + E('anz - |Zn—1|2) + len - Zn—1|2

1 1
+5(1Zn - Zno1|* = |Zno1 = Znoa?) + 5120+ Znoz = Zna .

Hence (6.11) becomes
5 At At At
AU, + = [0°Unl? + -[0U, - A107U, 12 4+ T 120 10U,

CFAt

I3(0,) < I3(Ual) + 10U, |2 (6.13)

Setting &1 = a1 = 1,62 = a2 = % and a3z = % we have the following proposition.

Theorem 6.2 Provided the time step restriction
At < é,/Cr, (6.14)

holds then, for ¢ = 1,2,3 I, ( ) is a Lyapunov function for the dynamical system Sg on
{L5, || o ||}. Furthermore, Sk is point dzsszpatwe on {L%,|| e ||} and there ezists a global
attractor AP C Lh for the semigroup Sh A-

Proof The case ¢ = 1 is considered in Proposition 5.5. Clearly we just need to check
condition I(iii) of section 2 because I(ii) follows immediately from (6.12) and (6.13). We
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detail the case ¢ = 3 since the other case is treated in an identical fashion. It follows from
(6.13) and the definition of S that, if

then, with W = Sk (V),
w®@ = w® = v0© .

Furthermore from (6.6) we have that V(2 = 0 and V() = W(1), Hence, by (6.5), it holds
that

AW® 4 pre(w)y = o,

and V = §h (V) € £h. By Lemma 2.1 the existence of a Lyapunov functional implies that
Sh A is uniformly compact and hence that individual positive orbits are relatively compact;
thus, by Proposition 2.4, Sk is point dissipative on {L?, || e ||}. The existence of a global
attractor follows from Proposition 2.5. O

7. Numerical Results

In this section we present numerical results which illustrate the material in section 3.
Numerical results illustrating the material in sections 4 and 5 may be found in [Stuart
and Peplow, 1991].

We illustrate the spurious steady states and spurious stability properties implied by
Theorem 3.2. For simplicity we assume, in addition to (F1) and (F4) on f(u), that the
equation is posed on the interval @ = (0,1) and that sgn(f”(u)) = sgn(u). (The canonical
example is still f(u) = u3—u.) It is proved in [Chafee and Infante, 1974] that (1.1)~(1.3) has
2n+ 1 steady solutions for v € [((n+1)7)~2,(n7)~%). Thus the number of steady solutions
approaches infinity as ¥ — 04. Hence Theorem 2.1 does not seem to be worrying, at first
glance — the method just resolves as many solutions as possible on the grid. However, a
closer inspection shows that most of the numerical steady states are spurious: the true
solutions have zeros which are equidistributed in the interval [0,1] whereas most of the
numerical steady states do not share this property. A rough calculation based on the
number of zeros shows that, for 4 small, we would expect the numerical method to resolve
approximately 2J + 1 steady solutions (because of the equidistribuited zeros property.)
This implies the existence of approximately 3/ — 2J — 1 spurious solutions.

At this point it is important to understand the dynamics of the true equation, for =
small. On a short time scale diffusion is negligible and the initial data rapidly evolves
towards the stable zeros of f, +1. Diffusion layers join together regions in which v &~ 1 and
u =~ —1. Typically, these diffusion layers are not equidistributed and so they start to move
towards a steady state configuration in which they are equidistributed. Furthermore, it is
shown in [Chafee and Infante, 1974] that, for v < 772, only two of the steady states are
stable and that these are one-signed in the interval (0,1) — one negative and one positive.
(Note that, in contrast, the numerical method has 27 stable steady states.) The analysis
of [Carr and Pego, 1989] shows that the evolution of interfaces occurs very slowly — on a
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time-scale of O(e:vp(—y‘%)). The states which evolve on such a slow time-scale are known
as meta-stable states. Figures 7.1 and 7.2 show such an evolution starting from initial data
uo(z) = sin(77x). The first figure shows the solution at times ¢t = 0, 20,40 and 80. Notice
the devolopment of an interface seperating regions in which u > 0 (to the left) and u < 0
(to the right). The interface propagates to the boundary z = 0 and, at ¢ = 80 the unique
negative stable steady solution has been reached. The propagation is very slow and this
can be seen in Figure 7.2 where a three-dimensional projection of the solution u(z,t) is
shown.

Figure 7.1. Solutions of (1.1)—(1.3). Q = [0,1],y = 0.0025,uo(z) = sin(77z). For
a) t =0; b)t=20;c)t=40; d)t =280 Implicit Euler applied to (1.5) with
At =0.1,Az = 0.01.

Figure 7.2. Solution of (1.1)-(1.3). Q = [0,1],7 = 0.0025,uo(z) = sin(7rz). 0 < t <
80. Implicit Euler applied to (1.5) with At = 0.1, Az = 0.01.

The spurious steady states introduced by the discretisation are close in form to the
meta-stable states; they are = +1 everywhere except in transition layers. The resolution
of the numerical method is insufficient to capture the tiny propagation speeds for the
transition layers and hence these meta-stable states are stabilised by the discretisation
and become steady solutions of the numerical method. Figures 7.3 and 7.4 show the
numerical solution of (1.1)-(1.3) posed on the unit interval with the same initial data. In
both cases the implicit Euler scheme is applied to (1.5). In Figure 7.3 a value of Az = 0.05
is taken and the solution approaches a spurious steady state. The computed solution is
smooth and there is nothing obvious which tells us that it is spurious — it is only the
fact that we know a priori that genuine steady solutions have equidistributed zeros that
enables to rule out the computation as spurious. In Figure 2.4 the value of Az is decreased
to 0.01. Notice that the computed solution now tends to a true steady solution; however,
the density of the profiles indicates that the solution evolves to form a meta-stable state
before finally approaching the negative stable steady state. The meta-stable state is clearly
closely related to the spurious steady state in Figure 7.3.

Figure 7.3. Solutions of (1.1)—(1.3). Q = [0,1],7 = 0.0025,up(z) = 1, £ < 0.3; up(z) =
—1, z > 0.3. Implicit Euler applied to (1.5) with At = 0.1, Az = 0.05. Profiles at
intervals of 10 seconds for 0 <t < 500.
Figure 7.4. Solutions of (1.1)—(1.3). @ = [0,1],7 = 0.0025,u0(z) = 1, = < 0.3; uo(z) =
—1, z > 0.3. Implicit Euler applied to (1.5) with At = 0.1, Az = 0.01. Profiles at
intervals of 10 seconds for 0 <t < 500.

Figure 7.5 shows a trajectory approaching a steady solution which is unstable for the
underlying PDE (since it changes sign) but which is artificially stabilised by the discreti-
sation. To check that the solution is stable for the discretisation we took the computed
steady state from Figure 7.5, denoted us(z) in the caption of Figure 7.6, and perturbed
it, taking this as initial data. The results are shown in Figure 7.6 which demonstrates the
(spurious) stability of the steady solution.

Figure 7.5. Solutions of (1.1)—(1.3). = [0,1],7 = 0.000784, up(z) =1, z < 0.3, = >
0.7; uo(z) = -1, 0.3 < z <0.7. Implicit Euler applied to (1.5) with At =0.5,Az =
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0.02. Profiles at intervals of 50 seconds for 0 <t < 5000.

Figure 7.6. Solutions of (1.1)—(1.3). Q= 0,1],y = 0.000784,uo(z) = uys(z) + 0.2 «
sin(7rz). Implicit Euler applied to (1.5) with At = 0.2,Az = 0.02. Profiles at
intervals of 0.2 seconds for 0 <t<10.0

Our numerical experiments are purely one dimensional but analogous properties hold
in dimensions greater than one.
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APPENDIX 1

Poincare and Inverse Inequalities

Consider a diagonal matriz M with positive diagonal entries and a positive definite sym-
metric matriz A with eigenvectors and eigenvalues {1;, \;} satisfying

Ay = \iM;

where
Cy? < X\ < Cofh2.

Under these assumptions the following inequalities hold for all U € R’ :

Co
Jul? < 2o,

U]l < Cp|M ™1 AT,

and c
M~ AU < (U7,

where Cp and Cy are independent of h and where < o,8 >,| e | and || o || are as defined in
section 3.

Proof Normalise the eigenvectors so that
< Yi, ¥ >= bij.

Then and U € R’ may be written as

J
U= ayy
a=1
and
J
AU = Zaw\;]\l@b;.
i=1
J
P =Yl
i=1
and
J J
IO =5 Xia? > C,2> al.
i=1 1=1
Also

2 Coh
1] Sﬁzai'
=1
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Hence the first pair of inequalities follow. Furthermore
J
M7YAU =Y aihy
=1
and hence

J
[M~TAUPR =3 o202
=1

and the second pair of inequalities follow. O

41
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APPENDIX 2

A Discrete Uniform Gronwall Lemma Let G, P,,Y,, be three positive sequences sat-
isfying, Vn > ng and Ky > ng

Y ) Y N+Kyp N+I\o N+Ky
'H'T_<G Vas1+Pa, Y AtaGn<ay(r), Y AtnPa<ag(r), Y, AtnYop < as(r),
n n=RK)y n=Kp n=Ky
where N4 K
0
Z At, =
n=Ky

If At,G, <1-6 Vn 2> ng then

a
YN4+Ro+1 S ‘31'i1>(al/<5)[73 + az], VKo 2 no.

Proof We have
(1 - At,Gp)Yng1 — Yn < Aty Py,

Let
Qn+l = (1 - AtnGn)Qna n 2 ng, Qno =1

so that
Qn+1),n+1 - QnYn < AtnPnQn-

Summing we obtain

N+Ko N+Ko
QN+Kot1YN+Kot1 — QMYM < D AtaPaQn < Qum( Y At,Po),
n=M n=M

for M > Ky. Now Nk
QN+Ko+1 = QMmILL T30 (1 — AL, Gy).

Hence i
N+Ky NAK
Ynikor1 € (Ym+ D Atg P)IIH(1 - At,G,)™!
n=M
Now
(1- )" <exp(a/(1—a)),la] <1
so that
(1= At,G,) ! < exp(At,Gn/9).
Hence N+Ko
HN“‘"( - At,Gp)7t < exp( E At,G,/6) < exp(a1/6).
n=M
Thus

Ynixo+1 < (Yar + az)exp(a/6).
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Hence
N+Ko+1 N+Ko+1 N+Ko+1
Y Aty Ynigos < exp(ar/8)[ Y. AtV + ax( Y. Atary)]
M=Ky+1 M=Ky+1 M=Ky+1

= r(YN4Ko+1) < exp(ar/6)[as + ayr]

and division by r gives the result. O
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APPENDIX 3

Convergence of the number of discrete solutions

Throughout this appendix we use C' to denote a constant independent of h. By G we
denote the Greens’ operator for the negative Laplacian with homogeneous boundary data
on  and we write the steady state equation for (1.1) as

Yu = G f(u). (A1)

Let S* C C(f)) denote the finite element space consisting of piecewise linear functions on
an acute triangulation of  which vanish on 9€2. The finite element approximation to (1.1)
can be written as

yut = g" f(uh),
rather than the matrix version (3.8). Here G" € £L(C(f), S*) is defined by
< VG, VE>=< 6>

where < o, 8 >" is the discrete L? inner product arising from lumped mass integration. It
is known that (see [Crouzeix and Rappaz, 1990])

16 = 6")nll < Chllnllwragy, g2 2

and
16" nllwrmgy < clI™nl, p> 1

where I" is the interpolation operator from C({) into S* and we use || o || and | o | for the
H}(Q) and L?() norms.

We suppose that (A1) has exactly @ solutions {u;} for a given 7 and that there exists
§ > 0 such that in the balls
BY = {n:|ln—wl < 8}

there is only one solution of (Al). Thus, in the closed set
ve = B\ BY)
there are no solutions and
€= inf |lyn - Gf(n)ll > 0.
neveé
Hence, if u® € V4 then
e < [yt = G (M) = It - 6" f(u") + (6" - G)F(uM)]
< |I(g" = 9)f(uM)|| < Chl|F(u")lwra(a)-

Using the L® and H} bounds on u" from Lemma 3.1 we find that

1 (@) lwrae) < C
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and so u* € V4 implies that € < Ch. Thus for h < hg = €/C we have that u" belongs to
one of the balls B?.

If (7,u;) is a regular point of (A1) then the analysis in [Crouziex and Rappaz, 1990,
Chapter 3] implies that for A sufficiently small there is a unique solution u” in the ball Bg.
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Figure 7.1. Solutions of (1.1)~(1.3). Q = [0,1],7 = 0.0025,ug(z) = sin(7rz). For
a) t =0; b) t =20; c) t =40; d)t=80. Implicit Euler applied to (1.5) with

At =0.1,Az = 0.01. o
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Figure 7.2. Solution of (1.1)~(1.3). @ =[0,1]
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80. Implicit Euler applied to (1.5) with At = 0.1, Az = 0.01.
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Superimposed Solution Profiles
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Figure 7.3. Solutions of (1.1)—(1.3). Q = [0,1],7 = 0.0025,uo(z) = 1, = < 0.3; uo(z) =
—1, z > 0.3. Implicit Euler applied to (1.5) with At = 0.1, Az = 0.05. Profiles at
intervals of 10 seconds for 0 < t < 500.
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Figure 7.4. Solutions of (1.1)-(1.3). 2 = [0,1],7 = 0.0025,u0(z) = 1, z < 0.3; uo(z) =
—1, z > 0.3. Implicit Euler applied to (1.5) with At = 0.1, Az = 0.01. Profiles at
intervals of 10 seconds for 0 <t < 500.



Superimposed Solution Profiles
1.5 T T Ll T T T T

0.5r 4

13 01 02 03 04 05 06 07 08 00 1

Figure 7.5. Solutions of (1.1)-(1.3). 2 = [o, 1], = 0.000784, up(z) = 1, z < 0.3, z >
0.7; uo(z) = —1, 0.3 < z < 0.7. Implicit Euler applied to (1.5) with At = 0.5,Az =
0.02. Profiles at intervals of 50 seconds for 0 <t <5000.
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Figure 7.6. Solutions of (1.1)-(1.3). & = [0,1],7 = 0.000784,uo(z) = us(z) + 0.2 *
sin(7rz). Implicit Euler applied to (1.5) with At = 0.2,Az = 0.02. Profiles at
intervals of 0.2 seconds for 0 <t < 10.0
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