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Abstract

Different power electronic converter topologies have been investigated to integrate renew-

able energy systems to the grid. Cascaded multilevel converters with a high-frequency link

have emerged as a viable candidate for such applications. Electrical isolation can be pro-

vided using a compact high-frequency transformer connected in the link thus avoiding a

bulky line frequency transformer. The use of cascaded modules allows the generation of

a multilevel voltage having low total harmonic distortion (THD) but increases the overall

system size. In this thesis, a fifteen level high-frequency AC-link single-stage asymmetrical

multilevel converter for grid integration is proposed. The single-stage conversion approach

eliminates the DC-link capacitors, resulting in a reduced footprint. The asymmetrical mod-

ule voltages are generated by the multi-winding transformer having unequal turns on each

of the secondaries. This allows the generation of fifteen output voltage levels, using only

three modules in each phase. A modified uni-polar modulation strategy is proposed to gen-

erate multilevel output voltage. A modified hybrid modulation technique using triangular

level shifted carriers based on the high frequency link is also investigated for this topology.

Unlike previously used technique, the proposed modulation shifts the dominant harmonics

in the output voltage to the sidebands of multiples of twice the switching frequency, thereby

reducing the output filter size.

However, the incorporation of the switch non-idealities requires the implementation of

a commutation strategy for the single-stage conversion. A detailed circuit analysis show-

ing different modes of operation to generate a specific output voltage level, taking into

account the switch non-idealites is outlined in the thesis. The analysis aids in the real-time

implementation of the converter and, it also explains the distortion in the ideal output

voltage profile. The analysis in general can be used for any isolated single-stage converter.

The effect of switch non-idealities on the output voltage is analyzed and two compensation

techniques are developed to improve the voltage profile.

A multi-winding high-frequency transformer is a critical component in the proposed

converter topology. A four-winding transformer is designed and characterized using An-

sys 3-D Finite Element Analysis and Network Analyzer measurements. The presence of

transformer leakage inductance will require a clamp circuit to dissipate the leakage energy

during commutation. A detailed circuit analysis showing the various modes of operation

considering both the switch and transformer non-idealities is presented.

Comprehensive analysis is done for ensuring the generation of balanced currents in case

of a module failure. A look up table is provided to operate the proposed topology for all
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possible cases. The presented concepts are verified by simulation and further validated

experimentally on a three-phase fifteen level converter prototype.
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Chapter 1

Introduction

1.1 Conventional interface to integrate renewables to grid

Recent efforts to reduce the dependence on fossil fuels have caused utilities worldwide to

increase the integration of the power generated from renewable energy systems [1]. This

interconnection of renewable systems requires the use of grid tied inverters. A conventional

utility interface utilizes two level inverters in conjunction with a line frequency transformer

(LFT) to generate the required voltage as shown in Fig. 1.1. Such two level inverters have

high total harmonic distortion (THD) in the generated output voltage and hence require

the use of large filters. Also, the presence of common mode voltages with large
dv

dt
require

expensive common mode chokes or design of active filters [2]. Multilevel topologies with a

single DC source and several LFTs to generate multilevel three-phase output voltage with

low THD and reduced filter requirements have been proposed in literature [3]. However, in

all of these topologies, the usage of LFTs increases the overall footprint of the system.

DC

Vdc

AC

LFT 3-ph grid

(13.8 kV)

Figure 1.1: Conventional topology to interface low voltage DC to three-phase high voltage
AC

1
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1.2 Conventional interface for all electrified ships

With the advancements in variable speed drives, electrified ship propulsion systems as shown

in Fig. 7.2 have become increasingly popular as they offer a compact size, increased fuel

efficiency and reduced emissions in comparison to the mechanically propelled ships [4].

Generator

Power 

Converter

Gas Turbine

Diesel Engine/  Ship

 Loads

Propulsion

 Motor

Figure 1.2: Electrified Ship Propulsion Systems.

These advantages have led to an increased interest in all electrified ships (AES) [5–9].

In an AES, the propulsion systems (power generation module, power conversion module,

electric propulsion module) and ship load systems are unified to form an integrated system.

With the availability of renewable energy resources and advancements in power electronics,

more flexibility is available through an integrated system [9,10]. Recently, a lot of research

has been done on different ways to integrate renewables and Battery Energy Storage Systems

(BESS) to the upcoming electrified ships depending on the electrical distribution system

[11–15]. The electrical distribution in a ship can either be completely DC, both DC and

AC (hybrid), or it could be completely AC.

In ships proposed with MVDC distribution [11], the energy storage systems are inte-

grated to the MVDC bus using a bi-directional DC-DC converter [16, 17]. Certain ships

which employ hybrid distribution systems [12] the propulsion motors are connected to the

AC distribution using a two stage AC-DC-AC converter (power converter shown in Fig.

1.1) with a DC-link capacitor. In these ships, it is proposed that the energy storage sys-

tems can be integrated to the DC-link capacitor directly, thereby eliminating an additional

converter [18].

In some ships with AC distribution systems [13,19], the propulsion motors (synchronous)

are connected directly to the distribution system, using a single stage converter. In such

systems, the power converter (shown in Fig. 1.1) is either a thyristor controlled cyclo-

converter [17, 20] or any other direct AC-AC converter with bi-directional switches [21,

22]. The direct AC-AC conversion eliminates the DC-link capacitor, resulting in a more

compact system with reduced maintenance [20]. In such ships, the low voltage energy

storage systems require a Line Frequency Transformer (LFT) to interface with the high

voltage AC distribution system(6.6 kV, 13.8 kV) [6, 17, 23]. The use of LFT in such a

system counters the advantage that is attained by direct AC-AC conversion [23].
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Vdc

DC

AC 3-ph grid

(13.8 kV)

MFT
Multi-winding

AC-DC-AC or
AC-AC Converter

Figure 1.3: Proposed topology to interface low voltage DC to three-phase high voltage AC

1.3 Proposed interface using high-frequency transformers

At these power levels, high-frequency transformers (HFT) are envisioned to replace such

LFTs [24, 25]. The use of HFTs reduces the size of magnetics but also necessitates a

secondary side converter to generate line frequency AC from the high-frequency. This

conversion can be accomplished either by a high-frequency AC-DC-line frequency AC, which

is a two stage conversion process utilizing an electrolytic capacitor at the DC link [26–31]

or a direct single-stage conversion from high-frequency AC-line frequency AC [32–38] as

shown in Fig. 1.3. In case of the two stage conversion process, different topologies and

modulation strategies have been investigated in the literature. In [26,29,30], the generated

high frequency voltage across the transformer is converted to DC using a diode bridge and

then phase shifted carriers are used to generate a multilevel voltage using series connected

hard switched H-bridge modules. Dual active bridge topologies have been very common

for isolated DC-DC conversion due to the inherent advantage of soft-switching. A review

of various modulation strategies based on dual active bridge principle has been outlined

in [39]. Recently, for isolated DC-DC application, instead of full bridge on two sides of

the HFTs, MMCs (Modular Multilevel Converters) have also been investigated on one

side [40, 41] and even on both sides [42]. Topologies have been proposed which extend the

DAB principle to multi-port [43] systems, for DC-AC [27,44] and also AC-AC applications

[45], [46]. Nevertheless, the DAB topologies suffer with low efficiency when operating at non-

optimal condition due to high circulating current and incomplete ZVS [39]. To overcome the

limitations and hence improve the efficiency, different control techniques for operation under

non-optimal conditions [47, 48] and topologies with additional switching stages have been

proposed in literature [49]. In any case, to interface with high voltage line frequency AC, a

number of converter modules, each connected to an isolated secondary winding are cascaded

in series similar to the multilevel structure [26,27,32]. But such a system will require a large
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number of isolated secondaries and converter modules if lower voltage rating devices are

used. With the advancement of high voltage switches, [28] the number of converter modules

and the transformer secondaries can be reduced [50]. However, the absence of several series

connected modules, increases the THD and will either require large filters or the design of

more complex filters like LCL [51] or LLCL [52].

Asymmetrical multilevel inverters allow to achieve, higher number of levels in the output

voltage with less number of converter modules. Asymmetrical converters can be broadly

classified according to the source of asymmetry. In literature, topologies have been inves-

tigated in which the asymmetry is introduced in the DC voltage source [53–57]. Several

unequal voltage sources have to be used to provide the required asymmetric input voltage.

Recently, topologies have been proposed which have extended the asymmetric voltage con-

figuration to modular multilevel converters [58]. Another scheme of generating asymmetric

voltages is by using a single DC voltage source with a multi-winding transformer with un-

equal turns on each secondary. The asymmetry introduced in the LFT turns ratio have been

previously presented [59,60]. However, as explained earlier, use of LFT increases the system

size. Topologies with the asymmetry introduced in the high-frequency transformer turns ra-

tio have been presented for drives [61]; traction [62] and for grid-tied applications [31,63–65].

In such two stage topologies, a high voltage DC input is still required for the main con-

verter and the high-frequency transformer is used for auxillary converters [61, 62]. But as

stated, the two stage conversion requires a DC-link capacitor. An asymmetrical multilevel

converter topology having nine secondary windings has been proposed, but the results do

not incorporate switch non-idealities and its effect on the output voltage profile [63].

In this thesis, a multilevel converter topology to interface a low voltage DC to a three-

phase high voltage grid with three multi-winding HFTs is presented. The asymmetry is

introduced in the HFT turns ratio (the three transformer secondary windings in each phase

have an unequal turns ratio of 1:2:4). Such an asymmetry results in higher number of levels

in the output voltage with only three series connected modules per phase. The single-stage

conversion approach requires AC-AC converter modules. The proposed topology has the

following benefits: (i) eliminates the bulky LFT; (ii) allows bi-directional power flow; (iii)

generates fifteen output voltage levels, using only three AC-AC converter modules in each

phase; and (iv) removes the need for a dc link capacitor, resulting in a reduced footprint.

This converter can be used to integrate the energy storage system to HV AC distribution

system as shown in Fig. 1.4.
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Figure 1.4: High-frequency transformer isolated single stage topology to interface BESS to
electrified ships.

1.4 Modulation and commutation strategies

Different modulation strategies have been investigated in the literature for cascaded H-

bridge systems [66,67]. Phase shifted carriers are used to generate signals in high frequency

link isolated single/two stage cascaded H-bridge systems to interface energy storage sys-

tems to the three-phase grid [26,27,68]. Primarily, two modulation techniques exists in the

literature for asymmetrical cascaded H-bridge converter. These converters as mentioned

above utilize the LFT turns ratio for generating the asymmetry and require a diode-bridge

and a DC-link capacitor at the input of the H-bridge. Conventional hybrid modulation

technique [69] and Uni-polar modulation technique [70]/hybrid frequency carrier based

PWM [71] are the two techniques. The conventional hybrid modulation technique [69]

allows to generate a multilevel output voltage with the dominant voltage harmonics at the

sidebands of multiples of twice the switching frequency. However, the technique causes a

rise of the DC-link capacitor voltage because of the negative DC-link current and requires

a controlled rectifier at the input. The implementation of the uni-polar modulation rather

than the conventional hybrid modulation technique in such a converter allows to get rid of

the above disadvantages [70].

The single stage converter under study consists of AC-AC converter modules formed

using bi-directional switches. The presence of bi-directional switches requires either a com-

mutation strategy or a free-wheeling commutation path during each switching transition.

As shown in the literature, the incorporation of a commutation strategy minimizes the losses

in comparison to the freewheeling circuit [72]. Several strategies like the current based [73],

voltage based [74] and hybrid [75] commutation have been investigated in the literature

which can be classified as under:

• Current Based Commutation [73] strategy based on the output current sensing per-

forms the commutation in four steps.

• Voltage Based Commutation [74] strategy based on input AC voltage sensing allows
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the commutation in two steps.

• Hybrid Commutation [75] strategy requires both input AC voltage and output cur-

rent sensing. It allows to reduce the commutation delay time because of single step

commutation.

A detailed comparison of different current and voltage commutation strategies on the basis

of efficiency and hardware requirement [76] show the superiority of four-step commutation

strategy over other described strategies. However, the incorporation of four-step commu-

tation algorithm can cause glitches in the voltage as shown in the literature [77, 78]. In

literature, commutation strategies have been implemented to incorporate the non-idealities

of the bi-directional switch in a single stage isolated two-level [79] and multi-level con-

verter [80]. However, the non-ideal behavior of the switches of both the input H-bridge and

the output single stage converter and the resulting effect on the output voltage profile has

not been reported [32,64,79,80].

A detailed description of various modes of circuit operation for a particular switching

transition, highlighting the cause and effect of the glitch is demonstrated. The thesis pro-

poses two compensation techniques to improve the output voltage profile, by modifying

the commutation algorithm to negate the glitches in the output voltage. The switching

of AC-AC converter module will result in square currents through the transformer wind-

ing [81] with a low frequency sinusoidal envelope. The presence of the transformer leakage

inductance and square link currents require a clamp circuit in parallel to the transformer

windings to avoid any over-voltage. However, the HFTs can be designed to achieve low

leakage inductance [82–84]. The thesis also shows a winding design and characterization of

a multi-winding transformer to achieve low leakage inductance.

The modified version of the uni-polar pulse width modulation technique is investigated

for the single stage converter in [63]. However, the adoption of both the uni-polar modu-

lation technique [71] and its modified version [64] to the subsequent converter topologies,

result in voltage harmonics at the sidebands of the multiples of the switching frequency.

The single stage converter topology introduced in this thesis does not have an electrolytic

capacitor at the DC-link. The absence of such a DC-link capacitor allows to investigate the

hybrid modulation technique which has the aforementioned advantage. The hybrid modu-

lation technique is modified based on the high-frequency link. The thesis investigates this

modified modulation technique on a single stage isolated asymmetrical converter. Unlike

previously used techniques, the proposed modulation shifts the dominant harmonics in the

output voltage to the sidebands of multiples of twice the switching frequency, thereby re-

ducing the output filter size. The thesis presents a detailed description for the generation of

the ideal switch signals using the reference and carrier signals and also provides a qualitative
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analysis to explain the harmonic spectrum of the output voltage.

The incorporation of the switch non-idealities requires the implementation of a commu-

tation strategy. The thesis demonstrates the effect of the non-idealistic nature of the switch

on the output voltage profile with a step-by-step modification in the switching signals as

shown in the later sections. A detailed circuit description including the switch non-idealities

to explain a particular switching transition is presented. The analysis explains the distor-

tions in the output voltage as a result of switch non-idealities in comparison to the ideal

output voltage. The analysis in general can be used for any isolated single stage converter

and will also aid in the real-time implementation of the converter.

• Chapter 1 gives an introduction.

• Chapter 2 briefly presents the proposed circuit topology and the circuit description.

• In Chapter 3 the two investigated ideal modulations are presented along with a com-

parison based on output voltage THD and the harmonics.

• Chapter 4 explains the effect of switch non-idealities on the output voltage profile.

Two glitch compensation techniques have been described in detail to improve the

output voltage profile.

• In Chapter 5 a high-frequency four winding transformer design is detailed. Com-

prehensive analysis has been done to determine the transformer leakage inductances

using 3-D Finite Element Analysis and using Network Analyzer.

• Chapter 6 demonstrates the operation of the proposed converter in case of a module

failure. Also, a filter design comparison is outlined for the two different modulations.

• Chapter 7 shows the hardware setup and the detailed simulation and experimental

results to validate the proposed concepts.

• Chapter 8 outlines two different circuit variations derived from the proposed topology

and the basic simulation results.

• Chapter 9 gives the conclusion and the future work.



Chapter 2

High-Frequency Link Single-Stage

Converter

2.1 Multilevel converter with high-frequency transformer (HFT)

isolation

2.1.1 Circuit configuration

As shown in Fig. 2.1, in order to interface low voltage renewables having nominal dc volt-

age, Vin with a high voltage three-phase grid, full-bridge modules on the primary side of

multi-winding HFTs of all three-phases are connected in parallel and on the secondary side

AC-AC converter modules of each phase are connected in series. The number of AC-AC

converter modules (Nm) required in each phase to interface with a three-phase grid, can be

computed using (8.1). The voltage on the secondary side of the multi-winding transformer

is nsiVin, where, nsi : i ǫ {1, 2...Nm} is the turns ratio of each isolated secondary winding

to primary winding. Nm depends on vll, the rms line-line voltage of the three-phase grid

and nVin, the voltage across the secondary winding of the HFT. Considering, close to 50%

de-rating of the switches, vr the rating of the IGBTs that will be used to design the AC-AC

converter module is given by (8.3). Nm, series connected modules in each phase will result

in a phase-neutral output voltage having nl number of levels as given by (2.3). Each AC-AC

converter module consists of eight IGBTs, and hence, the total number of IGBTs in each

phase is Nsw and can be computed using (2.4).

Nm =

√
2vll√
3nVin

(2.1)

8
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vr =
nVin

0.5
(2.2)

nl = 2Nm + 1 (2.3)

Nsw = 8Nm (2.4)

Typically, in a cascaded system, all the converter modules are symmetrical. Suppose,

Fig. 2.1 is considered to be a symmetrical converter topology, then all the transformer

secondary windings, ns1 = ns2 = ...nsNm = n will have identical turns ratio. Also, the

IGBTs in all the series connected AC-AC converter modules will have the same voltage

rating. However, it is also possible to design the multi-winding transformer such that all

the isolated secondary windings have unequal turns ratio; ns1 6= ns2 6= ...nsNm . This will

result in higher number of output voltage levels with less number of converter modules.

However, each of the AC-AC converter module needs to have IGBTs rated at different

voltages.

2.1.2 Evaluation of circuit configuration based on system complexity

Table 2.1 shows a comparison of the number of IGBTs and transformer secondary windings

required to realize the grid voltage based on the voltage rating of the IGBT. The number

of AC-AC converter modules to be connected in series, the number of output voltage levels

and the total number of IGBTs in each phase are calculated using (8.1), (2.3) and (2.4)

respectively and shown in Table 2.1. In Table 2.1, a refers to the case in which the grid

voltage is realized using 6.5 kV IGBTs. This results in only five levels in the output voltage

resulting in a high output voltage THD. As shown in case b and c, with the symmetrical

modules, the number of output voltage levels can be increased by selecting lower voltage

rating IGBTs. However, this will increase the number of IGBTs and the transformer sec-

ondary windings as shown in Table 2.1. Table 2.1 case d, is of the proposed asymmetrical

converter topology in which the turns ratio of the secondary windings are asymmetrical.

Several configurations of single-stage symmetrical and asymmetrical multilevel converters

(7- S: 7-level symmetrical converter; 7- AS: 7- level asymmetrical converter and so on) have

been compared based on system complexity as shown in Table 2.2. The number of switches

along with the associated isolated gate-drivers and digital signals, the number of isolated

secondary windings, the number of arithmetic and logical operations to generate the ideal

switch signals and the resulting THD of a three-phase system have been summarized in Ta-

ble 2.2. Based on the data, a normalized index is computed using [26] and shown in Table
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2.3. As seen from Table 2.2, in comparison to 15- AS configuration only 7-S and 7-AS con-

figurations have lower control complexity. However, the THD of a seven level converter is

much higher. The normalized index in Table 2.3, shows that the control complexity (based

on ALOs) in particular in asymmetrical fifteen level configuration though not the minimum,

but in terms of normalized index and overall system performance is superior compared to

other configurations.

           

Energy Systems

Full

Bridge

Full

Bridge

Multi- Winding MFT

Full

Bridge

La

Lc

Lb

n

  AC/AC

 Modules   

  AC/AC

 Modules   

  AC/AC

 Modules   

vga

vgb

vgc

Figure 2.1: Block diagram of proposed topology.

Table 2.1: Switch count for 500 kW/7.2 kV interface

Case Output Voltage Switch Rating Isolated Secondary Nsw

a. 5 6.5 kV 2 16

b. 9 3.5 kV 4 32

c. 15 1.7 kV 7 56

d. 15

6.5 kV 1 8

3.5 kV 1 8

1.7 kV 1 8
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Table 2.2: System Complexity

Levels Switches THD ALO Sec. Windings

7- S 84 19.61 114 3

7- AS 60 19.61 90 2

9- S 108 14.81 150 4

11- S 132 12.02 186 5

15- S 180 8.62 258 7

15- AS 84 8.62 150 3

17- S 204 7.59 294 8

27- AS 108 4.66 210 4

Table 2.3: Normalized index value

Levels Switches THD ALO Sec. Windings Total

7- S 0.17 1 0.12 0.17 1.46

7- AS 0 1 0 0 1

9- S 0.33 0.68 0.29 0.33 1.63

11- S 0.5 0.49 0.47 0.5 1.96

15- S 0.83 0.26 0.82 0.83 2.74

15- AS 0.17 0.26 0.29 0.17 0.89

17- S 1 0.2 1 1 3.2

27- AS 0.33 0 0.59 0.33 1.25
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Figure 2.2: Ideal output voltage: (a) seven level;(b) fifteen level; (c)twenty seven level;
Harmonic spectrum of ideal output voltage: (d) seven level;(e) fifteen level; (f)twenty seven
level
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Figure 2.3: Comparison of different configurations based on normalized index parameters
for: control complexity, number of switches, transformer secondary windings and THD

2.1.3 Description of the circuit configuration
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Figure 2.4: Detailed per-phase circuit diagram of isolated asymmetrical multilevel converter
topology.

Fig. 2.4 shows the per phase circuit configuration of the proposed converter topology.

In each phase i : a, b, c, the full-bridge module consists of switches Pi1-Pi4. The output

of the full-bridge is connected to the primary winding of a HFT having three secondary
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windings with an asymmetrical turns ratio of n:2n:4n as shown in Fig. 2.4 (highlighted

in red). Such an asymmetry, results in fifteen levels in the output voltage, same as in

Table 2.1 case c, but with only three series connected AC-AC converter modules and three

transformer secondaries per phase. Each AC-AC converter module is connected to an

isolated transformer secondary winding. As shown in Table 2.1, case d and Fig. 2.4, the

AC-AC converter Module I should have IGBTs rated at 6.5 kV, whereas Module II should

have IGBTs rated at 3.5 kV and Module III at 1.7 kV. Each module consists of four bi-

directional switches S1a-S4a. The bi-directional switch, S1a can be realized by connecting

two anti-parallel IGBTs (S1a1 and S1a2) in a common emitter configuration as shown in Fig.

2.4. In each phase, all the AC-AC converter modules are connected in series on the output

side. The module output voltage of Modules I, II and III are va1, va2 and va3 respectively.

The net phase-neutral output voltage of the three series connected modules is va. The

square currents through the leakage inductance of the transformer due to the switching

of AC-AC converter module requires a clamp circuit. The circuit comprises of a diode

full-bridge connected in parallel to the transformer windings to avoid any over-voltage.



Chapter 3

Ideal Modulation

3.1 Modulation-I: Modified Unipolar Modulation

3.1.1 Modulation of primary side full-bridge converter

The primary side full-bridge consists of four unidirectional switches Pa1 − Pa4. In each leg,

the two switches are regulated in a complementary manner to avoid the short-circuit of

input dc voltage. The switches are regulated at 50% to generate a square voltage across

the transformer primary winding. Switches Pa1 and Pa4 are controlled by signal, p1 and the

other two switches are controlled by signal p2. The switching strategy leads to a generation

of +Vin (when signal p1 is high) and −Vin (when signal p2 is high) voltage at the transformer

primary winding terminal (vp). Hence, the voltages across the three isolated secondary

windings will be as given in (3.1), (3.2) and (3.3) respectively.

vsa1 = ±4nVin (3.1)

vsa2 = ±2nVin (3.2)

vsa3 = ±nVin (3.3)

3.1.2 Modulation of secondary side AC-AC converter modules

The three AC-AC converter modules connected to each of the three isolated secondary

windings, have to be controlled, so as to generate the multilevel phase-neutral output voltage

from the link voltage that is present across the terminals of each secondary winding. The

ideal modulation strategy for the proposed converter topology for phase, a is explained.

Same modulation strategy will apply for phase, b and c. Fig. 3.1a shows the implementation

14
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circuit for the generation of the ideal signals of the switches of the AC-AC converter module.

Two complementary sinusoidal references are compared with seven level shifted carriers to

obtain seven digital signals, d1 - d7, as in a uni-polar modulation [71]. The carrier waveform

used to generate the ideal digital signals, is at the link frequency. As shown in Fig. 3.1a,

three ideal signals, p1a - p3a are generated from the logical operation of seven digital signals.

Similarly, from the digital signals obtained by comparing the complementary sinusoidal

reference with the level shifted carriers as shown in Fig. 3.1a, three more signals n1a − n3a

can be generated. In order to generate positive module output voltages, when the link

voltage, vpa is positive (that is, when signal p1 is high), p1a, p2a and p3a are q1a, q5a and q9a

signals respectively and n1a, n2a and n3a are q2a, q6a and q10a signals respectively as shown

in Fig. 3.1a. When the link voltage turns negative (that is, when signal p1 is low), the

signals are interchanged to generate the required output voltage. The modulation is similar

to the uni-polar modulation technique [71] except that the signals are modified based on

the high-frequency link polarity. The modified signals are then given to the switches in the

three AC-AC converter modules in each phase.

p1a = d4 (3.4)

p2a = d2 ⊕ d4 ⊕ d6 (3.5)

p3a = d1 ⊕ d3 ⊕ d5 ⊕ d7 ⊕ p2a (3.6)
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Figure 3.1: (a) Generation of ideal modified signals;(b) Switching signals of primary side
full-bridge and AC-AC converter Module I followed by the phase-neutral output voltage,
va: Ideal signals without four-step commutation of secondary side bi-directional switches
and no dead time of primary side switches.

3.1.3 Generation of specific output voltage level

Module I, va1 Module II, va2 Module III, va3 Output Voltage, va

4nVin 2nVin nVin ↔ 0 7nVin ↔ 6nVin

4nVin 2nVin ↔ 0 0 ↔ nVin 6nVin ↔ 5nVin

4nVin 0 nVin ↔ 0 5nVin ↔ 4nVin

4nVin ↔ 0 0 ↔ 2nVin 0 ↔ nVin 4nVin ↔ 3nVin

0 2nVin nVin ↔ 0 3nVin ↔ 2nVin

0 2nVin ↔ 0 0 ↔ nVin 2nVin ↔ nVin

0 0 nVin ↔ 0 nVin ↔ 0

Table 3.1: Module and total phase-to-neutral output voltages

Table 8.1 shows the output voltage across each of the three AC-AC converter module to

generate seven positive levels in the phase-neutral output voltage. As shown in Table 8.1,

for a particular output voltage level generation, if the module output voltage is constant

then it will switch only when the the link voltage switches otherwise it will switch even
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though the link voltage is constant. Fig. 3.2 shows the output voltage across Modules

I, II and III followed by the total phase-neutral voltage, va depicting the fifteen levels,

with three AC-AC converter modules in each phase. To illustrate with an example for

phase a, consider the generation of the output voltage 7nVin ↔ 6nVin. Fig. 3.1b shows

the switching signals of the primary side full-bridge switches followed by the ideal signals

of the bi-directional switches in Module I. The signals q1a-q4a correspond to bi-directional

switches S1a-S4a respectively. In case of ideal switches, both uni-directional switches S1a1

and S1a2 forming a bi-directional switch, S1a can be controlled using one signal, q1a. As

shown in Table 8.1, irrespective of the link voltage being positive or negative, Modules I

and II have to generate a constant voltage of 4nVin and 2nVin respectively and Module III

has to generate a voltage that is pulsating between nVin and zero. The left leg switches of

the AC-AC converter module are controlled by p1 signal whereas, the right leg switches are

controlled by p2. This implies that as shown in Fig. 3.1b, when the link voltage switches

from negative (signal p2 is high) to positive (signal p1 is high), the bi-directional switches

that are conducting, transition from (S2a and S3a) in Module I; and (S6a and S7a) in Module

II to (S1a and S4a) in Module I; and (S5a and S8a) in Module II to maintain a constant

module output voltage of 4nVin and 2nVin respectively. Switching in Module III will be

similar to obtain nVin. But Module III also generates a zero voltage across the output

terminals as shown in Table 8.1. For this, both the bottom bi-directional switches will be

ON to provide a path for the output current to free-wheel, irrespective of the link voltage

being positive or negative. In a similar manner, the switches are controlled to achieve other

voltage levels.
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Figure 3.2: Voltage waveforms for case 3.1b for 1 pu Vin and n= 1

3.2 Modulation-II: Modified Hybrid Modulation

3.2.1 Modulation of primary side converter

The ideal modulation technique for phase, a is described in this section. Same applies for

phase, b and c. In the primary side H-bridge, each diagonal pair of switches is regulated

in a complementary manner at 50 % duty ratio. Diagonal pair of switches Pa1 and Pa4 is

controlled by signal p1 and the other diagonal pair of switches is controlled by p2 resulting

in a following link voltage, vpa across the transformer primary winding:

vpa =




+Vin p1 = 1, p2 = 0

−Vin p1 = 0, p2 = 1
(3.7)

ma =
V̂a,1

7nVin

(3.8)

where, V̂a,1 is the peak value of the fundamental output voltage.

3.2.2 Signal generation for switches of secondary side modules

The voltages across the three isolated secondary windings, vsa1, vsa2 and vsa3 will be 4n vpa,

2n vpa and n vpa respectively. The three AC-AC converter modules connected to each of
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the three isolated secondary windings, are modulated, so as to generate a multilevel phase-

to-neutral output voltage. The modulation index, ma is given in (7.2). Table 3.2 shows the

output voltage across each of the three AC-AC converter modules to generate a multilevel

output voltage. For simplicity, the switches of the AC-AC converter modules are considered

to be ideal. Similar to the primary side H-bridge modulation, two bi-directional switches

of each leg are controlled in a complementary fashion to avoid shorting of the transformer

secondary winding.

Table 3.2: Modulation Technique for Different Positive Levels in Phase-to-Neutral Output
Voltage

Module I Module II Module III Output Voltage

4nVin 2nVin nVin ↔ 0 7nVin ↔ 6nVin

4nVin 2nVin 0 ↔ -nVin 6nVin ↔ 5nVin

4nVin 2nVin ↔ 0 -nVin ↔ 0 5nVin ↔ 4nVin

4nVin 0 ↔ -2nVin 0 ↔ nVin 4nVin ↔ 3nVin

4nVin -2nVin nVin ↔ 0 3nVin ↔ 2nVin

4nVin -2nVin 0 ↔ -nVin 2nVin ↔ nVin

4nVin ↔ 0 -2nVin ↔ 0 -nVin ↔ 0 nVin ↔ 0
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Figure 3.3: (a) Generation of ideal modified signals;(b) Switching signals of primary side
full-bridge and AC-AC converter Module I followed by the phase-neutral output voltage,
va: Ideal signals without four-step commutation of secondary side bi-directional switches
and no dead time of primary side switches.

Hence, ideally each leg of the AC-AC converter module can be controlled with one

switching signal. Signals s1a and s2a are for the top bi-directional switch in left and right

leg respectively of Module I (shown in Fig. 2.1). Similarly, s5a and s6a are signals for the

switches of Module II and s9a and s10 of Module III. The ideal switch signals are generated

using seven level shifted carriers and two complementary sinusoidal reference signals as

shown in Fig. 3.4a. In order to generate seven positive levels in the output voltage these

carriers are compared with a sinusoidal reference as shown in Fig. 3.3a; such that whenever

the sinusoidal reference is greater than the carrier the logic is 1, otherwise 0. As shown in

Fig. 3.3a, three ideal signals, p1a - p3a are generated from the logical operation of seven

digital signals as under:
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Figure 3.4: (a) Seven carrier signals and two complementary references to generate fourteen
digital signals.(b) Three ideal signals derived from seven digital signals to generate fifteen
levels using three modules.

These three signals are shown in Fig. 3.4b. Similarly, as shown in Fig. 3.3a, three more

signals n1a − n3a can be generated from seven other digital signals obtained by comparing

the complementary sinusoidal reference with the level shifted carriers. In order to generate

positive module output voltages, when the link voltage, vpa is positive (that is, when signal

p1 is high), p1a, p2a and p3a are s1a, s5a and s9a signals respectively and n1a, n2a and n3a

are s2a, s6a and s10a signals respectively as shown in Fig. 3.3a. When the link voltage

turns negative (that is, when signal p1 is low), the signals are interchanged to generate the

required output voltage. It is to be noted that, if according to Table 3.2, the module has

to generate a constant voltage for a specific output voltage level, va, it will switch only

when the link voltage changes polarity. However, if the module has to generate a pulsating

voltage (signal p3a), then as shown in Fig. 3.4b it will switch even though the link voltage

is constant.

3.2.3 Generation of specific output voltage level

To illustrate with an example for phase a, consider the generation of the output voltage

6nVin ↔ 5nVin. As shown in Table 3.2, irrespective of the link voltage polarity, Modules

I and II have to generate a constant voltage of 4nVin and 2nVin respectively, and Module

III has to generate a voltage that is pulsating between 0 and −nVin. Fig. 3.3b shows the

ideal switching signals of the primary side H-bridge switches, p1 and p2 followed by the

signals of the two bi-directional switches in the left leg: (s1a and s3a) of Module I and (s9a

and s11a) of Module III in order to generate va=5nVin. Fig. 4.13 shows a detailed circuit

diagram highlighting different modes of operation in order to maintain an output voltage of

5nVin even though the link voltage changes from +Vin to −Vin. As modules I and II switch
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only when the input H-bridge converter changes state, the signals (s1a and s5a) of the left

leg top bi-directional switch and signals (s2a and s6a) of the right leg top bi-directional

switch of both modules follow signals p1 and p2 respectively. Mode 1 of Fig. 3.3b shows

that signal p1 is high, corresponding to a link voltage, vpa=+Vin as explained earlier. Mode

1 of Fig. 4.13a shows the corresponding bi-directional switch set in both modules that

are ON resulting in module output voltages of 4nVin and 2nVin respectively. As Module

III needs to generate a voltage of −nVin, the switching signals will be complimentary as

shown in Fig. 3.3b. Similarly, as shown in Fig. 4.12a, when the signal p2 is high, the

corresponding bi-directional switch set in all three modules are ON, such that the phase-to-

neutral output voltage is still 5nVin. In order to generate 6nVin, Module III has to generate

a zero voltage. Whenever a zero voltage is to be generated, two bi-directional switches of

both legs in Module III: S11a and S12a are ON to provide a free-wheeling path to the current

irrespective of the link voltage being positive or negative. In a similar manner, the switches

are controlled to achieve other levels.
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Figure 3.5: Output voltages, va1, va2 and va3 across each of the three Modules I, II and
III respectively, followed by the total phase-to-neutral output voltage, va, with a switching
frequency of 15 kHz using the proposed modulation
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3.3 Harmonic spectrum of voltage for both modulation tech-

niques

3.3.1 Spectrum of module output voltage: Modulation-I

Fig. 3.6 shows the module output voltages and the harmonic spectrum for the modified

uni-polar modulation technique. As shown in Fig. 3.6a the leg voltage, vl1 generates both

positive and zero output voltage during four of the seven positive output voltage levels in a

fundamental cycle. As the modulation technique is implemented on the converter topology

proposed in [63], the right leg also generates both negative and zero voltage during four of

the seven positive output voltage levels. This is different as compared to the conventional

modulation techniques with no zero voltages. However, as shown in Fig. 3.6b, the extra

switching of the right leg to generate the positive output voltage level still has dominant

voltage harmonics at the switching frequency and its sidebands not only for the two leg

voltages but also for the module voltage, va1. Fig. 3.6c shows the two leg voltages and the

module output voltage, va1 during the PWM operation. As it can be clearly seen the right

leg of the module does generate a negative voltage but as shown in Fig. 3.6d, the harmonics

remain at the sidebands of 15kHz.
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Figure 3.6: Leg voltages, vl1, vl2 of Module I followed by the module output voltage, va1 us-
ing modified uni-polar modulation technique (a) Fundamental cycle; (b) Harmonic spectrum
; (c) zoomed in to show the voltage profile during PWM operation; (d) Harmonic spectrum
at 15kHz to show that the switching frequency harmonic component is not canceled in the
module output voltage, va1.
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3.3.2 Spectrum of module output voltage: Modulation-II

Fig. 3.7 shows the module output voltages and the harmonic spectrum for the modified

hybrid modulation technique. As shown in Fig. 3.7a the leg voltage, vl1 generates both

positive and zero output voltage throughout the seven positive output voltage levels in a

fundamental cycle. As the modulation technique is implemented on the converter topology,

the right leg also generates both negative and zero voltage during all the seven positive

output voltage levels. As shown in Fig. 3.7b, the output voltage has dominant voltage

harmonics at the sidebands of twice the switching frequency although the two leg voltages

have dominant harmonic at the switching frequency and its sidebands. Fig. 3.7c shows the

two leg voltages and the module output voltage, va1 during the PWM operation. As it can

be clearly seen both the left and the right leg of the module switch and this results in the

output voltage having multiple pulses in a 15kHz interval. Hence, as shown in Fig. 3.7d,

the harmonics cancel out at 15kHz and its sidebands.

3.3.3 Spectrum of output voltage

Fig. 3.8a and Fig. 3.8b shows the output voltage across each of the three modules followed

by total voltage, va using the proposed modulation and the modified uni-polar modulation

technique by considering ideal switches of both the primary side H-bridge and the AC-AC

converter modules. Fig. 3.8c shows the harmonic spectrum of the output voltage, va shown

in Fig. 3.8a. As shown in the Fig. 3.8c, the dominant harmonics are at 30kHz which

is twice the switching frequency. Fig. 3.8d shows the harmonic spectrum of the output

voltage, va shown in Fig. 3.8b. As shown in the Fig. 3.8d, the dominant harmonics are

at the switching frequency of 15kHz. The harmonic spectrum of the output voltage using

both the techniques show that, the proposed modulation allows to achieve the dominant

harmonics at twice the switching frequency which leads to a smaller grid filter inductance.
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Figure 3.7: (a)Leg voltages, vl1, vl2 of Module I followed by the module output voltage,
va1; (b) Harmonic spectrum of the leg voltages, vl1, vl2 of Module I followed by the module
output voltage, va1; (c)Leg voltages, vl1, vl2 of Module I followed by the module output
voltage, va1 zoomed to show the switching during PWM operation; (d) Harmonic spectrum
of the three voltages at 15kHz to show the cancellation of the switching frequency harmonic
component in the module output voltage, va1.
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Figure 3.8: Output voltages, va1, va2 and va3 across each of the three Modules I, II and
III respectively, followed by the total phase-to-neutral output voltage, va, with a switching
frequency of 15 kHz. (a) Proposed Modulation (b) Modified uni-polar modulation presented
in [63]. Harmonic spectrum of the output voltage with a switching frequency of 15 kHz(c)
Proposed Modulation (d) Modified uni-polar modulation technique



Chapter 4

Non-Ideal Modulation

4.1 Modulation-I: Incorporation of Four-step commutation

and Dead-time

4.1.1 Effect on output voltage profile

The previous chapter described the process of the ideal switching from the bottom bi-

directional switch S3a to S1a in the left leg of Module I when the link switches from −Vin

to +Vin in order to maintain constant 7nVin output voltage. In this section, the effect of

switch non-idealities on the phase-neutral output voltage is investigated. The primary side

full-bridge switches are controlled using signals a and b with a dead-time interval. On the

secondary side each leg of AC-AC converter module follows a four-step commutation algo-

rithm, so that the continuous output current is not interrupted and the isolated secondary

windings are not short-circuited. Hence, both uni-directional switches S1a1 and S1a2 form-

ing a bi-directional switch are controlled independently using q1a1 and q1a2 respectively. For

this case, the same switching transition occurs in all AC-AC converter modules. Hence, the

switching transition is described by considering only the primary side full-bridge module

and Module I of phase-a. Fig. 4.1a shows the switching signals of the primary side switches

and the bi-directional switches of Module I followed by the phase-neutral output voltage

for that switching transition. The transition will occur in six modes of operation depicted

below as mode I to mode VI in Fig. 4.2: blue indicates the gate signal and red indicates

the current path. The output current direction is as shown in Fig. 4.2, and assumed to be

positive. A detailed description of different modes is explained below:

27



28

a

b

q1a1

q1a2

q2a1

q2a2

q3a1

q3a2

q4a1

I II III IV V VI

q4a2

v
a

-7
7

(a)

a∗

b∗

q1a1

q1a2

q2a1

q2a2

q3a1

q3a2

q4a1

i ii iii iv v vi

q4a2

v
a

0
7

(b)

a∗

b∗

q1a1

q1a2

q2a1

q2a2

q3a1

q3a2

q4a1

a b c d e f

q4a2

v
a

0
7

(c)

Figure 4.1: Switching signals of primary side full-bridge and AC-AC converter Module I fol-
lowed by the phase-neutral output voltage, va: (a) with four-step commutation of secondary
side bi-directional switches and dead time of primary side switches (b) with four-step com-
mutation of secondary side bi-directional switches and dead time of primary side switches
along with glitch compensation-I (c) with four-step commutation of secondary side bi-
directional switches and dead time of primary side switches along with glitch compensation-I
for reverse power flow
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Figure 4.2: Circuit diagram for the various modes of opearation for the case 4.1a for 1 pu
input voltage, Vin and n= 1

(1) Mode I: In this mode, as shown in Fig. 4.1a, b is high and a is low. Mode I of Fig.

4.2 shows the circuit representation in which the switches Pa2 and Pa3 are ON. This

will result in a negative voltage −4nVin across the link, on the transformer secondary

side, as indicated by the arrow pointing downwards. As shown in Fig. 4.1a signals

q2a1 and q2a2; q3a1 and q3a2 are high. This corresponds to the bi-directional switches

S2a and S3a being ON, as shown in mode I of Fig. 4.2 resulting in a positive module

output voltage, va1= 4nVin. Similarly, corresponding switches in Modules II and III

will also conduct such that, va2= 2nVin; va3= nVin and the total phase-neutral output

voltage, va is 7nVin as shown in 4.1a.

2) Mode II: At the beginning of mode II, as shown in Fig. 4.1a, signal b is gated low.

Corresponding to that, as explained in ideal modulation section, signal q2a goes low.
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Hence, the top bi-directional switch of the right leg undergoes the first step of four-

step commutation (FSC): the non-conducting switch (S2a1) of the outgoing switch

pair (S2a) is gated low (q2a1). Also, in this mode, signal a and hence, the ideal signal,

q1a of left leg, does not undergo any switching transition. As shown in mode II of

Fig. 4.2, the link current, isa1 is negative. On the transformer primary side, as the

link current is negative and all switches are turned OFF, as shown in mode II of

Fig. 4.2 diodes of the switches Pa1 and Pa4 conduct, and this results in positive link

voltage +4nVin, shown by the arrow pointing upwards. For the positive link voltage,

as the switch-diode pair explained above on the secondary side conduct, va voltage

of, −7nVin, as shown in mode II of Fig. 4.1a is generated.

3) Mode III: Mode III of Fig. 4.2 shows the circuit representation in which the switches

Pa1 and Pa4 are ON, as signal a goes high. This will result in +4nVin across the link

on the secondary side, as shown by the arrow pointing upwards. On the secondary

side, as signal a undergoes transition hence, the ideal signal, q3a goes low. Hence,

in the left leg the first step of FSC occurs: the non-conducting switch (S3a1) of the

outgoing switch pair (S3a) is gated OFF (q3a1). The current continues to flow through

S3a2 and D3a1 pair. In case of the right leg switch pair, the second step of FSC occurs:

conducting switch (S4a1) of the incoming switch pair (S4a) is gated ON (q4a1). In the

right leg, even though S2a2 is still ON, as the link voltage is positive, the diode D2a1

is reverse biased. Hence, the current starts to flow through the S4a1 and D4a2 pair.

This results in a zero voltage, va as shown in mode III of Fig. 4.1a.

4) Mode IV: In this mode, +4nVin voltage across the link on the secondary side is

maintained. As shown in mode IV of Fig. 4.2, in the left leg of the secondary side

module, second step of FSC occurs: the conducting switch (S1a1) of the incoming

switch pair (S1a) is gated ON (q1a1). In the left leg, even though S3a2 is still ON, as

the link voltage is positive, the diode D3a1 is reverse biased. Hence, the current flows

through the S1a1 and D1a2 pair, as D1a2 is forward biased. In case of the right leg

switch pair, the third step of FSC occurs: the conducting switch (S2a2) of the outgoing

switch pair (S2a) is gated OFF (q2a2) and the current continues to flow through S4a1

and D4a2 pair as in mode III. 7nVin output voltage, is generated as shown in mode

IV of Fig. 4.1a.

5) Mode V: For +4nVin across the link on the secondary side, as shown in Fig. 4.1a, in

the left leg, the third step of FSC occurs: the conducting switch (S3a2) of the outgoing

switch pair (S3a) in the left leg is gated OFF (q3a2). The current continues to flow

through the S1a1 and D1a2 pair. In case of the right leg switch pair, the last step of
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the FSC takes place. The non-conducting switch (S4a2) of the incoming switch pair

(S4a) is gated ON (q4a2). This is represented as the bi-directional switch S4a being

turned ON as shown in mode V of Fig4.2. 7nVin output voltage is maintained, as

shown in mode V of Fig. 4.1a.

6) Mode VI: In this mode, for +4nVin across the link on the secondary side, as shown

in Fig. 4.1a, in the left leg the last step of FSC occurs: the non-conducting switch

(S1a2) of the incoming switch pair (S1a) is gated ON (q1a2). This is represented as

the bi-directional switch S1a is turned ON.
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Figure 4.3: Circuit diagram for the various modes of operation for the case 4.1b

The different modes of operation as explained above show that, contrary to the ideal

case wherein the output voltage, va is always positive 7nVin as shown in Fig. 3.2, the output

voltage is −7nVin in mode II and zero in mode III as shown in Fig. 4.1a. Fig. 4.4 shows the

output voltage across Modules I, II and III followed by, va with switch non-idealities. The

generated output voltage has a voltage profile different as compared to the ideal modulation

strategy as highlighted by the pink and blue patches in the output voltage, va.

4.1.2 Glitch Compensation-I

In this section, a compensation technique is proposed to negate the negative voltage glitch

which occurs in mode II of Fig. 4.1a. Fig. 4.3 shows the different modes of circuit operation

for the exact same transition as in the previous section but with glitch compensation. Modes
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v and vi of Glitch Compensation-I are same as modes V and V I, and hence, not shown in

Fig. 4.3. A detailed description of different modes of operation is explained below:

1) Mode i: In this mode, as shown in Fig. 4.1b and Fig. 4.3, the switching signals and

the circuit operation is exactly the same as mode I.

2) Mode ii: In this mode, as shown in Fig. 4.1b, b∗ is still ON. This mode of operation is

different from mode II of Fig. 4.1a and Fig. 4.2 where b was gated OFF. The secondary

side switching is still determined by signals a and b. Hence, it remains the same as

that of mode II. As shown in mode ii of Fig. 4.3, as the switches Pa2 and Pa3 still

conduct, this maintains the link voltage on the secondary side as −4nVin, as shown by

the arrow pointing downwards. For the negative link voltage, the switch-diode pair

as explained above on the secondary side conduct, resulting in 7nVin voltage, va as

shown in mode ii of Fig. 4.1b, hence, negating the negative voltage −7nVin as shown

in mode II of Fig. 4.1a.

3) Mode iii: In this mode, as shown in Fig. 4.1b, b∗ is gated OFF. All the switches of

the primary side are gated OFF. On the secondary side, as explained in mode III,

output current freewheels through the bottom two switch-diode pair resulting in zero

voltage across the link and the output as shown in mode III of Fig. 4.1b.

4) Mode iv: In this mode, as shown in Fig. 4.1b, a∗ is gated ON. As shown in mode iv

of Fig. 4.3 this results in a positive voltage +4nVin across the link. For the positive

link voltage as explained above in mode IV, the corresponding switch-diode pair on

the secondary side conduct, resulting in 7nVin voltage, va as shown in mode iv of Fig.

4.1b.

5) Mode v and vi: The modes of operation are the same as in modes V and V I.

The different modes of operation as explained above, show that the glitch compensation

allows to negate the −7nVin voltage occurring in mode II of Fig. 4.1a, as shown in mode ii

of Fig. 4.1b. Fig. 4.5 shows the output voltage across Modules I, II and III followed by, va

with switch non-idealities. The output voltage does not go to −7nVin but still goes to zero

in each switching cycle. Along with the distortion caused during the link voltage transition,

the output voltage va, also has distortion during the generation of certain voltage levels

when the link is constant as shown in Fig. 4.4 (highlighted by blue patches) which are not

negated by glitch compensation-I as shown in Fig. 4.5.
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Figure 4.4: Voltage waveforms of series connected converter modules followed by phase-
neutral voltage for a fundamental cycle for 1 pu input voltage, Vin and n= 1: for case Fig.
4.1a without any compensation.
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Figure 4.5: Voltage waveforms of series connected converter modules followed by phase-
neutral voltage for a fundamental cycle for 1 pu input voltage, Vin and n= 1: for Fig. 4.1b
with Glitch Compensation-I.
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Figure 4.6: Voltage waveforms of series connected converter modules followed by phase-
neutral voltage for a fundamental cycle for 1 pu input voltage, Vin and n= 1: for case 4.1c
with glitch compensation-I and reverse power flow.
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Figure 4.7: Voltage waveforms of series connected converter modules followed by phase-
neutral voltage for a fundamental cycle for 1 pu input voltage, Vin and n= 1: with Glitch
Compensation I and II.

4.1.3 Glitch Compensation-I (during reverse power flow)

The modulation and commutation pertaining to the power flow in the reverse direction that

is from the three-phase grid to the DC supply is shown in Fig. 4.1c. It is to be noted that

the primary side signals and the secondary side ideal switch signals will remain the same but
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the commutation will change as the current direction is reversed. Fig. 4.1c and 4.8 show

the switching signals and the modes of circuit operation respectively for the exact same

transition but with the current direction reversed. Based on the current direction, as shown

in Fig. 4.1c, the corresponding switches conduct on the secondary side converter during

the various modes of operation. The resulting output voltage after glitch compensation-I is

7nVin in modes a, b, e and f and zero in c. This is similar to Fig. 4.1b for positive current.

However, in mode d, the operation is different as shown below:
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Figure 4.8: Circuit diagram for the various modes of opearation for the case 4.1c for 1 pu
input voltage, Vin and n= 1

4) Mode d: On the secondary side, as shown in mode d of Fig. 4.8, in the left leg, second

step of FSC occurs: the conducting switch (S1a2) of the incoming switch pair (S1a)

is gated ON (q1a2). In the left leg, even though S1a2 is gated ON, as the link voltage

is positive, the diode D1a1 is reverse biased. Hence, the current continues to flow

through the S3a1 and D3a2 pair, as D3a2 is forward biased. This mode of operation is

different as compared to mode iv of Fig. 4.1b where the transition in the left leg was

natural, unlike the forced commutation in this case. In case of the right leg switch

pair, the third step of FSC occurs: the conducting switch (S2a1) of the outgoing switch

pair (S2a) is gated OFF (q2a1) and the current continues to flow through S4a2 and

D4a1 pair as in mode c. Switches as shown in mode d of Fig. 4.8 conduct, resulting

in an additional zero voltage, va interval as shown in mode d of Fig. 4.1c, different

from mode iv of Fig. 4.1b. Fig. 4.6 shows the output voltage across Modules I, II and

III followed by, va with switch non-idealities. The output voltage profile is similar to

Fig. 4.5, except that it has an additional zero voltage interval.

The top plot of Fig. 4.9a, is the output voltage considering both the four-step commu-

tation of the bi-directional switches and the dead-time of the primary side switches. This

results in a large input current ripple as shown in the middle plot of Fig. 4.9a of one phase

and bottom plot of Fig. 4.9a of all three phases. The high input ripple current will require
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large passive components on the input side. However, as explained earlier, by incorporating

glitch compensation-I the output voltage improves as shown in top plot of Fig. 4.9b, which

results in the reduction of the input current ripple as shown in the middle and the bottom

plots of Fig. 4.9b of the single and three phases respectively. Hence, the modifications in

the switching signals allow to improve the power quality.
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Figure 4.9: (Top) Output phase voltage, va (a) without any glitch compensation, (b) with
glitch compensation-I; (Middle) Input current of single H-bridge (a) without any glitch
compensation, (b) with glitch compensation-I; (Bottom) Total input current of all three
H-bridges (a) without any glitch compensation, (b) with glitch compensation-I
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4.1.4 Glitch Compensation-II
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Figure 4.10: Switching signals of left leg bi-directional switches of all three AC-AC converter
modules followed by the module and the phase-neutral output voltage: (a) ideal signals with-
out four-step commutation; (b) with four-step commutation of secondary side bi-directional
switches; (c) with four-step commutation of secondary side bi-directional switches and glitch
compensation-II

As shown in Fig. 4.3 and 4.5 the glitches (highlighted by blue patches) in va are caused

due to the interdependence of the three AC-AC converter modules in each phase. The

section explains the cause and the compensation done to avoid the glitch. In Fig. 2.4 at

a specific instant of time, consider the link voltages vsa1, vsa2 and vsa3 and the output

current, ia to be positive. The output voltage level to be synthesized is 4nVin → 3nVin. As

shown in Table 8.1, all the modules have to generate a pulsating voltage and hence, all three

modules will undergo switching even though the link voltage is constant, as explained in the

ideal modulation section. Fig. 4.10a shows the ideal switching signals of the bi-directional

switches of the left leg of all the three modules in phase a as throughout the transition,

in the right leg, the bottom bi-directional switch will be ON in all three modules. Also,

the figure shows the output voltage waveform of the series connected converter modules

followed by, va for the above described case. As shown in the Fig. 4.10a, when q1a = 1;

q5a = q9a = 0, va is 4nVin and when q1a = 0; q2a = q3a = 1, va is 3nVin. In case of ideal

modulation, there is no delay during the switch transition and hence, there is no glitch in

the output voltage.
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Figure 4.11: Circuit diagram for the various modes of operation (left) after first step of
FSC resulting in 4nVin (center) after second step of FSC resulting in 7nVin output voltage
instead of 3nVin (right) after second step of FSC with compensation resulting in 3nVin

Fig. 4.10b shows the switching signals for non-ideal bi-directional switches; that is,

with FSC. In Module I, the transition is from the top two uni-directional switch set to the

bottom, whereas for Module II and III the transition is vice-versa. Fig 4.11a shows the

circuit diagram for all three modules when the output voltage, va is 4nVin and the first step

(turn OFF non-conducting switch of the outgoing switch pair) of FSC has already occurred.

To illustrate, the non-conducting switches (S1a2, S7a1 and S11a1) of the outgoing switch pair

(S1a, S7a and S11a) respectively are gated OFF (q1a2, q7a1 and q11a1). Fig. 4.11b shows

the circuit diagram wherein, the conducting switches (S3a2, S5a1 and S9a1) of the incoming

switch pair (S3a, S5a and S9a) are gated ON (q3a2, q5a1 and q9a1) simultaneously as shown in

Fig. 4.10b. As the link voltage is positive, diode D3a1 is reverse biased, but (D5a2 and D9a2)

are forward biased. Hence, in Module I no transition occurs. However, in Modules II and

III the switching transition takes place. Hence, the output voltage is 7nVin instead of 3nVin

as shown in Fig. 4.10b. When q1a1 is gated OFF, the output voltage va1 across Module

I is zero and the total output voltage va, is 3nVin. To summarize, Module I undergoes

forced commutation whereas, Modules II and III undergo natural commutation resulting in

a glitch in the output voltage.
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The glitch in the output voltage can be avoided by delaying the signals of the modules

undergoing natural commutation to match them with the signal of the module undergoing

forced commutation. In this case, as shown in Fig. 4.11c, the conducting switch (S1a1) of the

outgoing switch pair (S1a) is gated OFF (q1a1) and the conducting switches (S5a1 and S9a1)

of the incoming switch pair (S5a and S9a) are gated ON (q5a1 and q9a1) simultaneously as

shown in Fig. 4.10c. This causes Modules II and III to generate 2nVin and nVin respectively

only when, va1 is zero. Hence, the output voltage is 3nVin. However, as shown in Fig. 4.10c,

the third and fourth step of FSC of modules undergoing natural commutation need to be

further delayed.

From Table 8.1 and Fig. 4.5 it can be seen that, glitch in the phase-neutral output

voltage occurs, whenever two or more secondary side modules change state simultaneously

and the primary side remains fixed. Table 4.1, shows the switch which undergoes natural

commutation (this switching is to be delayed to match with the switch undergoing forced

commutation) for a particular output voltage level to be synthesized for a positive link

voltage. Fig. 4.7 shows the output voltage across Modules I, II and III followed by the total

phase-neutral output voltage, va with switch non-idealities after both compensation. The

output voltage still goes to zero in each switching cycle caused because of the dead-time of

primary side switches. The zero interval cannot be avoided but can be minimized by using

devices with extremely fast turn on and turn off times.

Table 4.1: Various instances of Glitch Compensation-II for a constant positive link voltage,
for generating different positive levels in phase-neutral output voltage

Case Output Voltage Switch OFF (Forced) Switch ON(Natural)

I 6nVin → 5nVin

2nVin → nVin

S5a1 S9a1

II 5nVin → 6nVin

nVin → 2nVin

S9a1 S5a1

III 4nVin → 3nVin S1a1 S5a1, S9a1

IV 3nVin → 4nVin S5a1, S9a1 S1a1

4.2 Modulation-II: Incorporation of switch non-idealities

The previous chapter described the ideal modified hybrid modulation technique wherein,

all the switches (that is no turn-on and turn-off times) are considered to be ideal and the

output voltage profile is shown in Fig. 4.2 for a fundamental cycle. This section explains
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the distortions in the phase-to-neutral output voltage because of the modifications in the

switching signals:

i. considering only the switches of primary side H-bridge non-ideal.

ii. to incorporate the four-step commutation strategy.

iii. both (i) and (ii).

4.2.1 Dead-time in the switches of primary side H-bridge

As shown in Fig. 4.12b, a dead-time is incorporated in the primary side H-bridge switch

signals. The switches of the AC-AC converter module are still considered ideal. For the

case considered in the ideal modulation section, as shown in Fig. 4.12b, for the reason

explained earlier, signals s1a, s5a and s10a follow s1 (same as p1) and hence the switching

signals are similar to the ideal modulation as shown in Fig. 4.12a. However, the switching

signal p2 (in this case s2) is high after a dead-time interval. This implies, that the signals

s2a, s6a and s11a are also delayed as compared to the ideal modulation in Fig. 4.12a as

these signals follow s2. But this will require the two bi-directional switches in each leg to

switch simultaneously (S1a turns OFF and S3a turns ON). Due to the switch non-ideality

a four-step commutation strategy is required.

4.2.2 Four-step commutation for switches of AC-AC Module

Each leg of the AC-AC converter module has to undergo a commutation process to satisfy

two conditions:

• The isolated secondary winding connected to the AC-AC converter module is not

short-circuited.

• The output current is not interrupted.

Implementation of the conventional four-step commutation strategy satisfies both the

above conditions. As an example, when the link voltage is negative, if Module III is required

to pulsate from 0 → −nVdc, as explained in ideal modulation above, the output current, Ia

which is assumed as shown in Fig. 4.13, has to switch from S11a to S9a. At a particular

instant of time, the link voltage is negative and uni-directional switch pair, S11a1 and S11a2

are ON. A four-step commutation procedure is to be carried out to switch the currents from

bi-directional switch S11a to switch S9a. The steps to do the same are described below:

In the first step, turn OFF S11a1 (outgoing non-conducting switch), as (S11a2, D11a1)

pair is carrying the current.
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Turn ON the IGBT, S9a1 (incoming conducting switch) after a commutation delay

interval. As the link voltage is negative, diode D9a2 is reverse biased. Hence, the current

will not commutate when S9a1 is turned ON but will continue to flow through (S11a2, D11a1)

pair. Mode 4 of Fig. 4.13b shows the circuit diagram where D9a2 is reverse biased.

Turn OFF the IGBT, S11a2 (outgoing conducting switch), which was carrying the current

after an additional commutation delay interval. At this instant, the current will commutate

to (S9a1, D9a2) pair. This is forced commutation.

Turn ON the IGBT switch, S9a2 (incoming non-conducting switch) in which the diode

D9a2 is carrying the current after one more commutation delay interval. In this manner,

the current will switch from switch S11a to S9a.
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Figure 4.12: (a) Ideal signals without dead-time of primary side H-bridge switches and
without four-step commutation of secondary side bi-directional switches and ideal output
voltage, va.(b) Signals with dead-time of primary side H-bridge switches and without four-
step commutation of secondary side bi-directional switches. (c) Signals with dead-time
of primary side H-bridge switches and with four-step commutation of secondary side bi-
directional switches and the distortion in the output voltage, va.
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4.2.3 Effect on output voltage profile-Switching Cycle Transition

In the above case the link voltage was constant and only the left leg of Module III went

through the transition. But if the link voltage is also changing then the transition will occur

in six modes of operation as depicted in Fig. 4.13.



43

21

S1a2

S3a1

S3a2

D3a1

D3a2

S1a1

S4a2

D1a2 S2a2

D1a1 S2a1

D5a1

S5a2 D5a2

S6a1 D6a1

D6a2S6a2

S7a2 D7a2

D7a1

S8a2

D8a1

D8a2

S9a1

S9a2

D2a1

D2a2

S4a1 D4a1

D4a2

D12a2

D12a1

D10a2

D10a1D9a1 S10a1

D9a2 S10a2

S12a1

S12a2

S11a1

D11a1

Pa4

Pa1 Pa2

Pa3

ipa

S11a2

S5a1

S7a1 S8a1

Ia

S1a2

S3a1

S3a2

D3a1

D3a2

S1a1

S4a2

D1a2 S2a2

D1a1 S2a1

D5a1

S5a2 D5a2

S6a1 D6a1

D6a2S6a2

S7a2 D7a2

D7a1

S8a2

D8a1

D8a2

S9a1

S9a2

D2a1

D2a2

S4a1 D4a1

D4a2

D12a2

D12a1

D10a2

D10a1D9a1 S10a1

D9a2 S10a2

S12a1

S12a2

S11a1

D11a1

Pa4

Pa1 Pa2

Pa3

ipa

S11a2

S5a1

S7a1 S8a1

Ia

D11a2 D11a2

Vdc Vdc

(a)

3 4

Ia

S1a2

S3a1

S3a2

D3a1

D3a2

S1a1

S4a2

D1a2 S2a2

D1a1 S2a1

D5a1

S5a2 D5a2

S6a1 D6a1

D6a2S6a2

S7a2 D7a2

D7a1 S8a1

S8a2

D8a1

D8a2

S9a1

S9a2

D2a1

D2a2

S4a1 D4a1

D4a2

D12a2

D12a1

D10a2

D10a1D9a1 S10a1

D9a2 S10a2

S12a1

S12a2

S11a1

D11a1

Pa4

Pa1 Pa2

Pa3

S11a2

S5a1

S7a1

D11a2

S1a2

S3a1

S3a2

D3a1

D3a2

S1a1

S4a2

D1a2 S2a2

D1a1 S2a1

D5a1

S5a2 D5a2

S6a1 D6a1

D6a2S6a2

S7a2 D7a2

D7a1 S8a1

S8a2

D8a1

D8a2

S9a1

S9a2

D2a1

D2a2

S4a1 D4a1

D4a2

D12a2

D12a1

D10a2

D10a1D9a1 S10a1

D9a2 S10a2

S12a1

S12a2

S11a1

D11a1

Pa4

Pa1 Pa2

Pa3

ipa

S11a2

S5a1

S7a1

D11a2

Vdc Vdc

(b)



44

5 6

S1a2

S3a1

S3a2

D3a1

D3a2

S1a1

S4a2

D1a2 S2a2

D1a1 S2a1

D5a1

S5a2 D5a2

S6a1 D6a1

D6a2S6a2

S7a2 D7a2

D7a1 S8a1

S8a2

D8a1

D8a2

S9a1

S9a2

D2a1

D2a2

S4a1 D4a1

D4a2

D12a2

D12a1

D10a2

D10a1D9a1 S10a1

D9a2 S10a2

S12a1

S12a2

S11a1

D11a1

Pa4

Pa1 Pa2

Pa3

ipa

S11a2

S5a1

S7a1

S1a2

S3a1

S3a2

D3a1

D3a2

S1a1

S4a2

D1a2 S2a2

D1a1 S2a1

D5a1

S5a2 D5a2

S6a1 D6a1

D6a2S6a2

S7a2 D7a2

D7a1 S8a1

S8a2

D8a1

D8a2

S9a1

S9a2

D2a1

D2a2

S4a1 D4a1

D4a2

D12a2

D12a1

D10a2

D10a1D9a1 S10a1

D9a2 S10a2

S12a1

S12a2

S11a1

D11a1

Pa4

Pa1 Pa2

Pa3

ipa

S11a2

S5a1

S7a1

D11a2 D11a2

Ia Ia
Vdc Vdc

(c)

Figure 4.13: Circuit diagram for the various modes of operation for the case Fig. 4.12c.
Blue indicates the gate signals and red indicates the current path.

The modes are explained by considering a case in which the desired output voltage to

be generated is positive, 5nVdc and the current direction is as shown in Fig. 4.13, and

assumed to be positive while the link voltage pulsates from +Vdc to −Vdc. Fig. 4.12c shows

the switching signals of the primary side H-bridge switches (s∗1 and s∗2) which are delayed

by one commutation time to improve the output voltage profile and the two bi-directional

switches of left leg of Module I (S1a and S3a) and Module III (S10a and S11a) followed by

the phase-to-neutral output voltage for the above transition. As the bi-directional switch is

not considered ideal, hence each uni-directional switch is controlled by one switching signal.

As shown in Fig. 4.12c, n1a1 and n1a2 are the signals for uni-directional switch pair S1a1

and S1a2 respectively. The switching signals of the right leg bi-directional switches are not

shown and can be interpreted from Fig.4.13 (Blue color indicates the switch turned ON

and red indicates the current path). For the transition considered, as shown in Table 3.2,

Module I and Module II will behave exactly the same and hence, the switching signals of

Module II are not shown in Fig. 4.12c. A detailed description of the different modes of

circuit operation is explained below:

Mode 1: This mode corresponds to the initial state as described above, wherein the

link voltage is +Vdc and the phase-to-neutral output voltage to be generated is 5nVdc as
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shown in Mode 1 of Fig. 4.12c. Mode 1 of Fig. 4.13a shows the circuit representation,

which depicts the switches ON/OFF in each of the converter module to generate the above

output voltage.

Mode 2: In this mode, s1 goes low but as the actual primary side H-bridge signals are

delayed by one commutation time, hence, the link voltage is still +Vdc. As mentioned earlier

in ideal modulation, as the module output voltage to be generated in Modules I and II are

positive and in Module III is negative, in Modules I and II the left leg top bi-directional

switch signals and in Module III the right leg top bi-directional switch signal follow s1 as

shown in Fig. 4.12c. As s1 goes low, the first step of the four-step commutation process

(turn OFF the outgoing non-conducting switch) starts in left leg of Module I and II and in

right leg of Module III. Whereas in the adjacent leg of each module there is no change in

the switch state. As shown in Mode 2 of Fig. 4.13a, the current path in each of the three

modules show that the phase-to-neutral output voltage will be maintained as in Mode 1 at

5nVdc.

Mode 3: As shown in Fig. 4.12c, on the primary side s∗1 goes low. This means none of

the switches on the primary side H-bridge are ON. On the secondary side, the switches of

the left leg of Modules I and II and right leg of Module III undergo second step of four-step

commutation (turn ON the incoming conducting switch). At this instant, s2 goes high and

hence, the adjacent leg in each module undergo first step of the commutation process. As

shown in Mode 3 of Fig. 4.12c, the phase-to-neutral output voltage will be zero instead

of being maintained as in Mode 1. This is because as seen in Mode 3 of Fig. 4.13b, the

switches of the left leg of Modules I and II and right leg of Module III undergo natural

commutation. Also, in the adjacent leg of all the three modules, the bottom switch and

the anti-parallel diode pair are still conducting. Hence, all the three modules freewheel

the output current and hence, the output voltage is zero. Moreover, in the primary side

H-bridge none of the switches/diodes conduct, and as the link current is zero, even the link

voltage is zero.

Mode 4: At the beginning of the mode, as shown in Fig. 4.12c, on the primary side

H-bridge s∗2 goes high. On the secondary side, as shown in Fig. 4.12c, left leg of Modules I

and II and right leg of Module III undergo third step of four-step commutation (turn OFF

the outgoing conducting switch) whereas, the adjacent leg in each module undergo second

step of the commutation process. The phase-to-neutral output voltage will be positive but

instead of being at 5nVdc, it will be at 6nVdc. This is because, the left leg bi-directional

switches of Module I and II and the right leg bi-directional switch of Module III have

already undergone commutation. In the right leg of Module I and II the bi-directional

switches undergo natural commutation and hence, the module output voltage of Modules I

and II are 4nVdc and 2nVdc respectively. But in Module III, as the link voltage is negative,
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the diode of the incoming bi-directional switch pair, D9a2 is reverse biased as explained in

the four-step commutation section above, and Module III continues to generate zero voltage,

whereas, the required voltage to be generated by Module III is −nVdc.

Mode 5: In this mode, as shown in Fig. 4.12c, the last step of four-step commutation

occurs in the left leg of Modules I and II and right leg of Module III (turn ON the incoming

non-conducting switch), whereas, in the adjacent leg, third step of four-step commutation

takes place. This is shown in Mode 5 of Fig. 4.13c. The phase-to-neutral output voltage

will be 5nVdc as shown in Fig. 4.12c, as all the modules generate the voltage as shown in

Table 3.2 with the link voltage negative.

Mode 6: This mode corresponds to the final step of the switching transition. In this

mode in the right leg of Modules I and II and in the left leg of Module III the last step

of four-step commutation occurs. Mode 6 of Fig. 4.12c shows the switching signals that

are high/low; and Mode 6 of Fig. 4.13c shows the circuit representation, which depicts

the switches ON/OFF in each of the converter module so that the phase-to-neutral output

voltage to be generated is 5nVdc with the link voltage, −Vdc.

Hence, as shown in Fig. 4.12c the output voltage, va in comparison to the ideal case

Fig. 4.12a, is distorted because of the switch non-idealities as explained in the six modes

of operation.



Chapter 5

Design of High-Frequency Four

Winding Transformer

5.1 Transformer design

For the converter topology shown in Fig. 2.4 the HFT requires a single primary winding and

three secondary windings for each phase. The three secondary windings of the transformer

should have an asymmetrical turns ratio as explained in the previous section along with low

leakage inductance and ac resistance. Multi-winding HFTs using advanced soft magnetic

materials, like amorphous and nanocrystalline have been designed for converter topologies to

interface renewables to three-phase grid [85,86]. Although difficult to manufacture, several

prototypes of multi-winding HFTs [83, 85–88] and in [87] a 35kVA, 10kHz, 22kV/800V

five-winding transformer has been designed and tested.

Table 5.1: Transformer specifications

Parameter Real Power, P Primary Voltage, Vp Frequency, f Bmax J kw

Value 2 kW 100 V 15 kHz 0.38 T 3.5A/mm2 0.35

5.1.1 Transformer specifications and core material

Table 5.1 outlines the high-frequency transformer specifications. Area product method is

used to design the transformer. The maximum flux density, Bmax and current density

J , are chosen to be 0.38 T and 3.5 A/mm2 respectively [89]. Area product, Ap can be

computed using (5.1) as all the other parameters like (Vin, Iin, fsw) are known from the

converter specifications. As shown in Fig. 5.2b, the volumes of the transformer core for

different materials and high frequency have been compared. The soft magnetic materials

47



48

allow to achieve lower volume for the same switching frequency. However, the transformer

for the proposed converter prototype is designed with ferrite core 0P47228EC owing to the

ease of availability. As the core dimensions are known, the core cross-sectional area can

be computed. In the proposed converter topology the link voltages are square in nature.

Hence, the required number of primary turns Np, on a core with cross-sectional area Ac,

and excited with a voltage, Vin at a link frequency fsw so that the maximum flux density

Bmax is not exceeded can be determined.

5.1.2 Winding design

The winding design of a high-frequency transformer is a critical part of the design as the

proper selection of windings ensure lower losses due to low ac resistance [90–93]. Also,

proper winding arrangement will be essential to attain low leakage inductance. The skin-

depth at fsw= 15kHz is 0.532 mm. The primary and secondary windings were designed

with foil conductors having dimensions 0.5588 mm X 6.35 mm and 0.2286 mm X 3.048 mm

respectively. The bare copper wires were wound with 3M-44 tapes having an insulation

thickness of 0.139 mm. The converter topology requires that the transformer should be

designed such that the leakage inductances of the secondary side windings are low. For

this, the 12 primary and 12, 24 and 48 secondary turns respectively of the four winding

transformer are interleaved as shown in the winding arrangement diagram in Fig. 5.1b.

The interleaving consists of four sections of primary and secondary turns.

Ap =
2VinIin

4fswBmaxJkw
(5.1)

Once, Np is computed, the number of turns in the three secondary windings are Ns1= 4nNp;

Ns2= 2nNp and Ns3= nNp respectively; where n = 1 is considered for this design.
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(a)

Np

Ns1

Ns2

Ns3

(b)

Figure 5.1: (a) 3-D model of the four winding transformer; (b) Interleaved winding technique
of the transformer for low leakage inductance

(a) (b)

Figure 5.2: (a) Prototype of the four winding transformer (b) HFT volume variation with
core material and switching frequency

5.1.3 Inductance computation

Considering a pi-model of a four-winding transformer as shown in Fig. 5.3, the voltages

across the four windings can be written as shown in (5.2), (5.3), (5.4) and (5.5) respectively.

v1 = (Lpa + Lm)i̇1 + Lm(ns1i̇2) + Lm(ns2i̇3) + Lm(ns3i̇4) (5.2)

v2 = Lmn2
s1

(
i̇1
ns1

)
+ (Lla1 + Lmn2

s1)i̇2

+Lmn2
s1

(
ns2

ns1
i̇3

)
+ Lmn2

s1

(
ns3

ns1
i̇4

)
(5.3)
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v3 = Lmn2
s2

(
i̇1
ns2

)
+ Lmn2

s2

(
ns1

ns2
i̇2

)

+(Lla2 + Lmn2
s2)i̇3 + Lmn2

s2

(
ns3

ns2
i̇4

)
(5.4)

v4 = Lmn2
s3

(
i̇1
ns3

)
+ Lmn2

s3

(
ns1

ns3
i̇2

)

+Lmn2
s3

(
ns2

ns3
i̇3

)
+ (Lla3 + Lmn2

s3)i̇4 (5.5)




v1

v2

v3

v4



=




Lpa + Lm ns1Lm ns2Lm ns3Lm

ns1Lm Lla1 + n2
s1Lm ns1ns2Lm ns1ns3Lm

ns2Lm ns1ns2Lm Lla2 + n2
s2Lm ns2ns3Lm

ns3Lm ns1ns3Lm ns2ns3Lm Lla3 + n2
s3Lm







i̇1

i̇2

i̇3

i̇4




The leakage inductances of the transformer can be derived from the inductance matrix

using the approximate pi-model of the transformer. Here, nsk is
Nsk

Np

, where, k is {1, 2, 3}.
The designed transformer is characterized using AP Instruments Network Analyzer 102B.

The bode plots with the secondary winding terminals open-circuited and short-circuited

are shown in Fig. 5.4. The open circuit measurement is done across the terminals x1

and x2 with all the secondary winding terminals open. The short circuit measurement

is done by shorting the terminals y1 and y2. The inductance seen from x1 and x2 are

Lpa + Lla1/n
2
s1. Six more measurements (shorting a terminal and recording the bode plot

across another set of terminals) are done and from that the leakage inductance of all the four

windings are computed. The leakage inductance values are: Lp1 = 0.312uH; Lla1 = 0.41uH;

Lla2 = 0.662uH; Lla3 = 1.086uH and the ac resistances are Rp1 = 22mΩ; Rla1 = 33mΩ;

Rla2 = 112mΩ; Rla3 = 223mΩ.
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Figure 5.3: Transformer pi-model considered for extracting the various transformer param-
eters [94]
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Figure 5.4: Transformer characterization using network analyzer (a) open circuit measure-
ment as seen across x1 x2 terminals with all secondary terminals open; (b) measurement
across primary terminals x1 x2 with y1 y2 terminals short circuited in Fig. 5.3 and y3 y4,
y5 y6 terminals open.



Chapter 6

System Level Analysis of Proposed

Converter Topology

6.1 Closed loop control

In this chapter, the following system level analysis of the proposed converter topology will

be demonstrated.

• Closed Loop Analysis in Simulation

• Operation under Module Failure

• Filter Inductor Design

Fig. 6.1 shows a simple closed-loop controller, implemented in simulation for the power

flow control. As shown in Fig. 6.2, the input voltage and the power reference change at

0.1s and 0.2s respectively. The behavior of the converter to these changes is shown in the

current magnitude which increases at 0.1s to maintain the same output power and reduce

at 0.2s with the reduction in active power, P . Fig. 6.3 shows the dynamic response of the

converter with the change in the input voltage at 0.1s. After a short transient, the system

settles at the required operating point.
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Figure 6.1: Control Model
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Figure 6.2: (Top) Three phase-neutral voltages and input voltage which changes at 0.1 sec,
(Bottom) Three line currents along with output power command which changes at 0.2 sec



54

v
a
[p
.u
]

-1

0

1

time[s]
0.085 0.09 0.095 0.1 0.105 0.11 0.115

i i
n
a
[p
.u
]

-1

0

1

Figure 6.3: Zoomed in phase-neutral voltages and line currents at 0.1 sec which shows the
dynamic behavior of the converter.

6.2 Operation under module failure

In case of a symmetrical multilevel converter, various fault-tolerant techniques have been

investigated in the literature [95]. If any of the modules are faulted then a fundamental

phase-shift compensation technique is used to restore balanced line currents for all three

phases with reduced magnitude [96]. A set of non-linear equations as given in (6.1) are solved

to generate the compensated angles between all three phases for balanced line currents. The

Table in [96] outlines the angles for a eleven level inverter with five symmetrical modules

in each phase. The fundamental phase-shift compensation (FPSC) technique is often used

because of the easy implementation. However, the technique has some disadvantages as

shown in [96]. For an asymmetrical converter, [97] shows a reconfiguration technique by

using additional bi-directional switches in case of faults.

V 2
a + V 2

b − 2VaVbcosα = V 2
b + V 2

c − 2VbVccosβ = V 2
c + V 2

a − 2VcVacosγ (6.1)

α+ β + γ = 2π (6.2)

The above FPSC technique has been investigated on the proposed topology. The angles

can be computed using (6.1) for all cases. Fig. 6.4, 6.5 and 6.6 respectively show the phase,

line voltages and the line currents for an unfaulted case.
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Figure 6.4: Three phase voltages for unfaulted case
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Figure 6.5: Three line-line voltages for unfaulted case
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Figure 6.6: Three line currents for unfaulted case

Fig. 6.7, 6.8 and 6.9 show the same for two modules, 4nVin and 2nVin failed for phase- c
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and all modules healthy in the remaining phases. It can be seen from Fig. 6.7 that although

vc has only three levels due to only one module being healthy, using (6.1), as the angles are

different from
2π

3
, the line voltages and currents as shown in Fig. 6.8 and 6.9 respectively

are balanced with reduced magnitude.

Table 6.1: Solution with reduced balanced currents for some fault cases

Phase- a Phase- b Phase- c Possible Solution (in degrees)

4, 2, 1 4, 2, 1 4, 2, 1 X{7, 7, 4} (α = 93.5;β = 133; γ = 133.5)

4, 2, 1 4, 2, 1 4, 2, 1 X{7, 7, 3} (α = 85;β = 137; γ = 138)

4, 2, 1 4, 2, 1 4, 2, 1 X{7, 7, 1} (α = 68.5;β = 145; γ = 146.5)

4, 2, 1 4, 2, 1 4, 2, 1 X{3, 3, 1} (α = 79.5;β = 140; γ = 140.5)
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Figure 6.7: Modules 4nVin and 2nVin faulted in phase- c and all modules healthy in the
remaining phases: Three phase voltages



57

time [s]
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

v
a
b
,
v
bc
,
v
ca

[p
.u
]

-1

0

1

Figure 6.8: Modules 4nVin and 2nVin faulted in phase- c and all modules healthy in the
remaining phases: Three line-line voltages
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Figure 6.9: Modules 4nVin and 2nVin faulted in phase- c and all modules healthy in the
remaining phases: Three line currents

It is to be noted that, for a fault in 2nVin and nVin modules in phase-c and all modules

healthy in remaining two phases, the angles computed using (6.1), will restore balanced

currents with a higher per unit value in comparison to the above case even though phase-c

has three voltage levels similar to Fig. 6.7. This is because, on this occasion, module 4nVin

is healthy and hence, the average voltage generated is higher. The per unit value of line

current increases as shown in Fig. 6.12 in comparison to Fig. 6.9.
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Figure 6.10: Modules 2nVin and nVin faulted in phase- c and all modules healthy in the
remaining phases: Three phase voltages
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Figure 6.11: Modules 2nVin and nVin faulted in phase- c and all modules healthy in the
remaining phases: Three line-line voltages
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Figure 6.12: Modules 2nVin and nVin faulted in phase- c and all modules healthy in the
remaining phases: Three line currents

Table 6.1, provides a manner to restore balanced currents in all three phases in case of

faulted modules for some cases. For the other cases, by solving (6.1) the appropriate angles

can be computed. 4, 2, 1 indicates the three asymmetrical modules in phase- a. {7, 7, 3}
indicates the number of positive levels that can be achieved. The tick mark indicates that

the fundamental phase shift compensation technique applied to symmetrical configuration is

valid and the corresponding angles are computed using (6.1) and provided in the Table 6.1.

For other cases, not shown in Table 6.1, but shown in [96], healthy modules of certain phases

are either connected to a lower healthy module or are disconnected to restore balanced

currents.

6.3 Filter inductor design

6.3.1 Design procedure

Consider a three phase system with power P , the phase-to-neutral output voltage is va, and

the switching frequency is fs. The ripple current is 5% of the load current, Ia. The ripple

current is inversely proportional to the filter inductance, L and the switching frequency,

fs. For the same ripple current, increasing the switching frequency will reduce the filter

inductance, L.

In case of an ungapped core, the relative permeability of the material will reduce with

increase in the output current, Ia and hence, the design of the inductor should be such that

at the rated output current, Ia, the inductance is equal to L. To design a filter inductor

with inductance, L the following procedure is followed:

• From a set of available cores (toroidal, U-core, EE-core) having different relative

permeability, µr, determine the cross-sectional area, Ac and the magnetic path length,



60

lm of the core.

• Compute the number of turns, N using the relation,

N =

√
Lstartlm
µ0µrAc

(6.3)

where, Lstart is an initial inductance value chosen.

• Compute the magnetomotive force, Hpk at the maximum load current, Îa using,

Hpk =
NÎa
lm

(6.4)

where, Îa=
√
2Ia.

• Compute the relative permeability, µrpk at this value of Hpk. Depending on the

core manufacturer, either the variation of µrpk versus Hpk will have a curve fitting

relation [98, 99] or the value should be estimated from the permeability versus DC

bias curve itself [100].

• Estimate the inductance from the computed µrpk , using the relation below:

Lcomp =
N2µ0µrpkAc

lm
(6.5)

The computed inductance, Lcomp will be the inductance at the rated current. If this

inductance, Lcomp < L, chose a larger core and increase Lstart until Lcomp=L.

6.3.2 Comparison of filter size for two modulation strategies

The converter has the dominant voltage harmonic at the sidebands of the switching fre-

quency if modulated using modified uni-polar technique.

However, using the modified hybrid modulation technique shifts the dominant voltage

harmonic to the sidebands of multiples of twice the switching frequency, hence the size of

grid filter inductance reduces. As mentioned earlier, in case of this modulation technique,

even though the switching frequency is fs, the first dominant harmonic is at 2fs. Hence,

for the same ripple current the frequency is double resulting in Lnew= L/2. If the above

procedure is followed, Lcomp=L/2 which will result in a smaller core and hence a more

compact grid filter inductor.



Chapter 7

Hardware Setup and Experimental

Results

7.1 Hardware setup
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Figure 7.1: Hardware prototype of three-phase isolated asymmetrical multilevel converter
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Figure 7.2: Experimental Setup of proposed multilevel converter topology to Interface low
voltage DC with three-phase grid

The proposed topology is simulated using MATLAB/Simulink and experimentally veri-

fied on a scaled down fifteen level three-phase laboratory prototype as shown in Fig. 7.1.

Fig. 7.2 shows the hardware setup used to validate the proposed topology experimentally.

Agilent 6575A is used as the input dc supply, Vin. The power modules from Microsemi

(APTGL120TA120TPG) are used to design each of the three full-bridges for the three-

phases connected in parallel on the primary side. A total of 12 PWM signals are required

for the three full-bridge modules. Three high-frequency transformers, one for each phase

are designed as explained in the previous section. The power modules from Microsemi

(APTGT50TDU60PG and APTGF50TDU120PG) are used to design the secondary side

AC-AC converter module with bi-directional switches (two anti-parallel IGBTs connected

in a common emitter configuration). Two power modules are used to design one AC-AC

converter module. One module is for the two bi-directional switches in the top leg, (for

example in Fig. 2.4, S1a and S2a in Module I are designed using one Microsemi module)

and the other module is for the bottom leg switches (S3a and S4a). The Module III with

the lowest voltage (nVin) in Fig. 7.1 is designed using two APTGT50TDU60PG power

modules, whereas, Modules I and II (4nVin and 2nVin respectively) are designed using two

APTGF50TDU120PG for each AC-AC converter module. All the three modules are con-

nected in series on the output side. Similarly for phase, b and c, one full-bridge and three

AC-AC converter modules are designed as shown in Fig. 7.1. 72 PWM signals are required

for the secondary side switches forming the three-phase system. An FPGA-based control

platform (Xilinx, XC3S500E) has been used to generate the PWM signals. For leakage com-

mutation, a clamp circuit for each converter module was designed using four SiC schottky



63

diodes (C4D05120A) in a full-bridge configuration having zero reverse recovery current and

faster switching. Three LEM current sensors, one for each phase is used to aid in four-step

commutation. Three LEM voltage sensors are used to sense the AC grid voltage so that the

converter output voltages are generated at a phase shift angle, δ with respect to the source

voltage.

7.2 Modulation-I: Simulation and experimental results

7.2.1 Results of Glitch Compensation

I II III V

Figure 7.3: Digital signals corresponding to the six modes of operation without any com-
pensation followed by the phase-neutral output voltage, va in (CH-1) [100 V/div] in 400
ns/div time scale using the experimental setup similar to the simulation results as shown
in Fig. 4.1a. Each commutation interval is 600 ns
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Figure 7.4: Experimental results of the fundamental cycle of phase-neutral output voltage,
va in (CH-1) [40 V/div] in 2 ms/div time scale similar to the simulation result as shown in
Fig. 4.4

i ii iii iv v vi

Figure 7.5: Digital signals corresponding to the six modes of operation with glitch
compensation-I followed by the phase-neutral output voltage, va in (CH-4) [100 V/div]
in 400 ns/div time scale using the experimental setup similar to the simulation results as
shown in Fig. 4.1b
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Figure 7.6: Experimental results of the fundamental cycle of phase-neutral output voltage,
va in (CH-4) [40 V/div] in 2 ms/div time scale similar to the simulation result as shown in
Fig. 4.5

Figure 7.7: Digital signals corresponding to the six modes of operation with glitch
compensation-I followed by the phase-neutral output voltage, va in (CH-4) [100 V/div] and
ia in (CH-3) to show the reverse power flow in 400 ns/div time scale using the experimental
setup similar to the simulation results as shown in Fig. 4.1c
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Figure 7.8: Experimental results of the fundamental cycle of phase-neutral output voltage,
va in (CH-2) [200 V/div], current, ia (CH-4) [1 A/div], the source voltage, vga (CH-2) [200
V/div] in 4 ms/div time scale.

Figure 7.9: Digital signals corresponding to the left leg bi-directional switches of all three
AC-AC converter modules followed by the phase-neutral output voltage, va in (CH-1) [40
V/div] in 1 µs/div time scale using the experimental setup: without glitch compensation-II
similar to the simulation results as shown in Fig. 4.10b
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Figure 7.10: Digital signals corresponding to the left leg bi-directional switches of all three
AC-AC converter modules followed by the phase-neutral output voltage, va in (CH-1) [40
V/div] in 1 µs/div time scale using the experimental setup: with glitch compensation-II
similar to the simulation results as shown in Fig. 4.10c

The first set of experimental results correspond to the output voltage profile with and

without the various glitch compensation techniques as proposed in the modulation and

commutation section. Fig. 7.3 shows the digital signals of the primary side switches and

all the bi-directional switches of Module I corresponding to the six modes of operation as

explained using Fig. 4.2 and Fig. 4.1a. As shown in Fig. 7.3, a voltage reversal is generated

in mode II and zero voltage in mode III similar to the description in the non-ideal modulation

section. Fig. 7.4 shows the output voltage, which is similar to the fundamental cycle of

output voltage as shown in Fig. 4.4. Fig. 7.5 shows the digital signals of the primary side

switches which are delayed by a commutation interval and all the bi-directional switches of

Module I corresponding to the six modes of operation as explained using Fig. 4.3 and Fig.

4.1b. As shown in Fig. 7.5 the output voltage generates zero voltage in mode iii similar

to the description in the glitch compensation- I section and does not generate a voltage

reversal in mode ii. Fig. 7.6 shows the output voltage, which is similar to the fundamental

cycle of output voltage as shown in Fig. 4.5. Fig. 7.7 shows the digital signals of the

primary side switches which are delayed by a commutation interval and the bi-directional

switches of left lef of Module I corresponding to the six modes of operation as explained

using Fig. 4.8 and Fig. 4.1c. As shown in Fig. 7.7 the output voltage generates zero

voltage in two modes similar to the description above rather than only in mode iii for the

case of postive power flow from DC to three-phase grid. The reverse power flow, even

though it has the same ideal signal generation due to the forced commutation generates a

zero voltage for two commutation intervals as shown in Fig. 4.1c. However, the glitches
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due to the interdependence of the three AC-AC converter modules are still not resolved

(highlighted by the blue patches in Fig. 7.6) as explained in non-ideal modulation section.

Fig. 7.9 shows the digital signals corresponding to the bi-directional switches in the left

leg of all the three AC-AC converter modules in phase-a, followed by the output voltage,

va. As shown in the Fig. 7.9, the output voltage, va has a glitch similar to Fig. 4.10b.

With the glitch compensation- II implemented, as shown in Fig. 7.10, the rising edge of the

signals, q5a1 and q9a1 are delayed to match with the falling edge of the signal, q1a1. Also,

the corresponding switch signals, q7a2 and q11a2 of Modules II and III are also delayed. This

modification results in the mitigation of the glitch in the output voltage, va, similar to the

simulation results as shown in Fig. 4.10c.

7.2.2 Results for a three-phase system
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Figure 7.11: Simulated transformer link voltage across the three series connected modules,
vsa1 in (CH-2) [200 V/div], vsa2 in (CH-3) [200 V/div] and vsa3 in (CH-4) [100 V/div]
followed by the primary side link voltage, vpa in (CH-1) [50 V/div] in 10 µs/div time scale.
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Figure 7.12: Experimental transformer link voltage across the three series connected mod-
ules, vsa1 in (CH-2) [200 V/div], vsa2 in (CH-3) [200 V/div] and vsa3 in (CH-4) [100 V/div]
followed by the primary side link voltage, vpa in (CH-1) [50 V/div] in 10 µs/div time scale.
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Figure 7.13: Simulated module output voltage of the three series connected modules, va1
in (CH-1) [200 V/div], va2 in (CH-2) [100 V/div] and va3 in (CH-3) [1000 V/div] followed
by the phase-neutral output voltage, va (CH-4) [200 V/div] in 2 ms/div time scale.
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Figure 7.14: Experimental module output voltage of the three series connected modules, va1
in (CH-1) [200 V/div], va2 in (CH-2) [100 V/div] and va3 in (CH-3) [1000 V/div] followed
by the phase-neutral output voltage, va (CH-4) [200 V/div] in 2 ms/div time scale.

Figure 7.15: Experimental line current (CH-1) [1 A/div] along with the phase-neutral output
voltage of all three-phases, va (CH-2), vb (CH-3) and vc (CH-4) [100 V/div] in 4 ms/div
time scale.
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Figure 7.16: Experimental currents of all three-phases, ia (CH-1), ib (CH-3) and ic (CH-4)
[0.5 A/div] in 4 ms/div time scale.
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Figure 7.17: Simulated transformer link voltage, vsa1 in (CH-1) [400 V/div] followed by the
transformer link currents through the three secondary windings, isa1 in (CH-2) [2 A/div],
isa2 in (CH-3) [2 A/div] and isa3 in (CH-4) [2 A/div] in 2 ms/div time scale.
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Figure 7.18: Experimental transformer link voltage, vsa1 in (CH-1) [400 V/div] followed
by the transformer link currents through the three secondary windings, isa1 in (CH-2) [2
A/div], isa2 in (CH-3) [2 A/div] and isa3 in (CH-4) [2 A/div] in 2 ms/div time scale.
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Figure 7.19: Simulated transformer link voltage, vsa1 in (CH-1) [400 V/div] followed by the
transformer link currents through the three secondary windings, isa1 in (CH-2) [2 A/div],
isa2 in (CH-3) [2 A/div] and isa3 in (CH-4) [2 A/div] in 40 µs/div time scale.
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Figure 7.20: Experimental transformer link voltage, vsa1 in (CH-1) [400 V/div] followed
by the transformer link currents through the three secondary windings, isa1 in (CH-2) [2
A/div], isa2 in (CH-3) [2 A/div] and isa3 in (CH-4) [2 A/div] in 40 µs/div time scale.

The simulation and experimental results of the transformer link voltages across the primary

and three secondary windings are shown in Fig. 7.11 and Fig. 7.12 respectively. The

complimentary switching of the input side full-bridge at 15kHz with a dead-time of 600ns

generates the primary side link voltage, vpa. As shown in those figures, for an input voltage,

Vin of 50V; the transformer secondary side link voltages (vsa1: vsa2: vsa3) are 200V, 100V

and 50V in a ratio of (4:2:1). Fig. 7.13 and Fig. 7.14 show the simulation and experimental

results of the output voltages across each module, vsa1, vsa2 and vsa3 followed by the total

phase-neutral output voltage, va. The differences in the magnitude of the output voltage

between simulation and experimental results, is primarily due to the device drop across

each switch which is not considered in the simulation model. As shown in the figures, all

the modules generate a zero voltage during the dead-time of primary side full-bridge. Also,

the top module is used to generate the top four output voltage levels and freewheels the

output current for the remaining three levels. Fig. 7.15 shows the line current, ia followed

by the phase-neutral output voltage of all three-phases, va, vb and vc. As explained earlier,

in all three-phases, the output voltage goes to zero when the link voltage switches. Fig.

7.16 shows the line currents of the three-phase system.

Fig. 7.17 and Fig. 7.18 shows the link voltage and three link currents through the trans-

former secondary windings. The link current, isa1 is zero at some intervals in a fundamental

cycle. This is because as explained above, for generating the lower output voltage levels,

Module I will freewheel the output current and hence, the link current, isa1 through the

transformer winding is zero. Similarly, the current through the other secondary winding

will be zero whenever Module II freewheels the current. Figs. 7.19 and 7.20 shows the
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same above plots on a 40 µs/div timescale. The link currents, isa1 and isa2 follow the link

voltage, vsa1, but, as Module I switches even though the link voltage is constant, the link

current, isa3 also switches.

7.2.3 Results for bi-directional power flow

P = 3
va1vga
Xl

sinδ (7.1)

ma =
V̂a,1

7nVin

(7.2)

The mathematical relation for the power transmission and the voltage conversion are

given in (7.1) and (7.2) respectively. Here, Xl=2πfsL and V̂a,1 is the peak value of the

fundamental output voltage.

The line-line rms voltage of the supply is 130V, and va, the converter output voltage is

generated at a specific angle of, δ ±0.25rad with respect to the source voltage, vga. The

series inductor, La, of approximate value is used to limit the power flow. The resulting

output current ia, output voltage, va for the power flow in either direction are shown in

Figs. 7.21 and 7.22. The harmonic spectrum of the multilevel output voltage, va is shown in

Fig. 7.23. The high number of levels results in a THD of 18% and the dominant harmonics

are at the multiples of switching frequency. This allows to achieve low output current THD

of less than 5%, with the harmonic spectrum as shown in Fig. 7.24 and hence a high power

quality.

Figure 7.21: Experimental result of the converter output voltage, va, (CH-3) [200 V/div],
current, ia (CH-2) [1 A/div], the source voltage, vga (CH-1) [250 V/div] and source current
[5 A/div] in 4 ms/div time scale
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Figure 7.22: Experimental result of the converter output voltage, va, (CH-3) [200 V/div],
current, ia (CH-2) [1 A/div], the source voltage, vga (CH-1) [250 V/div] and source current
[5 A/div] in 4 ms/div time scale.
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Figure 7.23: Harmonic spectrum of output phase voltage, va: Modulation-I
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Figure 7.24: Harmonic spectrum of the output current, ia with a THD of 2.5%.

7.2.4 Results for operation under module failure

A particular scenario is considered in which in phase-a and b, 4nVin modules are faulted

and in phase- c, nVin module is faulted. Fig. 7.25 shows the output voltage and current for

both the unfaulted phase- b and faulted phase- c respectively. The maximum modulation

index that can be achieved in this case is 0.42. In phase- a and b, the output voltage is

generated using modules II and III. In case of phase- c wherein, module-III is faulted, in

order to generate balanced sinusoidal output currents modules-I and II are operated at a

reduced modulation index of 0.2 to generate the same rms voltage resulting in balanced

currents. The THD of the output voltage, vc of the faulted phase- c is 48.9 % as shown in

Fig. 7.26 which is much higher than that of phase- b output voltage of 26.6 %. Although

the THD of output voltage of the faulted phase- c is high, the technique results in balanced

output currents for both the phases as shown in Fig. 7.25. For an input dc voltage of 50V,

the peak of the fundamental output voltage of the unfaulted phase is 110.2V, and 20.76V

ripple rms voltage; whereas for the faulted phase it is 116.6V and 40.4V respectively. This

results in a THD of 26.6% and 48.9% respectively of phase b and c. However, both the

phases have a fundamental peak current of 0.55A.
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Figure 7.25: Experimental result of the output voltage, vb in (CH-1) [100 V/div] and output
current, ib in (CH-2) [0.5A/div] of phase-b with 4nVin module faulted and of vc in (CH-3)
[100V/div], current, ic in (CH-4) [0.5 A/div] of phase- c with nin module faulted, in 4
ms/div time scale for a modulation index of 0.4
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Figure 7.26: Harmonic spectrum of the output voltage, vc of the faulted phase- c
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Figure 7.27: Harmonic spectrum of the output current, ic of the faulted phase- c

7.3 Modulation-II: Simulation and experimental results

The modulation technique is verified on a scaled down fifteen level three-phase laboratory

prototype as shown in Fig. 7.1. This section presents a detailed description of the hardware

prototype along with key experimental and simulation results.

Table 7.1: Specifications

Vin Ia Iin V̂ll1 fsw fo Rload Lload

45 V 0.96 A 15.4 A 471.1 V 15 kHz 60 Hz 200 Ω 46.6 mH

The proposed modulation technique on the converter topology was simulated using

MATLAB/Simulink. The simulation parameters are same as the hardware prototype and

the results are presented together. In the commutation section, it was mentioned that,

due to the dead-time of the primary side H-bridge switches the output voltage will be zero

whenever, the link voltage changes polarity. Fig. 7.29 provides the experimental validation

of this concept described in the commutation section. The simulation and experimental

results of the output current, ia; phase-to-neutral output voltage, va and transformer link

voltage vsa1, at the instants when vsa1 goes to zero are shown in Fig. 7.28 and Fig. 7.29

respectively. As shown in the figures, the output load current, ia varying at 60Hz is constant

on a 10µs timescale. The secondary side link voltage, vsa1 will not transition instantly from

+172V to −172V because of the dead-time of the primary side H-bridge switches. As shown

in Mode 3 of Fig. 4.13b in the commutation section, during the dead-time all the switches of
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the primary side H-bridge are gated OFF. At this instant, the continuous inductive output

current, ia freewheels through the AC-AC converter modules resulting in the output voltage,

va to be zero as shown in Fig. 7.29.

In the ideal modulation section, it was mentioned that the modules which generate a

constant output voltage switch only when the link voltage switches. But, the module which

has to generate a pulsating output voltage undergoes switching transition even though

the link voltage is constant. The next result demonstrates the above description using

the experimental setup. Figs. 7.30 and 7.31 show the output line current, ia, Module I

output voltage, va1, Module III output voltage, va3 and Module I link voltage, vsa1=±172V

using simulation and experimental setup respectively. As explained in the ideal modulation

section, in order to generate 7nVin ↔ 6nVin, that is 315V ↔ 270V output voltage, Module I

which generates a constant voltage of, 4nVin, that is 164V (after the device drops); switches

only when the link voltage changes polarity. Ideally, va1 should be constant at 164V as

shown in Fig. 4.2, but due to switch non-idealities as explained using Fig. 7.29 and Mode 3

of Fig. 4.13b, va1 will momentarily generate zero voltage during the dead-time of primary

side H-bridge switches. Module III in order to generate a pulsating voltage nVin ↔ 0, that

is, 36V ↔ 0, undergoes switching even though the link voltage, vsa1 is constant as shown

in Fig. 7.31.
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Figure 7.28: Simulation results of line current, ia; Phase-to-neutral output voltage, va and
transformer link voltage vsa1
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Figure 7.29: Experimental results of line current, ia (CH-2), with 0.5 multiplication factor
[5 A/div]; Phase-to-neutral output voltage, va (CH-3) [200 V/div] and Transformer link
voltage vsa1 (CH-2) [200 V/div],in 10 µs/div time scale
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Figure 7.30: Simulation results of line current, ia; module output voltages, va1 and va3 in
modules I and III respectively and transformer link voltage vsa1
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Figure 7.31: Experimental results of line current, ia (CH-2), with 0.5 multiplication factor
[5 A/div]; module output voltages, va1 (CH-4) [200 V/div] and va3 (CH-3) [40 V/div] in
modules I and III respectively and transformer link voltage vsa1 (CH-2) [400 V/div] in 10
µs/div time scale

5Vdc

0

6Vdc

Figure 7.32: Digital signals corresponding to the six modes of operation as shown in Fig.
4.12c followed by the phase-to-neutral output voltage.
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Figure 7.33: Output voltage of the three series connected modules, va1 in (CH-4) [50 V/div],
va2 in (CH-3) [40 V/div] and va3 in (CH-2) [10 V/div] followed by the phase-to-neutral
output voltage, va in (CH-1) [100 V/div] in 4 µs/div time scale.

Fig. 7.32 shows the digital signals corresponding to the six modes of operation as

described in commutation section using Fig. 4.12c. Fig. 7.33 shows the output voltage

across each module followed by the total output voltage, va. As shown in Fig. 7.33, in

order to generate va of 5nVin; va1=4nVin, va2=2nVin and va3=−nVin even though the link

voltage transitions from +Vin to −Vin. The output voltage, va in Fig. 7.32 is delayed

in comparison to the ten digital signals. As explained in the six modes of operation in

the commutation section, the voltage, va will be 5nVin in modes 1 and 2 and then it will

generate a zero voltage in mode 3 for the aforementioned reason explained using Fig. 7.29.

However, after a zero voltage, instead of generating 5nVin, output voltage is 6nVin in mode

4. This is because, the switching of module output voltage, va3 as compared to va2 and va1

is delayed as explained in mode 4 of Fig. 4.13b. The module output voltages va1 and va2

of Modules I and II respectively undergo natural commutation however, the module output

voltage, va3 will undergo forced commutation that is, switch from 0 → −nVin in the third

step of the four-step commutation strategy. Hence, the resulting voltage va will be 6nVin for

one commutation step as shown in Fig. 7.32. Finally in mode 5 and 6 the output voltage,

va is again 5nVin.

Figs. 7.34 and 7.35 respectively show the simulation and experimental results of the

output voltage, va, output line current, ia and two module output voltages, va1 and va2

when an R-L load is connected to the system. As shown in the figures, each module

output voltage is zero during the time the link voltage changes polarity as shown in Fig.

7.29. For a particular output voltage level generation, switches in each module will undergo

natural/forced commutation depending on the output current, ia as explained using different

modes of circuit operation in the commutation section and shown experimentally in Fig.
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7.32. Hence, the output voltage, va in Fig. 7.35 has a profile different as compared to Fig.

4.2 generated using ideal switching signals. The simulation and experimental results along

with the switch non-ideality also have the transformer leakage inductance. This will require

a clamp circuit for leakage commutation. The modulation index considered was 0.97 and

the input dc voltage was 45V. The link voltages of the three secondary windings after the

device drops are 172V, 86V and 43V respectively as shown in Fig. 7.12. The module output

voltages after the device drop of the AC-AC converter module switches are 164V, 80V and

36V respectively. This results in a peak output voltage of 280V. The experimental peak

value of the fundamental output voltage, V̂a,1 was computed as 272V. This results in a load

current of 0.96A as shown in Fig. 7.35. According to the mathematical relation in (7.2),

V̂a,1 is 305.5V, which should have corresponded to a current of 1.07A. The reason for the

mismatch of 0.11A between the analytical and the experimental result is due to the device

voltage drop across the switches as explained above. Due to the switch non-ideality and

the transformer leakage inductance the THD in the phase-to-neutral output voltage, va is

15.84 %.
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Figure 7.34: Simulation results of phase-to-neutral output voltage, va along with the line
current followed by va1 and va2
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Figure 7.35: Experimental results of phase-to-neutral output voltage, va (CH-1) [100 V/div]
along with the line current (CH-4) [2 A/div] followed by va1 in (CH-3) [200 V/div] and va2
in (CH-2) [100 V/div] in 4 ms/div time scale.

Figure 7.36: Phase-to-neutral voltages, va (CH-3), vb (CH-1) and vc (CH-4) [200 V/div];
along with the line current (CH-2), with 0.5 multiplication factor [5 A/div] in 4 ms/div
time scale.
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Figure 7.37: Line-to-Line output voltage of all three phases, vab (CH-3), vbc (CH-1) and vca
(CH-4) [200 V/div]; along with the line current (CH-2), with 0.5 multiplication factor [5
A/div] in 4 ms/div time scale.

Fig. 7.36 shows the experimental results of the line current, ia followed by the phase-

to-neutral output voltage of all three phases, va, vb and vc. Fig. 7.37 shows the line-to-line

output voltage of the three-phase system.

Fig. 7.38 shows the experimental results of the leg voltages, vl1 and vl2 of left and right

leg respectively of Module I followed by the module output voltage, va1 for an input voltage

of 45V. As shown in the figure, both the leg voltages switch at the link frequency to generate

the module output voltage, va1 as shown in Table 3.2. The module output voltage, va1 in

Fig. 7.38 generates a zero voltage which is not the case in the ideal output voltage generated

using ideal signals. However, the harmonic spectrum as shown in Fig. 7.39 is similar to

the harmonic spectrum using ideal signals and the module output voltage has dominant

harmonics at the sidebands of twice the switching frequency which is 30kHz. Fig. 7.43

shows the experimental output voltage, va generated using the proposed modulation. The

output generates a zero voltage whenever the primary side H-bridge switches, due to the

switch non-idealities. The harmonic spectrum of va in Fig. 7.45 shows that the dominant

harmonics are shifted to the sidebands of multiples of twice the switching frequency. The

results are consistent with the literature [69,71]. Fig. 7.39 shows the harmonic spectrum of

the leg voltages and the module output voltage, va1. As shown in the figure, similar to the

harmonic spectrum using ideal signals, both the leg voltages have dominant harmonics at the

switching frequency of 15kHz and its sidebands. However, the differential voltage, va1 has

the dominant harmonic at the sidebands of twice the switching frequency which is 30kHz.

Fig. 7.40 shows the nature of the leg voltages and the module output voltage, during the

PWM operation; 4nVin ↔ 0. As shown in the figure, the module output voltage,va1 because

of the differential voltage across the two legs of Module I switches twice in a 15kHz interval.
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Fig. 7.41, shows the harmonic spectrum of these voltages at 15kHz and its sidebands. In

the figure, the normalized amplitude at each harmonic frequency from 14.8kHz-15.2kHz is

shown on the left axis(in blue) and the phase angle in radians (in red) is shown on the

right axis. Both the leg voltages, vl1 and vl2 have almost the same normalized amplitude

at 15kHz and the sidebands. However, as the module output voltage is a difference of the

two leg voltages, the same is not reflected in the harmonic spectrum of va1 as shown in Fig.

7.41.

Figure 7.38: Fundamental cycle of leg voltages, vl1, vl2 of Module I followed by the module
output voltage, va1
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Figure 7.39: Harmonic spectrum of leg voltages, vl1, vl2 of Module I followed by the module
output voltage, va1
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Figure 7.40: Zoomed in module voltage to show the profile during PWM operation
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Figure 7.41: Harmonic spectrum at 15kHz to show the cancellation of the switching fre-
quency harmonic component in the module output voltage, va1.
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Figure 7.42: Modulation I: Module output voltage of the three series connected modules, va1
in (CH-1) [200 V/div], va2 in (CH-2) [100 V/div] and va3 in (CH-3) [1000 V/div] followed
by the phase-neutral output voltage, va (CH-4) [200 V/div] in 2 ms/div time scale, with a
switching frequency of 15 kHz.

Figure 7.43: Modulation I: Module output voltage of the three series connected modules, va1
in (CH-1) [200 V/div], va2 in (CH-2) [100 V/div] and va3 in (CH-3) [1000 V/div] followed
by the phase-neutral output voltage, va (CH-4) [200 V/div] in 2 ms/div time scale, with a
switching frequency of 15 kHz.
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Figure 7.44: Modulation I: Harmonic spectrum of the experimental phase-neutral output
voltage, va with a switching frequency of 15 kHz.
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Figure 7.45: Modulation II: Harmonic spectrum of the experimental phase-neutral output
voltage, va with a switching frequency of 15 kHz.



Chapter 8

High-Frequency Link

Asymmetrical Converter

8.1 Converter topology
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Figure 8.1: Converter Topology to Interface low voltage DC with three-phase Grid.

8.1.1 Circuit description

The converter topology with high-frequency transformer isolation is shown in Fig. 8.1. The

asymmetrical converters comprising of switches S1-S12 are connected in parallel on the input

side in order to share the high input currents. Iin is the total input current from the parallel

connection of all three converter modules. Each of the three asymmetrical converters are

connected to three high-frequency transformers which have asymmetrical turns ratio of 1:4n,

90
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1:2n and 1:n respectively. Ip1, Ip2 and Ip3 are the primary currents of the three HFTs. Vs1,

Vs2 and Vs3 are the transformer voltages across each of the three secondary windings of the

HFT and Vs is the summation of these voltages which is applied across the diode bridge.

The converter modules are switched so as to generate a high-frequency stepped voltage

across the output of each of the transformer secondary resulting in a multi-level stepped

waveform across the diode bridge. Power flow of PV being unidirectional, secondary side of

the HFT is connected to a diode bridge rectifier D1-D4 and a CSI made of switches Sa-S
′
c

via a dc link inductor, Ldc. The diode bridge and PWM CSI interface a three phase medium

voltage grid. Idc is the dc link inductor current. The CSI is connected to the grid via a

capacitor bank, which is required for the current commutation, because of the presence

of the grid source inductance. Ic is the current through the capacitor and Ig is the grid

current.

8.1.2 Modulation strategy of input side converter

The primary side asymmetrical converters are switched so as to generate multi-level stepped

voltage across the transformer secondary winding. With only three modules, 15 levels in

the transformer secondary voltage can be generated; that is 7 positive levels, 7 negative

levels and one zero level.

Table 8.1: Modulation Strategy for Different Positive Levels for Vs

Zone Modulation Index Module I Module II Module III

Zone I 1-0.8571 1 1 1

Zone II 0.8571-0.7143 1 1 0

Zone III 0.7143-0.5714 1 0 1

Zone IV 0.5714-0.4286 1 0 0

Zone V 0.4286-0.2857 0 1 1

Zone VI 0.2857-0.1428 0 1 0

Zone VII 0.1428-0 0 0 1

Generating the output voltage in zone I: For zone I operation the modulation index is

from 1-0.8571. The switches S1, S4, S5, S8, S9 and S12 are switched ON throughout the

zone I operation to generate a constant voltage denoted by ‘1’ in Table 8.1. Table 8.1 shows

the modulation strategy for all the 7 zones of operation. In Table 8.1, ‘0’ refers to the state

in which the switches are switched so as to generate 0 voltage. If for all of the 7 zones of

operation as shown in Table 8.1, switching the complimentary switches will generate the 7
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negative levels.

The pulses can be generated using 7 level shifted carrier signals and comparing them

with a reference sinusoidal signal. The seven carrier pulses hence obtained are XOR-ed

accordingly to generate the pulses for the three converter modules. Fig. 8.3a shows the

output voltage across the three secondaries followed by the total voltage depicting the 15

levels.

8.1.3 HFT voltage rating analysis based on DC link current of CSI

Under a unity power factor operation at the three phase grid, the capacitor current has to

be supplied by the CSI [101]. Hence, the minimum DC link current Idc can be expressed

as in (8.1). Also, the dc link voltage across the output of the diode bridge, Vdc can be

expressed in terms of the fundamental peak value of the total output secondary terminal

voltage, V̂ 1
st as given in (8.2). Assuming the CSI to be made of ideal switches, VdcIdc=Pg.

Hence, from this Pg can be written as in (8.3):

Idc =

√√√√
(
2Pg

3V̂g

)2

+ (2πfsCiv̂c)2

mi

(8.1)

Vdc =
2

π
V̂ 1
st (8.2)

Pg =
2

π
IdcV̂

1
st (8.3)

In case of an ideal transformer, V̂ 1
st is the same as V̂ 1

s and can be expressed as in (8.4):

V̂ 1
st = V̂ 1

s = V̂ 1
s1 + V̂ 1

s2 + V̂ 1
s3 (8.4)

where, V̂ 1
si, i={1, 2, 3} are the peak values of the fundamental component of each of the

three transformer secondaries. Hence, (8.2) can be written as in (8.5)

V̂ 1
s =

π

2
Vdc (8.5)

As V̂ 1
s is known, the transformer secondary voltages can be obtained from the following

relation:

V̂s1 = 0.57143(= 4/7)V̂ 1
s

V̂s2 = 0.28571(= 2/7)V̂ 1
s
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V̂s3 = 0.14286(= 1/7)V̂ 1
s

where, V̂s1 = 2V̂s2 = 4V̂s3 = 4nV̂p. The transformer turns ratio are n:2n:4n, and hence,

the transformer secondary winding with 4n turns ratio will need to generate a voltage 4/7

times V̂ 1
s . As the transformer secondary voltages are known, from simulation the rms values:

V rms
s1 , V rms

s2 and V rms
s3 are determined and can be used to determine the apparent power

rating of the three high power high-frequency transformers using (8.6).

Slink = Irms
s [V rms

s1 + V rms
s2 + V rms

s3 ] (8.6)

8.1.4 Effect of transformer leakage inductance

For a non-ideal transformer, where Llkgtot =
3∑

i=1

Lsi + ni
2Lpi and Rtot =

3∑
i=1

Rsi + ni
2Rpi,

ni =
Nsi

Np

wherein, Lpi, Lsi, Rpi, and Rsi, i = {1, 2, 3} are the primary and secondary

leakage inductances and ac resistances respectively of the three HFTs:

V̂ 1
st 6= V̂ 1

s (8.7)

and,

V̂ 1
s =

π

2

[
Vdc +

2

π
Idc(2πflinkLlkgtot +Rtot)

]
(8.8)

Hence, Pg can be written as in (8.9) and from this the fundamental peak value of the

total transformer secondary voltage, V̂ 1
s can be computed in terms of the dc link current,

Idc and grid power, Pg as given in (8.10).

Pg = Idc

[
2

π
V̂ 1
s − 2Idc

π
(2πflinkLlkgtot +Rtot)

]
(8.9)

V̂ 1
s =

2Idc
2(2πflinkLlkgtot +Rtot) + πPg

2Idc
(8.10)

In case of a non-ideal transformer, according to (8.7), the terminal voltage is not the

same as V̂ 1
s . For the same V̂ 1

s as in the case of an ideal transformer, the presence of

transformer leakage inductance and ac winding resistance will result in a reduction of the

terminal voltage, V̂ 1
st. Hence, according to (8.2) the dc link voltage, Vdc and dc link power

Pdc will also be affected.
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Table 8.2: Transformer Power Rating variation with the Leakage Inductance

Parameters Llkgtot=0 Llkgtot=50µH Llkgtot=100µH

- Analytical Simulation Analytical Simulation Analytical Simulation

V̂ 1
s 5814.2 V 5813.7 V 6238.6 V 6237.8 V 6663 V 6667.9 V

Vdc 3701.5 V 3697 V 3701.5 V 3700 V 3701.5 V 3620 V

Irms
s - 130.15 A - 127.16 A - 124.36 A

Pdc 500 kW 499.1 kW 500 kW 498.5 kW 500 kW 489 kW

Slink - 603.9 kV A - 633.04 kV A - 661.33 kV A

So to ensure that the dc link power, Pdc is same as in the case of an ideal transformer, the

transformer voltage rating has to be increased. The increased total transformer secondary

voltage can be computed using (8.10). With the value of V̂ 1
s known, as explained in the

previous section the rms voltages of individual transformer secondary windings can be

determined.

The presence of the transformer leakage inductance, causes a phase shift between the

fundamental current component and the fundamental voltage component, resulting in re-

active losses. The resultant lagging power factor increases the overall transformer power

rating. Table 8.2 summarizes the increase in the transformer power rating caused due to

the presence of leakage inductance in comparison to an ideal transformer. Three different

values of leakage inductance are chosen: 0 (assuming an ideal transformer) 50 µH and 100

µH. For all the cases, values of the parameters like V̂ 1
s , Vdc, I

rms
s , Pdc and Plink which are

affected as a result of the transformer leakage inductance are computed.

In case of an ideal transformer, all the parameters can be computed analytically and

V̂ 1
s = V̂ 1

st as the transformer is ideal. For an ideal transformer, there is no phase shift between

the fundamental component of link current and link voltage and hence the displacement

power factor is 1. The apparent power can be computed using (8.6) and it is 603.9 kV A

even though the active power is 500 kW . As the output voltage of the transformer is a

multi-step voltage (close to sinusoidal), for a constant average voltage of Vdc, V̂
1
s =

π

2
Vdc,

which increases the voltage rating of individual transformers.

For the second case when the transformer leakage inductance is present, V̂ 1
s is determined

analytically from (8.10) and compared with the simulation result. The analytical value of V̂ 1
s

for 50 µH is 6238.6 V and for 100 µH is 6667.9 V close to that obtained from simulation.

The values for the other parameters are extracted directly from the simulation done in

MATLAB environment.

The Table 8.2 clearly shows that due to the leakage inductance the link current smoothens,
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resulting in a reduction of the current % THD. But the displacement power factor between

Î1s and V̂ 1
s increases, resulting in increased reactive power losses. Hence, with the presence

of transformer leakage inductance the apparent power increases to 633.04 kV A and 666.33

kV A for a transformer with 50 µH and 100 µH of total leakage inductance as compared to

603.9 kV A for an ideal transformer.

It is important to design the transformers with low leakage inductance but as the sec-

ondary side contains a diode bridge the proposed topology does not require any clamp

circuit or any complex leakage commutation strategy.

8.1.5 Control of CSI

Source
DC

Full Bridge
Converter

3-ph Grid
Diode Bridge PWM-CSIMFT

Current

dq
abc

I∗
dc

PI Block

Capacitor current

Active

Cf

Lf

Ldc

Isd

ic

m∗

vsq

vsd

Idc

Power

|u|

Math

|u|

Figure 8.2: Control Diagram for a PWM-CSI

The dc link current Idc in a PWM CSI supplies the active current component to the grid and

also supplies the filter capacitor reactive current in case of a unity power factor operation.

A closed loop control using a PI controller is implemented to maintain a constant current,

Idc in the steady state as shown in Fig. 8.2. Simple carrier based modulation approach

is used for modulating the CSI [102]. The control scheme is employed by changing the

modulation index supplied to the PWM CSI.

The d-axis is aligned with the phase a axis. Hence, the d-axis voltage, vsd is same as

the phase-to-neutral peak voltage, v̂g and q-axis voltage, vsq is 0.

The active power in dq reference frame is:

Pg = 1.5vsdisd (8.11)

The active current component can be obtained from (8.11) and the reactive current can

be computed using (2πfsCiv̂g) assuming that the drop across the output filter inductor is
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negligible so that v̂c= v̂g. The reference current is computed using (8.1). The modulation

index mi is considered to be 1, its maximum value.

The error signal to the PI controller is the difference of the reference dc link current, I∗dc

and the actual sensed current, Idc. The controller ensures that the active current component

of the dc link current varies according to the required active power. The output of the

controller is the modulation index given to the PWM-CSI.

8.2 Simulation results
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Figure 8.3: (a) Top to Bottom: Transformer secondary voltages across each of the three
transformers followed by the total secondary voltage (b) Top to Bottom: Transformer pri-
mary current, Two level current at the output of the CSI Icsi, Capacitor Filter current, Ic,
(c) Top to Bottom: Input dc current, Iin, DC link current, Idc, Grid voltage, Vg and Grid
Current, Ig

The proposed topology was simulated using MATLAB/Simulink. The dc voltage source

of Vin = 300 V is to be integrated to a three-phase 3.3 kV /500 kW grid at 60 Hz. The

high-frequency transformer to step up the low input voltage to three-phase medium voltage

is to be designed at 10 kHz. The transformer leakage inductances are considered to be 0.04

pu.

The top plot in Fig. 8.3b shows the primary current of one HFT. The diode bridge con-

nected to the transformer secondary causes a trapezoidal current through the transformer

windings, hence eliminating the problem of transformer leakage commutation. The primary

current waveform nature is the same in all three primary windings but the magnitude of

the primary currents vary depending on the transformer turns ratio. The second plot in

Fig. 8.3b is of the two level current waveform of the CSI for phase a and the third plot is of

the filter capacitor current of phase a. The fundamental peak component of this capacitor
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current is equal to 2πfsCi v̂c as given in (8.1).

Fig. 8.3c shows a plot of Iin, Idc and the grid side voltage and current. The mean value

of input current, Iin is close to 1666.67 A, according to Iin =
Pg

Vin

, but the input current

goes negative on an instantaneous basis as shown in the first plot of Fig. 8.3c. This will

require a capacitor in the input to avoid the flow of negative current into the dc source. Idc

reaches a constant value of 123.71 A in steady state as the error signal to the PI control

block goes to 0. In order to achieve acceptable grid current THD (< 5%) and a close to

unity power factor, the grid side filter inductance is computed to be Lfilter= 5 mH and the

filter capacitor is chosen to be Cfilter= 50 uF .



Chapter 9

Conclusion and Future Work

9.1 Conclusion

An asymmetrical single-stage multilevel converter with HFT isolation has been proposed in

this thesis for interfacing low voltage DC to high voltage AC grid. The topology combines

the advantages of single-stage power conversion, galvanic isolation in a small footprint using

HFT and lower voltage THD by generating multilevel voltages. The ideal modulation along

with the four-step commutation algorithm for the bi-directional switches was implemented.

This resulted in an output voltage profile having glitches, arising due to switch non-idealities.

The cause and effect of the glitches was described in detail and a compensation technique

was implemented to negate the voltage reversal. The compensation allows to improve the

input current ripple profile and hence, enhances the system power quality. Another set of

glitches, in the output voltage due to the interdependence of the three AC-AC converter

modules were investigated and a compensation technique was proposed and demonstrated.

Another modulation technique has been investigated for the isolated asymmetrical con-

verter using conventional level shifted carriers. Considering ideal switches, the generation of

fifteen levels in the phase-to-neutral output voltage using three AC-AC converter modules is

explained. However, because of the non-idealistic nature of the switch, the switching signals

have to be modified. The modifications in the ideal signals to incorporate the dead-time

of primary side H-bridge switches and four-step commutation of bi-directional switches is

explained in detail by showing six different modes of circuit operation for one particular

switching transition. The modified signals based on the high-frequency link shift the har-

monic frequencies in the phase-to-neutral output voltage to the sidebands of multiples of

twice the switching frequency, hence, reducing the size of the grid filter. The analysis in

general can be used for any isolated single-stage converter and will also aid in the real-time

implementation of the converter.
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The design and characterization of the multi-winding transformer to achieve low leakage

inductance was explained. Simulations and experimental results on a laboratory prototype

were given to demonstrate the proposed topology and validate the compensation techniques.

The topology has certain challenges in terms of: 1) higher control complexity in com-

parison to two-stage conversion; 2) unlike the dual active bridge, control of the proposed

topology does not allow complete soft-switching; 3) the asymmetrical configuration although

enables to achieve more levels with lesser device count, however, the absence of any redun-

dant modules affects the system in case of a module failure; 4) the proposed topology

requires a multi-winding transformer design which is difficult to manufacture.

The following has been done in this thesis to address those challenges: i) A normalized

index value similar to [26] has been computed to determine the optimum number of lev-

els for asymmetrical single-stage conversion in terms of voltage THD, control complexity,

switch count and number of multi-winding transformer terminals. Based on the data, 1:2:4

asymmetrical configuration allows to achieve the lowest normalized index; ii) implementa-

tion of four-step commutation, results in 3/4th transitions to be soft-switched even at low

currents. iii) converter operation in case of module failure is outlined by a combination

of modification in control and hardware reconfiguration [95, 97]. The other single-stage

HFT isolated topologies face similar challenges [45, 68], whereas the two stage topologies

require reliability critical DC-link electrolytic capacitor [103] and have issues caused due

to multi-stage conversion. Reliability of a single-stage converter is more in comparison to

a multi-stage converter. However, a quantitative analysis of the reliability of the proposed

converter needs to be done similar to [104], [105] but is a part of future work.

9.2 Study of several isolated multilevel converter topologies

Table 9.1 presents a case study of several isolated multilevel converter topologies in the

literature. It is to be noted that for an equivalent comparison with all the topologies, a

three phase system is considered. For a power level, P , phase-to-neutral voltage, vpn, input

voltage, Vin and input current, Iin, a comparison of several topologies is outlined based on

the voltage and the current rating of the devices and the control algorithm used.
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Table 9.1: Case Study of Several Isolated Multilevel Converter Topologies

Topology* Modules Device Rating Levels Capacitor Switches Control†

Npm Nsm Vrs[V] Ips[A] Sp Ss

ISTSC [27] 9 9
v̂pn
3

Iin
9

7 Identical 36 72 PWM

ISSSC1 [80] 3 6
v̂pn
2

Iin
3

5 - 12 24 SVM

ISSSC2 [68] 8 24
v̂pn
8

Iin
8

17 - 32 192 PWM

IATSC [61]

3 Vin

0.8Iin
3

27 Unidentical

12

NLM

1
3

3v̂pn
13 0.2Iin 4

24

3
v̂pn
13

24

IASSC1 [63] 1

3
4v̂pn
7

Iin 15 - 4

24 Uni-

3
2v̂pn
7

24 Polar

3
v̂pn
7

24 PWM

IASSC2 3

3
4v̂pn
7

Iin
3

15 - 12

24

PWM3
2v̂pn
7

24

3
v̂pn
7

24

*ISTSC- Isolated Symmetrical Two Stage Converter; ISSSC1- Isolated Symmetrical Single Stage Converter 1

ISSSC2- Isolated Symmetrical Single Stage Converter 2; IATSC- Isolated Asymmetrical Two Stage Converter

IASSC1- Isolated Asymmetrical Single Stage Converter 1; IASSC1- Isolated Asymmetrical Single Stage Converter 2
†PWM- Pulse Width Modulation; SVM- Space Vector Modulation; NLM- Nearest Level Modulation

ISTSC uses a two stage conversion from high-frequency AC-DC-line frequency AC and

hence requires a large number of reliability critical DC-link capacitors. However, the high

frequency dual active bridge configuration allows the devices to be soft-switched. ISSSC2

on the other hand, due to single stage conversion remove the DC-link capacitors. Such

symmetrical multilevel converter topologies, require many modules to be connected in series

to generate a multilevel voltage resulting in a large system. However, the reliability of the

system can be increased by having a specific number of redundant modules.

Isolated asymmetrical converters can generate a large number of levels using less number
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of devices. The switch count in Table 9.1 shows the difference in the number of devices

in an asymmetrical converter in comparison to a symmetrical case. IATSC can achieve

the lowest THD with the least number of devices. The diode bridges are replaced with H-

bridges for bi-directional power flow and an equivalent device count. However, the absence

of a transformer winding for the main converter requires a high voltage DC input and high

voltage rating devices. Nearest level modulation is used to generate the 27-level output

voltage. IASSC2 uses asymmetrical single stage modules to generate a multilevel output

voltage using modified PWM. The topology allows to achieve fifteen levels in the output

voltage with less number of switches and the single stage conversion allows to get rid of

the DC-link capacitor. The modulation results in the dominant harmonics at the sidebands

of multiples of twice the switching frequency resulting in a smaller grid filter. Also, by

the virtue of four-step commutation in every transition 3/4th of the transitions are soft-

switched [106]. However, due to asymmetrical configuration the reliability of the system is

a concern due to the absence of redundant modules.

9.3 Future work

• Investigation of system efficiency and loss breakdown.

• Determination of optimal switching frequency based on the loss model.

• Quantitative analysis of system reliability.

• Investigate techniques to retrieve the energy lost in the leakage inductance for gate

drive power supplies etc.

• Comparison of transformer design using planar, non-planar geometry and using ferrite

or amorphous/nanocrystalline material in terms of leakage inductance.

• Detailed investigation of a proposed topology consisting of full-bridge modules in

parallel on the low voltage input side and Modular Multi-level Converter(MMCs) on

the high voltage output side with a series of asymmetrical two-winding transformers.
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