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Abstract 

A DATA QUALITY FRAMEWORK FOR THE SECONDARY USE OF 
ELECTRONIC HEALTH INFORMATION 

Electronic health record (EHR) systems are designed to replace paper charts and facilitate 

the delivery of care.  Since EHR data is now readily available in electronic form, it is 

increasingly used for other purposes such as clinical effectiveness research, predictive 

modeling, population health management and healthcare quality improvement. Use of 

EHR data is expected to improve health outcomes for patients; however, the benefits will 

only be realized if the data that is captured in the EHR is of sufficient quality to support 

these secondary uses. 

This research demonstrated that a healthcare data quality framework can be 

developed that produces metrics that characterize underlying EHR data quality and it can 

be used to quantify the impact of data quality issues on the correctness of the secondary 

use of the data. The framework described in this research defined a Data Quality (DQ) 

Ontology and implemented an assessment method. The usefulness of this approach was 

illustrated by characterizing the data quality of EHR data and then quantifying the impact 

of data quality issues on the correctness of the CMS178 eMeasure. 

The DQ Ontology was developed by mining the healthcare data quality literature 

for important terms used to discuss data quality concepts and these terms were 

harmonized into an ontology. Four high-level data quality dimensions 

(CorrectnessMeasure, ConsistencyMeasure, CompletenessMeasure and 

CurrencyMeasure) categorized 19 lower level Measures. The ontology serves as an 

unambiguous vocabulary and allows more precision when discussing healthcare data 
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quality. The DQ Ontology is expressed with sufficient rigor that it can be used for logical 

inference and computation. 

The data quality framework was used to characterize data quality of an EHR for 

10 data quality Measures. The results demonstrate that data quality can be quantified and 

metrics can track data quality trends over time and for specific domain concepts. The 

quantities produced by the ontology based assessment method are easier to use and 

understand than some of the existing, rule based, approaches to data quality assessment. 

The DQ framework produces scalar quantities which can be computed on individual 

domain concepts and can be meaningfully aggregated at different levels of an information 

model. 

The data quality assessment process was also used to quantify the impact of data 

quality issues on a task.  The EHR data was systematically degraded and a measure of the 

impact on the correctness of the CMS178 eMeasure (Urinary Catheter Removal after 

Surgery) was computed. A linear regression model that uses domain concept data quality 

measures as independent variables quantified the relative impact on CMS178. The un-

degraded EHR data was used as a baseline to measure correctness and quantify how data 

quality issues affect secondary use. This information can help healthcare organizations 

prioritize data quality improvement efforts to focus on the areas that are most important 

and determine if the data can support its intended use.  
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Chapter 1: Introduction 

1.1 Background and Significance 

 The healthcare system in the United States has adopted the use of electronic 

health records (EHR) at a rapid pace. As of the end of 2014, fully 83% of physicians and 

93% of hospitals have an EHR1,2. An EHR system is designed to replace a paper chart 

and to document and facilitate the delivery of care. Since EHR data is now readily 

available in electronic form, it is increasingly used for other purposes such as clinical 

effectiveness research, predictive modeling, population health management and 

healthcare quality improvement. Use of EHR data is expected to improve health 

outcomes for patients; however, the benefits will only be realized if the data that is 

captured in the EHR is of sufficient quality to support these secondary uses3.  

Studies have shown that EHR data often contains errors that can impact research 

results4. Researchers need to understand the quality of the data that they use. In a recent 

literature review only 24% of studies had a data validation section5. Errors in EHR data 

not only have an economic cost, they can lead to patient safety issues and negative patient 

outcomes. Decisions based on inaccurate information can adversely affect patient care 

and any downstream use of the data6–10. This dissertation research is focused on the 

impact of data quality issues on the secondary use of EHR data. 

While there have been data quality frameworks explored in computer and 

information science settings, there has been limited work applying them to healthcare 

data11. This dissertation develops a healthcare focused data quality framework that can be 
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used to quantify the quality of a set of data and provides a method to assess the 

correctness of results given the data’s intended use. The framework relates measurements 

of data quality along different dimensions to a research question of interest and quantifies 

the impact of various data quality issues on the correctness of the result. The framework 

consists of a data quality ontology that defines data quality measures and provides an 

assessment method and software that can execute against an EHR dataset to produce data 

quality metrics.  

1.2 Data Quality Dimensions 

There is no quantitative definition of data quality; most authors define data quality 

in the context for how the data will be used. Juran defines high quality data as data that 

are fit for use in their intended operational, decision-making, planning, and strategic 

roles12. The International Standards Organization (ISO) defines data quality as the totality 

of features and characteristics of an entity that bears on its ability to satisfy stated and 

implied needs13. In order to assess the quality of data there needs to be an understanding 

of how the data will be used14,15. This “fitness-for-use” measure of data quality is an 

approach taken in information science. Kahn has proposed a simplified healthcare 

specific framework using a “fit-for-use” data quality assessment model16. It as an 

important approach since it is the ultimate consumer of the data that determines whether 

the data has met its purpose12,17.   

 Different researchers have proposed multiple dimensions of data quality, but there 

is no overall consensus on the most important dimensions or even consistency in their 

definitions17–20. Wang and Strong proposed a framework that consolidates 118 different 
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data quality attributes found in the literature into 20 dimensions11. This framework is 

often cited and represents a useful set of data quality categories, but this framework is not 

healthcare focused. 

Healthcare data is complex and diverse and there have been a few attempts to 

define EHR data quality21.  The Canadian Institute for Health Information (CIHI) 

published a framework that describes a data quality model that includes five dimensions 

(Accuracy, Timeliness, Comparability, Usability and Relevance)22. Kahn also proposes 

five different dimensions (Accuracy, Objectivity, Believability, Timeliness, Appropriate 

amount of data)16. Liaw performed a literature review looking for commonalities on data 

quality dimensions and he also found five dimensions (Accuracy, Completeness, 

Consistency, Correctness and Timeliness)23. Based on a literature review Weiskopf 

proposed five similar but different categories of data quality (Completeness, Correctness, 

Concordance, Plausibility and Currency) and she also listed synonyms for the dimensions 

(Table 1.1)24. These attempts to define healthcare data quality have overlapping 

dimensions, but it is difficult to understand how similar they are without a better way to 

specify each data quality concept. 

Dimension Description 

Completeness Accessibility, Accuracy, Availability, Missingness, Omission, Presence, 
Quality, Rate of recording, Sensitivity, Validity 

Correctness Accuracy, Corrections made, Errors, Misleading, Positive predictive 
value, Quality, Validity 

Concordance Agreement, Consistency, Reliability, Variation 
Plausibility Accuracy, Believability, Trustworthiness, Validity 
Currency Recency, Timeliness 

Table 1.1. Data Quality Dimensions 

All of the aforementioned researchers define these dimensions using textual 

narrative and synonyms. As noted in Weiskopf’s descriptions, the same terms may be 

used multiple times (i.e. “Accuracy” occurs 3 times) to mean different things and it is not 
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clear what aspect of data quality is described. A formal method for defining data quality 

characteristics is needed. 

 The “fit-for-use” view of data quality implies that different uses for a particular 

data set may require different levels of data quality. When health information was 

recorded in paper charts, it was difficult and time consuming to abstract the information 

of interest for a particular research project. Today, with every patient record stored in a 

database, it is easy to obtain a large volume of health information for research projects or 

studies. If the underlying data quality is not assessed for the intended purpose, errors and 

inappropriate results may occur. Clinical quality measures (CQMs) and clinical 

effectiveness research (CER) will be used as two examples of how data quality issues 

impact the secondary use of EHR data.  

1.3 Clinical Quality Measures 

 The first example of data quality impact is illustrated with the calculation of 

Clinical Quality Measures (CQMs), sometimes called eMeasures, from EHR data. The 

creation of eMeasures from EHR data is an initiative developed to quantify how well 

patient care is meeting best practices25,26. Current EHR systems compute eMeasures27,28, 

but studies show that eMeasures calculated from EHR data can vary substantially from 

measures calculated through manual chart review29,30. These results indicate that the 

current state of EHR data may not be of sufficient quality to correctly calculate 

eMeasures. 

In order to ensure that eMeasures measure the same phenomenon across 

organizations, the National Quality Forum (NQF) recommends that all eMeasures be 
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empirically tested for validity and reliability31, however current eMeasure validation does 

not take into account data quality. The validity of an eMeasure is critically dependent on 

identifying the correct patient population for the numerator or denominator of the 

measure30. One study compared a manual, paper based computation of a quality measure 

with the same one derived from EHR data32. Ten percent of the patients had missing 

information in the EHR. The eMeasures that could be calculated differed significantly 

from the manually computed ones. The results underestimated the quality of care due to 

incomplete or incorrect data items in the EHR data. Another study showed that when 

patients were allowed to review their EHR records, 25%-30% of patients found 

inaccuracies33.  

 These examples demonstrate that poor data quality impacts the correctness of an 

eMeasure and that it would be useful to quantify the level of data quality needed to 

ensure the eMeasure correctly represents what it was intended to measure. 

1.4 Clinical Effectiveness Research 

 As more healthcare data is recorded in electronic databases, there is a desire to 

use the data for clinical research. In order to understand the validity of the research 

results, the underlying data quality should be taken into account. Information in the 

electronic record is not necessarily recorded with clinical research in mind and the quality 

may not be what is needed for a specific research project34. Secondary use of electronic 

health information can be justified as long as data quality assessment metrics are 

compared against research requirements24. Clinical effectiveness research benefits from 

using aggregated data from multiple EHR systems in order to get larger sample sizes to 
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detect smaller effects, but the research must differentiate between true differences in 

treatment outcomes and differences due solely to variations in the quality of the 

aggregated data16. 

One example of the impact of not assessing data quality when conducting clinical 

research is illustrated by Green35. He describes data quality issues with the National 

Hospital Ambulatory Medical Care Survey database (NHAMCS), which is maintained by 

the Centers for Disease Control (CDC). Green shows that the CDC database had 

significant errors related to data for intubated patients (25% of the emergency department 

patients that were reviewed). This is important because NHAMCS is widely used for 

medical research. Shuur showed that there were similar issues with pregnancy data in 

NHAMCS36, but these errors might have been discoverable with relatively 

straightforward data quality measures that may have uncovered issues before the data 

were used by researchers. 

Another example is a study conducted in 2013 to evaluate the comparative 

effectiveness of antihypertensive medications on blood pressure control37. The study 

uncovered multiple issues with data that was extracted from four healthcare 

organization’s EHRs used for the study. Data was missing, it contained errors (i.e. blood 

pressures with recording errors), it was inconsistent (i.e. comorbid conditions were not 

consistently listed) and some data was uninterpretable (i.e. blood pressure measures 

where the measurement technique was not captured). The researchers recommended 

giving clinicians periodic feedback on data quality issues to improve EHR documentation 

and ensure clinical research is not seen as a separate activity from clinical care. 



 

 7 

Data quality issues for eMeasures and comparative effectiveness research may 

impact the ability to give correct results and demonstrates the importance of 

understanding the quality of data used in research. 

1.5 Purpose and Specific Aims 

 The overall purpose for this dissertation is to demonstrate that a data quality 

framework can be developed to characterize underlying EHR data quality. The 

framework can be used to quantify the impact of data quality issues on the correctness of 

the data for an intended use. The specific research aims to support this purpose are: 

1. Define a data quality framework that consists of a Data Quality (DQ) Ontology 

and a method for quantifying data quality for the secondary use of EHR data. The 

framework defines specific measures of data quality and describes an approach 

for quantifying these measures for a set of data.  

2. Develop a software program that uses actual EHR data and the DQ Ontology to 

produce metrics that characterize that data. An example of computing the 

CMS178 eMeasure (Urinary Catheter Removal after Surgery) is developed to 

illustrate the usefulness of the approach. 

3. Quantify the impact of two data quality issues, missing data and domain 

conformance, on the correctness of an eMeasure (CMS178) by systematically 

degrading the underlying quality of EHR data. A linear model that describes the 

change in the correctness of the eMeasure quantifies the impact of each data 

quality issue. 
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 The research resulting from these aims provides a useful healthcare focused data 

quality assessment framework. The DQ Ontology concepts serve as an unambiguous 

vocabulary for discussing healthcare data quality. The ontology precisely defines data 

quality concepts better than using textual descriptions and is sufficiently rigorous to be 

used directly by software to quantify data quality. The DQ Ontology can be reused for 

different clinical domains and intended purposes to make validating data quality more 

common and reproducible. The metrics produced by this approach characterize data 

quality along a number of dimensions and the impact that data quality issues have on the 

intended use of the data can be quantified. Automating the data quality assessment 

process using this approach can enable sharing of data quality metrics that may aid in 

making research results that use EHR data more transparent and reproducible. 
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2.1 Summary 

 The secondary use of EHR data for research is expected to improve health 

outcomes for patients, but the benefits will only be realized if the data in the EHR is of 

sufficient quality to support these uses.  A data quality (DQ) ontology was developed to 

rigorously define concepts and enable automated computation of data quality measures.  

The healthcare data quality literature was mined for the important terms used to describe 

data quality concepts and harmonized into an ontology. Four high-level data quality 

dimensions (“correctness”, “consistency”, “completeness” and “currency”) categorize 19 

lower level measures. The ontology serves as an unambiguous vocabulary, which defines 

concepts more precisely than natural language; it provides a mechanism to automatically 

compute data quality measures; and is reusable across domains and use cases. A detailed 

example is presented to demonstrate its utility. The DQ ontology can make data 

validation more common and reproducible. 

2.2 Introduction and Background 

The healthcare system in the United States continues to adopt electronic health 

records (EHR) at a rapid pace.38 The EHR is designed to replace a paper chart and to 

document and facilitate the delivery of care. Since this electronic data is now much more 

easily accessed than abstracting from paper charts, it is frequently used for other purposes 

such as clinical effectiveness research, predictive modeling, population health 

management and healthcare quality improvement. Secondary use of EHR data is 

expected to improve health outcomes for patients, but the benefits will only be realized if 

the data that is captured in the EHR is of sufficient quality to support these secondary 
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uses.3  Investigators have shown that EHR data often contain errors that can impact 

research results, yet only 24% of clinical studies that use EHR data had a data validation 

section.5 In order to measure the quality of data there must be an understanding of how 

the data will be used.15 

There is no generally accepted quantitative measure of data quality, but Juran 

gives an often cited qualitative definition as  “…high-quality data are data that are fit for 

use in their intended operational, decision-making, planning, and strategic roles.”12(p.34-8)  

Data quality may be adequate when used for one task, but not for another. For example, a 

higher level of data quality is needed to count the number of diabetic patients with 

controlled HgA1C than to just count the number of patients. A task refers to concepts in a 

clinical domain and those concepts are represented by the data. For each task, a set of 

data quality measures must be developed that determine if the data are adequate to 

perform the task.  The healthcare data quality literature provides terminology and 

definitions and attempts to organize data quality measures, but there is no general 

agreement on what these measures should be.23 This terminology-based approach defines 

measures using natural language, which does not adequately represent the relationships 

between concepts and is too loosely defined to yield a quantifiable measure of data 

quality. A better approach is to use an ontology which provides a sufficiently rigorous 

foundation for concept definitions that enable automated methods for calculating data 

quality measures.   

An ontology is a formal, explicit specification of a shared conceptualization.39  

Each concept (also called a “class”) in the ontology has a name, attributes, properties 

(relations to other concepts) and constraints that must always be true for a concept. The 
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key benefits of defining data quality measures in terms of an ontology are that an 

ontology is: 1) a specification, written in a formal language and able to represent 

semantics, 2) a shared vocabulary that everyone can use to precisely refer to an aspect of 

the world, and 3) a sufficiently rigorous specification that can be used for logical 

inference and computation.40 An ontology is a logical theory about a part of the world 

and it defines interrelationships between concepts and axioms that should be true about 

that world.  Automated reasoning can be applied to check internal consistency and make 

inferences beyond what was explicitly stated in the ontology.41 This automation 

eliminates the need for redefining the data quality measures for every task in every 

domain.   

No formal healthcare data quality ontology currently exists, but there is research 

that examines core data quality concepts. Wang and Strong11 proposed a framework that 

consolidates 118 different general data quality characteristics into 20 categories. Kahn16 

proposed a healthcare specific framework using a “fit-for-use” data quality model in 

which he proposes five high-level dimensions.  Liaw23 performed an extensive literature 

review looking for commonalities on data quality dimensions. He found consensus on the 

five most common occurring dimensions were “accuracy”, “completeness”, 

“consistency”, “correctness” and “timeliness”. While there is some agreement among 

investigators on these high-level dimensions, there is little agreement or consistency in 

definitions of more granular data quality concepts such as “validity”, “reliability” and 

“believability”.18  In a 2012 paper, Weiskopf24  defined five high-level dimensions of 

data quality and listed synonyms for each (Table 2.1).  
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Dimension Synonyms 
Completeness Accessibility, Accuracy, Availability, Missingness, Omission, Presence, 

Quality, Rate of recording, Sensitivity, Validity 
Correctness Accuracy, Corrections made, Errors, Misleading, Positive predictive 

value, Quality, Validity 
Concordance Agreement, Consistency, Reliability, Variation 
Plausibility Accuracy, Believability, Trustworthiness, Validity 
Currency Recency, Timeliness 

Table 2.1. Weiskopf Five Dimensions of Data Quality with Synonyms 

While these dimensions capture orthogonal aspects of data quality, they are defined using 

natural language descriptions and synonyms. As can be seen from Weiskopf’s 

descriptions, the same terms may be used multiple times to mean different things (i.e. 

“Accuracy” occurs 3 times), introducing confusion regarding what aspect of data quality 

is being described. To provide better conceptual clarity and precision, an ontology is 

needed.  

This paper describes the development of a healthcare data quality ontology (DQ 

ontology) which provides rigorous definitions and can automate the computation of data 

quality measures. Given formal ontologies for a clinical domain and for a task, the DQ 

ontology enables measures to be reused without having to reinvent new data quality 

assessments for every research project. Ontologies for some clinical domains42 and 

tasks43 already exist and researchers can focus on creating additional ontologies that can 

be used by the DQ ontology to yield quantified measures. This can make it easier to 

incorporate data quality validation as a standard component of research results.  The DQ 

ontology was developed from a comprehensive list of data quality terms present in the 

literature. The terms were organized into an ontology and constraints were defined that 

precisely describe a data quality measure better than natural language and enable 

quantification of the measure. It makes explicit which data quality concepts depend on 

the use of the data and which depend on the clinical domain. A detailed example 
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demonstrates the utility of this ontology for quantifying measures and for discussing 

aspects of data quality. 

2.3 Materials and Methods 

There are a number of methodologies for developing an ontology,40 but the 

method described by Noy and McGuiness44 was selected due to its simplicity and 

effectiveness. This methodology advocates a seven-step process that takes a list of terms 

and definitions and turns them into a formal ontology. The first step is to define the scope 

of the ontology. For this study, the scope is a shared vocabulary of data quality concepts 

with formal definitions that are automatically computable to quantify data quality. The 

software development community has had success adopting the approach of a common 

vocabulary to allow researchers to spend less time defining concepts and more time 

applying it in research.45 Next, the reuse of existing ontologies was considered. No 

formal healthcare data quality ontology exists; but ontologies that describe clinical 

domains and tasks do exist and will be reused and referenced by the DQ ontology.42,43 

In order to enumerate the important terms in the ontology, an extensive PubMed 

search for articles published between January 1995 and January 2015 was performed to 

obtain a comprehensive list of terms and definitions that are used to describe healthcare 

data quality. The goal was to find literature reviews and meta-analyses of papers about 

healthcare data quality to identify as many core concepts as possible. Also, all articles 

about informal healthcare data quality frameworks or ontologies were examined for key 

terms and definitions. Keywords included in the query were: ("data quality") and 
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("health" or EHR) and (“literature review” or framework or ontology or assessment or 

model) and (dimensions or accuracy or consistency or completeness or correctness). 

There were 181 articles identified, which were manually reviewed by the first 

author and narrowed to five meta-analyses from Liaw23, Weiskopf24, Kahn16, Chen46, and 

Lima47. These papers were either reviews of other papers about healthcare data quality or 

they proposed an informal data quality framework. They all attempted to categorize data 

quality concepts into semi-orthogonal dimensions. The references from these papers were 

also reviewed, which yielded an additional five sources: Wang11, Wand20, Chan6, CIHI22, 

Stvilia48. Collectively, these 10 meta-analyses reviewed 412 papers looking for common 

aspects of healthcare data quality. There was similarity on high-level concepts such as 

“correctness”, “consistency” and “completeness”, but there were limited definitions for 

important terms such as “dataset”, “data”, “measurement”, “metric” and “measure”. 

Additional papers from the information science literature were found to further define 

these important concepts49–51. 

Ontologies can be specified using a number of methods including OWL52, first 

order logic, or as UML53.  For this paper, the ontology is documented using a UML 

diagram and a table that lists constraints. A bottom-up approach was taken in which 

terms and definitions from the meta-analyses were matched and harmonized into 

equivalent concepts and these concepts where grouped into higher-level categories. Each 

concept has properties and relationships with other concepts that were discerned from 

reading the description in the articles. The cardinality of relationships was also defined. 

Cardinality indicates whether an associated concept is optional, must always occur, or 

can occur multiple times.  For example, a patient must always have a gender, but a blood 
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pressure reading is an optional observation. Constraints were also defined for each 

concept, describing what should always be true for a concept. The constraints evaluate to 

a Boolean (true/false) result and can be written in a number of languages including, 

Object Constraint Language (OCL), first order predicate logic (FOPL), pseudo-code or 

openEHR constraint language.40,54 For this study, pseudo-code was chosen because it 

succinctly captures the important aspects of the constraint without introducing a specific, 

complex syntax.  

2.4 Results 

There were 96 terms and definitions extracted from the literature as a basis for the 

data quality measures of the ontology. Terms that described the same concept were 

matched based on their definition and use within the articles. Concepts that appeared in 

less than three of the articles were deemed non-core and were left out of this version of 

the DQ ontology. The resulting data quality ontology is shown in Figure 2.1 as a UML 

diagram depicting the relationships, attributes, and cardinality of the concepts. For 

readability, the 19 lower-level Measures were not included in the diagram and are listed 

in Table 2.2, which also provides a definition of the measure and a reference to 

equivalent terms from the meta-analyses.  A bold font is used to indicate that a term 

refers to a concept from an ontology. 

The meta-analyses articles make pervasive reference to concepts such as “data”, 

“information” and “value”. In the DQ ontology, a more precise concept, Representation, 

defines the lowest level, atomic piece of information that exists in the data being assessed 

(synonyms for this concept are data field, observation, value, etc). Representations have 
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a DataValue (the part that is stored somewhere) as well as a DataValueType that 

specifies a format to which the DataValue must conform (i.e. numeric quantity, string, 

choice field, etc). DataValueTypes put constraints on the DataValue of the 

Representation, and can only refer to intrinsic information about the value itself and not 

to relationships with other Representations. Formal semantics about concepts 

represented in the data are defined in a separate Domain ontology. Representations have 

an attribute, DomainConcept, which maps data to a concept in the clinical Domain 

ontology.  There can be multiple Representations for each concept in the Domain. For 

example, a systolic blood pressure value can be represented as a single number (i.e. 123) 

or it can be encoded as the first part of a string (i.e. “123/92”). DomainConcepts can also 

have multiple synonyms in the Domain ontology (i.e. “BP” and “Blood Pressure”), but 

for the purpose of assessing data quality, they can all be mapped to a single, primary 

DomainConcept  (i.e. “Blood Pressure”). The Task designates the context or the specific 

use of the data and is necessary for assessing fitness-for-purpose. The Domain and Task 

are separate, formal ontologies to which the DQ ontology refers. A Dataset is an 

arbitrary grouping of Representations of interest. For example, a Dataset can be all of 

the Representations in the entire EHR.   

One of the key concepts in the DQ ontology is the Measure, which is defined as 

“a quantity that characterizes a quality of the data”. Other possible terms considered were 

“dimension”, “aspect”, “measurement”, “metric”. Measure was chosen because it 

captured the notion of quantifying an aspect of interest.  The word is used as a noun, not a 

verb. A Measure is quantified using a MeasurementMethod. A Measurement is a 

process that performs a MeasurementMethod on a specific Representation (or 
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Dataset) at a point in time that yields a MeasurementResult which is a quantity, usually 

numeric (but possibly a boolean or text value).  A Metric is a statistic about a series of 

MeasurementResults along a dimension such as time or across patients. For example, a 

MeasurementResult could indicate that there were 72 data format errors in a Dataset. 

But a Metric for that situation would be that there were an average of 5.5 data format 

errors per day or per patient. This part of the DQ ontology was based in part on core 

concepts from the Ontology for Software Measurement49. 

Four high-level data quality dimensions (CorrectnessMeasure, 

ConsistencyMeasure, CompletenessMeasure and CurrencyMeasure) categorize 19 

lower level Measures. “Accuracy” is one of the terms that had many definitions in the 

literature. In Weiskopf24,  she lists at least 3 different ways that the term is used. It 

sometimes means only correctness but it is also used to represent completeness or 

plausibility. For that reason, the term “accuracy” has been avoided in the DQ ontology 

because it is too overloaded. Instead, the term “correctness” was selected to represent this 

core concept.  
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Figure 2.1. Data Quality Ontology 
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 Concept Definition References / Synonyms 
 CorrectnessMeasure 

 RepresentationIntegrity 

Aspects of the Representation 
that reassure that data was not 
corrupted or subject to data entry 
errors. 

Correctness: Credibility of source23, 
Accuracy: …free of error16, 
Integrity46, Repeatability46, Structural 
Consistency48 

 RelativeCorrectness 

Assesses the quality of a 
Representation by comparing it 
to its counterpart in another 
Dataset which is a "relative 
standard", computed as PPV. 

Accuracy: ...conformity with actual 
value23, Correctness24, Believability16, 
Validity24,47, Comparability6,20, 
Accuracy11,24,46,48, Corrections made24, 
Errors24, Misleading24, PPV24, 
Quality24  

 RepresentationCorrectness A correct Representation has 
high accuracy and is complete. 

Correctness: …accuracy and 
completeness23, Accuracy6,20  

 Reliability The data is correct and suitable 
for the Task. 

Reliability20,23,46,47, Accuracy: 
Measurement Error22 

 ConsistencyMeasure 

 RepresentationConsistency 

The data is a valid value and 
format for its DataValueType 
and all of the Representations for 
the same information have the 
same values. 

Consistency: …values and physical 
representation of data23 , 
Concordance24 , Format16 , Internal 
Consistency46 , Consistency24 , 
Precision20 , Format16,20, Reliability24 , 
Variation24 , Accuracy: Edit and 
Imputation22 , Representational 
Consistency11  

 DomainConsistency 

Concepts in the Domain are 
represented in the data and the 
data satisfies syntactic and 
semantic rules. Constraints for 
the Domain are satisfied. 

Accuracy: Refers to values and 
representation23, Correctness: 
…format and types are valid23, 
Plausibility24, Believability11,24, 
Relational Integrity Rules16, 
Consistency20,46,47, Measure validity6, 
Accuracy24, Trustworthiness24, 
Validity24,48  

 CodingConsistency 

Representations that are of 
coded text data type must be 
correctly mapped to an 
enumerated list or a terminology. 

Consistency: …codes/terms…mapped 
to a reference terminology23 , Valid 
values16, Comparability: 
Equivalency22, Semantic 
Consistency48  

 DomainMetadata 
Meta-data exists to describe the 
Domain and it is logically 
consistent. 

Methodological Clarity47, Metadata 
Documentation46, Comparability: Data 
dictionary standards22, 
Interpretability11  
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 CompletenessMeasure 

 RepresentationComplete Domain independent extent to 
which data is not missing. 

Completeness: …information is not 
missing23, Completion47, 
Completeness6,46, Accuracy: Item 
Non-Response22  

 DomainComplete The extent to which information 
is present or absent as expected. 

Appropriate amount of data: Data are 
present or absent as expected24, 
Optionality16, Content20  

 RelativeCompleteness 

The extent to which a truth about 
the world is represented in the 
data. This is computed as 
sensitivity relative to another 
Dataset. 

Completeness: Is a truth…in the 
EHR?24, Accessibility11,24,47, 
Accuracy24, Availability24, 
Missingness24, Omission24, Presence24, 
Quality24, Rate of Recording24, 
Sensitivity24, Validity24  

 Sufficiency 

The data has sufficient 
Representations along a given 
dimension (i.e. time, patient, 
encounter) to perform the Task. 

Completeness: …sufficient breadth 
and depth for the task23, Appropriate 
amount of data16, 
Representativeness46, Sufficiency20, 
Accuracy: Coverage22, 
Granularity16,46, Continuity16, Level of 
Detail20, Completeness11,48, Precision48  

 DomainCoverage 
The data can represent the values 
and concepts required by the 
Domain. 

Completeness: …represent every 
meaningful state of the […] real 
world23, Completeness: All values for 
a variable are recorded23, Coverage47, 
Completeness20  

 TaskCoverage 
The data contains all of the 
information required by the 
Task. 

Completeness: …depict every 
possible state of the task23, 
Usableness20,46, Usability46, Utility46, 
Importance20, Usefulness20, Value-
added11  

 Flexibility 
The extent to which the data is 
sufficient to be used by many 
Tasks. 

Consistency: information appl[ies] to 
different tasks23, Flexibility11,20, 
Relevance: Adaptability22  

 Relevance Data is sufficient for the Task 
and conforms to the Domain. 

Relevance20,23,46,48, Relevance: Value22 
, Relevancy11  

 CurrencyMeasure 

 RepresentationCurrent 

Calculation for time difference 
between when an observation 
was made and when it was 
entered into the system. 

Timeliness: delay between a change of 
the real-world state and…the 
information system23, Currency24,46,48, 
Timeliness20,24,46, Up-datedness46, 
Recency24  

 DatasetCurrent 

Time difference between when a 
Dataset was updated and when it 
was made available. For 
example, periodic repository 
updates. 

Timeliness: …availability of output is 
on time23, Opportunity47, Periodicity46, 
Currency16,20, Timeliness: Data 
currency22, Timeliness11  

 TaskCurrency 
The Data is sufficiently up-to-
date for the requirements of the 
Task. 

Timeliness: …information is up to 
date for task23, Timeliness: …age of 
the data is appropriate for the task16, 
Timeliness (external)20  

Table 2.2. Data Quality Ontology - Measure Detail 



 

 22 

Illustrative Example of Using the DQ Ontology 

In what follows, an example is provided to illustrate the utility of the DQ 

ontology concepts.  Table 2.3 lists constraints (using pseudo-code) for some of the 

Measures.  These will be used to show how data quality measures can be computed for a 

sample Dataset (Table 2.4) with respect to the task of calculating an eMeasure. An 

eMeasure25 is a ratio for a health outcome of interest. For example, NQF 0018, 

“Controlling High Blood Pressure”, is defined to be “The percentage of patients 18-85 

years of age who had a diagnosis of hypertension and whose blood pressure was 

adequately controlled (<140/90mmHg) during the measurement period.”  

 
Measure Constraint 

RepresentationConsistency Representation is valid format 

DomainConsistency 

RepresentationConsistency and (Representation 
DomainConcepts are in Domain) and DomainComplete and 
Representation’s DomainConcept Constraints are satisfied 

CodingConsistency 
if Representation is coded text then Representation should have 
valid code 

DomainMetadata Domain ontology is consistent 
RepresentationComplete Representation value is not empty 

DomainComplete 
RepresentationComplete or Representation’s DomainConcept 
cardinality is satisfied 

Sufficiency Task SufficiencyConstraint is satisfied 

DomainCoverage 
Domain’s DomainConcepts are subset of Dataset’s 
DomainConcepts 

TaskCoverage 
DomainCoverage and (Task’s DomainConcepts are subset of 
Dataset’s DomainConcepts) 

Table 2.3. Examples of Data Quality Measure Constraints 

For the DQ ontology to be applicable, a Domain and a Task need to be defined. 

In this case, the Task is to calculate the eMeasure defined above and the Domain 

consists of concepts related to blood pressure as well as some information about the 

patient and the encounter.  To make the example more concrete, a minimalist (and 

incomplete) Domain and Task ontology will be defined.  A portion of a blood pressure 
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(Domain) ontology is shown below (patterned after the openEHR blood pressure clinical 

model42): 

 

BloodPressureDomain (portion) is an instance of a Domain ontology consisting of: 

 Patient is a Structure and has 1 MRN, [0 or more] Encounter, 1 Age 

 Age is a Quantity with a constraint of “Age > 0 and < 120” 

 Encounter is a Structure with [0 or more] Diagnosis, [0 or more] 

BloodPressureObservation 

 BloodPressureObservation has [0 or 1] Systolic, [0 or 1] Diastolic 

 Systolic is a Quantity with a constraint of “value > 0 and < 1000, Systolic > Diastolic” 

 Diastolic is a Quantity with a constraint of “value > 0 and < 1000, Systolic > 

Diastolic” 

 

The Task usually has a formal ontology, but for simplicity’s sake a task definition 

serves to illustrate how concepts in the Domain are referenced to specify the criteria for 

the patient population of interest. It defines the semantics of “diagnosis of hypertension” 

which, in this example, is a value set of codes from the ICD9 terminology. A portion of 

an example Task instance, TaskNQF0018 is shown below. It is patterned after the 

eMeasure Quality Data Model (QDM)43. 

 

TaskNQF0018 (portion) is an instance of a Task ontology consisting of: 

 PatientPopulation refers to Patients Age and Diagnosis: 

 InclusionCriteria: Diagnosis in {401.0, 401.1, 401.9} and Age ≥ 18 and Age ≤ 85 
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   SufficiencyConstraint: At least 1 BloodPressureObservation per Encounter 

 Numerator refers to the most recent BloodPressureObservation: Formula is count( 

               BloodPressureObservation.Systolic > 140 and 

BloodPressureObservation.Diastolic > 90 ) 

 Denominator refers to PatientPopulation:  Formula is count( PatientPopulation ) 

 

Sample patient data is shown in Table 2.4. Each of the cells in the table shows the 

value of an instance of a Representation.  The topmost column headers indicate the 

DomainConcept to which each of the cells map.  The lower column headers show the 

DataValueType for the cells in the column.  For brevity, other Representation 

information (entryTime, observedTime, etc.) is not shown. 

 
 

  
Domain 
Concept  

Patient 

MRN Age 
Encounter 

Diagnosis BloodPressureObservation 
Systolic Diastolic 

Data 
Value 
Type 

numeric numeric coded text numeric numeric 

Data 
Value 

1 72 “ICD9:401.0” 147 92 
2 81 “ICD9:401.0” 142 “High” 
3 77 “ICD9:401.1” 140  
4 60 “ICD9:xxx” 92 100 
5 44 “ICD9:401.9”   

Table 2.4. Example Patient Data 

To assess the quality of the sample data, Measurements that quantify some of the 

Measures were performed. For this example, the MeasurementMethod evaluates the class 

constraint of a Measure for all of the Representations in a Dataset and produces a 

MeasurementResult, which is the proportion of constraints that were satisfied. These 

results are shown in Table 2.5. The quantity in the table cell is a fraction where the 

numerator is the number of constraints that are satisfied and the denominator is the 
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number of Representations for each concept. The cell also shows the decimal equivalent 

for the fraction. As an example, to compute RepresentationConsistency for the Diastolic 

DomainConcept, the three Representations in the last column of Table 2.4 are examined.  

It can be seen that these Representations have a DataValueType of numeric.  But the 

value for Patient2 is not valid.  Therefore, only two of the three Representations have 

RepresentationConsistency.  The rest of the MeasurementResults are shown in the table. 

 

Measure Measurement Process Summary 

MeasurementResult 
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Measures that involve only the Representation 

1.1.1.1.1.1.1.1. RepresentationConsistency 
Satisfied if all Representations conform 
to their DataValueTypes. Patient2. 
Encounter.BloodPressureObservation.Dia
stolic is an invalid value. 

4/4 
1.0 

2/3 
.67 

3/4 
.75 

4/5 
.80 

4/5 
.80 

RepresentationComplete Patient3.Encounter.BloodPressureObserv
ation.Diastolic has a missing value so it is 
not RepresentationComplete. 

4/4 
1.0 

2/3 
.67 

3/4 
.75 

4/5 
.80 

4/5 
.80 

Measures that involve the Representation and Domain 
DomainConsistency DomainConsistency is satisfied if all of 

the concepts in the Domain exist in the 
data (true for this example). Also, the data 
must have RepresentationConsistency 
(Patient2 does not) and all of the 
constraints for all of the Domain 
concepts must be satisfied. Patient4 has a 
diastolic blood pressure value that is 
higher than the systolic value, so the 
constraint is not satisfied.  But Patient5’s 
missing BloodPressureObservation is 
allowed by the Domain. 

3/4 
.75 

1/3 
.33 

1/4 
.25 

2/5 
.40 

2/5 
.40 

CodingConsistency True if all coded text Representations 
have valid values. 
Patient4.Encounter.Diagnosis is invalid in 
the ICD9 terminology. 

   4/5 
.80 

4/5 
.80 

DomainMetadata The Domain ontology is defined and 
contains no logical inconsistencies. It 
would be considered inconsistent if it 
contained another rule that stated patient 
age was optional (i.e. “Patient has [0 or 1] 
Age”). 

4/4 
1.0 

3/3 
1.0 

4/4 
1.0 

5/5 
1.0 

5/5 
1.0 
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Table 2.5. Measurement Process Summary for Some Measures 

This example shows how the DQ ontology enables a meaningful discussion of 

data quality characteristics required for computing an eMeasure. It also illustrates a 

method for quantifying each Measure by evaluating the proportion of constraints 

satisfied by the Representations. 

2.5 Discussion 

 The DQ ontology presented in this study harmonized data quality concepts from 

the literature and provides a practical framework to evaluate data quality in health care 

through explicit definitions using constraints and relationships between concepts. The 

ontological approach provides more precise definitions of concepts than simply relying 

on natural language, it enables computation of a quantity for a Measure 

(MeasurementResult) and it makes explicit the relationship between the DQ ontology 

and the Task and Domain ontologies. This allows the DQ ontology to be reused for 

DomainComplete Even though Patient5.Encounter. 
BloodPressureObservation.Diastolic is 
missing, the Domain ontology indicates 
that it is optional, so the constraint is 
satisfied.  

4/4 
1.0 

4/4 
1.0 

4/4 
1.0 

5/5 
1.0 

5/5 
1.0 

DomainCoverage Satisfied since all of the Domain 
concepts are represented in the data. 

4/4 
1.0 

3/3 
1.0 

4/4 
1.0 

5/5 
1.0 

5/5 
1.0 

Measures that involve the Representation, Domain and Task 
Sufficiency The Task specifies a 

SufficiencyContraint that requires at least 
1 BloodPressureObservation must exist 
during the assessment period. Patient5 
and Patient3 don’t have valid blood 
pressure observations recorded. 

   
 

3/5 
.60 

3/5 
.60 

TaskCoverage TaskCoverage is satisfied if the Task 
concepts are a subset of the concepts 
represented in the Dataset. In this case, 
only the data at the Patient level has all of 
the Task concepts represented. Therefore, 
the eMeasure can only be calculated 
when all the data from the Patient level 
and below is available. 

0/4 
0.0 

0/3 
0.0 

0/4 
0.0 

0/5 
0.0 

5/5 
1.0 
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different Domains and for different Tasks without having to devise new Measures.   The 

benefit of specifying these as separate ontologies was demonstrated in the previous 

section.  For example, when calculating the DomainConsistency Measure, constraints 

from the Domain ontology (i.e. “Systolic > Diastolic”) can be referenced when 

computing MeasurementResults without having to change the definition of the 

MeasurementMethod  (or the computer program that implements it).  The same benefit 

is true when calculating the Sufficiency Measure.  A SufficiencyConstraint can be 

evaluated for different Task ontologies to yield a MeasurementResult without having to 

change how Measures are defined.  Not having to invent a new data quality framework 

for every research project should make validating data quality more common and 

reproducible.  

Precisely defining both the Domain and Task ontology are very important in 

accurately describing what each data quality Measure means. Some of the Measures 

have constraints that reference the Task; these are clearly context dependent. Other 

Measures reference only the Representation or the Domain and are task independent. 

The constraints make clear exactly how aspects of each are related and help sharpen 

definitions. An example will illustrate this. DomainConsistency and 

RepresentationConsistency often get intertwined in definitions found in the literature. 

Liaw23 listed a number of sub-meanings under his “Consistency” dimension. One sub-

definition (“Consistency: Representation of data values is same in all cases”) is 

equivalent to RepresentationConsistency, but he did not list an exact equivalent to the 

concept of DomainConsistency. The closest mapping is “Accuracy: Refers to values and 

representation of output data”. On the other hand, Weiskopf24 separated and clearly 
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defined these differences. The concept of RepresentationConsistency is embodied as 

“Concordance: Is there agreement between elements in the EHR, or between the EHR 

and another data source?” and the concept of DomainConsistency is well defined as 

“Plausibility: Does an element in the EHR makes sense in light of other knowledge about 

what that element is measuring?”  But there is an issue in the “Concordance” definition in 

that the last part of her definition “…or between the EHR and another data source” 

includes reference to another Measure (RelativeCorrectness). A Representation can 

have RepresentationConsistency without having DomainConsistency, but the reverse 

is not true. This is reflected in the constraint for DomainConsistency by explicitly 

referring to RepresentationConsistency as part of the definition. This also highlights the 

usefulness of a shared vocabulary for data quality. It makes it possible to discuss nuances 

of data quality characteristics.  

Another issue that occurs frequently in the literature is the term “accuracy;” there 

is an assumption that it is possible to know what is absolutely true about the world. For 

EHR data, there are no true gold standards for comparison. There are only other sets of 

data whose “accuracy” is unknown which can be referred to as relative gold standards.55  

Comparing one dataset to another to yield a positive predictive value (PPV) and 

sensitivity measure are a useful way to characterize the data.56 The concept of 

RelativeCorrectness measures whether data is likely correct by matching a 

Representation to its counterpart in another Dataset. The matches are considered true 

positives and are divided by the number of Representations in the Dataset to yield a 

PPV as a CorrectnessMeasure. Similarly, RelativeCompleteness looks to see which 

“truths” of the world are captured in the EHR data. If a Representation is present in one 
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Dataset and is also present in the other “relative gold standard”, then these true positives 

are divided by the number of Representations in the other Dataset to yield sensitivity as 

a measure of how complete the first Dataset is. 

There are a number of limitations to the current research. Data quality concepts 

described in the meta-analyses were harmonized and mapped to concepts in the DQ 

ontology. Care was taken to map based on meaning or context of use, but since the 

meaning was from an interpretation of a definition (or sometimes, a single term), the 

mapping might not represent what the author of the meta-analyses intended. This 

research depended heavily on the core data quality concepts contained in the meta-

analyses. The literature search may not have been exhaustive in finding all of the meta-

analyses or there may be important data quality concepts that were not discussed in those 

papers. Since many data quality concepts are repeated amongst the papers, it is likely that 

the most important ones were captured. It is expected that additional data quality 

concepts will be added to the DQ ontology as the need for having a formal definition for 

the concept arises. Concepts that did not appear in at least three of the papers were not 

included in the DQ ontology. This includes concepts such as objectivity, non-duplication, 

security and privacy. Future work is needed to incorporate these into the DQ ontology. 

The concept of DomainComplete is currently too simplistic. It will need to be expanded 

to better define types of missing data as missing completely at random (MCAR), missing 

at random (MAR) and missing not at random (MNAR). 

The DQ ontology is applicable to structured EHR data. Additional research is 

needed to extend the DQ ontology to notes and other unstructured data present in EHRs. 

Natural language processing (NLP) techniques may be used to parse relevant 
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DomainConcepts from the unstructured information.  In that case, the DQ assessment 

techniques described in this paper could be used to characterize that portion of the data. 

The next phase of this research is to use the DQ ontology to perform data quality 

Measurements on actual EHR data. A Domain ontology for a clinical area will be 

developed in full and mapped through Representations to EHR DataValues. Similarly, 

a formal Task ontology will be created and referenced by the data quality Measures.  

The constraints for the DQ ontology Measures will be written in a formal language, 

which can then directly be used to compute MeasurementResults and Metrics for a 

real-world Dataset.  

2.6 Conclusion 

 The healthcare data quality literature was mined for the important terms used to 

describe data quality concepts. These terms were harmonized into a DQ ontology that 

represents core data quality concepts. Four high-level data quality dimensions 

(CorrectnessMeasure, ConsistencyMeasure, CompletenessMeasure and 

CurrencyMeasure) categorize 19 lower level Measures. These concepts serve as an 

unambiguous vocabulary when discussing healthcare data quality. The class constraints 

precisely define concepts better than using natural language and provide a mechanism to 

automatically compute MeasurementResults to quantify data quality. The DQ ontology 

can be reused with different clinical Domain and Task ontologies to make validating 

data quality more common and reproducible. 
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3.1 Summary 

Objective: The goal of this study is to apply an ontology based assessment process to 

electronic health record (EHR) data and determine its usefulness in characterizing data 

quality for calculating an example eMeasure (CMS178). 

 

Methods: The process uses a data quality ontology that references separate data quality, 

domain and task ontologies to compute measures based on proportions of constraints that 

are satisfied.  These quantities indicate how well the data conforms to the domain and 

how well it fits the task. 

 

Results: The process was performed on a de-identified 200,000 encounter sample from a 

hospital EHR.  CodingConsistency was poor (44%) but DomainConsistency (97%) and 

TaskRelevance (95%) were very good.  Improvements in the data quality Measures 

correlated with improvements in the eMeasure. 

 

Conclusion: This approach can encourage the development of new detailed Domain 

ontologies that can be reused for data quality purposes across different organizations’ 

EHR data. Automating the data quality assessment process using this method can enable 

sharing of data quality metrics that may aid in making research results that use EHR data 

more transparent and reproducible. 
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3.2 Introduction 

Big data is an overused buzzword that seems to be applied to any application where large 

amounts of data are being used to solve a problem; even so, it has yielded great successes 

in areas as diverse as web searches, product recommendations, and natural language 

translations. Nowhere is the promise of big data more anticipated than in healthcare 57. 

The United States (US) healthcare system is going through a transformation and rapidly 

adopting electronic health records (EHR) which capture patient health information in 

structured, semi-structured and free-form notes to document care delivery 38,58. Because 

the data is now available in electronic form, it is increasingly used in applications such as 

clinical effectiveness research, quality improvement, and clinical decision support 59,60. 

The hope is that big data analytics can find patterns in large amounts of health data to 

reveal the best treatment practices for different patient populations, understand which 

medications work best for an individual, and precisely target interventions that are most 

beneficial for each patient 61. But the promised benefits can only be achieved if the 

quality of the data in the EHR is sufficient to support these continuing (secondary) uses. 

A number of studies have shown that EHR data contain errors that can affect research 

results 62–64. What is needed is a way to quantify the data quality for a data set and 

determine if that quality is sufficient for a specific purpose.  

A few healthcare data quality frameworks exist to address specific purposes, but 

there are no generally accepted definitions of healthcare data quality, methods to best 

characterize the data, nor generalized processes for quantifying data quality 16,23,24. The 

Canadian Institute for Health Information (CIHI) defined aspects of data quality and 

provided a process for assessing data based on those definitions 22. The process consists 
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of a questionnaire and relies on answers provided by data stewards to assess quality. It is 

a manual process and does not result in measures of data quality that are easily 

comparable across different data sets. The Observational Medical Outcomes Partnership 

(OMOP) was established to develop best practices for using observational health data to 

monitor the safety of prescription medications in the US 65. Part of their approach is to 

ensure that all reported data meets certain data quality standards and is amenable to the 

analytic methods they employ. OMOP has defined a common data model and a series of 

data quality rules that all data contributions must pass. The current rules evolved over 

time to meet the specific mission of OMOP; however, the rules are not easily transferable 

for assessing the quality of other data sets that do not conform to the OMOP data model. 

But an advantage of the OMOP data quality process is that it can be automatically 

applied to datasets from multiple parties and can scale 66. Similarly, the MiniSentinel 

project grew out of a need for the Food and Drug Administration (FDA) to monitor the 

safety of medical products regulated by the agency 67. A number of industry participants 

contribute data to faciliate medical product surveillance. There is a common data model 

and a set of data quality checks that must be adhered to by all contributors. While OMOP 

has approximately 35 data quality rules, MiniSentinel has a checklist of over 2,000 rules 

that must be satisfied for data to be acceptable. These sets of rules have evolved through 

multiple iterations to ensure that data are of sufficient quality, but the data quality rules 

are limited to medical product and safety surveillance. 

While these frameworks produce useful information about how data satisfies 

quality rules along a number of dimensions, the rules are tailored to meet the goals of 

their respective organizations. The Electronic Data Methods (EDM) Data Quality 
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Collaborative proposed that there be a standard approach for reporting data quality that 

would ensure transparency and consistency in data quality assessments 68. They 

recommend that data quality be reported for the data in general as well as how well the 

data are fit for a specific purpose.  

The adoption of a standardized approach will lead to improved trust in research 

results and the ability to share data quality information across projects. Our recent work 

to define data quality as an ontology provides a good framework for characterizing 

aspects of the data69. The Data Quality Ontology (DQ Ontology) provides a vocabulary 

for discussing aspects of data quality and also defines a process to quantify it.  

An ontology is a formal specification of a shared conceptualization 39. Every 

concept in the ontology has a unique name, properties, relationships to other concepts and 

constraints that are always true for that concept. The benefits of using an ontology to 

describe data quality are that an ontology is written in a formal language, it is able to 

represent semantics, it provides a shared vocabulary for discussing data quality and it is 

sufficiently rigorous to be used directly in algorithms and computer programs 40. Key 

concepts and their definitions from the DQ Ontology are listed in Table 3.1 and the 

relationships between them are shown in Figure 3.169(p1940). This ontology precisely 

defines data quality concepts in terms of relationships and constraints with other DQ 

concepts (shown in blue in Figure 3.1). Also included in Figure 3.1 is a link to 2 other 

ontologies described later in the paper – Task (shown in Figure 3.2 in orange) and 

Domain (shown in Figure 3.3 in green). The DQ Ontology is a meta-ontology that defines 

data quality concepts with respect to these two other ontologies. 
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Critically, a separate Domain ontology defines the formal semantics (using 

properties and constraints) of concepts represented in the data. The Task ontology is a 

specification for the concepts necessary to carry out a particular use of the data. The 

DomainConcepts link the Representations in the Dataset to the Domain and Task 

ontologies. Measures are further refined into ConsistencyMeasures and 

CompletenessMeasures. These are described in more detail in Table 3.2. 

Table 3.1. Data Quality Ontology – Key Concepts 

Concept Definition 
 Measure An aspect of data quality that quantifies a characteristic of the data. 

    CorrectnessMeasure Measures that assess whether the data that exists in the Dataset is true. 

    ConsistencyMeasure Measures that assess data conformance to constraints, rules and restrictions of 
the Domain. 

    CompletenessMeasure Measures that assess whether a truth about the world is contained in the data. 

    CurrencyMeasure Measures that assess timeliness of the data to represent the Domain and Task. 

 MeasurementMethod A series of steps used to quantify an aspect of data quality for a Measure. 

 Measurement The process of performing a MeasurementMethod to produce a 
MeasurementResult 

 MeasurementResult The quantity produced by a MeasurementMethod. 

 Metric Statistics for how a MeasurementResult varies over time or other dimensions. 

 Dataset The entire set of Representations that are being assessed. 

 Representation The lowest level, atomic piece of information that exists in the data being 
assessed (also known as a data field, observation, value).  

 DomainConcept Concepts in the clinical Domain and Task of interest that map to 
Representations in the set of data being assessed. 

 Domain A separate ontology describing the clinical domain of interest. 

 Task A separate ontology describing the specific purpose of using the data. 
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Figure 3.1. Data	
  Quality	
  Ontology	
  Diagram 
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Figure 3.2. Task Ontology (CMS178) 
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Figure 3.3. Domain Ontology 
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Table 3.2. Data Quality Ontology – Measure Detail with Constraints 
Measure Definition Constraint 
ConsistencyMeasure 

RepresentationConsistency 

The data is a valid value and 
format for its DataValueType and 
all of the Representations for the 
same information have the same 
values. 

value.isValidFormat() 

DomainConsistency 

Concepts in the Domain are 
represented in the data and the 
data satisfies syntactic and 
semantic rules. Constraints for the 
Domain are satisfied. 

RepresentationConsistency and 
RepresentationComplete and 
CodingConsistency and 
DomainConstraints 

DomainConstraints All of the constraints defined for 
the DomainConcept are satisfied. 

for each constraint in 
value.DomainConcept.constraints: 
constraint is True 

CodingConsistency 

Representations that are of coded 
text data type must be correctly 
mapped to an enumerated list or a 
terminology. 

value.dataValueType() == ‘coded’ 
and value.isValidCode() 

CompletenessMeasure 

RepresentationComplete Domain independent extent to 
which data is not missing. value is not null 

DomainComplete The extent to which information 
is present or absent as expected. 

RepresentationComplete or 
(Cardinality == 'optional') 

TaskSufficiency 

The data has sufficient 
Representations along a given 
dimension (i.e. time, patient, 
encounter) to perform the Task. 

if all(concept.DomainComplete > 
THRESHOLD) then average all 
concept.DomainComplete 

TaskRelevance The data is sufficient for the Task 
and conforms to the Domain. 

TaskSufficiency and (for all 
concepts in Task.DomainConcepts: 
average all 
concept.DomainConsistency) 

DomainCoverage 
The data can represent the values 
and concepts required by the 
Domain. 

For each concept in 
Domain.DomainConcepts: 
isMapped(concept) 

TaskCoverage The data contains all of the 
information required by the Task. 

For each concept in 
Task.DomainConcepts: 
isMapped(concept) 

 

Defining data quality as an ontology also provides a process for computing 

quantities that characterize data quality69. The data quality assessment process evaluates 

constraints defined for each Measure to compute a proportion of constraints that are 

satisfied. This MeasurementResult is a fraction where the denominator is the number of 
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Representations for each concept and the numerator is the number of Representations 

with all constraints satisfied. An example is RepresentationConsistency. The process 

(MeasurementMethod) counts the number of Representations that conform to its 

DataValueType (i.e. numeric fields only consist of numbers, decimal points or signs and 

dates have a valid format, etc). The RepresentationConsistency MeasurementResult is a 

fraction with the denominator being all Representations and the numerator being the 

number of Representations that satisfy the DataValueType formatting rules. A more 

complex example is CodingConsistency which assesses how well a coded Representation 

maps to standard terminologies. For example, medications should be mapped to valid 

RxNorm values. CodingConsistency is computed as the ratio of the number of 

Representations with valid codes to the total number of Representations. 

DomainConstraints are the proportion of constraints defined for the Domain that are 

satisfied by each Representation. If there are multiple constraints for a Representation, 

then all of them must be satisfied. 

Measures such as DomainConsistency are based on other Measures. 

DomainConsistency requires that the combination of RepresentationConsistency, 

DomainComplete, CodingConsistency and DomainConstraints are all satisfied. The 

MeasurementResults for every DomainConcept are computed and then saved in a data 

quality database as meta-data about the Dataset.  

The purpose of this study was to apply this DQ assessment process and determine 

its usefulness in characterizing data quality for data that is used in calculating an example 

eMeasure. To accomplish this goal, software was developed that implements the process 

and uses Domain and Task ontologies to produce Metrics for specific Measures of data 
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quality. The value of this approach is demonstrated by examining how these quantities 

characterize an EHR dataset for conformance in representing a Domain and for its fitness 

to be used for a particular Task.  

3.3 Methods 

Fairview Health Services and the University of Minnesota collaborated to create and 

maintain a clinical data repository (CDR) with over 2 million patients from seven 

hospitals and 40 clinics. Approval from the IRB (#1412E57982) was obtained to use the 

data for this study. A 200,000 encounter random sample was de-identified and used as the 

dataset for this research. 

The process for characterizing data quality required the development of three 

ontologies and a software program that implements the data quality assessment process. 

The DQ Ontology defines Measures of interest and includes the constraints and 

interrelationships between data quality concepts. The computation of an eMeasure will be 

used as an example Task for this research. An eMeasure computes the proportion of a 

population conforming to a specific health outcome of interest70; CMS178 will be used as 

example eMeasure. It is defined as “Urinary catheter removed on Postoperative Day 1 

(POD 1) or Postoperative Day 2 (POD 2) with day of surgery being day zero”71,72. 

Patients that have indwelling catheterization for long periods of time are at higher risk of 

developing catheter-associated urinary tract infection (CAUTI). This eMeasure quantifies 

the proportion of patients that receive the evidence based best practice of removing the 

catheter within 48 hours post-surgery73. It provides a real-world secondary use for EHR 

data that can be compared to underlying data quality for this research. 
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Constraints were defined for 10 Measures and are listed in Table 3.2. The full DQ 

Ontology describes 19 measures that characterize data quality69. Nine of these were 

selected for this research to illustrate how Measures in the ontology quantify data quality. 

The other Measures were not included as they either required another organization’s data 

or relied on meta-data that is not captured by the EHR used for this study. An additional 

Measure, DomainConstraints, was included for this paper to better illustrate an 

intermediate aspect of DomainConsistency. 

A Task ontology for the CMS178 eMeasure was developed. The eMeasure is a 

proportion that consists of a “Denominator”, which is the entire patient population to 

which the eMeasure applies and a “Numerator”, which is the subset of patients that 

conform to the characteristic of interest. The denominator also specifies “Denominator 

Exclusions” for patients that should not be counted in the eMeasure. The instructions for 

computing CMS178 is 64 pages long, but for this paper, CMS178 will be simplified by 

eliminating some of the denominator exclusions and including in the denominator all 

surgeries instead of just major surgeries. The simplified definition for CMS178 is:  

Denominator:  

• All hospital patients (age 18 and older) that had surgery during the measurement 

period with a catheter in place postoperatively. 

 

Denominator Exclusions:  

• Patients who expired perioperatively (CMS178_exclusion_expired). 

• Patients who had physician/APN/PA documentation of a reason for not removing 

the urinary catheter postoperatively (CMS178_exclusion_rationale). 
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• Patients who had medications administered within 2 days of surgery that were 

Diuretics, IV Positive Inotropic and Vasopressor Agents or Paralytic Agents 

(CMS178_exclusion_medication). 

 

Numerator:  

• Number of surgical patients whose urinary catheter is removed on postoperative 

day (POD) 1 or postoperative day (POD) 2 with day of surgery being day zero. 

 

The eMeasure is computed as: 

 
𝐶𝑀𝑆178!"#$%& =   

!"#!"#_!"#$%&'(%  
!"#!"#_!"#$%&#'($)  –  !"#!"#_!"#$%&#'($)_!"#$%&'()&

 	
   
 

These statements are specified in the CMS178 implementation guide and were 

mapped to concepts in the Domain ontology. An encounter was considered a surgery 

when the admission_type field was coded as “SURGERY”. Patients who had catheters 

inserted during a procedure were indicated by the procedure_concept_code equalling 

“NUR380”. The Task ontology, shown in Figure 3.2, specifies the relationship between 

aspects of the Task and the DomainConcepts that are required to calculate CMS178.  

Ideally, the Domain ontology should represent all of the data that is in the EHR or 

CDR. A complete Domain ontology does not yet exist, but a Domain ontology was 

created for this research in order to illustrate the data quality assessment process. It 

includes all of the DomainConcepts referenced by the Task and which are required to 

compute the CMS178 eMeasure.  For this paper, the Domain ontology is documented 

using a UML diagram (Figure 3.3) and a table that lists constraints (Table 3.3). 	
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Table 3.3. Domain Ontology with Constraints 
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Table 3.4. MeasurementResults for DomainConcepts 
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Domain constraints, including relationship cardinality (i.e. whether the data is 

optional or required) and data types for all of the fields are listed in Table 3.3. These 

constraints represent aspects of the data and its interrelationships that should always be 

true if the data accurately represents the clinical concepts of the Domain. For example, 

hospital discharge date should always occur after the hospital admission date. These were 

implemented as computer executable SQL but, for brevity, are shown as pseudo code in 

the table. For example, the first constraint for catheter_insertion_date is “if 

catheter_insertion_date is not null then catheter_insertion_by is not 

null” which can be paraphrased as “"if there is a catheter insertion documented, then the 

name of the clinician who inserted it should also be documented”.  

Concepts in the Domain ontology form a hierarchy and the parent concepts in the 

hierarchy can also have data quality Measures computed. There are MeasurementResults 

for parent concepts such as medication, hospital_admission, and patient. The 

denominator for the parent concept MeasurementResult is a count of all of the 

Representations for all of its sub-concepts. The numerator is a count of all of the 

Representations for all of the sub-concepts that satisfy the Measure. In this way 

MeasurementResults can be aggregated up the hierarchy, including aggregating Measures 

that apply to the Dataset as a whole. 

Some Measures such as TaskRelevance and DomainConsistency combine other 

Measures. Pipino74 discusses a number of methods for aggregating multiple data quality 

indicators that include min, max and average of the Measure quantities. This study used 

the simple approach of treating each Measure equally and averaging the MeasureResults. 
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3.4 Results 

The data quality assessment process was performed on the de-identified 200,000 

encounter sample from the Fairview Health EHR data. Table 3.4 shows the 

MeasurementResults (expressed as percentages) for DomainConcepts, parent concepts 

and the Dataset as a whole. DomainCoverage and TaskCoverage were 100% for the 

Dataset and are not listed.  TaskSufficiency (99%) and TaskRelevance (95%) could only 

be calculated at the patient level since that was the only level in the Domain hierarchy 

that contained all of the DomainConcepts referenced by the Task. 

RepresentationConsistency was 100%. RepresentationCompleteness assesses how 

many Representations have a data value that is not missing. It varied from 10% for 

death_date to 100% for birth_date and procedure_concept_code. 

DomainCompleteness indicates whether the Domain permits a value to be missing (i.e. it 

is optional). For example, death_date only has a value for 10% of the patients, but since 

it is an optional DomainConcept in the Domain model, its DomainCompleteness was 

100%. CodingConsistency assesses how well the coded Representations conform to the 

standard terminology that is specified in the Domain ontology. This ranged from a low of 

29% conformance with CPT4 procedure codes (procedure_concept_code) to a high of 

100% for admission_type. 

DomainConstraints were satisfied overall 97% of the time, but constraints for 

some concepts were much lower (catheter_insertion_date was 78%). 

DomainConsistency is the combination of RepresentationConsistency, DomainComplete, 

CodingConsistency and DomainConstraints and it is the best overall Measure to indicate 
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a Dataset’s conformance to a Domain. Overall, this Dataset had a DomainConsistency of 

97%. 

The TaskSufficiency and TaskRelevance Measures were also computed. 

TaskSufficiency assesses whether a Dataset has enough data to be used to perform a 

Task. TaskSufficiency is calculated by examining DomainComplete for each of the 

referenced DomainConcepts and ensuring they are above a certain threshold. And if they 

are, the result is the average of all of the DomainComplete ratios. In this example, a 

threshold of 80% was used. This means that 80% of the Representations must be 

DomainComplete in order to be considered sufficient to carry out the calculation of the 

eMeasure. In this case, all of the DomainCompleteness’ were above 80% and the 

DomainCompleteness ratios for all of the referenced DomainConcepts are averaged to 

produce an overall TaskSufficiency of 99%.  

TaskRelevance not only assesses whether data is sufficient for a task but that it 

also conforms to the Domain (DomainConsistency). The DomainConsistency of each of 

the concepts referenced by a Task are averaged to produce an overall DomainConsistency 

which is then combined (averaged) with the TaskSufficiency value to yield a 

TaskRelevance value. For this example, the TaskRelevance of the Dataset for calculating 

the CMS178 eMeasure was 95%.  

Measures can also be calculated for the Dataset at particular points in time. Using 

data for each month from April 2011 to July 2013, MeasurementResults were calculated. 

The graph in Figure 3.4 shows DomainConsistency Metrics for a few concepts of interest 

(catheter_duration, catheter_insertion_date, catheter_removal_date and 

catheter_rationale_for_continued_use). Figure 3.5 shows how TaskRelevance 
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changes over time. Figure 3.6 shows the value for the CMS178 eMeasure over the same 

time period. And Figure 3.7 displays the monthly trend of DomainConsistency for the 

entire Dataset. The Pearson correlation between DomainConsistency and the CMS178 

eMeasure was 0.78.	
  

 
Figure 3.4. DomainConsistency for Selected DomainConcepts, by Month 

 
 
 

Figure 3.5. TaskRelevance by Month 
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Figure 3.6. CMS178 (simple) eMeasure by Month 

 
 
 

 
Figure 3.7. DomainConsistency for the Dataset 

 

3.5 Discussion 

The DQ assessment process described in this paper characterizes the data quality aspects 

of EHR data. The process requires correctly defined Task and Domain ontologies and 

yields specific quantities that indicate data quality. For this set of EHR data, 

RepresentationConsistency was very good. All Representations matched their data 



 

 52 

formats 100% of the time. This high conformance is due to the data entry rules for the 

EHR that strictly enforce the correct data formats.  

DomainCompleteness was also very good, with an overall Dataset conformance 

of 98%. Again, this is likely indicative of the EHR data entry rules ensuring that when a 

data value is required to exist that the clinician is guided to enter a value. For example, an 

important field like birth_date has a value for all patients (both DomainComplete and 

RepresentationComplete were 100%). CodingConsistency was very high except for 

procedure_concept_code, which was only 29%. When the data was further examined, 

it was revealed that the procedures were coded using valid CPT4 code or codes which 

only had meaning to the hospital (i.e. “NUR380”) or which were variations of valid 

CPT4 codes (i.e. “82962.001”). 

The DomainConstraint results, for the set of constraints defined in this research, 

revealed an overall conformance to the Domain of 97%. But catheter_insertion_date 

had a relatively low DomainConstraint value. The constraint requires that if the patient 

has a catheter, then the name of the clinician who performed the insertion must be 

documented in catheter_inserted_by and that if a catheter is inserted but no removal 

date is documented, then there should be a catheter_rationale_for_continued_use 

documented by a clinician. These constraints were only satisfied 78% of the time. 

Figure 3.4 shows that DomainConsistency was improving for 

catheter_insertion_date and catheter_removal_date over the measurement 

period. This parallels an improvement in the CMS178 eMeasure over that same time 

period (Figure 3.6). In fact, Fairview had undertaken a quality improvement initiative 

starting in November 2011 to better document catheter insertions and then in the summer 
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of 2012 to focus on reducing CAUTI. This initiative required improvement in indwelling 

catheter documentation, including documenting the rationale for not removing a catheter. 

The increasing DomainConsistency reflects the improved data quality as the initiative 

progressed. The correlation between DomainConsistency and the CMS178 eMeasure was 

0.78, which is a moderately positive correlation. This suggests that as the data’s 

conformance to the Domain improves, the computed value of CMS178 should converge 

on the true value. 

DomainConsistency is the Measure that best reflects the Dataset’s conformance to 

the Domain since it incorporates the other Measures. The DomainConsistency ratio 

continued to improve over time for the Dataset as a whole. Figure 3.6 shows that it 

improves from 89% to over 92% during the two years of the measurement period. 

TaskRelevance is the Measure that best indicates that a Dataset can be used for a 

specific purpose. For this data, catheter_rationale_for_continued_use was not 

entered into the EHR before July 2012, so TaskRelevance was 0 prior to that date. If 

these data quality Measures had been in use by this healthcare organization, they might 

have decided not to compute the eMeasure before that date based on the low 

TaskRelevance.  

OMOP and MiniSentinel have developed data quality rules that provide detailed 

information about specific pieces of data that don’t conform to data quality expectations. 

The process described in this paper provides a data quality assessment approach that has 

several advantages over those methods. First, MeasurementResults are scalar quantities 

instead of lists of rules that failed. Scalar quantities are simpler to use and can be more 

easily compared across Datasets and across time. Heinrich75 has proposed a set of 
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requirements that all data quality quantities should possess. They should be normalized, 

interval scaled, interpretable, aggregatable, adaptable and feasible. The quantities for the 

data quality assessment method described in this paper meet these requirements. Since 

the quantities are proportions, they are both normalized (range from 0 to 1), interval 

scaled (the difference between 20% and 30% is the same as the difference between 70% 

and 80%) and easily interpreted (researchers are familiar with using proportions). The 

quantities can be aggregated to parent concepts and to the entire Dataset. These quantities 

are also adaptable in that they can be used with different Tasks, and they are 

computationally feasible. The OMOP and MiniSentinel data quality rules are similar to 

DomainConstraints and they could be turned into a core set of constraints in a Domain 

ontology. 

Secondly, this approach can be used to assess existing EHR data. The OMOP and 

MiniSentinel approaches assess the quality of incoming data feeds in order to filter out 

bad data from a central repository. Most healthcare data is already in an existing 

repository and the data quality assessment method described in this paper can be used to 

evaluate that pre-existing data. 

Finally, the MeasurementResults can be used for different Tasks focusing on the 

same time periods without having to recompute them for the Domain. Once a Domain 

ontology has been defined, some Measures (such as RepresentationConsistency, 

RepresentationComplete, DomainComplete, CodingConsistency, DomainConstraints and 

DomainConsistency) will characterize the data regardless of how the data is to be used. 

This promotes reuse and sharing of the Metrics. If another Task is to be performed using 

the data, the already computed Domain Measures for each referenced DomainConcept 
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can be reused. In addition, these MeasurementResults are comparable across multiple 

Datasets if they use the same Domain ontology. 

One potential limitation of this research is the choice of the 80% threshold for 

TaskSufficiency. The selection of this value is reasonable but arbitrary. It is possible that 

different Tasks will require different thresholds for the amount of data necessary for a 

result to be valid. More research is needed to quantify the impact of TaskSufficiency on 

the validity of results for different Tasks.  

More research is also needed to determine the best way to combine multiple 

Measures. It is useful to be able to combine Measures to create a small number of 

quantities that can be used as a convenient score for the quality of a Dataset. The 

approach presented in this paper used a straightforward method of averaging the 

component Measures. For example, to compute TaskRelevance, the DomainConsistency 

of each DomainConcept referenced in the Task is averaged and then combined 

(averaged) with TaskSufficiency. This method may be appropriate if each 

DomainConcept is equally important to the overall Measure and there are a sufficient 

number of DomainConcepts to make an average with its implied normal distribution 

meaningful. However, it may be the case that some DomainConcepts are more important 

in a particular Task than others. In the example used in this paper, the 

DomainConsistency of catheter_duration is probably more important than the 

patient’s birth_date (for determining age) when computing the CMS178 eMeasure. 

Further research is needed to determine if there is a better way to calculate Measures that 

combine other Measures that takes into account the data quality impact of each 

DomainConcept on the result.  There are also additional Measures that should be defined 
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for aspects of data quality not addressed in this paper.  For example, duplication of data 

and records is an important concept and should be included as an additional Measure in 

the DQ Ontology. The original ontology left it out because it didn’t meet its inclusion 

criteria of being referenced in at least 3 data quality meta-analyses papers. 

As more medical data is aggregated and organized, healthcare is able to benefit 

from big data analytic techniques. Future research should examine how the data quality 

assessment method described in this paper can be used for Tasks such as comparative 

effectiveness research and predictive modeling.  In addition, this framework can be used 

to assess data quality in observational research.  Measures of data quality could be 

computed on a timely basis (possibly nightly) so that researchers can quickly identify and 

mitigate data quality issues before they get too large. 

3.6 Conclusions 

This paper presented the results of a data quality assessment method that characterizes 

some aspects of the quality of EHR data. The method uses a DQ Ontology that references 

separate Domain and Task ontologies to compute Measures which quantify how well the 

data conforms to the Domain and how well it fits the Task. Metrics that show trends over 

time and for specific concepts in the data can be used to show changes in data quality and 

the Metrics can be compared to other Datasets that use the same Domain ontology. 

Different Tasks can reuse the Metrics without having to recompute them. These 

quantities may be easier to use and understand than some of the existing approaches to 

data quality assessment. This approach can encourage the use of existing or development 

of new detailed Domain ontologies that can be reused across different organizations’ 
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EHR data. Automating the data quality assessment process using this method can enable 

sharing of data quality Metrics that may aid in making research results that use EHR data 

more transparent and reproducible. 

 

Clinical Relevance Statement 

The assessment process uses a Data Quality Ontology that references separate Domain 

and Task ontologies to compute Measures which quantify how well EHR data conforms 

to a Domain and how well it fits a specific Task. Automating the data quality assessment 

process using this approach can enable sharing of data quality Metrics that may aid in 

making research results that use EHR data more transparent and reproducible. 
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4.1 Summary  

Objective 

The purpose of this study is to quantify the impact of two data quality issues, missing 

data (RepresentationCompleteness) and domain conformance (DomainConstraints), on 

the correctness of an eMeasure (CMS178 - Urinary Catheter Removal After Surgery). 

Materials and Methods 

Data quality issues were artificially created by systematically degrading the underlying 

quality of sample EHR data using two methods: independent and correlated degradation. 

A linear model that describes the change in the correctness of the eMeasure quantifies the 

impact of each data quality issue on the eMeasure.  

Results 

Birth date and admission type had the most impact on the CMS178 eMeasure for missing 

data quality issues; death date and medication end date had the most impact for domain 

conformance issues.  

Discussion 

The impact of data quality issues can be quantified using a generalized process. A 1% 

improvement in data quality of birth date or admission type yield 1% less missed catheter 

removal events whereas other variables did not have as great an impact. The correlated 

degradation method is the most robust approach, but independent degradation was most 

efficient.  

Conclusion 

Secondary use of EHR data is only warranted if the data is of sufficient quality. The 

assessment approach described in this study demonstrated how the impact of data quality 
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issues on an eMeasure can be quantified and the approach can be generalized for other 

data analysis tasks. Healthcare organizations can prioritize data quality improvement 

efforts to focus on the areas that will have the most impact on correctness and assess 

whether the values that are being reported should be trusted. 
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4.2 Background 

The United States (US) healthcare system continues to invest in information 

technology to improve health outcomes76. This not only includes infrastructure such as 

electronic health record (EHR) systems and interoperability standards, but also initiatives 

for quickly translating clinical research into best practices77. Now that health information 

is in electronic form, it is made more available for research. This increasing secondary 

use of EHR data to improve health outcomes is promising, but it depends on clinical 

information being of sufficiently high quality to support the research78.  

One of the secondary uses of EHR data is evaluating care quality and outcomes. 

eMeasures are standardized performance measures based on data extracted and 

aggregated from EHRs to quantify how well patient care is meeting best practices26. 

eMeasures are just now becoming computable within EHR systems27,28. There are 297 

active eMeasures listed in the US Department of Health & Human Services Measures 

Inventory79 and many of these (93) are required to be reported by providers in order to 

meet the requirements of Meaningful Use58,80,81.  

Correctly computing an eMeasure depends on how well the data is recorded in the 

EHR82. But EHR vendors have not always ensured that data is captured at a quality 

sufficient to correctly compute the eMeasure83. Data may be adequate to document care 

delivery but may be insufficient to support the computation of an eMeasure6. Data may 

be missing, incorrect, out of range or inappropriate for the field. In these situations, the 

patient’s record should not be used in the calculation of the eMeasure and some ability to 

quantify the best practice that the eMeasure was intended to assess will be lost. In a 

recent study, the data quality of a clinical data repository (CDR) was measured84. The 
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CDR was used to compute the CMS178 eMeasure (Urinary Catheter Removal After 

Surgery) but one data element, catheter_rationale_for_continued_use, 

was found to be of low quality. Technically, the eMeasure could be computed, but it did 

not reflect all of the care given to the population for which the eMeasure was intended to 

represent. These secondary uses of EHR data could be better trusted if the impact of the 

underlying data quality was assessed85.  

Recent work to define concepts as a data quality ontology (DQ Ontology) has 

improved the ability to discuss data quality issues and has lead to an assessment method 

that allows data sets to be characterized along a number of data quality dimensions84. 

This DQ Ontology is shown in Figure 4.1.  
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Figure 4.1. Data Quality Ontology 

 

Data quality assessment using an ontology based framework has a number of 

benefits69. The DQ Ontology is specified in a formal language, is able to describe 

semantics, uses a shared vocabulary for data quality concepts, and is sufficiently well-

defined to be used by computer software40. Concepts in the DQ Ontology are linked to 

two other ontologies: a Task ontology that describes the concepts necessary to carry out a 

particular use of the data and a Domain ontology that describes the semantics of data by 

specifying constraints (rules) that the data should satisfy if it accurately represents a 



 

 65 

clinical area. From the DQ Ontology, the term DomainConcept, refers to concepts that 

both the Domain and Task share. The Domain ontology for this study is described in 

Table 4.1. An example of a DomainConcept is admission_date with its associated 

constraint rule that the admission_date must be earlier than the 

discharge_date. The concept of Representation is defined as the lowest level, 

atomic piece of information that exists in a set of data (Dataset). Synonyms for 

Representation are data field, observation, and value. Aspects of data quality are called 

Measures. The research described in this paper looks at two important Measures defined 

in the DQ Ontology: RepresentationComplete and DomainConstraints. 

RepresentationComplete measures the degree to which data in a Dataset is not missing. 

DomainConstraints assesses how well the data conforms to the Domain ontology.  

A process for computing quantities that characterize data quality has been 

developed69. The process evaluates the constraints that are defined for each Measure for 

each DomainConcept to compute a proportion. The denominator is the number of 

Representations for each DomainConcept for a population and the numerator is the 

number of Representations which have all constraints satisfied. The quantities that are 

produced are called MeasureResults. The DQ Ontology defines correctness as Measures 

that assess whether data represent the real world. Data are deemed correct by comparison 

to another Dataset to determine whether a Representation in the first Dataset is equal to 

its counterpart Representation in the other Dataset56. Ideally, the other Dataset would be a 

“gold standard” for comparison, but the best that is usually available is a relative gold 

standard55.  
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Objective 

 The purpose of this study is to quantify the impact of two data quality issues, 

RepresentationCompleteness and DomainConstraints, on the correctness of an eMeasure 

(CMS178). Data quality issues were artificially created by systematically degrading the 

underlying quality of sample EHR data using two methods: independent and correlated 

degradation. A linear model that describes the change in the correctness of the eMeasure 

was developed to quantify the impact of data quality issues for each DomainConcept on 

the eMeasure.  

4.3 Materials and Methods 

Data were obtained from a clinical data repository (CDR) at the University of 

Minnesota. IRB approval was received to extract a de-identified 72,127 encounter 

random sample to be used as the data source for this study. A Domain ontology and Task 

ontology were developed and the underlying data quality of the sample was assessed 

using the DQ Ontology.  

For this research, the CMS178 eMeasure was used as an example Task to 

illustrate the assessment process. The definition of CMS178 is “Urinary catheter removed 

on Postoperative Day 1 (POD 1) or Postoperative Day 2 (POD 2) with day of surgery 

being day zero”71. Patients that are catheterized for long periods of time are at greater risk 

for developing catheter-associated urinary tract infection (CAUTI). The best practice is to 

remove the catheter within 48 hours after surgery73. CMS178 calculates the proportion of 

patient encounters that satisfy this best practice. Previous research defined a Domain 
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ontology (Table 4.1) and a simplified CMS178 eMeasure that was also used for the 

current research84. 

CMS178 was simplified for this study by eliminating some of the denominator 

exclusions and including in the denominator all surgeries instead of just major surgeries. 

The denominator criteria includes all hospital patients (age 18 and older) that had surgery 

during the measurement period with a catheter in place postoperatively. The denominator 

exclusions are 1) patients who expired perioperatively, or 2) patients who had physician 

documentation of a reason for not removing the urinary catheter postoperatively, or 3) 

patients who had medications administered within 2 days of surgery that were diuretics, 

IV positive inotropic and vasopressor agents or paralytic agents. The numerator is the 

number of denominator surgical patients whose urinary catheter was removed within 48 

hours. 

 

The eMeasure is computed as: 

 
      𝐶𝑀𝑆178!"#$%& =   

!"#$%&'(%  
!"#$%&#'($)  –  !"#$%&#'($)_!"#$%&'()&

  
  
 
The steps to compute the CMS178 numerator and denominator for the baseline 

(undegraded) data are shown in Figure 4.2. 
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Figure 4.2. Computation of CMS178 Numerator and Denominator for Baseline Data 
(Undegraded) 
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Table 4.1. Domain Ontology with Constraints 
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For this research, two data quality Measures, RepresentationComplete and 

DomainConstraints, were studied. These Measures were selected because they assess 

important aspects of data quality and they are fundamental components of other 

Measures. RepresentationComplete quantifies the extent of missing data. It is the 

proportion of Representations that have data values divided by the total number of 

Representations in the data. The DomainConstraints Measure quantifies how well the 

data satisfies all of the rules (constraints) defined in the Domain ontology. An example is 

that death_date must be after a patient’s birth_date and the death_date 

DomainConstraint is the proportion of encounters in a population where that is true.  

A data quality assessment process was developed to compute these Measures on 

EHR data repositories84. The research described in this paper extends that approach by 

quantifying the degree that data quality issues for each DomainConcept impact a Task. 

This was accomplished by deliberately changing the underlying EHR data in a systematic 

way and observing how those changes affected the use of the data. For this research, the 

Task was to compute the CMS178 eMeasure after each change. Data quality changes 

typically caused encounters to be removed from both the numerator and denominator of 

CMS178 and, since it is a ratio, CMS178 remained essentially unchanged.  

In this study, correctness is a relative measure and will be operationalized by 

comparison to a relative gold standard. The baseline, unmodified sample CDR data will 

be used as the relative gold standard. A data element will be considered correct if it 

matches the baseline data. A new variable, missing_events, will be computed that 

quantifies the correctness of the CMS178 eMeasure after the data is modified. This 

variable represents the number of patients that had a catheter removed within 48 hours in 
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the baseline data but, after the data was degraded, were subsequently not counted as 

satisfying the CMS178 numerator criteria. These are events of interest that were therefore 

missing due to the data quality issues. Therefore, the missing_events variable is an 

indicator of correctness and quantifies the impact that data quality issues have on the 

ability to detect when catheters were removed within 48 hours of surgery. 

Each type of data quality Measure has a specific method for degrading the data. 

For the RepresentationComplete Measure, missing data is simulated by removing 

Representations. For the DomainConstraint Measure, the data is degraded by changing 

the values of Representations to no longer satisfy the Domain constraints. For example, 

for discharge_date, the underlying data was changed to occur before the 

admission_date by a random number of days.  

The full degradation process consists of iteratively applying the degradation 

method to the data for each of the DomainConcepts listed in Table 4.1. The Task is 

performed (in this case, computing CMS178 and missing_events) and the 

RepresentationComplete and DomainConstraint Measures were recomputed on the 

degraded data. The MeasureResults for RepresentationComplete and DomainConstraints 

for every DomainConcept, the CMS178 eMeasure, and missing_events were 

recorded in an analysis database.  

Two approaches to degrading data were examined: 1) independent and 2) 

correlated. Each process was performed to yield 1,200 observations to build each of the 

linear models. To independently degrade each DomainConcept, a random set of 0% to 

10% of records in the underlying data for each variable was degraded in a succession of 

1% increments leaving the data for all other variables unchanged. The degradation 
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procedure either replaced a data value for a DomainConcept with a null value (to assess 

RepresentationComplete) or changed the value to something that would ensure the 

Domain constraints for that DomainConcept would be violated (to assess 

DomainConstraints).  

The correlated approach to degrading data ensured that highly correlated 

DomainConcepts remain correlated. If each DomainConcept was arbitrarily degraded, it 

would not necessarily reflect how data quality impairments for related DomainConcepts 

would likely occur in the real world. For example, catheter_insertion_date and 

catheter_inserted_by are often missing together. If the reason they are missing is 

correlated (i.e. a clinician forgot or didn’t have time to record the information before 

discharge), they would often be missing at the same time. Each DomainConcept was 

degraded from 0% to 10% leaving all other data unchanged unless the DomainConcept 

was part of a highly correlated cluster. In that case, the other DomainConcepts in the 

cluster would also be degraded by the same percentage. 

The pairwise association between the presence of each of the DomainConcepts 

was computed at the encounter level. An encounter could have multiple instances of 

medication or catheter data associated with it. Data for each encounter was aggregated to 

indicate whether there was at least one data value for each of the DomainConcepts for the 

encounter. For example, consider the association between admission_date and 

medication_start_date. An encounter may have multiple medications (and 

therefore, multiple medication_start_dates). The association was computed 

between the presence of an admission_date and the presence of a 

medication_start_date for at least one of the medications associated with a 
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particular encounter. The Pearson correlation coefficient and a chi-square were calculated 

in a similar manner for the presence of data for each pair of DomainConcepts. Variables 

were considered highly correlated if they showed a significant chi-squared association 

and had a Pearson correlation coefficient above 0.90. The degradation process for 

correlated variables ensured that when one of the variables in a correlated cluster was 

degraded by a specific percent, the other variables in that cluster were also degraded by 

the same percentage.  

A linear regression model was fit to missing_events as the dependent 

variable, with the data quality MeasureResults for RepresentationComplete and 

DomainComplete for each DomainConcept as the predictor variables. Feature selection 

was performed by computing an initial linear model using all of the predictor variables. 

Variables with a p-value  < 0.1 were then selected as predictors for a second linear model. 

The resulting coefficients from the second linear model are the final results. The 

regression model quantifies the effect of each DomainConcept. Negative changes 

(degradation) to the data increase missing_events and can be used to quantify what 

would happen if instead, data quality improved. If data in an EHR is of low quality (i.e. 

the degraded data) and a method existed to somehow improve it by fixing the data 

(assuming the incorrect data could be identified) then missing_events would be 

reduced.  

4.4 Results 

The data quality degradation process was performed first to assess how the 

RepresentationCompleteness data quality issue can affect missing_events and then 
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to assess the impact that the DomainConstraint issues had on missing_events. Each 

data quality issue was evaluated using the independent and correlated degradation 

methods. In order to perform the correlated degradation process, the pairwise Pearson 

correlation and chi-square association between all 12 DomainConcepts was computed. 

Three clusters of highly correlated variables were found: 

Cluster 1: admission_date, discharge_date 

Cluster 2: medication_concept_code, medication_start_date, 

medication_end_date 

Cluster 3: catheter_duration, catheter_insertion_date, 

catheter_removal_date 

4.4.1 Results for RepresentationComplete 

 The linear regression models for missing_events when degrading 

DomainConcepts by the independent and correlated degradation methods are shown in 

Table 4.2.  

 

Table 4.2. Linear Models for Independent and Correlated Degrading of 
RepresentationComplete Measure 

Predictor Coefficient SE Coefficient t-value p-value 
Independent Degradation         

birth_date -0.9996 0.0029 -345.66 < 0.0001 
admission_type -1.0039 0.0029 -347.13 < 0.0001 
medication_start_date -0.3765 0.0030 -123.84 < 0.0001 
catheter_duration -0.3281 0.0035 -93.87 < 0.0001 
catheter_rationale_for_ 
   continued_use -0.1102 0.0029 -37.7 < 0.0001 

Correlated Degradation         
birth_date -0.9916 0.0037 -267.92 < 0.0001 
admission_type -0.9978 0.0037 -269.59 < 0.0001 
medication_start_date -0.3990 0.0026 -151.7 < 0.0001 
catheter_removal_date -0.3270 0.0029 -114.16 < 0.0001 
catheter_rationale_for_ 
   continued_use -0.1070 0.0037 -28.59 < 0.0001 
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 Degrading the data for RepresentationComplete removes data for a variable and 

causes the numerator or the denominator to change for the CMS178 eMeasure. The 

impact that each variable has on the value of the CMS178 eMeasure is proportional to the 

amount of relevant data removed. Table 4.3 shows the baseline number of encounters for 

the numerator and denominator and what those values are when 10% of the data is 

degraded for two example variables, catheter_duration and birth_date. 

 
 

  
10% Degrade 

  Baseline birth_date catheter_duration 
Numerator 3103 2841 3208 
Denominator 3981 3623 3981 
missing_events 0 262 -105 
CMS178 78% 78% 81% 

 
Table 4.3. Example Impact of 10% Degradation vs. Baseline 

4.4.2 Results for DomainConstraints 

 The linear regression model for missing_events when degrading 

DomainConstraints for the two methods are shown in Table 4.4.  

 

Predictor Coefficient SE Coefficient t-value p-value 

Independent Degradation         

death_date -0.0294 0.0017 -17.568 < 0.0001 
medication_end_date -0.3546 0.0018 -195.244 < 0.0001 

medication_start_date -0.0223 0.0026 -8.481 < 0.0001 

Correlated Degradation         
death_date -0.0306 0.0019 -16.21 < 0.0001 

medication_end_date -0.3729 0.0012 -310 < 0.0001 
  
Table 4.4. Linear Model for Independent and Correlated Degrading of 
DomainConstraint Measure 
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 The CMS178 eMeasure was also computed as data quality was being degraded in 

order to show how it changed as the number of missing_events increased. A graph 

of CMS178 compared to the RepresentationComplete data quality Measure for the entire 

Dataset is shown in Figure 4.3. 

 
 

 
 
Figure 4.3. CMS178 eMeasure and missing_events vs. Dataset 
RepresentationComplete Ratio 

 

CMS178 remains relatively constant when data quality improves, whereas missing events 

decreases as data quality improves. 
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4.5 Discussion 

The purpose of this research was to demonstrate how two data quality issues, 

RepresentationCompleteness and DomainConstraints, can impact the correctness of an 

eMeasure (CMS178). Data quality issues were artificially introduced into the underlying 

data using two methods: independent and correlated degradation. A linear regression 

model quantified the effect that the data quality issues have on missing_events and 

a comparison to the CMS178 eMeasure was also shown. The results of this study clearly 

show that: 1) data quality issues (i.e. RepresentationCompleteness and 

DomainCompleteness) for different variables (i.e. birth_date, 

catheter_duration, etc.) impact the correctness of an eMeasure and the impact can 

be quantified and 2) the CMS178 eMeasure, as currently defined, may not measure how 

well an organization is meeting the best practice goal of removing catheters within 48 

hours of surgery. 

 In support of the first finding, the impact of the data quality of each 

DomainConcept on the correctness of the eMeasure is reflected in the results of linear 

regression models. The coefficients in the models can be interpreted to quantify the 

magnitude of the impact on missing_events for a 1 unit improvement in a Measure. 

For example, for the independently degraded RepresentationComplete Measure in Table 

4.2, for every 1% reduction in RepresentationComplete data quality for 

admission_type there were 1.0039% more events missed and the eMeasure is 

further from its correct value. But a 1% reduction in data quality for 

catheter_rationale_for_continued_use only results in 0.11% cases being 

missed.  



 

 78 

 Table 4.3 helps illustrate how different DomainConcepts have different impact on 

missing_events. The table shows denominator and numerator values for two 

example DomainConcepts: birth_date  and catheter_duration. It shows that 

there were 262 missing_events when the birth_date field was degraded  by 

10%. CMS178 excludes patients who are younger than 18, so when the birth_date is 

removed, the encounter is no longer included in either the denominator or the numerator. 

In the study data, 100% of the encounters have a birth_date. Every encounter that is 

removed from the denominator (due to missing birth_date) will also be removed 

from the numerator so there is a one-for-one impact on the denominator. This is reflected 

in the coefficient of the linear model which is approximately equal to 1.0 for 

birth_date.  

In the case of catheter_duration, degrading the data only affects the 

numerator (since it is not part of the inclusion or exclusion criteria) and a 10% 

degradation of the data causes 105 additional events. Additional events are added to the 

numerator because these are encounters that had durations of more than 48 hours that, 

after degradation, had a catheter_duration of 0. Therefore, there are 105 

encounters that then meet the CMS178 criteria. For the study data, approximately 32% of 

the encounters were catheterized (22,744 of 72,127). Removing 10% of the catheter data 

(due to degradation) resulted in removing catheter_duration from approximately 

3.2% of the encounters, or 0.32% for every 1% degradation of the data. The coefficient 

for catheter_duration in the Independent Degradation linear model is 0.33, which 

supports this interpretation. 
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It is surprising that degrading the data would cause encounters to be added to the 

numerator. This issue arises because it is known that a catheter was used on a patient 

(from other information like catheter_inserted_by), but if insertion_date 

is missing, then the catheter_duration can’t be computed. There are two ways to 

handle the situation:  1) exclude the encounter because not all of the data needed to 

compute the measure is available or 2) set the catheter_duration to 0. The 

definition of CMS178 does not explicitly state that all data needed to compute the 

numerator must be present in order to include an encounter in the denominator, so it is 

left to the EMR vendors to decide how to implement the computation. For this research, 

the second approach was used, which is why the numerator increases. If the first 

approach had been chosen, then the numerator would not change because the encounter 

would be excluded from both the numerator and denominator. But that would mask the 

fact that there are catheterized patients where it is unknown if CMS178 is satisfied or not. 

In the DQ Ontology, there is a Measure called Sufficiency69 that quantifies whether the 

data is sufficient to perform the Task. It may be beneficial to add to the inclusion criteria 

of CMS178 that the Sufficiency Measure of an encounter be 100% (i.e. that all data 

elements exist) but also report the overall Sufficiency Measure of the Dataset in order to 

quantify the number of encounters that were excluded due to data quality issues. 

In the Independent model, admission_type and birth_date were the most 

impactful variables. For every 1% decrease in the RepresentationCompleteness of these 

variables (i.e. more missing data), there is approximately a 1% increase in the number of 

missing_events. Since age is used in the denominator (and numerator) inclusion 

criteria, when age can’t be calculated because birth_date is missing the encounter is 
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removed from both the numerator and denominator. The eMeasure proportion stays the 

same, but missing_events increases. The same is true for admission_type since 

a non-surgical case is removed from both the numerator and denominator and the 

CMS178 eMeasure stays the same. On the other hand, when catheter_duration is 

degraded, the encounter is added to the numerator. In this case, only 0.33% of the events 

would be missed, but the CMS178 eMeasure would change by a small amount to reflect 

the change in the numerator. Since admission_type and birth_date have the 

largest impact on the number of missed encounters, any data quality initiatives should 

focus on improving the data quality of those items. 

Degrading each DomainConcept independently compared to degrading in a 

correlated manner produced approximately the same set of variables that were most 

impactful. In the independent model, five variables were found to be significant in the 

model. These were birth_date, admission_type, 

medication_start_date, catheter_duration and 

catheter_rationale_for_continued_use. For the correlated data, four of the 

variables were the same and the fifth was medication_end_date, which is in the 

same cluster of highly correlated variables as the medication_start_date. Those 

variables are essentially equal from a RepresentationComplete point of view since they 

are likely missing (or present) at the same time. All of these variables, except 

catheter_duration, are part of the inclusion or exclusion criteria of the eMeasure 

and if they change, both the numerator and denominator are changed by the same 

amount. If only catheter_duration changes, that would only affect the numerator. 

But the effect was not that large; only 0.33% of the events would be missed for every 1% 
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change in RepresentationCompleteness of catheter_duration. Since Results of this 

study demonstrate that degrading each variable independently or in a correlated way 

made no difference to which variables where found to be significant and the magnitude of 

the impact (the coefficients). This is useful information in that it is less computationally 

expensive to degrade each variable independently versus having to degrade a variable and 

maintain all of its correlations.  

Degrading the Domain constraints yielded a different set of variables that were 

impactful compared to RepresentationComplete. For independent degradation, the 

DomainConcepts of death_date, medication_start_date and 

medication_end_date were significant. But only medication_end_date had 

an appreciable impact. A 1% improvement in the medication_end_date reduces 

the missed cases by 0.38%, but the other DomainConcepts only change the difference by 

less than 0.1%. This has a smaller impact than RepresentationCompleteness. This is 

likely because this data is only altered to violate the constraints, it is not missing, so the 

calculation of CMS178 can still occur. But since it is using data that doesn’t make 

clinical sense (i.e. discharge_date is before the admission_date), the 

computation, as currently defined, will blindly use the variable and compute a result. But 

as the low impact shows, most of the time, it doesn’t change the count for which patients 

are included in the numerator. For example, since the eMeasure just looks at the 

admit_date to determine inclusion in the reporting period, even if the 

discharge_date is before the admit_date, the encounter will still be included. 

The second finding is that the CMS178 eMeasure may not adequately measure 

catheter removal within 48 hours of surgery. As seen in Figure 4.3, even though 
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missing_events increases as the underlying data is degraded, CMS178 itself does 

not appreciably change. This is due to the fact that the eMeasure is a proportion. As the 

data is changed, it generally causes patient encounters to be removed from both the 

denominator and numerator. But the absolute number of missed events increases 

significantly over the range of the degradation. This highlights a potential problem with 

using CMS178 to assess catheterization best practices. The eMeasure is not affected by 

significant changes in data quality that generate missed events as it does not seem to be 

defined in such a way as to capture all of the best practice catheter removal events. The 

way the eMeasure is currently defined does not give CMS an accurate quantification of 

how well an organization is removing catheters within 48 hours of surgery for all such 

patients.  

Understanding how data quality for each DomainConcept impacts the Task can be 

used to prioritize data quality improvement efforts. A healthcare organization can target 

data quality issues for DomainConcepts that have the most chance of improving 

eMeasure correctness. If data quality Measures are too low in a particular area, it may be 

advisable to not report the eMeasure or at least indicate the level of data quality when the 

eMeasure is reported. 

4.5.1 Limitations and Future Work 

There are some limitations to this research. The current research showed that 

degrading each DomainConcept independently produced about the same results as 

degrading the DomainConcepts in a correlated manner. This may not always be the case 

with other, more complex, Tasks. Only pairwise associations between DomainConcepts 

were examined. It is likely that degrading in a correlated manner is the best, most robust 
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approach. But degrading each DomainConcept independently has the fastest execution 

time. Further research is needed with additional Tasks to understand which degradation 

technique is most effective. Missing data in the real world is likely more complex than 

what can just be represented by pairwise associations of DomainConcepts. Future 

research should build complete correlation networks between all of the DomainConcepts 

so that the correlated degradation process can precisely maintain the correlations between 

all of the variables as the data quality is reduced. 

Another limitation is that the RepresentationComplete Measure should be 

expanded to encompass different types of missing data. The definition of completeness is 

contextual and dependent on how data will be used86. RepresentationComplete should 

differentiate between data that is missing completely at random (MCAR), missing at 

random (MAR) and missing not at random (MNAR).  

This research did not attempt to quantify every type of data quality issue and only 

looked at two types of problems: RepresentationComplete and DomainConstraints. There 

are other types of data quality issues that should be explored. For example, an error in a 

date variable can occur in many ways. This research examined errors in dates that were 

large enough to cause a Domain constraint to be violated. But an error could occur that 

just affects the day of the month, which would not necessarily violate the Domain 

constraint. Other Measures are needed to quantify those types of errors. The impact of a 

Measure is also dependent on the specific Domain model that is defined as well as the 

amount of data that is degraded. This research modified up to 10% of the data, but further 

research is needed to determine the typical proportion of data errors in a CDR. 
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The results from this research showed that missing data (i.e. 

RepresentationCompleteness) has a greater impact on an eMeasure than the Domain 

constraint errors that were introduced into the data. Further research is needed to 

determine if this is the case for other Domains and Tasks. This study used the CMS178 

eMeasure as an example Task to study in detail the process for assessing the impact data 

quality has on Task correctness. The technique can be generalized for other data analysis 

Tasks that depend on secondary use of EHR data such as predictive modeling and 

comparative effectiveness research. It is necessary to define a Task and Domain ontology 

with constraints, but the same data quality assessment approach can be used. Future 

research should evaluate this approach for other secondary uses.  

4.6 Conclusion 

Access to a significant amount of structured electronic health data allows 

researchers to identify evidence based best practices that improve patient outcomes. This 

secondary use of data is only warranted if the data is of sufficient quality to support the 

secondary use. eMeasures have been introduced as a method to assess how well evidence 

based practices are being followed at a healthcare organization. The research described in 

this paper quantified the impact of RepresentationComplete and DomainConstraint data 

quality issues on the correctness of an eMeasure and the assessment approach can be 

generalized for other data analysis Tasks. The research also showed that the CMS178 

eMeasure, as it is currently defined, may not adequately assess how well an organization 

is removing catheters within 48 hours of surgery due to cases that are improperly 

excluded. The usefulness of characterizing data quality using these methods enables 
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healthcare organizations to prioritize data quality improvement efforts to focus on the 

areas that will have the most impact on correctness and assess whether the values that are 

being reported should be trusted.  

 
  



 

 86 

Chapter 5: Conclusions 

The purpose of this study was to demonstrate that a healthcare data quality 

framework can be developed that produces metrics that characterize underlying EHR data 

quality and it can be used to quantify the impact of data quality issues on the correctness 

of the intended use of the data. The framework described in this research successfully 

defined a Data Quality (DQ) Ontology and implemented an assessment method. The 

usefulness of this approach was illustrated by characterizing the data quality of EHR data 

and then quantifying the impact of data quality issues on the correctness of the CMS178 

eMeasure.  

Research detailed in the first paper produced a DQ Ontology that serves as a 

foundation for describing aspects of data quality. The DQ Ontology was developed by 

mining the healthcare data quality literature for important terms used to discuss data 

quality concepts and these terms were harmonized into an ontology. Four high-level data 

quality dimensions (CorrectnessMeasure, ConsistencyMeasure, CompletenessMeasure 

and CurrencyMeasure) categorized 19 lower level Measures. The ontology serves as an 

unambiguous vocabulary and allows more precision when discussing healthcare data 

quality. The terms from the DQ Ontology were used throughout this research to more 

easily refer to very specific aspects of data quality. The DQ Ontology is expressed with 

sufficient rigor that it can be used for logical inference and computation. 

Current literature on healthcare data quality defines terms for data quality 

concepts using textual descriptions or sometimes doesn’t define them and leaves it up to 

the reader to infer which aspect of data quality to which a term refers69. Different authors 

often use the same term to refer to different concepts. As an extreme example, the term 
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“accuracy” is used in the literature to refer to different concepts including how correct the 

data is (RelativeCorrectness)23, whether it is missing or not (RelativeCompleteness)24, 

how consistent it is with a domain model (DomainConsistency)23 and whether or not it is 

corrupted (RepresentationIntegrity)16. To help resolve this ambiguity, the DQ Ontology 

gives each concept a name, defines key attributes for each concept and specifies how 

concepts are related to one another (see Figure 2.1). If researchers agree to use a common 

terminology like the DQ Ontology when discussing data quality, it will make it easier to 

describe and understand issues. As an example, the field of software development 

adopted the Design Patterns ontology for discussing software architecture and it 

improved developers’ ability to discuss software design issues45. At first, developers 

weren’t necessarily familiar with the terms used for each software concept, but over time 

the terms were adopted and they now stand for specific aspects of good software 

architecture87. The same can happen for discussions of healthcare data quality. 

Each concept in an ontology is defined with a textual description but, more 

importantly, it has relationships to other concepts, attributes and constraints that more 

precisely define it. The DQ Ontology specifies concepts concerning data quality and it 

refers to a separate Domain and Task ontology. A Domain ontology defines the formal 

semantics (using attributes and constraints) of concepts represented in the data. A Task 

ontology is a specification for the concepts necessary to carry out a particular use of the 

data. The use of the constraints defined in the DQ, Domain and Task ontologies is one of 

the key contributions of this research. The constraints precisely define concepts better 

than using textual definitions and can be used directly by software to quantify data 

quality. The assessment method described in this research computes Measures which 



 

 88 

quantify how well the data conforms to a Domain and how well it fits a Task. The 

method produces MeasureResults that quantify the proportion of data that satisfy the 

constraints for a Measure or DomainConcept. 

The DQ Ontology and assessment method were used in the second paper to 

characterize data quality from an EHR. A 72,127 encounter de-identified random sample 

of EHR data was assessed for 10 data quality Measures. Domain and Task ontologies 

were developed which included constraint definitions. MeasureResults for the assessment 

were detailed in Table 3.4. The results demonstrate that data quality can be quantified and 

Metrics can track data quality trends over time and for specific DomainConcepts. 

Another key contribution of this research is that the quantities (MeasureResults) 

produced by the constraint based assessment method are easier to use and understand 

than some of the existing, rule based, approaches to data quality assessment84. The DQ 

framework produces scalar quantities which can be computed on individual 

DomainConcepts and can be meaningfully aggregated at different levels of an 

information model. The DomainConcepts in a Domain model usually form a hierarchy of 

concepts. For example, Patients have Encounters which have associated 

Observations. The research detailed how MeasureResults can be computed for the 

lowest level DomainConcepts in the hierarchy (Observations), at higher levels (like 

the Encounter or Patient level) and also for the Dataset as a whole.  

The third paper described enhancements to the data quality assessment process to 

systematically degrade the EHR data and record the impact of data quality issues on a 

Task (CMS178 – Urinary Catheter Removal after Surgery). A linear regression model 

that used the DomainConcept Measures as independent variables quantified the relative 
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impact of DomainConcepts on a Task (in this case, the CMS178 eMeasure). The un-

degraded EHR data was used as a relative gold standard and served as a baseline to 

measure correctness and quantify how data quality issues affect a Task. This information 

can help healthcare organizations prioritize data quality improvement efforts to focus on 

the areas that are most important and determine if the data can support its intended use. 

This data degradation technique was also helpful in demonstrating when a Task 

might not measure what it was intended to measure. Results of this research demonstrate 

that the CMS178 eMeasure, as it is currently defined, may not adequately assess how 

well an organization is removing catheters within 48 hours of surgery. Different choices 

for how to handle data quality issues may bias the eMeasure. The assessment showed that 

even when the data had significant data quality issues that caused missing catheterization 

events, the CMS178 eMeasure didn’t reflect the change. The current definition of the 

eMeasure may not necessarily give CMS an unbiased measure of how well an 

organization is removing catheters within 48 hours of surgery for all such patients.  

The data degradation and impact assessment technique is generalizable for 

assessing other secondary uses of the data. For example, assessing the impact of data 

quality on a predictive model or for comparative effectiveness research can quantify the 

relative importance of variables used in the model or research. As the underlying data is 

degraded, the impact of the data quality issues can be determined using a linear 

regression model just as it was in the case of the eMeasure. Decisions for how 

trustworthy and correct the results are can be based on Measurements of data quality for 

the Datasets used for the models or in the clinical research. Thresholds can be established 

for what level of data quality is required for these Tasks. 
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5.1 Limitations 

There were a number of limitations in this research. The first is that the DQ 

Ontology only incorporated concepts that occurred in at least three of the meta-analyses 

papers. Important data quality Measures such as non-duplication of data, accessibility and 

privacy need to be incorporated into the ontology. Also, the Measures for missing data 

(RepresentationComplete and DomainComplete) are too simplistic. They need to account 

for data missing completely at random (MCAR), missing at random (MAR) and missing 

not at random (MNAR)86. 

 The aggregation and combining of multiple Measures is a useful aspect of this 

assessment method, but the approach presented in this research uses a simple method of 

averaging multiple Measures to create a single quantity. For example, TaskRelevance is 

the average of DomainConsistency and TaskSufficiency. Further research is needed to 

determine if each Measure should carry equal weight or if some of the Measures should 

have a larger impact in the combined Measure. 

 Another limitation of this research is that the method for degrading data only 

simulated two types of data quality issues. To assess the impact of the data quality of a 

DomainConcept, data was degraded to simulate missing data or data that doesn’t satisfy a 

constraint. But there are other types of data quality issues that weren’t simulated. 

Additional research should explore other types of issues such as data transformation 

errors and typos during data entry. Also, in the data degradation simulations, up to 10% 

of the data was degraded. More research is needed to determine what a typical error rate 

is for each type of Measure. 
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 This research was carried out on a single health organization’s EHR data. A 

relatively simple Task of computing the CMS178 eMeasure was used to illustrate data 

quality characterization and impact analysis. Further research is needed to confirm that 

this data quality assessment approach holds for other organization’s EHR data and for 

more complex Tasks such as predictive modeling and comparative effectiveness research. 

5.2 Future Directions 

This research demonstrated a method for computing data quality Metrics. Metrics 

for one Dataset can be compared to Metrics from other Datasets that use the same 

Domain ontology and different Tasks can reuse those Metrics without having to re-

compute them. This could encourage the development of Domain ontologies that can be 

reused across different organizations’ EHR data. Organizations that have expertise and 

interest in a clinical area could take responsibility for developing and maintaining a 

Domain ontology that would be useful not only for data quality assessment but also for 

other purposes such as data exchange and clinical quality research. Recent workgroups 

such as Fast Healthcare Interoperability Resources (FHIR)88 and the Clinical Information 

Modeling Initiative (CIMI)89 have started to develop domain specific information 

models. These could become Domain ontologies by explicitly defining constraints and 

relationships between concepts. As these initiatives progress, the information models 

could include definitions of acceptable data quality for important Measures. The DQ 

Ontology and assessment framework can help model aspects of data quality and be 

incorporated into the information models. 



 

 92 

Another future direction to explore is to use the DQ Ontology to assess data as it 

is added to the EHR. Data quality Measures and Metrics could be computed and 

delivered in real-time to interested stakeholders so that data quality is continually 

assessed and monitored. Data quality issues and trends may be more quickly identified 

and remediated.  

The DQ Ontology and assessment framework provides a practical mechanism for 

assessing EHR data quality and for determining the impact of data quality issues on the 

intended use of a healthcare Dataset. Data quality assessment can be automated to 

encourage the sharing of data quality Metrics which could help make research results 

more transparent and reproducible. Disclosure of data quality Measures and Metrics 

could become a standard practice in research. Standards should be developed for 

specifying data quality Measures. Standards for saving data quality Metrics as metadata 

along with the EHR data are starting to be developed90. As data is moved from place to 

place or transformed through various processes within healthcare systems, data quality 

Metrics should be recomputed and saved (with history) so that data consumers are aware 

of the underlying data quality.  And when EHR data is used in research or for other 

secondary uses, the data quality Metrics could be summarized in a report (possibly as a 

standard appendix) to reassure readers that the data used to reach a conclusion was fit for 

that purpose. 
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