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Abstract 

The impacts of helminth infection and anthelmintic therapy among HIV-infected 

people in co-endemic areas remains unknown. Health effects are likely species-

dependent, and each species may exert countervailing effects on its host. Furthermore, 

there is a dearth of high-quality research conducted in the era of widely available ART. 

Data from two studies conducted in Mbale, Uganda were used to: 1) estimate clinical 

correlates of helminth infection among HIV-infected Ugandans; 2) characterize fecal 

microbiome composition in these participants, and correlate clinical characteristics with 

microbiome composition; and 3) evaluate the impact of anthelmintic therapy on markers 

of systemic inflammation in HIV-infected Ugandans via a randomized control trial. Aim 

I uses molecular methods to describe the prevalence and burden of 5 soil-transmitted 

helminth species among patients in outpatient HIV care, and quantifies the relationship 

between baseline helminth infection and immune status. We observed a clinically 

significant inverse relationship between hookworm infection and CD4+ T cells/mcL. 

Aim II analyses the fecal microbiome of HIV-infected Ugandans to identify differences 

in community structure across clinical characteristics, and determine if gut community 

structure and/or taxa are associated with change in immune status over time. Our results 

indicate lower bacterial community richness among participants with <100 CD4+ T 

cells/mcL, and identify two taxa that may be linked to CD4+ T cell recovery. Aim III 

quantifies changes in soluble CD14, C-reactive protein, and 10 pro-inflammatory 

cytokines in ART-initiated Ugandans randomized to either immediate or delayed 

albendazole therapy. Our findings indicate low helminth infection prevalence (10%) and 
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an increase in soluble CD14 after 1-month of follow-up among participants receiving 

immediate albendazole. These aims contribute to knowledge of clinical and sub-clinical 

correlates of helminth infection in the ART era. Results may support integration of 

anthelmintic therapy into adult HIV care, which is often overlooked when setting 

anthelmintic program priorities. 
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1. Summary 

 People diagnosed with HIV are living longer lives with higher quality of life in 

many parts of the world, including Sub-Saharan Africa, thanks to widely available 

antiretroviral therapy (ART). However, as HIV-infected people live longer, they are at 

increasing risk for inflammation associated conditions, such as hypertension. This is due, 

in large part, to the state of chronic immune activation and inflammation that they 

experience as a function of the virus. This systemic inflammation is driven primarily 

from the gut, a critical area for immune function. 

 Helminth infections, most of which preferentially mature in the gut, are endemic 

in the same areas of the world where HIV incidence is high. Armed with this knowledge, 

and the knowledge that helminths may induce similar and countervailing immune 

responses in the host, we sought to elucidate relationships between gut composition or 

conditions, e.g. hookworm infection or fecal microbiome composition, that could impact 

clinical or sub-clinical markers of health in people living with HIV in low-resource areas. 

 This research addresses gaps in the literature with respect to our understanding of 

microbial translocation in the HIV- or helminth-infected person, microbiome gut 

composition in HIV-infected Ugandans, and the relationship between helminth infection 

and clinical markers of disease status in the era of widely available antiretroviral therapy 

(ART). 

 While much of this dissertation is exploratory, it does contribute to our 

understanding of the above-mentioned areas, and in some cases, could have direct 

contributions to public health programming in low-resource areas. 
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1.2 Specific Aims 
 
 The following research questions and corresponding aims were addressed through 

analyses of data collected from two cohorts, Prevalence and Burden of Soil-transmitted 

Helminths among People Living with HIV in Mbale, Uganda and Impact of Anthelmintic 

Therapy on Systemic Inflammation among People Living with HIV and 

Invasive Helminth Infection in Uganda, which were conducted by Bozena M. Morawski 

in Mbale, Uganda. 

 

Manuscript I: What is the prevalence and burden of soil-transmitted helminths in people 

living with HIV in peri-urban and rural Uganda and seeking HIV care? What are clinical 

correlates of helminth infection in ART-initiated people? 

 Aim: Describe the prevalence and burden of 5 soil transmitted helminth species in 

patients at an HIV outpatient clinic in peri-urban Uganda. Describe the relationship 

between helminth infection and clinical and demographic characteristics, including the 

relationship between helminth infection at enrollment and immune status over time.  

 

Manuscript II: What is the composition of the fecal microbiome in people living with 

HIV in Uganda? How are microbiome community structure, and differences in the 

relative distributions of particular taxa correlated with clinical characteristics at 

enrollment and over time (i.e. change in CD4+ T cell/concentrations)? 

 Aim: Using microbiome analysis techniques, describe the composition of the fecal 

microbiome of HIV-infected persons in peri-urban Uganda. Identify differences in 

community diversity and structure across various clinical characteristics. Determine if 

community structure and/or particular taxa are associated with change in immune status 

over time, among ART-initiated persons.  

 

Manuscript III: How does anthelmintic therapy impact systemic inflammation markers 

among people who are co-infected with HIV and invasive soil-transmitted helminths? 

 Aim: Identify changes in soluble CD14, C-reactive protein, and 10 pro-

inflammatory cytokines from baseline to 1-month of follow up via a randomized control 

trial among HIV-infected ART-initiated persons who are also infected with soil-
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transmitted helminths. 

 Together, these aims offer an opportunity to investigate clinical and sub-clinical 

correlates of helminth infection and the impact of anthelmintic therapy among people 

living with HIV in the era of highly active antiretroviral therapy. Results from these 

studies are intended to inform programs that address the subtle but chronic effects of 

systemic inflammation in people living with HIV. In particular, the integration of 

presumptive anti-parasitic therapy into standard HIV care among adults, who are often 

overlooked when setting anthelmintic program priorities.  

  



 

4 
 

2. Introduction 

In 1995, Bentwich and colleagues postulated that parasitic infection, and helminth 

infection specifically, was a major contributor to the scale and virulence of the African 

HIV epidemic, when compared to European and North American HIV epidemics.1  They 

argued that helminth infections polarized the immune system towards a dominant Type 2 

T helper cell response, which simultaneously induced immune activation and rendered 

the host less fit to respond to intracellular infections, e.g. HIV. In 2006, Bentwich and 

colleagues revisited their hypotheses,2 to conclude that host immune activation remained 

a critical determinant of HIV pathogenesis, and that chronic host immune activation is an 

important aspect of helminth infections. Indeed, while evidence has shown that the 

natural progression of HIV is similar across geographic contexts,3 chronic immune 

activation plays a central role in HIV pathogenesis.4-7 There is also evidence linking 

helminth infection to chronic immune activation.8-10 The authors conceded, however, that 

the decade of research attempting to elucidate the relationship between helminth infection 

and HIV disease progression has been inconclusive. From 1995 to 2006, one study of 

intestinal nematode infection found that HIV-1 RNA concentrations decreased after 

anthelmintic therapy,11 while others have found no relationship.12,13 

The call by Borkow and Bentwich2 for larger and more definitive field studies has 

been answered by numerous studies between 2006 and today. As was true between 1995 

and 2006, the research conducted between 2006 and today continues to paint an 

inconclusive picture, especially as high quality research with long-term follow-up is 

lacking. As recently as April 2016, the Cochran Review group concluded that 

presumptive anthelmintic therapy for HIV-infected adults may have small and short-term 
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benefits to HIV disease progression markers, viral load and CD4+ T helper cell 

concentrations.14 However, the authors note that there is a low quality evidence for these 

recommendations, and that further studies from other populations, and with longer 

follow-up are required.14 The work in this dissertation is informed by the backdrop of 

continued debate surrounding these helminth-HIV questions.    

  

2.1 Research Context: Uganda 

 This research focuses on people living with human immunodeficiency virus 

(HIV) in rural and peri-urban areas of Uganda, an East African country of approximately 

39 million people (2015 estimate).15 A large proportion of Uganda’s population is under 

the age of 15 (48.1%), while the 15-54 years old population is approximately 49.4%.15 

Life expectancy at birth (2014 est.) is 58.5 years, as compared to 74.4 years in upper 

middle income countries and 58.6 years in other Sub-Saharan African nations.15 A 2013 

World Bank estimate placed 19.5% of the population below the national poverty line, 

with a stark disparity between urban and rural populations (9.9% and 22.4%, 

respectively).15,16 These numbers, while not without caveat, represent a >50% reduction 

in poverty since 1993. Uganda has also seen significant improvements in World 

Development Indicators (e.g. school enrollment, clean water source provision, life 

expectancy at birth) over the past decade.16 The country compares favorably to other Sub-

Saharan African countries on many health and economic indicators.15 Overall, however, 

the Uganda remains economically disadvantaged in absolute terms, with apparent 

consequences on human development, health infrastructure, and preventive and 

therapeutic health care.  
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2.1.1 HIV Epidemiology in Uganda 

With an estimated 1.5 million people living with HIV (2014 est.), Uganda is home 

to 4% of the global total of people living with HIV/AIDS.17,18 In the past decade, the roll-

out of large scale treatment and counseling programs has led to large relative 

improvements have been made in treatment and management of HIV infection. In 2014, 

the Ministry of Health estimated that 750,896 ART-eligible people were receiving ART, 

a 30% increase since the prior year alone.17,18 The major increases in ART availability are 

commendable, but large numbers of ART-eligible people not receiving therapy, and new 

international guidelines calling for immediate therapy for all HIV-infected persons19 may 

foreshadow continued national challenges for HIV care service delivery. 

Beyond difficulties faced at the healthcare infrastructure level, there are numerous 

social and economic factors along the cascade of care that contribute to a consistently low 

proportion of eligible patients receiving complete and regular HIV care.18,20 

Consequently, management of HIV-associated opportunistic infections places a 

significant burden on the Ugandan health care system, with subsequent implications for 

patient morbidity, mortality, and disengagement from the care.21,22 A 2013 study by 

Namutebi et al. found that 18% of hospital admissions among patients living with HIV 

were attributable to tuberculosis, 11% were related to cryptococcal meningitis, and 5% to 

Kaposi's sarcoma.23 Another survey of outpatient ART patients in Kampala, Uganda, 

found that 11.9% had been diagnosed with tuberculosis, and 2.9% with Kaposi’s 

sarcoma.24 The prevalence of serum cryptococcal antigen rages from 5.7 to 9.4% 
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nationally (unpublished data, ClinicalTrials.gov NCT01535469);25,26 and progression to 

cryptococcal meningitis carries mortality risk of up to 50%.27,28 

 
2.1.2 Soil Transmitted Helminth Epidemiology 

Over a billion people worldwide are infected with the five species of intestinal 

nematode parasites which comprise soil-transmitted helminth (STH) infections: Ascaris 

lumbricoides, Trichuris trichiura, hookworm species Necator americanus and 

Ancylostoma duodenale, and Strongyloides stercoralis. Estimates indicate that between 

100 and 200 million people are infected with at least one of the STH species (excluding 

S. stercoralis); and a Sub-Saharan African regional loss of 1 to 18.3 million DALYs are 

attributed to these four parasitic infections.29-31 These infections are largely concentrated 

in low-resource areas, where there is limited access to barriers against helminth infection, 

e.g. lack of access to clean water, lack of barriers to contact with soil.32,33 In the Great 

Lakes region of Sub-Saharan Africa (Uganda, Kenya, Burundi, and neighbors), 

hookworm prevalence has been estimated at 50%, and A. lumbricoides and T. trichiura 

estimated at 7% each.34 From 10 to >50% of the population was infected with ≥1 STH in 

the region. 

In Uganda, recent studies have shown over 40% prevalence of Ascaris in 

adults,35,36 although these findings are influenced by geography and occupation.37,38 

Several studies in Uganda have indicated hookworm prevalence from 26% to 45% in 

adults.30,39-43 Trichuriasis has been reported in <2% to 26% of Ugandan adults, with the 

higher prevalence range being associated with farming occupation.36,38 Strongyloides 

stercoralis is through to be relatively rare, due in large part to difficulties in diagnosis, 



 

8 
 

and is not included in most large-scale helminth mapping projects. However, prevalence 

of S. stercoralis has been estimated at 5% in Uganda.44  

 
2.2 HIV Infection, Chronic Immune Activation, and the Gastrointestinal Immune 

System 

HIV infection is characterized by continuous depletion of CD4+ T lymphocytes. 

A small portion of this CD4+ T cell depletion is caused by caspase-3-mediated apoptosis, 

or highly contained programmed cell death.6 However, >95% of CD4+ T cell death is 

induced by caspase-1-mediated pyroptosis, triggered by non-productive HIV infection.6 

In contrast to apoptosis, pyroptosis is an intensely inflammatory cycle, wherein cells 

recognize that they are infected with foreign pathogenic material, and produce pro-

inflammatory cytokines that lead to their destruction. At destruction, cell cytoplasm, 

other contents, and pro-inflammatory cytokines are released into circulation, drawing 

additional CD4+ T cells to the area to be infected by HIV and self-destruct, propagating a 

chronic pro-inflammatory state. Pyroptosis drives the state of chronic immune activation 

that characterizes HIV infection and disease progression. 

The gut is a critical area for immune function, where a significant portion of 

CD4+ T lymphocytes are found, and large amount of pyroptosis occurs. These CD4+ T 

cell populations are destroyed early in infection and at an increased rate relative to CD4+ 

T cells found in peripheral blood.7 Structural damage to the gut is another hallmark of 

HIV infection and progression. This structural damage in turn releases microbes into the 

lamina propria, the supporting loose connective tissue underneath the epithelium, which 

induces chronic inflammatory immune responses in the area. HIV shows a preference for 

infecting activated T cells, which are found in areas with existing infections and 
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subsequent inflammation. This local inflammation of gut tissues creates the perfect 

conditions for and destruction of large CD4+ cell populations and disease progression. 

 

2.3 Soil-transmitted Helminth Infection 

The gastrointestinal tract is also the preferred infection site for the five species of 

human soil transmitted helminths examined in this dissertation. Frequency and intensity 

of infection are age- and parasite species-dependent. Most high burden infections with A. 

lumbricoides and T. trichiura species are found in children.45 Infections with as A. 

lumbricoides and T. trichiura are less prevalent in adults, given that immunity to these 

parasites is acquired over time, which facilitates worm destruction and expulsion, and 

changes in hygiene practices with increasing age reduce helminth exposure in adults. 

Hookworm species, however, continue to infect adults with high frequency and intensity 

due to an apparent lack of adaptive immunity. This lack of adaptive immunity may have 

important implications for host response to co-infections like HIV, and important HIV 

co-morbidities. The five soil transmitted helminths species have diverse life cycles, and 

systemic immunologic and structural interactions with the human host (Appendix 1). 

Adult A. lumbricoides live in the small intestine, but their lifecycle includes 

obligate stages across body systems. Immature larvae cross the intestinal mucosa, and are 

carried to the lungs via the circulatory system. Once in the lungs, they further develop to 

be able to ascend to the throat, where they are swallowed and carried back to the small 

intestine. The average lifespan of an adult Ascaris worm is 1 to 2 years.46  

T. trichiura eggs are ingested and hatch in the small intestine, to reside in the 

cecum and ascending colon upon maturation. Unlike other species, its lifecycle in 
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humans occurs entirely in the gut. Trichuriasis is marked by disruption of the gut mucosa 

in later stages of its lifecycle. As adults, these worms thread the anterior portion of their 

bodies into the host’s intestinal mucosa, and remain stationary in that location for the 

duration of their life span (approximately 1 year).47 

Both hookworm species follow similar lifecycle patterns, although the lifecycle of 

N. americanus includes an obligate stage in the lungs that is optional for the A. duodenale 

species. Third stage infective hookworm larvae, mainly in soil, penetrate the human skin 

and are carried, like A. lumbricoides, through the circulatory system to the lungs. From 

there, they too ascend to the throat so that they may be swallowed by the host, pass 

through the digestive system, to settle in the small intestine as adults. Like T. trichiura, 

hookworm species also disrupt to the gut mucosa. Hookworm, which is a well-

established cause of iron-deficiency anemia in humans,48 attaches itself to the wall of the 

small intestine, where they are able to cause significant host blood loss over the course of 

their lifetime (1 to 2 years on average, but as long as several years).49 Hookworm 

infection is of particular concern in women of child-bearing age, due to increased anemia 

risk.50 

S. stercoralis is the only of these five species with the capacity to be auto-

infective within the human host. Strongyloides larva has two cycles, parasitic and free-

living. During the free-living cycle, infective stage larvae penetrate the skin of the host 

and follow Ascaris and hookworm species in being transported to the lungs through the 

circulatory system, and eventually deposited to the small intestine. Female worms anchor 

themselves to the small intestine mucosa to for the duration of their lifespan. It is here 

that they generate eggs via asexual reproduction. It is during the parasitic cycle that 
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Strongyloides perpetuates itself in humans. The eggs develop into larvae that may re-

infect the host internally (gut penetration) or externally (penetration of the perianal skin). 

This phase constitutes the parasitic cycle. The larva may also be passed into soil as part 

of the free-living cycle.51 

These organisms induce potent immune responses in the gut, soft tissue, and 

circulatory system as these species develop in the human host.52 Adults, the target 

population of this research, are exposed to and infected with these pathogens repeatedly, 

as they negotiate shared ecosystems with limited access to barriers against parasitic 

infection. Indeed, re-infection at 3-months post-therapy was estimated at 26% (95%CI: 

16-43%) of pre-treatment prevalence for A. lumbricoides, 36% (95% CI: 28-47%) for T. 

trichiura , and 30% (95% CI: 26–34%) for hookworm species, and individuals with 

previous infection were more likely to be infected post-therapy.53 These estimates were 

generated from post-mass-drug administration environments, and are likely to be higher 

in areas where only clinically-indicated therapy occurs. 

 

2.3.1 Soil-transmitted Helminth Infection Immunology 

As effectively reviewed by Mishra et al., helminth infections typically induce an 

anti-inflammatory, T helper type 2 (Th2) cytokine response, and a regulatory response.52 

These two responses are distinct, but complementary, and they both contribute to the 

overall Th2 response associated with helminth infection.52 These responses aid the host in 

expelling worms more quickly and tolerating worm infestation, i.e. contribute to wound 

healing and dampening inflammation.54-57 Infections with helminth worms are 

characterized by an increase in immune cells induced by Th2 cytokines, specifically 
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interleukin (IL-)4, IL-5, and IL-13.52 These cytokines are produced by basophils, CD4+ 

Th2 cells, eosinophils, and innate lymphoid cells,58-63 and are associated with an increase 

in non-opsonizing antibodies, i.e. antibodies that do not mark foreign extra-cellular 

material for destruction. Helminth infection also induces the cytokine transforming 

growth factor beta (TGF-β), which controls cellular proliferation and differentiation, and 

is important to inflammatory immune responses.52,64 

 

2.3.2 The Cytokine Response to Helminth Infection 

Helminth infection induces rapid changes in serum cytokines. Increases in Th2 

response cytokines may be detected only hours after infection. When helminths anchor to 

the mucosal lining of the gut, they disrupt the intestinal epithelial cells that form the 

barrier between the gut lumen and intestinal tissue, including the lamina propria. The 

intestinal epithelial barrier is thought to be an important cytokine production site;29 and 

the lamina propria maintains a diverse and dense population of immune cells. After 

contact with helminth organisms, IL-5, IL-13, IL-25, IL-33 and thymic stromal 

lymphopoietin are rapidly produced by innate lymphoid 2 cells (ILC-2). Necrotic cells 

release IL-33 during tissue damage, which provides some insight into the link between 

helminth infection and tissue damage. 

It is from this initial exposure site that systemic Th2 responses are initiated. Once 

dendritic cells and other components of the innate immune response are activated, they 

move out of the lamina propria through lymphatic vessels to the mesenteric lymph nodes, 

which are located between the intestine and abdominal wall and a potentially important 

source of IgE and IgG1 in serum. These activated dendritic cells induce an adaptive 
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immune response that includes Th2 cell differentiation and B cell activation, which in 

turn induces IgE and IgG1 secretion. These products spread these cells throughout the 

body via the lymphatic vessels. It is through these processes that helminth infections of 

the gut cause systemic Th2 type responses, including Th2-type immune responses in 

cerebrospinal fluid.65,66 

At the same time as the cytokine response, selected helminth excretory/secretory 

(E/S) products may simultaneously inhibit antigen presenting T cells from producing 

molecules that are required for Th1 cell differentiation and response. Helminth infections 

are classically associated with the down-regulation of the inflammatory Th1 and Th17 

responses, which are active in responding to intracellular infections such as Cryptococcus 

and Mycobacterium tuberculosis.67 Th1 type responses also stimulate the production of 

antibodies that mark pathogens for destruction, and increase Type IV (delayed type) 

hypersensitivity. Recent work in murine models has demonstrated that helminth infection 

skews the immune system composition towards Th2 regulatory responses, even after 

parasites have left the site of infection.68-72 Consequently, hosts mounted weaker Th1 

type responses to viral and other intracellular infections.73 Research has also 

demonstrated that existing but dormant infections, e.g. latent herpes-type viruses, were 

re-activated upon helminth infection.69  

 
2.4 Soil-transmitted helminths and HIV co-infection 

Soil transmitted helminths and their effects on host response to HIV disease 

progression and opportunistic infections are the crux of the proposed research. Both HIV 

infection and helminth species are disproportionately found in Sub-Saharan Africa. 

Estimates of parasitic co-infection among adults living with HIV from 10 to >50%.12,74-78 
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Higher estimates are applicable to areas with reduced access to clean water and sanitation 

infrastructure, which is common in both urban and rural areas of Sub-Saharan Africa. 

Recent unpublished data from a characteristic outpatient HIV clinic in semi-rural Uganda 

indicated that 29.8% (95%CI: 23.7 to 36.8) of adults were infected by at least one 

helminth species, predominantly comprised of N. americanus.42  

Bentwich et al. published findings that demonstrated 1) a decrease in CD4+ count 

and an increase in CD8+ T helper cell concentrations in chronically helminth infected 

persons, and 2) increased density of HIV co-receptors CCR5 and CXCR4, which play 

important roles in determining cell susceptibility to HIV and HIV tropism.8,79 More 

recently, systemic immune activation was associated with helminth infection and HIV co-

receptor expression in species-specific analyses, albeit in HIV negative patients.9 Ascaris 

and T. trichiura infection were both linked to higher concentrations of “activated” CD4+ 

or CD8+ T helper cells, whereas other species, e.g. hookworm, were not associated with 

differences in CD4+ or CD8+ T helper cells. 

 Conversely, multiple papers have attempted to expand on Bentwich’s theory and 

draw a link between clinical outcomes, e.g. CD4+ T cell densities, and helminth 

infection. These studies have been of mixed results, and been of varying inferential 

quality.14 The effects of helminth co-infection on CD4+ T cell concentrations have 

overall shown relatively lower concentrations in patients with helminth infections in a 

mixture of observational and randomized trials.12,13,80-83 However, these same studies did 

not find differences in HIV viral load between helminth infected and uninfected patients. 

Other research has shown that helminth infection may be beneficial in people living with 



 

15 
 

HIV due to the dampening effect that helminths have on immune system activation and 

inflammatory response, increasing host longevity.12,84 

  

2.5 Study population 

 Two cohorts contributed data to this dissertation. Both cohorts were recruited at 

The AIDS Support Organisation (TASO) in Mable, Uganda. The first is a longitudinal 

cohort of HIV-infected Ugandans, seeking HIV care at TASO Mbale, which was enrolled 

in 2013. This cohort of adults with mixed ART experience was enrolled into the study 

and contributed a single stool sample and blood draw for CD4+ T cell assessment. They 

were then passively followed for 24 months via medical chart review. Aims I and II use 

data obtained from this cohort. The second cohort consists of participants in a 

randomized control trial of delayed versus immediate albendazole therapy. All patients in 

this cohort are ART-experienced, and were enrolled from June through September 2015 

and followed for 3 months. Aim III draws on data collected from these participants.  
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3. Aim I: Evaluating the Clinical Correlates of Parasitic Infection in HIV-infected 

adult Ugandans.  

 

3.1 Aim Summary 

Most studies evaluating epidemiologic relationships between helminths and HIV 

have been conducted in the pre-ART era, and evidence of the impact of helminth 

infections on HIV disease progression remains conflicting. Less is known about helminth 

infection and clinical outcomes in HIV-infected adults receiving antiretroviral therapy 

(ART). We sampled HIV-infected adults for eight gastrointestinal parasites and 

correlated parasitic infection with demographic predictors, and clinical and immunologic 

outcomes. Contrasting with previous studies, we measured parasitic infection with a 

quantitative, highly sensitive and specific polymerase chain reaction (PCR) method. 

This cohort study enrolled HIV-infected Ugandans from August-September 2013 

in Mbale, Uganda and collected stool and blood samples at enrollment. Real-time PCR 

quantified stool: Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, 

Strongyloides stercoralis, Trichuris trichiura, Cryptosporidium spp., Entamoeba 

histolytica, and Giardia intestinalis infection. Generalized linear models assessed 

relationships between parasitic infection and clinical or demographic data. 

35% of participants (71/202) tested positive for ≥1 helminth, mainly N. 

americanus (55/199, 28%), and 4.5% (9/202) were infected with ≥2 stool parasites. 

Participants with hookworm infection had lower average CD4+ cell counts (-94 

cells/mcL, 95%CI: -141, -48 cells/mcL; p<0.001) after adjustment for sex, CD4+ nadir at 

clinic entry, and time on ART. 
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The high prevalence of parasitic infection and correlation with decreased CD4+ 

concentrations highlight the need to re-examine the effects of invasive helminth co-

infection in rural, HIV-infected populations in the era of widely available ART.  

Elucidating the relationship between hookworm infection and immune recovery could 

provide opportunities for health optimization, e.g. integrated deworming, in these 

vulnerable populations. 

 

3.2 Introduction 

Five soil transmitted helminth species Ascaris lumbricoides, Trichuris trichiura, 

hookworm species Necator americanus and Ancylostoma duodenale, and Strongyloides 

stercoralis infect over a billion people worldwide.30,32  The burden of parasitic infection 

is greatest in low-income areas, particularly in certain areas of sub-Saharan Africa, where 

human immunodeficiency virus (HIV) is also highly prevalent. Studies of African adults 

living with HIV have shown helminth co-infection rates that range from 10% to upwards 

of 45%.12,13,45,84-87 

To date, the majority of research investigating the impact of intestinal helminth 

infection on HIV disease progression has occurred prior to widely available antiretroviral 

therapy (ART).12,80,81,84,87-89 The effect of helminth and HIV co-infection in the presence 

of ART is less well characterized. Indeed, to our knowledge, only two studies to date 

have examined the impact of deworming on CD4+ recovery in persons receiving 

ART.90,91 The current literature examining the relationship between soil transmitted 

helminth infections and HIV in the pre-ART era presents an inconclusive picture. The 

large body of observational data is mixed. Two observational cohort studies found no 
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beneficial effect of deworming on HIV viral loads and CD4+ T-cell concentrations,12,13 

while another suggested the possibility of a protective effect of helminths on decreasing 

HIV viral replication.84  Of the three randomized experiments evaluating the impact of 

deworming on markers of HIV disease progression without ART, two found an 

improvement in either CD4+ T-cell concentrations or HIV viral load after anthelmintic 

therapy.81,87 Another larger, reflexive randomized deworming trial failed to show a 

statistically significant benefit of empiric deworming treatment versus standard of care in 

preventing HIV progression to either a CD4+ count of <350 cells/mcL, first reported use 

of antiretroviral treatment, or death due to a non-traumatic cause (44.0 versus 49.8 events 

per 100 person-years; hazard ratio=0.88, 95%CI 0.74 to 1.04, P=0.10).80 However, it is 

possible that there was a less extreme benefit to presumptive therapy, which they were 

underpowered to detect. 

Interactions between soil-transmitted helminths and their human hosts are 

complex, and helminth infection may influence a patient’s relationship with other 

pathogens. A recent review discusses not only the links between selected parasites and 

HIV susceptibility and disease progression, but also the relationship between soil 

transmitted helminths and the potential for increased susceptibility to malaria and 

tuberculosis.67,92,93 It is also important to recognize that soil transmitted helminths, 

through their potent and systemic T helper cell type 2 (Th2) cytokine and regulatory 

responses,52 may induce Th2 protective effects that could benefit long-term HIV 

survivors, e.g. protection against conditions associated with chronic inflammation.94-97  

However, this same Th2 immune response may mediate increased susceptibility for Th1-

related infections.98 
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At present, integrated presumptive anthelmintic therapy in the context of HIV 

care is neither recommended by Ugandan National Guidelines,99 nor is it recommended 

by WHO.100 While WHO does recommend periodic so called “preventive chemotherapy” 

for high risk groups, including women of child bearing age and adults with occupational 

exposures,101 these guidelines have generally not been integrated into any type of 

standard care, nor has particular emphasis been given to HIV-infection. Given the 

frequency and consistency with which HIV-diagnosed persons interact with their care 

providers, the integration of adult deworming programs into HIV care may be a logical 

conclusion.102 However, given the dearth of high quality and adequately powered 

species-specific studies, dramatic increases in ART availability, and incomplete 

understanding of biological mechanisms that are impacted by helminths during HIV 

infection implies that research questions focused on soil transmitted helminths and HIV 

have not been exhausted. 

Our current study evaluated the prevalence and burden of the five most common 

soil-transmitted helminths and three protozoal species in adults living with HIV enrolled 

in outpatient HIV care in peri-urban Uganda. We also evaluated the relationship between 

helminth infection and clinical and immunologic outcomes, and examined risk factors for 

helminth infection in this population. 
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3.3 Methods 

3.3.1 Ethics Statement 

 Written informed consent was provided by all participants. The University of 

Minnesota, The AIDS Support Organisation (TASO), and the Uganda National Council 

of Science and Technology institutional review boards approved this protocol. 

 

3.3.2 Participant Recruitment and Data Collection 

From August through September 2013, we screened HIV-infected adults engaged 

in outpatient care at the TASO HIV clinic in Mbale, Uganda, during their normal clinical 

visit for a one-time stool sample analysis, and longitudinal follow-up via chart review. 

This study was powered to estimate overall parasitic infection prevalence among patients 

with a recent CD4+ T cell count <500 cells/mcL, a population of approximately 600. We 

estimated a sample size of 210, based on a true population prevalence of 30%, an alpha 

level of 0.05, 5% precision estimate, and a finite population size of 600. 

Inclusion criteria were age ≥18 and most recent CD4+ count <500 cells/mcL. We 

excluded persons who reported or had a record of taking albendazole or other 

anthelmintics in the past three months, and persons with known albendazole allergy. 

Pregnant women were also excluded due to potential albendazole teratogenicity. 

Participant data were collected via participant interview and chart review. We 

collected data on age, sex, weight, village of residence, and occupation. We also collected 

data on date of HIV diagnosis, date of enrollment into HIV care, World Health 

Organization (WHO) clinical stage at clinic enrollment, CD4+ at enrollment into clinical 

care (“nadir CD4+”), 12-month history of opportunistic infections, and ART history 
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(regimen, duration) through review of medical records by a medical officer. Participants 

underwent a physical examination at study enrollment for assessment of current WHO 

clinical stage, weight, and presence of current opportunistic infections. Finally, we 

collected follow-up CD4+ T helper cell concentrations, which were collected as part of 

TASO’s routine clinical practice in the 24 months from study enrollment. Study follow-

up occurred in a passive fashion, and no attempts were made beyond standard clinical 

practice to return patients to care if they stopped attending clinic.  

 

3.3.3 Biological Sample Collection and Analyses 

We collected blood and stool from participants during their study visit, which was 

also a participant’s normal clinic visit. We performed a single blood draw to evaluate 

CD4+ T cell count via the FACSCalibur™ flow cytometer (BD Biosciences, San Jose, 

CA) per routine TASO laboratory protocol. 

Parasitic infection status was only evaluated at one time-point: study enrollment. 

Participants provided a single stool sample, which we froze without fixatives on site at -

20oC within 1-2 hours of collection. Stool specimens were transported on a weekly basis 

to Kampala, Uganda for long-term -80oC storage during enrollment. At the Translational 

Research Laboratory of the Infectious Diseases Institute in Kampala, Uganda, we 

assessed participant stool for eight helminth/protozoa species via a modified version of a 

validated quantitative PCR described previously in Mejia et al.103 This PCR assay was 

modified to increase the total volume of each reaction from 7µL to 10µL to accommodate 

the minimum settings on the Applied Biosystems 7900HT Fast Real-Time PCR System. 
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Reagent concentrations of the 10µL reaction matched those of the 7µL reaction 

concentrations.103 

DNA was extracted from approximately 50mg of stool via the FastDNA™ SPIN 

Kit for Soil DNA Extraction (MP Biomedicals, Solon, OH) using a low reagent method 

developed by Mejia et al. for resource-limited contexts, which has been included as 

Appendix 2. An additional step was required to extract T. trichiura DNA, whereby the 

remaining insoluble pellet from one DNA extraction was re-suspended in 200µL DNA-

free water, heated at 90°C for 10 minutes, and centrifuged at 14,000g for 10 minutes. We 

then repeated the above-described DNA extraction method to process the resulting 

soluble portion of the sample. 

Sequences for the species-specific primers and probes and methods for the qPCR 

analysis are found in Mejia et al.103 All control standards were tested in triplicate, and all 

unknown samples were tested in duplicate. A PCR cycle threshold (Ct) value >38 was 

considered a negative result. Each primer and probe combination has previously been 

demonstrated as 100% sensitive and 100% specific for its designated species. To 

additionally ensure that false positives were not driving our results, we conducted a post 

hoc experiment to bind the N. americanus primers and probes to the pBR322 internal 

control plasmid.104 We did not observe any evidence of binding between the N. 

americanus primers or probes and the pBR322 control plasmid. 

Parasite burden quantification was performed by interpolating against parasite 

specific sequences standards and reported as DNA fg/µl.103,105 Briefly, egg counts were 

estimated from McMaster microscopy techniques of subjects infected with N. americanus 

and/or A. duodenale and compared directly to qPCR results. Estimated egg counts from 
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qPCR were calculated using Yova/g feces=0.03472*Xfg/µl per correlation studies.105 Similar 

calculations were used to estimate Trichuris trichiura egg counts: Yova/g feces=(1.095 x 10-

5)*Xfg/µl, which was derived by comparing qPCR to Kato-Katz results in infected 

individuals.103 

 

3.3.4 Statistical Analyses 

Statistical analyses focused on hookworm infection a posteriori, due to its unique 

immunologic and clinical features, and overwhelming prevalence relative to other species 

of helminths. Parasite infection prevalence was estimated overall, by species, and by 

species type (protozoa or nematoda). Infection intensity was summarized by species for 

helminth worms.106,107 We used generalized linear models with a binomial distribution 

and log link, and a robust covariance estimator, to estimate associations between parasitic 

infection (overall helminth infection, hookworm infection only, and protozoa infection) 

and clinical and demographic characteristics, specifically, occupation (farming as 

primary profession versus any other), sex, age (5-year increments), weight (5-kg 

increments), WHO Clinical Stage (3 or 4 versus 1 or 2), and ART status (receiving or not 

receiving). 

We also estimated the association between parasitic infection and CD4+ T 

cells/mcL at study enrollment, and the potential effect of parasitic infection on over CD4+ 

T cell concentrations over follow-up. Age-, sex- and weight-adjusted linear regression 

models estimated the mean difference in CD4+ T cells/mcL at study enrollment by 

parasitic infection status (any protozoa, any helminth, hookworm only). Restricted 

maximum likelihood linear mixed models, which included participant-specific random 
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intercepts, and an identity covariance matrix, evaluated change in CD4+ T cell 

concentrations over time across hookworm infection status among participants who were 

ART-initiated at baseline. These longitudinal models were adjusted for sex, age, time on 

ART, and weight at baseline. Additional exploratory sub-analyses of change in CD4+ T 

cell concentrations by hookworm infection status were performed among 1) participants 

who had initiated ART <1 year before enrollment, and 2) participants who had initiated 

ART for ≥1 year before enrollment. 

We attempted to evaluate the relationship between CD4+ T cell count and parasite 

burden (light, moderate, and heavy intensity infections per WHO classification; 

Appendix 3). However, because all infections were classified as light intensity (<2,000 

eggs/gram feces), we were unable to create any clinically meaningful exposures beyond 

presence or absence of hookworm infection. No imputation was performed for missing 

data, which occurred in <2% of participants. All analyses were performed in Stata/IC 

13.1 (StataCorp, College Station, Texas) and results were evaluated against an alpha level 

of 0.05. 

 

3.4 Results 

 We consented 216 HIV-infected adults during a routine clinic visit. Of these, 14 

potential participants were unable to produce a stool sample on site, and were excluded 

from the study. Thus, 202 participants were enrolled (Table 1). Women comprised 69% 

of participants (139/202). The participants’ median age was 35 years [IQR: 30, 41]. The 

median overall CD4+ at study enrollment was 375 cells/mcL [IQR: 243, 450], and 90% 

(181/202) of participants were receiving antiretroviral therapy (ART) for a median 
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duration of 15 (IQR: 5, 29) months. All participants were receiving primary 

pneumocystis jiroveci pneumonia prophylaxis with either trimethoprim/sulfamethoxazole 

(n=201) or dapsone (n=1). 

 

Table 1: Baseline characteristics and demographic information by presence of stool 

helminth infection 

Characteristic No helminth infection Any helminth 
infection* 

P-value 

N Median [IQR] 
or n (%) 

N Median [IQR] 
or n (%) 

Age, years 140 35 [28, 40] 62 36 [30, 43] 0.16 
Women 140 90 (64.3%) 62 49 (79.0%) 0.04 
Weight, kg 136 53 [47, 60] 60 53 [48, 59] 0.83 
CD4+ nadir at clinic 
entry, cells/mcL 

135 257 [127, 401] 59 270 [117, 432] 0.50 

CD4+ at study 
enrollment visit, 
cells/mcL 

140 390 [280, 467] 62 319 [191, 415] <0.001 

Currently receiving 
ART 

140 129 (92.1%) 62 52 (83.9%) 0.08 

Duration of ART, 
months** 

129 15 [5, 28] 52 15 [4, 35] 0.84 

Receiving tenofovir** 129 94 (72.9%) 52 33 (63.5%) 0.21 
12-month pulmonary 
tuberculosis history 

140 2 (1.4%) 62 1 (1.6%) 0.67 

Self-reported farming 
occupation 

139 87 (62.6%) 61 44 (72.1%) 0.19 

*Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides 
stercoralis, Trichuris trichiura 
**Among those participants currently receiving ART 
 

Prevalence & Burden 

 Multi-parallel quantitative PCR results indicated that 35.2% (71/202) of 

participants were infected with at least one species of helminth or protozoa. Of these 71 

participants, 10 were infected with two species. Most parasitic infections were caused by 
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N. americanus (27.6%, 55/199). Giardia had the next highest prevalence (6.1%, 12/197), 

followed by Strongyloides (4.0%, 8/202). Prevalence and infection intensity of parasitic 

organisms are described in Table 2. 

 

Table 2: Stool parasite infection and infection intensity by species 

 N n (%) DNA (fg/µl) 
Median [IQR] 

Estimated 
eggs/g stool 

WHO 
Classification 

Overall 202 71 (35.2%) N/A N/A  

Helminths 

Ascaris 
lumbricoides 

189 0 (0%) N/A N/A N/A 

Ancylostoma 
duodenale 

200 1 (1%) 18.3 527 Light 

Necator 
americanus 

199 55 (27.6%) 0.025 
[0.018, 0.22] 

0.72 
[0.53, 6.34] 

Light 

Strongyloides 
stercoralis 

202 8 (4.0%) 2.1 
[<0.1, 81.0] 

N/A N/A 

Trichuris 
trichiura 

201 1 (0.5%) 0.6 52,694 Heavy 

Protozoa 

Cryptosporidium 
parvum/hominum 

81 1 (1.2%) 35.9 
[35.9, 35.9] 

N/A N/A 

Entamoeba 
histolytica 

201 3 (1.5%) <0.1 
[<0.1, 0.3] 

N/A N/A 

Giardia 
intestinalis 

197 12 (6.1%) 14.7 
[0.3, 205.5] 

N/A N/A 

 
 

Calculated egg burdens for N. americanus infections had a median of 0.72 eggs 

per gram of stool (IQR: 0.53, 6.34; maximum: 275) and 527 eggs/gram of stool for the 

single Ancylostoma duodenale infection and considered light egg burden by the World 

Health Organization.108 An estimated 52,694 eggs/gram of stool was calculated for the 

single heavy Trichuris trichiura infection. Strongyloides stercoralis eggs generally hatch 
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and mostly larvae are seen in stool samples, there are no current categories for intensity 

of larvae in infected patients. 

 

Factors Associated with Protozoal Infection 

 Results of generalized linear models analyses indicated that each 5-year increase 

in age was inversely related with a composite outcome of either Giardia, 

Cryptosporidium, or E. histolytica infection (Prevalence Ratio (PR) = 0.67, 95%CI: 0.49, 

0.92, p=0.01); 11.5% (6/52) in participants under 30 years of age, 6.7% (6/90) in 

participants 31 to 40 years of age, and 1.7% (1/60) in participants greater than 40 years of 

age. Protozoal infection was more prevalent in farmers than other occupations, although 

this relationship was unstable and not statistically significant in an age- and sex-adjusted 

model (PR= 3.96; 95%CI: 0.89, 17.60; p=0.07). Other factors – sex, CD4+ count at 

enrollment, ART status – were not associated with protozoa infection. (See Table 3.) 

 

Factors Associated with Helminth Infection 

Univariable analyses of age, sex, weight, advanced WHO stage, current receipt of 

ART, and occupation indicated that only sex and ART status had a relationship with a 

composite outcome for prevalent helminth infection, i.e. either A. lumbricoides, A. 

duodenale, N. americanus, S. stercoralis, or T. trichiura. Women were more likely to 

have any helminth infection (PR=1.71; 95%CI: 1.00, 2.92; p=0.05). Those who were 

currently receiving ART had a decreased prevalence of any helminth infection (PR=0.60; 

95%CI: 0.36, 1.00; p=0.05). Multivariable models that included age, sex, occupation, and 

ART status yielded similar results for infection with any helminth versus no helminth 
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infection. Women were slightly more likely to be infected with helminths (PR=1.66; 

95%CI: 0.98, 2.82; p=0.06) and people receiving ART were less likely to be infected 

with helminthic worms (PR=0.61; 95%CI: 0.38, 0.99; p=0.05) (Table 3). 

 

Table 3: Demographic and clinical factors associated with parasitic infection 

Risk Factor N Prevalence 
Ratio 

(95% CI) 

N Prevalence 
Ratio 

(95% CI) 

N Prevalence 
Ratio 

(95% CI) 
Univariable analyses 

 Protozoa Helminths Hookworm spp. 
Age, 5 year increments 202 0.70 

(0.54, 0.91) 
202 1.12 

(0.97, 1.30) 
198 1.19 

(1.01, 1.39) 
Women 202 0.73 

(0.25, 2.13) 
202 1.71 

(1.00, 2.92) 
198 1.82 

(1.01, 3.28) 
Weight, 5 kg 
increments 

196 0.94 
(0.78, 1.13) 

196 1.00 
(0.90, 1.11) 

192 0.99 
(0.88, 1.10) 

WHO Stage 3,4 195 1.24 
(0.29, 5.27) 

195 1.05 
(0.56, 1.94) 

191 0.87 
(0.42, 1.81) 

Currently receiving 
ART 

202 1.39 
(0.19, 10.23) 

202 0.60 
(0.36, 1.00) 

198 0.49 
(0.30, 0.80) 

Farming occupation 200 2.90 
(0.66, 12.75) 

200 1.36 
(0.84, 2.20) 

196 1.35 
(0.81, 2.27) 

Multivariable analyses 
 Protozoa Helminths Hookworm spp. 
Age, 5 year increments* 202 0.71 

(0.55, 0.92) 
202 

 
1.12 

(0.97, 1.32) 
198 1.20 

(1.01, 1.42) 
Women** 202 0.78 

(0.27, 2.68) 
202 1.71 

(1.00, 2.91) 
198 1.82 

(1.10, 3.24) 
Currently receiving 
ART*** 

202 1.00 
(0.11, 9.41) 

202 0.66 
(0.41, 1.07) 

198 0.57 
(0.36, 0.93) 

Farming occupation*** 200 3.96 
(0.89, 17.60) 

200 1.28 
(0.76, 2.14) 

196 1.21 
(0.68, 2.15) 

* Sex-adjusted generalized linear model estimating prevalence ratios. 
** Age-adjusted generalized linear model estimating prevalence ratios. 
*** Age- and sex-adjusted generalized linear model estimating prevalence ratios.
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Analyses of predisposing factors for infection with hookworm species A. 

duodenale or N. americanus alone indicated that female sex, age, and ART status were 

associated with hookworm infection in univariable analyses. Each 5-year increase in age 

was associated with increased likelihood of infection (PR=1.19; 95%CI: 1.01, 1.39; 

p=0.03), as was being female (PR=1.82; 95%CI: 1.01, 3.28; p=0.05). ART was 

associated with a decreased likelihood of hookworm infection (PR=0.49; 95%CI: 0.30, 

0.80; p<0.01). These results were attenuated in multivariable models that included sex, 

age, ART status, and occupation, such that only receiving ART remained statistically 

significantly associated with likelihood of decreased hookworm infection (PR=0.53; 

95%CI: 0.33, 0.86; p=0.01); 52.6% (10/19) of participants not receiving ART were 

infected with hookworm, and 25.7% (46/179) of participants receiving ART were 

infected with hookworm. 

 

Relationship between hookworm and immune status 

We assessed the relationship between hookworm infection and CD4+ T helper cell 

concentrations at study enrollment. Participants with hookworm infection demonstrated 

consistently lower concentrations of CD4+ cells/mcL when compared to hookworm-

uninfected peers (Table 4). Unadjusted analyses indicated an average difference of -70 

cells/mcL (95%CI: -113, -26, p=0.002) in participants with hookworm infected relative to 

those without detectable hookworm infection. This relationship became more pronounced 

when adjusting for participant age, sex, and time on ART; participants with hookworm 

infection had 94 fewer CD4+ cells/mcL on average (95%CI -133, -55, p=<0.001) than 

those without hookworm. Stratified analyses on ART status (receiving or not currently 
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receiving ART) indicate a similar relationship among those persons receiving ART at 

enrollment (n=171) (mean: -102 cells/mcL; 95%CI -145, -58; p=<001). An additional 

stratified analysis among those persons who were ART naïve was limited by a small 

sample size (n=19), but did not show a statistically significant relationship between 

hookworm infection and CD4+ T cell concentrations (mean: -43 cells/mcL; 95%CI: -118, 

32; p=0.24). 

 

Table 4: Differences in CD4+ cells/mcL between infected- and hookworm-uninfected 
adults living with HIV in peri-urban Uganda. 
 

N 

Mean difference in 
CD4+ cells/mcL 

(95% CI) a p-value 
All participants 

Protozoa 
Protozoal infection, unadjusted 202 -11 (-96, 75) 0.81 
Protozoal infection, adjusted b 194 -23 (-118, 71) 0.63 
Helminth 
Any helminth, unadjusted 202 -62 (-107, -17) <0.01 
Any helminth, adjusted c 194 -80 (-121, -39) <0.001 
Hookworm 
Hookworm infection, unadjusted 198 -70 (-113, -26) 0.002 
Hookworm infection, adjusted c 190 -94 (-133, -55) <0.001 

Among ART initiated only 
Hookworm infection, adjusted c 171 -102 (-145, -58) <0.001 

Among ART naïve only 
Hookworm infection, adjusted d 19 -43 (-118, 32) 0.24 

a Relative difference in CD4+ cells/mcL in those with hookworm infection, relative to 
those without hookworm infection. 
b Adjusted for nadir CD4, age, sex 
c Adjusted for nadir CD4, sex, years on ART 
d Adjusted for nadir CD4, sex 
 

 

 Among participants who had initiated ART at enrollment, results from the 

longitudinal analyses that participants with hookworm infection did not demonstrate a 

different rate of CD4+ T cell immune recovery in the 24-months post-enrollment 

(βhookworm-time=0.44; 95%CI: -0.46, 1.35; hookworm-time interaction term p-value=0.33). 



 

31 
 

Participants with hookworm did, however, have consistently lower CD4+ concentrations 

relative to their hookworm-uninfected peers over the 24 months of follow-up (-85 

cells/mcL; 95%CI -149, -21; p=0.009), based on an average of 2.3 CD4+ measurements 

(min=1, max=5) per participant over 24 months (Figure 1). The mean number of 

measurements over time across hookworm-infected versus uninfected participants was 

similar (2.2 and 2.4, respectively). 

 

 

Figure 1: Change in CD4+ T cell concentrations from enrollment to 24 months 

between participants infected with hookworm versus those not infected with 

hookworm 

 

At 12-months post-enrollment, when adjusting for sex, age, time on ART and 

weight at baseline, participants with hookworm infection had a mean 361 CD4+ 
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cells/mcL (95%CI 309, 412) versus a mean of 422 cells/mcL (95%CI 393, 451) amongst 

those without hookworm infection at baseline. Participants with hookworm infection at 

baseline had, on average, 62 fewer CD4+ cells/mcL (95%CI: -121, -3) relative to their 

uninfected peers. At 24-months post-enrollment, adjusting for the same co-variates, 

participants with hookworm averaged 438 CD4+ cells/mcL (95%CI 363, 512) versus 476 

cells/mcL (95%CI 435, 517) among those uninfected with hookworm at baseline. While 

participants with hookworm infection still had lower CD4+ cell concentrations than their 

uninfected peers at 24 months of follow-up, the difference in average CD4+ cells/mcL 

between hookworm infected versus uninfected across groups was attenuated (-39 

cells/mcL; 95%CI -124, 47) and not statistically significant. 

Furthermore, participants who had initiated ART ≥1 year prior to study 

enrollment (n=107) demonstrated a similar relationship to our overall cohort; there was 

no difference in rate of CD4+ cell recovery during the study period, but those with 

hookworm were at an immunologic deficit relative to their uninfected peers (77 fewer 

CD4+ cells/mcL in those with hookworm versus those without; 95%CI -154, -1). Among 

persons who had initiated ART less than 1 year prior to study enrollment (n=68), the 

effect was less pronounced and not statistically significant, with only 26 (95%CI: -121, 

70) fewer CD4 cells/mcL in those with hookworm versus those without, and no 

difference in change over time, like other analyses. 

 

3.5 Discussion 

We demonstrate that parasitic infection, particularly with N. americanus 

hookworm species, was common in this adult, HIV-infected population in Uganda. While 
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these infections were generally light intensity infections, we report a clinically and 

statistically significant association between hookworm infection and decreased CD4+ T 

helper cells/mcL at study enrollment. This relationship was maintained over study 

follow-up, where participants with hookworm infection had diminished CD4+ immune 

status over time, relative to their peers who were not infected with hookworm. There was 

no difference, however, in CD4+ cell recovery over 24 months among participants who 

were ART-initiated at baseline. 

To our knowledge, only two other studies to date have examined the health 

impacts of helminth infection in persons receiving ART, specifically the effects of 

deworming.90,91 In Uganda, Lankowski et al. did not find any significant beneficial 

effects of deworming in their overall study population. However, in a sub-group analysis 

of women only, they found that deworming with either albendazole or mebendazole 7 to 

90 days prior to CD4+ T cell measurement, for unspecified parasitic infection increased 

CD4+ T helper cell concentrations by an average of 63 cells/mcL (95% CI: 6-120) in in 

the first year of ART initiation. This study was limited by the fact that a medical record 

of deworming was used as a proxy for helminth infection, and as such neither helminth 

infection prevalence nor deworming incidence were reliably captured. This may have 

attenuated their results towards a null finding in the overall cohort. 

Ivan et al. found that deworming decreased HIV viral loads and increased CD4+ T 

cell concentrations over a 12-week period in a cohort of 980 HIV-infected, ART-initiated 

pregnant Rwandans.91 While the results of this study demonstrate the value in revisiting 

the question of deworming in the presence of increasingly available ART, it is potentially 

limited by a treatment cross-over effect of deworming outside of the study setting. That 
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said, any extra-study deworming in the control arm would likely attenuate the effects of 

their intervention; and one can extrapolate that the results in a completely controlled 

setting would have been more extreme. Additionally, this is a limited subset of the ART-

receiving, HIV-infected population, and it would be important to duplicate these results 

in other populations of men and non-pregnant women. 

Prevalence of parasitic infection 

Our results are comparable with much of the available literature regarding 

parasite infection prevalence in adults. Other studies conducted in Uganda have found 

similar prevalences of hookworm infection (24 to 52%),36,39,41,43,109 and Strongyloides (4 

to 8%) 44,110,111 in adults with and without HIV. In persons with HIV in Nigeria, Senegal, 

and Ethiopia, Giardia prevalence has been observed at approximately 5%.112-114 

Partial immunity to most parasitic infections is acquired over the life course, 

leading to an increased rate of parasite destruction and worm expulsion with increasing 

age and re-infection. Hookworm species, however, do not induce the same adaptive 

immunity in humans as the other soil transmitted helminths, and consequently, may 

continue to infect adults with high frequency and intensity.115 In the context of frequent 

and repeated infection, this lack of adaptive immunity may have important implications 

for host response to co-infections like HIV, and important Th1-moderated HIV co-

morbidities, such as tuberculosis and cryptococcal meningitis. 

Relationship between hookworm infection and CD4+ T cells/mcL 

Our results found that participants who were infected with hookworm were at a 

significant CD4+ T-helper cells/mcL deficit, relative to participants who were not 

infected with hookworm, at study enrollment, and over time. CD4+ T-helper cells are 
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critical in mediation of the immune system’s response to various pathogens, and 

commonly used to monitor HIV disease progression and response to ART.116 The inverse 

relationship between hookworm infection and CD4+ T cell concentrations was 

qualitatively and statistically consistent across various analyses, from unadjusted to 

adjusted regression, analyses restricted to persons receiving ART, and over time. We did 

not observe a difference in CD4+ cells/mcL among persons who were ART-naïve; 

however, the small proportion of persons not receiving ART in this cohort (n=19) renders 

these analyses relatively uninformative. 

Ample evidence demonstrates that soil-transmitted helminths are potent 

immunomodulators, and infection with soil-transmitted helminths involves many major 

body systems, from the gastrointestinal and circulatory systems, to soft tissues.52 Multiple 

biologic mechanisms could be driving our observed relationship; and these results are 

likely multifactorial for any given participant. Hookworm infection in HIV-uninfected 

persons with celiac disease has been shown to decrease expression of interferon (IFN)-γ 

on intestinal T cells, and increase in CD4+FoxP3+ regulatory T cells, which could 

contribute to decreased differentiation to CD4+ T helper cells.117  Other research has 

demonstrated that hookworm antigens induce cytotoxic and pro-apoptotic activity in 

Jurket T Cells, contributing to an increase in CD4+, CD8+, and CD19+ lymphocytes that 

were in an early and/or late stage of programmed cell death.118 Cuellar et al. found that 

commonly excreted hookworm protein Ac-TMP-1, a Tissue Inhibitor of 

Metalloproteases, induced murine splenic T cells to differentiate to CD4+ and 

CD8+CD25+FoxP3+ regulatory T cells that expressed interleukin (IL-)10 and suppressed 
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naïve and activated CD4+ T cells differentiation.119 Other human studies, however, have 

not found similar increases in T regulatory responses to hookworm infection.120 

Other human studies have not found differences in CD4+ T cell concentrations 

between hookworm-infected and -uninfected groups of HIV-uninfected participants. In a 

quasi-experimental study by George et al., which measured the impact of deworming on 

microbial translocation (a contributor to chronic immune activation linked to decreased 

concentrations of CD4+ T helper cells), observed that hookworm was associated with 

elevated levels of pro-inflammatory markers, e.g. lipopolysaccharide, soluble CD14.121 

They did not, however, observe differences in T cell subsets among naturally infected, 

HIV-uninfected participants at baseline.121 The authors postulate that lack of difference in 

T cell subsets is mediated by a counterbalancing, anti-inflammatory effect of hookworm 

infection, e.g. elevated levels of IL-10, and decreased C-reactive protein, IL-17 and 

haptoglobin.121 

From the standpoint of clinical endpoints, results from clinical trials conducted in 

ART-naïve persons remain mixed. Results from the HEAT trial, which evaluated the 

impact of reflexive and repeated deworming on a patient’s risk for ART eligibility, i.e. a 

drop below 350 CD4+ cells/mcL, found no difference between the reflexive deworming 

group (400 mg albendazole every 3 months plus 25 mg/kg praziquantel annually) versus 

the standard of care group (no empiric deworming).80 The trial had 80% power to detect a 

hazard ratio of 0.775, which could be considered a large, albeit clinically important, 

difference in treatment groups. That said, actual CD4+ T cell concentrations at study 

completion were very similar across randomization groups, supporting the idea that 

deworming may not dampen CD4+ decline in the absence of ART. Other studies support 
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this conclusion.12,13,83 However, still other studies and meta-analyses demonstrated 

reductions in plasma viral loads and increases in CD4+ T helper cells with deworming in 

persons living with HIV.81,122 The differences in these results may in part be explained by 

differences in methodology, and in particular the need to pool species due to limited 

species-specific sample sizes. 

Repeated and long-term exposure to hookworm and other helminth species may 

cause fibrosis of the gut associated lymphatic tissues (GALT). IL-13, in particular, is 

increased in the presence of hookworm infection115 and a dominant mediator of fibrotic 

tissue, which induces fibrosis independently and via simulation and activation of 

transforming growth factor (TGF)-β. In the case of chronic and repeated helminth 

infections, and corresponding Th2 type immune responses, IL-13 production can become 

pathological. Fibrosis of the GALT has been linked to the dysregulation of immune cells, 

including CD4+ T cells, and impaired CD4+ recovery.123,124 

Chronic and repeated exposure to helminths and subsequent GALT fibrosis may 

have impacted the results of this and other studies. Indeed, the longitudinal analyses in 

this study demonstrate that hookworm-infected versus uninfected participants have a 

similar rate of CD4+ recovery over the 24-month follow-up period, but that those infected 

with hookworm remained at a significant immunologic deficit relative to their uninfected 

peers over time. Fibrosis is not reversible with deworming or other therapy. This bears 

mentioning because while hookworm and other helminths are still causally implicated in 

the decrease in CD4+ T cell concentrations, there are important implications for public 

health intervention design, e.g. increased deworming frequency targeting all stages of the 

human life course. 
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Limitations 

It is possible that our results are spurious, either due to confounding, a 

misunderstanding of the directionality of the hookworm-CD4+ relationship, or a type I 

statistical error. The primary limitations of this study arise from its observational nature. 

First, the temporal relationship between parasite infection and immune status remains 

undetermined; it is conceivable that being immunocompromised would increase the 

likelihood of persistent infection. Research on this topic remains mixed and parasite 

dependent.78,125-127 However, most research to date suggests no difference in hookworm 

risk between immunocompromised and immunocompetent persons.128-131 There is 

potentially one exception to this pattern. A cross-sectional study by Sanyaolu et al. found 

that 4.6% (3/65) of HIV-infected Nigerians had hookworm infection, versus 1.8% 

(18/1015) of HIV-uninfected peers.132 However, this author was unable to duplicate their 

results based on the data provided in the paper.  

Our results are based on a single stool sample, and we did not use any 

concentration techniques prior to DNA extraction. Diagnostic sensitivity for hookworm – 

and other species –  when evaluating a single stool sample is lower than sensitivity when 

using multiple stool samples. For example, Knopp et al. found that a single stool sample 

yielded a 7.1% prevalence, while 2 samples yielded a prevalence of 15.6% via Kato-

Katz.133 These authors found that Strongyloides prevalence with 1 stool sample versus 2 

samples was similar, 3.5% and 5.3%, respectively. It is unlikely that our observed 

hookworm prevalence would have doubled had we analyzed >1 stool sample. However, 

we may have misclassified parasite-infected participants as uninfected, particularly 

among those with a low burden. 
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Finally, our results may be confounded by data that would have been useful in 

these analyses but were not available. Hookworm, and other intestinal parasites, are 

considered diseases of poverty. The relationship between increased infection incidence 

among economically disadvantaged persons is well established.36,134-136 Additionally, 

being economically disadvantaged could have impacted health outcomes in this study, 

e.g. CD4+ T helper cells concentrations, as it has in other research.137-139 While we 

collected information on place of residence, this information could ultimately only be 

dichotomized into participants who lived in Mbale town, where the clinic is located, 

versus all others, which could represent varied levels of development and corresponding 

hookworm exposure. Also, ART adherence data were routinely collected and reflected 

uniformly high adherence levels. Past research on adherence at TASO ART clinics report 

similarly high levels of ART adherence, with ~90% of patients reporting no missed pills 

in the past 30 days.140-142 However, data from prior TASO adherence research – like 

adherence data for this study – are limited by the fact that they are self-reported, which 

consistently over-reports adherence relative to pill counts, pharmacy refill information, 

and/or drug concentrations in blood.143,144  

Conclusions 

Despite the limitations of this study, we feel that these results are generalizable to 

other adults receiving outpatient HIV therapy in low-income, peri-urban areas. The 

results presented herein point to a high prevalence of helminth infection in this vulnerable 

population, and that hookworm infection is associated with sub-optimal health outcomes, 

i.e. lower CD4. Therefore, further examination of these questions via a randomized trial 
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is warranted, especially how systematic deworming may impact the immune status of this 

vulnerable population in the presence of ART.  
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4. Aim II. Characterization of the fecal microbiome and its relationship with clinical 

factors among rural and peri-urban adults living with HIV in Uganda 

4.1 Aim Summary 

Background: Gut bacterial community composition provides insight into HIV 

pathogenesis, and potentially offer avenues towards low cost adjunctive HIV therapies. 

Western populations predominate current literature, while >70% of HIV infections occur 

in Africa. We examine the relationships between clinical characteristics and fecal 

microbiome composition in HIV care-seeking Ugandans. 

Methods: 175 HIV-infected Ugandans from a cohort study examining clinical correlates 

of helminth infection contributed a single fecal sample to this nested analysis. CD4+ T 

cells/mcL were measured at baseline and over 12-months post-enrollment. Fecal samples 

underwent 16S bacterial rRNA sequencing. α- and β-diversity were compared against 

time on ART, CD4+ T cells/mcL, and parasitic infection. Parametric and non-parametric 

tests assessed differential relative abundances of specific taxa across ART, CD4+ T 

cells/mcL, and parasitic infection. The relationship between taxa and CD4+ cell recovery 

was assessed via linear mixed models. FDR adjustments were made for multiple 

comparisons. 

Results: α-diversity was lower in participants with <100 CD4+ T cells/mcL (n=8) versus 

participants with ≥100 CD4+ T cells/mcL (n=167). We failed to observe differences 

community composition across clinical or demographic characteristics. Only 

Anaerococcus was inversely associated with CD4+ T cells/mcL (Spearman correlation -
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0.32; p-value<0.001). Sutterella genus and Alcaligenaceae (of unknown genus) were 

associated with increasing CD4+ T cells/mcL over time. 

Conclusions: These findings reinforce the inverse relationship between fecal microbiome 

community diversity and compromised immune status, and have identified a limited 

number of taxa associated with clinical parameters. More HIV-microbiome research 

should include African participants, as robust and repeated results are required to 

translate these findings into health-enhancing adjuvant therapies.  
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4.2 Background 

The microbial communities of the gut are critical to the maintenance of healthy 

human physiology. Many human disorders – from inflammatory bowel disease145 to 

diabetes146 to cardiovascular disease147 – have been linked to disruption of the bacterial 

communities found in the gut.148,149 Human immunodeficiency virus (HIV) is no 

exception.150 Evidence suggests that HIV infection causes progressive damage to the gut 

mucosa151 and dysbiosis – or imbalance – of bacterial communities of the gut.152,153 

While the gut microbiota are normally protected from the host immune system by a 

strong mucosal barrier, HIV damages the integrity of this mucosal lining.151 This damage 

potentially alters the composition of the gut flora, by exposing it to lymphocytes and 

other immune cells contained in the lamina propria, an intensely vascular layer of 

connective tissue underlying the epithelium of the gut mucous membrane. 

In healthy mammals, the billions of commensal bacteria that colonize the 

gastrointestinal tract do so in anatomically restricted spaces of intestinal lumen, e.g. the 

gut epithelial surface, or within the underlying gut-associated lymphoid tissue.154 

Maintaining these anatomical niches limits inflammation and other harmful effects of 

community disruption and bacterial transfer. Damage to the gut mucosa allows bacteria 

and other organisms to traverse the gut lumen into normally protected areas of the 

circulatory system.7,155 This process, referred to as microbial translocation, has been 

linked to chronic immune cell activation and, a perpetual state of systemic inflammation 

characterizing HIV infection and disease progression. Although gut flora play an 

important role in the development of the mucosal immune system,152 it is unclear if 
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dysbiosis of the gut flora induced by HIV is a direct contributor to HIV disease 

progression, a byproduct of infection, or both. 

Research has demonstrated that HIV-infected individuals generally – although not 

uniformly156 – have less species diversity or richness in their gut flora when compared to 

HIV-uninfected individulas.157,158 This within-individual gut flora species diversity or 

richness is broadly termed α-diversity. The fecal flora of people living with HIV has been 

characterized by an overgrowth of Bacterioides uniformis159 and Prevotella copri, the 

latter of which has been linked to inflammatory conditions.160 Dillon et al. demonstrated 

lower ratios of Bacterioides spp. to Prevotella spp. in persons living with HIV versus 

those who were HIV-uninfected.153 Gori et al. observed a higher abundance of potential 

pathogens Pseudomonas aeruginosa and Candida albicans, and lower abundances of 

“healthy” Bifidobacteria and lactobacilli species in persons living with HIV relative to 

historical HIV-uninfected controls.152 While α-diversity may rebound in the presence of 

HIV antiretroviral therapy (ART),161 the presence and density of specific species remains 

fundamentally altered, potentially resulting in adverse sequelae. 

 Few studies to date have examined the fecal microbiome composition of adults 

living with HIV from Sub-Saharan Africa. This is despite the fact that >70% of HIV 

infections are clustered in the region,17 and that high levels of regional variation in gut 

flora have been demonstrated across different geographic and cultural contexts.149,162,163 

To our knowledge, only two studies have characterized the fecal microbiome of adults 

living with HIV in Sub-Saharan Africa.164,165 These studies had slightly contradictory 

results. The first demonstrated that the fecal microbiome composition of participants 

became less phylogenetically diverse with decreasing CD4+ T cell counts, and that 
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specific potentially pathogenic bacteria became more abundant with decreasing CD4+ T 

cell counts. Another study indicated that HIV therapy, and not the infection itself, was 

associated with a shift towards a predominance of pathogenic bacteria. Parasitic infection 

is common in low-income areas like Sub-Saharan Africa, where HIV is also common. 

Parasite and HIV co-infection prevalence estimates range by context, but average 

approximately 30% in this context.42,80,166 Parasitic colonization of the gut is also 

associated with gut flora composition shifts, although these relationships are inconsistent 

and parasite-dependent.167-171 

The present analysis characterizes the fecal microbiome of 175 adult Ugandans 

living with HIV who are enrolled in care at an outpatient HIV clinic in peri-urban 

Uganda. Over 90% of these participants were receiving ART at the time of enrollment. 

To date, this is the largest cohort of HIV-infected Africans who have undergone 16S 

sequencing, a common molecular method used to identify bacterial taxa, of their fecal 

microbiome. We hypothesize that either composition of the fecal microbial community 

and/or specific taxa will be associated with duration of ART, CD4+ T cell concentrations, 

and infection with intestinal parasites. Furthermore, we examine the relationship between 

gut community composition and CD4+ T cell recovery over time, a proxy for overall 

immune system recovery and health. These analyses – and longitudinal analyses in 

particular – are exploratory in nature, and should be further examined in future cohorts. 
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4.3 Methods 

4.3.1 Ethics statement 

All participants provided written informed consent. The University of Minnesota, 

The AIDS Support Organisation (TASO), and the Uganda National Council of Science 

and Technology institutional review boards approved this protocol. 

 

4.3.2 Study participants and study design 

 We recruited adult Ugandans receiving outpatient care at TASO’s HIV clinic in 

Mbale, Uganda, into a study evaluating the prevalence and burden of eight 

gastrointestinal parasites and assessing clinical correlates of parasitic infection. Conduct 

of this study has been described previously.42 In brief, the TASO Mbale clinic provides 

care for the rural and peri-urban population surrounding Mbale, located in southeastern 

Uganda. A blood draw was performed at enrollment for same-day CD4+ T cell 

concentrations; and participants were passively followed for 12 months for CD4+ T 

cell/mcL values over time. 

Each fecal sample was self-collected by participants at study enrollment during 

their standard HIV care clinical visit in a polypropylene collection container (Globe 

Scientific, Paramus, New Jersey). The sample was maintained at room temperature for ≤4 

hours, prior to freezing at -20°C. Upon being thawed, the sample was split to perform 

molecular parasitological analysis per previously described methods.42,103 The remaining 

portion was re-frozen until thawed a second time for ribosomal ribonucleic acid (rRNA) 

extraction, the result of which was used for sequencing analyses. Each sample underwent 

two freeze-thaw cycles prior to extraction of genetic material and sequencing. 
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Bacterial 16S rRNA extraction, sequence preparation, and operational taxonomic unit 

selection 

 Genetic material was extracted from stool samples using the MP BIOMEDICALS 

FastDNA™ SPIN Kit for Soil (Santa Ana, CA, USA) per the manufacturer’s protocol. 

The Illumina MiSeq platform (Illumina, San Diego, CA) sequenced the V5-V6 region of 

the bacterial 16S rRNA gene at the University of Minnesota Genomics Center. The 16S 

region is a highly-conserved region, and its stability over time makes it ideal for 

taxonomic identification. Forward and backward sequence reads from each sample were 

trimmed to their maximum value of 280 base pairs using the Cutadapt program.172 

Adapter sequences were removed from forward reads* and backward reads†, and 

sequences were trimmed using a quality threshold of 20. To apply this quality threshold, 

the Cutadapt program subtracts the quality value threshold from the quality assigned to 

each base read. These new values are summed, sequentially, from each end, inwards, and 

the process stops at the point where the adjusted base quality value is greater than 0. 

Forward and backward sequences were aligned using the resync.pl script in the 

“riss_util” module developed by the Research Informatics Support Systems at the 

University of Minnesota. QIIME v1.8.0 was used to join forward and backward 

sequences via the “join_paired_ends.py” script (≥50 paired bases). 

To identify operational taxonomic units from these sequences, closed-reference 

selection was employed in QIIME v1.8.0 using the USEARCH method,173,174 whereby 

sequences from unknown samples were compared against the Greengenes reference 

database v13_8 at a 97% similarity cutoff, which is sufficiently specific to accurately 

                                                 
*CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCTCGTATGCCGTCTTCTGCTTG 
†CTGTCTCTTATACACATCTGACGCTGCCGACGANNNNNNNNGTGTAGATCTCGGTGGTCGCCGTATCATT 
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group sequences originating from the same genera.‡ A closed-reference operational 

taxonomic unit selection method minimizes spurious classification, e.g. chimeras 

attributable to assay amplification error, by using pre-existing and validated taxonomic 

information. Any sequences that are not matched to the reference database are discarded 

from downstream analyses; this sequence “loss” is typically 1 to 10% when classifying 

bacteria from well-characterized environments such as the human gut. Operational 

taxonomic units are used to construct downstream metrics based on actual taxonomic 

classification, e.g. phylogenetic diversity. Samples with a very small number of reads 

(<5,000) were excluded from further analyses. 

As a data quality measure, rarefaction analyses were performed to verify that each 

sample was sequenced to a sufficient degree to accurately capture the diversity of each 

participant’s fecal bacterial community. These analyses entail visual assessment of alpha 

diversity, i.e. the number/richness and/or distribution of taxa for a single bacterial 

community,175 plotted against an increasing number of randomly sampled without 

replacement sequences. In rarefaction analyses, samples that have been sequenced to a 

sufficient depth will exhibit an alpha diversity plateau as the sampling proportion 

increases. We performed rarefaction analyses using three different alpha diversity 

metrics: i) species counts, ii) phylogenetic diversity, and iii) the Chao1 estimator. Alpha 

diversity metrics used in this paper are described in Table 5, along with brief 

explanations of other microbiome analysis terminology. Rarefaction plots are shown, by 

CD4+ T cell categories, in Figure 2. 

                                                 
‡ 99% similarity was a commonly used similarity cutoff for species-level operational taxonomic unit 
determination. However, species in the same genus are indistinguishable up to 42% of the time. [Jovel, et 
al. 2016; Pei, et al. 2010] Thus, we have favored genera-level classification for this paper, like most peer-
reviewed literature. 
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Table 5: Glossary of microbiome analyses terms 

Term – description 

Species counts – alpha diversity metric calculated by the total number of unique 

operational taxonomic units. 

Phylogenetic diversity – alpha diversity metric based on total taxonomic branch 

length per sample. 

Chao1 estimator – alpha diversity metric that estimates the actual number of 

species in a community, given the observed sample, while accounting for the 

relative distribution of species within each sample.176 

Shannon-Weaver diversity – alpha diversity metric that accounts for number and 

distribution of species 

Simpson diversity – bacterial community diversity metric, with a 0 - 1 distribution 

scale.177 

Principal coordinates analysis (PCoA) – Multivariate, distance-based technique 

used to visualize the relationships between communities. Each individual’s 

sample, or bacterial community, is represented by a point in two- or three-

dimensional plot, and similar communities exhibit clustering in a PCoA plot. 

“Community” for purposes of these visualizations may be constructed by 

comparing different categories of clinical or demographic characteristics, e.g. 

ART-initiated vs. ART-naïve.178 

 

From the results of this rarefaction analysis and the smallest number of common 

sequences per sample, an additional rarefaction step was performed to harmonize the 

number of S16 sequencing reads per sample. Samples were rarefied, i.e. randomly 

sampled without replacement, at a depth of 17,000 sequences. This rarefied operational 

taxonomic unit table was subsequently normalized by taxonomic family and genus, 

whereby taxa counts were collapsed within participant, and a relative abundance metric 
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was created (number of taxa-specific counts divided by the total number of counts per 

sample). 

 

Exposure Classification 

For purposes of these analyses, clinical indicators were a priori categorized as 

outlined in Table 6. CD4+ cells/mcL were also categorized a posteriori and along 

clinically relevant lines as <100 cells/mcL, 100 to <350 cells/mcL, and ≥350 cells/mcL. 

 

Table 6: Description of clinical and demographic variables included in 
baseline and longitudinal analyses 
 
Clinical or Demographic 
Characteristic 

Categorization of variable for analysis 

Parasitic infection • Any parasitic infection vs. no infection 
• Hookworm infections vs. no 

hookworm infection 
• G. intestinalis vs. no G. intestinalis 
• Protozoal infections vs. no infections 
• Helminth infections vs. no infections 

Time on ART • ART-naïve 
• >0 to 3 months ART 
• >3 months to 6 months 
• >6 to 12 months ART 
• >12 to 24 months ART 
• >24 months ART 

CD4+ cells/mcL at study 
enrollment 

• <100 cells/mcL 
• 100 to <200 cells/mcL 
• 200 to <350 cells/mcL 
• 350 to <500 cells/mcL 
• ≥500 cells/mcL 

 

Cross-Sectional Diversity Analyses 

We evaluated the relationship between α-diversity metrics (number of observed 

species, phylogenetic diversity, Chao1, Shannon-Weaver diversity) and clinical 
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characteristics (CD4+ T cells/mcL, time on ART at enrollment, parasitic infection) via 

univariable and age-adjusted analyses-of-variance (ANOVA). Continuous diversity 

metrics were the dependent variables in these analyses. CD4+ T cells were analyzed as 

continuous and categorical variables. For categorical CD4+ analyses, when ANOVA 

indicated a significant overall relationship between the alpha diversity and categorical 

CD4+ concentrations, Tukey-Kramer pairwise comparisons further explored the 

relationship. Kruskal-Wallis non-parametric tests evaluated the correlation between 

Simpson diversity, which is not-normally distributed, and clinical characteristics. These 

relationships were evaluated against a 5% Type I error rate, with no FDR adjustment. 

We also visually examined community composition across different levels of 

clinical characteristics, e.g. <100 CD4+ T cells/mcL versus ≥100 CD4+ T cells/mcL, via 

beta diversity measures, which function as an assessment of similarity between 

populations.§ β-diversity was calculated via weighted and unweighted “unique fraction”, 

or unifrac, methods.179-181 As summarized by Lozupone et al. “unifrac measures the 

phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the 

branch length of the tree that leads to descendants from either one environment or the 

other, but not both.”180 For example, two samples with completely unique phylogenetic 

trees would have a unifrac β-diversity score of one. Conversely, completely identical 

specimens would have a unifrac β-diversity score of zero. Unweighted unifrac only 

accounts for the presence or absence of bacterial species, and will give more weight to 

                                                 
§ Morgan et al. (doi: 10.1371/journal.pcbi.1002808) offer a helpful contrast of alpha and beta diversity: 
“Additionally, when comparing multiple populations, beta diversity measures including absolute or relative 
overlap describe how many taxa are shared between them. An alpha diversity measure thus acts like a 
summary statistic of a single population, while a beta diversity measure acts like a similarity score between 
populations, allowing analysis by sample clustering or, again, by dimensionality reductions such as PCA.” 
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less common species, relative to weighted unifrac. Weighted unifrac accounts for the 

contribution of each bacterial species to the sample composition by its abundance. 

The unifrac measure was calculated for pairwise sample combinations, and used 

to create distance matrices for the entire cohort. These matrices were visually assessed for 

within-clinical characteristic similarity, i.e. clustering, via principal coordinates analysis 

(PCoA) across parasitic infection; time on ART; and CD4+ cells/mcL at study enrollment 

categories. PCoA is a multivariate ordination technique that generates uncorrelated axes, 

which describe sources of variability in the data via eigenvalues and % variation 

explained. Participant-level data are plotted against these axes, and the relationships 

between characteristics are visually assessed.178 Permutational multivariate analysis of 

variance (PERMANOVA) was also used to quantify differences in weighted unifrac 

distance matrices by clinical characteristic categories.164,168,181 Pseudo-F-test statistic p-

values from 1,000 PERMANOVA permutations were evaluated against unadjusted Type 

I error rate of 5%. The % variation explained from weighted unifrac beta-diversity 

matrices were 31.2% (PC1), 10.1% (PC2), and 7.8% (PC3). Unweighted unifrac beta-

diversity matrices were excluded from PERMANOVA analyses, due to their low 

eigenvector values and % variation explained (PC1 = 8.9%; PC2 = 4.3%; PC3 = 3.4%).  

Cross-sectional Analyses 

We qualitatively examined the abundance of particular taxa that are 

characteristically associated with an HIV-associated loss in microbial diversity, namely 

the phyla Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes.150 Kruskal-Wallis 

equality-of-populations rank tests correlated individual genera with clinical parameters 

(e.g. parasitic infection, time on ART, CD4+ cells/mcL at study enrollment, as described 
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above). Taxa that were identified in <5% of participants were not considered in analyses. 

P-values for each outcome were adjusted for multiple comparisons via the Benjamini–

Hochberg technique, or FDR.182 

Longitudinal Analyses 

Longitudinal analyses explored the relationship between alpha diversity and 

specific genera and 12-month CD4+ T cell recovery among participants with more than 1 

CD4+ measurement (n=84). Restricted maximum likelihood estimation linear mixed 

models using unstructured covariance matrices, included participant-specific random 

intercepts and random effects for time, and an interaction term for time from enrollment 

and the genus-level operational taxonomic unit or diversity metric. These models 

adjusted for potential confounders of time on ART at enrollment and age. Statistical 

analyses were conducted in Stata/SE 14.2 (StataCorp LP, College Station, TX, USA), and 

tests were conducted using an overall alpha level of 0.05. P-values for each outcome were 

adjusted for multiple comparisons via the Benjamini–Hochberg technique as described 

above.182 

 

4.4 Results 

 We enrolled 202 study participants of whom 181 (90%) had specimens available 

for sequencing. Of 181 samples, 6 had <5,000 reads and were excluded from analyses. 

Thus, data from 175 participants were included in analyses. These samples had a median 

of 46,515 sequences (min. 17,058, max. 149,393). Among these 175 participants, 121 

(69%) were women. The median age was 35 (interquartile range (IQR): 30-41) years. At 

time of study entry, the median CD4 count was 379 (IQR: 252, 454) cells/mcL, with 38 
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(22%) having <200 CD4+ T cells/mcL, and 8 (5%) having <100 CD4+ T cells/mcL. 

Overall, 156 (89.1%) were receiving ART, and for a median duration of 15 (IQR: 5, 29) 

months. Trimethoprim-sulfamethoxazole (cotrimoxazole) primary prophylaxis was used 

by 174 (99.4%) participants, with the remaining participant receiving dapsone 

prophylaxis. Overall, 63 (36.0%) participants had stool parasites identified by PCR, with 

hookworm species Necator americanus being the most common (50/175, 28.6%), 

followed by Giardia intestinalis (12/175, 6.9%). 

Fecal microbiome composition among these subjects demonstrated a 

predominance of Bacteroidetes and Firmicutes, which collectively accounted for a 

median relative abundance of 86.6%. The median relative abundance of Bacteroidetes in 

this cohort was 47.9% (IQR: 36.3, 59.2), the median for Firmicutes was 38.7% (IQR: 

28.2%, 48.3%), and 0.8% (IQR: 0.2%, 2.5%) for Proteobacteria. In this population, 

86.9% of participants exhibited no Fusobacteria, and the maximum relative abundance 

was 1.1%. 

Diversity analyses 

Of the clinical factors examined for their association with alpha diversity, only 

CD4 T+ cell count was associated with differences in within participant community 

richness (observed species and phylogenetic tree, Chao1 alpha diversity metrics) (Table 

7; Figure 2). No differences in Shannon and Simpson diversity were observed across 

CD4+ cell categories. The differences in alpha diversity were largely driven by 

differences between participants with <100 CD4+ T cells/mcL (n=8), who had markedly 

lower alpha diversity scores by the observed species, phylogenetic tree, and Chao1 

metrics than participants with ≥100 CD4+ cells/mcL (Table 7). We observed no 
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association between weighted or unweighted beta diversity and participant 

characteristics, e.g. CD4+ T cell concentrations, time on ART, or parasitic infection 

status, as assessed visually or via PERMANOVA. PERMANOVA pseudo-F-test 

statistics and p-values are shown in Table 8. Weighted unifrac beta diversity PCoA plots 

are shown in Figure 3. 



 

56 
 

Table 7: Fecal Microbiome α-diversity stratified by CD4+ T cells/mcL 
 <100 CD4 

cells/mcL (n=8) 
100 - 199 CD4 

cells/mcL (n=30) 
200 - 349 CD4 

cells/mcL (n=34) 
350 - 499 

CD4/mcL (n=80) 
≥500 CD4 

cells/mcL (n=23) p-value 

Observed species, 
mean (SEM)a 349.3 (29.3) 475.5 (24.4) 498.8 (20.6) 473.9 (14.7) 498.9 (26.4) 0.03* 

Whole tree 
Phylogenetic Diversity, 

mean (SEM)b 
25.3 (1.8) 32.6 (1.2) 34.4 (1.1) 32.8 (0.8) 34.1 (1.4) 0.02* 

Chao1, mean (SEM)c 571.5 (45.1) 765.6 (38.4) 798.9 (31.2) 755.3 (23.2) 800.5 (39.8) 0.03* 
Shannon, mean (SEM) 4.56 (0.2) 5.2 (0.1) 5.3 (0.1) 5.0 (0.1) 5.0 (0.2) 0.21* 

Simpson, median 
(25th% – 75th%)  0.89 (0.85-0.93) 0.92 (0.88-0.95) 0.93 (0.89-0.95) 0.92 (0.87-0.95) 0.90 (0.83-0.95) 0.34** 

a Tukey-Kramer pairwise comparisons critical value: <100 CD4 cells/mcL vs. 100-349 CD4 cells/mcL= 4.1; <100 CD4 cells/mcL vs. 
>349 CD4 cells/mcL=4.0; 100-349 cells/mcL vs >349 cells/mcL= 0.5897 versus a critical value (0.05, 3, 170) = 3.34. 
b Tukey-Kramer pairwise comparisons critical value: <100 CD4 cells/mcL vs. 100-349 CD4 cells/mcL= 4.5; <100 CD4 cells/mcL vs. 
>349 CD4 cells/mcL=4.3; 100-349 cells/mcL vs >349 cells/mcL= 0.61 versus a critical value (0.05, 3, 170) = 3.34. 
c Tukey-Kramer pairwise comparisons critical value: <100 CD4 cells/mcL vs. 100-349 CD4 cells/mcL= 4.1; <100 CD4 cells/mcL vs. 
>349 CD4 cells/mcL=3.8; 100-349 cells/mcL vs >349 cells/mcL= 0.81 versus a critical value (0.05, 3, 170) = 3.34. 
*ANOVA F-test p-value, adjusted for time on ART and age 

**Kruskal-Wallis equality-of-populations rank test  
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Figure 2: Rarefaction Plots of A) Chao1 alpha diversity (left); B) Whole Tree Phylogenetic Diversity (right) by CD4+ T cells/mcL 
category. 

Participants with <100 CD4+ T cells/mcL (n=8) demonstrated relative reductions in alpha diversity as measured by the Chao1 and 
phylogenetic tree metrics, i.e. they demonstrated reductions in the richness and diversity of bacterial species relative to participants 
with ≥100 CD4+ T cells/mcL (n=167). 
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Figure 3: Weighted unifrac beta diversity plots of A) time on ART and B) CD4+ 

cells/mcL among 175 HIV-infected Ugandans. 

No clustering of samples, i.e. no distinct bacterial communities, as classified by beta 

diversity, is observed by time on ART or clinically CD4+ T cells/mcL. 
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Table 8: Pseudo-F-test statistics and p-values for 
PERMANOVA analyses of fecal microbiome diversity 
by clinical characteristics. 
Clinical Characteristic Pseudo-F-

test statistic 
p-value 

<100 CD4+ cells/mcL vs. 
≥100 CD4+ cells/mcL 

0.4914 0.822 

CD4+ T cell concentrations 
<100 cells/mcL 
100 to <200 cells/mcL 
200 to <350 cells/mcL 
350 to <500 cells/mcL 
≥500 cells/mcL  

1.1949 0.228 

Time on ART 
ART-naïve 
>0 to 3 months ART 
>3 months to 6 months 
>6 to 12 months ART 
>12 to 24 months ART 
>24 months ART 

1.4119 0.087 

ART-initiated vs. ART-
naïve 

0.3459 0.954 

Protozoa or helminth 
infection vs. no protozoa or 
helminth infection 

0.9381 0.429 

Hookworm infection vs. no 
hookworm infection 

1.0669 0.361 

Protozoa infection vs. no 
protozoa infection 

0.7714 0.531 
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Baseline microbiome composition analyses 

 Cross-sectional analyses of the relative abundance of individual genera across 

clinical characteristics of CD4+ T cells, time on ART, and parasitic infection yielded no 

statistically significant correlations after adjustment for multiple comparisons, with one 

exception. We did observe an inverse relationship between the Anaerococcus genus and 

CD4+ T cells/mcL (Spearman correlation -0.3207; p-value=0.0000152 (Figure 4).  

 

 

Figure 4: Distribution of CD4+ T Cells relative to Anaerococcus genus relative 

abundance at study enrollment. 

 

Results of analyses of other common genera that had p-values <0.01 are presented in 

Table 9. 

Spearman corr =  -0.321; p=1.52E-05
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Table 9: Selected results (p<0.01) from genera-level operational taxonomic unit baseline analyses. 

Genera Direction* p-value 
B-H p-
value† 

Hookworm infection 
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae H+↓ 0.002488 0.000179 
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Faecalibacterium H+↓ 0.0082 0.000357 
p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Bulleidia H+↑ 0.009417 0.000536 
Continuous CD4+ T cells/mcL 
p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__Anaerococcus CD4↑  ↓ 1.52E-05 0.000179 
p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae] CD4↑  ↓ 0.00142 0.000357 
p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__Finegoldia CD4↑  ↓ 0.003105 0.000536 
p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyro
monas 

CD4↑  ↓ 0.006863 0.000714 

p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__[Paraprevotellaceae];g__Paraprevo
tella 

CD4↑  ↑ 0.008509 0.000893 

Helminth infection 
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae H+↓ 0.005596 0.000179 
p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Bulleidia H+↑ 0.009058 0.000357 
Protozoa infection 
p__Actinobacteria; unspecified family, genus P+↓ 0.006154 0.000179 
Giardia intestinalis infection 
p__Actinobacteria; unspecified family, genus P+↓ 0.006388 0.000179 

*Direction of bacterial relative abundance in the presence of either hookworm (H), protozoa (P) or CD4+ T cells/mcL. 
†Benjamini-Hochberg adjusted comparison P-values.182
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Longitudinal analysis – baseline composition and CD4+ T cell/mcL 

All participants had a baseline CD4+ cell concentration, and 84 (48%) had one 

follow-up CD4+ T cell measurement, 11 (6%) had 2 follow-up CD4 measurements, and 

one participant had three follow-up CD4+ T cell measurements in the 12-months post 

enrollment. Data on the reason for CD4+ T cell assessments in the 12-months post-follow 

up are unknown, although standard clinical practice at the time dictated a CD4+ T cell 

assessment every 6 months. Results of age-, weight-, and time on ART-adjusted 

hierarchical models indicated that two operational taxonomic units, both Proteobacteria, 

were correlated with relative increases in CD4+ T cell concentrations over time in age, 

weight and time on ART-adjusted models: Sutterella (βrelative abundance*time: 38.4 cells/mcL 

95%CI: 19.4, 57.5; p-value<0.001) and an unclassified genus of the Alcaligenaceae 

family (βrelative abundance*time: 36.5 cells/mcL, 95%CI: 17.9, 55.2; p-value<0.001). Beta 

coefficients from models with statistically significant interactions between genera and 

time were used to generate visual representations of the change in CD4+ T cells over 

time by percentage relative distribution (0%, 0.5%, 1%) of the two genera listed above, 

using mean cohort values for age (34.5 years), weight (75.9 kgs), and time on ART (1.6 

years) (Figure 5). 
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Figure 5: CD4+ T cell predictions from linear mixed model estimates at varying 
levels relative abundadnce of genus Sutterella and f. Alcaligenaceae, unspecified 
genus. 
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4.5 Discussion 

Alpha diversity in this cohort of Ugandan adults with HIV was similar across 

most clinically significant levels of CD4+ T cell/concentrations, apart from persons living 

with AIDS and <100 CD4+ T cells/mcL. Severely immunocompromised participants 

demonstrated decreased overall bacterial community diversity, relative to their peers, 

even after adjusting for participant age. We found an inverse correlation between the 

relative CD4+ T cell concentrations and Anaerococcus, but no other baseline clinical 

factors were associated with differential distribution of taxa after correction for multiple 

comparisons. We also that found two taxa – Sutterella and an unspecified genus of the 

Alcaligenaceae family – were positively associated with increases in CD4+ T cell 

trajectory over the 12-months post-study enrollment.  

Monaco et al. compared the fecal microbiome of 40 HIV-negative participants, 42 

HIV-infected and ART-naïve participants, and 40 HIV-infected participants who had 

been receiving ART for a median duration of 7 years (interquartile range (IQR): 6.4 to 

7.5).164 They, too, demonstrated that the fecal microbiome composition of participants 

became less phylogenetically diverse with decreasing CD4+ T cell counts, and that 

specific bacteria, including inflammation-associated Enterobacteriaceae, became more 

abundant with decreasing CD4+ T cell counts. Second, Nowak et al. examined the rectal 

microbiota of 41 HIV-infected and untreated, 34 HIV-infected and receiving ART, and 

55 HIV-uninfected men who have sex with men in Nigeria.165 Their findings indicated 

that HIV infection itself did not alter the rectal microbiome, relative to their uninfected 

peers, but that treatment for HIV was associated with a shift towards a predominance of 

pathogenic bacteria. 
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A study evaluating the gut microbiome of healthy Ugandan controls found 

similarly high mean relative abundance of Bacteroidetes (47.4%; Standard 

Deviation=3.8%) and Firmicutes (41.0%; Standard Deviation=2.8%), similar to the 

present cohort.183 We also confirm what has been observed in other cohorts, both 

African164,165 and Western,150,184 with respect to alpha diversity, which demonstrate lower 

within-community diversity and richness as immune function decreases – albeit only at 

the extremely low end of the immunologic spectrum here and in Monaco et al. However, 

as demonstrated in Nowak et al. these effects may be related to ART and cotrimoxazole 

therapy.165 An increase in the potentially pathogenic Anaerococcus was correlated with 

HIV therapy in Nowak et al. Additionally, the presence or increases of Anaerococcus in 

semen has been linked to low sperm quality,185 non-alcoholic fatty liver disease,186 and it 

has been found in the vaginal fluid of HIV-infected women with bacterial vaginosis, 

whereas not in their HIV-uninfected peers.187 

In Cameroon, Entamoeba protozoal infections were predictive of having a 

microbiome profile associated with autoimmune disorders.168 Conversely, a cohort from 

Côte d’Ivoire demonstrated that Entamoeba or Blastocystis hominis colonization was 

associated with a higher ratio of Faecalibacterium prausnitzii to Escherichia coli, 

suggestive of community balance.169 Another protozoal infection, giardiasis, was 

associated with gut flora dysbiosis in this cohort.169 Helminth infection has been 

postulated to promote reductions in inflammation through their interaction with the gut 

microbiota.170 This assertion is supported by at least two studies.167,171 Lee et al. observed 

greater species diversity and higher relative abundance of Paraprevotellaceae operational 

taxonomic units amongst Malaysians infected with helminth species, in particular 
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Trichuris infection.171 Cantacessi et al.’s study of experimental hookworm infection 

found that hookworms induced small increases in alpha diversity, but neither differences 

in overall community structure nor differences in the distribution of relative abundance of 

individual taxa were observed.167 Our results diverge slightly from past studies, which 

could be attributable to multiple factors – including the general limitations of the study 

discussed below. It could also be due to the light infections that we observed in this 

cohort. 

Sutterella – and generally an overabundance thereof – has been associated with a 

variety of disorders, from inflammatory188,189 to Down’s syndrome190 to autism spectrum 

disorders,191 yet Sutterella has not been previously linked to immune status. A recent 

paper, however, has identified Sutterella as a potential commensal and immunomodulator 

that does not significantly disrupt the epithelial homeostasis critical to inflammation 

control.192 This provides a more intuitive biological basis for the relationship between 

increasing relative abundance of this taxa and immune recovery observed here.  

Nevertheless, this observation must be confirmed in future cohorts. 

Additionally, the Alcaligenaceae family has been identified as a commensal 

bacterial family of the gut associated lymphatic tissues, a critical area for HIV 

infection.154 As part of normal biological mechanisms to promote epithelial homeostasis, 

this taxon is normally contained to the underlying gut-associated lymphoid tissues, and 

the presence of Alcaligenaceae elsewhere may be pro-inflammatory in nature.193 Thus, 

the association observed here with increasing CD4 over time may be indicative of a 

particularly robust Alcaligenaceae community in the gut associated lymphatic tissues, 
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despite displacement related to damage to gut associated lymphatic tissues. This 

relationship should also be investigated in future cohorts. 

 This study diverges from the one prior study evaluating the gut microbiome of 

Ugandans living with HIV, which has a similar purpose as the present study, in that 

Monaco et al. performed their analysis at the species level. This may have led to a higher 

number of individual species-specific relationships being elucidated as statistically 

significant,164 despite the potential for misclassification at the species level.194,195 For 

example, Enterobacteria-associated operational taxonomic units were associated with 

<200 CD4+ T cells/mcL versus those participants not infected with HIV, as well as those 

not receiving ART. 

Both Nowak et al. and Monaco et al. note that cotrimoxazole primary prophylaxis 

may contribute to the decreased diversity in microbial communities observed in persons 

who have initiated HIV therapy, similarly driving the results seen herein with respect to 

similar levels of within-in participant diversity and abundance across many levels of 

CD4+ T cell concentrations. Given our knowledge of the importance of the gut 

microbiome’s impact on human health and inflammation, the relationship between long-

term cotrimoxazole use, its impact on the bacterial composition of the gut deserves new 

scrutiny in the era of widely available HIV chemotherapy. 

While this is a relatively large cohort, the limitations of this study include the lack 

of a direct comparison group of HIV-uninfected persons from the same region and 

background. Given the variation in dietary and regional impacts on the microbiome,196,197 

it would be valuable to compare relative abundances in Uganda across HIV-infected and 

uninfected people. However, in comparing to Monaco et al. it is at least possible to view 
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some similarities in some alpha diversity metrics (~700 Chao1 score and ~22 in 

phylogenetic diversity at 5,000 sequence depth for HIV-negative and CD4>200 

participants), although the different mechanisms by which these values were calculated 

may render this comparison less informative. It would also have been valuable to 

correlate soluble CD14 and other pro-inflammatory markers to support our findings, as 

well as additional stool samples over time within this population to support longitudinal 

findings. While most the CD4+ T cell concentrations in this cohort are with the healthy 

range, additional data related to reasons for CD4 blood would have been valuable, to help 

account for potential confounding by indication. Furthermore, and perhaps most 

importantly, we were unable to ascertain nutritional status (or dietary patterns) in these 

patients. It is possible that the results that we see here – and particularly the relationship 

between Anaerococcus198 and CD4+ cells/mcL is confounded by nutritional status, which 

is driving CD4 depletion and bacterial community composition. It is also possible that 

while unique species are driving clinical and biological processes, the decision to analyze 

at the genera level may have diluted the effect of some of these distinct species. 

However, normally genera-level analyses are preferred due to the assumption that 

grouping taxonomically and therefore functionally similar bacteria will increase power as 

well as the effect, if any. It is also possible that the multiple freeze-thaw cycles 

contributed to overgrowth of one species versus others, so that the sample failed to 

accurately represent the gut environment, essentially leading to misclassification of either 

exposure or outcome.  

The data presented herein represent the largest cohort of HIV-infected adults from 

Sub-Saharan Africa to participate in research on the gut microbiome, its composition, and 
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the relationship between that composition and clinical correlates. Genetic regional 

differences notwithstanding, these participants are largely generalizable to other HIV-

infected persons seeking care across Uganda. These data also provide some exploratory 

pathways for future investigation of how the gut microbiome composition may impact 

CD4+ T cell immune recovery while receiving ART, which is novel for this population. 

Furthermore, while patterns have emerged internationally in terms of gut profile and 

inflammation, given the links between gut microbiome composition, microbial 

translocation, and subsequent inflammation in people living with HIV,7,152,159,184,199 

further research with an eye towards interventions and specific to Sub-Saharan African 

populations is required.
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5. Aim III. Impact of anthelmintic therapy for invasive helminth infection on 

microbial translocation, inflammation, and immune response among Ugandans 

living with HIV: a randomized proof of concept study 

 

5.1 Aim Summary 

Background: Microbial translocation is considered a major driver of chronic immune 

activation, which is responsible for HIV disease progression. Invasive parasitic gut 

nematodes also induce microbial translocation. We evaluated the impact of albendazole 

anthelmintic therapy on serum markers of microbial translocation and inflammation 

among concurrently helminth- and HIV-infected Ugandans. 

Methods: Participants were randomized to immediate or delayed 1200mg albendazole 

therapy, and followed for 1 month. Baseline stool analysis determined parasitic infection 

prevalence. Baseline and follow-up blood draws evaluated soluble CD14 (sCD14), C-

reactive protein (CRP), and 10 pro-inflammatory cytokines. Parametric and non-

parametric tests examined the change in biomarker concentrations over time and across 

randomization arms. 

Results: We randomized 224 HIV-infected, antiretroviral therapy (ART)-experienced 

adults in Mbale, Uganda. 24 (10.7%) participants were infected with either Necator 

americanus or Strongyloides stercoralis, 12 in the immediate albendazole arm, and 12 in 

the delayed albendazole arm. We observed increased concentrations of CRP, interleukin 

(IL)-4, IL-6, IL-10, and tumor necrosis factor (TNF)-α among persons with current 

helminth infection relative to uninfected participants at baseline. Participants in the 
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immediate therapy arm had higher sCD14 concentrations at follow-up relative to 

participants in the delayed arm. We did not observe effects of anthelmintic therapy on 

any other biomarker concentrations among helminth-infected participants. 

Conclusion: Increases in sCD14 post-anthelmintic therapy in this cohort require further 

investigation in larger cohorts and for longer follow-up durations. However, 

incorporating anthelmintic therapy into regular adult HIV care may provide subtle health 

benefits in this potentially vulnerable population.  
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5.2 Background 

Continuous CD4+ T cell depletion and subsequent impairment of immune 

function is the primary causal mechanism behind HIV-related morbidity and mortality.200 

While treatment with antiretroviral therapy (ART) significantly improves quality of life 

and life expectancy, CD4+ T cell concentrations never fully recover from the impacts of 

HIV infection. This progressive CD4+ T cell depletion, while the product of complex and 

multifactorial biological processes, is predominantly thought to be caused by 

programmed cell death, in the forms of pyroptosis6 and apoptosis, which is exacerbated 

by immune activation.201  

Heightened and chronic immune activation is a hallmark of the chronic stage of 

HIV infection, predictive of HIV progression and negative health outcomes,202,203 and can 

often persist in HIV-infected persons despite viral suppression.4,201 Microbial 

translocation, the process by which microbes normally sequestered in the gut lumen, 

traverse the gut epithelial barrier and enter host circulation via the immune cell-rich 

lamina propria,7 is considered a major driver of chronic immune activation. Early in HIV 

infection, even prior to seroconversion, high levels of viral replication and CD4+ T cell 

depletion in gut-associated lymphatic tissues are correlated with dysregulation of 

epithelial barrier maintenance gene expression related to epithelial barrier maintenance, 

and increased transcription of immune activation-, inflammation-, and apoptosis-

associated genes.204 These processes induce damage to the gut epithelial barrier, and in 

turn allows for sustained high levels of microbial translocation.5,205 Microbial 

translocation markers, lipopolysaccharide (LPS)199 and soluble CD14 (sCD14),206 have 

been independently linked to accelerated HIV disease progression and increased 
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mortality, respectively. LPS is a Gram-negative bacteria cell wall component; and sCD14 

is a marker of actual monocyte activation in response to LPS, and correlated with LPS 

concentrations.7 

Invasive soil transmitted helminths, i.e. those that burrow into the gut mucosa, 

such as hookworm species, Strongyloides stercoralis, and Trichuris trichiura, also 

damage the gut epithelial layer and contribute to microbial translocation.121,207-209 To 

date, only two studies in humans have investigated the relationship between these 

invasive soil-transmitted helminths, microbial translocation, and pro-inflammatory 

responses.121,207 George et al. found that hookworm infection was associated with 

increases in concentrations of microbial translocation markers LPS and sCD14, and 

increases in the anti-inflammatory cytokine interleukin (IL)-10.121 A study investigating 

the change in microbial translocation biomarkers, acute-phase proteins, and inflammatory 

biomarkers after treatment for S. stercoralis observed decreases in all of these markers 

post-therapy, suggesting that infection was associated with a pro-inflammatory immune 

response.207 

However, even while helminths cause damage to the gut mucosa and are 

associated with increases in microbial translocation marker concentrations, these highly 

potent immunomodulators210,211 have been shown to simultaneously downregulate the 

expression of pro-inflammatory cytokines, which could off-set any deleterious effects of 

increases in LPS and sCD14.96,115,212 Indeed, the same study by George et al. also found 

no difference in tumor necrosis factor (TNF)-α or type-I T helper cell (Th1) response 

cytokines interferon (IFN)-γ or IL-12 concentrations between hookworm-infected and 

hookworm-uninfected persons.121 Furthermore, concentrations of the pro-inflammatory 
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cytokine IL-17 were decreased in hookworm-infected relative to their hookworm-

uninfected peers.121 Should helminth infection increase concentrations of microbial 

translocation biomarkers, the extent to which anti-inflammatory immune responses 

mitigate the adverse immune activating effects of helminth infection among people living 

with HIV is unknown. 

To date, two human studies have addressed the mutual effects of parasitic 

infection and microbial translocation, with varied results.121,207 Furthermore, the 

relationship between helminths and microbial translocation has not been examined in 

humans living with HIV, who demonstrate differential responses to immune challenges 

as a hallmark of their disease. Finally, this relationship has not been evaluated in a setting 

where intestinal helminth and HIV co-infection is highly prevalent, such as Sub-Saharan 

Africa.42,213 

This randomized trial examines the short-term impact of one-time anthelmintic 

treatment on microbial translocation and inflammatory processes in the HIV- and 

helminth-infected human host. Our primary hypothesis is that helminth-infected 

participants receiving immediate anthelmintic therapy will have decreased circulating 

concentrations of microbial translocation marker, soluble CD14 (sCD14) and non-

specific pro-inflammatory biomarker, C-reactive protein (CRP), relative to participants in 

the delayed therapy arm at 1-month of follow-up. We also hypothesize that 

concentrations of pro-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-10, IL-

12, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8, tumor necrosis factor (TNF)-α will be higher 

among helminth-infected participants randomized to immediate therapy at 1-month 

follow-up, relative to helminth-infected participants randomized to the delayed. This 
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second hypothesis is premised on the idea that helminths exert a dampening effect on 

inflammatory processes, and that helminth infection has some protective – and therefore 

beneficial – properties against inflammation. Enrolled participants were randomized to 

either immediate (same day as enrollment) or delayed (at the three-month visit) receipt of 

albendazole therapy at a 1:1 ratio. 

 

5.3 Methods 

5.3.1. Ethics Statement 
Written informed consent was provided by all participants. The AIDS Support 

Organisation (TASO), University of Minnesota, and the Uganda National Council of 

Science and Technology institutional review boards approved this protocol. All 

participants received albendazole at least once during the trial. No clinically indicated 

albendazole or other deworming medication was withheld from participants. 

5.3.2 Study participants and study design 
From June 2015 through September 2015, we screened outpatients at The AIDS 

Support Organisation (TASO)’s HIV care clinic in Mbale, Uganda for study 

participation. Demographic data and biological samples (stool and blood) were collected 

at the patient’s regular outpatient ART clinic, at study enrollment, 4-weeks, and 12-

weeks post-enrollment. However, only baseline and 4-week samples were considered in 

these analyses. Parasitic infection status was unknown at randomization. Albendazole 

was administered as a 1200mg cumulative dose over 3 days, with the first dose (400mg) 

received in clinic as directly observed therapy. No placebo was administered during the 

trial. The study design is illustrated in Figure 6.
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Figure 6: Diagram of enrollment and visit flow for a randomized control trial of immediate versus delayed albendazole among HIV- 
and helminth-infected Ugandans 
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Study inclusion criteria were age ≥18 years, known HIV-infection, as determined 

by Ministry of Health HIV testing algorithm, and receipt of ≥3 months of antiretroviral 

therapy (ART). Participants were excluded if they had received albendazole or similar 

anthelmintic treatment in the past 4 weeks, demonstrated allergies or other 

contraindications to albendazole, were experiencing any unresolved opportunistic 

infections including tuberculosis; were pregnant; or were unable to provide informed 

consent. 

 

5.3.3 Clinical Evaluation 
Participants were evaluated at enrollment for World Health Organization HIV 

clinical stage, which includes opportunistic infection screening, by a study clinical 

officer. This classification is detailed in Appendix 4. They were screened for new 

infections at each study visit thereafter. The clinical officer reviewed the participant chart 

for HIV diagnosis date, trimethoprim-sulfamethoxazole (cotrimoxazole) or dapsone 

primary prophylaxis initiation date, ART initiation date and current regimen, and any 

history of tuberculosis. Body mass index (BMI; kg/m2) and ART adherence (pill counts) 

were evaluated by the clinical officer at each visit. During follow-up visits, participants 

were asked if they had received anthelmintic chemotherapy in the interim since the last 

visit, to gauge any deviations from the randomization arm interventions. Finally, 

symptoms of possible gastrointestinal parasite/helminth infections were assessed at each 

visit, including: diarrhea, bloating, stomach pain, weakness, lethargy, and blood in stool. 
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5.3.4 Parasitologic evaluation 
A single self-collected stool sample was collected in the clinic at baseline and 

each follow-up visit in a polypropylene collection container (Globe Scientific, Paramus, 

New Jersey) and stored in this same container for a maximum of 2 hours at room 

temperature before freezing at -20 °C. Samples were moved to -80 °C storage for up to 3 

months before assessing helminth infection via molecular methods. Low-reaction volume 

multi-parallel real-time polymerase chain-reaction (PCR) was used to determine presence 

or absence of infection with soil transmitted helminth species Necator americanus and 

Ancylostoma duodenale (hookworm species), Ascaris lumbricoides, Trichuris trichiura, 

and Strongyloides stercoralis per previously described methods.42,103 Species-specific 

primer and FAM-labeled minor groove binder probe sequences are listed in Appendix 5. 

All unknown samples were tested in duplicate, and samples with cycle threshold (Ct) 

values >38 were considered negative. Helminth infection at baseline was determined after 

randomization. 

 

5.3.5 Evaluation of microbial translocation and pro-inflammatory biomarkers 

We measured microbial translocation marker sCD14 concentrations in serum 

samples via ELISA assay (Human sCD14 Quantikine ELISA kit, R&D Systems, 

Minneapolis, MN) per the manufacturer’s instructions at a dilution factor of 1000. The 

minimum detectable dose of human sCD14 is 0.000125 µg/mL. C-reactive protein (CRP) 

concentrations were measured via V-PLEX assay (V-PLEX Human CRP Kit, K151STD-

1, Meso Scale Diagnostics, Rockville, MD) per the manufacturer’s instruction. Serum 

concentrations of 10 pro-inflammatory human cytokines – interferon (IFN)-γ, interleukin 

(IL)-10, IL-12, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8, tumor necrosis factor (TNF)-α – were 
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also measured via V-PLEX assay (V-PLEX Human Proinflammatory Panel, K15049D-1, 

Meso Scale Diagnostics, Rockville, MD), per the manufacturer’s instructions. Serum 

biomarkers concentrations were evaluated at enrollment and 1-month follow-up. 

Evaluation of biomarkers at 1-month follow-up was chosen because changes in 

biomarker values if any were likely able to be observed post-therapy,214-217 and re-

infection risk is minimized in this uncontrolled and endemic setting.53 Biomarker 

concentrations at additional time points may be explored at a later date. 

 

5.3.6 Statistical Analyses 

Given that our primary hypothesis was to measure the impact of anthelmintic 

therapy on inflammation and microbial translocation among participants with known 

parasitic infection, participants who tested negative for all five species in question were 

excluded from the primary analyses. From the enrollment stool assessment, 24 

participants were infected with ≥1 helminth species (12 in the immediate and 12 in the 

delayed arm). Two of these participants (delayed arm) were lost-to-follow-up before the 

1-month visit. To evaluate change over time across arms, t-tests of the difference in 

baseline and 1-month follow-up biomarker concentrations were performed, with unequal 

variances as needed (IFN-γ, IL-1β, IL-2, IL-6, IL-8, IL-10, IL-13).218 

Given the unexpectedly low observed helminth prevalence (~10% instead of the 

expected 30%), we also analyzed these data via non-parametric tests. Specifically, we 

evaluated non-transformed biomarker concentrations across randomization arms at 1-

month follow-up via Monte Carlo permutation tests.219 The z statistic from the observed 

data was compared against permutation distribution of z statistics from the randomly 
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permuted data (n=10,000), and p-values (and 95%CI) were calculated from the number of 

time that that observed z statistic was as or more extreme than the permuted z statistic. 

These analyses were performed in Stata/SE 14.2 (StataCorp, College Station, TX, USA) 

using the “permute” command. 

Due to a possible imbalance in duration of ART across arms, we elected to 

perform a posteriori CD4+ T cell-adjusted linear regression on the differences in 

biomarker concentrations over time, with a robust covariance estimator. CD4+ was 

selected instead of ART duration because CD4+ is – in part – an effect of ART duration, 

and CD4+ T cell concentrations account for potential confounders that could be related to 

time on ART, such as time from HIV diagnosis to therapy initiation, and overall immune 

status. 

As a reference, we performed the same t-tests of difference on the entire available 

cohort of 74 baseline positive and negative participants. Finally, we assessed the change 

in gastrointestinal symptom prevalence between enrollment and 1-month follow-up 

among those infected with helminths across randomization arm. All statistical analyses 

were conducted in Stata 14.2 (StataCorp, College Station, TX, USA) against an alpha 

level of 0.05. 

 

5.4 Results 

From June 2015 through September 2015, 231 people were screened for 

enrollment in the study. Five people were excluded due to insufficient duration on ART 

(n=1) or incarceration (n=4). Two declined participation. We enrolled 224, and 
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randomized 112 to the immediate albendazole intervention and 112 to delayed 

albendazole therapy (CONSORT diagram featured in Figure 7).220  

Necator americanus and Strongyloides stercoralis were the only species, of the 5 

assayed, found in this cohort (Table 10). Of the 25 (11.2%) enrolled participants who 

were found to be infected with ≥1 soil transmitted helminth species, 12 (48%) were 

randomized to immediate anthelmintic chemotherapy, and 12 (48%) were randomized to 

delayed anthelmintic chemotherapy. One person with helminth infection who was 

randomized to the delayed arm was not included in the analyses due to insufficient serum 

sample volume. Of the 199 participants who were not infected with any soil transmitted 

helminth species, 54 were randomly selected and included in secondary analyses. Of 

these 27 (50%) had been randomized at enrollment to immediate anthelmintic 

chemotherapy, and 27 (50%) to delayed anthelmintic chemotherapy. 

Participant demographics are described in Table 10, and illustrate similarities 

across randomization groups among persons infected with helminths, apart from a 

possible imbalance in duration of ART. The immediate albendazole arm had a median 

duration of 37 months of ART [IQR: 13, 64], whereas the delayed albendazole arm had a 

median duration of 15 months [IQR: 13, 32]. The median ART duration of participants in 

this cohort was 26 months [IQR: 14, 44]). Despite medium- to long-term ART use and 

reported high adherence, these participants represent the spectrum of 

immunocompetence. Median CD4+ T cells in this cohort were 409 cells/mcL (IQR: 331, 

570; min. 45; max. 1092), with no differences across helminth infection status. This 

cohort was 70.5% (55/78) female, with a median age of 42 years (IQR: 37, 51). The 

median participant body mass index (BMI) was 22.1 kg/m2 [IQR: 19.8, 24.8]. Among 
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participants with helminth infection, non-specific gastrointestinal symptoms were 

reported in 33.3% (8/24) of participants upon enrollment physical exam; bloating was 

reported most frequently (25.0%; 6/24), followed by diarrhea (12.5%; 3/24), and stomach 

pain (8.3%; 2/24). 
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Figure 7: CONSORT Diagram of randomized control trial evaluating the impact of 
immediate versus delayed 1200mg albendazole in people living with HIV in Mbale, 
Uganda 
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Table 10: Demographic Characteristics of Participants with Helminth and without 

Helminth Infection, by Randomization Arm 

 Immediate Anthelmintic 
Therapy 

Delayed Anthelmintic 
Therapy 

 Helminth 
infection 
(n=12) 

No helminth 
infection 
(n=27) 

Helminth 
infection 
(n=12) 

No helminth 
infection 
(n=27) 

 Median [IQR]  
or n (%) 

Median [IQR]  
or n (%) 

Median [IQR]  
or n (%) 

Median [IQR]  
or n (%) 

Demographic Characteristics 
Age, years 42 [36, 51] 43 [37, 52] 46 [36, 58] 42 [37, 47] 
Women, % 8 (67%) 20 (74%) 9 (75%) 18 (66.7%) 
Clinical Characteristics 
BMI (kg/cm2) 22.0 [20.2, 

23.5] 
21.4 [19.5, 

25.1] 
21.2 [19.0, 

23.9] 
23.1 [20.1, 26] 

WHO Stage 
III/IV, % 

1 (8.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

CD4+ T cells/mcL 457 [296, 563] 470 [334, 668] 447 [341, 719] 332 [186, 545] 
Months from HIV 
diagnosis 

75 [32, 105] 29 [22, 104] 58 [31, 145] 89 [24, 128] 

Months on ART 37 [13, 64] 25 [14, 44] 15 [13, 32] 28 [15, 51] 
ART adherence, 
% 

95 [95, 95] 95 [95, 95] 95 [95, 95] 95 [95, 95] 

Receiving 
cotrimoxazole 

12 (100%) 27 (100%) 12 (100%) 27 (100%) 

Current Gastrointestinal Symptoms 
≥1 symptom 4 (33%) 10 (37.0%) 4 (33%) 8 (29.6%) 
Diarrhea 2 (16.7%) 1 (3.7%) 1 (8.3%) 1 (3.7%) 
Bloating 3 (25%) 9 (33.3%) 3 (25%) 4 (14.8%) 
Stomach pain 1 (8.3%) 7 (25.9%) 1 (8.3%) 6 (22.2%) 
Weakness/Letharg
y 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Blood in stool 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Parasitic Infection± 
A. lumbricoides 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
A. duodenale 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
N. americanus 6 (50.0%) 0 (0%) 9 (81.8%) 0 (0%) 
S. stercoralis 6 (50%) 0 (0%) 5 (41.7%) 0 (0%) 
T. trichiura 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
± Overall prevalence rate was 11.2% (25/224). Two participants were infected with 
both hookworm and S. stercoralis species. One additional person listed as positive in 
the overall cohort, but not included in analyses due to lack of blood sample.  
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Results among helminth infected persons 

Among participants infected with helminths, sCD14 concentrations at baseline 

were median 1.44 µg/ml [IQR: 1.05, 2.31] overall. sCD14 was 1.31 µg/ml [IQR: 0.91, 

2.18] in helminth-infected participants randomized to immediate albendazole, and 1.76 

µg/ml [IQR: 1.16, 2.56] among helminth-infected participants randomized to delayed 

albendazole (Table 11). CRP was elevated (≥5 mg/L)221 in 58% (14/24) of this cohort. 

Among helminth-infected participants, median CRP concentrations were higher in the 

delayed albendazole arm (median 15.7 mg/L; IQR: 3.5, 111.6) than the immediate 

albendazole arm (median 11.3 mg/L; IQR: 3.5, 32.5). Cytokine concentrations were 

mostly equivalent across randomization arms (Table 11) among participants infected 

with helminths, although IL-2, IL-6, and IL-8 were slightly elevated in the immediate 

albendazole arm. 

  



 

86 
 

Table 11: Baseline Biomarker Values Across Immediate vs. 
Delayed Treatment Group among Helminth-infected Participants 
Biomarker Delayed Therapy 

(n=12) 

Immediate Therapy 

(n=12) 

 Median [IQR] Median [IQR] 

sCD14, µg/ml 1.76 [1.16, 2.56] 1.31 [0.91, 2.18] 

CRP, mg/L 15.7 [3.5, 111.6] 11.3 [3.5, 32.5] 

IFN-γ, pg/mL 4.1 [2.5, 8.4] 8.3 [3.0, 22.5] 

IL-1β, pg/mL 0.1 [0.1, 0.2] 0.1 [0.1, 0.3] 

IL-2, pg/mL 2.6 [1.5, 8.3] 4.1 [1.7, 6.7] 

IL-4, pg/mL <0.1 [<0.1, 0.1] <0.1 [<0.1, 0.1] 

IL-6, pg/mL 2.6 [1.5, 8.3] 4.1 [1.7, 6.7] 

IL-8, pg/mL 98.5 [60.6, 252.1] 144.6 [64.5, 358.3] 

IL-10, pg/mL 0.6 [0.4, 1.7] 0.6 [0.3, 0.8] 

IL-12, pg/mL 0.3 [0.1, 0.6] 0.2 [0.1, 0.5] 

IL-13, pg/mL 0.9 [0.2, 2.0] 1.1 [0.7, 1.6] 

TNF-α, pg/mL 5.4 [4.1, 12.4] 6.0 [5.0, 9.3] 
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All analyses were conducted as intention to treat. No participants reported taking 

anthelmintic medication in the period between enrollment and 1-month follow-up. Two 

participants in the delayed albendazole arm were lost to follow-up in the first month, and 

were unable to be included in tests of differences in means at one month. Serum 

biomarker concentrations by arm among helminth infected persons at follow-up are 

shown in Table 12. Results from t-tests of the difference in serum biomarker 

concentrations from baseline to 1-month follow-up across randomization arms are shown 

in Table 13. Follow-up showed higher concentrations of sCD14 at 1-month follow-up in 

immediate therapy participants versus delayed (mean difference in sCD14 increase 1.40 

µg/ml; 95% CI: -0.17, 2.98; p-value=0.08; non-parametric permutation p-value=0.05; 

95%CI: 0.05, 0.06; Table 13; Figure 8). CD4+ T cell-adjusted linear regressions 

indicated slightly pronounced effects of therapy relative to the t-test of the difference. 

CD4-adjusted linear regression indicated that the difference in sCD14 change over time 

across arms was 1.51 µg/mL (95%CI: 3.00, 0.02) higher in participants randomized to 

immediate therapy, versus those randomized to delayed therapy. Additionally, the change 

across arms for TNF-α became more extreme, with participants receiving therapy at 

baseline having 11.7 pg/mL (95%CI: -0.85, 24.3) greater change in TNF-α concentrations 

over time than those randomized to delayed therapy, despite this relationship not being 

statistically significant. No other relationships were observed. 
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Table 12: Inflammation-related biomarkers by early versus 
delayed albendazole administration helminth infected 
participants, at 1-month follow-up 

 Biomarker Concentration at 1-month 
follow-up 

Biomarker Delayed Therapy 
Arm at 1-month 

(n=10) 

Immediate Therapy 
Arm at 1-month 

(n=12) 
 Median [IQR] Median [IQR] 

sCD14, µg/ml 2.04 [0.82, 3.50] 3.45 [2.57, 4.35] 
CRP, mg/L 14.1 [2.2, 96.5] 6.34 [2.26, 40.6] 
IFN-γ, pg/mL 3.27 [2.35, 5.11] 7.46 [2.96, 11.71] 
IL-1β, pg/mL 0.93 [0.73, 1.14] 0.85 [0.25, 1.72] 
IL-2, pg/mL 0.22 [0.19, 0.48] 0.53 [0.34, 0.71] 
IL-4, pg/mL 0.03 [<0.01, 0.03] 0.03 [0.03, 0.04] 
IL-6, pg/mL 11.3 [9.4, 15.8] 10.4 [5.5, 20.0] 
IL-8, pg/mL 459.1 [353.1, 1046.7] 448.1 [193.1, 846.5] 
IL-10, pg/mL 0.57 [0.43, 3.10] 0.76 [0.57, 1.26] 
IL-12, pg/mL 0.45 [0.30, 0.61] 0.58 [0.19, 0.61] 
IL-13, pg/mL 2.06 [1.30, 2.55] 1.87 [1.30, 2.52] 
TNF-α, 
pg/mL 

1.81 [1.00, 2.04] 13.33 [10.34, 31.25] 
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Table 13: Change in biomarker concentration from enrollment to 1-month 
follow-up across arms, among participants infected with ≥1 helminth 
species 

 Mean Change Difference in Change by 
Arm 

Biomarker Delayed 
Therapy Arm 

(n=10) 

Immediate 
Therapy Arm 

(n=12) 

Paired t-test 
results 

Wilcoxon 
rank-sum 

permutation 
 Mean 

(95% CI) 
Mean 

(95% CI) 
Mean 

(95%CI) 
p-value 
(95%CI) 

sCD14, µg/ml 0.34 
(-1.12, 1.80) 

1.74 
(0.80, 2.69) 

1.40 
(-0.17, 2.98) 

0.06 
(0.05, 0.06) 

CRP, mg/L -8.9 
(-63.0, 45.3) 

7.1 
(-35.1, 49.3) 

15.9 
(-47.1, 79.1) 

0.76 
(0.75, 0.77) 

IFN-γ, pg/mL -59.2 
(-181.7, 63.3) 

14.0 
(-32.5, 60.4) 

73.1 
(-40.3, 186.6) 

0.48 
(0.47, 0.49) 

IL-1β, pg/mL 0.87 
(0.20, 1.54) 

0.74 
(-0.53, 2.01) 

-0.13 
(-1.57, 1.31) 

1.00 
(0.99, 1.00) 

IL-2, pg/mL 0.33 
(-0.03, 0.70) 

0.67 
(-0.61, 1.95) 

0.34 
(-1.02, 1.71) 

0.81 
(0.80, 0.82) 

IL-4, pg/mL -0.03 
(-0.06, <-0.01) 

-0.02 
(-0.04, 0.01) 

0.01 
(-0.02, 0.05) 

0.34 
(0.33, 0.35) 

IL-6, pg/mL 8.3 
(0.6, 16.0) 

20.0 
(-17.2, 57.2) 

11.7 
(-27.6, 51.0) 

0.81 
(0.80, 0.82) 

IL-8, pg/mL 491.3 
(115.8, 866.8) 

90.11 
(-651.3, 831.5) 

-401 
(-1236, 433) 

0.45 
(0.44, 0.46) 

IL-10, pg/mL 2.2 
(-1.5, 5.8) 

0.1 
(-0.5, 0.8) 

-2.1 
(-5.2, 1.1) 

0.52 
(0.51, 0.53) 

IL-12, pg/mL 0.06 
(-0.21, 0.32) 

0.18 
(-0.04, 0.41) 

0.12 
(-0.20, 0.45) 

0.58 
(0.57, 0.59) 

IL-13, pg/mL 1.62 
(-0.16, 3.40) 

0.55 
(-0.09, 1.19) 

-1.06 
(-2.70, 0.57) 

0.34 
(0.33, 0.35) 

TNF-α, pg/mL 3.5 
(-3.6, 10.6) 

13.5 
(3.0, 24.1) 

10.0 
(-2.5, 22.5) 

0.25 
(0.24, 0.26) 
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Figure 8: Change in soluble CD14 µg/ml by immediate versus delayed 
albendazole randomization arms among participants with helminth 
infection at baseline. 

  
● = N. americanus and S. stercoralis co-infection; ○ = N. americanus only; 
♦ = S. stercoralis only 

 

Species-specific analyses indicated that the increase in sCD14 across 

randomization arms was higher among participants who were infected with Strongyloides 

only (n=8; mean sCD14 increase 19.5 µg/ml, 95%CI: -16.7, 60.3) versus those infected 

with hookworm species (n=12; mean sCD14 increase 6.1 µg/ml, 95%CI: -5.5, 17.8), 

although these values had wide confidence intervals and were not significantly different. 

No other biomarker concentrations were different across randomization arms. 

Finally, among participants with helminth infection, there was a 28.8% (95% CI: 

8.0%, 49.6%) absolute decrease in self-reported gastrointestinal symptoms between 

enrollment and follow-up. Among participants in the delayed albendazole arm, there was 

a 23% (95%CI: -9.2, 55.8%) absolute decrease in gastrointestinal symptoms; and among 
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participants in the immediate albendazole arm, there was a 33.3% (95%: 6.7%, 60.0%) 

absolute decrease in gastrointestinal symptom prevalence. 

 

Results among helminth infected and helminth uninfected persons 

 We also examined the change in biomarker concentration over time in the entire 

available cohort (n=78; n helminth=24; n no helminth=54) by arm. Two additional 

participants were lost to follow-up in the helminth-uninfected group, resulting in 37 

participants in the immediate albendazole are, and 37 in the delayed albendazole arm. We 

found no difference in change over time across randomization arms (Table 14) when 

examining the entire cohort with available data. 
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Table 14: Change in biomarker concentration from 
enrollment to 1-month follow-up across arms, among 
helminth-infected and helminth-uninfected participants 

 Mean Change Difference 
in Change 

by Arm 
Biomarker Delayed 

Therapy Arm 
(n=37) 

Immediate 
Therapy Arm 

(n=37) 

Paired t-test 
results 

 Mean 
(95% CI) 

Mean 
(95% CI) 

Mean 
(95%CI) 

sCD14, µg/ml 0.33 
(-0.27, 0.92) 

0.87 
(0.23, 1.50) 

0.54 
(-0.32, 1.40) 

CRP, mg/L 3.2 
(-16.3, 22.6) 

-6.7 
(-23.7, 10.3) 

-9.8 
(-35.2, 15.6) 

IFN-γ, pg/mL -9.8 
(-41.3, 21.7) 

5.5 
(-8.2, 19.3) 

15.3 
(-18.5, 49.2) 

IL-1β, pg/mL 1.06 
(0.65, 1.48) 

0.90 
(0.35, 1.45) 

-0.17 
(-0.85, 0.51) 

IL-2, pg/mL 0.29 
(0.08, 0.49) 

0.43 
(0.04, 0.82) 

0.14 
(-0.29, 0.58) 

IL-4, pg/mL -0.01 
(-0.02, <-0.01) 

-0.01 
(-0.02, <-0.01) 

<0.01 
(-0.01, 0.01) 

IL-6, pg/mL 17.7 
(8.7, 26.7) 

16.4 
(3.2, 29.6) 

-1.3 
(-17.0, 14.4) 

IL-8, pg/mL 634 
(355, 913) 

363 
(62, 664) 

-271 
(-674, 133) 

IL-10, pg/mL 4.19 
(-0.25, 8.63) 

1.69 
(-0.50, 3.87) 

-2.50 
(-7.37, 2.36) 

IL-12, pg/mL 0.20 
(0.08, 0.33) 

0.24 
(0.12, 0.35) 

0.03 
(-0.13, 0.20) 

IL-13, pg/mL 1.46 
(0.81, 2.11) 

1.03 
(0.60, 1.46) 

-0.43 
(-1.20, 0.34) 

TNF-α, pg/mL 6.7 
(2.8, 10.7) 

12.7 
(6.1, 19.3) 

6.0 
(-1.6, 13.5) 
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Helminth infected versus helminth uninfected persons 

As a reference, we also examined the difference in biomarker concentrations at 

baseline between participants with and without helminth infection. Table 15 shows 

cytokine concentrations by helminth infection status, indicating relatively higher 

concentrations in CRP, IL-4, IL-6, IL-10, and TNF-α among persons with current 

helminth infection relative to uninfected participants at baseline. 

 

Table 15: Baseline biomarker values across participants with helminth 
infection versus no helminth infection 

 

Helminth uninfected persons 

 

 As a final reference point, we also summarized the change in biomarker 

concentrations over time for participants who did not receive albendazole and who were 
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not found to be infected with hookworm at baseline. These results (Table 16) indicate 

variability in biomarker concentrations over time in the absence of an intervention.  

 

Table 16: Acute-phase proteins, pro-inflammatory cytokines 
between baseline and follow-up among helminth-uninfected 
participants randomized to delayed albendazole therapy. 
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5.5 Discussion 

This randomized trial attempted to demonstrate that invasive intestinal helminths 

were associated with increases in microbial translocation and cytokine response in 

persons co-infected with HIV, and that albendazole intervention would reduce circulating 

markers of microbial translocation and impact of pro-inflammatory cytokine 

concentrations. Contrary to our expectation, we observed a marked increase in sCD14 

concentrations among helminth-infected participants who were randomized to immediate 

albendazole, relative to their peers in the delayed albendazole arm (1.50 µg/ml higher 

mean concentration; 95%CI: -0.17, 2.98; p-value=0.06). Change over time in sCD14 

concentrations was also significant in this cohort. We observed elevated concentrations of 

CRP, IL-4, IL-6, IL-10, and TNF-α at enrollment among helminth infected participants 

versus their uninfected peers. However, apart from sCD14, we failed to observe any 

statistically significant effects of albendazole therapy on serum biomarker concentrations 

across randomization arms among hookworm- and Strongyloides-infected participants. 

Our results align with some studies, which show increases in sCD14 and TNF-α, 

along with other pro-inflammatory cytokines after therapy for strongyloidiasis.212 Unlike 

George et al., Anuradha et al. found that therapy removed the down-regulation of 

inflammatory processes. This is consistent with the idea that helminths hypo-modulate 

the immune system. In this sense, our results (increasing sCD14 and TNF-α) post therapy 

are logical results of removing an inflammation suppressing organism. 

To our knowledge, this is the first study to directly evaluate the effect of 

albendazole therapy on markers of microbial translocation and systemic inflammation 

using a control arm. It is also the first study to evaluate the relationship between 
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anthelmintic therapy and these biomarkers – particularly sCD14 – in people living with 

HIV in a low-resource context, which is a critical population to evaluate given that the 

global burden of HIV and helminths are predominantly in Sub-Saharan Africa.29,222 The 

two prior studies evaluating the relationship between helminth infection and microbial 

translocation focused on a particular pathogen each – hookworm species and 

Strongyloides – and provided treatment for all infected participants.121,207 While both 

studies included an exhaustive analysis of biomarkers, neither study included any 

participant controls, i.e. helminth infected participants that did not receive therapy, to 

guard against conflating a causal relationship of therapy with other factors that influence 

these biomarkers to change over time. Indeed, in the current randomized trial, we 

observed changes in multiple cytokine concentrations (IL-1β, IL-13, IL-6, IL-8, IL-2, 

TNF-α, IL-12, IL-5) between enrollment and follow-up among participants who were not 

identified as having helminth infection and randomized to delayed albendazole. 

Rajamanickam et al. evaluated microbial translocation markers, acute phase 

proteins, inflammatory markers, and proinflammatory cytokines in participants that were 

infected with S. stercoralis.207 They collected data from 58 individuals (30 with 

asymptomatic strongyloidiasis, 28 uninfected healthy adult controls from the same area), 

and followed those infected with S. stercoralis for 6 months. The authors made a 

compelling case for the relationship between elevated levels of acute-phase proteins and 

inflammation markers and strongyloidiasis via exhaustive biomarker assessments. This 

study was, however, limited by lack of a comparison group, the absence of infection 

burden information to evaluate a potential dose-response, and the absence of correction 

for multiple comparisons. 
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George et al. conducted a similar study focusing on hookworm infection, which 

included 46 hookworm-infected adults and 45 healthy controls from the same 

communities. Infected participants were followed for three months post-anthelmintic 

therapy.121 Their findings indicated that while hookworm infection is indeed 

characterized by increased concentrations of microbial translocation markers, hookworm 

did not appear to induce acute-phase proteins, e.g. CRP, or pro-inflammatory cytokine 

IL-17,223 contrary to the study focused on strongyloidiasis. The authors noted that 

hookworm infection was associated with increased concentrations of IL-10, a potent anti-

inflammatory cytokine that mediates the host’s immune response to pathogens while 

promoting tissue homeostasis and preventing damage.224 George et al. also found that 

hookworm infection was associated with diminished concentrations of CD8+ T cells, 

CD4+ and CD8+ effector memory T cells, and diminished proportions of plasmacytoid 

and myeloid dendritic cells, which are associated with pro-inflammatory responses to 

infection.225 Taken together, these finding may have particular relevance to HIV-infected 

persons, who could benefit from systemic anti-inflammatory effects. 

These anti-inflammatory effects may become clinically important when viewed 

through the lens of host response to other HIV-associated illnesses, e.g. tuberculosis. A 

second paper from George et al. investigated the impact of strongyloidiasis on 

tuberculosis severity in HIV-uninfected persons, and demonstrated that participants with 

active tuberculosis who are also infected with S. stercoralis have decreased 

concentrations of systemic immune activation markers (sCD14 and others) and acute 

phase proteins (CRP and others), as well as other markers of pro-inflammatory immune 

response. The lack of follow-up and intervention limits our ability to draw causal 
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inference from these data, which the authors themselves acknowledge. However, they 

postulate that strongyloidiasis decreases pro-fibrotic factor production and other 

inflammatory factors, and thus may decrease tuberculosis severity via decreased lung 

pathology.10 Boef and colleagues also investigated the relationship between current 

helminth infections and immune responsiveness in a rural Ghanaian population, as 

measured by pro-inflammatory, regulatory, and Type 2 cytokine responses.226 They 

found no relationship between N. americanus and cytokine concentrations, and 

particularly of note, no relationship between helminth infection and IL-10. While these 

results were surprising, the authors postulated that this lack of response could be 

attributed to their inability to assess infection duration. 

Clinically relevant changes in sCD14 are not well established. However, this 

study had 70% power to detect a difference of approximately 0.3 ng/mL in sCD14 

concentrations across intervention arms,227 and the sCD14 concentrations in this cohort 

reflect those of other similar Ugandan cohorts.164 Prior research had demonstrated 

helminth prevalence of 30% in this population.42 Thus, 240 participants were to be 

randomized to ensure participation from at least 72 participants with helminth infection. 

The observed helminth prevalence during the trial, however, was one third of what had 

previously been observed just two years prior;42 and we were only able to enroll 24 

participants with helminth infection (12 in each arm). Thus, the major limitation of this 

study was the small number of helminth-infected persons who comprised our primary 

study population. 

Current first line therapy for strongyloidiasis is a 200 µg/kg orally for 1-2 days, 

and alternative therapy for strongyloidiasis is 400 mg of albendazole, twice per day for 7 
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days. Participants in this cohort receive 400 mg albendazole for 3 days, which is standard 

therapy for trichuriasis and enhanced therapy for hookworm. This regiment was chosen 

for this study was based on the very high prevalence of hookworm infection that was 

anticipated in this cohort,42 and similar to the recommended preventive chemotherapy 

regimen (400 mg albendazole).101 The cure rate for strongyloidiasis for this 1200mg 

albendazole regimen has been documented at 38%,228 while for hookworm cure rates 

have been documented at 92%.229 The lack of complete cure rates is another limitation of 

this study, especially in light of the small sample size. It is also possible that partial action 

against both parasites, in particular Strongyloides, disrupted parasite gut homeostasis, 

which encouraged adult migration in the gut, causing additional perforation of the 

mucosa, and leading to the observed increases in sCD14.   

Other limitations of this study include the non-blinded nature of the intervention 

and lack of “cure rate” information at follow-up. We asked participants to not take any 

anthelmintic chemotherapy outside of the study for its duration, and no one reported 

taking ex-study anthelmintic chemotherapy. However, a placebo, which was not possible 

in the context of this study, would have provided an additional safe guard against 

treatment cross-over and dilution of effects by arm. Future analyses of follow-up stool 

samples for parasitic infection could also illuminate if participants had sought therapy 

outside of the study, as N. americanus and S. stercoralis infections persist in the host gut 

for at least several years and we would expect to see an infection unless otherwise 

treated.115,230 If participants in the delayed albendazole arm did seek therapy outside of 

the study, it would have further attenuated the difference in effect, if any. Conversely, 
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assessing parasitic infection at follow-up would also allow us to identify which 

participants did not entirely clear their infection. 

This study would have been strengthened by additional evaluation for other sub-

clinical infections, such as Schistosoma spp. and filarial worms, which could have similar 

effects on serum biomarkers as helminths.231 However, prior studies evaluating 

gastrointestinal schistosomiasis in this population indicated 0% prevalence (unpublished 

data), and lymphatic filariasis is more common in the northern region of Uganda, as 

opposed to the eastern region where this study took place.232 Future analyses will be 

conducted in the entire cohort, instead of focusing on only those 24 participants who 

were found to be infected with helminths. First, it is possible that some participants who 

were infected with soil transmitted helminths of interest here were not identified as such, 

and excluded from the primary analysis. Additionally, albendazole has activity against a 

wide range of parasites, beyond those invasive species investigated here, e.g. Giardia. In 

expanding the analysis to the entire cohort, we may include participants with undetected 

infections, and register some effects of anthelmintic therapy on a broader range of 

species. Finally, given that the current literature evaluating this topic provides differing 

immune responses by species, it would have been potentially informative to analyze the 

effects of deworming by species. However, the small number of species-specific 

infections (S. stercoralis n=11; N. americanus n=16) makes it difficult to reliably assess 

these relationships.  

Despite these limitations, this trial represents patients from a typical HIV clinic in 

Uganda. It also benefits from the use of molecular diagnostics, which has increased 

sensitivity and specificity for helminths relative to traditional methods.233 Our results 
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likely reflect an inability to answer our primary question about the relationship between 

these invasive parasites and systemic inflammation in immunologically compromised 

Ugandans. There may be subtle effects on chronic immune system activation that we 

were unable to detect here. Future analyses focusing on the longitudinal change in serum 

biomarkers at different time-points would help assess if the increase in sCD14 observed 

here is transient, and sCD14 concentrations will approximate the results of George et al. 

and Rajamanickam et al. over time,121,207 or if they would stay elevated as in Anuradha et 

al.212  

The patterns of elevated post-therapy sCD14 identified here were also observed in 

a single study of primate colitis.234 From their 5 primate subjects, one subject 

demonstrated increased sCD14 post T. trichiura therapy, a similar pathogen to 

Strongyloides. This observation lead authors Broadhurst et al. to postulate that subjects 

with inherently “leaky” mucosal barriers – also true for people living with HIV – may 

express higher concentrations of sCD14 after anthelmintic therapy due to partial gut 

mucosa restoration and increased bacterial attachment. However, this conclusion is 

difficult to contextualize given the sample size of one. 

Evaluating parasitic clearance, and re-infection rates over time will also help to 

contextualize our results. However, incorporating regular chemotherapy into care for this 

vulnerable population may be justified given the health effects of helminth infection, e.g. 

anemia due to blood loss, protein loss, potential strongyloidiasis hyper-infection, and 

HIV-clinical considerations, e.g. misleading laboratory results,235 possible effects on 

CD4+ T cell concentrations.90,91  
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6. Contributions and Conclusions 

 This research examined several aspects of the gut environment among people living 

with HIV in a low-resource context, with a focus on clinical immune markers and 

correlates (fecal microbiome composition and systemic inflammation). The contributions 

of this dissertation to the literature are discussed below. 

 The first aim of this dissertation contributed to outstanding questions surrounding 

HIV and helminth coinfection.14 It did so by applying a molecular diagnostic tool to 

helminth (and protozoa) detection in a longitudinal cohort of rural and peri-urban adult 

Ugandans. This allowed us to identify a high prevalence of hookworm infection in an 

otherwise apparently healthy but HIV-infected, and therefore immunologically 

vulnerable, population. Application of this molecular diagnostic allowed us to detect and 

quantify low burden infections, likely lower than would have been detected with 

microscopy. We were also able construct a longitudinal cohort of HIV-infected adults 

who had initiated antiretroviral therapy, in contrast to most research on HIV and 

helminths, which has centered on HIV progression prevention when ART was not widely 

available. This aim was approached through the lens of health optimization for a 

vulnerable group. 

 The second aim of this dissertation focused on the fecal microbiome, which has 

been linked to inflammatory conditions and disease progression. It contributed to our 

knowledge of the fecal microbiome composition among populations where HIV is the 

most prevalent. It is only the second of its kind in Uganda, and provides a novel addition 

of longitudinal CD4+ T monitoring. Longitudinal exploratory analyses were able to 

identify two taxa that were positively correlated with increasing CD4+ T cell recovery. 
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There is some documented biological basis for the relationship between CD4+ recovery 

and increased concentrations of these taxa, Sutterella genus and Alcaligenaceae (of 

unknown genus), which may be worth exploring in future cohorts. Probiotic or other low-

cost adjuvant therapies that could harness the communities of the gut to reduce 

inflammation in people living with HIV are perhaps far from available in African – or 

other – contexts. However, this research contributes to characterizing the gut 

environment among people living with HIV where the global burden is highest, and low-

cost adjuvant therapies could be impactful. 

 Finally, the third aim of this dissertation has contributed to the literature by 

addressing a topic that is frequently discussed in studies of anthelmintic therapy, 

microbial translocation, and systemic inflammation: the importance of these relationships 

for people living with HIV. This is the first study, to our knowledge, that evaluates the 

effect of anthelmintic therapy on markers of systemic inflammation and microbial 

translocation in HIV-infected people from an area where HIV and helminths are endemic. 

While the final number of helminth-infected participants was relatively small, our results 

indicate that treating helminth-infected persons may result in increases inflammation (as 

witnessed by increases in sCD14 and TNF-α, the latter of which was not statistically 

significant at an 0.05 level). These findings disagree with similar research on this topic 

(impact of therapy on sCD14 in HIV-uninfected persons), but do agree with other 

research on the topic of helminths, therapy and deworming. The findings from this study 

merit further investigation, particularly with respect to the change in sCD14 over a longer 

time period, and investigation in larger HIV- and helminth-infected cohorts. This aim 

also gives us pause about recommending medical interventions that could have undesired 
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long-term effects, i.e. removing an immunomodulating sub-clinical infection that 

decreases inflammation, in favor of removing other, albeit potentially serious, negative 

health effects. 

 In summary, this research has added to our knowledge base surrounding hookworm 

infection prevalence in rural and peri-urban HIV-infected Ugandans in the era of widely 

available ART, and the relationship between hookworm infection and potential impacts 

on CD4+ recovery. It has reinforced some of the findings from one study that examined 

the fecal microbiome from HIV-infected Ugandans, and identified two taxa that were 

linked to immunologic recovery in people living with HIV, which could be explored in 

future cohorts. Finally, it is the first study to evaluate anthelmintic therapy on serum 

markers of microbial translocation among HIV-infected people living in co-endemic 

areas, the findings from which stand in contrast to prior work. These results from this 

dissertation will hopefully help focus future research, and more importantly help inform 

interventions and programs when warranted, among these and similar populations.  
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8. Appendices 

Appendix 1: Soil-transmitted helminth transmission lifecycles 
 
Infection Transmission and lifecycle 
Ascariasis46 
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Hookworm49 

 
 

Strongyloidia
sis51 
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Trichuriasis47 
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Appendix 2: Low-reagent DNA Extraction Protocol 
Using the MP Biomedicals FastDNA™ SPIN Kit for Soil DNA Extraction 
 

1. Add 978 µl Sodium Phosphate buffer to Lysing Matrix E tube. 
a. Use same tip to load all samples 

2. Add 122 µl MT Buffer. 
a. Use same tip to load all samples 

3. Add 50 mg of stool to each tube. 
a. Use new toothpick or new pipet tip to load 

4. Homogenize 
a. FastPrep Instrument 40 sec on speed setting 6.0 
b. Mini Beadbeater 2 min 
c. Disruptor Genie 5 min 3000 rpm 

5. Centrifuge 14,000 g for 10 min 
6. Add 250 µl PPS to new 2 ml tube 

a. Use same tip 
7. Pipet supernatant from (Step 5) into 2 ml tube (Step 6) and invert 10 times by 

hand 
8. Centrifuge 14,000 g for 10 min. 
9. Add 2µl Internal control (PBr322, 104), E. coli plasmid 

a. Do not MIX 
10. In 2 new tubes, add 500 µl binding matrix 

a. Re-suspend binding matrix vigorously and pipet from bottom of bottle 
b. Use same tip to load binding matrix 
c. Mix binding matrix every 10 tubes 

11. Add supernatant from step 9 approximately 600 µl to each tube 
a. Volumes may vary, divide the supernatant equally 
b. Use same tip per sample, but change between numbers 

12. Invert for 2 min (Can store at 4 C for 1 hour at this step.) 
13. Let sit for 5 min at room temperature. 
14. Remove almost all supernatant from each tube. 

a. Remove at angle, careful not to disrupt matrix 
b. Remove enough supernatant leaving approximately 1 mm of volume 

behind 
c. Use same tip per sample, but change between numbers 

15. Remove entire binding matrix 
a. Use same tip from Step 14 

16. Add to spin filter with tube 
17. Centrifuge 14,000 g for 2 minutes. 

a. Depending on consistency of sample, more spins maybe needed to elute 
fluids 

18. Empty catch tube and discard fluid 
19. Add 500 µl of PREPARED SEWS-M to matrix and mix with gentle pipetting. 

a. Careful not to pierce membrane at bottom of filter tube 
20. Centrifuge 14,000 g for 2 min 
21. Empty catch tube and discard fluid 
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22. Centrifuge 14,000 g for 2 min to help dry the matrix. 
23. Replace the tube with final catch tube. 
24. Air dry the filter for 5 min at room temp 

a. Leave lid open 
25. Add 100 µl of DES and mix matrix with gentle STIRRING 
26. Centrifuge 14,000 g for 2 min 
27. Store sample at 4 C or -20 C for long term storage                         
 

Trichuris extraction 
Trichuris extraction can be done at same time as above extraction. From Step 5 
above: 
 

6. Add 200 µl H20 to used Lysing Matrix E tube 
7. Shake vigorously for 1 min 
8. Heat at 90 C for 10 min 
9. Shake vigorously for 1 min 
10. Centrifuge 14,000 g for 10 min 
11. Using the same tip, add 50 µl PPS to new 2 ml tube 

a. Can also use same tube from (Step 6 above) for the same patient sample 
12. Pipet supernatant from (Step 5) into 2 ml tube (Step 6) and invert 10 times by 

hand. 
13. Centrifuge 14,000 g for 10 min 
14. Add 2 µl Internal control (PBr322, 104) 

a. Do not MIX 
15. In 1 new tube, add 500 µl Binding matrix 

a. Re-suspend binding matrix vigorously and pipet from bottom of bottle 
b. Use same tip to load binding matrix 
c. Mix binding matrix every 10 tubes 

16. Add supernatant from step 9 
17. Invert for 2 min (Can store at 4 C for 1 hour at this step.) 
18. Let sit for 5 min at room temperature 
19. Remove supernatant and discard. 

a. Remove at angle, careful not to disrupt matrix 
b. Remove enough supernatant leaving approximately I mm of volume 

behind 
c. Use same tip per sample, but change between numbers 

20. Remove entire binding matrix 
21. Add to spin filter with tube 
22. Centrifuge 14,000 g for 2 min 

a. Depending on consistency of sample, more spins maybe needed to elute 
fluids 

23. Empty catch tube and discard fluid 
24. Add 500 µl of PREPARED SEWS-M to matrix and mix with gentle pipetting 

a. Careful not to pierce membrane at bottom of filter tube 
25. Centrifuge 14,000 g for 2 min 
26. Empty catch tube and discard fluid 
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27. Centrifuge 14,000 g for 2 min to help dry the matrix 
28. Replace tube with final catch tube 
29. Air dry the filter for 5 min at room temp with lid open 
30. Add 50 µl of DES and mix matrix with gentle STIRRING 
31. Centrifuge 14,000 g for 2 min 
32. Store sample at 4 C or -20 C for long term storage 
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Appendix 3: Parasite Infection Intensity Metrics 
Parasite egg and larval counts per gram feces used to describe 
infection intensity 
Causative 
pathogen 

Infection Intensity 
Light Moderate Heavy 

Egg count per gram feces (EPG)108  
A. lumbricoides 1-4,999 5000-49,999 ≥50,000 
Hookworm spp. 1-1,999 2,000-3,999 ≥4,000 
T. trichiura 1-999 1,000-9,999 ≥10,000 
 Larva per gram feces (LPG)106  
S. stercoralis ≤1 2-9 ≥10 
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Appendix 4: WHO staging for HIV infection and disease in adults and adolescents, 
including screened opportunistic infections, from Uganda Ministry of Health Guidelines  

Clinical Stage I: 
1. Asymptomatic 
2. Persistent generalized lymphadenopathy  

And/or Performance Scale 1: Asymptomatic, normal activity 
Clinical Stage II: 
1. Moderate weight loss (<10% of presumed or measured body weight) 
2. Minor mucocutaneous manifestations (seborrhoeic dermatitis, prurigo, fungal nail infections, 

recurrent oral ulcerations, angular stomatitis) 
3. Herpes zoster within the last five years 
4. Recurrent upper respiratory tract infections, e.g., bacterial sinusitis, tonsillitis, otitis media and 

pharyngitis 
And/or Performance Scale 2: Symptomatic but normal activity 

Clinical Stage III: 
1. Severe weight loss (>10% of presumed or measured body weight) 
2. Unexplained chronic diarrhea for more than one month 
3. Unexplained prolonged fever, intermittent or constant, for >1 month 
4. Oral candidiasis 
5. Oral hairy leukoplakia 
6. Pulmonary tuberculosis (current) 
7. Severe bacterial infections such as pneumonia, pyomyositis, empyema, bacteremia or meningitis  
8. Acute necrotizing ulcerative stomatitis, gingivitis or periodontitis 
9. Unexplained anemia (<8gm/dl), neutropenia (<0.5× 109 per liter), or chronic thrombocytopenia (<50× 

109 per liter)   
And/or Performance Scale 3: Bed-ridden for less than 50% of the day during the last month 

Clinical Stage IV: 
1. HIV wasting syndrome – weight loss >10%, and either unexplained chronic diarrhea for more than 

one month or chronic weakness or unexplained prolonged fever for more than one month 
2. Pneumocystis pneumonia (PCP)  
3. Recurrent severe bacterial pneumonia 
4. Toxoplasmosis of the brain 
5. Cryptosporidiosis with diarrhea for >1 month 
6. Chronic isosporiasis 
7. Extrapulmonary cryptococcosis including meningitis  
8. Cytomegalovirus infection (retinitis or infection of other organs) 
9. Herpes simplex virus (HSV) infection, mucocutaneous for >1 month, or visceral at any site  
10. Progressive multifocal leukoencephalopathy (PML) 
11. Any disseminated endemic mycosis such as histoplasmosis, coccidioidomycosis 
12. Candidiasis of the oesophagus, trachea, bronchi or lungs 
13. Atypical mycobacteriosis, disseminated 
14. Recurrent non-typhoid salmonella septicemia 
15. Extrapulmonary tuberculosis 
16. Lymphoma 
17. Invasive cancer of the cervix  
18. Kaposi’s sarcoma 
19. HIV encephalopathy 
20. Atypical disseminated leishmaniasis 
21. Symptomatic HIV-associated nephropathy or symptomatic HIV-associated cardiomyopathy  
And/or Performance Scale 4: Bed-ridden for more than 50% of the day during the last month 
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Appendix 5: Sequence information for eight parasites tested by using a high-throughput quantitative multi-parallel real-time 
polymerase chain reaction, from Mejia et al. 
 Forward primer sequence   
 Reverse primer sequence   

Parasite Species103 Probe sequence (FAM) Target Region GenBank Accession No. 

Ascaris lumbricoides 
TGCACATAAGTACTATTTGCGCGTAT ITS-1 AB571301.1 
CCGCCGACTGCTATTACATCA   
GAGCCACATAGTAAATT   

Cryptosporidium 
parvum/hominis 

AACTTCACGTGTGTTTGCCAAT DNA J-like protein XM_625506.1 
CCAATCACAGAATCATCAGAATCG   
CATATGAAGTTATAGGGATACCAG ITS-2 EU344797.1 

Ancylostoma duodenale 
GAATGACAGCAAACTCGTTGTTG   
ATACTAGCCACTGCCGAAACGT   
ATCGTTTACCGACTTTAG ITS-2 AJ001599.1 

Necator americanus 
CTGTTTGTCGAACGGTACTTGC   
ATAACAGCGTGCACATGTTGC   
CTGTACTACGCATTGTATAC 18S rRNA AF279916.2 

Strongyloides stercoralis 
GAATTCCAAGTAAACGTAAGTCATTAGC   
TGCCTCTGGATATTGCTCAGTTC   
ACACACCGGCCGTCGCTGC   

Giardia intestinalis 
CATGCATGCCCGCTCA 16S rRNA AJ293299.1 
AGCGGTGTCCGGCTAGC   
AGGACAACGGTTGCAC   

Entamoeba histolytica 
GTTTGTATTAGTACAAAATGGCCAATTC 18S rRNA X75434.1 
TCGTGGCATCCTAACTCACTTAGA   
CAATGAATTGAGAAATGACA   

Trichuris trichiura 
TCCGAACGGCGGATCA ITS-1 FM991956.1 
CTCGAGTGTCACGTCGTCCTT   
TTGGCTCGTAGGTCGTT     

ITS = internal transcribed spacer; rRNA = ribosomal RNA 


	Abstract
	List of Tables
	List of Figures
	1. Summary
	1.2 Specific Aims

	2. Introduction
	2.1 Research Context: Uganda
	2.1.1 HIV Epidemiology in Uganda
	2.1.2 Soil Transmitted Helminth Epidemiology

	2.2 HIV Infection, Chronic Immune Activation, and the Gastrointestinal Immune System
	2.3 Soil-transmitted Helminth Infection
	2.3.1 Soil-transmitted Helminth Infection Immunology
	2.3.2 The Cytokine Response to Helminth Infection

	2.4 Soil-transmitted helminths and HIV co-infection
	2.5 Study population

	3. Aim I: Evaluating the Clinical Correlates of Parasitic Infection in HIV-infected adult Ugandans.
	3.1 Aim Summary
	3.2 Introduction
	3.3 Methods
	3.3.1 Ethics Statement
	3.3.2 Participant Recruitment and Data Collection
	3.3.3 Biological Sample Collection and Analyses
	3.3.4 Statistical Analyses

	3.4 Results
	3.5 Discussion

	4. Aim II. Characterization of the fecal microbiome and its relationship with clinical factors among rural and peri-urban adults living with HIV in Uganda
	4.1 Aim Summary
	4.2 Background
	4.3 Methods
	4.3.1 Ethics statement
	4.3.2 Study participants and study design

	4.4 Results
	4.5 Discussion

	5. Aim III. Impact of anthelmintic therapy for invasive helminth infection on microbial translocation, inflammation, and immune response among Ugandans living with HIV: a randomized proof of concept study
	5.1 Aim Summary
	5.2 Background
	5.3 Methods
	5.3.1. Ethics Statement
	5.3.2 Study participants and study design
	5.3.3 Clinical Evaluation
	5.3.4 Parasitologic evaluation
	5.3.5 Evaluation of microbial translocation and pro-inflammatory biomarkers
	5.3.6 Statistical Analyses

	5.4 Results
	5.5 Discussion

	6. Contributions and Conclusions
	7. References
	8. Appendices
	Appendix 1: Soil-transmitted helminth transmission lifecycles
	Appendix 2: Low-reagent DNA Extraction Protocol
	Appendix 3: Parasite Infection Intensity Metrics
	Appendix 4: WHO staging for HIV infection and disease in adults and adolescents, including screened opportunistic infections, from Uganda Ministry of Health Guidelines
	Appendix 5: Sequence information for eight parasites tested by using a high-throughput quantitative multi-parallel real-time polymerase chain reaction, from Mejia et al.

	0BAnd/or Performance Scale 1: Asymptomatic, normal activity
	1BAnd/or Performance Scale 2: Symptomatic but normal activity

