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Abstract  

Patients treated with a standardized dosing strategy often demonstrate a 

substantial variability in drug response. Number of factors influences systemic exposure 

of the drug and its effect on the biological targets. The central objective of this thesis was 

to identify biomarkers and develop personalized dosing of drugs used in hematopoietic 

stem cell transplant (HSCT) and kidney transplant to improve outcomes.  

Fludarabine is a chemotherapeutic drug used in reduced intensity conditioning 

(RIC) HSCT. High fludarabine exposure is associated with greater treatment related 

mortality (TRM). Fludarabine dose reductions are commonly empirical for obese and/or 

those with renal dysfunction. We developed a dosing equation, accounting for creatinine 

clearance and body size.  Using this model to make dose reductions will reduce the 

probability of fludarabine overexposure and reduce TRM. Cyclophosphamide (Cy) is 

another chemotherapeutic agent used in RIC HSCT, associated with high toxicity and 

TRM. Due to complex metabolic pathway it is unclear which metabolite is most 

important to predict Cy’s efficacy and toxicity. We evaluated the association between the 

active metabolite, phosphoramide mustard (PM), exposure and TRM. We found that 

higher PM AUC of was associated with greater TRM. We further identified creatinine 

clearance and gender to influence PM clearance and volume of distribution respectively.  

Tacrolimus is an immunosuppressant used in kidney transplant recipients. African 

Americans show very high variability in tacrolimus exposure and poor outcomes. We 

developed a tacrolimus dosing model, taking into account the clinical and genetic 

variants to individualize dose in African Americans that could help achieve the target 
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concentrations quicker and improve outcomes. Mycophenolic acid (MPA) is another 

immunosuppressant used in kidney transplant recipients. Enterohepatic recycling and 

high variability in trough concentrations make it very difficult to use MPA concentrations 

for routine therapeutic monitoring. We conducted an RNA sequencing analysis to 

measure gene expression to identify novel biomarkers to predict MPA efficacy and 

toxicity. We identified transient changes in gene expression post MPA administration and 

that expression of 3 genes out of ~20000 were significantly associated with MPA trough 

concentrations. Additional studies are required to identify if transient changes in gene 

expression are associated with MPA related outcomes. 
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1.1 HEMATOPOEITIC STEM CELL TRANSPLANT 

Hematopoietic stem cell transplant (HSCT) has become a standard of care for 

patients with hematologic malignancies and congenital or acquired hematologic 

disorders. Advances in transplantation techniques, safer conditioning regimens, 

availability of alternative sources of hematopoietic stem cells has increased the 

applicability of HSCT to various indications and the annual number of HSCT recipients 

has increased from ~11,000 in 2001 to ~19000 in 2012 and is predicted to further 

increase in future.(1) The most common indications for HSCT (~57%) in the United 

States in 2012 were multiple myeloma and lymphoma.(2) The hematopoietic stem cells 

are obtained from the patient himself /herself (referred to as autologous), or another 

person (referred to as allogeneic). The choice of transplant procedure: autologous or 

allogeneic depends on several factors, such as type of hematologic malignancies, stage of 

disease, age, gender, karnovsky score and comorbidity score. The number of autologous 

transplant conducted in United States in 2012 was around 11,145(2) and was mainly used 

in treating hematologic malignancies such as lymphomas, myeloma and rare cancer of 

childhood. The most common indications were multiple myeloma and plasma cell 

disorders. Around 7,554 allogeneic transplant were conducted in United States in 2012 

and the most common indication was acute myeloid leukemia and myelodysplastic 

syndrome (~51%).(2) The goal of allogeneic HSCT in hematologic malignancies is to 

eliminate malignant hematopoietic stem cells and to induce sufficient 

immunosuppression to prevent rejection of transplanted stem cells.  
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1.1.1 Allogeneic Hematopoietic Stem Cell Transplantation  

Allogeneic HSCT uses stem cells from another individual (donor), which 

proliferates and replaces the diseased bone marrow and/or hematopoietic cells killed with 

chemotherapy. The conventional source of hematopoietic stem cells is the bone marrow 

that involves withdrawal of the bone marrow cells from the donor ilium. However due to 

greater simplicity of collection, mobilized peripheral blood stem cells (PBSCs) are now 

the preferred stem cell sources. Stem cells are mobilized out of the bone marrow and into 

the peripheral blood by an injection of granulocyte stimulating hormone few days before 

the harvest, resulting in stem cell counts similar to bone marrow harvests. Based on 

Centre of International Blood and Marrow Transplant Research (CIBMTR) reports, 

PBSCs was the primary graft source (~65%) used in HSCT and use of bone marrow as a 

source decreased by 24% from previous years based on data collected from 2008-

2012.(2) 

1.1.1.1 Allogeneic HSCT Donor  

An ideal donor for a HSCT recipient is an HLA matched related donor due to 

lower risk of graft rejection and relapse compared to unrelated donor. With the advances 

in immunosuppressive therapies, using alternative sources for stem cell such as unrelated 

donor, or stem cells from umbilical cord is now possible and extends transplant to more 

individuals.   

1.1.1.1.1 Related Donors 

The best choice for a related donor is an HLA-matched sibling donor; although other 

family members may serve as donors if the sibling is not a good match. The aim is to 
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match the donors and recipients HLA-A, -B, -C and –DRB1 (8/8 HLA-match).(3) For a 

related donor transplant, one HLA mismatch is acceptable. However, a mismatch at 

HLA-B is found to be associated with higher graft vs host disease (GVHD) and thereby 

increasing the risk of treatment related mortality (TRM) risks.(4)  

1.1.1.1.2 Unrelated Donors 

Only around 30% of patients eligible for allogeneic HSCT have a matched related 

donor available.(5) Several unrelated donor registries may identify a suitable HLA 

matched donor. With improved immunosuppression regimens, studies have indicated that 

unrelated donors matched at HLA-A, -B, -C and –DRB1 allelic positions (8/8 match) 

with the donors have similar outcomes to those observed from a matched related 

donor.(6) However a single allele mismatch (7/8) in an unrelated HSCT may have 

inferior outcomes as compared to those with 8/8 matches.(7) Unfortunately, 

polymorphisms in the HLA region are very frequent and therefore a major hurdle in an 

unrelated source is the search for donors, which may take several months. Caucasians 

have a 75% chance of finding a fully matched donor and another 20% will find donors 

with a 1-allele mismatch, whereas in the black population (African Americans and those 

from South and Central America) chances are as low as 16-19% to find an optimal 

donor.(8) 

1.1.1.1.3 Unrelated Umbilical Cord Blood  

The use of stem cells from umbilical cord (UCB) is an alternative source of stem 

cells that has rapidly expanded over the last decade. Initially used in pediatric patients, its 

use is now extended to adults. In 2012, 10% of allogeneic HSCT were carried out using 
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UCB as donor source. Stem cells from UCB are preferred due to its ease of availability 

and less stringent HLA match requirements as compared to unrelated donors.(9) A major 

limitation of UCB transplant however, is low number of stem cells and as a result the 

time to engraftment is usually prolonged in UCB recipients. Many transplant centers are 

now using two units from 2 different sources of UCB transplant, to overcome the 

problem of low cell count. Several studies have compared outcomes such as overall 

survival, GVHD and TRM by donor source. Compared to unrelated donor source and 

UCB, matched donor source have slightly better outcomes, however results are 

contradictory as to whether UCB donor transplant is similar or superior to unrelated 

match donor.(10-16) 

1.1.2 Conditioning Regimens Used In Allogeneic Transplant 

Conditioning regimens usually consists of chemotherapy and radiation given prior to 

transplant to eliminate cancer, and to provide adequate immunosuppression to enable 

stem cell engraftment, with minimal toxicity. Conditioning regimens are broadly 

classified as myeloablative (high dose chemotherapy and/or radiation), reduced intensity 

(intermediate dose chemotherapy and/or radiation) and non-myeloablative (low dose 

chemotherapy and/or radiation). There are several factors that govern the choice of 

conditioning regimen.(17) A Pretransplantation Assessment of Mortality (PAM) scale has 

been developed to predict 2 year survival which includes 8 pre-transplantation clinical 

variables: age, donor type, disease risk, conditioning regimen, FEV1, carbon monoxide 

diffusion capacity, serum creatinine and serum alanine aminotransferase.(18) Another 

predictive model of TRM is the comorbidity score as described by Sorror M.(19) Genetic 

variability in HLA alleles, drug targets and in genes encoding transporters, metabolizing 
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enzymes and drug targets could additionally affect the choice of conditioning regimen 

although are not routinely used in practice.  

1.1.2.1 Myeloablative Conditioning  

Myeloablative conditioning regimens cause irreversible pancytopenia and require stem 

cell support.(20) A myeloablative-conditioning regimen is expected to fully ablate 

marrow hematopoiesis and not allowing for autologous hematologic recovery. 

Historically total body irradiation (TBI) of 10-12 Gy was the main agent used in 

myeloablative conditioning. It has immunosuppressive effects and also access to deeper 

tissues in the body. TBI based regimens are widely used for hematologic malignancies 

with autologous and allogeneic transplant. Alkylating agents, cyclophosphamide (Cy) 

120-mg/kg and busulfan (Bu) 12-16 mg/kg, were later introduced as an alternative 

myeloablative regimen in those that were unable to receive TBI.(21) The Cy-TBI (120 

mg/kg and 12 Gy) regimen was also tested towards HSCT outcomes(22) and due to its 

superior outcomes, the combination became the standard myeloablative conditioning 

regimen for most allogeneic HSCT. Attempts to increase the dose of TBI to 15.75 Gy 

reduced the risk of relapse, however, significantly increased TRM therefore TBI is not 

used at this increased dose.(23) Other drugs used in combination with TBI are melphalan 

(Mel), cytarabine and etoposide.(20) Based on the latest 2012 CIBMTR report 

myeloablative conditioning regimen are characterized as regimens with TBI doses of ≥ 

500 cGY, single fractionated doses of ≥ 800 cGY, Bu doses of > 9mg/kg, or Mel doses of 

>150 mg/m2 given as single agents or in combination with other drugs.(2)Although 

myeloablative regimens provide rapid stem cell engraftment, acceptable disease free 

survival and relapse risk, there are several fatal complications associated with these high 
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dose regimens. Acute complications such as nausea, vomiting, diarrhea, skin reactions 

are common. Fatal complications with one or multi organ failures, infections often occur. 

Interstitial pneumonitis, pulmonary fibrosis, renal failure, sinusoidal obstruction 

syndrome are also common.  Treatment related mortality is as high as 50%, in those with 

high risk factors such as increased age, poor disease risk, alternative donor source and 

multiple comorbidities. These high intensity regimens result in a proinflammatory milieu 

that increases the risk of acute GVHD, which further increases the risk of TRM.(17, 24, 

25) 

1.1.2.2 Non-Myeloablative And Reduced Intensity Conditioning  

Due to higher rates of morbidity and mortality, older (>50 years) patients with 

comorbidities are typically ineligible for myeloablative conditioning.(26, 27) Reduced 

intensity conditioning/ non-myeloablative conditioning, consist of lower dose 

chemotherapy and/or radiation as compared to myeloablative and the transplant therapies 

have now extended to older and comorbid patients. Reduced intensity/ non-myeloablative 

conditioning regimens are less immunosuppressive than high dose cytotoxic agents. The 

goal is not to eradicate cancer with high dose chemotherapy, which ablates the bone 

marrow, but rather it depends on the engraftment of donor stem cells, which eradicate the 

tumor cells through a graft vs tumor effect.(24, 27-30)  

Following transplant, donor and the recipient stem cells coexist in the recipient 

and the phenomena is called mixed chimerism.(27) The donor immune cells, primarily 

lymphocytes, eradicate residual malignant cells within the recipient, that have escaped 

the cytotoxic effect of chemotherapeutic agents and TBI.(25) Full donor chimerism 

eventually occurs post-transplant is required to eradicate recipient’s residual normal and 
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malignant stem cells. Figure 1.1 shows the development of mixed and full donor 

chimerism following conditioning regimen and transplant in HSCT recipients. The extent 

of donor engraftment and chimerism can be measured using molecular mechanisms.  

Several nonmyeloablative regimens have been studied, the most common includes 

low dose TBI, alone or in combination with fludarabine (Flu) and or rituximab.(20, 25, 

31-34)  Initial preclinical studies conducted in dog models, demonstrated that a reduced 

dose of 200cG of TBI was associated with sufficient engraftment.(29) Similarly, dose of 

alkylating agents such as Bu(35, 36), Mel(37), and Cy(38) were also reduced in these 

regimens. Examples of non-myeloablative regimens include, TBI<2 Gy alone(39), TBI 

(<2 Gy)/Flu (30 mg/m2 for 4 days) (39), Flu (30 mg/m2 for 4 days) /Bu (3.3 mg/day for 2 

days)/anti-thymocyte globulin (ATG) (2.5 mg/kg)(40), Flu/Cy/ATG, Flu (25 mg/m2 for 5 

days) /Cy (200 mg/m2 /day) /idarubicin (12 mg/m2 for 5 days)/etoposide (250 mg/m2/day 

for 2 days)(41), Flu (30 mg/m2 for 4 days)/ cytarabine (2 mg/m2 for 4 days)/ idarubicin 

(12 mg/m2 for 3 days) (42), Flu (30 mg/m2) daily for 3 days), intravenous Cy (750 mg/m2 

daily for 3 days), and rituximab(43), cisplatin (25 mg/m2 continuous infusion daily for 4 

days), Flu(30 mg/m2 daily for 2 days), and cytarabine (1,000 mg/m2 daily for 2 days)(43) 

 Regimens that do not fit the criteria for myeloablative and non-myeloablative are 

classified as reduced intensity regimens. The dose of alkylating agents in reduced 

intensity conditioning regimen is reduced by 30% or more as compared to myeloablative 

regimens.(20) The CIBMTR and National Marrow Program have used the following 

criteria to define a reduced intensity conditioning as any regimen that consists one or 

more of the following combinations: 

• Total body irradiation of less than 500cG 
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• Total dose of Bu should not exceed 9 mg/kg 

• Total dose of Mel should not exceed 140 mg/kg 

• Total dose of thiotepa should not exceed 10mg/kg 

• The regimen includes purine analog; Flu, cladribine, or pentostatin. (44) 

Commonly used reduced intensity conditioning regimens are reported in CIBMTR and 

were recently reviewed (Table 1.1) adapted from (45).    

1.1.3 Mechanism of Action of Drugs Used In Reduced Intensity Conditioning  

1.1.3.1 Purine analogues 

Fludarabine phosphate is a prodrug that is rapidly and completely 

dephosphorylated to F-ara-A (9-β-D-arabinofuranosyl-2-fluroadenine). F-ara-A is 

actively transported intracellularly where it undergoes several phosphorylation steps via 

kinases into its active F-ara-ATP form. Figure 1.2 shows the activation pathway of Flu 

phosphate to its active form F-ara-ATP. The active form is incorporated into the growing 

DNA strand, and thereby prevents elongation of the DNA strand and cell proliferation. It 

also inhibits DNA polymerases, DNA ligases, ribonucleotide reductase in addition to its 

effect on the DNA. Fludarabine is exclusively used only in reduced intensity and non-

myeloablative conditioning regimens. Fludarabine exerts a synergistic effect by inhibiting 

the DNA repair enzymes and preventing repair of DNA adducts formed by alkylating 

agent such as Mel, Bu and Cy. Thus addition of Flu to regimens with alkylating agents 

enhances immunosuppression.(46) However, in addition to being an effective 

immunosuppressant, Flu is also associated with rare but fatal neurotoxicity.(47-50) A 

second-generation purine analogue, clofarabine, was developed that retained the anti-
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leukemic and immunosuppressive effect similar to Flu, but had reduced central nervous 

toxicity.(51, 52) Phase I-II studies conducted recently to test potential use of clofarabine 

in combination with Bu, Flu in HSCT recipients have shown promising results of 

sufficient engraftment with moderate toxicity profile.(53) 

1.1.3.2 Alkylating agents  

Commonly used alkylating agents in reduced intensity regimens are Cy, Bu, Mel 

and treosulfan. The general mechanism of alkylating agents is to react with electron-rich 

atoms in the biological molecules and form covalent bonds with guanine nucleotides and 

thereby prevent DNA replication.(54) 

Cyclophosphamide is a prodrug that undergoes several enzymatic 

biotransformation steps to its active metabolite phosphoramide mustard (PM). 

Phosphoramide mustard further undergoes non-enzymatic conversion to nor-nitrogen 

mustard (NOR). Phosphoramide mustard and NOR alkylate the N-7 position of guanine 

nucleotides on DNA.  The alkylation results in formation of DNA adducts G-NOR, G-

NOR-OH and G-NOR-G which prevents the DNA strand separation and thereby 

replication. Thus Cy prevents DNA replication and thereby exerts its cytotoxicity.  

Busulfan is a bi-functional alkylating agent. Similar to Cy, it exerts its cytotoxic effect by 

alkylating the N7 position of guanine and adenine, forming DNA strands and leading to 

cell apoptosis.(55) It is mainly toxic against myeloid precursors and therefore is highly 

effective against AML, CML, and multiple myelomas. It has limited toxic effects against 

mature lymphocytes and hence cannot be used as a single agent.(24)  
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Treosulfan is another bifunctional agent, which has been used in combination 

with Flu and is associated with high engraftment rates and reduced TRM. However larger 

clinical trials have not been conducted with treosulfan.  

1.1.3.3 Total body irradiation  

Total body irradiation works by enhancing immunosuppression and exerting 

tumoricidal effects. Lymphocytes are highly sensitive to TBI and profoundly diminish 

after a short period of TBI, followed by granulocytes, and platelets.(56) The observations 

that TBI is highly effective but may cause fatal toxicities, led to an idea of using targeted 

radiotherapies using monoclonal antibodies. An ideal antigen target is the one that is 

homogenously distributed throughout the tumor cell surface and is absent in the normal 

cells. CD20, CD33 and CD45 are hematopoietic antigens that are now under 

investigation in HSCT settings as radio-immunotherapeutic targets.(24) 

 

1.1.4 Adverse Outcomes In Reduced Intensity Conditioning  

The adverse events following HSCT with reduced intensity conditioning are 

described in the following subsection.  

1.1.4.1 Relapse  

Reduced intensity conditioning regimens have successfully demonstrated its 

advantage over myeloablative regimens by significant reduction of TRM. However, most 

studies have failed to show an improvement in overall survival, due to increase increased 

relapse rate (25-60%) in reduced intensity conditioning regimens as compared to 

myeloablative (9-40%).(25) Several factors are associated with increased risk of relapse 
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such as age, initial white blood cell count, cytogenetics, prior induction therapy and 

ability to achieve complete remission (4) A study conducted in 274 AML/MDS patients 

treated with reduced intensity conditioning HSCT, increased risk of relapse related death 

were associated with unfavorable cytogenetics, presence of minimal residual disease at 

transplant, HSCT within 6 months of diagnosis and patients with incomplete PBSC 

recoveries before HSCT. Donor type, AML stage and disease etiology were not 

associated with relapse.(57) Administration of donor lymphocyte infusions has found to 

be a successful strategy in significantly reducing relapse.(17, 58, 59) Further, 

hypomethylating agent azacitidine prophylaxis with donor lymphocyte infusion has also 

been successful in reducing relapse risk.(58, 60) 

1.1.4.2 Graft Versus Host Disease 

While donor lymphocytes induce the graft vs tumor effect, they are also 

responsible for undesirable effects leading GVHD. Graft vs host disease is a 

manifestation of immune response where the transplanted donor stem cells cannot 

differentiate between the recipient’s malignant and normal cells. Normal cells of the 

recipient are attacked by donor lymphocytes and is possibly stimulated by tissue injury 

that occurs from the conditioning regimen used before transplant.(61)  

Graft vs host disease is more often observed in recipients that receive HLA-

mismatched unrelated donors(62).  

Graft vs host disease is diagnosed and its severity is assessed using NIH criteria 

based on degree of organ involvement and is broadly categorized as acute or chronic. The 

incidence of acute GVHD and chronic GVHD after reduced intensity conditioning HSCT 
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ranges from 11-63% and 18-86%, respectively, and differs between the disease type, 

disease risk and choice of reduced intensity conditioning regimens.(25) 

Acute GVHD occurs within first 100 days of transplantation, and late GVHD 

occurs often after 100 days, usually during withdrawal of maintenance 

immunosuppressants. The clinical manifestations of acute GVHD usually occur on the 

skin, gastrointestinal tissues, and liver. It is staged as grade 0-4 depending on 

maculopapular rash, persistent nausea, abdominal pain and serum bilirubin 

concentrations.(63) Table 1.2 gives the National Institute of Health classification of 

stages of acute GVHD.  

Chronic GVHD usually occurs within 3 years of transplant and is likely to be 

preceded by a history acute GVHD. The clinical manifestations of chronic GVHD are the 

result of highly complex immune reactions involving both the T and B-lymphocytes, and 

involve many organs. Chronic GVHD is stage as mild, moderate and severe. It is scored 

based on global scoring and eight organ sites (skin, eyes, gastrointestinal tract, liver, 

lungs, joint and fasciae, and genital tract) are used in its calculation.(64)  

Studies have been conducted to evaluate risk factors for acute and chronic 

GVHD. Major factors associated with a higher incidence of GVHD are higher HLA-

mismatch between donor and recipients (mismatched and/or unrelated donors), sex 

mismatch between donor and recipient (female donor and male recipient have greatest 

risk), donor age (HSCT recipients that receive stem cells from younger donor have higher 

risk of GVHD) (65), high intensity conditioning regimen, prior allosensitization, prior 

donor lymphocyte infusion, stem cells source (stem cells obtained from peripheral blood 

have greater risk of GVHD, while umbilical cord have lower risk of GVHD as compared 
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to those from bone marrow) and disease stage.(16, 66-70) Acute GHVD is a significant 

predictor of higher incidence of chronic GVHD.(69) Factors associated with lower risk of 

acute GVHD are use of ATG during conditioning and chronic myeloid leukemia.(71)  

1.1.4.2.1 GVHD prophylaxis 

Effective maintenance immunosuppression therapy is needed to promote 

engraftment of stem cells and also prevent adverse effects of GVHD. Methotrexate 

(MTX) was traditionally the therapy of choice to prevent GVHD, due to its antifolate and 

thereby antiproliferative action towards T lymphocytes. With the discovery of calcineurin 

inhibitors, cyclosporine (CSA) was identified to be as beneficial as MTX(72, 73), 

however results were significantly improved when the two drugs were used in 

combination due to their synergistic activity towards T lymphocytes.(74)  

Tacrolimus (TAC) is another calcineurin inhibitor, which showed superiority in 

randomized clinical trials conducted to compare TAC/MTX vs CSA/MTX, where the 

former combination was more potent against GVHD. (75-77) However, both TAC and 

CSA have high inter-individual variability in drug PK and response, thus drug 

concentrations are routinely monitored. Further higher blood concentrations of these 

drugs are associated with increased risk to toxicities such as nephrotoxicity, 

neurotoxicity, hypertension, infections, hyperglycemia.(78, 79) Mycophenolic acid 

(MPA) is another immunosuppressive agent that is now widely used to prevent GVHD 

and has nearly replaced MTX. A retrospective meta-analysis conducted in 242 allogeneic 

HSCT recipients compared adverse clinical outcomes in patients receiving 

mycophenolate mofetil (MMF)/CSA vs historical controls of MTX/CSA. Although there 

was no significant difference in overall survival and TRM, MMF/CSA group had 
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significantly lower acute GVHD (grades II-IV) events as compared to MTX/CSA 

group.(80) Further patients receiving MMF/CSA experienced faster engraftment but 

greater risk of CMV viremia.(81) Also, a higher incidence of chronic GVHD particularly 

with gastrointestinal involvement was observed in recipients receiving MMF/CSA for 

GVHD prophylaxis.(82) There has been a debate on inclusion of MMF in GVHD profile, 

as it is shown that MMF can inhibit the graft vs tumor effect by inhibiting NK cells, 

which have a major role in this process.(83) A prospective randomized multicenter trial 

was conducted to compare sirolimus and TAC against the traditional MMF/CSA or 

MMF/TAC. Sirolimus based GVHD prophylaxis was associated with less chronic 

GVHD, gastrointestinal acute GVHD, and a lower hazard of TRM at 2 years post-

transplant (18% in sirolimus group vs 38% in CSA group). However, sirolimus use 

increases the risk of sinusoidal obstructive syndrome, and also transplantation related 

thrombotic microangiopathy when combined with CNI especially CSA.(84) Although 

studies indicate that new combination with sirolimus shows improvement in overall 

survival vs MMF/CSA, more prospective studies are needed before sirolimus becomes 

standard GVHD prophylaxis.(84-86)  

A course of rATG is commonly given pretransplant in addition to calcineurin 

inhibitors and MMF. It has been shown to reduce acute and chronic GVHD without 

significantly hindering the graft vs tumor effect in reduced intensity conditioning 

regimen.(87) Although rATG has not been shown to significantly impact the overall 

survival(88), results have shown that it significantly reduced chronic GVHD, and thereby 

improves quality of life.(89) The optimal dose of rATG within reduced intensity 
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conditioning is 7.5-10 mg/kg, however lower doses of ~4.5 mg/kg were also found to be 

effective in preventing GVHD with reduced toxicity.(90)  

1.1.4.3  Treatment Related Mortality  

Treatment related mortality is defined as death due to any cause other than 

relapse, disease progression or disease recurrence after HSCT. In the CIBMTR 2012 

report, TRM accounted for 43% of all the causes of death after unrelated donor 

transplant.(62) Although the incidence of TRM has significantly reduced with the use of 

reduced intensity conditioning in comparison to myeloablative conditioning, around 15-

30% TRM at one-year post-transplant is still observed.(88, 91-94) The main causes of 

TRM are multi-organ failure, acute and chronic GVHD, bacterial and fungal infections, 

hepatitis, veno-occlusive disease and neurologic events.(91-93, 95-97) Comorbidities 

prior to HSCT are shown to be significantly associated with post-HSCT organ toxicity 

and TRM.(98) Recipients receiving stem cells from peripheral blood experience greater 

incidence of acute GVHD and TRM as compared to those who received bone marrow 

stem cells.(99) Differences in the drugs used in reduced intensity conditioning regimen 

are also associated with risk of TRM.(25) In a study conducted in 151 patients with 

Flu/Bu and Flu/Mel reduced intensity conditioning, Flu/Mel (40%) was found to be 

significantly associated with higher TRM as compared to Flu/Bu (16%) regimen.(100) 

However a recent report by Acute Leukemia Working Party of the European Group of 

Bone Marrow Transplantation, did not show a significant difference in a 2 year TRM 

(p=0.08).(101) A study was conducted in 274 patients with median age of 60 years and 

AML/MDS treated with 2Gy TBI with or without Flu. TRM at 1 year was 16% and the 

main cause of TRM was acute and chronic GVHD, infections, and grade 4 non-
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hematologic toxicities, which were mainly related to pulmonary, cardiovascular and 

hepatic dysfunction.(57) In another study, outcomes were compared in patients who 

received either Flu/Mel (a reduced intensity conditioning regimen) or Flu/cytabarabine 

and idarubicin (a nonmyeloablative regimen). Multi-organ toxicities were noted in both 

groups, with grade IV toxicities that involved the neurological, pulmonary and 

cardiovascular systems. The risk of TRM was 30% at 1 year and was significantly higher 

in patients receiving a reduced intensity conditioning regimen vs nonmyeloablative 

regimen.(102) In multiple myeloma patients receiving reduced intensity conditioning 

regimen consisting of Flu (40mg/m2/day) and Bu (3.2 mg/kg/day) for 4 days, common 

regimen related toxicities included, mild to moderate mucositis, and liver dysfunction. 

The cumulative incidence of TRM at day 100, 1 year, and 3 years was 9%, 19% and 29% 

respectively.(103) A phase II study was conducted to assess the efficacy and toxicity 

profile of bortezomib in combination with Flu and Mel as reduced intensity conditioning 

regimen in patients with multiple myeloma. Cumulative incidence of TRM at 3 years was 

25%. Non-hematologic toxicities included peripheral neuropathy, liver toxicity and 

pulmonary toxicity early post-transplant.(104) In a randomized controlled trial comparing 

Bu/Cy, and Bu/Flu reduced intensity conditioning regimen, the Bu/Cy group had 

significantly greater incidence of infection (grade 3 or higher) and gastrointestinal 

disturbances as compared to Bu/Flu group. Hepatic adverse events were similar in both 

groups. Two year TRM was around 18% in Bu/Cy group and 34% in Bu/Flu group.(105) 

Thus the above studies show that ~20-25% of TRM at one year is observed even with 

reduced intensity/non-myeloablative regimens. There are several factors associated with 

organ toxicities and infections, however systemic exposure and pharmacokinetics (PK) of 



 
 

 18 

drugs used in conditioning and post-grafting immunosuppression are also important 

factors associated with TRM.(91, 95, 106) An important issue that is still under 

appreciated is that patients receiving same doses of drugs show substantial variations in 

clinical response.   

1.1.5 Factors Associated With Pharmacokinetics (PK), Pharmacodynamics (PD) 

and Pharmacogenomics (PG) Variability of Drugs used in Conditioning 

Regimen 

 

As described in the section 1.1.4 there are significant differences in response to 

different reduced intensity conditioning regimens. However, variability in response is 

also observed within transplant recipients receiving the same conditioning agents. 

Pharmacokinetic variability of the drugs influences its systemic exposure and PD 

variability influences the effect of drug on its target. Genetic variability in genes involved 

in both PK and PD may also influence both systemic exposure and response to 

conditioning agents.  

1.1.5.1 Purine Analogues 

As described in the section 1.1.3.1 purine analogues most commonly used in 

HSCT are Flu and clofarabine. Pharmacokinetic studies of F-ara-A conducted after 

intravenous administration of Flu, have shown that nearly 40-60% of the drug is renally 

eliminated mainly as unchanged F-ara-A.(107-110) F-ara-A demonstrates PK variability 

of ~25-30%(111-114), however there are limited studied that have identified sources of 

this variability. F-ara-A exposure is significantly higher in patients with mild to moderate 
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renal impairment.(108) A population PK study showed that body surface area 

significantly influenced F-ara-A (the active component of Flu) clearance (Cl) and volume 

of distribution.(114) Variability in PK also affects drug response (PD and outcomes). A 

study conducted by Long-Boyle et al, showed that higher F-ara-A plasma concentrations 

when given with Cy/TBI were associated with greater TRM.(111) Other studies 

conducted to associate Flu exposure and clinical outcomes following HCT have shown 

inconsistent results.(112, 113, 115, 116)  

Clofarabine is very recently tested for its use in reduced intensity conditioning-

HSCT and hence there is limited data available on factors associated with variability in 

clofarabine PK-PD. Clofarabine PK was studied in 62 HSCT recipients. Clofarabine Cl 

was significantly associated with renal function, where patients with lower GFR 

(calculated using MDRD equation) had lower Cl and thereby higher dose normalized area 

under curve (AUC). Further, higher dose normalized AUC was significantly associated 

with greater risk of acute kidney injury.(117) In another study conducted in 16 patients 

(adults and pediatrics) a 2-3 fold variability in clofarabine AUC and Cl was observed. 

None of the clinical covariates tested (CrCl, serum creatinine, BUN, age, body weight) 

significantly correlated with clofarabine Cl, AUC, Cmin and Cmax.(118) Currently no 

data are available for pharmacogenomics of Flu or clofarabine.  Polymorphisms in genes 

potentially involved in bioactivation and transport such as NT5C2, NT5E, SLC28A3, 

SLC29A1, SLC29A2, DCK, ABCG2, ABCC4 may influence PK and/or PD. 

1.1.5.2 Alkylating Agents 

As described in the section 1.1.3.2 the most common alkylating agents used in reduced 

intensity conditioning-HSCT are Cy, Bu, Mel and treosulfan. Inter-individual variability 
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in PK of Cy is attributed to complex biotransformation steps to form the active metabolite 

that is governed by highly variable cytochrome P450 (CYP) enzymes (mainly CYP2B6, 

CYP2C9, CYP2C19 and CYP3A4). Figure 1.3 shows the PK pathway of Cy. 

Cyclophosphamide Cl is explained as sum of inducible (Cy is an auto-inducer via 

CYP2B6) and non-inducible mechanisms.(119, 120) In a study conducted in HSCT 

recipients, inter-individual variability in non-inducible Cl, inducible Cl and volume of 

distribution was 52.2%, 200% and 18% respectively.(33) Genetic polymorphisms 

especially CYP2B6 have a significant influence on Cy PK. In vitro and in vivo studies 

have demonstrated enhanced CYP activation in CYP2B6*6 carriers as compared to wild 

type.(121) However the influence of this variant is contradictory when tested at a clinical 

setting. Other CYP2B6 variants tested towards Cy metabolism include CYP2B6*4, *5, *8 

and *9, however their influence on Cy metabolism still needs confirmation.(122) Similar 

results are also shown by CYP2C19*17 allele.(123) Cy undergoes Phase II metabolism 

and polymorphisms in glutathione-S-transferases (GSTA1, GSTP1) and aldehyde 

dehydrogenase (ALDH1A and ALDH3A) have also been studied, however its influence 

was not found significant for towards Cy variability.(124) Cy metabolism is also 

significantly influenced by concomitant drug administration. Thiotepa is a CYP2B6 

inhibitor and its co-administration prevents activation of Cy to its active metabolite.(125) 

A significant interaction is also observed between Bu and Cy metabolism. In HSCT 

recipients randomized to receive Bu/Cy/TBI or Cy/TBI, the drug to metabolite ratio was 

significantly higher in recipients of Bu/Cy/TBI as compared to those who only received 

Cy/TBI, suggesting significant inhibition of Cy activation.(126) But this combination is 

not commonly used in reduced intensity regimens. Clinical factors such as age, body 
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weight(127) and renal impairment(128) have also influenced Cy metabolism. 

Cyclophosphamide itself is inactive, and thus results associating Cy exposure to clinical 

outcomes are inconsistent. It is still unclear as to which is the most important metabolite 

marker to predict outcomes associated with Cy. Metabolism of Cy was found to be highly 

variable and higher Cy plasma exposure was associated with increased sinusoidal 

obstruction syndrome, bilirubin elevation and TRM.(129) Some other studies have 

focused on 4-HCy and CEPM metabolites to predict outcomes, however results are not 

consistent or reproducible so as to use them as clinically as biomarkers.(130-133) Plasma 

PM concentrations have been studied in few studies, however no study is conducted to 

test its association to outcomes in HSCT recipients receiving reduced intensity 

conditioning. Similar to Cy, high inter-patient and intra-patient variability in Bu PK 

variability is observed.(134) Bu is extensively metabolized in liver by Phase II enzymes 

and only ~2% is recovered unchanged in the urine. While glutathione-S-transferase 

(GST) alpha 1 is a major contributor, GSTM1 and GSTP1 are minor contributors towards 

metabolism. The PK pathway of Bu is shown in  Figure 1.4.  In a population PK study 

conducted in patients, ~28% inter-individual variability was observed for Bu oral Cl and 

a 9.4% intra-individual variability. Variability in oral Cl was partly explained by 

phenytoin co-administration, weight and ALT.(135) Bu when administered orally shows 

very high variability in absorption that affects outcome.(136-140) Age was also found to 

impact Bu PK, where older patients had significantly higher Cl than younger.(141) 

Polymorphisms in GSTA1 have shown to influence Bu Cl clinically although not 

routinely clinically tested.(142-144) In a population PK study conducted in 36 allogeneic 

HSCT patients, a 15% decrease in Cl was observed in carriers of GST1A variant 
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(rs3957356) as compared to wild type following intravenous Bu administration.(143) 

Variability in PK of the Bu is associated with differences in outcomes. Higher Bu 

exposure is associated with veno-occlusive disorders. (145) In 75 children receiving IV 

Bu as part of reduced intensity conditioning regimen, higher Bu steady state 

concentration (Css) (<600 ng/mL) was associated with higher incidence of TRM 

(p<0.001) and grades 2-4 GVHD (p=0.04).(146) Several studies have been conducted, 

and support PK-controlled Bu dosing and therapeutic drug monitoring and is practiced in 

many transplant centers to control Bu plasma exposure and drug toxicity.(147-150) 

1.2 KIDNEY TRANSPLANTATION 

Chronic kidney disease is a progressive disorder characterized by glomerular 

filtration rate <60 min/min/1.73m2 for more than 3 months irrespective of presence or 

absence of kidney damage.(151) The end stage (stage 5) of kidney (renal) disease  

(ESRD) is characterized by GFR  <15 ml/min and necessitating need for kidney 

replacement therapy i.e. either dialysis or transplantation. The number of patients in 

United States reported with ESRD in 2012 was ~114,000. Of these, ~66.3% were Whites, 

27.3% were Blacks, 5.1% Asians and 14. 8% were Hispanics. The primary causes of 

ESRD are diabetes (~44%), hypertension (~28%), glomerulonephritis (~8%), cystic 

kidney disease (~2%) and urological disease (~0.5%).(152)  

Despite advances in treatment of ESRD, kidney transplantation still remains the 

most optimal treatment for these patients. In comparison to dialysis, transplantation offers 

better quality of life and also higher survival rates.(153) In 2012, 17305 kidney 

transplants were performed in United States, of which 65% were from deceased donors.   
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Development of acute rejection, adverse effects of immunosuppressant, chronic graft 

dysfunction, all of which may lead to kidney graft loss are some of the major barriers that 

still persist despite effective transplantation. Nearly 18% of patients return to dialysis, 

require re-transplantation or die within one year of transplant.(153) 

1.2.1 Mechanism Of Action of Immunosuppressants Used In Kidney 

Transplantation 

Soon after the kidney transplant, the recipient’s immune system recognizes the 

transplanted donor kidney as a foreign body and elicits an immune response against it and 

prolonging the survival of allografted kidney is key challenge. Kidney transplant 

recipients receive life-long immunosuppressive therapy to prevent rejection, and improve 

graft survival rates. Extensive research has been conducted to optimize 

immunosuppressive therapy that can provide adequate immunosuppression but also 

prevent toxicity from chronic and prolonged use of these drugs. Immunosuppression is 

currently broadly classified as either induction or maintenance therapy.   

1.2.1.1 Induction Therapy  

Induction therapy includes intravenous administration of high dose 

immunosuppressive antibodies given at the time of transplant and around time of organ 

perfusion to prevent acute rejection during early post-transplantation period. Adequate 

induction immunosuppression is essential to improve long-term graft survival. In high 

risk patients induction therapy, may also be started perioperatively for additional 

immunosuppression and is usually given for 3-14 days post-transplant.(154) The type of 

induction agents are divided based on if their mechanism includes lymphocyte depletion 
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(ATG, alemtuzumab) or not (basiliximab, daclizumab). The most recent report suggests 

that 62% of induction therapies used in USA, mainly comprise of T lymphocyte depleting 

agents.(152) The primary purpose of induction therapy is to prevent allograft loss, 

decrease the severity of acute graft rejection, prevent delayed graft function and thereby 

improve survival. Traditionally high dose corticosteroids were used for induction therapy, 

but over years, the therapy has advanced to targeted monoclonal and polyclonal 

antibodies that have shown to be more effective agents. The choice of induction therapy 

is guided by recipient’s immunological risk, comorbidities, financial burden and choice 

of maintenance immunosuppression.(154) 

1.2.1.1.1 Lymphocyte depleting agents 

In kidney transplant, rATG is the most widely used immunosuppressive in 

induction therapy. rATG is a polyclonal antibody that targets a variety of T cell surface 

antigens such as CD+2, CD+3, CD+4, CD+8, CD+16, CD+25 and CD+45 and leads to 

profound depletion of T lymphocyte within 24 hours of administration and lasts for 

several days to weeks.(155) It can also induce cascade of events leading to B cell and 

plasma cell apoptosis through caspace pathways. It also has specificity for cytokine 

receptors, adhesion molecules and human leukocyte adhesion.(155) Outcomes observed 

from different randomized clinical trials suggest that in comparison with other non-

depleting induction agents, rATG is more beneficial in prevention of acute rejection in 

high-risk patients.(156) 

Alemtuzumab is a humanized monoclonal antibody specific to CD52 antigen that 

is present on all lymphocytes. It is a T lymphocyte depletion agent and was initially 

approved by FDA for treatment of chronic lymphocytic leukemia. In a large randomized 
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controlled trial kidney transplant recipients were followed up to 5 years. Although single 

dose alemtuzumab provided similar graft function and survival rates, alemtuzumab was 

associated with less acute rejection and long-term infection.(157) It is superior to non-

depleting induction agent, basiliximab, in reducing the incidences of biopsy proven acute 

rejection.(158-160) However the toxicity profile is not significantly different between 

alemtuzumab and the non-depleting counter-parts.(160)  

1.2.1.1.2 Non-Lymphocyte depleting agents:   

Basiliximab is a non-depleting IgG1 monoclonal antibody and is classified as IL2 

receptor (IL2R) antagonists. It is a chimeric antibody formed out of variable domains of 

mouse antibody and the constant region made up of human immunoglobulin. It is most 

active against the alpha chain of interleukin receptor. It is not a T lymphocyte depleting 

agent, but alters T lymphocyte response to antigens. It is second to ATG in the frequency 

of its use in induction therapy.(153)  

1.2.1.2 Maintenance Immunosuppression 

Maintenance immunosuppression is life long therapy given to all kidney transplant 

recipients that consist of a combination of drugs that have different mechanisms of 

immunosuppression. Immunosuppressants used in maintenance therapy belong to one of 

the four classes; calcineurin inhibitors (CSA and TAC), antimetabolites (MPA acid and 

azathioprine (AZT)), mTOR inhibitors (rapamycin, sirolimus) and corticosteroids 

(prednisone).  

Cyclosporine and AZT are older immunosuppressant and are largely replaced by 

TAC and MPA due to its superior efficacy. Currently the most preferred combination 
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used in kidney transplant recipients is TAC and MPA with or without corticosteroids. 

(153) Corticosteroids are currently used in early post-transplant, however more and more 

transplant centers are considering minimization or complete avoidance due to high 

number of side effects associated with it. (161) Rapamycin is also not extensively used 

(<6% of transplant recipients) as primary immunosuppressants, and secondarily 

considered in patients that experience CNI related toxicities. (153, 162) The following 

section is focused on TAC, CSA, MPA and AZT since these drugs are most commonly 

considered for routine therapeutic monitoring due to its high variability in exposure of 

these drugs.  

1.2.1.2.1 Tacrolimus  

Tacrolimus is an immunosuppressant used in patients undergoing solid organ 

transplantation, such as kidney, liver, pancreas, lung, and heart. It is also used in other 

diseases such as autoimmune diseases and hematopoietic cell transplantation. According 

to the most recent annual report of the U.S. Organ Procurement and Transplantation 

Network (OPTN) and the Scientific Registry of Transplant Recipients (SRTR), 85% of 

all kidney and liver transplant recipients receive TAC and MPA as their initial 

immunosuppression agents.(153) Tacrolimus is preferred over CSA as the calcineurin 

inhibitor in most transplants centers, as it is associated with better allograft survival in 

kidney transplant recipients.(163-165) Tacrolimus inhibits calcineurin phosphatase, a 

serine-threonine phosphatase enzyme by forming a complex with immunophilins called 

FK-binding proteins. Calcineurin inhibition further prevents dephosphorylation of 

NFATc (nuclear factor of activated T cells), thereby suppressing the transcription of 

interleukin-2 and other cytokines involved in the immune response and activation of T 
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lymphocytes.  

1.2.1.2.2 Cyclosporine  

Cyclosporine is another calcineurin inhibitor used as part of maintenance 

immunosuppression after organ transplantation. Cyclosporine inhibits T-cell activation 

similar to TAC, where it binds to the immunophilin cyclophilin, forming a CSA-

cyclophilin complex that inhibits calcineurin phosphatase. As mentioned earlier, CSA is 

largely replaced by TAC, and <2% of patients received CSA as post-transplant 

immunosuppressive therapy.(153) 

1.2.1.2.3 Mycophenolic acid  

Mycophenolic acid (mycophenolate mofetil, mycophenolate sodium) is a potent 

antiproliferative immunosuppressive agent used in combination with a calcineurin 

inhibitor with or without prednisone for maintenance immunosuppressive therapy. It has 

largely replaced azathioprine (AZT) in organ transplantation as it was demonstrated to be 

superior in randomized trials.(166) MPA blocks DNA synthesis by non-competitive and 

reversible inhibition of ionosine monophosphate-5′-dehydrogenase (IMPDH) types 1 and 

2 and thereby inhibiting proliferation of T and B-lymphocyte.  

1.2.1.2.4 Azathioprine  

Azathioprine is an imidazolyl derivative of mercaptopurine and a purine 

antimetabolite. Although largely replaced by MPA as an immunosuppressant in 

transplant recipients, it is still used in patients whose contemporary immunosuppressants 

have failed. Azathioprine is a prodrug and gets converted to several metabolites of which 

6-mercaptopurine and 6-thioguanaine are active. Both the metabolites are responsible for 
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inhibiting purine synthesis and thereby halting cell proliferation and differentiation.(167) 

1.2.2 Adverse Outcomes In Kidney transplantation  

Improvement and introduction of new immunosuppressive therapies, and use of 

induction therapies in high risk kidney transplant recipients has dramatically reduced 

short term graft rejection, however improvement in long term graft function and overall 

survival yet remains as a challenge. 

The adverse outcomes of kidney transplant include viral infections, malignancy 

and renal dysfunction.(168) Due to these adverse outcomes, approach of minimization is 

considered that often leads to loss of efficacy. Figure 1.5 (adapted from(169)) shows 

timing of complications and their approximate timing after kidney transplantation.  

1.2.2.1 Graft Rejection 

Rejection in transplant recipients is the result of humoral and/or cell-mediated 

response elicited by the recipient’s immune system against the foreign antigens presented 

on the donor tissue. Depending on the timing of the occurrence of rejection, it is 

classified as either hyperacute, accelerated acute, acute, or chronic rejection. Hyperacute 

rejection usually occurs within the first 24 hours of transplant and is caused by pre-

existing antibodies already circulating in the host. Acute rejection usually begins after a 

week of transplantation and its risk is highest in the first 3 months of transplantation and 

occurs in 10% of recipients. It is usually T cell mediated. Chronic rejection is defined by 

slow progressive graft dysfunction. There was a significant heterogeneity in 

characterizing the allograft biopsies obtained to make rejection diagnosis, which led to a 
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standardization of rejection classification, called the Banff classification. The most 

current Banff 07’ classification is presented in Table 1.3 

There are several factors that are associated with graft rejection following kidney 

transplant 

1. Donor type: Recipients receiving kidney from a deceased donors have poorer acute 

rejection free survival and graft survival at one year post-transplant than a living donor 

kidney.(170) 

2. Race: African Americans have poorer graft survival as compared to Caucasians and 

Asians.(170) 

3. Age: Recipients receiving kidney from older donors have greater risk of acute rejection 

and graft failure. Kidneys from older patients are more immunogenic, are at higher risk of 

ischemia-reperfusion injury and therefore are associated with higher incidence of acute 

rejection.(171, 172) On the other hand, due to weaker immunity in older kidney 

transplant recipients, risk of acute rejection is lower compared to younger recipients.(173, 

174)  

4. Donor specific anti-HLA antibodies: The number of individuals on waitlist for kidney 

transplant is increasing every year. The wait time increases further in order to find an 

ideal HLA and compatible donor. The presence of high levels of donor specific anti-

HLA-antibodies at the time of transplant is predictive of acute ABMR.(175) Therapy 

with IVIG and rituximab are often used for desensitization in recipients with donor 

specific anti HLA antibodies. In randomized placebo controlled trials, desensitization has 

shown to improve transplant outcome.(176)In addition ABOi incompatibility leads to 

hyperacute rejection.  
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5. Other risk factors include dialysis time, comorbidities, high panel reactive antibody 

status and choice of immunosuppressants. 

1.2.2.2 Adverse Outcomes 

1.2.2.2.1 New onset diabetes (NODAT):  

New onset diabetes is a metabolic complication, which occurs in 4-25% of kidney 

transplant recipients and usually occurs early post-transplant.(177) It leads to reduced 

graft function and increased risk of mortality and morbidity. Risk factors for NODAT 

include older age, certain ethnicities (Hispanic, African America, South Asians have 

higher risk), genetic background, family history of diabetes mellitus, underlying 

polycystic kidney disease, glucose intolerance, obesity and hepatitis C infections. 

Etiology of NODAT is multifactorial but prolonged use of immunosuppressive drugs also 

are closely associated with its onset.(178) Corticosteroids and calcineurin inhibitors are 

strongly associated with incidence of NODAT. A large retrospective analysis conducted 

in ~25000 patients, estimated a 16.2% overall cumulative incidence of NODAT within 3 

years of transplant. In patients who were discharged with steroids, the odds of developing 

NODAT were 42% higher as compared to those without steroids. Prednisone has been 

shown to increase insulin resistance, and thereby increased insulin demand to maintain 

glucose tolerance. Steroid withdrawal protocols have been successful in reducing 

NODAT incidences.(161, 179, 180) Calcineurin inhibitors block IL2 pathway as their 

major immunosuppressive mechanism, however, this blockage has an impact on 

transcriptional regulation of insulin gene expression in the pancreatic beta cells. 

Cyclosporine is less diabetogenic as compared to TAC.(181, 182) Patients who received 
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TAC/MMF had 25% greater odds of NODAT as compared to those who receive 

CSA/MMF maintenance therapy.(183) Life style changes, pre and post-transplant 

screening of blood glucose, corticosteroid dose reduction or avoidance, and alterations in 

immunosuppressive therapies are necessary to decrease risk of NODAT.(178) 

1.2.2.2.2 Hypertension  

Hypertension post-kidney transplantation is common (85%) and varies among 

different populations. Factors such as pre-transplant hypertension, males, African 

American race, higher body weight significantly increase the risk of post-transplant 

hypertension.(184) Several studies have examined relationship between hypertension and 

graft survival rates. In a large collaborative study conducted in ~30,000 kidney transplant 

recipients over 7 years, increased systolic and diastolic blood pressure were significantly 

associated with a graded increase in subsequent graft failure.(185) Donor factors such as 

older age, pre-transplant hypertension, poor allograft quality have been associated with 

hypertension.(184) Genetic polymorphisms in genes encoding ABCB1, CYP3A5, and 

APOL1 in both donor and recipients have been associated with increased risk of 

hypertension.(186-190) Maintenance immunosuppression drugs used also increase the 

risk of hypertension. Use of corticosteroids in particular is strongly correlated with 

hypertension. Further studies have proposed early steroid withdrawal in order to decrease 

the risk of post-transplant cardiac complications such as hypertension.(191-194) 

Calcineurin inhibitors are also associated with a higher risk of hypertension, and rates of 

hypertension have doubled from 40% to 70-90% after the introduction of CNI into 

maintenance therapies.(195, 196) Multiple mechanisms such as endothelial dysfunction, 

increased vascular tone, sodium retention, allograft fibrosis may induce CNI associated 
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hypertension.(196) Randomized controlled studies have shown that TAC based 

maintenance therapy is associated with lower incidence of hypertension as compared to 

CSA.(197-199) 

1.2.2.2.3 Nephrotoxicity  

Studies in animals and early human have reported that CSA induces necrosis of 

smooth muscles in the afferent renal arterioles, and reduces glomerular filtration rate due 

to vasoconstriction of renal arterioles. The major mechanisms of CSA induced 

nephrotoxicity are hypertension, vascular endothelial dysfunction, activation of renin-

angiotensin system, enhanced sympathetic tone and increase in reactive oxygen species 

(oxidative stress).(200) Significant research is underway to identify prospective 

biomarkers associated with CNI nephrotoxicity.  

1.2.2.2.4 Infections  

Infections due to over immunosuppression are a major cause of morbidity and 

mortality post-kidney transplant. In a retrospective study conducted in 80 kidney 

transplant recipients, frequent infectious episodes observed (78%) after kidney transplant 

with an average of 3 per patient associated with over immunosuppression.(201) The 2013 

atlas on ESRD, reported that 14.4% of patients were hospitalized due to infections in first 

year of kidney transplant. The most common form of infection was urinary tract infection 

followed by septicemia and post-operative infections. 

(http://www.usrds.org/2013/pdf/v2_ch7_13.pdf) A retrospective cohort study conducted 

in 46,000 adults kidney transplant recipients, showed that infections due to bacteria, viral, 

fungal or parasites occurred at the rate of 45.0 per 100 patients followed up to 3 years 
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post-transplant. The most significant factors associated with 15% increase in the rate of 

any type of infection was patient age > 65 years, females recipient, recipient’s Hispanic 

ethnicity, diabetes as a cause of end stage renal disease, living donor source, panel 

reactive antibody >10%, pretransplant time on dialysis, use of CSA and mTOR inhibitors 

(rapamycin) in maintenance immunosuppression, HBV and HCV serological status and 

pre-transplant positive donor-recipient CMV serology.(202)  

1.2.2.2.5 Hematologic toxicities 

Post-transplant hematologic toxicities such as anemia, leukopenia, and 

thrombocytopenia are frequent side effects. Less common toxicities are passenger 

lymphocyte syndrome, post-transplant erythrocytosis, thrombotic microangiopathy, post-

transplant lymphoproliferative disease and hemophagocytic syndrome have also been 

described. Certain hematologic malignancies have been associated with MPA use. Higher 

MPA concentrations have been associated with increased risk of leukopenia and anemia; 

however, these observations are not consistent across studies.(203-205)  

1.2.2.2.6 Other side effects 

Steroid use is associated with osteoporosis, weight gain, hypertension, 

hyperlipidemia and hyperglycemia.(173). Sirolimus is associated with gastrointestinal 

discomfort, hypercholesteremia, increased proteinurea and poor wound healing.(173) 

Skin cancer is another major problem in kidney transplant recipients of which the most 

common form are squamous cell carcinoma, followed by basal cell carcinoma. (206) 

Chronic use of immunosuppressants induces the oncogenic properties of factors causing 

cancer such as UV radiation.  
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1.2.3 Pharmacokinetics, Pharmacodynamics and Pharmacogenomics Variability 

Of Maintenance Immunosuppressive Drugs Used In Kidney Transplantation 

Kidney transplant recipients are on life long maintenance immunosuppressive therapy, 

and the most commonly used drugs (described in section 1.2.1.2) demonstrate a very high 

variability in systemic drug exposure and outcomes. Several studies have been conducted 

to identify factors associated with variability and thereby find out ways to optimize 

therapy. Variability in exposure of drugs used in induction agents have not been 

extensively studied for kidney transplant recipients, and hence not discussed in the 

following section.  

1.2.3.1.1 Tacrolimus and cyclosporine 

 Tacrolimus undergoes extensive metabolism primarily in the liver and, to a lesser extent, 

in the small intestine with CYP3A4 and CYP3A5 playing a major role in 

metabolism.(207) At least 15 active and inactive TAC metabolites have been 

identified.(208, 209) On oral administration, around 20-30% of the drug is bioavailable 

with high interindividual variability (6%–89%).(210, 211) Tacrolimus also shows high 

interindividual variability in Cl (3–35 L/hour) and has a narrow therapeutic index, which 

significantly affects systemic exposure and the degree of immunosuppression.(212) 

Therefore tacrolimus trough concentrations are routinely therapeutically monitored and   

typical TAC trough blood concentration targets in the United States kidney transplants 

are 8–10 ng/mL in the first 3 months and 6–8 ng/mL for 3-6 months post-transplantation, 

depending on the indication and time post-transplantation.(213-217) Low blood 
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concentrations have shown to increase the risk of graft rejection, graft loss, and/ or 

treatment failure and high concentrations are associated with a greater risk of toxicity, 

including hypertension, infections, nephrotoxicity, hyperglycemia, neurotoxicity, and 

malignancy.(215, 218-220)  

Similar to TAC, CSA also has a narrow therapeutic index and is mainly 

metabolized by intestinal and hepatic CYP3A4 and CYP3A5(221). The mean 

bioavailability of the oral formulation of CSA is about 30%, with high interindividual 

variability. (222, 223) Therapeutic monitoring of CSA trough blood concentrations is 

standard of care because of the highly variable CSA Cl and the strong association 

between troughs and clinical outcomes.(224, 225) Figure 1.6 shows the metabolic 

pathway of CSA and TAC 

Tacrolimus pharmacogenomics have been extensively studied in the kidney 

transplant population and the role of non-functional CYP3A5*3 (rs776746) variant is very 

well established.(212, 226-229) The allele frequency of CYP3A5*3 variant is 

significantly different by race where 94% of whites; 70% of Japanese, Chinese, and 

Koreans; and about 18% of African Americans carry the CYP3A5*3.(230) Kidney 

transplant recipients who were CYP3A5 expressers had 2-fold higher Cl than non-

expressers, and the CYP3A5*3 genotype explained 25% of the variability in Cl.(231) The 

effect of CYP3A4 variants have also been evaluated for its effect on TAC PK but their 

effects are small and inconsistent. CYP3A4*1B (rs2740574, -392A>G) is a genetic 

variant in the promotor region of the CYP3A4 gene associated with higher CYP3A4 

expression.(232, 233) CYP3A4*22 (rs35599367) is another variant in intron 6 associated 
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with reduced CYP3A4 activity and in few studies tacrolimus concentrations significantly 

increased in carriers of this variant.(234-236) Another gene associated and studied 

towards tacrolimus metabolism is P-450 oxidoreductase (POR), and POR*28 variant 

(rs1057868, 1508 C>T) is associated with increased CYP3A activity, thereby enhancing 

metabolism. (237) Kidney transplant recipients carrying POR*28 have lower troughs and 

increased dose requirements. The influence of ABCB1 transporters has also shown 

conflicting results. Some studies have shown that an ABCB1 haplotype consisting of 

three variants, rs1045642 (3435 C>T) in exon 26, rs2032582 (2677 C>T) in exon 21, and 

rs1128503 (1236 C>T) in exon 21, affects TAC transport.(238) Some studies have shown 

a reduction in TAC concentrations, whereas others have shown no effect. Based on the 

available pharmacogenetic literature, Clinical Pharmacogenomic Implementation 

Consortium (CPIC) guidelines for TAC recommend the starting dose by 1.5 to 2 times to 

the recommended starting dose in CYP3A5 intensive or extensive metabolizers.(239) 

However the guidelines do not recommend adjusting the TAC dose based on other 

clinical factors and/or co-administered drugs, that are also important factors influencing 

trough concentrations.  

Effects of CYP3A4 and CYP3A5 variants on CSA metabolism are conflicting. 

Some studies have shown no effect of CYP3A5*3 variant(240, 241), whereas other data 

suggest lower dose-adjusted trough concentrations and higher CSA dose 

requirements.(242, 243) The CYP3A4*22 variant has been recently studied towards CSA, 

showing that carriers may have lower CSA Cl and higher troughs, though the effect was 

small. (235, 244-246)  
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1.2.3.1.2 Mycophenolic acid 

Mycophenolic acid when administered orally undergoes intestinal and hepatic 

first pass metabolism via uridine diphosphate-glucuronosyltransferases (UGTs) (1A1, 

1A7, 1A8, 1A9, 1A10, and 2B7).(247, 248) Mycophenolic acid-7-O-glucuronide (MPAG) 

is the major metabolite formed in liver by UGT1A9 and in the intestine by UGT1A8 and 

UGT1A10.  The acyl form of MPAG (Ac-MPAG) is a minor and active metabolite 

whose formation is mediated mainly by UGT2B7.(248, 249) Mycophenolic PK pathway 

is shown in Figure 1.7.  

Pharmacogenomics of MPA has been focused mainly on the influence of SNPs in 

enzymes (UGT1A9, UGT1A8, UGT1A10, and UGT2B7) and transporters (MRP2, 

SLCO1B1 and SLCO1B3) on PK. (250) UGT1A9 -275T>A (rs6714486) and -2152C>T 

(rs17868320) are promoter region variants that have been most studied with respect to 

MPA PK.(251, 252) Although UGT1A9 variants have been evaluated in several studies, 

their effects have not been consistently replicated. The association between MPA 

exposure and clinical outcomes is weak or absent and hence therapeutic drug monitoring 

of MPA is not performed in all centers(248) Variants in the pharmacodynamic markers 

such as IMPDH1 and IMPDH2 have been also evaluated toward rejection and 

toxicities.(253)  

1.2.3.1.3 Azathioprine 

Azathioprine is a prodrug non-enzymatically reduced to mercaptopurine and 

further activated to thioinosine monophosphate (TIMP) by HGPRT (hypoxanthine-

guanine-phosphoribosyl transferases). Thioinosine monophosphate is then converted to 
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6-thioguanine nucleotides (6-TGNs) and 6-methyl mercaptonucleotides (6-MeMPNs). 6-

thioguanine nucleotides gets incorporated into the growing DNA strand, and 6-MEMPNs 

inhibits purine synthesis. Mercaptopurine is inactivated by two major pathways, one 

mediated by TPMT, where mercaptopurine is inactivated to 6-methyl mercaptopurine (6-

MeMP), and the other route is mediated by xanthine oxidase, which converts 

mercaptopurine to 6-TU (6-thiouric acid).(254) Figure 1.8 shows the AZT metabolic 

pathway. Higher AZT exposure is associated with several adverse effects, including bone 

marrow depression and gastrointestinal issues (nausea, vomiting, and hepatotoxicity). 

Dose-dependent toxicities such as leukopenia and thrombocytopenia are also observed 

and are reversed by dose-reduction or temporary cessation of therapy. Some individuals 

develop severe, life-threatening hematologic toxicity and require discontinuation of 

therapy. Variants in the gene-encoding enzyme TPMT lead to varying functional activity 

of the enzyme and are the main factors of variability in AZT exposure. Several variants 

such as TPMT*2 (238G>C), *3A (460G>A and 719A>G), *3B (460G>A), *3C 

(719A>G), and *4 (626-1G>A) have been identified that responsible for reduced or 

severely deficient TPMT enzyme activity.(255) CPIC guidelines for AZT recommend 

considering an extreme dose reduction or alternate immunosuppressant in kidney 

transplant recipients with low or deficient TPMT activity.(256) 

1.3 DISSERATION MOTIVATION AND OBJECTIVE 

Based on the literature review for chemotherapy used in HSCT and 

immunosuppressants in kidney transplant in sections 1 and 2, it is evident that wide inter-

patient PK-PD variability are major barriers in drug efficacy and toxicity. Reduced 
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intensity conditioning/nonmyeloablative regimens used in HSCT have significantly 

contributed towards decreasing treatment related toxicities and improved survival after 

HSCT. However, TRM still accounts for ~20% of deaths at 1 year, and nearly ~50% of 

recipients develop acute GVHD by 6 months. Significant progress has been made in 

improving Bu therapy in myeloablative conditioning through individualized dosing. 

However there are limited examples for other agents such as Flu and Cy, which are 

widely used in reduced intensity conditioning regimens.  

In kidney transplantation there is a persistent ongoing effort to balance 

immunosuppression so as to prevent both graft rejection and drug toxicity in each 

recipients of kidney transplant. Routine therapeutic drug monitoring is conducted for 

CSA, TAC, however in some patients, a number of dosage changes are required to 

achieve the therapeutic blood concentration range. This method of trial and error 

indicates that a large part of variability in exposure and response still remains 

unexplained. Thus there may be additional genetic (SNPs, gene expression) and clinical 

factors that further explain variability. Robust models need to be built to achieve the 

correct first dose in patients, taking into account PK, PD and PG factors that could 

influence an individual’s drug exposure and response apriori.  

The objective of my thesis was to develop models and identify biomarkers that 

could be used to personalize drug therapies in transplantation using population 

pharmacokinetic, pharmacodynamic and pharmacogenomic approaches.  

Chapter 2 in the dissertation describes a population PK study of Flu conducted in 

HSCT patients to develop a F-ara-A Cl model and develop a personalized dosing 

equation using clinical factors. We further tested if model-predicted Cl and AUC are 
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associated towards adverse clinical outcomes in an independent population. 

Chapter 3 in the dissertation describes a PK study conducted to evaluate an 

association of PM exposure (AUC) to TRM. In order to explain variability in PM kinetics 

we developed a population PK model in HSCT to identify significant covariates.  

Chapter 4 in the dissertation describes development of a genotype guided dosing 

equation of TAC in African Americans. We developed a population PK based Cl model 

taking into account both clinical and genetic factors, to predict an individuals TAC 

apparent oral Cl. Predicting the individuals Cl would then help to estimate the dose to 

achieve the desired therapeutic TAC trough concentrations.  

Chapter 5 in the dissertation describes a modern cutting-edge approach of whole 

transcriptome gene expression measurements through RNA sequencing to identify novel 

biomarkers in kidney transplant recipients. We analyzed association of changes in gene 

expression over time from pretransplant baseline with MPA trough concentrations, 

IMPDH activity and clinical outcomes. This approach may prove to be more accurate and 

robust than monitoring highly variable MPA trough concentrations and IMPDH activity 

to predict drug exposure and response. 

Chapter 6 in the dissertation is the conclusion of the thesis work and future directions.  

The thesis work is an effort to promote change in clinical practice from a one-size 

fit all approach to precision medicine. Future prospective testing of the developed models 

and identified biomarkers would help confirm the importance of the current work and 

improve therapy in transplantation.  
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Table 1.1:  Common reduced intensity conditioning regimens used in United States  

 
Conditioning Regimen No. of HSCT recipients (%) 
Flu/Bu ± other 631 (33) 

Flu/Mel ± other 509 (27%) 

Flu/Cy/TBI ± other 260 (11%) 

Flu/TBI ± other 170 (9) 

Flu/CY ± other 155 (8) 

TLI/ATG 69 (3) 

Other regimens  119 (6) 
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Table 1.2: Organ staging of acute GVHD  

Table adapted from (257) 
 

 

 

 

 

 

 

Stage of 
acute 
GVHD 

Skin Liver Gastrointestinal 
Tract 

0 No rash Bilirubin <2 mg/ 
dl 

None 

1 Maculopapular rash <25% of 
body surface without associated 
symptoms 

Bilirubin from 2 
to <3 mg/dl 

Diarrhea 500-1000 
ml /day, nausea, 
emesis  

2  Maculopapular rash or erythema 
with pruritus or other associated 
symptoms >25% of body 
surface area or localized 
desquamation 
 

Bilirubin from 3 
to <6 mg/dL 
 

Diarrhea >1000–
1500 ml/day 
 

3 Generalized erythroderma; 
symptomatic macular, papular 
or vesicular eruption with 
bullous formation or 
desquamation covering > 50% 
of body surface area 
 

Bilirubin 6 to 
<15 mg/dL  
 

Diarrhea 
>1500 ml/day, 
nausea and emesis  

 Generalized exfoliative 
dermatitis or bullous eruption 
 

Bilirubin 
>15 mg/dL  
 

Diarrhea 
>1500 ml/day, 
nausea and emesis, 
abdominal pain, or 
ileus 
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Table 1.3: Banff 07’ classification of rejection after kidney transplant 

Rejection Type Characteristics 
Hyperacute Acute antibody mediated rejection (ABMR) 

Type I: C4d+, acute tubular necrosis (ATN), minimum inflammation 
Type II: C4d+, leukocytes in peritubular capillaries 
Type III: C4d+, transmural arteritis  
Chronic active ABMR 
 

Accelerated 
Acute 

Borderline to mild tubulitis: No mononuclear cells in tubules or 1–4 
cells/tubular cross section interstitial inflammation: 10–50% of 
parenchyma inflamed 
 

Acute rejection 
 

T-cell-mediated rejection (TCR) 
Acute TCR Type IA: 26–50% or >50% of parenchyma inflamed & 
5–10 cells/tubular cross section  
Type IB: severe tubulitis  > 10 cells/tubular cross section; or tubular 
basement membrane destruction with > 50% inflammation  
Type IIA: mild-moderate intimal arteritis   
Type IIB: severe intimal arteritis  
Type III: transmural arteritis  
 Chronic active TCR 
 

Chronic rejection 
 

Interstitial fibrosis and tubular atrophy (IFTA) Grade I: mild Grade 
II: moderate Grade III: severe 
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Figure 1.1: Development of chimerism stages after conditioning regimen and 
transplant in allogeneic HSCT recipient 
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Figure 1.2: Activation pathway of Flu phosphate to F-ara-ATP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
NT5E: Ecto 5’ nucleotidase; SLC29A: Solute carrier family 29; DCK: Deoxycytidine 

kinase; AK:Adenylate kinase; NDK: Nucleoside diphosphate kinase 
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Figure 1.3: Pharmacokinetic pathway of cyclophosphamide 

 
 

 
 
ALDH= aldehyde dehydrogenase, CYP: Cytochrome P450, GSH=Glutathione-S-

transferases. * represents the major enzyme involved in metabolism. 
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Figure 1.4: Busulfan pharmacokinetic pathway 

 
 

 
 
 

CTH= cystathionine gamma lyase, CYP=cytochrome P450, DPEP= 

dipeptidate/cysteinylglycinase, GSH=Glutathione-S-transferases, GGH=glutamyl 

transferase, FMO=flavin containing mono-oxygenase. * represents the major enzyme 

involved in metabolism. 
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Figure 1.5: Complications after kidney transplantation  

 

 
 
The time post-transplant (x axis) describes time from transplant up to the time of graft 

rejection that is variable among kidney transplant recipients (can take several months or 

years). In general, major complications early post-transplant include hyperacute rejection, 

tubular injury and ischemia. Then weeks following the transplant, complications of acute 

rejection (cell mediated or acute antibody mediated), and acute drug toxicity and 

infections are most dominant. The complications most often observed up to 1 year of 

transplant are chronic drug toxicity, infection and recurrent disease. After the first year 

major problem is graft dysfunction mainly caused due to chronic antibody mediated 

rejection, chronic CNI toxicities, recurrent glomerular disease. (169)  
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Figure 1.6: Pharmacokinetic pathway of tacrolimus and cyclosporine 

 

 
 
CYP=CytochromeP540, PgP = P-glycoprotein. * represents the major enzyme involved 
in metabolism.  
Figure adapted from (258) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 50 

 
 
 

Figure 1.7: Pharmacokinetic pathway of mycophenolic acid 

 

 
 
MMF = mycophenolate mofetil; MPA = mycophenolic acid; MPA-Na = mycophenolic 

acid sodium; CES = carboxylesterase; MPAG = MPA-7-O-methyl glucuronide; acyl 

MPAG = acyl-7-O-methyl glucuronide; UGT = uridine diphosphate 

glucuronosyltransferase; MRP2 = multidrug resistance protein 2. * represents the major 

enzyme involved in metabolism. (259) 
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Figure 1.8: Pharmacokinetic pathway of azathioprine 

 

 
HGPRT = hypoxanthine-guanine-phosphoribosyl transferase; 

TPMT = thiopurine S-methyltransferase; XO = xanthine oxidase. * represents the major 

enzyme involved in metabolism. Figure adapted from (260) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 52 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

CHAPTER II 
 

2 PERSONALIZED FLUDARABINE DOSING TO REDUCE 

TREATMENT RELATED MORTALITY IN HSCT RECEIVING 

REDUCED INTENSITY CONDITIONING 
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2.1 INTRODUCTION 

Reduced intensity conditioning and allogeneic hematopoietic cell transplantation 

(HSCT) is commonly used in patients with preexisting comorbidities who do not qualify 

for myeloablative conditioning. Over the last decade, reduced intensity conditioning 

regimens have allowed successful transplantation of patients who are heavily pretreated, 

older or have complicating comorbidities.(261-265) Fludarabine phosphate is an 

antitumor and immunosuppressive agent, and is a critical component of most reduced 

intensity conditioning regimens in combination with other chemotherapeutics and/or total 

body irradiation (TBI).  

Fludarabine has dose-dependent toxicities.(48, 266-269) However, studies associating 

fludarabine dose and PK with toxicity and clinical outcomes are limited. (110-113, 116, 

270-272) Data in HSCT suggest that higher F-ara-A (the active component of fludarabine 

in the plasma) concentrations may be associated with greater mortality.(111) F-ara-A PK 

variability has also been demonstrated in HSCT recipients although factors leading to 

variability are poorly understood.(107, 112-115)  

Body size in m2 is the primary determinant of fludarabine doses in HSCT despite 

there being a paucity of data and lack of understanding if body size alters PK disposition 

or contributes to variability. The ASBMT guideline for chemotherapy dose adjustment in 

obese HSCT patients concluded that adjustments for weight have been mostly empiric or 

extrapolated from non-HSCT populations and was not able to provide guidelines for 

fludarabine.(273) Approximately 35-60% of the fludarabine dose is recovered in the 

urine as F-ara-A or as fludarabine hypoxanthine within 24 hours after 
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administration.(107, 108, 110, 274, 275) There is a high correlation between creatinine 

clearance (CrCl) and F-ara-A total body clearance.(108, 269) Therefore, renal function is 

a source of F-ara-A PK variability. Despite this dosing guidelines for renal dysfunction 

are limited. The recent ASBMT dosing guideline in patients with chronic kidney disease 

concluded that there are no clear dosing standards for renal impairment and that the 

available literature is insufficient.(276) Genetic variants may also contribute to PK 

variability. Important effects of variants have been observed towards cytarabine and 

gemcitabine but no data are available for fludarabine.(277-281) Our interests have 

centered on improving the safety and efficacy of conditioning regimens, through 

personalizing fludarabine dosing by accounting for clinical factors known to affect PK 

variability and to develop evidence based and validated models to guide dosing and 

reduce TRM.   

2.2 SUBJECTS AND METHODS 

2.2.1 Patients and Pharmacokinetic Data for Model Development  

Data for PK model development were obtained from 87 adult patients previously 

enrolled in a single center, prospective, observational, PK study undergoing reduced 

intensity conditioning allogeneic HSCT.(111) Subject characteristics are shown in Table 

2.1. The research was carried out according to the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) and informed consent was obtained from each 

patient. The study was approved by the Institutional Review Board and the Cancer 

Protocol Review Committee. The preparative regimen was i.v. cyclophosphamide (50 

mg/kg/day) on day-6, i.v. fludarabine 40 mg/m2/day on days -6 to -2 and TBI 200cGy 
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single fraction on day -1. An empiric dose reduction of fludarabine to 30-35 mg/m2 was 

given to 9 patients due to preexisting renal impairment per physician discretion. Patients 

who had not received intensive chemotherapy within last 6 months were administered 

equine antithymocyte globulin for 3 days. Post-HSCT immunosuppression was 

mycophenolate and cyclosporine. Fludarabine phosphate was administered i.v. over 1 

hour. Pharmacokinetic blood samples were collected with the first dose beginning 

immediately pre-dose and at 100 minutes, 2, 3, 4, 6, 8, 12 and 24 hours after start of 

infusion. F-ara-A detection and quantification in the plasma was performed with HPLC-

UV as previously described.(111) The lower limit of quantification was 10 ng/mL with 

an assay accuracy of 93.5-100.1%. Age, gender, actual body weight, height, disease risk, 

serum creatinine, total bilirubin (obtained +/-48 hours of the first dose) and serum 

albumin data (obtained +/-48 hours of the first dose) were collected. 

2.2.2 DNA Collection, Variant Selection and Genotyping  

Recipient genomic DNA was obtained pre-HSCT from peripheral blood lymphocytes. 

DNA was quantified by measuring the absorbance at 260 nm. Genes potentially involved 

in fludarabine bioactivation and transport such as NT5C2, NT5E, SLC28A3, SLC29A1, 

SLC29A2, DCK, ABCG2, ABCC4 were considered in the analysis. National Center for 

Biotechnology Information was searched for coding and promoter region variants. Our 

population was predominantly Caucasian therefore variants were identified from the 

Caucasian CEU population in the HapMap project (HapMart; schema: 

rel23a_NCBI_Build36, database: HapMap_rel23a). A total of 77 variants were identified. 

The Genetic Services Department, Sequenom, Inc., San Diego, CA, performed assay 

design and genotyping.  All variants were in Hardy-Weinberg equilibrium. Sixty-six 
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variants were monomorphic or had a minor allele frequency of less than 5% after 

genotyping and were eliminated.  Eleven variants were analyzed (Table 2.2).  

2.2.3 Population Pharmacokinetic Model Building and Identification of Covariates 

Effecting Pharmacokinetics 

F-ara-A plasma concentrations (n=768) were previously analyzed and reported. 

(111) The mean (standard deviation) of plasma concentrations at time 100 minutes, 2, 3, 

4, 8, 12 and 24 hours after the start of infusion were 711 (163), 625 (145), 460 (113), 364 

(82.5), 254 (61.7), 192 (50.0), 121 (33.3) and 57.3 (23.3) ng/mL, respectively. An 

equivalent weight of F-ara-A (MW 285) to that of fludarabine phosphate (MW 365) was 

used as an initial dose with the assumption of instantaneous and rapid conversion of the 

monophosphate form to F-ara-A in the plasma.  

Data analysis was conducted using population PK with nonlinear mixed effects 

modeling (NONMEM) (version 7.2, ICON Development Solutions, Hanover, MD, 

USA). Inspection of the PK data, model diagnostics, and covariate testing, bootstrapping 

and visual predictive check were performed using Perl Speaks Nonmem (PSN) and 

Xpose version (version 4.3.2) through Pirana workbench (2.7.2), Amsterdam, The 

Netherlands. First-order conditional estimation with interaction (FOCEI) was utilized for 

model development. Pharmacokinetic parameters estimated were typical values of 

clearance (referred to as Clpop in this paper) and volume of distribution (referred to as 

Vpop in this paper).  

Between-subject variability (BSV) was modeled exponentially to PK parameters as 

shown in equation 1. 

Pj =TVP x exp(ηj)                                                                                   (equation 1) 
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where, Pj is the parameter estimate for jth individual, TVP is the typical value of the 

parameter in a population. ηj is the estimate of deviation of individual j from the TVP and 

is assumed to be normally distributed with the mean of zero and variance of omega2 

(population variability). Residual unexplained variability (RUV) is the unexplained 

variability between the observed and the predicted value. A combined proportional and 

additive error model was chosen to describe the RUV (equation 2). 

Cobs,ij=Cpred,ij x (1+εij) + εij   (proportional and additive RUV model)  (equation 2) 

where, Cobs,ij is the jth observed concentration in the ith individual, Cpred,ij is the jth 

predicted concentration in the ith individual and εij is the residual error that is assumed to 

be independent and normally distributed with a mean zero and variance of σε
2. 

Base model and covariate selection was based upon inspection of the diagnostic plots, a 

significant decrease in the objective function value (OFV) and a physiological plausible 

relationship to PK parameter relative to competing models.  

Empirical Bayes estimates (ebe) for parameters were plotted against each 

covariate to identify the relationships between the parameters and the covariates. 

Covariates were tested for significant effects on F-ara-A Clpop using a forward inclusion 

and backward elimination procedure. In NONMEM, minimization of -2 log likelihood is 

used as a model statistic and is given by the objective function value (OFV); a measure of 

goodness of fit similar to sum of squares. Covariates were deemed statistically significant 

if their inclusion in a nested model resulted in OFV decrease ≥ 3.84 (Χ2, df=1, p<0.05) 

and their exclusion from the full model resulted in an OFV increase ≥ 6.63 (Χ2, df=1, 

p<0.01). The effect of continuous covariates; age, CrCl calculated using Cockcroft and 



 
 

 60 

Gault equation using ideal body weight (IBW) (282), height, actual body weight, IBW 

calculated using Devine formula (283), adjusted body weight calculated as IBW+0.4 

(actual body weight-IBW), body surface area (BSA) calculated using actual body weight, 

serum albumin and bilirubin were tested towards their effect on F-ara-A Clpop and 

volume in the central compartment (V1pop). Gender and genotypes were evaluated as 

categorical covariates. Genotypes were tested as 3 categories (homozygous for major 

allele, heterozygotes and homozygous for the minor allele). If the number of individuals 

homozygous for the minor allele was less than 5% then it was combined with the 

heterozygous group. We did not study the influence of coadministered drugs since there 

were no known drug interactions occurring with fludarabine in our protocol. All subjects 

presented with normal aspartate aminotransferase and therefore, it was not studied. The 

final model was then evaluated using a non-parametric bootstrap approach that evaluated 

the precision of the final estimated parameters. This approach used random sampling 

with replacement from the original dataset to generate new datasets (n=1000). The final 

model was fit to each of these datasets and estimates of parameters were obtained. 

Bootstrap parameter estimates and their 95% confidence interval were compared to 

parameter values obtained from the original dataset.  Predictive performance of the model 

was also assessed using visual predictive checks. One thousand datasets were simulated 

from the final model using a design similar to the original dataset. The 5th, 50th and 95th 

percentile bands of the simulated predictions along with their 95% prediction intervals 

were then plotted with superimposed observed concentrations. 
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2.2.4 Validation of the Utility of the Pharmacokinetic Clearance Model in an 

Independent Cohort 

We tested the utility of our model in an independent cohort by examining the 

association between model predicted first dose F-ara-A clearance (Clpred) and predicted 

AUC0→∞ (AUCpred) towards clinical outcomes.  Two hundred and forty patients who 

underwent allogeneic reduced intensity conditioning HSCT at University of Minnesota 

from 2008-2014 who received i.v. fludarabine (25-40 mg/m2/day) on days -6 to day -2, 

i.v. cyclophosphamide 50 mg/kg/day on day -6 and total body irradiation on day -1 were 

studied. Subject characteristics are shown in Table 2.1.  Approval by the Institutional 

Review Board and the Cancer Protocol Review Committee was obtained. Patients who 

had received prior autologous HSCT more than a year prior to allogeneic HSCT and had 

not received intensive chemotherapy within the past 3-6 months were administered 

equine antithymocyte globulin for 3 days. Mycophenolate and cyclosporine were given as 

maintenance immunosuppression. The administered fludarabine dose, actual body 

weight, height and serum creatinine on day of admission, demographic data were 

obtained on each subject.  For each patient, F-ara-A Clpred was calculated using the 

developed model (using equation 5 described later in results section) and then using the 

administered fludarabine dose in F-ara-A equivalents, the AUCpred was determined 

(using equation 6 described later in results section).  Treatment-related mortality was 

defined as death due to any cause other than relapse or disease progression. Acute GVHD 

to month 6 was staged and graded according to the standard acute GVHD criteria based 

on clinical and pathological criteria.  Day of neutrophil engraftment was the first of 3 

consecutive days of an absolute neutrophil count >500 cells/uL by day 42.  
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Recursive partitioning regression analysis was performed in the independent cohort to 

select optimal cut points for model predicted F-ara-A Clpred and F-ara-A AUCpred 

towards TRM and acute GVHD. Once optimal cut points were identified the cumulative 

incidence of TRM and acute GVHD (grades II-IV) above and below each of the cut 

points was calculated using death prior to event as a competing risk. An apriori two sided 

log rank test at an alpha level of 0.05 was conducted and a sample size of 240 subjects 

would detect a 10% or more difference in hazard of TRM in patients above and below F-

ara-A Cl cut point with a power of 0.98-1.00 

Recipient gender, age, use of ATG in preparative regimen, recipient CMV status, donor 

source, recipient HLA type (match/mismatch), disease risk, Karnofsky score, BMI, 

comorbidity score were univariately tested for their influence on TRM (day 100, months 

6 and12), acute GVHD (grades II-IV) (month 6). Additionally acute GVHD (grades II-

IV) was tested as a time-dependent covariate towards TRM. Allele or antigen mismatch 

at one (7/8) of the loci (HLA-A, -B, -C and DRB1) was defined as HLA mismatch. HLA 

mismatch was identified under low resolution for 235 patients and on high resolution for 

5 patients. Standard disease risk was defined as acute leukemia in first or second 

remission, CML in chronic phase, NHL and other malignancies in first and second 

remission and non-malignant diseases; all other malignancies were classified as high risk. 

Comorbidity score was defined as described in Sorror et al.(19)  

Fine and Gray regression was used to estimate the effect of model predicted F-ara-A 

Clpred and F-ara-A AUCpred towards time to TRM at day 100, months 6 and 12, time to 

acute GVHD (grades II-IV) at month 6, and time to neutrophil engraftment at day 42 

adjusting for clinical covariates that were significant in the univariate analysis (full 
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models). (284) Reduced models for each endpoint was then created using backward 

selection method by eliminating covariates from the full model with a p-value of >0.20. 

An a priori p-value of 0.025 was set to identify significant covariates in the reduced 

model accounting for multiple testing. Statistical analysis was performed with SAS 9.3 

(SAS Institute, Cary, NC) system and R Statistical Software (Foundation for Statistical 

Computing, Vienna, Austria, http://www.R-project.org). 

2.3 RESULTS  

2.3.1 Development of F-Ara-A Clearance Model (Clpop) and Covariates 

Influencing Clearance 

A two-compartment model with i.v. administration best described F-ara-A PK. Typical 

value of PK parameters, between subject variability and residual unexplained variability 

estimates are provided in Table 2.3. The NONMEM code for the final model is shown in 

Appendix 8.1 

Creatinine clearance significantly influenced F-ara-A Clpop.  We calculated 

Clpop as a sum of the renal and nonrenal Cl. Body size measures (actual body weight, 

IBW, adjusted body weight and BSA) also significantly influenced Clpop. We 

conservatively chose IBW for further scaling with a power of 0.75 (equation 3) and 

weight standardization (equation 4). Our previous work showed that a high AUC was 

associated with more treatment related mortality, and using total body weight in obese 

patients increases the dose administered thereby placing patients at higher risk of high 

AUC.(15) Age, as a continuous covariate on Clpop, significantly reduced the OFV during 

forward inclusion, but was not significant during backward elimination. None of the other 
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tested covariates were significant towards Clpop including the genetic variants. The final 

model for F-ara-A Clpop is shown in equation 5.  

F-ara-A Clpop = (Clnr + Clslope x RenFuncstd) x (IBW/70)0.75                        (equation 3) 

RenFuncstd = (CrCl/85) x (70/IBW)                                                            (equation 4) 

F-ara-A Clpop (L/hr) = [7.04 + 3.90 x {(CrCl/85) x (70/IBW)}] x (IBW/70)0.75     

(equation 5) 

Clnr is the nonrenal clearance of F-ara-A; Clslope is the change in renal clearance with a 

unit change in standardized renal function (RenFuncstd). RenFuncstd is the CrCl as 

calculated by Cockcroft and Gault using IBW, and then standardized by IBW (equation 

4). The Cockcroft and Gault equation included IBW and therefore CrCl and IBW were 

highly correlated in the model.  To effectively eliminate this correlation, renal clearance 

was first IBW-standardized as described by Mould et al.(285) The renal function was 

centered using the mean CrCl (85 ml/min) observed in the study population. Clpop was 

scaled using IBW (equation 3).  

The estimates of Clslope and Clnr were 3.90 L/hr per standardized CrCl (CrCl/85 

ml/min x 70kg/IBW) per 70 kg IBW and 7.04 L/hr per 70 kg IBW, respectively. Using 

these estimates the Clpop for a standard 70 kg IBW subject with a CrCl of 85 mL/min 

was 10.9 L/hr (3.90 L/hr + 7.04 L/hr). For this standard subject, renal clearance accounts 

for 35.6% of Clpop and for every 10 unit decrease in CrCl, total F-ara-A Clpop decreases 

by 0.46 L/hr.  

The diagnostic plots (Figure 2.1) were used to examine the goodness of fit of the 

model and demonstrated that the model adequately explained the observed data and there 

was no evidence of model misspecification.  
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The visual predictive check (Figure 2.2) shows that the model reasonably 

describes the data and that no systematic deviation between observed and simulated data 

was observed. Our final model was also evaluated for its reliability by non-parametric 

bootstrap. Out of 1000 datasets generated, 930 minimized successfully. Table 2.1shows 

the median of each estimate with 95% confidence intervals obtained from the bootstrap 

datasets.  Estimates for PK parameters, inter- and intraindividual variability are similar 

and lie within 5% of the estimates obtained from the final model, indicating that the 

model is robust and reproducible.  

2.3.2 The Relationships between F-ara-A Clpred and AUCpred with Clinical 

Outcomes in an Independent Cohort 

For each individual in the independent cohort, CrCl and IBW obtained on day -7 

pre-HSCT were used in equation 5 to predict F-ara-A Clpred. The F-ara-A AUCpred was 

then estimated for each individual by using equation 6:  

F-ara-A AUCpred = F-ara-A equivalent dose (mg) / F-ara-A Clpred    (equation 6) 

F-ara-A equivalent dose was calculated as administered fludarabine phosphate 

dose /1.28. Creatinine clearances were capped at 150 ml/min since values greater than 

those seemed implausible. The median (range) F-ara-A Clpred, F-ara-A AUCpred and the 

administered fludarabine dose were 10.9 (7.51-15.4) L/hr, 4.85 (2.82-7.52) µg*hr/mL and 

67 (42-100) mg in the independent cohort.   

The cumulative incidence of TRM was 8, 13 and 19% at day 100, 6 and 12 

months, respectively, in the independent cohort. The median (range) time to TRM was 
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165 (18-1518) days. Optimal cut points towards TRM for F-ara-A Clpred and AUCpred 

were 8.50 L/hr and 6.00 µg*hr/mL, respectively.   

More rapid F-ara-A Clpred was associated with less TRM. In univariate analysis, 

the cumulative incidence (95% CI) of TRM at day 100 in patients with F-ara-A Clpred 

<8.50 L/hr was 25% (6-43) as compared to 6% (3-10) in patients with F-ara-A Clpred 

≥8.50 L/hr (p<0.01) (Figure 2.3). In univariate analysis, donor source, HLA mismatch, 

high-risk disease, comorbidity score ≥3 and acute GVHD (grades II-IV) before TRM 

were each significant towards higher TRM and were chosen for adjustment in the full 

model. Fludarabine dose was not associated with TRM (25-40mg/m2/day). The 

multivariate regression reduced models after backward elimination are shown in Table 

2.4 and Table 2.5. At day 100 the hazard ratio (HR) of TRM in patients remained 

significantly lower in patients with F-ara-A Clpred ≥8.50 L/hr as compared to <8.50 L/hr 

[HR (95% CI) 0.1 (0.02-0.42), p<0.01], after adjusting for donor source, disease risk, 

comorbidity score, and acute GVHD (grades II-IV) before TRM. A lower F-ara-A Clpred 

was also associated with greater TRM at month 6 (Table 2.4). Cumulative incidence of 

TRM (95% CI) at day 100 was significantly higher in patients with F-ara-A AUCpred 

≥6.00 µg *hr/mL as compared to <6.00 µg*hr/mL [22% (8-37) vs 6% (3-9)(p<0.01)] 

(Figure 2.4). Results of multivariate regression of F-ara-A AUCpred and TRM at day 

100, months 6 and 12, adjusted for clinical covariates are shown in Table 2.5. The total 

number and percent of patients with TRM events at day 100, months 6 and 12 in each 

covariate group are shown in supplementary Table 2.7 and Table 2.8. 

The cumulative incidence of acute GVHD (grades II-IV) at month 6 was 43% in 

the independent cohort.  F-ara-A Clpred and AUCpred optimal cut points were 13.0 L/hr 
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and 6.00 µg*hr/mL towards acute GVHD, respectively. In univariate analysis, F-ara-A 

Clpred ≥13.0 L/hr was associated with lower cumulative incidence (95% CI) of acute 

GVHD (grades II-IV) at month 6 as compared to F-ara-A Clpred <13.0 L/hr [23% (7-39) 

vs [45% (38-52), p=0.04] (Figure 2.5). In multivariate analysis, F-ara-A Clpred ≥13.0 

L/hr also had a lower the hazard of acute GVHD at month 6 after adjusting for clinical 

factors but was not significant [HR (95% CI) 0.44 (0.19-1.02), p=0.05] (Table 2.6). F-

ara-A AUCpred was not associated with acute GVHD (grades II-IV) in univariate 

analysis (p=0.05).  The total number and percent of patients with acute GVHD events at 

month 6 in each covariate group are shown in supplementary Table 2.9. 

 Ninety seven percent of patients engrafted within day 42 and therefore, none of the F-

ara-A PK or clinical variables were significant towards engraftment given the small event 

rate (data not shown).  

2.4 DISCUSSION 

Reduced intensity conditioning for allo-HSCT is increasingly common. These patients 

often present with comorbid conditions such as compromised renal function and obesity. 

Comorbid conditions may affect drug clearance leading to over or under dosing of 

chemotherapy and poor outcomes.  Treatment-related mortality remains high in reduced 

intensity conditioning HSCT (15, 16, 286-289), which may in part be due to our inability 

to predict an individual’s capacity for chemotherapy clearance. An understanding of the 

clinical factors associated with drug clearance and conditioning regimen intensity is 

critical in improving outcomes.  In this study we identified factors affecting fludarabine 

clearance and developed an individualized dosing model from 87 adult patients 
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undergoing reduced intensity conditioning HSCT that accounts for these factors. We then 

evaluated the utility of our model and identified F-Ara-A clearance and AUCs associated 

with poor clinical outcomes in a large independent cohort.   

We found that CrCl and body weight significantly influenced F-ara-A clearance. In 

chronic lymphocytic leukemia patients who received fludarabine (25 mg/m2 for 5 days 

every 28 days) with a CrCl less than 80 ml/min had a significantly greater probability of 

toxicity as compared to those greater than 80 ml/min (p<0.001).(109) The fludarabine 

package insert recommends a dose reduction of 20% for a CrCl of 30-70 ml/min and 

avoidance if CrCl <30 ml/min.(290) These dose reductions for renal function are 

important but unfortunately are quite imprecise since a patient with a CrCl of 70 ml/min 

would receive the same dose reduction as an individual with a CrCl of 30 ml/min. Our 

data showed that renal clearance accounts for over one third of total clearance and that 

for every 10 unit decrease in CrCl in the typical patient the total F-ara-A clearance 

decreases by ~5% therefore small changes in CrCl are relevant towards elimination. 

Because we modeled CrCl as a continuous variable, precise dose reductions for any CrCl 

are possible.   

Dosing of chemotherapy in obese patients is a growing clinical problem given the 

increasing number of overweight and obese patients presenting for HSCT. The 2014 

ASBMT guidelines on chemotherapy dose adjustments in HSCT found insufficient data 

to support level 1 or 2 recommendations in overweight individuals.(273) A review of 

fludarabine studies in the guideline found that trials mainly used total body weight to 

estimate BSA and fludarabine doses; however, evidence for the basis of using total body 

weight was lacking. A recent ASCO guidance recommended for solid tumors that actual 
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body weight be used for chemotherapy dose calculation.(291) In our study, 33.3% of 

subjects were overweight (BMI 25.0-29.9), 23.0% obese (BMI 30.0-34.9) and 11.5% 

morbidly obese (BMI>35.0), therefore, weight is an problem for many patients. In 

clinical practice the use of total body weight in patients with obesity results in higher 

chemotherapy doses than IBW. In our analyses all body size measures were associated 

with F-ara-A clearance and since many of our patients presenting for HSCT are obese we 

chose a conservative approach and used IBW to develop the final model. We previously 

found that high F-ara-A concentrations in our reduced intensity conditioning regimen 

protocol were associated with greater treatment related mortality and our goal is to 

improve the safety.(111) We found that as IBW increased, F-ara-A clearance also 

increases thereby increasing dose requirements. Our data are consistent with a previous 

population PK analysis in HSCT recipients, which also found that all tested body size 

measures (BSA using adjusted IBW, height, actual body weight, adjusted IBW) were 

associated with PK parameters.(114) Our developed model adequately explained the 

observed data as shown in the diagnostic plots and visual predictive checks, with robust 

parameter estimates obtained though bootstrap model evaluations.   

We also evaluated our PK clearance model in an independent cohort of 240 

reduced intensity conditioning HSCT recipients and determined if model predicted F-ara-

A clearance and predicted AUC were associated with clinical outcomes. In multivariate 

analysis patients with a predicted F-ara-A clearance <8.50 L/hr had a 10 times higher 

hazard of TRM as compared to clearance ≥8.50 L/hr at day 100. F-ara-A predicted 

clearance remained associated with TRM at month 6 (Table 2.4). In addition, F-ara-A 

predicted AUC >6.00 µg*hr/mL had a 5.30 times greater hazard of TRM at day 100 
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(Table 2.5). We also observed a higher hazard of acute GVHD (grades II-IV) in those 

with high predicted F-ara-A clearance in univariate analysis but it was not significant.  

These data are consistent with our previous study where HSCT recipients receiving 

reduced intensity conditioning with fludarabine (40mg/m2 x 5 days), cyclophosphamide 

and TBI with an F-ara-A AUC >6.50 µg*hr/mL had a 4.56 greater risk of TRM.(111) In 

a small study of 16 patients receiving fludarabine 50mg/m2/day x 5 days with PK guided 

busulfan and rATG, an F-ara-A AUC above the mean (24.8 µM*hr or 7.07 µg*hr/mL) 

trended towards a higher hazard for treatment-related mortality (HR=5.2, p=0.10) and 

overall mortality (HR=3.4, p=0.12). Unfortunately, the study was closed early due to high 

toxicity.(113) In a small study of 42 subjects receiving fludarabine 30mg/m2 days -6 to -3 

and concentration-controlled busulfan dosing, no association was observed between mean 

F-ara-A AUC (19.1 µM/hr or 5.44 µg*hr/mL) and engraftment or T-cell chimerism but 

TRM was not evaluated.(116) A recent study by same group in 102 patients receiving 

fludarabine 30mg/m2/day for 4 consecutive days followed by TBI on day of HSCT, found 

no association between F-ara-A AUC and TRM and acute GVHD (grades II-IV).(112) A 

letter to the editor reported on 166 HSCT recipients receiving fludarabine 50mg/m2 days 

-6 to -2 and busulfan with or without TBI.(270) F-ara-A concentrations on day of HSCT 

were not associated with risk of acute GVHD, CMV reactivation, risk of relapse, or death 

due to any cause. These data may suggest that when fludarabine is combined with 

busulfan or given in a conditioning regimen using four or fewer doses of fludarabine the 

exposure response relationships may be modest. However, when fludarabine (30-40 

mg/m2/day) is given as 5 consecutive days in combination with cyclophosphamide and 

TBI there may be a strong concentration dependent effect on outcomes.   



 
 

 71 

Central to individualizing fludarabine doses is an understanding of the therapeutic 

blood target range for reduced intensity conditioning. Considering our results, a first dose 

F-ara-A AUC >6.00 µg*hr/mL carries an unacceptable risk of mortality. Therefore, it is 

likely that an upper limit AUC is between 4.50-5.50 µg*hr/mL for 5 days when 

combined with cyclophosphamide and TBI. Future studies should be directed at defining 

the lowest plasma exposure required to minimize toxicity without compromising 

efficacy.  

An example of how our model can be applied to the clinical setting in a patient 

with a low CrCl is as follows. Consider an adult patient with an IBW of 53 kg, height of 

161 cm, CrCl of 45 ml/min and a BSA of 2m2 calculated using actual body weight. 

Assume a desired F-ara-A AUC of 5.0 µg*hr/mL. The fludarabine dose would be 

estimated as follows: 

Step 1: Determine F-ara-A clearance using equation 5: 

F-ara-A Clpred (L/hr) = [7.04 + 3.90 x {(CrCl/85) x (70/IBW)}] x (IBW/70)0.75   

F-ara-A Clpred for the example = [7.04 +3.90 x {(45/85) x (70/53)}] x (53/70)0.75  = 7.90 

L/hr 

Step 2: Determine F-ara-A predicted dose using equation 7:  

Once the F-ara-A Clpred is estimated for an individual and a target F-ara-A AUC is 

selected by the clinician, the optimal dose to achieve the AUC target for any individual 

can be estimated.  

Predicted daily F-ara-A dose (mg)=Desired AUC (µg*hr/mL) x F-ara-A Clpred (L/hr) 

(equation 7) 
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Predicted daily F-ara-A dose (mg) = 5 µg*hr/mL x 7.90 L/hr = 39.5 mg/day 

Step 3: Determine fludarabine phosphate dose using the following: 

Since the drug is administered as fludarabine phosphate, the F-Ara-A estimate (MW 

285.23) must be converted to an equivalent of fludarabine phosphate (MW 365.2).  

Final daily fludarabine phosphate dose mg = Predicted F-ara-A dose (mg) * 1.28 

Fludarabine phosphate dose for the example = 39.5 x 1.28 = 50.5 mg/day i.v. 

For this individual, traditional dosing based on BSA alone at 35mg/m2/day would give a 

dose of 70 mg. Due to the patients renal dysfunction a dose reduction of 20% may be 

made, if manufacturer’s recommendations were followed, and the final dose would be 56 

mg/day. Our model estimated a dose of 50.5 mg/day, which is lower and better accounts 

for reduced renal function.   

One of the limitations of our study is that no patient had a CrCl<45 ml/min in our 

model development cohort and it is not known if the model is sufficient for lower CrCls; 

however, patients with CrCl lower than 45 ml/min are generally excluded from HSCT. 

Due to the low frequency of some of our genetic variants our samples size may have been 

too small to detect changes in the PK especially given the strong effect of renal function 

and weight.  Therefore, future larger studies should reevaluate these and other genetic 

variants. Most of our patients engrafted by day 42 and we were unable to assess its 

relationship to F-ara-A PK. The minimum F-ara-A target AUC required to maintain 

efficacy towards engraftment will require a larger analyses and consideration of the 

immunosuppressive drugs comprising the conditioning regimens to sustained 

immunosuppression.      
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We provide evidence that body size and CrCl significantly influences F-ara-A PK 

and have developed an individualized fludarabine dosing equation to personalize 

fludarabine dose using IBW and accounting for CrCl. This equation would be most useful 

in overweight individuals and in those with renal dysfunction where traditional BSA 

dosing may overestimate their dosing requirements.  Finally we evaluated the model in an 

independent cohort that found that predicted F-ara-A clearance and AUC are highly 

significant towards TRM even after adjusting for clinical variables. This model offers a 

method to personalize fludarabine dosing and control systemic exposure to reduce 

adverse clinical outcomes. Future studies using the equation should focus on refining the 

model prospectively, considering the effect of cyclophosphamide exposure on outcomes, 

and creating pediatric models.  It is time to reconsider our long standing practice in 

HSCT of one size fits all dosing.  

 

 

 



 
 

 74 

 

Table 2.1: Subject demographics 

 
Development Cohort  
Median (range)/N (%) 

Confirmatory Cohort  
Median (range)/N (%) 

Number of Patients 87  240  

Administered single day dose (mg) 75 (46-100) 
 
67 (42-100) 

Age (years) median (range) 55 (20-69) 59 (19-75) 

Males N (%) 56 (64.36)  139 (57.91) 

Actual body weight  (kg) median 
(range) 82.5 (41.5-139.5) 

 
84.35 (46.60-183.40) 

Ideal body weight (kg) median (range) 65.9 (40.6-81.0) 67.75 (97.72-41.97) 

Body surface area (m2) median (range) 1.95 (1.3-2.5) 
1.98 (1.38-3.12) 

BMI (kg/m2)   
  <25 28 (32.2%) 64(26.67% 
  25-29.9 29(33.3%) 81(33.75%) 
  30-34.9 20 (23.0%) 58(24.17%) 
  >35 10(11.5%) 37(15.41%) 
Serum creatinine (mg/dL) median 
(range) 0.90 (0.4-1.5) 

 
0.82 (1.96-0.32) 

Creatinine clearance (mL/min) median 
(range) 82.1 (45-153) 

 
87.95 (29.25-206.23) 

Total bilirubin (mg/dL) median (range) 0.40 (0.1-1.2) 
Not collected 

Recipient CMV positive N (%) 45 (51.72) 135 (56.25) 

Disease N (%)   

  Acute lymphoid leukemia 6 (7%) 22 (9.16%) 

  Acute myeloid leukemia 26 (30%) 71 (29.58%) 
  Chronic myeloid leukemia 1 (1%) 6 (2.5%) 

  Other leukemias 6 (7%) 
21 (8.75%) 

  Myelodysplastic syndrome 14 (16%) 40 (16.67%) 

  Non-Hodgkin's lymphoma 17(20%) 
36 (15.00%) 

  Hodgkin's lymphoma 8 (9%) 
15 (6.25%) 

  Other  9 (10%) 
29 (12.08%) 

Donor Source N (%) 
Cord blood 
  Related   

 
64 (73.30%) 
22 (25.29%) 

 
104 (43.34%) 
35 (14.58%) 
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  Unrelated 1 (0.01%) 101 (42.08%) 
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Table 2.2: Candidate fludarabine genes and variants evaluated in development 
cohort 

Variant Gene 
Abbreviation 

Gene Name Minor 
allele 
frequency 
(%) in our 
population 

Variant 
Function 

Allele 
Change 

rs10883841 NT5C2 
5'-nucleotidase, 
cytosolic II 11.3 Missense G>A 

rs3740387 NT5C2 
5'-nucleotidase, 
cytosolic II 40.5 Synonymous T>C 

rs2229523 NT5E 5'-nucleotidase, ecto  32.0 Missense G>A 
rs2229524 NT5E 5'-nucleotidase, ecto  6.38 Missense T>C 

rs2231142 ABCG2 

ATP-binding 
cassette, sub-family 
G, member 2  11.5 Missense C>A 

rs2274405 ABCC4 

ATP-binding 
cassette, sub-family 
C, member 4  40.0 Synonymous A>G 

rs2274406 ABCC4 

ATP-binding 
cassette, sub-family 
C, member 4  41.3 Synonymous A>G 

rs2274407 ABCC4 

ATP-binding 
cassette, sub-family 
C, member 4  5.63 Missense G>T 

rs7867504 SLC28A3 
Solute Carrier 
Family 28 27.7 Synonymous A>G 

rs7853758 SLC28A3 
Solute Carrier 
Family 28 13.5 Synonymous C>T 

rs4525938 DCK 
Deoxycytidine 
kinase 8.11 3'-UTR A>T 
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Table 2.3: F-ara-A pharmacokinetic parameter estimates of model estimated 
parameters and bootstrap estimates in the development cohort 

Parameters Original Dataset (%RSE) Bootstrap Estimates 
(95% C.I.) 

Final Pharmacokinetic Parameters 

Cl
nr

 (L/hr) a 7.04 (14.1%) 6.95(5.01-9.01) 

Cl
slope

 (L/hr) a 3.90 (25.2%) 4.02(1.99-5.98) 

V1pop (L) 65.9 (2.90%) 65.9(62.2- 70.1) 

Qpop (L/hr) 9.52 (6.20%) 9.58 (8.41-10.9) 

V2pop (L) 67.2 (6.70%) 66.7 (56.7-77.5) 

Between Subject Variability (BSV) 

 BSV on Cl  0.07  
CV% =26.5 

0.07 (0.04-0.09) 
CV% =26.4 (20.0-30.0%) 

 BSV on V1  0.06  
CV% = 24.5 

0.06 (0.03-0.09) 
CV%=24.5 (17.3-30.0%) 

Residual unexplained variability (RUV) 
 RUV proportional 0.05 (15.4%)                    

CV% =22.3 
0.05 (0.03-0.07)        
CV% = 22.3 (17.3-26.5%) 

 RUV additive 11.2 ng/ml (27.9%) 10.5 ng/mL (3.73-16.5) 
aF-ara-A Clpop is 10.94 L/hr which is a sum of estimate of Clnr (7.09 L/hr) for 70 kg 

IBW individual and Clslope (3.90 L/hr) for 70 kg IBW individual with CrCl of 85 ml/min.  

Clnr: is an estimate of non-renal clearance;  

Clslope is an estimate of the change in renal clearance with a unit change in standardized 

renal function (RenFuncstd); 

V1pop: Estimate of typical volume of distribution in central compartment;  

Qpop: Estimate of typical inter-compartmental clearance; 

V2pop: Estimate of typical volume of distribution in peripheral compartment. 

% RSE is relative standard error 
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Table 2.4: Multiple regression analysis of TRM at day 100, months 6 and 12 with predicted F-ara-A clearance (Clpred) in the 
independent cohort 

 
Variable Hazard Ratio  

(95% CI) at day 100 
p-value Hazard Ratio (95% 

CI) at month 6 
p-value Hazard Ratio  

(95% CI) at 
 month 12 

p-value 

F-ara-A Clpred 
<8.50 L/hr  
≥8.50 L/hr 

 
1.00 

0.10 (0.02-0.42) 

 
 

<0.01 

 
1.00 

0.19 (0.05-0.70) 

 
 

0.01 

 
1.00 

0.41 (0.17-1.00) 

 
 

0.05 

Donor source 
Related  
Unrelated (UR)  
UR cord blood 

 
1.00 

4.13 (1.03-16.6) 
3.92 (1.28-12.0) 

 
 

0.05 
0.02 

 
1.00 

2.84 (1.05-7.69) 
2.30 (0.93-5.69) 

 
 

0.04 
0.07 

 
1.00 

3.24 (1.53-6.99) 
1.60 (0.75-3.39) 

 
 

<0.01 
0.22 

Disease risk 
Standard 
High 

 
1.00 

3.98 (0.80-19.7) 

 
 

0.09 

 
1.00 

2.94 (0.95-9.12) 

 
 

0.06 

 
 

NA 

 
 

NA 
 
Comorbidity score 
0 
1-2 
≥3 

 
 

1.00 
3.12 (0.93-10.5) 
2.20 (0.70-6.96) 

 
 
 

0.07 
0.18 

 
 

1.00 
2.77 (1.19-6.48) 
1.48 (0.58-3.80) 

 
 
 

0.02 
0.41 

 
 

1.00 
2.08(1.02-4.25) 
1.66 (0.82-3.36) 

 
 
 

0.04 
0.16 

Acute GVHD  (grades II-
IV) before TRM  
No 
Yes 

 
 

1.00 
2.40 (0.92-6.30) 

 
 

 
0.07 

 
 

1.00 
2.62 (1.22-5.60) 

 
 

 
0.01 

 
 

1.00 
3.23 (1.69-6.18) 

 
 

 
<0.01 
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NA is not applicable and indicates that the covariate was not significant in the multivariate full model (p >0.20) and was eliminated in 
the final reduced model.  
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Table 2.5: Multiple regression analysis of TRM at day 100, months 6 and 12 with predicted F-ara-A AUCpred in the 
independent cohort 

Parameter   Hazard Ratio (95% 
CI) at 100 days 

p-value Hazard Ratio (95% 
CI) at 6 months 

P value  Hazard Ratio (95% 
CI) at 12 months 

p-value   

F-ara-A AUCpred  
<6.00 (µg*hr/mL) 
≥6.00 (µg*hr/mL) 

 
1.00 
5.30 (1.59-17.7) 

 
 
0.01 

 
1.00 
2.42 (0.87-6.77) 

 
 
0.09 

 
1.00 
2.67 (1.31-5.43) 

 
 
0.01 

Donor source 
Related 
Unrelated (UR) 
UR cord blood 

 
1.00 
4.32 (1.16-16.06) 
1.91(0.55-6.67) 

 
 
0.03 
0.31 

 
1.00 
2.79 (1.06-7.31) 
1.71 (0.70-4.13) 

 
 
0.04 
0.24 

 
1.00 
3.35 (1.59-7.05) 
1.33 (0.61-2.86) 

 
 
<0.01 
0.47 

Disease risk  
Standard  
High 

 
1.00 
2.84 (0.87-9.33) 

 
 
0.08 

 
1.00 
2.27 (0.91-5.65) 

 
 
0.08 

 
 
NA 

 
 
NA 

Comorbidity score 
0 
1-2 
≥3 

 
 
1 
2.27 (0.72-7.13) 
2.83 (0.83-9.57) 

 
 
 
0.16 
0.10 

 
 
1 
2.42 (1.04-5.62) 
1.72 (0.66-4.48) 

 
 
 
0.04 
0.27 

 
 
1 
1.93 (0.93-4.01) 
1.80 (0.88-3.68) 

 
 
 
0.08 
0.11 

Acute GVHD  
(grades II-IV) 
before TRM 
No 
Yes 

 
 
 
1.00 
1.89 (0.71-5.00) 

 
 
 
 
0.20 

 
 
 
1.00 
2.35 (1.07-5.15) 

 
 
 
 
0.03 

 
 
 
1.00 
3.04 (1.62-5.73) 

 
 
 
 
<0.01 

NA is not applicable and indicates that the covariate was not significant in the multivariate full model (p >0.20) and was eliminated in 
the final reduced model.  
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Table 2.6: Multiple regression analysis of acute GVHD (grades II-IV) at month 6 with predicted F-ara-A clearance (Clpred) in 
the independent cohort 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable   Hazard Ratio (95% CI) of acute GVHD 
(grade II-IV) at 180 days 

p-value 

F-ara-A Clpred 
<13.0 L/hr 
≥13.0 L/hr  

 
1.00 
0.44 (0.19-1.02) 

 
 
0.05 

Stem Cell Source 
Related 
Unrelated (UR) 
UR Cord Blood 

 
1.00 
1.76 (1.08-2.87) 
0.75 (0.69-1.66) 

 
 
0.02 
0.75 
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Table 2.7: Number of patients in each group of F-ara-A Clpred and other covariates chosen for multiple regression analysis.  
Treatment-related mortality event rate at day 100, month 6 and 12  

 TRM at Day 100 TRM at Month 6 TRM at Month 12 

Variable N in 
group 

No. of 
Events Event rate N in 

group 
No. of 
events 

Event 
rate N in group No. of 

events 
Event 
rate 

F-ara-A Clpred 
<8.50 L/hr 
≥ 8.50 L/hr 

 
 

21 
219 

 
 
5 
14 

 
 

24% 
6% 

 
 

21 
219 

 
 
5 
25 

 
 

24% 
11% 

 
 

21 
219 

 
 
6 
36 

 
 

29% 
16% 

Donor Source 
Related 

Unrelated (UR) 
UR cord blood 

 
101 
35 
104 

 
4 
5 
10 

 
4% 
14% 
10% 

 
101 
35 
104 

 
8 
8 
14 

 
8% 
23% 
13% 

 
101 
35 
104 

 
12 
13 
17 

 
12% 
37% 
16% 

Disease Risk 
Standard 

High 

 
100 
140 

 
5 
14 

 
5% 
10% 

 
100 
140 

 
8 
22 

 
8% 
16% 

 
100 
140 

 
15 
27 

 
15% 
19% 

Comorbidity Score 
0 

1-2 
≥3 

 
103 
60 
66 

 
5 
7 
7 

 
5% 
12% 
11% 

 
103 
60 
66 

 
9 
12 
8 

 
9% 
20% 
12% 

 
103 
60 
66 

 
14 
14 
13 

 
14% 
23% 
20% 
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Acute GVHD (grades 
II-IV) before TRM 

No 
Yes 

 
 

142 
98 

 
 

8 
11 

 
 

6% 
11% 

 
 

139 
101 

 
 

11 
19 

 
 

8% 
19% 

 
 

139 
101 

 
 

14 
28 

 
 

10% 
28% 
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Table 2.8 : Number of patients in in each group of F-ara-A AUCpred and other covariates chosen for multiple regression 
analysis. Treatment-related Mortality event rate at day 100, month 6 and 12 

 TRM at Day 100 TRM at Month 6 TRM at Month 12 

Variable N in 
group 

No. of 
events 

Event 
rate 

N in 
group 

No. of 
events 

Event 
rate N in group No. of 

events Event rate 

F-ara-A AUCpred 
<6.00 µg*hr/mL 

≥ 6.00 µg*hr/mL 

 
208 
32 

 
12 
7 

 
6% 
22% 

 
208 
32 

 
23 
7 

 
11% 
22% 

 
208 
32 

 
31 
11 

 
15% 
34% 

Donor Source 
Related 

Unrelated (UR) 
UR cord blood 

 
101 
35 
104 

 
4 
5 
10 

 
4% 
14% 
10% 

 
101 
35 
104 

 
8 
8 
14 

 
8% 
23% 
13% 

 
101 
35 
104 

 
12 
13 
17 

 
2% 
37% 
16% 

Disease Risk 
Standard 

High 

 
100 
140 

 
5 
14 

 
5% 
10% 

 
100 
140 

 
8 
22 

 
8% 
16% 

 
100 
140 

 
15 
27 

 
15% 
19% 

Comorbidity Score 
0 

 
103 

 
5 

 
5% 

 
103 

 
9 

 
9% 

 
103 

 
14 

 
14% 
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1-2 
≥3 

60 
66 

7 
7 

12% 
11% 

60 
66 

12 
8 

20% 
12% 

60 
66 

14 
13 

23% 
20% 

Acute GVHD 
(grades II-IV) 
before TRM 

No 
Yes 

 
 
 

142 
98 

 
 
 
8 
11 

 
 
 

6% 
11% 

 
 
 

139 
101 

 
 
 

11 
19 

 
 
 

8% 
19% 

 
 
 

139 
101 

 
 
 

14 
28 

 
 
 

10% 
28% 
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Table 2.9: Number of patients in each group of Clpred and other covariate chosen for multiple regression analysis of acute 
GVHD (grade II-IV) at month 6  

 
Variable N in group No. of events Event rate 

F-ara-A Clpred 
< 13.0 L/hr 
≥ 13.0 L/hr 

 
214 
26 

 
96 
6 

 
45% 
23% 

Donor Source 
Related 

Unrelated (UR) 
UR cord blood 

 
75 
165 
103 

 
33 
69 
45 

 
44% 
42% 
44% 
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Figure 2.1 Goodness of fit plots of the final model 

 

 
 
1A) Observed F-ara-A concentrations (ng/mL) vs Population predicted concentrations 

(ng/mL) and 1B) Observed F-ara-A conc. (ng/mL) vs Individual predicted concentrations 

(ng/mL). The black dots represent the observed F-ara-A concentrations, the solid line 

represents the line of unity and the dashed line represents the loess smooth. Since the 

observed data (black dots) are evenly scattered around the line of identity (solid line) it 

suggests that the model sufficiently explains the observed data. 

1C) Conditional weighted residuals (CWRES) vs population predicted concentrations 

(ng/mL) and 1D) CWRES vs time after the start of infusion (hrs). The dots represent the 

observed F-ara-A concentrations, the solid line is the line at y=0 and the dashed line 

represents the loess smooth. The plots show lack of any specific trends and thus provide 

evidence of no model misspecification.   
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Figure 2.2: Visual predictive check of the final model 

 

 
 
 
 
The solid black line represents the median of the observed F-ara-A plasma concentrations 

obtained from 87 subjects.  The grey area around the solid black line is the 95% 

confidence interval for the median F-ara-A plasma concentrations, obtained from the 

simulation-based prediction. The 5th and 95th percentiles of the observed F-ara-A plasma 

concentrations are represented by dashed lines below and above respectively. The grey 

shaded areas around dashed lines represent 95% confidence intervals for corresponding 

5th and 95th prediction intervals obtained from the simulations. Finally the black filled 

circles represent the observed F-ara-A plasma concentrations from the 87 subjects. 
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Figure 2.3: Cumulative incidence of TRM at day 100 above and below F-ara-A Cl 
cutpoint (8.5 L/hr) 

 

 
Cumulative incidence of TRM day 100 after reduced intensity conditioning HSCT in 

patients with first dose F-ara-A Clpred <8.50L/hr (cumulative incidence [95%CI] 25% 

[6-43%]) compared to patients with F-ara-A Clpred ≥ 8.50 L/hr (cumulative incidence 

[95%CI]: 6% [3-10%]).  
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Figure 2.4: Cumulative incidence of TRM at day 100 above and below F-ara-A AUC 
cutpoint (6 µg*hr/mL) 

 

 
Cumulative incidence of TRM day 100 after reduced intensity conditioning HSCT in 

patients with first dose F-ara-A AUCpred ≥ 6.00 µg*hr/mL (cumulative incidence 

[95%CI] 22% [8-37%]) compared to patients with F-ara-A AUCpred <6.00 µg*hr/mL 

(cumulative incidence [95%CI] 6% [3-9%]).  
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Figure 2.5: Cumulative incidence of 6 month acute GVHD above and below F-ara-A 
Cl cutpoint (13 L/hr) 

 

 
 
Cumulative incidence of acute GVHD (grades II-IV) at month 6 after reduced intensity 

conditioning HSCT in patients with first dose F-ara-A Clpred <13.0 L/hr (cumulative 

incidence [95%CI] 45% [38-52%]) compared to patients with F-ara-A Clpred ≥13.0 L/hr 

(cumulative incidence [95%CI] 23% [7-39%]). 
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CHAPTER III 
 

3 PROSPECTIVE PHARMACOKINETIC STUDY TO EVALUATE 

FACTORS INFLUENCING VARIABILITY IN 

PHOSPHORAMIDE MUSTARD EXPOSURE AND RESPONSE 

IN HSCT RECIPIENTS UNDERGOING REDUCED INTENSITY 

CONDITIONING 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 93 

3.1 INTRODUCTION 

 Cyclophosphamide (Cy) is an anti-tumor alkylating agent widely used in reduced 

intensity conditioning regimens with other chemotherapeutic agents and/or radiation. 

Cyclophosphamide is a prodrug that undergoes several enzymatic biotransformation steps 

to its active metabolite, phosphoramide mustard (PM). On administration, nearly 70-80% 

of Cy is converted to 4-hydroxy cyclophosphamide (4-HCy) primarily by hepatic 

CYP2B6. 4-hydroxy cyclophosphamide is highly unstable and undergoes non-enzymatic 

conversion to acrolein and PM. 4-hydroxycyclophosphamide is also inactivated to 

ketocyclophosphamide and o-carboxycyclophosphamide (CEPM) by aldehyde 

dehydrogenase (ALDH1). A minor route (~5%) of Cy elimination is oxidation to 

deschloroethyl cyclophosphamide (DCECP) mediated by CYP3A4. Around 20% of the 

Cy (unchanged and metabolites) elimination is through renal mechanisms. 

Phosphoramide mustard further undergoes non-enzymatic conversion to nor-nitrogen 

mustard (NOR) and both PM and NOR alkylate the N-7 position of guanine nucleotides 

on DNA. The immunosuppressive and anti-tumor activity of Cy is attributed to formation 

of G-NOR, G-NOR-OH and G-NOR-G DNA adducts that prevent DNA strand 

separation and replication leading to cell death. (129, 292, 293) Pharmacokinetic pathway 

of Cy is shown in Figure 1.3. 

Cyclophosphamide exhibits high PK variability. In an extensive review published 

on Cy clinical PK, clearance (Cl) in adults reported by different studies ranged from 2.5 

L/hr to 12.6 L/hr and volume of distribution (V) ranged from 25.2 L to 73.5L.(292) 

Cyclophosphamide is a substrate for CYP2B6, and it is known to induce the enzyme 

(auto-inducer). When administered as multiple dose therapy, Cy Cl is estimated as a sum 
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of inducible and non-inducible Cl. In a population PK study conducted in breast cancer 

recipients receiving Cy, inter-individual variability in non-inducible, inducible clearance 

and 4-HCy Cl was found to be  ~23, 27% and 31%.(124) In patients receiving Cy 

chemotherapy for treatment of ovarian cancer, variability in Cy clearance was found to be 

34% and metabolite exposures (PM, 4-HCY and 2-DCECP) varied by 9 fold.(294) In 

studies conducted in HSCT recipients, variability in non-inducible, inducible Cl and V 

was estimated to be 52.8-112%, 45-200% and 18%.(33, 120) In other studies in HSCT 

recipients, fold variability in plasma AUC of Cy, 4-HCy and CEPM was 1.5-3, 7.8 and 4-

16 fold variable in a HSCT recipients receiving myeloablative dose of Cy.(115, 129) 

Studies conducted to explain factors influencing variability of Cy exposure are extensive. 

Single nucleotide variants associated with Cy metabolism, transport and elimination are 

important factors influencing variability in some studies.(122-124, 295-307) Other 

clinical factors such as body weight, age, serum albumin and creatinine clearance (CrCl) 

have also been found to significantly influence Cy and metabolite PK.(127, 301, 308) Co-

administration of drugs such as fluconazole, itraconazole, busulfan, thiotepa and others 

that are substrates, inducers and/or inhibitors of CYP enzymes are also responsible for 

altered Cy metabolism and disposition.(119, 126, 309, 310)  

Variability in exposure leads to variability in response to the drug. Toxicities such 

as cardiotoxicity, liver toxicity such as veno-occlusive disease (VOD) and hemorrhagic 

cystitis are observed in patients treated with Cy.(129, 311, 312) However due to the 

complex metabolic pathway of Cy, there is no clear understanding of which metabolite(s) 

is responsible for drug toxicity. In an in vitro study conducted in bovine artery pulmonary 

endothelial cells cultured with hepatic microsomal enzyme system, 4-HCy and acrolein 
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caused significant cell injury in a concentration dependent manner, indicating mechanism 

of Cy induced lung toxicity.(313) Another study postulated that profound depletion of 

glutathione in sinusoidal cells due to 4-hydroxypercyclophosphamide and acrolein might 

be the mechanism of VOD that often occurs with high Cy dose.(314) Clinical PK 

pharmacodynamic studies have been conducted to explain the relationship between drug 

and/or metabolite exposure and toxicity. In breast cancer patients, higher plasma 4-HCy 

AUC was associated with VOD, but PM AUC was not.(130) The association of 4-HCy 

and VOD was also shown in other study.(131) An inverse correlation was observed 

between Cy AUC and heart failure in patients treated with Cy for breast cancer. The 

authors speculate faster Cl of Cy to 4-HCy in patients with heart failure.(132) In 147 

HSCT recipients receiving high dose Cy (120 mg/kg), an increased exposure to CEPM 

was associated with higher risk of developing liver toxicity.(129) Low Cy Cl to the active 

metabolite was associated with high recurrence of disease in children with non-Hodgkin 

lymphoma receiving HSCT.(133)  

Many studies have attributed toxicity of Cy to 4-HCy or CEPM, although 

mechanism of toxicity due to these metabolites is unclear. 4-hydroxy cyclophosphamide 

is rapidly converted to PM both in plasma and intracellulary. Plasma PM cannot cross the 

biological membranes due to its high hydrophilic nature, thus plasma 4-HCy is may be a 

marker of efficacy and toxicity caused due to PM concentrations intracellularly. A phase 

I clinical PK study was conducted to evaluate the combination of a chemosensitizing 

agent, SR-2508, with Cy. It was found that PM was a major circulating metabolite in 

plasma with a half –life of ~15 hours with 30 fold higher AUC than 4-HCy.(315) Further 

PM exhibited the highest alkylating activity of all the other metabolites measured in 
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plasma. Hence the authors disagree with previous reports and argued that plasma PM 

may be an important biomarker of efficacy and toxicity.  

Pharmacokinetics of plasma PM could serve as an important biomarker for Cy 

related clinical outcomes and to our knowledge no study has been conducted to evaluate 

this in patients undergoing reduced intensity conditioning prior to allogeneic HSCT. 

Therefore we have undertaken a study to identify the relationship between plasma PM 

PK and outcomes after HSCT in patients receiving reduced intensity conditioning. 

Understanding clinical factors associated with variability in PM exposure after reduced 

intensity conditioning is necessary to implement strategies to control Cy exposure and 

improve outcomes.  

3.2 METHODS 

3.2.1 Patients   

This is an ongoing single center prospective observational PK study of PM conducted in 

allogeneic HSCT recipients. All patients received HSCT with reduced intensity 

conditioning regimen. Institutional Review Board and Cancer Protocol Review 

Committee approved the study and all patients provided informed consent.  The 

conditioning regimen was i.v. Cy (50 mg/kg/day for 1 day on day -6), i.v. Flu (25-40 

mg/m2/day for 5 days on days -6 to -2) and TBI (200 cGy as a single fraction on day -1). 

Post-transplant GVHD prophylaxis included immunosuppressant combination of either 

cyclosporine /mycophenolate or sirolimus/mycophenolate. Data from the first 70 patients 

enrolled from March 2013 to December 2015 were included in this analysis. Subject 

characteristics are shown in 
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Table 3.1. Cyclophosphamide was administered intravenously over 2hr at a constant rate 

and PK sampling was conducted at 2, 4, 6, 21, 24 and 45 hrs after the end of infusion.  

3.2.2 Bioanalysis  

Blood was collected in 8 mL heparinized green top BD Vacutainer tube at each sampling 

point for PM PK. Samples were centrifuged to collect plasma within 30 minutes of 

collection at 3400 rpm for 10 min at 4 degree C and frozen until further use. 

Phosphoramide mustard in plasma was stable for an hour at room temperature, no 

degradation was observed. The extraction and detection assay was based on previously 

described method. (316) Phosphoramide mustard was detected and quantified using 

HPLC (Agilent 1200 Series, Santa Clara CA) with UV detection at 276 nm. Plasma 

samples were thawed, pretreated with diethyldithiocarbamate (DDTC) for derivatization 

at 70 degrees C for 10 min. The derivatized PM was extracted from plasma using protein 

precipitation method with acetonitrile as solvent. Internal standard used was 3-isobutyl-1-

methylxanthine. The HPLC separation was done using a mobile phase mixture of 68% 

acetonitrile and 32% 10mM potassium phosphate at pH 8.0. A Phenomenex Luna C18 

column (150 mm X 4.6 mm, 5 micron particle size) was used for HPLC separation. The 

chromatographic conditions included a flow rate of 1 ml/min with a total run time of 10 

min. The assay was linear in the range of 50 to 10000 ng/ml. The average assay accuracy 

was 100.4% and the total assay variability was 5.9%. 
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3.2.3 Pharmacokinetic Analysis  

The first objective of the study was to identify the relationships between plasma PM 

exposure and clinical outcomes and was conducted in the first 40 patients. Plasma PM 

concentrations were analyzed using non-compartmental methods (PhoenixTM Winonlin) 

for the first 40 patients. Area under the curve AUC(0-∞) was calculated using linear up/log 

down trapezoidal method as AUC (0-t) + C (t)/ke where t is the last observed 

concentration and Ke is the terminal first order elimination rate constant. Partial areas 

such as AUC (0-6), AUC (0-26) and AUC (0-47) were also calculated.  

3.2.4 Statistical Analysis For Evaluating Relationship Between PM Exposure 

(AUC) And Outcomes 

Phosphoramide mustard AUCs calculated by NCA were associated with TRM, acute 

GVHD and engraftment. Data for time to TRM, acute GVHD and engraftment was 

obtained through transplant database. Treatment related mortality was defined as death 

due to any cause other than relapse or disease progression. Acute GVHD to month 6 was 

staged and graded according to the standard GVHD criteria based on clinical and 

pathological manifestations. Day of neutrophil engraftment was the first of 3 consecutive 

days of an absolute neutrophil count of >500 cell/uL by day 42.  

Recursive partitioning regression analysis was conducted to identify optimal cut 

points of PM AUCs towards TRM (at day 100 and month 6) and acute GVHD (II-IV) at 

month 6 and engraftment at day 42. We tested AUCs (AUC (0-6), AUC (0-26), AUC (0-47) 

and AUC(0-∞)) for its association towards outcomes.  Once the optimal cutpoints were 

chosen, cumulative incidence of TRM, acute GVHD and engraftment above and below 
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each cut point were calculated using death prior to event as competing risk by using 

proportional Fine and Grays method.(284) 

3.2.5 Population Pharmacokinetic Model Building and Identification Of 

Covariates Influencing PM Pharmacokinetics  

3.2.5.1  Model development 

The objective of the population PK analysis was to understand PM PK, evaluate inter-

individual variability in PM PK parameters and identify important clinical factors 

explaining the variability. Population PK analysis was conducted using 381 

concentrations obtained from 70 subjects. The mean (standard deviation) of plasma PM 

concentrations at time 2, 4, 6, 21, 24 and 45 hours after the end of infusion were 5140 

(1723), 5086 (1588), 4638 (1285), 1490 (667.6), 984.0 (490.1) and 106.1 (49.29) ng/mL 

respectively. Phosphoramide concentrations in 30 patients at time 45 hours after the end 

of infusion were below the limit of quantification and hence were not included in the 

analysis.  

Nonlinear mixed effect modeling using NONMEM (version 7.2 ICON 

Development Solutions, Hanover, MD, USA) was used to perform the population PK 

analysis. Inspection of concentration time profile, model diagnostics and model 

evaluation were performed using PSN and Xpose (version 4.3.2) packages through Pirana 

workbench (2.7.2 Amsterdam, Netherlands). Several models were tested to explain the 

observed PM concentration time data. Initially, a transit compartment model was 

considered to explain the sequential conversion from the parent Cy to the metabolite PM. 

However on exploring the concentration time profile we observed that very few data 
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points were available to evaluate the rise in PM concentrations from Cy. To avoid 

problems with overparameterization, simpler models were considered. A model similar to 

that used for first order absorption can explain the metabolite PK of an intravenously 

administered parent drug. One and two compartment models were tested to identify the 

model that best explained the observed data. Base model selection was based on 

diagnostic plots, OFV for nested models and Akaike information criteria for non-nested 

models. Between-subject variability was modeled exponentially to the PK parameters as 

shown in equation 1. 

Pj= TVP x exp(ηj)                                                                                (equation 1) 

Where Pj is the parameter estimate of the jth individual, TVP is the typical value of the 

parameter in a population. ηj is the estimate of the deviation of individual j from the TVP 

and is assumed normally distributed with mean of zero and variance of omega2. A 

proportional error model was used to explain the residual unexplained variability (RUV) 

as shown in equation 2. 

Cobs,ij = Cpred,ij x (1+ εij)                                                                        (equation 2)             

where, Cobs,ij is the observed concentration in the ith individual, Cpred,ij is the jth 

predicted concentration in the ith individual and εij is the residual error assumed to be 

independent and normally distributed with a mean zero and variance of σ2. First order 

conditional estimation with interaction was used for model development.  

 Age, gender, creatinine clearance (CrCl) calculated by Cockroft and Gault 

equation using actual body weight (WT), total bilirubin, serum albumin, serum 

creatinine, total protein, alanine transaminase (ALT), aspartate aminotransferase (AST) 

and alkaline phosphatase were tested to explain the observed variability in PM PK 
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parameters. All the covariates were tested as continuous variable, except gender that was 

evaluated as categorical covariate. A step-wise covariate model building strategy of 

forward inclusion and backward elimination was used to identify the effect of clinical 

covariates on PM PK. An objective function decrease of ≥ 3.84 (Χ2, df=1, p<0.05) was 

chosen for forward selection and an increase of ≥6.63 (Χ2, df=1, p<0.01) was chosen for 

backward elimination during the covariate analysis step.  

3.2.5.2 Model evaluation 

Visual predictive check was used to evaluate if the final model adequately described the 

observed data. One thousand simulations were generated using the final model, and the 

5th, 50th and 95th percentile bands of the simulated predictions along with their 95% 

prediction intervals were plotted. The final model was also evaluated using a non-

parametric bootstrap approach. A method of sampling with replacement was used to 

generate 1000 datasets and the model applied to each dataset to evaluate the robustness 

and reliability of the estimated PK parameters. 

3.3 RESULTS 

3.3.1 The Relationship Between PM AUC With Clinical Outcomes 

The median (range) of PM AUC (0-6), AUC (0-26), AUC (0-47), AUC (0-∞), and t1/2, in 40 

patients were 21.6 (9.13-50.9) μg-hr/mL, 72.8 (35.2-123) μg-hr/mL, 85.7 (42.7-129) μg-

hr/mL, 85.3 (43.8-140) μg-hr/mL and 6.45 (2.82-13.3) hr.  

The cumulative incidence of TRM was 13% at day 100 and 20% at month 6.  The 

median (range) time to TRM was 115 (37-319) days. Optimal cut-points for AUC(0-6), 

AUC(0-26), AUC(0-47), AUC(0-∞) towards TRM at day 100 and month 6 were 20 μg-hr/mL, 
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85 μg-hr/mL, 90 μg-hr/mL and 90 μg-hr/mL. High PM exposure was associated with 

higher incidence of TRM. In univariate analysis, the cumulative incidence [estimate 

(95% CI)] of TRM at day 100 was higher in HSCT recipients with PM AUC(0-6) ≥ 20 

μg*hr/mL compared to those with PM AUC(0-6)<20 μg*hr/mL [estimate (95% CI): 22 (5-

38%) vs 0%, p =0.05]. Similarly high PM AUC(0-26) ≥85 μg*hr/mL was also associated 

with higher cumulative incidence of TRM [estimate (95% CI): 36(9-64%) vs 4 (0-11%), 

p <0.01). Figure 3.1 A shows the results of cumulative incidence of TRM at day 100 

above and below AUC(0-26) cutpoints.  AUC(0-47), AUC(0-∞) were not associated with TRM 

at day 100. At 6 months, the cumulative incidence of TRM was higher in patients with 

AUC(0-26) ≥ 85 μg*hr/mL [47 (17-77 %) vs 14 (0-28%), p= 0.02)]. Figure 3.2 shows the 

results of cumulative incidence of TRM at day 100 above and below AUC(0-26) cutpoints. 

AUC(0-6), AUC(0-47), AUC(0-∞) were not associated with TRM at month 6. Table 3.2 and 

Table 3.3 show the number of HSCT recipients in each AUC group and the estimate of 

cumulative incidence of TRM at day 100 and month 6 respectively.  

In univariate analysis the cumulative incidence of acute GVHD grade (II-IV) was 

38% at month 6.  The median (range) time of acute GVHD (II-IV) in patients who 

experienced the event was 37 (14-161) days. None of the PM AUC markers were 

associated with cumulative incidence of acute GVHD. Table 3.4 shows the number of 

HSCT recipients in each AUC group and estimate of cumulative incidence of acute 

GVHD at month 6 respectively. 

Neutrophil engraftment was high and achieved in 93% of patients by day 42, and 

hence was not evaluated due to very few events.  The median (range) time of engraftment 

observed in patients in the study was 11 (6-43) days.  
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3.3.2 Development And Evaluation Of PM Population Pharmacokinetics Model 

And Influence Of Covariates on PM Pharmacokinetics 

3.3.2.1 Model development 

The population PK model was developed in 70 HSCT recipients. One-

compartment (ADVAN2 TRANS2) and two-compartment (ADVAN4 TRANS4) models 

with conversion rate from Cy to PM were tested to explain the observed PM 

concentrations over the sampling time. The exploration of the log of observed plasma PM 

concentrations vs time after the end of infusion suggested a one-compartment model with 

would best fit the observed data. The two-compartment model did not improve the fit, 

and hence one-compartment model with an exponential BSV and a proportional RUV 

variability best described the observed data. Since the dose of the metabolite and the 

percentage conversion from parent Cy to metabolite PM is unknown, the total clearance 

obtained from the model is apparent (ratio of systemic clearance over fraction of the 

metabolite formed from the parent (fm)) and is designated as Cl/fm. Similarly volume of 

distribution in the central compartment is described as apparent and designated as V/fm. 

The rate constant of conversion from parent to the metabolite is designated as kfm. 

Creatinine clearance significantly influenced TVCl/fm and gender significantly 

influenced TVV/fm and hence were included in the final full model. We allometrically 

scaled TVCl/fm and TVV/fm to actual body weight (WT) with an exponent of 0.75 and 

1, respectively and used it as base model for covariate analysis. No other covariates were 

important towards TVCl/fm and TVV/fm. Also we did not find any covariate significant 

towards kfm. The final model parameters with their relative standard error (%RSE) are 

shown in Table 3.5. The NONMEM code for the final model is shown in Appendix 8.2. 
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The final equations obtained from the model are described in the equations 3, 4, 5, 6 and 

7. 

 TVkfm is the typical population value of the rate constant of conversion from Cy 

to PM and was estimated by THETA(1)  (equation 3).   

TVkfm = THETA(1)                                                                                (equation 3)             

The typical value of the total apparent clearance (TVCl/fm) was modeled as a sum of 

apparent non-renal Cl (CLnr) and apparent renal Cl (Clslope x standardized renal function 

[RFstd]) clearance that changed with changes in CrCl (equation 4). The RFstd is weight 

(WT) standardized to eliminate its correlation with CrCl (Cockroft Gault equation 

includes weight in calculation of CrCl)  (equation 5).  Further this standardization method 

gives us the true estimate of renal function  

TVCL/fm = (Clnr + Clslope x RFstd) x (WT/83.5)0.75                                                                     (equation 

4)             

 RFstd = (CrCl/104.2) x (83.5/WT)                                                               (equation 5)             

Typical value of apparent volume of distribution TVV/fm was estimated from THETA 

(4) and was allometrically scaled using WT  (equation 5). 

TVV/fm = THETA (4) x WT/83.5                                                            (equation 6) 

THETA (6) is the parameter estimate for proportional change in TVV/fm if the patient 

was female (eq. 4).  

IF (Gender= Female) TVV/fm= TVV/fm * THETA(6)                                  (equation 7)             

The final estimate of TVKfm was 0.14 hr -1. The estimate of CLnr was 23.9 L/hr 

for a typical person with a median weight of 83.5 kg and that of renal clearance was 21.9 

L/hr for a typical person with weight of 83.5 and CrCl of 104.2 ml/min. Hence TVCl/fm 
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for a typical person is 45.8 L/hr as per equation 4 and renal function accounts for 47% of 

the total apparent clearance. For this typical person, every 10 unit decrease in CrCl, total 

PM TVCl/fm decreases by 2.1 L/hr.  

The estimate of TVV/fm was 240 L for males. Females had 25% (estimate of 

0.75) lower TVV/fm (180 L). The inter-individual variability obtained after inclusion of 

covariates was 24.6% for kfm, 22.5% for Cl/fm and 41.9% on V/fm. The residual 

unexplained variability was ~14%. The diagnostic plots were used to examine the 

goodness of fit of the model. Figure 3.3 shows the diagnostic plots from the final model 

and model adequately explains the observed data.  

3.3.2.2 Model evaluation   

3.3.2.2.1 Non-parametric bootstrap  

Final population PK model was evaluated for its reliability with non-parametric 

bootstrap. Out of 1000 datasets generated, 905 minimized successfully (Table 3.5). The 

fixed effect estimates obtained from the final model were included in the confidence 

intervals obtained from bootstrap and hence the model is reproducible. The median of the 

bootstrap estimate of CLnr was higher whereas of that Clslope was lower than that obtained 

by model-derived estimates. Estimates of TVkfm and TVV/fm and random effects were 

comparable to the median of bootstrap estimates. 

3.3.2.2.2 Visual predictive check 

Figure 3.4 shows that the median of the observed data (solid and dashed black line) lays 

within the prediction intervals (grey shaded areas). Therefore the model adequately 

explains the observed data.   
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3.4 DISCUSSION 

The complex metabolic pathway along with, high inter-individual PK variability in 

parent and metabolites and the formation of active and inactive metabolites makes dosing 

and therapeutic monitoring challenging. Cyclophosphamide is itself inactive, and hence 

its efficacy and toxicity is attributed to metabolites. Most of the previous studies have 

evaluated the role of 4-HCy exposure towards efficacy and toxicity. (130, 132, 317) 

However, the metabolite is highly unstable and is rapidly converted to PM and acrolein. 

Therefore accurate measurement of the metabolite is difficult and cannot be easily used 

in clinical practice. We therefore chose to evaluate plasma PM profile since it is also a 

primary active metabolite and substantially more stable.  

We found that higher plasma PM exposure AUC(0-6) and AUC(0-26) was associated 

with higher incidence of TRM at day 100 and that AUC(0-26) was significant towards 

TRM at month 6. No other PK studies have identified the relationship between plasma 

PM concentrations and TRM. Infact, most studies argue that inability of plasma PM to 

cross the cell membranes makes it a futile marker to predict Cy related outcomes. A study 

conducted by Chan et al, however counters this opinion and their study showed that PM 

was a major circulating metabolite in plasma with its AUC 30 fold higher than 4-HCy. 

Further the study also demonstrated that only high plasma PM AUC correlated with high 

4-(p-nitrobenzyl) pyridine activity, which measures the over alkylating index of the drug 

(Cy). Although PM itself cannot cross cell membranes, it is unknown if it is a substrate of 

uptake transporters. However other nitrogen mustards such as bendamustine and 

melphalan are found to be substrates of organic anion transporters. (318, 319)  
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Since our data showed an association between PM PK and clinical outcomes we 

next conducted a population PK study to understand the factors contributing to variability 

observed in PM exposure that impacts outcomes. We found 24.6%, 22.5% and 41.9% 

between subject variability in TVkfm, TVCl/fm and TVV/fm, respectively. The 

formation rate constant of PM (0.14 L/hr) was greater than the elimination rate constant 

(0.19 hr-1, Cl/fm/V/fm). A PK study showed that PM had a parallel elimination half-life 

as that of Cy, indicating formation rate limited metabolite kinetics.(294) In yet another 

study a rapid elimination was observed for PM, and PM concentrations reached its max 

in 0.75 hours following an IV administration. The half-life of the PM was ~8 hours, 

which was similar to the half –life of Cy, again establishing that PM follows the 

formation rate limited metabolism.(320) This indicates that although the half-life of PM 

would be much shorter than the parent drug, variability in the rate and extent of 

conversion from Cy to PM would be an important factor that could alter PM exposure.  

We allometrically scaled PM TVCl/fm and TVV/fm to actual body weight since 

dose reductions in obese are unclear for this drug. The ASBMT guidelines recommend 

dosing based on total body weight up to a dose of 200mg/kg and recommend dose 

adjustments in patients with a weight greater than 120% of IBW.(273) In retrospective 

studies conducted to study the effect of body weight and outcomes, no significant 

difference was observed in overall survival and event free survival in obese vs normal 

weight patients.(321, 322) In fact a shorter time to engraftment was observed in obese 

patients in comparison to normal weight patients. In a previous study conducted by our 

group it was observed that although obese patients received ~45% higher dose of Cy, 

plasma AUC was ~60% lower. Further G-NOR-G adducts normalized to Cy plasma 
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concentrations were found to be twice higher in obese patients as compared to lean.(323) 

However in another study, obese autologous HSCT recipients had a higher risk of TRM 

as observed in obese compared to non-obese.(324)  

We also found that males had significantly higher apparent volume of distribution 

than females after accounting for weight in the model. This indicates that males either 

have a larger volume of distribution (V) or lower conversion from parent to the 

metabolite compared to females (fm). Expression of CYP2B6 enzyme which is involved 

in conversion to PM is higher in females than males, and hence males would have a 

lower fm compared to female thereby higher V/fm.(325) 

We found CrCl to significantly influence PM Cl, where renal function accounted 

for 47% of the total apparent clearance. This would significantly increase PM exposure in 

patients with renal impairment. Few studies have evaluated PM PK in cancer patients and 

the influence of renal function. A PK study demonstrated a higher PM half-life in patients 

with renal insufficiency (CrCl <51 ml/min) than those in normal subjects [13 hrs vs 8 

hrs].(326) In a patient with renal insufficiency (CrCl of 38 ml/min) who received high 

dose Cy (1550 mg/m2) Cy elimination was reduced and 4-HCy concentrations were 

increased by 11%(128) Based on our results, we expect that PM exposure is higher in 

patient with poor CrCl and that this exposure is associated with higher risk of TRM. Dose 

reductions should be considered in patients with poor CrCl.  

Metabolism of Cy to PM involves several CYP enzymes and many studies have 

explored the influence of pharmacogenetic variants on Cy and metabolite clearance. 

Single nucleotide polymorphisms in CYP2B6, CYP2C9, GST1A were found to influence 

towards Cy PK(123, 327-331) SNPs are also shown to influence Cy related relapse in 
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HSCT recipients.(332) We have obtained pre-transplant DNA from all patients, which 

will be in future for its association with PM PK.  

Our group has also developed an analytical assay to measure G-NOR-G adducts 

in DNA isolated from the buffy coat.(323) We also demonstrated higher G-NOR-G 

adduct concentrations in patients with Fanconi anemia who are inherently unable of DNA 

repair.(333) Thus measuring DNA adducts would be most physiologically relevant to 

measure Cy efficacy and toxicity. Currently no studies have been conducted to correlate 

PM plasma concentration to G-NOR-G. Cyclophosphamide exerts is cytotoxicity by 

forming adducts with DNA and thus halting DNA replication. Thus measuring adducts is 

physiologically relevant to indicate towards the cytotoxicity induced post Cy 

administration and thereby its efficacy and toxicity. We plan to evaluate relationship of 

adduct formation over time with that of plasma PM concentrations. The results from this 

study will further strengthen our hypothesis, that plasma PM concentrations are important 

and could be a promising to measure Cy related efficacy and toxicity.  

Studies have attempted to propose personalized dose of Cy using metabolism 

based and bayesian based approaches.(334-337) In HSCT recipients, a limited sampling 

after the first dose of Cy was conducted to obtain maximum a posteriori estimates of 

individual PK parameters and subsequently used to personalize the 2nd dose.(335) The 

study showed a significant decrease in post-transplant serum bilirubin levels and a 38% 

reduction in the hazard of acute kidney injury.  However the study did not show an 

improvement in non-relapse or overall survival rates in patients who received the 

personalized dose.  Patients in our study received only a single dose of Cy and none of 
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these studies have attempted to individualize the first Cy dose utilizing clinical and 

genetic factors influencing variability. 

In conclusion we conducted an exploratory analysis to identify the relationship 

between plasma PM exposure and clinical outcomes in HSCT recipients. We identified 

that in HSCT recipients, high PM exposure was associated with higher cumulative 

incidence of TRM. We also found that inter-individual variability observed in PM PK 

could be partially explained by renal function and gender. In the future we plan to 

evaluate additional covariates to better explain more of the observed variability in PM 

PK. Our current findings are in agreement with the previous studies that plasma PM is a 

major circulating metabolite and could serve to be good biomarkers for chemotherapy 

function in HSCT.  
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Table 3.1: Subject characteristics 

 
PM Exposure Response 
Cohort (Subset) 
Median (range)/N (%) 

 
PM Population PK 
Cohort (All Subjects) 
Median (range)/N 
(%) 

Number of Patients 40 70 
Administered single day Cy 
dose (mg), median (range) 3977.5 (2395-6300) 3942.5 (2395-6300) 

Age (years), median (range) 62 (21-72) 62.5 (21-73) 
Males, N (%) 22 (55%) 38 (54.2%) 
Actual body weight (kg), 
median (range) 83.7 (47.9-117) 83.5 (47.9-177.8) 

Serum creatinine (mg/dL), 
median (range) 0.81 (0.30-1.58) 0.81 (0.32-1.58) 

Creatinine clearance 
(ml/min), median (range) 109 (65-309.5) 104.2 (46.2-309.5) 

Total bilirubin (mg/dL), 
median (range) 0.50 (0.2-2.30) 0.50 (0.20-2.30) 

Total protein (g/dL), median 
(range) 6.7 (5.3-8.3) 6.7 (5.4-8.3) 

Total albumin (g/dL), 
median (range) 3.8 (3-4.4) 3.7 (2.7-4.8) 

Alkaline phosphatase 
(units/L), median (range) 81.5 (42-132) 82 (18-132) 

ALT (units/L), median 
(range) 32.5 (20-68) 32 (12-88) 

AST (units/L), median 
(range) 29 (14-57) 28 (10-97) 

Donor Source, N (%)   
Cord blood 
Peripheral Blood Stem cell 
Bone Marrow 

13 (32.5%) 
22 (55%) 
5 (12.5%) 

27 (38.4%) 
30 (43.0%) 
13 (18.6%) 
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Table 3.2: Number of patients and estimates of relative risk of TRM at day 100 in 
each group of PM AUC chosen for univariate regression analysis  

Variable N in 
group 

No. of 
Events Event rate 

Relative Risk 
Estimate (95% 

CI)  
p-value 

AUC 0-inf 
<90 μg-hr/mL   
≥ 90 μg-hr/mL  

 
23 
17 

 
1 
4 

 
4% 
24% 

 
5% (0-14%) 

 24% (4-43%) 

 
 

0.08 

AUC 0-45 
<90 μg-hr/mL   
≥ 90 μg-hr/mL 

 
25 
15 

 
1 
4 

 
4% 
27% 

 
 

4% (0-13%) 
27%(5-49%) 

 
 
 

0.05 

AUC 0-24 
<85 μg-hr/mL   
≥ 85 μg-hr/mL 

 
29 
11 

 
1 
4 

 
3% 
36% 

 
4% (0-11%) 
36% (9-64%) 

 
 

<0.01 

AUC 0-6 
       <20 μg-hr/mL   
        ≥ 20 μg-hr/mL 

 
16 
24 

 
0 
5 

 
0% 
21% 

 
0% 

22% (5-38%)  

 
 

0.05 
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Table 3.3: Number of patients and estimates of relative risk of TRM at 6 months in 
each group of PM AUC chosen for univariate regression analysis 

Variable N in 
group 

No. of 
Events Event rate 

Relative Risk 
Estimate (95% 

CI)  

p-
value 

AUC 0-inf 
<90 μg-hr/mL   
≥ 90 μg-hr/mL  

 
23 
17 

 
3 
5 

 
13% 
29% 

 
18% (0-36%) 
31% (9-52%) 

 
 

0.22 

AUC 0-45 
<90 μg-hr/mL   
≥ 90 μg-hr/mL 

 
25 
15 

 
3 
5 

 
12% 
33% 

 
16% (0-32%) 
35% (10-59%) 

 
 

0.13 

AUC 0-24 
<85 μg-hr/mL   
≥ 85 μg-hr/mL 

 
29 
11 

 
3 
5 

 
10% 
45% 

 
14% (0-28%) 
47% (17-77%) 

 
 

0.02 

AUC 0-6 
       <20 μg-hr/mL   
       ≥ 20 μg-hr/mL 

 
16 
24 

 
0 
8 

 
0% 
33% 

 
0% 

37% (16-59%)  

 
 

<0.01 
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Table 3.4: Number of patients and estimates of relative risk of acute GVHD (II-IV) 
at month 6 in each group of PM AUC chosen for univariate regression analysis 
towards  

Variable N in 
group 

No. of 
Events Event rate 

Relative Risk 
Estimate 
(95% CI)  

p-value 

AUC 0-inf 
<100 μg-hr/mL   
≥ 100 μg-hr/mL  

 
29 
11 

 
9 
11 

 
31% 
55% 

 
33% (15-50%) 
55% (26-83%) 

 
 

0.07 

AUC 0-45 
<85 μg-hr/mL   
≥ 85 μg-hr/mL 

 
19 
21 

 
5 
10 

 
26% 
48% 

 
26% (7-46%) 
50% (27-73%) 

 
 

0.09 

AUC 0-24 
<70 μg-hr/mL   
≥ 70 μg-hr/mL 

 
16 
24 

 
5 
10 

 
31% 
42% 

 
34% (10-58%) 
42% (22-62%) 

 
 

0.36 

AUC 0-6 
       <18 μg-hr/mL   
       ≥ 18 μg-hr/mL 

 
12 
18 

 
3 
12 

 
25% 
43% 

 
29% (2-55%) 
43% (24-62%)  

 
 

0.12 
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Table 3.5: Phosphoramide mustard pharmacokinetic parameter estimates of the 
final model and bootstrap estimates in the development cohort 

Parameters Original Dataset (%RSE) Bootstrap Estimates (95% 
C.I.) 

Final Pharmacokinetic Parameters 

TVKfm 0.14 (4.7%) 0.13 (0.11-0.15) 

Cl/fm
nr

 (L/hr) a 23.9 (21.4%) 28.0 (14.2-38.4) 

Cl/fm
slope

 (L/hr) a 21.9 (24.4%) 15.7 (5.67-30.1) 

TVV/fm (L) 240 (7.1%) 232 (179-290) 

Effect of female gender 
on TVV/fm 

0.75 (12%) 0.65 (0.43-0.91)  

Between Subject Variability (BSV) 

BSV on Kfm CV%=24.6% CV%= 22.6% (10.0-32.4%) 

 BSV on Cl  CV%= 22.5% 
 

CV%= 20.2% (14.2-28.8%) 

 BSV on V1  CV=41.9% CV%= 40.2% (20.2-54.4%) 

Residual unexplained variability (RUV) 
 RUV proportional CV% =14.0% 14.2% (10.0%-20.2%) 

 
% RSE is relative standard error. aTVCl/fm is 45.8 L/hr which is a sum of estimate of Clnr 
(23.9 L/hr) for 83.5 kg actual body weight individual and Clslope (21.9 L/hr).  Clnr: is an 
estimate of non-renal clearance; Clslope is an estimate of the change in renal clearance 
with a unit change in standardized renal function (RenFuncstd) 
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Figure 3.1: Cumulative incidence of TRM at day 100 above and below PM AUC (0-24) 
cutpoint (85 μg*hr/mL) 

 
 
Cumulative incidence of TRM at day 100 after reduced intensity HSCT in patients with 

PM AUC (0-26) ≥85 μg*hr/mL (cumulative incidence [95% CI] 36 % [9-64%]) compared 

AUC (0-26) < 85 μg*hr/mL to (cumulative incidence [95% CI] 4% (0-11%), p <0.01) 
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Figure 3.2: Cumulative incidence of TRM at month 6 above and below PM AUC (0-

24) cutpoint (85 μg*hr/mL) 

 

 
 
Cumulative incidence of TRM at month 6 after reduced intensity HSCT in patients with 

PM AUC (0-26) ≥85 μg*hr/mL (cumulative incidence [95% CI] 47 % [17-77%]) compared 

AUC (0-26) < 85 μg*hr/mL to (cumulative incidence [95% CI] 14% (0-28%), p =0.02) 
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Figure 3.3: Goodness of fit plots for the final PM population pharmacokinetic 
Model 

 
 

A) Observed PM concentration (ng/mL) (DV) vs Population predicted 

concentration (PRED) (ng/mL), B) Observed PM concentration (ng/mL) vs 

Individual predicted concentration (ng/mL). The black dots represent the 

observed PM concentrations, the solid line represents the line of unity and the 

dashed line represents the loess smooth. Since the observed data (black dots) in 

plots A and B are evenly scattered around the line of identity (solid line) it 

suggests that model sufficiently explains the observed data. C) Conditional 

weighted residuals (CWRES) vs Time after the end of infusion and D) CWRES 

vs Population Predicted Concentrations (ng/mL). The dots represent the observed 

PM concentrations, the solid line is the line at y=0 and the dashed line represents 



 
 

 119 

the loess smooth. The plots C and D lack any specific trends and thus provide no 

evidence of model misspecification.  
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Figure 3.4: Visual predictive check of the final model 

 

 
 
The solid black line represents the median of the observed PM concentrations obtained 

from 70 HSCT recipients. The grey area around the solid black line is the 95% 

confidence interval for the median obtained from the simulation-based prediction. The 5th 

and the 95th percentiles of the observed PM plasma concentrations are presented by the 

dashed lines below and above respectively. The light grey shaded areas around dashed 

lines represent 95% confidence intervals for the corresponding 5th and 95th prediction 

intervals obtained from simulations. 
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4.1 INTRODUCTION 

Kidney transplantation is a common and effective treatment for end stage renal 

disease. African Americans (AA) represents around 34% of the candidates on the kidney 

transplant waiting list.(153, 338) Long-term graft survival rates are lower and all-cause 

mortality rates are higher in AA than in Caucasians or Asians.(339-342) There are several 

reasons cited for poor outcomes including greater variation in HLA, immunological 

differences, higher medical non-adherence, socio-economic barriers and PK differences 

of the immunosuppressive agents including tacrolimus.(343, 344)  

 

Tacrolimus has a narrow therapeutic index (215, 216, 345-347) with wide 

interindividual variability in PK resulting in unpredictable blood concentrations.(207, 

211, 348) This necessitates therapeutic drug monitoring to avoid sub-therapeutic and 

supra-therapeutic concentrations, which places the recipient at risk of rejection and 

toxicity, respectively.(349, 350)  There is a significant difference in tacrolimus PK by 

race where AAs have 20-50% lower bioavailability, higher clearance and lower blood 

concentrations as compared to Caucasians.(227, 351-354) To achieve target tacrolimus 

trough concentrations some AA require ~1.5 to 2 times higher doses than 

Caucasians.(228, 355-359) However, not all AA will require a higher dose and these 

individuals may have nonfunctional genetic variants that lead to reduced metabolic 

capacity similar to Caucasians.  
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  Tacrolimus is metabolized by hepatic and intestinal CYP3A4 and CYP3A5 

enzymes.(207, 360) CYP3A5 is a more efficient catalyst of tacrolimus metabolism as 

compared to CYP3A4.(361) Tacrolimus is also a substrate of P-glycoprotein which is an 

efflux transporter expressed on enterocytes.(362, 363) Genetic variants associated with 

CYP3A5, CYP3A4, P450 (cytochrome) oxidoreductase (POR) and P-glycoprotein have 

been studied for their influence on tacrolimus clearance, although only CYP3A5 variants 

have demonstrated major clinical relevance.(226, 227, 229, 237, 238, 244, 360, 364-369) 

 

CYP3A5*3 is an intronic variant which generates a cryptic splice site resulting in 

a non-functional enzyme.(370-372) The presence of the CYP3A5*3 allele is associated 

with lower oral tacrolimus clearance (Cl/F) whereas the CYP3A5*1 allele is associated 

with high Cl/F (CYP3A5*1/*1 individuals ~1 L/hr/kg, CYP3A5*1/*3 ~ 0.8 L/hr/kg vs 

CYP3A5*3/*3 ~ 0.5 L/hr/kg).(207, 373, 374) Therefore, the dose requirements for 

CYP3A5*1/*1 or *1/*3 carriers are about 1.5-1.7 fold higher than CYP3A5*3/*3 carriers. 

(227, 367, 368, 375, 376)  These genotypes are also associated with delays in achieving 

therapeutic concentrations.(229, 377)   

 

CYP3A5*6 is a missense mutation that codes for a splicing defect, deleting exon 7 

resulting in absence of CYP3A5 enzyme and activity.(372) CYP3A5*7 is a frame shift 

mutation due to an insertion within codon 346 and termination of protein synthesis.(371, 

372, 378) Few studies have evaluated the association between CYP3A5*6 and *7 alleles 

and tacrolimus PK. (379-384) Brazilian transplant recipients carrying two CYP3A5 

variant alleles (*3, *6 or *7) had higher tacrolimus trough concentrations compared to 
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those who did not (p<0.0001).(382) However no clearance models with dosing 

algorithms have been developed to account for these common AA variants.  Algorithms 

that do not account for these alleles may incorrectly approximate clearance and dosing 

requirements.  The objective of this study was to develop an AA dosing model, which 

comprehensively includes the common AA specific CYP3A5 variants.  

4.2 METHODS 

4.2.1 Subjects 

  The data for this analysis was obtained from our multicenter observational trial 

(DEKAF Genomics, clinicaltrials.gov NCT00270712). The study was approved by 

Institutional Review Board and an informed consent was obtained from each subject prior 

to the study.  African American kidney transplant recipients (n=354) ≥18 years who 

received tacrolimus maintenance immunosuppression from 6 centers in the United States 

and Canada were studied. Tacrolimus was administered orally once or twice daily. The 

initial dose was based on weight and doses adjusted to achieve each institution’s target 

trough concentrations. Trough blood concentrations (n=6037) were measured at each 

center and, in general, concentrations of 8-12 ng/mL were targeted for the first 3 months 

and 6-10 ng/mL for 3-6 months posttransplant. A median (range) of 18 (1-24) 

concentrations were obtained from each subject in the first 6 months posttransplant, and 

if available, concentrations were obtained twice each week for the first 2 months, and 

then twice in each month up to 6 months.  The concentrations were quantified in each 

center by their standard analysis technique. The majority (92.9%) of concentrations were 

measured by liquid chromatography with mass spectroscopy in CLIA certified labs. 
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4.2.2 Genotypes 

Genotyping was performed on recipient DNA isolated from peripheral blood. Single 

nucleotide polymorphisms CYP3A5*3(rs776746, g.6986A>G), CYP3A5*6 (rs10264272, 

g.14690 G>A) and CYP3A5*7 (rs41303343, g.27131-27132insT) were found to be 

significant in our previous GWAS analysis and therefore were chosen for this 

analysis.(385) In addition POR*28 (rs1057868, g.1058C>T) and CYP3A4*22 

(rs35599367, g.15389 C>T) were also evaluated based on data from our previous 

analyses in a mixed race populations suggesting their importance.(386) Genotypes were 

determined using a custom exome-plus Affymetrix TxArray SNP chip described 

elsewhere. (387) The allele frequency of CYP3A5*3 (G allele), CYP3A5*6 (T allele), 

CYP3A5*7 (A allele), POR*28 (T allele) and CYP3A4*22 (A allele) were 29.0%, 12.3%, 

8.8%, 19.0%, 2.4%, respectively.   

4.2.3 Population Modeling Of Trough Concentrations  

The 354 subjects were randomly divided into a development (60%) and a validation 

cohort (40%). The data from the development cohort (212 subjects with 3704 troughs) 

was used to build the apparent oral tacrolimus clearance (Cl/F) model and subsequent 

dosing equation. The validation cohort (142 subjects with 2333 troughs) was used to 

evaluate the developed model. To assess differences in demographics, clinical and 

genotype distributions a two-sample t-test (for continuous factors) and sample proportion 

test (for categorical factors) were performed using R software package. Nonlinear mixed 

effect modeling was used to develop the Cl/F model with NONMEM (version 7.2, ICON 

development solutions, Maryland, USA) software on a Visual Fortran compiler (90/95).  

The NONMEM execution, model diagnostics, covariate testing and bootstrapping were 
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conducted with Perl Speaks NONMEM (PsN) toolkit and the Xpose4 package through 

Pirana workbench (version 2.7.2). R studio 3.0.3 was used for predictive performance 

checks.  A plot of observed concentration vs time posttransplant is shown in Figure 4.1. 

A steady-state infusion model was used to develop the PK base model using $PRED 

library in NONMEM. In absence of intravenous data for the tacrolimus, it was not 

possible to calculate oral bioavailability. Therefore tacrolimus apparent oral clearance 

(Cl/F), which is the ratio of total clearance (Cl) to the bioavailability (F), was used to 

regress steady state tacrolimus concentrations (Css,av) to the administered dose. Cl/F was 

related to tacrolimus trough concentrations by the following equation 

Css = Total daily dose/ [(Cl/F)*24]                                                                (equation 1) 

Due to the longer half-life of tacrolimus, steady-state trough concentrations were 

assumed to be approximately equivalent to average steady-state concentrations (Css). 

Actual apparent oral clearance may vary from this approximated Cl/F; however, this 

difference is negligible for drugs with longer half-lives, such as tacrolimus. 

An exponential error model was used to explain the inter-individual variability in Cl/F as 

shown in the following equation: 

Cl/F = Typical value of Cl/F (TVCl/F) x expη
(1)                                                                      (equation 2) 

where, η(1) is the estimate of deviation of individual Cl/F from TVCl/F. η(1) is assumed to 

be normally distributed mean of zero and variance ω2.  

An additive error model adequately explained the residual unexplained variability.  

Cij = Cpred,ij + εij                                                                                               (equation 3)                                         

where Cij is the jth observed tacrolimus trough concentrations in the ith individual, Cpred,ij 

is the jth predicted tacrolimus trough concentrations in the ith individual and εij is the 
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residual unexplained variability and where ε ~N(0,σ2). FOCE interaction was used as the 

NONMEM estimation method.  

4.2.4 Covariate Analysis  

Clinical factors and genotypes were tested for their influence on tacrolimus TVCl/F. 

Covariates tested were recipient and donor age, gender, days posttransplant, steroid use 

(prednisone, methylprednisolone) at each trough measurement, calcium channel blocker 

use at each trough measurement, ACE-inhibitor use at each trough measurement, CMV 

sero-status at time of transplant (antibody positive or negative), anti CMV viral drug (as 

prophylaxis) use at each trough measurement, diabetes diagnosis at time of transplant, 

glomerular filtration rate calculated by the Modification of Diet in Renal Disease 

equation as a time varying covariate, body mass index (kg/m2), actual body weight (kg) at 

baseline (time of transplant), and actual body weight (kg) at time of trough measurement 

as a time varying covariate. Alleles tested were CYP3A5*3, CYP3A5*6, CYP3A5*7, 

POR*28, and CYP3A4*22.  Recipients who did not carry any CYP3A5*3, *6 or *7 alleles 

were designated as CYP3A5*1/*1 genotype and those who carried one CYP3A5*3, *6 or 

*7 allele were designated CYP3A5*1/*3, *1/*6 or *1/*7 genotype, respectively. 

Recipients were classified into one of nine CYP3A5 genotypes (CYP3A5 *3/*3, *3/*6, 

*3/*7, *6/*7, *6/*6, *1*3, *1*6, and *1*7 and *1/*1).  Recipients were also classified 

based on POR (POR*1/*1, *1*28 or *28/*28) and CYP3A4 (CYP3A4*1/*1 or *1/*22) 

genotype.  No subjects had the CYP3A5*7/*7 or CYP3A4*22/*22 genotype. Recipient 

age, donor age and days posttransplant were tested both as continuous (using linear, 

exponential and power models) and categorical covariates. All other clinical factors were 

tested as categorical covariates. A strategy of forward inclusion and backward 
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elimination was tested for inclusion of the covariates.  In NONMEM, minimization of -2 

log likelihood is used as a model statistic and is given by the objective function value 

(OFV); measure of goodness of fit similar to sum of squares. The significance of 

inclusion of each covariate was tested based on likelihood ratio test that follows a chi 

square distribution. A lower OFV is considered to be a better fit and a decrease in the 

OFV by 3.8 (p<0.05) or more was considered significant for forward inclusion and an 

increase in OFV by 6.6 (p < 0.01) was chosen for backward elimination.  

 

4.2.5 Model Evaluation   

To evaluate the precision of the parameter estimates, a non-parametric bootstrap 

approach was performed using the development cohort. The method used random 

sampling with replacement to generate 1000 bootstrapped datasets using PsN toolkit. The 

final model developed with NONMEM was fit to each of the bootstrapped datasets and 

the parameters were obtained with their 5th and 95th prediction intervals.  The model was 

also validated by using subjects in the validation cohort. The final model parameters were 

fixed in NONMEM (the estimation method was set to MAXEVAL=0 with the 

POSTHOC option) and were used to predict trough concentrations in validation cohort 

subjects. Population predicted trough concentrations (PRED) were obtained for each 

observed concentration (the dependent variable, DV) given their actual administered 

dose, the time after transplant, significant clinical covariates and genotypes (those 

identified from the development model).  Median prediction error (MPE) and median 

percentage prediction error (MPPE) was then used to calculate the bias in model 
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predictions and median absolute prediction error (MAPE) was used to calculate the 

imprecision.  The following equations were used: 

 MPE = Median (PRED –DV) 

MPPE = Median [(PRED-DV)/DV X 100] 

MAPE = Median [|(PRED-DV)|] 

 

4.3 RESULTS 

4.3.1 Model Development 

Characteristics of the subjects in the development and validation cohorts are 

shown in Table 4.1. The median (range) daily dose and trough concentrations did not 

differ between the cohorts. The median tacrolimus concentrations were low during the 

first week post transplant and slowly increased over time until month 2 (2.8, 5.3, 6, 6.3, 

6.9, 6.9, 7, 7.1, ng/mL in weeks 1-8 and 7.4, 7.2, 6.9 and 7 ng/mL in months 3-6, 

respectively).  Tacrolimus TVCl/F was 54.6 L/hr and was significantly influenced by 

recipient age, steroid and antiviral coadministration, days posttransplant and 

CYP3A5*1/*3, *3/*3, *1/*6, *1/*7, *3/*6, *6/*6, *6/*7 and *3/*7 genotypes.  All other 

tested covariates were not significant.  The effect of genotypes and clinical covariates on 

tacrolimus TVCl/F and final parameter estimates in the model development cohort and in 

the bootstrap analysis are shown in Table 4.2. The NONMEM code for the final model is 

shown in Appendix 8.3. 

The inter-individual variability in TVCl/F after inclusion of covariates was 48.6%. 

Days posttransplant was the most important covariate where TVCl/F was 33% higher in 
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the first 9 days posttransplant compared to after 9 days. Days post-transplant was first 

tested as continuous covariate however the model failed to converge and hence modeled 

as a categorical covariate. The plot of dose normalized trough concentrations over time 

showed a general increase in concentrations early posttransplant (up to day 9) and 

stabilized later. Several cut points were tested to understand the effect of time. There was 

also a break point in Cl/F at day 9 similar to that observed for concentrations.  Addition 

of a third ordered category for days post transplant was not significant, hence only 

categorized as a bivariate. Tacrolimus TVCl/F increased by 23% with concomitant 

steroid use and reduced by 8% with concomitant antiviral use. Tacrolimus TVCl/F was 

24% greater in subjects under the age of 34 years vs older subjects. Similar to days post-

transplant, age as a continuous covariate, had problems with model convergence giving 

unrealistic parameter estimates. Hence age was categorized based on clinical definition of 

young (18-34 years), middle age (35-64 years) and older age (>64 years). In the current 

study, only 6% of AA patients were older than 64 years, and therefore we were unable to 

test the effect of the older age group and therefore was combined with age group 35-64 

years. 

  

In subjects with CYP3A5*1/*3, *1/*6 or *1/*7 genotypes the tacrolimus TVCl/F 

decreased by 16.2%, 8.2%, and 24.1%, respectively, compared to CYP3A5*1/*1 

genotype.  For CYP3A5*3/*3, *3/*6, *3/*7 or *6/*7 the TVCl/F declined by 51%, 

36.5%, 54.5% and 44.2%, respectively, relative to CYP3A5*1/*1.  Only one subject had 

*6/*6 genotype in the development cohort and therefore *6/*6 was not evaluable 

independently. To build a parsimonious model and to improve the power, we combined 
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the genotypes with similar effect sizes and overlapping confidence intervals on 

tacrolimus TVCl/F and re-ran the model. The tacrolimus TVCl/F decreased by 47% in 

subjects carrying two loss of function alleles (CYP3A5*3/*3 or *3/*6 or *3/*7 or *6/*7, 

or *6/*6) and by 15% in subjects carrying one loss of function allele (CYP3A5*1/*3, 

*1/*6 or *1/*7) compared to the CYP3A5*1/*1. The POR*28 and CYP3A4*22 genotypes 

did not influence TVCl/F. 

 

To examine the goodness of fit, diagnostic plots were assessed during model 

development. Histograms of η(1)s and Cl/F satisfied conditions of normal and log-normal 

distribution, respectively. Figure 4.2A and Figure 4.2B shows the plots of observed 

concentration vs population predicted concentration, observed concentrations vs 

individual predicted concentrations. Figure 4.2C and Figure 4.2D show the conditional 

weighted residuals (CWRES) vs independent variables, population predicted 

concentration and time. Although the model under-predicted slightly at higher 

concentrations, most of the data are evenly distributed across the line of unity. Also the 

CWRES do not show any specific trends of model misspecification. Thus the model 

adequately explains the observed data. The final tacrolimus TVCl/F model with clinical 

factors and genotypes is as follows: 

 

Tacrolimus TVCl/F (L/hr)=54.6 L/hr x (1.33, if days less than 9 posttransplant) x [(0.53, if 

CYP3A5*3/*3 or CYP3A5*3/*7 or CYP3A5*3/*6 or CYP3A5*6/*7or CYP3A5*6/*6)] x (0.85, if 

CYP3A5*1/*3 or CYP3A5*1/*6 or CYP3A5*1/*7) x (1.23, if receiving a steroid) x (0.92, if 

receiving an anti CMV viral drug) x (1.24, if recipient age 18-34 years) 
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Using the TVCl/F calculated using the model above and a desired target tacrolimus 

trough concentration; the daily tacrolimus dose can be calculated by: 

Daily dose (mg/day) = [TVCl/F x target tacrolimus trough concentration (ng/ml) x 

24hrs]/1000 

4.3.2 Model Evaluation Using Bootstrap 

Table 4.2 shows the median of the parameter estimates and their 95% prediction 

intervals obtained from 1000 bootstrap runs. Out of 1000 runs, 991 runs minimized 

successfully and the estimates from each bootstrap run were used to calculate the median 

and 95% interval. Parameter estimates for fixed and random effects obtained from the 

original dataset fell within the prediction interval of the estimates obtained from bootstrap 

therefore indicating that the model is robust and reproducible.  

 

4.3.3 Model Evaluation Using The Validation Cohort  

Table 4.3 shows the prediction performance of the tacrolimus TVCl/F model. The 

median prediction error with 95% CI was 0.48 (0.31-0.65) ng/mL and median percentage 

prediction error was 9.45% (6.44-12.45). Therefore, the model over-predicted the trough 

concentrations relative to the observed concentrations. Median absolute prediction error 

was 2.32 (2.21-2.44) ng/ml.     

 

4.4 DISCUSSION 

 African Americans have poorer outcomes after transplantation and a possible 

contributory factor is high PK variability in immunosuppression leading to multiple dose 
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changes and longer periods of time out of the therapeutic range.(339, 358)  On average 

AA require higher tacrolimus doses than Caucasians to achieve the same target blood 

concentration and most centers administer higher initial doses to AAs.  However, not all 

individuals require higher doses and therefore some may have elevated concentrations 

which lead to temporary cessation of therapy and/or dose reductions. Whereas others may 

require even higher doses of tacrolimus to avoid insufficient blood concentrations.  Most 

tacrolimus pharmacogenomic studies in AAs and Caucasians have classified CYP3A5 

metabolism based on the presence or absence of the nonfunctional CYP3A5*3 allele.  The 

CYP3A5*3 allele frequency has a minor allele frequency of 18-35% in AA and 88-95% 

in Caucasians.(226, 230, 372, 378, 388, 389) However, AAs also carry CYP3A5*6 and/or 

*7 alleles which also encode for low activity or nonfunctional enzyme which have not 

been accounted for in most studies.  CYP3A5*6 and *7 are common in AAs with a minor 

allele frequency of 16-18% and 10-12%, respectively, but absent in Caucasians.(230, 

372, 388, 390, 391) We found that AAs who carry two nonfunctional alleles (*3, *6 or 

*7) have a tacrolimus clearance similar to Caucasians whereas those who carry no 

nonfunctional alleles have high clearance. Therefore, AAs have a broad range of 

CYP3A5 metabolism phenotypes. To develop personalized strategies to reduce PK 

variability, we evaluated the effect of these variants on tacrolimus clearance and 

developed the first genotype-guided dosing model for AAs.   

 

We found that tacrolimus TVCl/F in AAs was significantly influenced by 

CYP3A5*1, *3, *6 and *7 alleles, days posttransplant, steroid and antiviral drug 

coadministration and age. The TVCl/F was 54.6 L/hr and higher than reported in non-AA 



 
 

 135 

studies (~22-40 L/hr) (207, 392-395) which is consistent with AAs being more likely to 

carry a *1 expresser allele than Caucasians.  The CYP3A5*3, *6 and *7 alleles were each 

associated with a reduction in tacrolimus clearance. About 50% of our subjects carried 

one nonfunctional allele (CYP3A5*3/*1, *6/*1 or *7/*1), which decreased tacrolimus 

TVCl/F by 15%. Individually, the CYP3A5*1/*3, *1/*6 and *1/*7 genotypes, decreased 

TVCl/F by 16.2%, 8.2%, and 24.1%, respectively.  In addition, about 24% of our subjects 

carried two nonfunctional alleles – primarily CYP3A5*3/*3, *3/*6 and *3/*7 and *6/*6.  

The effect of two variant alleles was large resulting in a decrease in tacrolimus TVCl/F 

by 47%.  We did not observe any subject with more than two *3, *6 or *7 alleles.  Based 

on our data and haplotype analyses by others the probability of this occurring is very low 

(<0.5%).(396, 397)   

 

The CYP3A5*6 allele is thought to encode for nonfunctional enzyme; however, 

there is some uncertainty about its functionality and it may express low levels of enzyme.  

In our study tacrolimus TVCl/F was 24% lower in CYP3A5 *1/*7 carriers but only 8.2% 

lower in *1/*6 carriers relative to the *1/*1 carriers, supporting that *6 may express low 

levels of enzyme.  Others found no difference in tacrolimus concentrations between 

CYP3A5*1/*1 and *1/*6 genotypes groups although the number of subjects was 

small.(381) In another study, CYP3A5*1/*1, *1/*3 or *1/*6 carriers had lower tacrolimus 

troughs than CYP3A5*3/*3 carriers but no difference in area under the curve although 

only one individual carried the CYP3A5*1/*6 genotype.(379) The influence of 

CYP3A5*6 and CYP3A5*7 alleles has been studied towards other CYP3A5 substrates 
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and the effect may be substrate specific therefore our results may not be generalizable to 

other drugs. (397-403) 

 

Day posttransplant was a significant covariate towards tacrolimus where TVCl/F 

is 33% higher in the first nine days posttransplant compared to after day 9 which is 

consistent with other studies.(207, 227, 392, 393, 404, 405) The higher TVCl/F may be 

due to early physiological changes such as fluid status, hepatic and kidney function 

and/or decreased bioavailability from dietary changes or concomitant medications. 

Concomitant steroid use was associated with a 23% higher tacrolimus TVCl/F most 

likely because steroids induce CYP3A enzymes.(406-409) We also found that younger 

subjects (18-34 years) had a 24% higher tacrolimus TVCl/F compared to older subjects. 

While some studies have not observed a significant association between tacrolimus Cl/F 

and age we previously showed in 1967 kidney recipients that age (18-34 vs 35-64 vs 65-

84 years) had a highly significant effect on tacrolimus troughs.(207, 228, 392, 395, 410-

412) We found that the co-administration of antivirals reduced tacrolimus TVCl/F but 

only by 8%. The mechanism of this effect is unknown. We did not find that calcium 

channel blockers were associated with TVCl/F. This is likely because amlodipine is the 

preferred agent at our centers and has a lower potential for an interaction than other 

calcium channel blockers.(413-415) Weight was not significant towards TVCl/F. Other 

studies have also not found weight to be significant.(416, 417)   

 

The POR*28 and CYP3A4*22 variants have been previously associated with 

tacrolimus concentrations but we were unable to find an association in our AA 
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population.(234, 237, 244, 364, 368, 383, 418) One or two POR*28 alleles were present 

in ~30% of subjects whereas the CYP3A4*22 allele was infrequent (<5%).  Our ability to 

detect an association with CYP3A4*22 was therefore limited. 

 

A prospective trial, in a primarily Caucasian kidney transplant recipients, 

evaluated the effect of genotype-guided tacrolimus dosing vs traditional weight based 

dosing.(419) The study tested an initial dose of 0.3 mg/kg/day PO in CYP3A5 expressors 

(CYP3A5*1) and 0.15 mg/kg/day PO for non-expressors (CYP3A5*3). The genotype-

guided group had a higher proportion of patients with tacrolimus troughs within the 

target, fewer dose modifications, and more rapid achievement of the target concentration. 

Although genotype guided dosing did not reduce major clinical outcomes it was an 

important study as it showed the value of genetic targeting in controlling systemic 

exposure.  Data such as ours shows that race specific variants and clinical factors is 

necessary in future trials and may improve achievement of major clinical endpoints. The 

Clinical Pharmacogenetics Implementation Consortium recently published guidelines for 

initial tacrolimus dosing. The guidelines recommend increasing the starting dose by 1.5-2 

times in extensive metabolizers (CYP3A5*1/*1) and intermediate metabolizers 

(CYP3A5*1/*3, *1/*6, *1/*7), and standard dose in poor metabolizers (CYP3A5*3/*3, 

*6/*6, *7/*7, *3/*6, *3/*7 and *6/*7).(239) Our data supports these recommendations 

where *6 and *7 allele carriers require lower doses. 

 

One of the limitations of our study is that albumin, hematocrit and antifungal 

agents status was not available and not tested in our model.(207) Our study used clinical 
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trough concentrations that were obtained as part of clinical care and draw times were not 

supervised by our study personnel but instead overseen by the clinicians.  Compliance 

was also assessed by the clinical site and not through the study protocol.   

 

To our knowledge this is the first study in which the effect of CYP3A5 alleles (*1, 

*3, *6, *7) common in AAs have been collectively studied towards tacrolimus clearance.  

We identified one or more nonfunctional CYP3A5 alleles (*3, *6 or *7) in 74.5 % of our 

AA study population whereas 90-95% of Caucasians will carry one or more CYP3A5*3 

alleles.(378) This is considerably higher than what has been previously presumed in the 

AA population.  If the *6 or *7 alleles had not been genotyped, 27% of our subjects 

would have been inappropriately categorized as carrying two CYP3A5 *1 alleles, and 

10% categorized as carrying one CYP3A5*1 allele thereby overestimating tacrolimus 

Cl/F by nearly 50% in some individuals.  Our data are consistent with a recent African 

study where only ~43% of individuals were considered CYP3A5 expressers since most 

carried one or more CYP3A5*3, *6 or *7 nonfunctional alleles.(396)   

 

This is the first study to develop and validate an AA specific genotype guided 

dosing model using variants common and relevant in the AA population.  This study 

demonstrates the importance of race specific genotypes to determine drug clearance.  

Using dosing models which account for the genotypes and clinical factors may lead to 

precision dosing of tacrolimus.  
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Table 4.1: Subject demographics 

  All subjects 
 

Development Cohort 
subjects 

Validation Cohort 
subjects 

 

P-valuea 

No. of subjects  354 212 142  
No. of male subjects (%)  
 

227(64) 140(63) 87(61) 0.35 

Daily dose (mg)b 8(0.50-36) 8(0.5-36) 8(1-30) 0.17 

No. of troughs 6037 3704 2333 0.09 

Tacrolimus  trough (ng/mL)b 6.50(0.10-65.60) 6.50 (0.10-65.60) 6.40(0.70-50.00) 0.34 

Weight at baseline (kg)b 85(42-140) 85(42 -140) 83(47-137) 0.34 

GFR by MDRD mL/min/1.73m2 

b,d 
55.89(6.18-168.28) 55.88(6.18-168.28) 55.24(14.25-122.71) 0.08 

No recipients in age category (%)  
   18-34 years 
   35-64 years 
   >64 years 

 
 

66 (19) 
268 (76) 
20 (6) 

 
 

36 (17) 
163(77) 
13 (6) 

 
 

30 (21) 
105 (74) 

7 (5) 

 
 

0.32 
0.52 
0.63 

Age at transplantb 48(20-73) 47 (20-73) 49 (21-72) 0.57 
No. receiving dialysis at time of 
transplant (%) 

56(16) 34(16) 22(15) 0.50 

No. with diabetes at transplant 
(%) 

129(36) 79(37) 50(35) 0.69 
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No. of troughs with calcium 
channel blocker (%)  

2944(49) 1838(50) 
 

1106(53) 0.01 

No. of troughs with ACE 
inhibitor (%) 

905(15) 522(14) 383(16) 0.01 

No. of troughs with antiviral drug 
(%) 

3441(57) 2128(57) 1313(56) 0.001 

No. of troughs with steroid (%) 3283(54) 1941(52) 1342(58) 0.46 

Simultaneous pancreas and 
kidney transplant (%) 

16(5) 11(5) 5(4) 0.64 

No. with living donor (%) 172(31) 
 

108(30) 64(31) 0.27 

No. with prior transplant (%) 34(10) 22(10) 12(8) 0.54 

Primary cause of kidney disease 
(%) 
  Diabetes  
  Glomerular nephritis 
  Hypertension 
  Polycystic kidney disease 
  Other 
  Unknown 

 
 

94(27) 
50(14) 
148(42) 
11(3) 
44(12) 
7(2) 

 
 

58(27) 
28(13) 
93(44) 
4(2) 

26(12) 
3(1) 

 

 
 

36(25) 
22(15) 
55(39) 
7(5) 

18(13) 
4(3) 

 
 

0.67 
0.54 
0.34 
0.1 
0.91 
0.35 

No. of individuals with genotype 
(%) 
  
  CYP3A5*1/*3  
  CYP3A5*3/*3  

 
 
 

96 (27) 
34 (10) 

 
 
 

65 (31) 
20 (9) 

 
 
 

31 (22) 
14 (10) 

 
 
 

0.07 
0.89 
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  CYP3A5*1/*7 
  CYP3A5*7/*7 
  CYP3A5*1/*6 
  CYP3A5*6/*6 
  CYP3A5*3/*6 
  CYP3A5*3/*7 
  CYP3A5*6/*7 
  CYP3A5*1*1 
  CYP Not determinedc 

36 (10) 
0 

47 (13) 
4 (1) 
21(6) 
15 (4) 
11 (3) 
80 (23) 

10 

14 (7) 
0 

30 (14) 
1 (0.5) 
15 (7) 
8 (4) 
5 (2) 

49 (23) 
5 

22 (15) 
0 

17 (12) 
3 (2) 
6 (4) 
7 (5) 
6 (4) 

31 (21) 
5 

0.006 
 

0.55 
0.15 
0.26 
0.59 
0.32 
0.77 

  POR*1/*1 
  POR*1/*28 
  POR*28/*28 

151 (43) 
86 (25) 
25 (7) 

91 (43) 
55 (26) 
15 (7) 

60 (42) 
31 (22) 
10 (7) 

0.90 
0.37 
0.99 

  CYP3A4*1/*1 
  CYP3A4*1/*22 
  CYP3A4*22/*22 

229 (65) 
17 (4) 

0 

140 (66) 
12 (6) 

0 

89 (63) 
5 (4) 

0 

0.52 
0.35 

 

ap-value is the comparison of model development and validation cohorts 

bdata are median (range) 

cThese individuals did not have one or more of the CYP3A5 genotypes available and were excluded from the all analyses 

dGFR is glomerular filtration rate calculated by Modification of Diet in Renal Disease  (MDRD) equation 
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Table 4.2: The effect of genotypes and clinical covariates on tacrolimus clearance 
(Cl/F) and final parameters estimates 

 
Parameter/Covariate Model development 

cohort.  
Estimate (%RSEa) of 
the effect on TVCl/F 

Bootstrap analysis.  
Median (95% 
confidence interval) 

Typical Value of Cl/F (TVCl/F) in 
L/hr 

 54.60 (10.0%) 54.48 (44.51-66.63) 

Two loss of function alleles 
(CYP3A5*3/*3 or *3/*7 or 
CYP3A5*3/*6 or *6/*7)  

0.53 (10.9%) 0.53 (0.43-0.66) 

One loss of function alleles 
(CYP3A5*1/*3 or CYP3A5*1/*6 or 
CYP3A5*1/*7) 

0.85 (9.7%) 0.85 (0.70-1.04) 

Less than day 9 posttransplant 1.33 (4.2%) 1.33 (1.23-1.45) 
Steroid drug use 1.23 (6.9%) 1.24 (1.07-1.42) 
Antiviral drug use 0.92 (2.9%) 0.91 (0.87-0.97) 
Recipient age (18-34 yrs) 1.24 (7.8%) 1.24 (1.07-1.47)  
Between subject variabilityb 0.21 (18.1%)            

[CV%=48.6%] 
0.21 (0.14- 0.28)             
[CV%= 46.7% (38.76-
56.84%] 

Residual unexplained variability in 
trough (ng/mL) 

2.76 (7.5%) 2.75 (2.55-2.96) ng/mL 

aRSE is relative standard error 

b0.21 represents the estimate of the variance of individual η(1). CV% is the coefficient of 

variance and represents interindividual variability in the population. CV% = sqrt {[exp 

(variance)]-1} 
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Table 4.3: Predictive performance of the tacrolimus clearance model  

Predictive performance measure Estimate 
Median prediction error (MPE, 95% CI) 0.48(0.31-0.65) 
Median percentage prediction error (MPPE, 95% CI) 9.45(6.44-12.45) 
Median absolute prediction error (MAPE, 95% CI) 2.32(2.21-2.44) 
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Figure 4.1: Plot of observed tacrolimus trough concentration over time 

 
 
 

The black dots are the observed tacrolimus trough concentrations and the solid black line 

is the loess smooth. 

 

 

 
 
 
 



 
 

 140 

 
Figure 4.2: Goodness of fit plots for the final tacrolimus model  

 
 
(A) Observed concentrations (ng/mL) vs population predicted concentrations (ng/mL) 

and (B) Observed conc. (ng/mL) vs individual predicted concentrations (ng/mL). The 

black dots represent the observed tacrolimus trough concentrations, the solid line 

represents the line of unity and the dashed line represents the loess smooth.  

(C) Conditional weighted residuals (CWRES) vs population predicted concentrations 

(ng/mL) and (D) CWRES vs time after dose (hrs). The dots represent the observed 

tacrolimus trough concentrations, the solid line is the line at y=0 and the dashed line 

represents the loess smooth
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5.1.    INTRODUCTION  

 Kidney transplantation is the only curative treatment for end stage renal disease.  

Combinations of immunosuppressive agents mainly antibody induction agents, 

calcineurin inhibitors, mycophenolic acid (MPA) and steroids are critical in maintaining 

the function of the transplanted donor organ.  Mycophenolic acid is one of the newer 

additions to the standard immunosuppressive regimen and is used in over 90% of all U.S. 

transplants.(153) It prevents graft rejection by inhibiting the proliferation of T and B 

lymphocytes through competitive and reversible inhibition of the enzyme, inosine 

monophosphate dehydrogenase (IMPDH).(420) Ionosine monophosphate dehydrogenase 

is a rate-limiting enzyme in the de novo DNA synthesis that catalyzes oxidation of 

ionosine monophosphate to xanthine monophosphate. Lymphocytes are incapable of 

utilizing the salvage pathway for DNA synthesis, and thus MPA exerts its 

immunosuppressive activity by interrupting the de novo DNA synthesis, cell proliferation 

and differentiation.(421) Two enzymes are encoded by the IMPDH genes; IMPDH1 and 

IMPDH2, with 84% sequence identify and are located on chromosomes 7q31.3–q32 and 

3p21.2–p24.2, respectively.(422) IMPDH1 and IMPDH2 have well conserved coding 

regions and while 3 distinct promoters control IMPDH1, only a single promoter controls 

IMPDH2.(423) MPA inhibits both IMPDH1 and IMPDH2 enzymes.(424) Identifying an 

ideal biomarker for assessing the level of immunosuppression contributed by MPA has 

been difficult. Although therapeutic monitoring of MPA concentrations in the plasma is 

used clinically to guide MPA dosing it has not been shown to be universally predictive of 
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rejection or toxicity.(425-432) The objective of this study was to identify possible gene(s) 

involved in MPA immunosuppressive mechanism in transplant recipients that might 

ultimately serve as a marker of immunosuppression intensity. 

 Studies have sought to understand if IMPDH enzyme activity is a better 

biomarker of MPA immunosuppressive effects than MPA plasma concentrations in 

transplant recipients. An in vivo rabbit heterotropic heart transplant model, showed an 

inverse correlation between MPA plasma concentrations and IMPDH activity measured 

in whole blood with an increase in IMPDH activity observed prior to rejection.(433) In 

humans, a decrease in IMPDH activity was observed following MPA administration in 

peripheral blood mononuclear cells (PBMC), CD4+ cells and erythrocytes.(434-438) In 

kidney transplant recipients, IMPDH activity decreased after MPA administration, with 

maximum decrease at peak MPA plasma concentrations followed by gradual return to 

near baseline within 3-6 hours post dose. (436, 439-441) High IMPDH activity has been 

associated with a higher risk of acute organ rejection, (435, 442, 443) although other 

studies have failed to demonstrate an association between IMPDH activity and clinical 

outcomes.(444, 445) 

 More recently gene expression has been associated with drug responsiveness. 

(446-450) Little data though are available regarding the relationships between 

immunosuppressive drugs and gene expression. MPA treatment induced a dose 

dependent increase in IMPDH mRNA expression in human cell lines.(451) Whole 

genome microarray studies using different cell lines, have found MPA to affect 

expression of several genes in the cell cycle and proliferation pathway.(452-454) Studies 
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have also demonstrated differential gene expression in other pathways, which support 

MPA’s antiangiogenic and antifibrotic effects(455, 456), impaired stimulation of 

dendritic cells(457), anti-viral(458) and anti-atherosclerotic effect.(459) Limited clinical 

data are available related to gene expression after MPA administration but data suggest 

that expression changes may occur in CD25, CD71, IMPDH1 and IMPDH2 genes. (436, 

444, 445, 460, 461) 

 Our study objectives were to identify and evaluate changes in gene expression 

after MPA administration in PBMCs posttransplant using whole transcriptome RNA 

sequencing, and to associate expression with IMPDH activity and MPA plasma 

concentrations. We also evaluated whether changes in gene expression, MPA plasma 

concentrations and IMPDH activity following MPA transplant were associated with acute 

rejection and toxicity.  The long-term goal of this work is to identify biomarkers, easily 

accessible in the blood, that are predictive of response to immunosuppression, which can 

guide therapy.  

5.2.     METHODS 

5.1.1 Patients 

Blood samples from 44 kidney transplant recipients were obtained for RNA 

sequencing and measurement of IMPDH activity in PBMCs and MPA and metabolite 

concentrations in the plasma. Of the 44 patients, 1 patient had only pretransplant samples 

available and 2 patients received MPA prior to transplant therefore were excluded and the 

analysis was conducted in 41 patients.   Patient characteristics are shown in 
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Table 5.1.  All patients provided written informed consent and the protocol was approved 

by the Institutional Review Board of the University of Minnesota. All patients received 

induction therapy with rabbit anti-thymocyte globulin, tacrolimus or cyclosporine, 

mycophenolate, and short course steroids (for 5-7 days posttransplant) as their 

immunosuppressive therapy. Blood samples for measurement of gene expression, 

IMPDH activity and MPA plasma concentrations were collected simultaneously at 

pretransplant (before transplant surgery but no more than 2 weeks prior) and immediately 

prior to an MPA dose (trough) at week 1 (± 3 days), months 3 and 6  (± 2 weeks) 

posttransplant.  Each sample was analyzed for RNA expression and IMPDH activity in 

PBMCs, and for MPA (total and unbound) and acylMPAG (an active metabolite) 

concentrations in the plasma.  

5.1.2 RNA Sequencing To Measure Gene Expression 

Blood was collected in BD Vacutainer® lavender top tubes with EDTA as 

anticoagulant. Total RNA was isolated from ~12 ml of whole blood PBMCs using a 

Qiagen QIAamp RNA Blood Mini kit (Germantown, MD) within 2 hours of blood draw. 

RNA was quantified using a Nanodrop 800 spectrophotometer. RNA sequencing libraries 

were built and Illumina Hi-seq 2000 sequencing was used to generate 20–40 million 

mapped paired-end reads per sample as previously described.(462) Quality control and 

paired-end reads alignment was performed using FastQC:Read and Tophat2, 

respectively, using iGenome human UCSC reference annotation. Transcript assembly and 
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abundance was determined using the Cufflinks program to determine fragments per 

kilobase per million reads (FPKM) for each gene transcript. 

5.1.3 Bioanalysis of IMPDH Activity, MPA and MPA Metabolite  

 Total IMPDH enzyme (IMPDH1 and IMPDH2) activity was measured in PBMCs 

isolated from the buffy coat obtained after centrifugation of 8 ml of whole blood 

collected in BD Vacutainer® Cell Preparation Tubes (CPT™). The detection and 

quantification of IMPDH activity was conducted using HPLC-UV method as previously 

described (463) with minor modifications. Total MPA (bound and unbound), protein free 

(unbound) MPA and acylMPAG (an active metabolite) were measured in plasma 

obtained by centrifugation of 5 ml of whole blood collected in BD Vacutainer® lavender 

top tube containing K2EDTA as anticoagulant.  The detection and quantification of total 

MPA, unbound MPA and acyl MPAG was performed using liquid chromatography mass 

spectrometry based on previously described methods.(464) Details of IMPDH activity 

and MPA assays are provided in the supplementary material.  

5.1.4 Statistical Analysis 

 Log transformed, normalized FPKM values from each sample adjusted for the top 

two principal components computed using the surrogate variable approach (465) were 

used for analysis. A linear mixed effects (LME) model was used to compute associations 

between MPA and acylMPAG plasma concentrations, IMPDH activity, with gene 

expression accounting for within subject correlation. A fold change in gene expression 

from baseline (before MPA administration pretransplant) to various time points 
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posttransplant (week 1, months 3 and 6) were tested for association with MPA (unbound, 

total) concentrations, acylMPAG concentrations and IMPDH activity. Logistic regression 

analysis was used to evaluate whether pretransplant gene expression (log FPMK), fold 

changes in gene expressions, IMPDH activity or MPA parent and acylMPAG trough 

concentrations were associated with acute rejection and MPA-related leukopenia. Acute 

rejection was diagnosed and defined by the treating physician and >96% were biopsy 

confirmed.  Mycophenolate related leukopenia was defined as the use of mycophenolate 

at least 14 days prior to a WBC count <3000 cells/mm3 that resulted in a clinical 

intervention. Clinical interventions included mycophenolate dose reduction lasting ≥ 2 

weeks, discontinuation for ≥ 2 weeks and/or initiation of granulocyte colony stimulating 

factor or granulocyte macrophage colony stimulating factor therapy. To account for small 

sample size, Kenward-Roger approximate F-test (466) was used to test for changes in 

gene expression. We used a false discovery rate (FDR) of 0.1 to identify significant 

associations.  

5.3. RESULTS 

Samples were obtained at 115 time points in 41 patients and were analyzed. Of the 

115 samples, 41 were collected at pretransplant, 36 at week 1, 20 at month 3 and 18 at 

month 6. Gene expression data was available for 38 patients at baseline (2 samples were 

not sent for sequencing and one failed quality control), 34 patients at week1 (one sample 

was not sent for sequencing), 20 patients at month 3, and 18 patients at month 6.  All 

samples except one passed FastQC quality check and were used for TopHat alignment and 

Cufflink gene expression. The overall alignment rate for paired end reads was 89.9%.  
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There were 20983 genes with expression measurements (FPKM) greater than 0 at one 

time point or more. IMPDH activity was measured in 41 patients at baseline, 35 at week 1 

(1 sample excluded due to interfering analytical peak), 16 patients at month 3 (1 sample 

was below LOQ and 3 samples had interfering analytical peaks and were excluded) and 16 

patients at month 6 (1 sample was below the LOQ and 1 contained an interfering 

analytical peak and were excluded).  

Mycophenolic acid was administered as mycophenolate mofetil or mycophenolic 

acid delayed release. The median (range) daily dose of mycophenolate mofetil was 2000 

mg (1000-3000) and that of mycophenolate sodium was 720 mg (360-1800). MPA 

plasma trough concentrations were measured in 34 patients at week 1 (1 sample was not 

processed correctly and excluded and 1 sample was not collected), 20 patients in month 

3, and 18 samples in month 6. None of the patients were receiving MPA at the time of 

transplant and the MPA concentrations were assumed to be zero.  All MPA and 

acylMPAG concentrations were above the limit of quantification (25 ng/ml for total 

MPA, 1 ng/ml for unbound MPA and 25 ng/ml for acylMPAG). Table 5.2 shows the 

median (range) IMPDH activity, and MPA and acylMPAG concentrations over 

time.Higher total MPA concentrations were associated with greater fold reduction in 

sideroflexin (SFXN4) expression (p=5.87 X 10-6, FDR=0.06) (Figure 5.1) at week 1, 

relative to pretransplant baseline. Also at week1 relative to pretransplant baseline, higher 

acylMPAG concentrations were associated with greater fold reduction in chromosome 1 

open reading frame 123 (C1orf123) expression (p=9.15 X10-6, FDR=0.09)(Figure 5.2). 

At month 3, higher unbound MPA concentrations were associated with greater fold 
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increase in solute carrier family 22 member 14 (SLC22A14) expression compared to 

baseline (p=4.93X10-6, FDR=0.09) (Figure 5.3).  IMPDH activity was not associated 

with fold changes in expression of any gene from baseline to all times posttransplant. 

 Acute allograft rejection was observed in 29.2% (12 of 41) of transplant 

recipients. The median (range) time to acute rejection in the patients was 30.5 (8-332) 

days posttransplant. We only tested pretransplant gene expressions and fold changes at 

week 1 and month 3 relative to baseline since most of the rejection events occurred 

before month 6. MPA-related leukopenia occurred in 34.1% (14 of 41) of recipients. The 

median (range) time to leukopenia was 65.5 (20-82) days posttransplant. We only tested 

pretransplant gene expressions and fold changes at week 1 from pretransplant baseline 

since most of the leukopenia events occurred before month 3. MPA trough 

concentrations, IMPDH activity and fold changes in genes expression were not associated 

with acute rejection or leukopenia. Increasing log of total MPA trough concentrations 

[estimate (95% CI): -0.40 (-0.70-(-0.11), p=0.0072] were associated with a decrease in 

log IMPDH activity.  Similarly, an increase in log unbound MPA trough concentrations 

[estimate (95% CI): -0.33 (-0.62-(-0.04), p=0.02] was also associated with decrease in 

IMPDH activity. Increase in acylMPAG concentrations was not associated with decrease 

in IMPDH activity. Plot of log IMPDH activity and plasma trough concentrations of total 

MPA, unbound MPA are shown in Figure 5.4 and  Figure 5.5 respectively. Since IMPDH 

is a target of MPA, we specifically chose to analyze time trends in IMPDH gene 

expression. IMPDH1 expression was increased (p=7.35 x 10-12) at week 1 posttransplant 

after beginning MPA administration relative to baseline, and then decreased and 
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stabilized by months 3 and 6 ( The black dots represent log observed IMPDH activity of 

each sample and the corresponding log of unbound MPA trough concentrations over the 

entire post-transplant period. The solid black line is fit of linear regression. The p-value is 

obtained from fitting a linear mixed effect model. Figure 5.6) In contrast, IMPDH2 

expression decreased (p=2.30 x 10-10) at week 1 post-transplant compared to baseline and 

then increased and remained stable at months 3 and 6 post-transplant but did not return to 

baseline expression (Figure 5.7). The gene expression was highly variable between 

recipients at all time points for both IMPDH1 (CV% 24.2-28.2) and IMPDH2 (CV% 

34.9-42.2%). IMPDH activity was stable over time and did not show any trend towards 

increase or decrease at week 1, month 3 and 6 post-transplant (Figure 5.8) 

 

 We analyzed trends in the genes in GO cell cycle pathway to identify patterns 

similar to that seen in IMPDH1 and IMPDH2 expression. The cell cycle process pathway 

chosen for pathway analysis comprised of 193 genes and our data had expressions for 

186 of these genes.  No statistical analysis was performed. In addition, among the GO 

cell cycle pathway genes, ANLN, ARAP1, CCNA2, CCP110, CDC25C, CDCA5, CDK13, 

CDK2AP1, CDKN2D, CHFR, CHMP1A, CLIP1, CUL3, DCTN2, DCTN3, E2F1, EGF, 

EREF, ESPL1, FOXN3, FOXO4, GFI1B, KIF11, KIF15, KIF23, KRT7, LATS2, 

MAD2L2, MAP3K11, NBN, NDE1, NEK2, NEK6, NUSAP1, PAFAH1B1, PDS5B, 

PKMYT1, PML, POLE, PPP6C, PRMT5, PTPRC, RAD21, RAD51D, RB1, TGFA, 

TGFB1, TOP3A, TPX2, TTK, UBE2C, showed an expression trend over time similar to 

IMPDH1, ie an initial increase at week 1 posttransplant from baseline pretransplant and 
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return to near baseline at later time points. Among the GO cell cycle pathway genes, 

ABL1, ANAPC5, APBB1, CD28, CDC25B, CDK10, CDK4, CDK6, CEP250, CETN3, 

CKAP5, CUL1, CUL5, DBF4, FBXO5, GSTP1, LEPREL4, MAD2L1, MPHOSPH9, 

MSH5, NOLC1, NPM1, PAPD7, PCBP4, POLA1, POLD1, PPP5C, RAD1, RAD50, 

RAD54B, RAN, RCC1, RINT1, TBRG4, TRIAP1, TUBE1 and ZW10 showed trend similar 

to IMPDH2, ie an initial decrease at week 1 posttransplant from baseline pretransplant, 

and return to near baseline values at later time points.  

 An advantage of RNA sequencing over microarrays is that it allows for 

identification and measurement of gene transcript isoforms. We further studied the 

specific isoforms of IMPDH1 and IMPDH2.  IMPDH2 was expressed as single 

transcript. However, 7 different IMPDH1 isoforms were identified. Expression of 

IMPDH1 isoforms over time is shown in Figure 5.9. The highest IMPDH1 transcript 

expressed in all patients was NM_001142573 (14 exons), followed by NM_001102605 

(16 exons) and NM_183243 (15 exons). IMPDH1 gene expressions was not measurable 

for the remaining 4 transcripts with FPKM values of ~ 0 [NM_001142575 (13 exons), 

NM_000883 (17 exons), NM_001142576 (16 exons), NM_001142574 (14 exons)].  

 

5.4. DISCUSSION  

 This is the first study to analyze gene expression changes across the whole 

transcriptome in PBMCs in relation to IMPDH activity and plasma concentrations of 

MPA in transplant recipients receiving MPA therapy.  MPA is a commonly used 

immunosuppressive agent following kidney transplant. Insufficient immunosuppression 
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increases the risk of acute allograft rejection however the associations between MPA 

plasma concentrations and IMPDH activity, and rejection are inconsistent in the 

literature.(425, 426, 428, 432, 442, 444, 467-469) Hematologic toxicities such as 

leukopenia, anemia, gastrointestinal disturbances and infections, are common problems 

following prolonged exposure to MPA(470) and the relationships between MPA plasma 

concentrations and IMPDH activity with these toxicities are also inconsistent.(227, 425, 

427, 471-476) and better biomarkers to assess MPA immunosuppression are needed. We 

undertook this study to identify possible gene(s) involved in MPA immunosuppressive 

mechanism in transplant recipients that might ultimately be helpful in quantifying 

immunosuppression intensity.  

  We identified 20893 genes expressed at pretransplant, week 1 and months 3 and 6 

posttransplant and sought to understand if known pharmacodynamic and PK markers of 

MPA (IMPDH activity and total MPA, unbound MPA, acyl MPAG) were related to 

expression changes.  Several studies have evaluated gene expression changes in vitro and 

in vivo with MPA. (433, 452-454, 477-479) A whole genome microarray was used to 

explore gene expression changes after MPA exposure in gastric cancer cell lines. Among 

the genes most affected, an upregulation in expression was observed in cyclin (CCND1, 

CCNE2) and cyclin dependent kinase inhibitor (CDKN1A) genes, whereas a 

downregulation in cyclin dependent kinases (CDK4, CDK5), cell division and cell cycle 

related genes (CDC20, CDC25B, CDC25C, MCM2, CENPE, PSRC1), genes involved in 

chromosomal segregation (BUB1, BUB1B, BOP1, AURKA, AURKB and FOXM1) was 

observed.(452, 453) Similar to studies discussed above, we observed an upregulation of 
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CDKN1A and downregulation of CDK4, CDC25B and BOP1 after MPA administration at 

week 1 posttransplant, however these changes were transient and trended towards 

baseline at later follow up times.  However, for all the other genes, we did not observe 

similar changes in expression posttransplant in our study. One reason could be the 

differences in gene expression in our PBMCs compared to gastric cancer cell lines. 

Expression of these reported genes were not associated with IMPDH activity or MPA or 

acylMPAG concentrations in the plasma in our study.  Therefore, the effect may be due 

induction therapy or other factors related to the transplant.  In lymphoblastoid cell lines, 

expression of C17orf108, CYBRD1, NASP and RRM2 genes have been associated with 

MPA cytotoxicity.(454) An increase in C17orf108 and CYPBRD1 gene expression 

increased the resistance of cells to MPA whereas as increase in NASP and RRM2 gene 

expressions increased the sensitivity of cells towards MPA.  However, in our study none 

of these reported genes were associated with acute rejection. We observed a decrease in 

C17orf108 at week 1 and increase towards baseline at month 3 and 6. CYBRD1 increased 

at week 1 and then decreased towards baseline at months 3 and 6. NASP and RRM2 gene 

remained constant throughout 6-month follow up period. Naïve mononuclear cells from 

10 healthy volunteers were treated with acylMPAG, to identify its effect on expression of 

genes other than IMPDH. The expression of IL2 was significantly downregulated and 

that of nucleobindin 1 was upregulated with acylMPAG treatment. In our study, IL2 

expression fell posttransplant to very low levels in most samples and was not associated 

with IMPDH activity or MPA and acylMPAG plasma concentrations. Nucleobindin 1 

gene expression increased at week1 posttransplant and then decreased towards baseline at 



 
 

 156 

months 3 and 6 but was not associated with IMPDH activity or MPA and acylMPAG 

plasma concentrations.  

In our analysis we identified that changes in SFXN4 gene expression were 

significantly associated with total MPA concentrations at week 1 (Figure 5.1). SFXN4 is 

mitochondrial protein expressed in all tissues.(480) Children with mutations leading to 

decreased SFXN4 function have a higher incidence of macrocytic anemia.(480) This was 

confirmed by experiments in vivo where SFXN4 knockdown demonstrated mitochondrial 

respiratory defects.(481) In our study we found that higher MPA concentrations were 

significantly associated with greater decrease in SFXN4 expression and therefore might 

have implications in hematologic toxicities associated with MPA such as anemia. It was 

not associated with leukopenia in our analysis. We also found that acylMPAG 

concentrations were associated with C1orf123 gene expression at week 1 (Figure 5.2). 

C1orf123 is a protein coding open reading frame. An in vivo study in Torpedo californica 

showed that C1orf123 protein had high sequence similarity to proteins that play an 

important role in acetylcholine receptor clustering and signal transduction and thus might 

have important role at neuromuscular junction.(482) From a protein-protein interaction 

network study, C1orf123 protein is proposed to be in direct association with cyclinB1 

which is important in progression of cell cycle especially in G2 exit and mitotic 

phase.(483) Downregulation of C1orf123 with increasing acylMPAG concentrations may 

be indicative of MPA associated immunosuppression. However, invitro and invivo 

studies are required to validate the function role of this gene. Changes in SLC22A14 

expression were associated with unbound MPA concentrations (Figure 5.3). SLC22A14 
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encodes an organic cationic transporter like (ORCTL4) protein and belongs to a family of 

SLC22 transporter genes mainly involved in uptake of small molecules into the 

cells.(484, 485) The mRNA transcripts of SLC22A14 are expressed in all tissues, but 

some tissue specific transcript variants are exclusively expressed in kidney, colon and 

intestine.(486) However, its functional role has yet to be determined.(485) It may be 

involved in the PK of MPA by altering the transport of MPA in the intestine or bile.  

We found that IMPDH1 expression initially increased and IMPDH2 gene 

expression decreased at week 1 posttransplant.  These changes were transient and 

expression levels of these genes returned to near baseline levels by 6 months.  Expression 

was not associated with IMPDH activity or MPA or metabolite concentrations. Other 

studies have also shown transient changes in IMPDH1 and IMPDH2 expressions 

posttransplant.(444, 445, 460, 461) In stable kidney transplant recipients, IMPDH1 

expression in PBMCs was higher in the first 3 months posttransplant as compared to 6-24 

months posttransplant, while IMPDH2 expression was stable.  The study also found an 

increase in IMPDH activity that was attributed to the increase in IMPDH1 

expression.(460) In a larger cohort of 101 renal transplant recipients, IMPDH1 and 

IMPDH2 expression measured in PBMCs both decreased at day 6 posttransplant 

compared to pretransplant and then increased from day 6 to 140 posttransplant.(445) Like 

our analysis, they observed that IMPDH activity was not significantly correlated to 

IMPDH1, IMPDH2 or the sum of IMPDH1 and IMPDH2 gene expressions. Similarly, 

total and unbound predose MPA concentrations were also not associated with gene 

expression. IMPDH1 and IMPDH2 gene expression was measured pre- and 
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posttransplant in whole blood, CD4+ cells and reticulocytes in 22 kidney transplant 

recipients receiving mycophenolate and 8 not receiving mycophenolate.(461) Both 

IMPDH1 and IMPDH2 expression increased at day 1 posttransplant in CD4+ cells. 

IMPDH1 expression remained above baseline at 2 weeks posttransplant whereas 

IMPDH2 expression returned to baseline. The trends of gene expression were different 

when measured in whole blood and reticulocytes. They also found that gene expression 

were not associated with trough plasma MPA concentrations. The authors mainly 

attribute these initial changes in expression to glucocorticoid therapy although not 

statistically tested. There were no significant differences in mycophenolate and non-

mycophenolate groups at initially, however after 2 weeks, patients receiving 

mycophenolate demonstrated an increase in IMPDH1 and IMPDH2 gene expression and 

the authors speculate an enzyme induction due to prolonged MPA therapy. In another 

cohort of 35 kidney transplant recipients, IMPDH1 and IMPDH2 expression was 

measured at predose and 2 hours post MMF administration. There was no significant 

change in predose IMPDH1 and IMPDH2 gene expression. At 2 hours post MMF 

administration an initial increase at week 2 was observed that later decreased at week 24 

posttransplant. Like our data, MPA concentrations and IMPDH activity measured in 

PBMCs were not associated with the change in expressions.(444) Changes in IMPDH 

mRNA expression studied in small cohorts of healthy volunteers also show inconsistent 

results.(438, 487)  These studies including ours indicate an initial upregulation of 

IMPDH1 gene expression, however results of IMPDH2 gene expression are not 

consistent. Also changes in expression are not associated with IMPDH activity or MPA 
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plasma concentrations. Thus there may be other factors that play a role in altering gene 

expression following MPA administration. Mycophenolic acid inhibits IMPDH activity, 

which in turn depletes the guanosine pools in the cells. Studies suggest that the changes 

in gene expression could be attributed to depletion of guanosine pool depletion in cells 

following MPA treatment. In an invitro study an inverse correlation was observed 

between guanine concentrations and IMPDH mRNA, which could explain the 

upregulation of IMPDH1 gene expression a week after transplantation.(451) Other 

studies also suggest the complex regulation of IMPDH1 and IMPDH2 expression due to 

depletion in cellular guanine.(445, 487) It may also be attributed to steroid co-

administration given usually in the first week of transplant.(444, 445, 461) Recent data in 

CD4+T cells showed expression changes in PD1, CTLA-4, CD27, CD28 and CD70 

genes following MPA administration suggesting alternative mechanisms.(488)  

In our study we did not find association between gene expression and acute 

rejection or leukopenia. Higher pre-transplant IMPDH1 and/or IMPDH2 expression has 

been associated with acute rejection in few studies.(444, 445, 461) Studies have shown 

differential expression of the other genes especially cytokines that could be potentially 

associated with acute rejection.(489-498) However, MPA concentrations were not 

measured in these studies, and hence it is unknown if changes in expression could be 

attributed to MPA therapy alone or other changes that occur in transplant recipients. 

Lower IMPDH1 expression has been associated with a higher incidence of hematologic 

malignancies.(444) 
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 Through RNA sequencing analysis we identified 7 transcripts of IMPDH1. The 

aim of this transcript analysis was to understand whether the overall IMPDH1 mRNA 

expression was associated due to a single transcript expression or each contributed 

equally. Among the 7 identified transcripts, only 3 transcripts had measurable expression, 

and highest expression is transcript NM_001142573. The overall change in expression 

over time was similar for all 3 detectable transcripts. IMPDH1 is regulated by 3 different 

promoters governing their expression in different cell types, however changes in 

IMPDH1 expression due to 3 exonic differences is yet unknown. Also, whether enzyme 

activity differs with different IMPDH1 isoforms is also not known. 

 Lack of adequate power is a limitation of our study however this is the first study 

that has evaluated gene expression across the genome towards (>20,000 genes) towards 

immunosuppression intensity. Our study indicated that expression of many genes had 

significant but transient changes in expression early posttransplant following MPA 

administration. However very few genes (SFXN4, Corf123 and SLC22A14) were 

associated with MPA plasma concentrations. These results indicate that MPA 

concentrations and IMPDH activity are not indicative of changes in expression especially 

in genes involved in cell cycle following MPA therapy, despite numerous associations 

found in cell-based methods. 
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Table 5.1: Clinical and demographic characteristics of patients included in the 
analysis 

 
 

 
 

Characteristics Median (Range) or 
N 

Number of recipients 41 
Age at transplant (years) median (range) 49 (24-76) 
Recipient gender female/male 13 /28 
Primary disease at transplant  
   Diabetes 7 
   Glomerular Disease 5 
   Hypertension 5 
   Polycystic Disease 7 
   Nephropathy 4 
   Other 13 
Recipient Race  
   Native American or Alaskan Decent 3 
   African Decent 3 
   European Decent 35 
Transplant Type  
   Kidney 40 
   Simultaneous Pancreas and Kidney 1 
Tacrolimus/Cyclosporine/none pretransplant 0/0/41 
Tacrolimus/Cyclosporine/none at week 1 21/12/3  
Tacrolimus/Cyclosporine/none at month 3 12 /6/2  
Tacrolimus/Cyclosporine/none at month 6 11/6/1 
Steroids pretransplant yes/no 78/34 
Steroids at week 1 yes/no 6/30 
Steroids at month 3 yes/no 4/16 
Steroids at month 6 yes/no 3/15 
Mycophenolate Mofetil/ Mycophenolate Sodium at baseline 0/0 
Mycophenolate Mofetil/Mycophenolate Sodium at week 1 34/2 
Mycophenolate Mofetil/ Mycophenolate Sodium at month 3 17/3 
Mycophenolate Mofetil/ Mycophenolate Sodium at month 6 17/1 
Donor Type Living/deceased 17/24 
Induction therapy yes/no 40/1 
Recipient CMV antibody status (positive/ negative) 22/19 
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Table 5.2: Summary of MPA plasma trough concentrations and IMPDH activity in 
PBMCs  
 

Data are median (range). N.A. is not applicable because patients were not receiving MPA 
pretransplant.  
 
 

Analyte Pretransplant 
baseline  

Week 1  
[no. subjects] 

Month 3  
[no. subjects] 

Month 6  
[no. subjects] 

IMPDH activity  
(umol*s‐1*mol-1 

AMP) 

85.8 (15.2-
1310) [n=41] 

65.0 (12.2-362) 
[n=35] 

58.4(19.1-
490) 
[n=16] 

37.0(6.56-187) 
[n=16] 

MPA, total 
(mcg/ml) 

N.A. 1.79 (0.48- 
7.20) 
[n=34] 

3.14 (0.90-
7.53) 
[n=20] 

1.87 (0.99-5.54) 
[n=18] 

MPA, unbound 
(ng/ml) 

N.A. 24.2 (6.11- 166) 
[n=34] 

30.9 (9.78-
87.2) 
[n=20] 

20.10 (10.1-
79.6) 
[n=18] 

AcylMPAG 
(ng/ml) 

N.A. 317 (67.6-1670) 
[n=34] 

492 (235-
1860) 
[n=20] 

516 (213-1540) 
[n=18] 
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Figure 5.1: Association of fold change in SFXN4 gene expression at week 1 relative 
to pretransplant with total MPA concentrations 

 

 
 

The black dots represent fold change at week 1 of SFXN4 gene expression from baseline. 

The fold change was calculated as log [FPKM at week 1]- log [FPKM at baseline]. The 

solid black line represents linear regression fit and the dotted horizontal line at 0 

represent no fold change in gene expression at week 1 from baseline. The black dots 

below the horizontal line indicate decrease in expression compared to pretransplant 

baseline, and black dots above the line indicate increase in gene expression compared to 

pretransplant baseline 
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Figure 5.2: Association of fold change in C1orf123 gene expression at week 1 relative 
to pretransplant with acylMPAG concentrations  

 

 
 

 

The black dots represent fold change at week 1 of C1orf123 gene expression from 

baseline. The fold change was calculated as log [FPKM at week 1]- log [FPKM at 

baseline]. The solid black line represents linear regression fit and the dotted horizontal 

line at 0 represent no fold change in gene expression at week 1 from baseline. The black 

dots below the horizontal line indicate decrease in expression compared to pretransplant 

baseline, and black dots above the line indicate increase in gene expression compared to 

pretransplant baseline 
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Figure 5.3: Association of fold change in SLC22A14 gene expression at month 3 
relative to pretransplant in PBMCs with unbound MPA concentrations  

 

 
 
The black dots represent fold change at month 3 of SLC22A14 gene expression from 

baseline. The fold change was calculated as log [FPKM at week 1]- log [FPKM at 

baseline]. The solid black line represents linear regression fit and the dotted horizontal 

line at 0 represent no fold change in gene expression at month 3 from baseline. The black 

dots below the horizontal line indicate decrease in expression compared to pretransplant 

baseline, and black dots above the line indicate increase in gene expression compared to 

pretransplant baseline.  
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Figure 5.4: Scatter plot of log (IMPDH activity) vs total MPA plasma concentrations 

 

  
 

 

 
The black dots represent log observed IMPDH activity of each sample and the  

corresponding log of total MPA trough concentrations over the entire post-transplant 

period. The solid black line is fit of linear regression. The p-value is one obtained from 

fitting a linear mixed effect model.  
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Figure 5.5: Scatterplot of log (IMPDH activity) vs unbound MPA plasma 
concentrations 

 
 
 
 
 

 
 
 
The black dots represent log observed IMPDH activity of each sample and the 

corresponding log of unbound MPA trough concentrations over the entire post-transplant 

period. The solid black line is fit of linear regression. The p-value is one obtained from 

fitting a linear mixed effect model.  
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Figure 5.6: Change in IMPDH1 gene expression over time posttransplant  
 

 
 

Expression is given in FKPM units.  The solid black line in the box represents the 

median; upper and lower hinge represent the 25th and 75th quartile of the data. The 

whiskers extend to 1.5 times the interquartile range from the quartiles. Data points 

beyond the whiskers are represented by solid black dots.  
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Figure 5.7: Change in IMPDH2 gene expression over time posttransplant  

 

 
 
Expression is given in FKPM units.  The solid black line in the box represents the 

median; upper and lower hinge represent the 25th and 75th quartile of the data. The 

whiskers extend to 1.5 times the interquartile range from the quartiles. Data points 

beyond the whiskers are represented by solid black dots.  
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Figure 5.8: Change in IMPDH activity gene expression over time posttransplant  

 

 
 
The solid black line in the box represents the median; upper and lower hinge represent 

the 25th and 75th quartile of the data. The whiskers extend to 1.5 times the interquartile 

range from the quartiles. Data points beyond the whiskers are represented by solid black 

dots.  
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Figure 5.9: Change in expression of IMPDH1 isoforms over time 
 

 
 
Expression is given in FKPM units.  Each number represents an IMPDH1 isoform.  

IMPDH1 transcripts are 1=NM_001142575, 2= NM_000883, 3= NM_001142576, 4= 

NM_001102605, 5= NM_183243, 6= NM_001142574, 7= NM_001142573 
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CHAPTER VI 
 

6 CONCLUSION AND FUTURE DIRECTIONS 
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Treatment approaches to most diseases are designed based on the response of a 

drug in a typical or an average patient and hence a standardized dosing strategy or “one 

size fits all” is a common practice. Although this approach works for most, a significant 

proportion of patients either experience a lack of drug efficacy or develop toxicities with 

this type of approach. Development of highly sensitive and robust assays, high 

throughput technology, availability of the entire human genome sequence, sophisticated 

statistical modeling tools have now opened up ample research opportunities to question 

the ongoing traditional clinical practices in selecting a dosing group. The realization 

among clinicians and researchers to not only cure diseases but also improve the quality of 

life has led us to an era of personalized medicine. The objectives of this thesis were to 

work towards and develop personalized dosing strategies in patients undergoing HSCT 

and kidney transplantation. This final chapter discusses the main findings of each chapter 

and proposes future studies that would help consider improvement in clinical practice.  

Chapter II was to personalize chemotherapy for HSCT patients. In Chapter II of 

the thesis we identified that CrCl and IBW significantly influenced F-ara-A Cl and 

thereby F-ara-A AUC. We demonstrated that a lower model predicted F-ara-A Cl and 

higher F-ara-A AUC significantly increased the hazard of TRM and acute GHVD even 

after adjusting for important known clinical factors. We developed and validated a dosing 

model that could individualize fludarabine dose using patients CrCl, IBW and a target F-

ara-A AUC. The dosing model could be most useful in obese and in patients with renal 

impairment where standard BSA based dosing might prove inadequate to choose an 
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optimal dose. The next steps to this project are to test the dosing model in a small 

prospective cohort of patients and validate its utility over the standardized methods.  

In the next chapter (Chapter III) we used similar approach to Chapter II to 

address variability in the Cy metabolite; PM in HSCT recipients. In an interim analysis 

we identified that HSCT recipients with higher PM exposure had a significantly higher 

cumulative incidence of TRM at day 100 and month 6. This triggered the next research 

question as to what are the factors influencing PM PK and we conducted a population PK 

study in larger cohort of HSCT recipients. A one-compartment model with first order 

conversion from parent to metabolite, and first order elimination best explained the 

observed data. Creatinine clearance significantly influenced PM apparent clearance and 

gender significantly influenced apparent volume of distribution. This study is ongoing, 

and a additional clinical factors will be studied as well as genetic factors as we have 

collected DNA on all subjects. Additionally evaluating correlation between PM 

concentrations and DNA adducts formed over time, will further strengthen the biological 

relevance of measuring plasma PM as a marker of efficacy.  

In kidney transplant recipients, tacrolimus and mycophenolic acid are presented in 

this study. Chapter IV describes a dosing model developed for tacrolimus in African 

American kidney transplant recipients. The Clinical Pharmacogenetics Implementation 

Consortium guidelines developed to recommend tacrolimus dosing in African American 

kidney transplant recipients are only based on CYP3A5*3 genotype. However we 

identified that loss/reduced function CYP3A5*6 and CYP3A5*7 variants exclusively 

found in African Americans also significantly influence tacrolimus PK. We developed an 
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African American dosing model that includes days post-transplant, age, steroid and anti-

CMV drug coadministration and CYP3A5 variant to predict tacrolimus Cl and allowing 

for preemptive dose selection. A prospective randomized control trial is under 

development to demonstrate superiority of the individualized dosing model over standard 

of care dosing.  

In Chapter V we analyzed changes in expression of ~20000 genes towards MPA 

related IMPDH activity and expression in kidney transplant recipients. We found 

transient changes in expression of many genes at week1 after kidney transplant compared 

to baseline. Out of the ~20000 genes, expression changes in 3 genes (SFXN4, SLC22A14 

and C1orf123) were significantly associated to MPA trough concentrations. None of the 

genes were associated with IMPDH activity. We did not find association of gene 

expression towards acute rejection or mycophenolate related leukopenia although the 

number of events were small. Transient changes in gene expression now warrant 

additional studies to identify biological pathways and mechanisms that play an important 

role post-transplant, and to help optimize treatment in each patient.  
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8.1 NONMEM CODE OF FINAL FLUDARABINE MODEL 

DEVELOPMENT 

;; 1. Based on: run171 
;; 2. Description: Final Model  
;; x1. Author: user 
;; 3. Label: 
 
$PROB RUN 175 
$INPUT C ID TIM=DROP TIME AMT AMOUNT=DROP DV CMT RATE EVID 
MDV AGE GEN HT=DROP WT=DROP IBW BSA=DROP SCR=DROP CLCR 
DIAG=DROP COND=DROP CYST=DROP EGFR=DROP BILI=DROP ALB=DROP 
HTM=DROP BMI 
$DATA FLU0807.CSV IGNORE=C 
$SUBROUTINES ADVAN3 TRANS4 
$PK 
RF=(CLCR/85)*(70/IBW) 
CLNRST = THETA(1) 
CLRST = THETA(7) 
TVCL=(CLNRST + (CLRST*RF))*(IBW/70)**0.75 
CL=TVCL*EXP(ETA(1)) 
TVV1=THETA(2)*(IBW/70) 
V1=TVV1*EXP(ETA(2)) 
TVQ=THETA(3)*(IBW/70)**0.75 
Q=THETA(3)*EXP(ETA(3)) 
TVV2=THETA(4)*(IBW/70) 
V2=TVV2*EXP(ETA(4)) 
S1=V1/1000 
 
AUC= AMT/CL 
$ERROR 
W = THETA(5)*ERR(1) + THETA(6)*F*ERR(2) 
Y=F+W 
IPRED=F 
DEL=.001 
IRES=DV-IPRED 
IWRES=IRES/(w+DEL) 
$THETA  
(0,6)     ; CLNRST 
(0,50)    ; V1 
(0,9)     ; Q 
(0,25 )   ; V2 
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(0.1)     ; ERR1 
(0.04)    ; ERR2 
(0.1)     ; CLRST 
 
 
 
$OMEGA BLOCK(2) 
0.1          ;IIV on CL 
0.01 0.1     ; CORR between CL and V1 and IIV on V1 
$OMEGA 0.1   ;IIV on Q 
$OMEGA 0.1   ;IIV on V2 
 
$SIGMA 
(1 FIX) ; Additive 
(1 FIX) ; Proportional 
 
$EST METHOD=1 INTER MAXEVAL=9999 NOABORT NOSIGMABOUNDTEST 
SIG=3 PRINT=1 
 
$COV PRINT=E UNCONDITIONAL 
 
; Xpose 
$TABLE ID TIME DV MDV EVID PRED IPRED WRES CWRES IWRES AUC AGE 
GEN IBW CLCR BMI ONEHEADER NOPRINT FILE=sdtab175 
$TABLE ID CL V1 Q V2 AUC ETA(1) ETA(2) ETA(3) ETA(4) NOPRINT 
ONEHEADER FILE=patab175 
$TABLE AGE IBW CLCR BMI NOPRINT ONEHEADER FILE=cotab175 
$TABLE GEN NOPRINT ONEHEADER FILE=catab175 
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8.2 NONMEM CODE OF FINAL PM MODEL DEVELOPMENT 

;; 1. Based on: run184 
;; 2. Description: FINAL FORWARD MODEL 
;; x1. Author: user 
;; 3. Label: 
 
$PROB RUN 185 
$INPUT C PATID=DROP ID DATE=DROP TIME AMT DV RATE CMT EVID GEN 
BMI AGE PROTEIN ALBUMIN AST ALT ALKPHOS BILI SCR CRCL CRCLIBW 
WT IBW  
 
$DATA cypdata.CSV IGNORE=C  
$SUBROUTINES ADVAN2 TRANS2 
 
$PK 
CLCRCL= THETA(5)*(CRCL/104)*(83/WT) 
;GEN  
IF (GEN.EQ.0) COVGEN=1 
IF (GEN.EQ.1) COVGEN= THETA(4) 
TVKA=THETA(1) 
KA=TVKA*EXP(ETA(1)) 
TVCL=(THETA(2)+CLCRCL)*(WT/83)**0.75 
CL=TVCL*EXP(ETA(2)) 
TVV=THETA(3)*(WT/83)*COVGEN 
V=TVV*EXP(ETA(3)) 
S2=V/1000 
 
 
$ERROR 
W=F 
IPRED=F 
DEL=.001 
IRES=DV-IPRED 
IWRES=IRES/(w+DEL) 
Y=F+F*ERR(1)  
 
$THETA  
(0,0.2)    ;Kfm 
(0,100)     ; CL/fm 
(0,1000)    ; V/fm 
(0.1)       ; GEN on KA 
(20)       ;CRCL on CL 
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$OMEGA  
0.1 ;Kfm 
$OMEGA BLOCK(2) 
0.1 ;CL 
0.01 0.1 ; COV V 
 
$SIGMA 
(0.4) ; Proportional error PK 
 
 
$EST METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=1 POSTHOC 
$COV PRINT=E UNCONDITIONAL 
 
 
; Xpose 
$TABLE ID TIME DV MDV EVID PRED IPRED WRES CWRES IWRES 
ONEHEADER NOPRINT FILE=sdtab185 
$TABLE ID KA CL V ETA(1) ETA(2) NOPRINT ONEHEADER FILE=patab185 
$TABLE BMI AGE PROTEIN ALBUMIN AST ALT ALKPHOS BILI Fara FLU 
NOPRINT ONEHEADER FILE=cotab185 
$TABLE GEN NOPRINT ONEHEADER FILE=catab185 
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8.3 NONMEM CODE OF FINAL TACROLIMUS MODEL 

DEVELOPMENT 

;; 1. Based on: run142 
;; 2. Description: Final Model used for validation in run 160 
;; x1. Author: user 
$PROBLEM run 
;---------------------------------- 
$INPUT C ID pid=DROP TIME DOSE DV MDV RATE LN_TAC=DROP 
FREQ=DROP POSTTXDAYS STEROID DIABETES GEN GEN_D DIALYSIS CCB 
ACEINHI ANTIVIRAL AGEGRP_R AGEGRP_D rs1057868 rs35599367 rs41303343 
rs10264272 rs776746 CMV SPK D_RACE DONORSTATUS UNIT R_AGE D_AGE 
BMI WT GFRCKG GFR SCR WT_BASE STRATA DOUBLE SINGLE CATEGORY 
 
$DATA tacnewgwas2.csv IGNORE=@  
$SUBROUTINES 
 
$PRED  
TVCL =THETA(1)/1000 
IF(CATEGORY.EQ.1.OR.CATEGORY.EQ.2.OR.CATEGORY.EQ.3.OR.CATEGORY.
EQ.4.OR.CATEGORY.EQ.8) TVCL=TVCL*THETA(2) 
IF(CATEGORY.EQ.5.OR.CATEGORY.EQ.6.OR.CATEGORY.EQ.7)  
TVCL=TVCL*THETA(3) 
IF(STEROID.EQ.1) TVCL=TVCL*THETA(4) 
IF(ANTIVIRAL.EQ.1) TVCL=TVCL*THETA(5) 
IF(POSTTXDAYS.LE.9)TVCL=TVCL*THETA(6) 
IF(AGEGRP_R.EQ.1) TVCL=THETA(7)*TVCL 
CL= TVCL*EXP(ETA(1)) 
CLm = CL*1000 
CSS = RATE/CL 
F= CSS 
W=F 
IPRED=F 
DEL=.001 
IRES=DV-IPRED 
IWRES=IRES/(W+DEL) 
Y= F +ERR(1)  
 
$EST METHOD=1 INTERACTION PRINT=5 MAX=9999 SIG=3 
 
$THETA 
(0, 50.3) ; TVCL 
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(0, 0.479) ; HOMOZYGOTE FOR VARIANT 
(0, 0.839) ; HETEROZYGOTE 
(0, 1.22) ; Yes Steroids 
(0, 1) ;Yes Antiviral 
(0, 1.33) ; Days<9 
(0, 1.25) ; Age<25 
 
$OMEGA  
0.206 ;ETA1  
 
$SIGMA  
7.53 ;ERR1 
 
$COV  
;Xpose 
$TABLE ID TIME DOSE DV CL WT_BASE CATEGORY ANTIVIRAL STEROID 
AGEGRP_R PRED IPRED WRES CWRES rs41303343 rs10264272 rs776746 STRATA 
DOUBLE SINGLE CATEGORY ONEHEADER NOPRINT FILE=sdtab157 
$TABLE ID CL RATE POSTTXDAYS PRED IPRED WRES CWRES rs41303343 
rs10264272 rs776746 STRATA DOUBLE SINGLE NOPRINT ONEHEADER 
FILE=patab157 
$TABLE POSTTXDAYS R_AGE D_AGE BMI WT GFRCKG GFR SCR NOPRINT 
ONEHEADER FILE=cotab157 
$TABLE STEROID DIABETES GEN GEN_D DIALYSIS CCB ACEINHI 
ANTIVIRAL AGEGRP_R AGEGRP_D rs1057868 rs35599367 rs41303343 rs10264272 
rs776746 CMV SPK D_RACE DONORSTATUS UNIT NOPRINT ONEHEADER 
FILE=catab157 
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