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Abstract 

 With the passing of recent legislation, most notably the Food Allergen 

Labeling and Consumer Protection Act in 2006 and the Food Safety 

Modernization Act of 2011, the focus on allergens in the food supply is a top 

priority for the food industry. With the consideration of unintentional allergens 

now being considered an adulteration, companies are trying to find detection 

methods that can accurately identify an unintentional allergen, but that are also 

rapid enough to use so as not to interrupt the production line. Immunomagnetic 

Separation (IMS) coupled with Surface Enhanced Raman Spectroscopy (SERS) 

was investigated in this research as one possible detection method. 

 We decided to test and compare two types of IMS methods, antibody and 

aptamer, to see if one or the other would produce better results. The methods 

were based off of previous work by Dr. Lili He and were adapted to detect whey 

in a hot dog. During initial testing in a pure solution, both of the IMS methods 

appeared to show similar results, both being able to detect whey at levels of at 

least 125μg/mL of solution. But once we switched over testing whey in a hot dog, 

the antibody based IMS method proved to be the better IMS method. With a 

detection limit of 600μg of whey protein isolate/g of hot dog, the antibody based 

IMS method proved to be the more effective method. The aptamer IMS method 

ran into trouble with non-specific binding to the magnetic beads and was unable 

to detect any whey protein isolate in the hot dogs during the experiment. It is 

therefore concluded by the results of this experiment that the antibody based 
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IMS-SERS method is a better method to detect whey protein in a hot dog versus 

the aptamer method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Table of Contents 

Table of Contents………………………………………………………………………………v 

List of Tables………………………………………………………………………………….viii 

List of Figures………………………………………………………………………………….ix 

1 Introduction..................................................................................................................1 

1.1 Food Allergens……………........................................................................................2 

1.2 Food Allergen Laws..................................................................................................2 

1.3 IMS..............................................................................................................................4 

1.4 SERS…………………………………………………………………………………………5 

1.5 Null Hypotheses……………………………………………………………………………6 

1.6 Objectives…………………………………………………………………………………...6 

2 Literature Review ........................................................................................................7 

2.1 Whey..........................................................................................................................7 

2.1.1 Physical Properties of Whey Proteins.................................................................8 

2.1.2 Production Methods.............................................................................................13 

2.1.3 Allergenicity of Whey Proteins............................................................................13 

2.2 Modern Laws and Allergens...................................................................................17 

2.2.1 Food Allergen Labeling and Consumer Protection Act....................................18 

2.2.2 The Food Safety and Modernization Act............................................................20 

2.3 Nutritional Value of Whey.......................................................................................23 

2.4 Detection of Whey in Food Systems ....................................................................25 

2.4.1 Capture Methods..................................................................................................25 

2.4.1.1 Antibodies..........................................................................................................25 

2.4.1.2 Aptamers............................................................................................................28 



vi 
 

2.4.1.3 Immunomagnetic Separation...........................................................................29 

2.4.2 ELISA.....................................................................................................................30 

2.4.3 Other Methods .....................................................................................................33 

2.5 Raman Spectroscopy..............................................................................................35 

2.5.1 History of Raman Spectroscopy.........................................................................35 

2.5.2 Surface-Enhanced Raman Spectroscopy .........................................................37 

2.5.3 SERS Substrates..................................................................................................39 

2.5.4 SERS in the Food Industry..................................................................................42 

3 Materials and Methods...............................................................................................46 

3.1 Hot Dog Ingredients............................................................................................... 46 

3.2 Whey Protein Isolate...............................................................................................47 

3.3 Silver Dendrite Preperation....................................................................................47 

3.4 Hot Dog Sample Preparation……...........................................................................48 

3.5 Preparatiojn of Antibody-based Magnetic Beads.................................................50 

3.6 Antibody-based IMS Procedure.............................................................................51 

3.7 Preparation of Aptamer-based Magnetic Beads ..................................................54 

3.8 Aptamer-based IMS Procedure..............................................................................56 

3.9 Raman Instrumentation Preparation and Analysis..............................................58 

3.10 Data Analysis Using TQ Analyst..........................................................................59 

4 Results and Discussion.............................................................................................61 

4.1 Spectra Results of Procedure Reagents...............................................................61 

4.2.1 Detection of Whey Using Antibody IMS Coupled with SERS...........................65 

4.2.2 Detection of Whey in Spiked Hot Dogs Using Antibody IMS/SERS.................70 

4.3.1 Detection of Whey Using Aptamer IMS Coupled with SERS ...........................82 

 



vii 
 

4.3.2 Detection of Whey in Spiked Hot Dogs Using Aptamer IMS/SERS..................86 

5 Conclusions................................................................................................................96 

5.1 Comparison of Antibody and Aptamer IMS/SERS ..............................................96 

5.2 Possible Use in the Food Industry.......................................................................103 

6 Future Research ......................................................................................................106 

7 References................................................................................................................108 

8 Appendices...............................................................................................................128 

Appendix A- Antibody IMS/SERS Spectra ................................................................128 

Appendix B- Aptamer IMS/SERS Spectra .................................................................135 

Appendix C- Raman Specifications………….............................................................143 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

 

List of Tables 

Table 2.1- Table of approximate composition of whey after cheese 

processing………………………………………………………………………………13 

Table 2.2: Shown above is the list of whey proteins and a brief description of the 

nutritional functions that each of the proteins offers (Korhonen et al, 1998 & 

Maduriera et al, 2007)…………………………………………………………………23 

Table 2.3: List of different SERS methods for different food contaminants and 

what the limit of detection for them is. (Taken from Zheng and He, 2014)……...43 

Table 5.1: Side by side comparison of the antibody based IMS method and the 

aptamer based IMS method………………………………………………………...103 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Figures 

Figure 2.1: Image of β-LG with its secondary amino acid structures (RCSB 

Protein Data Bank entry 3BLG)……………………………………………………….9 

Figure 2.2: Image of alpha-lactalbumin and its secondary structure (RCSB 

Protein Data Bank entry 1A4V)………………………………………………………10 

Figure 2.3: Image of bovine serum albumin and its secondary structure (RCSB 

Protein Data Bank entry 4OR0)……………………………………………………...11 

Figure 2.4: Diagram of different classifications of adverse reactions to food…...15 

Figure 2.5: IgE response from various serum samples taken from different 

patients to five different milk proteins. On the right from the top down are       

beta-lactoglobulin, casein, bovine serum albumin, alpha-lactalbumin, and 

lactoferrin (Wal, 2002). It should be noted the different responses in the different 

patients, such as the large responses from patients 6, 15, and 16, while 19 and 

20 show barely any response to any of the proteins………………………………16 

Figure 2.6: State by state cases of Salmonella Typhimurium from the PCA 

outbreak in 2009 (CDC, 2009)……………………………………………………….21 

Figure 2.7: Illustration of the typical structure of an antibody. Consisting of heavy 

and light chain sections, the Y-shaped section of the antibody is responsible for 

the capture of antigens that are specific to the individual antibody (Novimmune, 

2016)…………………………………………………………………………………….27 

Figure 2.8: Diagram that demonstrates how Raman spectroscopy works by 

detecting the difference between the light source and the Raman scattering and 

then correlating it to a spectrum………………………………………...……………36 



x 
 

Figure 2.9: Two spectras showing the difference between normal Raman, top, 

and SERS, bottom. The spectra are of 2-Mercaptoethanol, and as you can see, 

there are peaks that are more clear in the SERS graph or even that weren’t seen 

before in the normal Raman spectra………………………………………………...39 

Figure 2.10: SEM of silver dendrites created using Jing and Fang’s replacement 

method. (Picture from Dr. He’s PhD dissertation, Massachusetts University, 

2009)…………………………………………………………………………………….41 

Figure 3.1: Illustration of the process of Immunomagnetic Separation………….52 

Figure 4.1: Average spectra of the AgDs……………………………………………62 

Figure 4.2: Average Spectra that were taken from the common reagents used 

throughout the experiment. A vertical line has been drawn at 1004cm-1, the 

location of the peak that was used to distinguish the presence or absence of 

whey in a sample………………………………………………………………………63 

Figure 4.3: 2nd derivative of the average spectra of common reagents compared 

to the 2nd derivative of WPI in PBS…………………………………………………64 

Figure 4.4: PCA chart, in the range of 975-1025cm¬-1, of the spectra from the 

common reagents and WPI. Notice how WPI is clearly separated from the 

common reagents, which are more clustered together and indicate that they are 

more closely related…………………………………………………………………...64 

Figure 4.5: Average spectra of 1mg/mL WPI in 10mM PBS. This spectrum was 

compared to other spectras during the experiment to determine if WPI was 

present in the sample or not………………………………………………………….66 

Figure 4.6: The benzene ring of phenylalanine was the Raman active compound 

that allowed for WPI to be tracked using SERS……………………………………66 



xi 
 

Figure 4.7: Raman spectra of the dilutions used to test the feasibility of IMS to 

detect whey in a 10mM PBS solution………………………………………………..67 

Figure 4.8: 2nd derivative spectra of the IMS/SERS detection experiment. The 

top figure shows the spectra individually, while the bottom figure focuses in on 

the 1004cm-1 peak with the spectra overlaying each other………………………68 

Figure 4.9: PCA graph of IMS/SERS detection in 10mM PBS. The 100, 50, and 

25μg/mL samples are clearly separated from the other concentrations, but the 

12.5 and 0μg/mL concentrations overlap……………………………………………69 

Figure 4.10: Average spectra of the 1mg WPI/mL spiked hot dog and the 0mg 

WPI/mL spiked hot dog……………………………………………………………….71 

Figure 4.11: 2nd derivative spectra of the spike hot dogs. The top figure shows 

the spectra individually, while the bottom figure focuses in on the 1004cm-1 peak 

with the spectra overlaying each other………………………………………………72 

Figure 4.12: The PCA graph shows the difference between the spiked hot dog 

matrix, 1mg WPI/mL, and the negative control……………………………………..73 

Figure 4.13: Spectra of the 30mg WPI hot dog and the negative control. While 

weaker in strength, the peak at 1004cm-1 is still present…………………………74 

Figure 4.14: 2nd derivative spectra from the 30mg spiked hot dog IMS 

experiment. The top spectra shows the negative control and the spiked hot dog 

spectra side by side, while the bottom spectra shows them stacked over each 

other to better show the difference between the two………………………………75 

Figure 4.15: PCA graph of the 30mg WPI/hot dog and the negative control. The 

two separate groupings show that the two sets of spectra are distinguishable 

from each other………………………………………………………………………...76 



xii 
 

Figure 4.16: Average Raman spectra of the 15mg WPI hot dog and the negative 

control. While there appears to be a small peak on the 15mg WPI hot dog, it was 

shown to be not significant enough to differentiate between a 0mg WPI hot dog 

and the spiked hot dog group………………………………………………………...78 

Figure 4.17: 2nd derivative of the 15mg WPI hot dog and the negative control. 

The 2nd derivative shows that while the bump on the raw spectra might be 

present, it doesn’t end up being that distinguished from the negative 

control…………………………………………………………………………………...79 

Figure 4.18: PCA graph of the 15mg WPI hot dogs and the negative controls. 

The 15mg WPI hot dogs are surrounded in the graph by the negative controls, 

meaning that the 15mg WPI hot dogs are not indistinguishable from the negative 

controls………………………………………………………………………………….80 

Figure 4.19: PCA graph of a 30mg WPI/hot dogs and 15mg WPI/hot dog with the 

negative control hot dogs……………………………………………………………..81 

Figure 4.20: CD plot of the aptamer in different solutions. The three solutions that 

were chosen were 10mM PBS, and 10mM PBS-T. The 10mM NaCl had a larger 

peak at roughly 265nm and a smaller one at 295 meaning it was better suited to 

help form a G-quadruplex…………………………………………………………….83 

Figure 4.21: Average spectra from the aptamer IMS run in 10mM NaCl 

solution………………………………………………………………………………….84 

Figure 4.22: 2nd derivative spectra were created to further show the difference 

between the positive samples and the negative control. The 125μg showed a 

slightly more intense reading than expected, possibly a result of higher than 

average duplicates taken during the scanning process…………………………...85 

Figure 4.23: PCA graph of the 0-1000μg WPI/mL IMS run. Similar to what was 

shown in figure 4.21, the 125μg/mL sample was a little higher than expected, 



xiii 
 

most likely because of a reading that was more intense and pulled the average 

higher than expected…………………………………………………….…………....86 

Figure 4.24: Spectra from the aptamer IMS run using the spike and negative 

control hot dogs. Both spectra show a peak at 1004cm-1, seemingly indicating 

that they are both “positive” results…………………………………………….…....87 

Figure 4.25: 2nd derivative spectra again show how the two are identical to each 

other……………………………………………………………………………………..88 

Figure 4.26: PCA graph of the 30mg hot dogs and the negative control hot dogs. 

The intertwining points of the two spectra show that the two can’t be 

differentiated from each other………………………………………………………..89 

Figure 4.27: Image of gel with various eluents ran on it. Lane 1 was the negative 

control for the aptamer IMS ran in 10mM NaCl, Lane 2 was the positive control 

for the aptamer IMS ran in 10mM NaCl, Lane 3 was the aptamer in DDI water, 

Lane 4 was the protein ladder marker, Lane 5 was the negative control during the 

hot dog aptamer IMS, Lane 6 was the positive control for the hot dog aptamer 

IMS, Lane 7 WPI in DDI, and Lane 8 was the negative control hot dog slurry in 

10mM NaCl…………………………………………………………………………….91 

Figure 4.28: Raman spectra of the spiked and negative control hot dog run. A 

blocking step was used prior to the incubation with the hot dog samples to try 

and see if the interference could be eliminated…………………………………....93 

Figure 4.29: 2nd derivative spectra from the BSA-blocked aptamer IMS run…..94 

Figure 5.1: Spectra of the antibody IMS (top) and the aptamer IMS (bottom). Both 

were able to detect whey in a pure solution, showing that their respective 

methods could be used to detect whey…………………………………………..…99 



xiv 
 

Figure 5.2: Images of gels from the aptamer (top) and antibody (bottom) IMS 

procedures. The aptamer eluent gel shows bands on the negative control hot dog 

that match up with the hot dog solution. The negative control hot dog eluent for 

the antibody IMS does have some bands on it, but not as many……………….101 

Figure 5.3: Example of “zones” created in TQ Analyst using known standards. 

The red circles show “failed” samples, ones with whey, and the green circles 

show samples that would “pass”. The top graph shows a multi-variable PCA, 

which could be used to show different amounts of whey, while the bottom is a 

simpler pass/fail graph where anything outside the green circle would be 

considered contaminated……………………………………………………………104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. Introduction 

1.1 Food Allergens 

 With the increase in the food industry’s ability to deliver their products to 

consumers comes an increase in the variety of different foods that the general 

population has access to. No longer are we restricted to only what we grow 

ourselves or what is available in the local region, but instead we now have 

access to foods from around the world. With this increase in dietary variety also 

comes an increase in the likelihood someone will have an allergic reaction to a 

new food. With over 15 million Americans suffering from some sort of food 

allergen and the percentage of children with food allergies increasing by 50% 

since 1997, food allergens have moved to the foreground of the food industry’s 

concerns (CDC, 2013). The other issue with food allergies is the broad range of 

reaction dosages that can cause a food allergy to act up. This means that while 

one person will react to a few milligrams of an allergen, it’s possible that only a 

fraction of that could kill another person. This makes setting tolerable limits in 

food a difficult task, since how can you justify having an amount of an allergen in 

food that could potentially kill someone. This is what groups like Dr. Steven 

Taylor at the University of Nebraska are working on. Dr. Taylor runs the Food 

Allergen Research and Resource Program, which is a laboratory that does 

assessments of food allergens in products and the risk that those allergens pose 

to the general population. The results will then be able to tell us at “x” level of 

allergen in a product, there is “x” percent chance that someone from the general 
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population will react to it. These types of assessments will be key in the future to 

help the industry set standards for tolerable allowances. 

 

1.2 Food Allergen Laws 

 Since 1938 when the Food, Drug, and Cosmetic Act was put into place, 

the food industry has been trying to create safer food for the population. But with 

the rise in allergen attacks over the last 30 years, new laws were needed to 

adapt to the new concerns from the general public. The 2006 passing of the 

Food Allergen Labeling and Consumer Protection (FALCPA) was the first major 

piece of legislature that was specifically targeted at allergens and the need to 

protect the public from them. FALCPA had three main pieces to it, the first being 

that if a company’s product contains one of the Big 8 allergens, then the label of 

that product must declare that that allergen is present (Sec. 203(c)(1)). This 

meant that the company had to have on their label the words “Contains” or “May 

Contain” if there was or was a chance that an allergen was present. This also 

included products that were manufactured or processed in facilities that also 

manufactured or processed known allergens, though this doesn’t give companies 

a pass on preventing cross contamination. This was important since the 

consumer was alerted that there could be a possibility of cross contamination 

and to be cautious while eating this product. The second piece that FALCPA did 

was to define and categorize allergens in a meaningful way. FALCPA created 

what we know today as the “Big 8” or 8 grouping of major allergens that are 

responsible for over 90% of food allergens in the US (Sec. 202(2)(A)). And 
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finally, the last piece that FALCPA did was to require the industry to identify the 

source of an ingredient while listing the ingredients on the label. This meant that 

if a food manufacturer added sodium caseinate to their product, on the label after 

sodium caseinate (Milk) had to appear after it. This was to further identify that it 

was from a major allergen group and to better help consumers identify allergens 

in their food. 

 The other major law directed at food safety in the last 20 years is the Food 

Safety and Modernization Act (FSMA). Passed in 2011 as a response to a 

massive outbreak of Salmonella, this food safety law gave the FDA new, broader 

powers to enforce food safety and redefined the rules for a product containing an 

allergen. As mentioned, FSMA has given the FDA more power to enforce the 

food safety laws, such as mandatory recalls (Sec. 403(a)(1)). Before, the FDA 

could ask a company to recall a product if it was found to be contaminated with 

an allergen. The company at this point didn’t have to recall their product, and if a 

recall was performed, it was voluntary and most likely in the best interest of the 

company performing the recall. With the passing of FSMA, if the FDA discovers a 

contaminated product, it can go to a company and demand a recall with the 

threat of forced seizure of the contaminated product behind the demand. The 

other major portion that relates to food safety is how a contamination by an 

allergen is labeled. Before, an undeclared allergen was labeled as misbranding 

by the FDA, since it wasn’t included on the label of the product. But after the 

passing of FSMA, an undeclared allergen is now considered an adulterant under 

FDC 402(a)(1). This redefining of undeclared allergens in products shows that 
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allergens are now considered a much larger concern to the FDA and they will go 

after companies with more intensity than before. 

 

1.3 IMS 

 Immunomagnetic Separation, IMS, is a technique that is commonly used 

to separate a target molecule or protein from a solution, typically for 

concentrating the target of interest or to help separate the target for use later in 

the method. The way IMS does this is by attaching some type of capture agent 

on the surface of magnetic beads, typically antibodies or aptamers, mixing the 

bead/capture agent complex with the sample, and then separating the beads 

from the sample via a strong magnet. IMS has an especially useful place when 

dealing with food since most food samples can be considered complex in nature 

(Dwivedi et al, 2010). IMS offers a technique that allows for the separation of the 

targeted molecule or protein from solution, where it can be analyzed away from 

interfering components of the original sample. The uses for IMS are numerous, 

including separating the target component for detection of a pathogen (Cudjoe et 

al 1991 and 1997), purification and identification of proteins or peptides (Safarik 

and Safarikova, 2004), and even with q-PCR (Wright, Chapman, and Siddons, 

1994). While there are some limitations, such as sporadic non-specific binding or 

beads being entrapped by sample (BioRad and Thermo Scientific, 2016), IMS is 

a very versatile separation technique and will continue to be improved upon for 

various different methods. 
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1.4 SERS 

 Surface Enhanced Raman Spectroscopy, SERS, is a variation of Raman 

spectroscopy that uses a metal surface to help boost the Raman signal from a 

sample. The most agreed upon reasoning behind this signal amplification is that 

the light source, typically a laser, excites the surface of the material and creates 

localized surface plasmons that, when close enough to a Raman active sample, 

oscillate at the same frequency as the light source and assist in amplifying the 

signal from the sample. First described in literature back in the mid-1970’s by Dr. 

Fleischmann and his team to detect pyridine on chemically roughed silver 

(Fleischmann et al, 1974), it has since grown to detecting numerous types of 

samples that were once thought to be undetectable by Raman spectroscopy, 

such as protein or organic materials that are not very Raman active (He et al, 

2009 and Blackie et al, 2009). The advantages of SERS is that the actual test 

itself can be relatively quick and only requires minimum training for new users 

(He et al, 2011). This rapid turnaround time for testing would be beneficial to the 

food industry. Instead of having product wait around for the results of a test, 

waiting to be shipped, SERS testing would allow for shorten testing time and 

allow for the products to be shipped earlier, saving time and money for a 

company. Also, SERS testing typically requires less material to run a sample 

versus other methods, such as ELISA, meaning over time SERS will help save 

money on testing materials. 
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1.5 Null Hypotheses 

 The null hypothesis for this research were as follows: 

1. We won’t be able to develop a method to detect whey in a hot dog using 

antibody-based IMS coupled with SERS. 

2. We won’t be able to develop a method to detect whey in a hot dog using 

aptamer-based IMS coupled with SERS. 

 

1.6 Objectives 

 The objectives to investigate the hypotheses for this research were as 

follows: 

1. Develop a method to adequately extract whey from hot dogs to be used 

with IMS-SERS methods. 

2. Adapt previous described method to be able to detect whey in a hot dog 

using antibody IMS coupled with SERS. 

3. Adapt previous described method to be able to detect whey in a hot dog 

using aptamer IMS coupled with SERS. 

4. Using TQ Analyst software, analyze spectra from IMS-SERS to determine 

if the procedure is adequate as a detection method for whey in a hot dog. 
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2. Literature Review 

2.1 Whey 

Made up of primarily water, lactose, water soluble proteins, and minerals, 

liquid whey has primarily been a byproduct of cheese making for the greater part 

of history. This most likely had to do with cheese whey being mostly water, as 

seen in Table 2.1.  

Table 2.1- Table of approximate composition of whey after cheese processing 
(Swaisgood, 1982). 

Approximate composition of Cheese whey 

Constituent % 

Water 94.00 

Total solids 6.00 

Lactose 4.50 

True protein 0.60 

Ash (minerals) 0.50 

NPN (non-protein 
nitrogen) 

0.20 

Potassium 0.14 

Chloride 0.09 

Lactic acid 0.05 

Fat 0.05 

Sodium 0.045 

Phosphorus 0.040 

Calcium 0.035 

 

2.1.1 Physical Properties of Whey Proteins 

Whey consists of four main groupings of proteins, beta-lactoglobulin, 

alpha-lactalbumin, bovine serum albumin, and immunoglobulins (Swaisgood, 

1982). Each of these proteins are considered soluble in water and differ slightly 

with respect to individual properties. Whey proteins in general make up about 
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20% of the total protein that is found in cow’s milk, the rest being primarily casein 

proteins. 

Beta-lactoglobulin, β-LG, is the most abundant of the whey proteins making up 

approximately 65% of all whey proteins (Swaisgood, 1982). β-LG is a 18.3kD 

molecular weight protein consisting of 162 amino acids, which come together to 

form 9 beta-sheets and 1 alpha helix, as seen below in Figure 2.1 (Swaisgood, 

1982). Like most water soluble proteins, the outer surface contains more 

hydrophilic regions, whereas the center contains the hydrophobic core. While 

fairly homologous, there are 2 different variants of the protein, an A and a B 

strand, that differ only with a substitution of an aspartic acid in B for a glycine in 

variant A (Papis et al, 1986). It is also worth mentioning that, unlike its casein 

counterparts, β-LG contains a free sulfhydryl group, allowing it to create sulfide 

bonds under the right conditions (Papis et al, 1986). Under most conditions, 

including the native pH of milk, β-LG is present as a dimer between a pH of 3.1-

5.1, but at pH below 3.0 it is a octamer and at pH above 8.0 it is a monomer 

(Whitney, 1977). 
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Figure 2.1: Image of β-LG with its secondary amino acid structures (RCSB 
Protein Data Bank, 2016). 

  

Alpha-lactalbumin, α-LA, is the next most prevalent protein found in whey, 

making up about 25% of all whey proteins. It is 123 amino acids long and weighs 

about 14.1kD. Unlike B-LG, α-LA’s structure is more dominated by the alpha-

helix structure versus the beta-sheets in β-LG, as seen below in Figure 2.2 (Brew 

and Grobler, 1990).  Also, α-LA lacks the free thiol group that β-LG has, meaning 

it won’t form covalent bonds needed to form gels when it’s denatured or acidified 

(Brew and Grobler, 1990). The main function of α-LA has been found to be as a 

catalyst for galactosyl transferase by reducing the Km of the addition reaction of 
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UDP-galactose to glucose to make lactose by over 250x, thus linking the 

presence of lactose in milk with the presence of α-LA (Brew and Grobler, 1990). 

It is also worth noting that α-LA is more heat stable than the other whey proteins, 

especially with regards to the presence of calcium ions. Normally calcium serves 

to facilitate the aggregation of proteins, but with α-LA, it has been known to stay 

soluble at temperatures up to 100° (Swaisgood, 1996). 

 

Figure 2.2: Image of alpha-lactalbumin and its secondary structure (RCSB 
Protein Data Bank, 2016). 

  

Bovine serum albumin, BSA, is the third most prevalent protein in whey. 

Unlike β-LG and α-LA, BSA does not originate from the mammary gland, rather it 

comes from the bloodstream where it passively flows into the mammary gland 

and then onto the milk (Whitney, 1977). With a molecular weight of 69.0kD, it is 
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much larger than β-LG and α-LA, as can be seen below in Figure 2.3. The main 

purpose of BSA in the blood is to bind to free fatty acids through use of its 

hydrophobic binding sites, and assist in their transportation (Whitney, 1977). It 

has also been theorized that it may bind some of the free fatty acids in milk as 

well (Whitney, 1977). BSA is typically associated with protein standards in labs or 

as a blocking agent for such experiments as ELISA or Western Blots as it blocks 

potential binding sites from other proteins that would interfere with the final signal 

or result. 

 

Figure 2.3: Image of bovine serum albumin and its secondary structure (RCSB 
Protein Data Bank, 2016). 
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2.1.2 Production Methods 

While there are varieties of different uses for whey powder, from demineralized 

whey powder to permeate powder, this section on whey protein powders. For 

commercial whey protein powders, there are essentially three forms which differ 

in protein concentration. From the lowest concentration there is whey protein 

concentrate 35, (WPC 35), WPC 50-80, and whey protein isolate, (WPI), which 

has a protein concentration of at least 90% (TetraPak, 2016). The remaining 

constituents that make up whey powders differ in percent composition based on 

which type of whey powder concentration and method of drying, but typically 

consist of moisture, non-whey protein, lactose, fat, and excess salts. 

WPC 35 is the most basic whey powder available and contains the least amount 

of protein per volume. It is made by first putting the whey through ultrafiltration to 

remove excess minerals and lactose. From there the whey is then concentrated 

by spray drying or drum drying to its WPC 35 powdered form. 

WPC 50-80 is essentially the same as WPC 35, the difference being the amount 

of whey protein concentration ranging from 50%-80%. These differ in the amount 

of diafiltration necessary to achieve the proper protein content (TetraPak, 2016). 

The production of WPC 50-80 is the same as WPC 35, except that after the 

ultrafiltration step, a diafiltration step is added to further concentrate the whey 

protein. Depending on how many times it is washed and ultrafiltered, the protein 

content of the final product will increase with the amount of times washed. 
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Finally, WPI is the most concentrated form of whey protein with at least 90% 

protein content by volume.  For WPI, there are two methods most commonly 

used, ion-exchange chromatography and extensive membrane filtration. For the 

ion-exchange, there are two different methods, cation and anion; both depend on 

the pH mobile phase, the stationary phase, and the eluent used (TetraPak, 

2016). For cation exchange, the mobile phase typically has an acidic pH, around 

pH 3, and the stationary phase of the column uses a material with an overall 

negative net charge (TetraPak, 2016). The eluent used to separate the whey 

from the column is then a liquid with a pH that is neutral or slightly alkaline. For 

anion exchange, everything is basically the opposite of cation exchange, the 

mobile phase is closer to neutral in pH. The stationary phase has a positive net 

charge, and the eluent is a liquid with an acidic pH. The other method for WPI 

resembles the method to create WPC, except it is much more extensive. First, 

the whey is microfiltered to remove any fat that is still in the whey(TetraPak, 

2016). Then it is ultrafiltered and extensively diafiltered before spray drying to 

achieve a product that can be as concentrated as 97% protein by volume.  

 2.1.3 Allergenicity of Whey Proteins 

Allergenicity is the term that refers to the body’s reaction to a certain foreign 

material, whether protein or toxin, by rejecting it and causing some type of 

negative bodily reaction to occur. With regards to food intolerences, we are 

concerned with two primary types of reactions, as seen below in Figure 2.4; 

immune response, which would include an IgE response or hypersensitivity, the 
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other is a non-immunological mediated response, which would include 

intolerances to a specific component of milk such as lactose (Ciara et al, 2012). 

The most common form of an allergy would be the immunological response. This 

response typically involves the absorption of the allergen either through the 

digestive tract or by physical contact. From there the allergen is eventually bound 

to an IgE through the highly affinitive Fc receptor (Janeway et al, 2001). Once 

this bond is formed between the antigen and antibody, inflammatory mediators 

and other reactions associated with allergic reactions start to take place 

eventually leading to an allergic response (Janeway et al, 2001). The other type 

of reaction, the non-immunological response, has multiple different pathways 

from which a response can be induced. These can either be enzymatic, some 

type of pharmacologic, or a combination of both that can’t be defined (Ciara et al, 

2012). 
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Figure 2.4: Diagram of different classifications of adverse reactions to food. 

For whey proteins, the type of reaction that is most prevalent is the 

immune IgE response to one of the proteins. With milk allergens, there isn’t a 

specific protein that is responsible for the anaphylactic response, where most 

patients tend to have IgE responses from multiple proteins, as seen below in 

Figure 2.5. Also complicating the reaction, is that on each of the proteins, 

multiple epitopes, sequences of amino acids that elicit the allergic response, can 

exist that allow for multiple IgE binding sites to occur (Ciara et al, 2012). This 

means that certain processing techniques aren’t able to reduce the allergenicity 

of the proteins (Ciara et al, 2012), though hydrolyzing the protein has been 
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shown to reduce the allergenicity of milk proteins significantly (Kaminogawa, S. 

and Totsuka, M., 2003). While pasteurization at lower temperatures, between 50-

60°, does not significantly reduce the allergenicity of milk proteins, a study by 

Ehn and his colleagues showed that extreme heating, between 80-90°C, 

significantly reduces the allergenicity of milk proteins (Ehn et al, 2004). 

 

 

 

Figure 2.5: IgE response from various serum samples taken from different 
patients to five different milk proteins. On the right from the top down are       
beta-lactoglobulin, casein, bovine serum albumin, alpha-lactalbumin, and 
lactoferrin (Wal, 2002). It should be noted the different responses in the different 
patients, such as the large responses from patients 6, 15, and 16, while 19 and 
20 show barely any response to any of the proteins. 
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The prevalence of milk protein allergies is relatively low compared to the 

other “Big 8” food allergies, but the allergic reactions are just as bad, if not worse 

(Hill et al, 1997). Allergies to milk proteins typically are found in young children, 

although it still can be diagnosed as an adult. The average prevalence in small 

children has been found to be about 2-6% of the general population, (Hill et al, 

1997), with the commonality decreasing as age increases. It has also been found 

that if symptoms of the allergy first appear before the age of three that the 

chances of decreased severity or complete disappearance of symptoms is likely, 

whereas if the symptoms appear after the age of three it is unlikely that they will 

outgrow their reaction to milk proteins (Ciara et al, 2012). Onset of adult allergic 

reaction is much rarer with it occurring in only 0.1-1.0% of the adult population. It 

has also been reported that while the occurrence of milk protein allergies in 

adults is rarer than in children, adults have been shown to experience more 

severe reactions than children (Lam et al, 2008). Again, this most likely has to do 

with most adults having developed an immunity to the proteins, while only the 

adults who are susceptible have the strongest reactions to milk proteins start to 

elicit symptoms. 

2.2 Modern Laws and Allergens 

 All material and information in this section was retrieved from the Food 

Drug Administration’s website unless specifically sourced differently. 
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2.2.1 Food Allergen Labeling and Consumer Protection Act 

 The Food Allergen Labeling and Consumer Protection Act, FALCPA 

(Public Law 108-282, Title II), was the first major piece of federal legislature to 

focus entirely on protecting the general public from allergens in food. First going 

into effect on 1/1/06 as an amendment to the Food, Drug, and Cosmetic Act, 

FALCPA “requires that the label of a food that contains an ingredient that is or 

contains protein from a major food allergen declare the presence of the allergen 

in the manner described by the law” (Sec 203(c)(1)). In other words, if a 

company’s product contains an ingredient from a known allergen source, no 

matter how small, the company must report it on their labels. FALCPA also 

defined what is a “major food allergen” by creating 8 major categories for which 

90% of all documented food allergies in the USA represent (Sec 202(2)(A)). The 

8 major allergens that FALCPA lists are: milk, eggs, fish (bass, flounder, cod, 

salmon, fona, etc.), crustacean shellfish (shrimp, crab, lobster, oysters, etc.), tree 

nuts (cashews, macadamia, walnuts, etc.), peanuts, wheat, and soybeans. The 

labeling requirements that FALCPA enacted also changed the way 

manufacturers listed ingredients. Now, companies had to use one of the two 

alternative. They can include the source of the food in parenthesis after the 

ingredient if the usual or common name of the food didn’t already contain it, such 

as whey (Milk) or enriched flour (wheat flour….) (Sec 203(a)(1)(B)). The other 

option was for companies to put the phrase “Contains” and then follow that with 

any and all categories of the major 8 allergens that their product contains (Sec 
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203(a)(1)(A)). Listing the specific category of allergen that was included 

eliminated companies from putting a blanket statement of simply “Contains 

Allergens” on their label in an attempt to cover all their bases. While the term 

“Contain” must be used if an allergen is used, the term “May Contain” is not 

required since it is an advisory statement and not a stipulation of the law  

(Sec 204 (3)(A)). This means if a company uses a factory that also produces 

another product with a known allergy or if there is a slight chance of cross-

contamination from similar ingredients, the company is not required to warn 

consumers of the chance their product contains an allergen. Another part of the 

law that helped create more transparency on labels that under FALCPA, flavors, 

colors, and food additives were now required to put any of the aforementioned 

ingredients on a label if they contain or are derived from a major food allergen 

(Sec 203 (a)(4)). 

 While the law did a good job of shoring up some of the issues that 

allergens caused, it was in no way complete. Along with not requiring the 

statement “May Contain”, FALCPA has certain food groups that are exempt from 

the law, raw agricultural commodities, and highly refined oils, even if the oil is 

derived from one of the major food allergens (Sec 203(a)(1) and Sec 203(c)(1)). 

And in the event that an allergen does find its way into a product and isn’t 

labeled, its deemed misbranding and only subjected to seizure and removal from 

the marketplace. 
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2.2.2 The Food Safety and Modernization Act 

 The Food Safety and Modernization Act, FSMA, that was signed into law 

by President Obama on January 4th, 2011 as a response to the large food related 

illnesses, recalls, and mishaps that occurred during the late 2000’s. This far 

sweeping, and much needed bill granted the FDA new powers to help control 

and regulate the industry while also implementing new rules and regulations to 

help bring the food industry into the 21st century. Considered the largest and 

most far reaching law to be applied on the food industry since the Food, Drug, 

and Cosmetic Act of 1938, this piece of legislation also puts additional focus on 

allergens in the food supply by requiring that companies create measures to 

prevent cross-contamination of the food supply by allergenic proteins. 

 While FSMA was passed in 2011, the events leading up to it were a long 

time in the making. When the FDCA was passed in 1938, the US food industry 

looked a lot different than today. Being more rural and homegrown focused, the 

commercial food markets were still in their infancy and definitely not as far 

reaching as today. With the expansion of consumerism, also aided by various 

processing techniques that allowed us to ship and store foods over greater 

distances and time periods, we are able to enjoy a larger variety of food 

products. But with this new expansion, comes new risks involved. The tipping 

point came in the form of the massive Salmonella outbreak in 2009 from Peanut 

Corporation of America’s peanut paste and peanut butter. The outbreak, which 

sickened 714 people, killed 9, and effected over 3,900 SKUs and over 350 
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companies, is considered the largest foodborne illness outbreak to hit the US, as 

illustrated in Figure 2.6 below which depicts the number of cases state by state 

(CDC, 2009). It is also considered the necessary catalyst that got FSMA 

introduced and eventually passed, with a lot of FSMAs new legal clauses being 

directly tied to issues with the PCA case. 

 

Figure 2.6: State by state cases of Salmonella Typhimurium from the PCA 
outbreak in 2009 (CDC, 2009). 

  

While FSMA has extensive sections on various food safety laws, the focus 

here on will mainly be on allergens and what FSMA has decided to do with them. 

Prior to FSMA, if a company had a product that had an unintended allergenic 

ingredient that caused an illness, whether from cross-contamination or from 

negligence by the company whom did not list the allergenic ingredient, the FDA 

would request that the company do a voluntary recall, as the FDA didn’t have the 
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power to force a company to do a mandatory recall. Also, as noted above, it 

wasn’t considered adulteration to have an unintended allergen in a product. What 

the FDA would ask the company to do a recall on their product for was a 

misbranding of ingredients, as the allergen wasn’t known to be in the product and 

thus wasn’t printed on the label. This was the FDA’s way of working around the 

excuse by companies that said they didn’t know or didn’t care to double check 

their products. With the introduction of FSMA, this all had changed. Now the FDA 

was given the explicit power of mandatory recall authority, which allowed the 

forced recall of any contaminated product, as stated by FSMS section 423 (a)(1). 

It also reclassified allergens that weren’t labeled as adulterants, thus giving the 

FDA more power to force recalls and help prevent injuries or deaths from cross 

contamination of allergens. This reclassification of allergens from a misbranding 

to adulteration shows the concern of what an undeclared allergen could do to the 

susceptible population. This can be further seen as now the cGMPs listed by the 

FDA also explicitly list allergen control in HACCP, section 418(n)(3)(D). The law 

also requires that federal and state officials be given the proper training, and/or 

experience necessary to properly carry out all forms of testing for food safety, as 

seen in section 1011(a). This measure focuses more on the government side and 

making sure all employees are trained and can properly carry out their duties in 

food safety testing. 
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2.3 Nutritional Value of Whey 

 Whey proteins contain a variety of nutritional functionalities that are highly 

sought after. For starters, whey proteins are considered an excellent source of 

essential amino acids. They contain a great variety of necessary amino acids 

needed by the body to function properly. They also are considered one of the 

best sources of protein for the promotion of muscle synthesis and for the use in a 

healthy diet. As seen by the table below, taken from Korhonen et al and 

Maduriera et al, 1998 and 2007 respectively, each of the individual constituents 

of whey have their own unique nutritional value that they add for wanting to use 

whey proteins in a final product (Ha and Zemel, 2003). 

Table 2.2: Shown above is the list of whey proteins and a brief description of the 
nutritional functions that each of the proteins offers (Korhonen et al, 1998 & 
Maduriera et al, 2007). 

 

 Starting with β-LG, it is a great fat soluble vitamin binder, especially 

vitamin A. Having a higher concentration of a protein that binds to fat soluble 

vitamins will allow more of the vitamins to be absorbed into the bloodstream and 

Protein Concentration (g/l) Function 
β-lactoglobulin 1.3 Retinol carrier, fatty acids binding, 

possible antioxidant 
α-Lactalbumin 1.2 Lactose synthesis in mammary gland, Ca 

carrier, immunomodulation, 
anticarcinogenic 

Immunoglobulins 
A, M and G 

0.7 Immune protection 

Bovine serum 
albumin 

0.4 Fatty acid binding, anti-mutagenic 
function, prevention of cancer, disease 
protection through passive immunity 

Lactoferrin (LF) 0.1 Antimicrobial, antioxidative, 
immunomodulation, iron absorption, 
anticarcinogenic 
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dispersed where needed. Since it binds fat soluble vitamins, it is also able to find 

free fatty acids. As with the fat soluble vitamins, this allows the absorption of fatty 

acids to increase. Now whether this is a positive or negative effect depends on 

the diet of the individual, with those who consume more saturated fatty acids or 

trans fats being at a greater disadvantage over those who consume healthier 

fats. There is also a possible antioxidant trait that has been linked to β-LG as 

well, but the mechanism of this isn’t as well understood as the other functions of 

β-LG (Marshall and Keri, 2004 & Maduriera et al, 2007). 

 α-LA is present in all mammalian milk as it is a catalyst for the production 

of lactose in the mammary glands. It has been reported to speed up the 

production of lactose by up to 250x by lowering the Km of the reaction to make it 

more favorable (Brew and Grobler, 1990). It is also a great carrier of calcium, 

which is essential for proper bone health and upkeep. This could be used by 

those experiencing bone deficiencies or for the elderly trying to stave off 

osteoporosis. It could also be used as a supplement in infant formulas or for 

younger children to help with their growing bones and to make sure the calcium 

they are ingesting isn’t just being passed through their systems and excreted. 

Also, another use would be for women who are currently going through or have 

gone through menopause, as they are more likely to develop osteoporosis than 

those who haven’t experienced menopause yet (Marshall and Keri, 2004 & 

Krissansen, 2007). 
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 BSA, which enters into the mammary glands from the bloodstream, is 

another great fatty acid binder. As with β-LG, this could be used to help the body 

better absorb fatty acids that would normally pass through the body. Also like β-

LG, depending on the diet of the individual or what product BSA is a part of, this 

could be seen as a negative or positive depending on the type of fatty acid it 

binds too. Another interesting quality of BSA is that this protein has the ability to 

bind with certain pro-oxidant transition metals (Ramesh et al, 2007). This ability 

has a number of positive uses in regards to one’s health. First, it helps by binding 

to and eliminating certain metals that help to oxidize other nutrients or parts of 

the body. In this way, it acts like an antioxidant, at least indirectly. Secondly, 

since it has been known that radicals can cause mutations to DNA and RNA and 

that these certain transitional metals play a role in creating said radicals, by 

taking the pro-oxidant metals out of the equation BSA acts as an anti-mutagenic 

and anti-cancer compound, thereby helping to prevent mutations in DNA or RNA 

that could possibly lead to cancerous promoters in the sequences (Ramesh et al, 

2007). 

2.4 Detection of Whey in Food Systems 

2.4.1. Capture Methods 

2.4.1.1 Antibodies 

 Antibodies are Y-shaped Immunoglobulin proteins, Ig, produced by the 

immune system and are most commonly found in blood plasma. Each antibody 
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that is created is specifically designed by the immune system to attach itself to its 

target, or antigen, as seen below in figure 2.7. Once attached, the antibody will 

then either disable the antigen, or act as a signal for other immune cells to 

destroy or remove the antigen from the host’s system (Janeway et al, 2001). 

 The immune system creates antibodies in response to foreign matter that 

is in the body. B-cells secrete the antibodies in response to the foreign matter in 

one of two forms; a soluble form and a membrane-bound antibody that is referred 

to as a B-cell receptor. The soluble form floats around the body until it finds its 

target antigen, thus signaling the body’s immune system to remove the foreign 

material. The B-cell receptor is located on the surface of the B-cell and is 

responsible for the B-cell creating plasma cells, cells that create specific 

antibodies, or memory B-cells, which are used to help the immune system 

respond to future infections faster by remembering the target antigen (Janeway 

et al, 2004).  
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Figure 2.7: Illustration of the typical structure of an antibody. Consisting of heavy and 
light chain sections, the Y-shaped section of the antibody is responsible for the capture 
of antigens that are specific to the individual antibody (Novimmune, 2016). 
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2.4.1.2 Aptamers 

 Aptamers are single stranded nucleotides that are synthetically created to 

attach themselves to a target antigen by covalent or hydrophilic/hydrophobic 

interaction (Mosing, 2004). These aptamers are typically created through a 

process called Systematic Evolution of Ligands through Exponential Enrichment, 

or SELEX. This SELEX process can vary based on certain tools or methods 

used, but in general it involves mixing the target antigen with a random single 

stranded library of oligo nucleotides that are 10-30 base pairs long. From there 

the ligands that are able to attach themselves to the antigen are separated, again 

this is where some methods vary, and the successful ligands are enriched 

through PCR amplification. After the amplification, this process is repeated from 

the beginning for a number of rounds until an acceptable ligand with a good 

binding capacity is found. This whole process has been known to take as little as 

a few days to achieve a working aptamer, whereas antibodies can take weeks for 

new ones to be created and harvested from their host animals (Mosing et al, 

2009). 

 Like antibodies, aptamers in detection methods, are either allowed to 

incubate directly with the antigen or are fixed onto a surface and then have the 

sample with the possible antigen incubated or passed over it. While both are 

used to capture or attach to an antigen, an aptamer focuses in on a target based 

on its conformation, size, or shape, whereas an antibody typically has a certain 

sequence that it attaches to on the antigen theoretically in the epitope region. 
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This allows aptamers to hone in on antigens with more specificity, since the odds 

of proteins being of similar shape and size is far less likely than having similar 

amino acid sequences. It also allows the aptamers to distinguish between native 

and denatured proteins, such as the aptamer used in the paper by Janardhanan 

et al (Janardhanan et al, 2013). This would mean a company could better 

differentiate better between toxins that are in their native and harmful forms and 

those that are denatured and pose no threat to the general public. This would 

also lead to fewer recalls or false-positives and save the company a lot of money 

on unnecessary testing and bad publicity. 

2.4.1.3 Immunomagnetic Separation 

 Immunomagnetic separation, IMS, uses a magnetic bead, most typically a 

ferrous blend, to coat small beads. These beads are then coated with a 

compound, either protein G or A for antibody based IMS or streptavidin for 

aptamer IMS. This allows a capturing agent, antibodies or aptamers, to stick to 

the bead. The magnetic beads are then allowed to be coated with the capture 

agent at which time the bead/capture agent is then allowed to mix with the food 

sample or surface swab. Once incubated for an appropriate amount of time, the 

beads are separated from the solution by using a strong magnet to pull the beads 

away from the rest of the solution.  

 IMS is ideal for complex samples that would either be impossible or time 

consuming to separate the target. In food science, this would be most samples. 
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Whether it’s carbs, lipids, or proteins, IMS allows the rapid capture and 

separation of a target from a complex sample. IMS has been used extensively to 

detect microorganisms for some time now, such as E. coli and Salmonella 

(Wright et al, 1994 and Cudjoe et al, 1997), but also has been used more 

recently to capture harmful proteins such as ricin (He et al, 2011), adulterants 

such as melamine (Li et al, 2015), or illegal pesticides (Pang et al, 2014).  

2.4.2 ELISA 

 The Enzyme Linked Immunosorbent Assay, or ELISA, is a detection 

technique that combines an enzyme with some type of substrate that then 

causes a detection signal, typically color a change, to be produced and detected 

by an outside source. Typically, antibodies have been used to attach themselves 

to their antigen, which has been already adhered onto some type of surface. 

Once attached, an enzyme is then mixed into solution that attaches itself to the 

antibody. From there, a substrate is then mixed with the solution that reacts with 

the enzyme and gives off a reporter signal that is measured and possibly 

quantified. The amount of color change and how it is measured is based off of 

what type of ELISA method is used. There are essentially four types of ELISA 

methods; direct, indirect, sandwich, and competitive ELISA. Direct ELISA is when 

an antigen is allowed to coat itself to the wall of a well and a blocking solution is 

added to make sure there are no open spots left on the wall of the well. Then an 

antibody with the enzyme linked to it is added to the well and allowed to attach 

itself to the antigen, if present. Then a substrate is added and the color change in 
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the well is measured, typically by some type of plate reader. This was the first 

method that was developed that was labeled as ELISA (Engvall and Perlmann, 

1971). The direct method has some disadvantages, such as the need to create 

the linkage between the enzyme and the antibody for each antigen, adding extra 

time and money to the method. Indirect ELISA is similar to direct, except that the 

antibody that attaches to the antigen isn’t labeled, but a secondary antibody, 

which is enzyme labeled, is used to attach itself to the primary antibody and then 

react with the substrate to give a signal. This deals with the issue of having to 

have that extra step of labeling the antibodies and can be a problem if the 

secondary antibody isn’t properly washed away, thus giving a false-positive 

signal. Both direct and indirect ELISA also suffer from the issue of detecting the 

antigen in complex matrices. The antibodies can attach themselves to non-

antigen targets or fail to find the antigen altogether. Sandwich ELISAs help to 

solve the issue with complex matrices by having a primary antibody coat the 

plate instead of the antigen complex. This way the antibody on the plate captures 

the antigen from solution, allowing the separation from the matrix that would 

normally interfere with direct and indirect ELISA. From there, the procedure is 

similar to the other two ELISA methods, where an antibody and enzyme are 

attached to the antigen and a color change is measured. The final method, 

competitive, uses the lack of color change as the basis for the presence of the 

antigen. First, a known amount of the primary antibody is mixed with the sample 

It assumes that any antigen that is in the sample will bind to the antibody. Next, 

the whole complex is then mixed into a well that has been coated with the 
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antigen. This way, if there was no antigen in the sample, the antibodies that were 

mix in before will bind to the antigen on the coated plate. From there, again, the 

direct or indirect method can be used to get a signal. A positive sample for 

competitive ELISA will yield less of a signal than a negative, since the antibodies 

attach to the antigen in the sample versus attaching to the antigen in the well.  

 While there is no official method for detecting whey, both as a protein or 

as an adulterated allergen, ELISA is viewed as the go-to confirmatory method in 

the food industry. This most likely has to do with the fact that the reagents are 

readily available from a number of different commercial sources, it being fairly 

versatile in what matrices that it can work in and the fact that it has been 

established to work as a detection method for whey for quite some time 

(Rodriquez et al, 1990 and Abramowski et al, 1991). The biggest issue that 

ELISA has is the time required to do it. Even if one was to buy the pre-coated 

plates for a sandwich ELISA for a specific antigen, the incubation and blocking 

steps typically add at least 4-5 hours before you are able to get a signal from the 

test. In industry, especially where time is done daily, the time needed to do a test 

is crucial. For this reason, as of now, ELISA methods have been mostly used for 

confirming of an adulteration. Yet there are new developments of fully automated 

ELISA instruments being tested right now. These instruments are capable of 

running multiple samples in an hour and are fully automated to run everything 

that a normal ELISA would require (Morier et al, 2016 and Pearson et al, 2016). 

While these are being tested on pure solution using human Ig, the possibility for 
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conversion over to whey proteins in a complex matrix such as hot dogs and other 

industry methods looks promising. 

 

2.4.3 Other Methods 

 While ELISA might be the standard for detection of whey proteins in 

industry, there has been a fair amount of research into other areas. Besides 

ELISA, the next method for whey detection would be liquid chromatography, or 

LC.  Whether it’s normal or reverse phase, ion-exchange, or affinity, LC offers a 

variety of different pathways for detection, depending on the matrix of the sample 

(Hurley and Rejman, 1988, Elgar and Palmano, 2002, Safirik and Safirikova, 

2004, and Tolkach and Kulozik, 2005). LC also shows its versatility when 

combined with the different detectors, such as UV-vis or photodiode array 

detectors, that allow improved detection. LC can also be used with mass 

spectrometry to further increase the level of detection, even down to deciphering 

the individual amino acid sequence for a protein (Fauquant et al, 1997 and 

Salemi et al 2002). Capillary electrophoresis is another niche tool that has been 

investigated as a detection tool for whey (Benito et al, 1999). Similar to LC in that 

it helps to separate out the proteins in the sample to better detect the target, the 

difference being instead of having the sample travel through the large column, it 

uses a small capillary that can be only micrometers in diameter. It also differs in 

that the primary driving force for the samples to move through the capillary is 
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charge differential, similar to gel electrophoresis. A technique that has been 

around for a little longer and is fairly well established is blotting. These 

techniques use some type of stain on either a gel or membrane to show a band 

or spot where the protein is and then compare that spot or band to a 

predetermined protein size ladder to to calculate the relative size (Janssen et al, 

1987). The issue with this method is that there isn’t a lot of specificity, such as 

there is in LC or other methods, and that one needs to run a standard 

simultaneously to determine protein size. This can be improved by the addition of 

antibodies, such as in western blots, but this will increase the time needed to run 

the method and further lengthen the time until detection. Another technique that 

is more rapid and whose technology has gained more use in recent years, 

especially in food safety (Alocilja and Muhammad-Tahir, 2003 and Rauch et al, 

2009), is lateral flow. Lateral flow devices, or more commonly known as test 

strips, are used by adding the sample to the test strip and then allowing the 

sample to migrate to the detection method, whether it’s an electrical sensor or 

some type of immuno color changing method (Duary et al, 2009). Once it 

reaches the detection region, the target, if present, will interact with the detection 

location and give off a signal. This method is great since most of the time the 

strips are relatively easy to transport and store and can be used on-site in the 

plant. The tradeoff for that ease of use is that they are sensitive to some 

properties of the sample matrix, such as lipids, which can render the test useless. 
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2.5. Raman Spectroscopy 

2.5.1 History of Raman Spectroscopy  

Raman spectroscopy is an analytical tool that uses monochromatic light to 

detect the scattering of light. Typically, a laser is focused on a sample at a 

specific wavelength. This allows the excitation of the molecules through the 

absorption of the energy from the laser. This excitation also alters the 

refractionation of the incoming light that is proportional to the type of bond that it 

is hitting, such as a N-O bond will alter the light at a different wavelength than 

say a O-H or a C-O bond. C.V. Raman first discovered this phenomenon back in 

1928 while working at the Indian Association for the Cultivation of Science, IACS. 

He observed that some light was able to pass through a cross filter after already 

having passed through a monochromatic filter, thus showing that the light was 

changing ever so slightly (Raman, 1928). This work would eventually win him the 

Nobel Prize in Physics in 1930, making him the first Indian scientist to win the 

Nobel Prize in a science category and only the 2nd to win in any category. 

Raman would use this research to show proof of the quantum nature of light 

(Raman and Bhagavantam, 1931). 

 There are two types of raman scattering that are most commonly 

recorded; Stokes and anti-Stokes scattering. Stokes scattering occurs when the 

energy from the light source is transferred to the sample resulting in a light 

source of lower energy reading. Anti-Stokes, as the name implies, is the opposite 
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where energy from the sample is transferred to the light source resulting in a 

higher energy reading. These two differences in energy and wavelength are what 

makes up Raman spectroscopy and allows the detection of different bond types, 

as shown below in figure 2.8. The overall spectra, which combines the signals 

from a wide range of wavelengths, is what gives each sample a unique 

fingerprint that allows the detection of individual substances and elements. While 

this technique does give detailed information about the sample, the biggest issue 

with Raman is that only a small fraction of the light that reaches the sample gives 

a signal.  

 

Figure 2.8: Diagram that demonstrates how Raman spectroscopy works by 
detecting the difference between the light source and the Raman scattering and 
then correlating it to a spectrum. 
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2.5.2 Surface Enhanced Raman Spectroscopy 

 First observed by Dr. Fleischmann in his 1974 paper on the detection of 

pyridine on roughed silver, this form of Raman helps to overcome the limitations 

of simple Raman spectroscopy by amplifying the signal exponentially 

(Fleischmann et al, 1974). This signal amplification, which can be 106-1011 in 

magnitude depending on the sample, has been shown to reveal signals on 

spectra that otherwise wouldn’t be detectable otherwise (Blackie et al, 2007 and 

Ru et al, 2009). It has also been shown that not only does the signal become 

amplified, it also reveals signals that were not shown under normal Raman 

conditions, as demonstrated below in figure 2.9. This most likely has to do with 

the surface portion of the method and the amplifying ability that it brings. Most 

scientists who work with surface enhanced Raman spectroscopy, SERS, agree 

that the mechanism behind the enhanced signal is from one of two methods; a 

chemical method or an electromagnetic one. The theory behind the chemical 

mechanism is that through some type of chemisorption of the sample with the 

surface metal, a charge transfer occurs between the two that allows the 

amplification of the signal to occur. It also contributes to the chemical bonding 

between the sample and the surface metal as helping to keep the sample and 

the metal at an ideal distance, since this theory suggests that there is a finite 

distance from the surface metal that the enhancement can occur within 

(Lombardi et al, 1986). The other theory, the electromagnetic theory, states that 

the light source, when striking the surface metal, excites localized surface 
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plasmons around the contact point creating a small field of enhanced signal 

(Campion et al, 1998). Surface plasmons, which are the key to the amplification 

of the Raman signal, are localized, excited electric fields that, when oscillating at 

the same frequency as the light source give off this enhanced signal. This is 

theorized to happen because the surface plasmons first amplify the incoming 

light source, which will thus increase the Raman scattering from the sample. The 

signal is further amplified from there by the surface plasmons, which after the 

Raman scattering occurs, the plasmons amplify that signal as well. The key 

difference between the two theories is that the chemical theory states there must 

be some type of bond between the two surfaces, suggesting that the sharing of 

electrons is responsible for the enhancement, while the electromagnetic theory 

states that the creation of excited surface plasmons and the electric field that 

accompanies them is what is responsible for the signal boost. As of today, there 

appears to be more evidence for the electromagnetic theory as researchers have 

demonstrated that they are able to still demonstrate the signal enhancement 

even when the sample is farther apart from the surface metal (Kukushkin et al, 

2013). This research shows that the chemical bonding from the chemical theory 

isn’t necessary, and more likely involves the chemical bond and the 

electromagnetic field around the sample to achieve the signal enhancement. 
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Figure 2.9: Two spectras showing the difference between normal Raman, top, 
and SERS, bottom. The spectra are of 2-Mercaptoethanol, and as you can see, 
there are peaks that are more clear in the SERS graph or even that weren’t seen 
before in the normal Raman spectra. 

 

 

2.5.3 SERS Substrates 

 What allows the extra sensitivity of SERS, and is the key to the entire 

procedure, is the substrate that the sample is placed upon. Since the first 

observation of the SERS effect back in 1974 where they used chemically 

roughened silver, there has been an explosion of different materials that have 

been used to enhance the Raman signal. Today, the most common materials 

that are being used are noble metals, such as gold and silver, or those that 



40 
 

incorporate silica into the matrix (Ru et al, 2007). Since the 1970’s there has also 

been advances in the use of other metals as well, such as copper or aluminum 

for certain sample types (Creighton et al, 1991), and there has even been 

breakthroughs, more recently, in liquid SERS with the development of a 

technique called Slippery Liquid Infused Porous SERS, SLIPSERS, where a 

liquid is used in conjunction with a porous material to further enhance the signal 

(Yang et al, 2016). While there seems to be more and more creative and new 

ways to take advantage of the surface enhancement, there are some issues with 

them that will need to addressed before these techniques can be reasonably 

used in industry. While there are plenty of techniques that are quite sensitive, 

they are either costly to mass produce or take considerable time to create or 

implement with the sample, such as incubation or mixing. There are some 

substrates that have demonstrated their ability to be quick, cheap, and sensitive 

enough for a broad range of sample types. One example would be silver 

dendrites. Silver dendrites, AgD, have been referenced and used since the 

1980’s, but more so as a novel approach for a surface metal and weren’t 

extensively used until about the mid 2000’s as an economically viable method for 

SERS in industry (Seki, 1982 and Jing and Fang, 2007). The method described 

by Jing and Fang uses a simple replacement reaction between zinc plates and 

silver nitrate. A cleaned zinc plate is submerged into an aqueous solution of 

silver nitrate and allowed to react for about one minute. During that minute, the 

silver in solution will replace the zinc on the surface creating silver dendrites, 

seen below. These silver dendrites are then carefully scraped off the surface of 
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the unreacted zinc and can be stored at RT in DI water for at least 6 months. It 

also has the added benefit of having many locations on the silver dendrite 

surface that the sample could find a suitable place to be read by SERS, more 

specifically by being the appropriate distance away from the silver dendrites that 

the surface plasmons will create the enhancement effect needed, as seen below 

in figure 2.10. This technique uses materials that are cheap while also being 

easy to create and use, thus showing great potential for industry use in the 

future. 

 

Figure 2.10: SEM of silver dendrites created using Jing and Fang’s replacement 
method. (Picture from Dr. He’s PhD dissertation, Massachusetts University, 
2009). 
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2.5.4 SERS in the Food Industry 

SERS hasn’t taken off in the food industry until recent years with 

advancement in the use of different substrates that better allow the magnification 

of the Raman signal. Also the advancement in sample preparation that allows for 

the target in the sample to be removed from solution. These two advancements 

in the methodology have allowed for the detection of certain target molecules in 

certain food matrices. 

 Ranging from illegal food additives and antibiotics (Gao et al, 2013 and 

Xie et al 2011) to more recently certain allergenic and toxic proteins (He et al, 

2011) the uses of SERS in recent years have exploded, as seen in the extensive 

table below. As mentioned before, while SERS can be an incredibly sensitive 

instrument, that sensitivity cuts both ways, meaning that certain contaminants 

and other ingredients in the food matrix can interfere or block the target 

molecule’s signal. Proteins also have the hurdle of being larger molecules when 

it comes to weak signals. Since they have a larger physical structure than say a 

pyridine ring, they are typically too far away from the surface to receive the 

plasmonic enhancement that other molecules benefit from. Typically, proteins 

that contain an abundance of Raman active peptides, such as phenylalanine, can 

overcome this since these peptides are better able to give off a Raman signal.  
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Table 2.3: List of different SERS methods for different food contaminants and 
what the limit of detection for them is. (Taken from Zheng and He, 2014) 
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What makes SERS a great candidate for use in the food industry is that, 

besides the initial startup cost of the machine, it is a relatively cheap method. 

Once the machine is bought, the only expenses come from the separation 

method in the preparation step and the substrate cost, which typically can be 

either reused or can be made in a batch that can last up to 6 months (He et al, 

2008). Another great feature of SERS is that it is relatively quick and can even 

have portions of the scanning process be automated, such as the repetitions per 

sample which in turn will better help with accuracy to prevent false positives and 

false negatives. With FSMA being now implemented and companies are being 

held responsible for more and more safety of their products, they will be looking 

for cheap and effective methods that can prevent bad product from reaching the 

market. With SERS having shown that it can be cheap, effective, and quick, it 

shows great potential to be used in the food industry. There are also 

advancements in the miniaturization of Raman spectrometers so that they can be 

implemented in a variety of different settings and don’t need to be tied down in a 

certain lab setting. These machines, which can typically fit in a briefcase and 
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weigh roughly 25 pounds, open up possibilities for SERS to be used in the field 

and on production lines directly, saving even more time of having to transport 

samples from production time to the lab to get tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

3 Materials and Methods 

 In this section, the materials and methods used to detect whey protein in a 

hot dog are discussed. With the help of men and women in the Andrew Boss 

Laboratory of Meat Science, model hot dogs were created to test the accuracy 

and effectiveness of the different testing conditions used in the methodology. 

These hot dogs were created to simulate real life conditions that this test could 

one day be used for. 

3.1 Hot Dog Ingredients 

 The hot dogs were created at the Andrew Boss Meat Science Laboratory 

at the University of Minnesota Twin Cities. The hot dogs were cooked for an hour 

and a half at 150°F. The recipe for the hot dogs is as follows and is all in pounds: 

1. Meat - 25  

2. Salt - .50 

3. Seasoning - .30 

4. paprika - .04 

5. white sugar - .10 

6. modern cure - .06 

7. sodium tripolyphosphate - .10 

8. sodium erythorbate - .03 

9. water - 2.5 

 



47 
 

The seasoning recipe for used for the hot dogs is as follows: 

1. 2 parts white pepper 

2. 2 parts black pepper 

3. 2 parts ground coriander 

4. 2 parts ground nutmeg 

5. 1 part ground mustard 

6. 1 part paprika 

3.2 Whey Protein Isolate 

 The whey protein isolate (WPI, BiPRO™) that was used throughout all the 

experiments was donated by Davisco Food International, Inc. (Eden Prairie, MN). 

Its protein content was 97.2% by weight (dry basis) according to its Certificate of 

Analysis that was provided by the company. 

3.3 Silver Dendrites Preparation 

The silver dendrites used throughout the project were created using a 

replacement reaction between zinc metal and aqueous silver, as seen below. 

This method was adopted from a similar experiment and procedure developed by 

Dr. He (He et al, 2011). 

𝑍𝑛(𝑠) + 2 𝐴𝑔𝑁𝑂3(𝑎𝑞) → 2𝐴𝑔(𝑠) + 𝑍𝑛(𝑁𝑂3)2(𝑎𝑞) 

A 200mM aqueous solution of AgNO3 was created by dissolving AgNO3 

(Sigma Aldrich, St. Louis, MO) in distilled, deionized water (DDI). A sheet of zinc 
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metal (Fisher Scientific, Rochester, NY) was cut into a 1”x3” piece and cleaned 

by scrubbing it in dilute HCl (~0.02M) to remove any contaminants or oxidants 

from the surface for approximately 1 minute. The zinc strip was then rinsed with 

DDI, dried, and dipped into the 200mM AgNO3 solution for 2 minutes. As the 

replacement reaction was taking place, the surface of the zinc became coated 

with silver metal, becoming black, and then silver as the reaction progressed. 

After 2 minutes, the strip was carefully removed with tweezers and the silver 

metal on the surface was carefully scrapped off into a 50mL conical tube filled 

with 15mL of DDI water. The silver dendrites were washed by letting all the silver 

settle to the bottom of the tube and then the supernatant was carefully decanted 

and replaced with new DDI water. This was done 5 times to remove any excess 

Zn2+ or NO3
- ions that remained. After washing, the silver dendrites, AgD, were 

allowed to equilibrate at room temperature in the DDI water for 2 weeks before 

use. The equilibrated AgD could be stored at RT in DDI water for at least 6 

months until ready to use. 

3.4 Hot Dog Sample Preparation 

Using the method described below, hot dog samples were prepared for IMS and 

then for analysis using SERS: 

1.) 25g of hot dog were weighed out, cut into 1cm pieces, and placed into 

250mL blender cups. 
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2.) 100mL of extraction liquid was then added (10mM PBS for antibody IMS 

and 10mM NaCl for aptamer IMS) and the lid was screwed on. 

3.) The hot dog was then blended in a Osterizer Blender (Oster 

Manufacturing, Boca Raton, Florida) on low liquefy setting for 2 minutes. 

4.) The blended hot dog was then transferred to a 500mL beaker and allowed 

to shake for a minimum of 8 hours on an orbital shaker (Fisher Scientific, 

Rochester, NY) at 200rpm in a 4°C cooler. This allowed the whey to be 

extracted from the solid material and dissolve into the extraction liquid. 

5.) The blended hot dog was then taken from the cooler and strained through 

a steel-mesh strainer (Target, Roseville, MN) for 5 minutes to allow the 

liquid to separate from the solids. 

6.) The extracted hot dog liquid was then further strained through 0.5g of 

glass wool (Sigma-Aldrich, St. Louis, MO) using a forced air, vacuum filter. 

This whole straining process yielded on average ~50-55mL of extracted 

liquid 

7.) 50mL of the extracted liquid was then transferred to a 100mL beaker and 

25μL of Tween 20™ was added and mixed with a magnetic stir bar on a 

Fisher magnetic mixer (Fisher Scientific, Rochester, NY) for 5 minutes on 

high. 

8.) The extracted liquid was then placed in a 4°C cooler until ready to use. 
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3.5 Preparation of Antibody-based Magnetic Beads 

SureBeads™, protein G coated magnetic beads, were purchased from Bio-Rad 

Laboratories Inc. (Hercules, CA). The beads, as obtained, came in vials of 3mL 

at a concentration of 10mg/mL magnetic beads. The beads were suspended in 

10mM TBS with 0.05% Tween 20™ and 0.09% sodium azide as preservatives. 

The beads were 2.4–3.4 µm in diameter with an average antibody binding 

capacity of ≥6 µg antibody/mg of magnetic bead. 

 A polyclonal anti-whey protein was purchased from Sigma-Aldrich (St. 

Louis, MO) in the form of whole antiserum. The protein concentration of the 

antiserum was 63.9mg/mL and the antiserum was preserved using sodium azide 

at a concentration of 15mM. The antiserum was aliquoted and stored at -20°C for 

future use. Antibodies were conjugated to the beads according to the manual, 

illustrated below in figure 3.1, steps 1 and 2: 

1.) The beads were first thoroughly resuspended by vortexing them for 1 min.  

2.) 100μL of the resuspended beads were placed into a 2mL centrifuge tube 

and was allowed to separate from the supernatant for 2 minutes, on a 

magnetic rack, (Thermo Fisher, Rochester, NY) and afterwards the 

supernatant was discarded.  

3.) The tube with the beads was then taken off the magnetic rack and washed 

with 1mL of PBS-T (10mM PBS + 0.1% Tween 20™).  
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4.) The beads were then vortexed for 5 seconds and centrifuged for 5 

seconds so as to remove any excess beads from underneath the cap.  

5.) The tube was then placed on the magnetic rack again for 2 minutes. This 

washing step was repeated two more times for a total of three washes. 

6.) After the final wash step, the beads were taken off the rack and mixed with 

10μg of antibody and then the total volume of the tube was brought up to 

200μL using 10mM PBS-T (0.1% Tween 20™) and the beads were 

resuspended. 

7.) The bead/antibody complex was then allowed to incubate on a tube 

rotator (Fisher Scientific 05-450-200, Rochester, NY) for 15 minutes at 

35rpm at room temperature.  

8.) After the incubation, the tubes were removed and centrifuged down at 

3000rpm for 5 seconds to prevent loss on the cap of the tube (Fisher 

Scientific 05-090-100, Rochester, NY). Then the complex was washed 

three times in the same fashion as steps 2-5 above. 

9.) The beads were then resuspended in 200μL of PBS-T and stored at 4°C 

until ready to use. 
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Figure 3.1: Illustration of the process of Immunomagnetic Separation. 

3.6 Antibody-based IMS Procedure 

Whey was captured from solution using the magnetic bead/antibody complex 

that was created in section 3.4 above and by following the manual provided by 

the company. An illustration of this procedure can be seen in steps 3-5 in figure 

3.1 above: 

1.) 200μL of magnetic bead/antibody complex was placed in a 2mL 

Eppendorf centrifuge tube and placed on a magnetic rack and allowed to 

separate for 2 minutes. While still on the magnetic rack, the supernatant 

was then discarded so as to retain the magnetic beads. 
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2.) Next, 1mL of possible whey containing sample was added to the 

bead/antibody complex and was again allowed to incubate on an orbital 

rotator (Fisher Scientific, Rochester, NY) for 30 minutes at 35rpm at room 

temperature. 

3.) After that, the tube was removed from the rotator, centrifuged down for 5 

seconds and magnetized for 2 minutes. The supernatant was discarded 

and the complex was washed with PBS-T, as described in steps 2-5 

above in section 3.4. 

4.) The beads were then resuspended by vortexing for 5 seconds. Then the 

solution was pipetted out and transferred to a new 2mL Eppendorf 

centrifuged tube and washed three more times, in the same way as above 

in step 3. 

5.) After the final washing step, the tube was again placed on the rack and 

allowed to separate for 2 minutes. The supernatant was then removed and 

the tube was removed from the rack. 

6.) The complex was then centrifuged down for 5 seconds at 3000rpm in a 

Fisher Scientific mini centrifuge and placed back on the rack and any 

residual supernatant is removed by decanting. 

7.) The tube was again removed from the rack and centrifuged down for 5 

seconds. Then, 20μL of 20mM glycine pH 2.75 (adjusted with 

concentrated HCl) was added to the tube and agitated by hand for 10-15 

seconds. The glycine acts as an elution buffer, allowing the antibody and 

whey to be separated from the magnetic beads. 
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8.) The elution buffer, still in the centrifuge tube, was then placed on an orbital 

shaker (Fisher Scientific, Rochester, NY) for ten minutes at room 

temperature. 

9.) After incubation with the elution buffer, the tube was then transferred back 

to the magnetic rack and the beads were allowed to separate out of 

solution for 2 minutes. Afterwards, the supernatant was removed and 

transferred to a separate, 200μL centrifuge tube until it was ready to be 

analyzed by the Raman Spectrometer. 

3.7 Preparation of Aptamer-based Magnetic Beads 

Similar to the preparation of the antibody-based method, the main difference 

being that the capture agent was a biotinylated aptamer and the beads were 

coated with streptavidin, instead of protein G, to bind the aptamer to the 

magnetic bead. Dynabeads™ M-280 streptavidin coated beads were purchased 

from Thermo Fisher Scientific (Waltham, MA). The beads came in vials of 2mL at 

a concentration of 10mg/mL magnetic beads. The beads were suspended in 

10mM PBS pH 7.4 with 0.1% BSA and 0.02% sodium azide as preservatives. 

The beads were 2.8µm in diameter with an average ss-oligonucleotide binding 

capacity of 200pmol/mg of magnetic bead. 

 An 23bp ss-oligonucleotide was ordered through Integrated DNA 

Technologies (Coralville, IA) with a sequence of  

5’- GGGGGTTGGGGTGTGGGGTTGGGG-3’. The 5’ end was biotinylated to 

allow the interaction with the streptavidin beads. 3.11mg of dried ss-oligo was 



55 
 

obtained and resuspended in 4mL of nuclease-free H2O for a concentration of 

100μM. From there, it was diluted down to 10μM, aliquoted, and stored in a  

-20°C for future use. The aptamer was conjugated to the magnetic beads 

according to the manual:  

1.) The beads were first thoroughly resuspended by gently shaking the vial of 

beads for 30 seconds to resuspend the Dynabeads (Thermo Fisher). 

2.) 100μL of the resuspended beads were placed into a 2mL centrifuge tube, 

and mixed with 100μL of 2x Binding and Washing buffer (B&W buffer-

10mM Tris-HCl (pH 7.5) + 1mM EDTA + 2M NaCl + 0.2% Tween 20™).  

3.) The 200μL of the resuspended beads in B&W buffer were placed onto a 

magnetic rack (Thermo Fisher)and allowed to separate for 2 minutes. 

Afterwards the supernatant was removed and discarded.  

4.) The tube with the beads was then taken off the magnetic rack and washed 

with 1mL of Binding and Washing buffer. 

5.) The beads were then vortexed for 5 seconds and centrifuged for 5 

seconds as to remove any excess beads from underneath the cap.  

6.) The tube was then placed on the magnetic rack again for 2 minutes. This 

washing step was repeated two more times for a total of three washes. 

7.) After the final wash step, the beads were taken off the rack and mixed with 

600pmol of the biotinylated aptamer. Then the total volume of the tube 

was brought up to 200μL using binding and washing buffer and the beads 

were resuspended. 
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8.) The bead/aptamer complex was then allowed to incubate on an Fisher 

Scientific mini tube rotator (Fisher Scientific 05-450-200) for 30 minutes at 

35rpm at room temperature.  

9.) After the incubation, the tubes were removed and centrifuged down for 5 

seconds to prevent loss on the cap of the tube. Then the complex was 

washed three times in the same fashion as steps 3-6 above. 

10.) The beads were then resuspended in 200μL of 1x B&W buffer and stored 

at 4°C until ready to use. 

 

3.8  Aptamer-based IMS Procedure 

Whey was captured from samples using the magnetic bead/antibody complex 

that was created in section 3.6 above and by following the manual provided by 

the company: 

1.) 200μL of magnetic bead/antibody complex was placed on a magnetic rack 

(Thermo Fisher) and allowed to separate for 2 minutes. The supernatant 

was then decanted. 

2.) Next, 1mL of possible whey containing sample was added to the 

bead/antibody complex and was again allowed to incubate on an orbital 

rotator (Fisher Scientific, Rochester, NY) for 30 minutes at 35rpm at room 

temperature. 

3.) After that, the tube was removed from the rotator, centrifuged down at 

3000rpm for 5 seconds in a Fisher Scientific mini centrifuge, followed by 
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being magnetized in the same rack for 2 minutes. The supernatant was 

discarded and the complex was washed with binding and washing buffer, 

as described in steps 3-6 above in section 3.6. 

4.) The beads were then resuspended by vortexing for 5 seconds. Then the 

solution was pipetted out and transferred to a new 2mL centrifuged tube 

and washed three more times, in the same way as above in step 3. 

5.) After the final washing step, the tube was again placed on the magnetic 

rack (Thermo Fisher) and allowed to separate for 2 minutes. The 

supernatant was then removed and the tube was removed from the rack. 

6.) The complex was then centrifuged down for 5 seconds at 3000rpm and 

placed back on the magnetic rack and any residual supernatant is 

removed. 

7.) The tube was again removed from the rack and centrifuged down for an 

additional 5 seconds at 3000rpm. Then, 20μL of PBS pH 7.4 was added to 

the tube and agitated by hand for 10-15 seconds. Different than the 

antibody IMS, elution was done by heating the complex to 80°C in PBS. 

This heating step is enough to break the streptavidin-biotin bond and 

separate the ss-oligo and any sample from the beads. 

8.) To reach 80°C, the tube was placed into an incubator for 15 minutes at 

80°C. After 15 minutes, the tube was placed back on the magnet and 

placed back inside the incubator for another 3 minutes to allow separation 

of the beads and the supernatant. 
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9.) After the 3 minutes on the rack, the rack was taken out of the incubator 

and the supernatant was transferred to a 200μL centrifuge tube until ready 

to be analyzed by the Raman Spectrometer. 

3.9  Raman Instrumentation Preparation and Analysis 

The method described below was used to analyze the IMS eluents from both 

antibody and aptamer IMS for the presence of whey. The Raman Spectrometer 

that was used for this experiment was a Nicolet Almega XR Raman 

Spectrometer (Thermo Scientific, Waltham, MA) and the software the 

spectrometer used was OMNIC. The Raman spectrometer used a 780nm laser 

excitation frequency along with a 10x objective. The resulting laser spot was 

~3μm in diameter and had a specific resolution of 5cm-1. For this experiment, the 

aperture of the laser was set to 25μm slit setting. Raman scattering was collected 

for 5 seconds in quadruplicate for each reading and each sample was read 10 

times at 10 different spots on the AgD to minimize variance and to ensure a well-

represented spectrum. All spectrums were collected in the range of 500-3600cm-

1. 

1.) 1μL of AgD, described in section 3.2, was placed onto a glass, gold-

coated slide (Thermo Scientific, Waltham, MA). 

2.) Next, 1μL of eluent was carefully deposited on top of the 1μL of AgD. The 

slide was then allowed to dry completely for 10 minutes in a 35°C 

incubator. 
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3.) Once dried, the slide was taken to the Raman spectrometer and placed 

inside the sample chamber under the microscope. Using the microscope, 

the laser was focused on the sample. 

4.) Using the OMNIC software, a spectrum was taken. After the 9 other 

spectrums were taken, each spectra were saved individually before an 

average spectra were created from all 10. A 2nd derivative of the 

spectrums was also created and saved individually. These spectra were 

the basis to analyze the data using TQ analyst. 

3.10 Data Analysis Using TQ Analyst 

Spectra created by the Raman spectrometer were analyzed for differences or 

similarities using the TQ Analyst (v8.0.2.97) software package (Thermo 

Scientific, Waltham, MA). The two main tools that were used to analyze the data 

were the partial difference feature and the partial component analysis (PCA). The 

software could analyze the spectra or the 2nd derivative of the spectra to show 

the patterns between the samples spectra. The partial difference tool took two 

spectra and compared them, essentially showing if the two spectra were similar 

or not. The closer the spectra plot points were to each other on a graph, the more 

that they had in common. Two spectra that were similar would appear with their 

points over lapping, while two different spectra had points that were far way. This 

was tool was used primarily to compare spectra to the negative control, a yes or 

no method put simply. 
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 PCA was used when there were multiple different variables to compare, 

such as a negative control, a sample with very little whey in it, and a sample that 

has quite a bit of whey in it. It allowed you to see not only if spectra were similar 

or different from each other, but also how the spectra compared with others as 

well at the same time. This spectra, with a large enough spectra library collected, 

was used to estimate the rough concentration of whey in each of the different 

samples. 

 For either method, the region that the software focuses on similarities and 

differences can be changed. By either narrowing or expanding the comparison 

region, the software is better able to make accurate predictions.  
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4 Results and Discussion 

4.1 Spectra of Procedure Reagents 

 To make sure that none of the reagents that were used would interfere 

with the detection of whey, a spectra was obtained of each of the reagents 

commonly used throughout the experiment. 

Below is figure 4.1 which shows the spectra of the silver dendrites, AgDs, which 

was used throughout the experiment as the surface enhancing metal in SERS. 

The peak at roughly 1050-1060cm-1 was most likely from the residual (NO3
-1) that 

was left over from when the AgD were originally created. This sharp peak has 

been seen in other works that have used AgNO3 replacement reactions (Song et 

al, 2006) and was found not to overlap with the distinguishing peak from whey 

that was used.  
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Figure 4.1: Average spectra of the AgDs. 

 

 

 

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)



63 
 

 

Figure 4.2: Average Spectra that were taken from the common reagents used 

throughout the experiment. A vertical line has been drawn at 1004cm-1, the 

location of the peak that was used to distinguish the presence or absence of 

whey in a sample. 

 Figure 4.2 above shows the common reagents that were used throughout 

the experiment; glycine, which was used as an elution buffer, the antibodies used 

during antibody IMS, the aptamer used during aptamer IMS, and PBS-T which 

was used during the washing step throughout the experiments. Luckily, none of 

these reagents contained peaks that overlapped with the distinguishing peaks of 

whey. To make sure of this, a 2nd derivative and PCA plot were created as seen 

below in figure 4.3 and figure 4.4. 
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Figure 4.3: 2nd derivative of the average spectra of common reagents compared 

to the 2nd derivative of WPI in PBS. 

 

Figure 4.4: PCA graph, in the range of 975-1025cm-1, of the spectra from the 

common reagents and WPI. Notice how WPI is clearly separated from the 

common reagents, which are more clustered together and indicates that they are 

more closely related. 
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The 2nd derivative spectra in figure 4.3 gives a clearer picture of how the 

common reagents are different from the WPI spectra and don’t have any peaks 

that overlap with WPI. This process of using the 2nd derivative of a spectra acts 

as a baseline correction that allows the comparison of two spectra even when 

their baseline intensities are different (He et al, 2011). The PCA chart in figure 

4.4 focuses on the spectra range of 975-1025cm-1, which further shows the 

difference between WPI and the common reagents. The chart shows WPI is 

clearly separated from the rest of the group, while glycine and PBS-T appear so 

similar that their positions on the PCA chart overlap. The antibody and aptamer 

spectra, while slightly different from the glycine/PBS-T grouping, still are easily 

differentiated from the WPI grouping. 

4.2.1 Detection of Whey Using Antibody IMS Coupled with SERS 

 The first step that was done to detect whey in a hot dog, was to get a 

spectrum of whey that could be used throughout the experiment to compare 

results to. It was decided that a 1mg/mL of WPI solution would be used as our 

comparative spectra. 1g of WPI was dissolved in 10mM PBS and then brought 

up to 1L to create the stock solution. For this experiment, we decided to use the 

large peak found at 1004cm-1, as seen below in figure 4.5, since it was unique 

and didn’t appear in the spectra of any of the other reagents. This peak is 
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associated with a benzene ring, highlighted in figure 4.6, and is most likely found 

in WPI as phenylalanine.  

 

Figure 4.5: Average spectra of 1mg/mL WPI in 10mM PBS. This spectrum was 
compared to other spectras during the experiment to determine if WPI was 
present in the sample or not. 

 

 

Figure 4.6: The benzene ring of phenylalanine was the Raman active compound 
that allowed for WPI to be tracked using SERS. 
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the Methods and Materials, to try and detect WPI in a pure solution. For the 

experiment, we created concentrations of WPI in 10mM PBS by diluting the 

1mg/mL stock solution with PBS. 100, 50, 25, and 12.5μg/mL were created as 

working standards to test the IMS procedure in pure solution. A negative control 

using 10mM PBS was used to get a baseline spectrum to compare the others to. 

Figure 4.7 below shows the average Raman Spectra of all the dilutions and the 

negative control, 10mM PBS.  

 

Figure 4.7: Raman spectra of the dilutions used to test the feasibility of IMS to 
detect whey in a 10mM PBS solution. 

 

As seen in figure 4.7, the IMS method was able to capture enough whey for the 

Raman spectrometer to detect it. The 100 and 50μg/mL dilutions can be 
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figure 4.8, was created to see if the method could differentiate from the 25 and 

12.5μg/mL dilutions from the negative control. 

 

 

Figure 4.8: 2nd derivative spectra of the IMS/SERS detection experiment. The 
top figure shows the spectra individually, while the bottom figure focuses in on 
the 1004cm-1 peak with the spectra overlaying each other. 
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 Figure 4.8 gives a baseline corrected view of at the spectra, which shows 

a decreasing peak height with a decrease in WPI concentration. Looking at this 

figure, we can see that that the 25 and 12.5μg/mL concentration can be 

differentiated slightly from the negative control.  

 

 

Figure 4.9: PCA graph of IMS/SERS detection in 10mM PBS. The 100, 50, and 
25μg/mL samples are clearly separated from the other concentrations, but the 
12.5 and 0μg/mL concentrations overlap. 

 

 The PCA graph shows the upper three concentrations of 100, 50, and 

25μg/mL as being separated from each other, but the 12.5 and 0μg/mL 

concentrations overlap on the graph. This is different than what figure 4.8 shows, 

where all the concentrations appear separated from each other. This is most 

likely due to the fact that the spectra in figure 4.8 are made up of the average of 
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all the samples at that concentration, whereas the PCA graph in figure 4.9 shows 

each sample as its own point on the graph. Most likely the broad range of 

readings from the 12.5μg/mL sample, when averaged out, make it appear that it 

was different from the 0μg/mL readings, when it really wasn’t. This shows that 

while taking the average spectra of a concentration helps to get a general idea of 

the samples, a PCA graph is the best method to show differentiation between 

concentration spectra (He et al, 2009, He et al, 2011, and Li et al, 2015), thus the 

limit of detection is 25μg WPI/mL. 

 

4.2.2 Detection of Whey in Spiked Hot Dogs Using Antibody IMS/SERS

 The next step, after we were able to determine that the antibody IMS 

method worked in a simple PBS solution, was to try and use the method with a 

real world sample. We wanted to test to see if the hot dog matrix would have any 

negative effects on the method. To test this, we had the staff in the Andrew Boss 

Meat Science Laboratory create hot dogs for us using the recipe found in section 

3.1 of the Methods and Materials. Once we had the hot dogs with no whey in 

them, WPI was added to the extraction volume, 100mL of 10mM PBS, to create 

a concentration of 1000μg/mL of WPI. The spiked extraction volume was then 

added to the hot dog in a 250mL blender cup and blended for 2 minutes and 

allowed to rock on an orbital shaker (Fisher Scientific, Rochester, NY) for a 

minimum of 8 hours in a 4°C cooler. The samples were then strained through a 

wire mesh strainer to remove the larger particulates and then vacuum filtered 
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through glass wool to remove the smaller ones. The solution was then used with 

the antibody IMS method to detect for whey. The spectra in figure 4.10 are the 

average spectra from the 1000μg/mL spiked hot dog and 0μg/mL hot dog. 

  

Figure 4.10: Average spectra of the 1mg WPI/mL spiked hot dog and the 0mg 
WPI/mL spiked hot dog. 

  

 The 1mg/mL spiked hot dog spectra appears exactly as expected, with a 

peak at 1004cm-1 to indicate a positive for whey, the negative control hot dog 

with 0mg/mL of whey also shows a small peak at 1004cm-1. The source of this 

small peak was most likely from some form of non-specific binding (Safirik et al, 

2004). While the magnetic beads, in most cases, have low non-specific binding, 

there are a few cases where some peptides or proteins can non-specifically bind 

to the magnetic beads. The 2nd derivative spectra, shown below in figure 4.11, 
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indicates that there is a real difference between the two, even with the small peak 

present in the negative control. 

 

 

Figure 4.11: 2nd derivative spectra of the spike hot dogs. The top figure shows 
the spectra individually, while the bottom figure focuses in on the 1004cm-1 peak 
with the spectra overlaying each other. 
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Figure 4.12: The PCA graph shows the difference between the spiked hot dog 
matrix, 1mg WPI/mL, and the negative control.  

  

 The PCA graph in figure 4.12 shows the extent of the difference between 

the spiked hot dog sample and the negative control. With such a large distance 

between the groupings, this graph shows that the hot dog matrix doesn’t seem to 

interfere with the IMS/SERS detection method, assuming the extraction method 

is at 100% (Rhode et al, 2011). 

Next, hot dogs with WPI cooked into them were created by the Andrew 

Boss Meat Science Laboratory staff with concentrations of 30mg and 15mg per 

50g hot dog, Methods and Materials Section 3.1. We decided that 30mg per hot 

dog as the highest concentration was a good starting point since that 

concentration was roughly the level of protein detected in the Oscar Meyer hot 

dogs in the New England Journal of Medicine article that was used as a 
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reference (Gern et al, 1991), so this was used a reference point for this 

experiment. As with the spiked hot dogs, the preparation method in section 3.4 

was used to prepare the hot dogs for the IMS/SERS procedure, except with no 

whey added to the extraction volume. The spectra taken from the 30mg WPI hot 

dogs are shown below in figure 4.13. 

 

Figure 4.13: Spectra of the 30mg WPI hot dog and the negative control. While 
weaker in strength, the peak at 1004cm-1 is still present. 

 

 The peak of from phenylalanine is still present, showing that the whey 

present in the spiked hot dog was still able to interact with the antibodies of IMS. 

This makes sense since the cooking temperature of the hot dogs only reached a 

peak of 150°F, which is still not quite high enough to irreversibly denature all of 

the whey proteins (Swaisgood, 1982).  Figures 4.14 and 4.15, below, show the 
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2nd derivative of the Raman spectra and the PCA graph of the 30mg WPI/ hot 

dog run. 

 

 

Figure 4.14: 2nd derivative spectra from the 30mg spiked hot dog IMS 
experiment. The top spectra shows the negative control and the spiked hot dog 
spectra side by side, while the bottom spectra shows them stacked over each 
other to better show the difference between the two. 
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Figure 4.15: PCA graph of the 30mg WPI/hot dog and the negative control. The 
two separate groupings show that the two sets of spectra are distinguishable 
from each other. 

 

Again, the 2nd derivative shows a larger peak at the 1004cm-1 mark than the 

negative control hot dog, though the peak for the 30mg hot dog was noticeably 

smaller than the peak from figure 4.11. This probably has to do with the 

extraction step and it not being 100% effective in pulling all of the whey into 

solution. There have been studies to show that whey proteins have interaction 

with fat molecules, Singh and Ye, which could account for some of the whey not 

being in solution (Singh and Ye, 2010). Another possibility would be since the hot 

dogs are cooked at 150°F, the whey proteins would unfold, expose their 

hydrophobic core, and interact with other hydrophobic molecules. Also, the whey 

proteins could also be forming disulfide bonds with other protein molecules, thus 

being prevented from being pulled into solution during the extraction step (Ye et 

al, 2004). Whatever the reason for the less than 100% extraction, the 30mg WPI 

hot dog was still able to be differentiated from the negative, as demonstrated by 

the PCA graph in figure 4.15. The negative and 30mg WPI hot dog are in clearly 

separated groupings, with the negative control being a little more tightly grouped 
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than the 30mg WPI hot dog. This, again, was most likely from the hot dogs not 

having the same extraction efficiency as one another. It could also be from the 

WPI not being distributed evenly, since only a small amount of whey was added 

to the original hot dog mix. This could explain the slightly uneven peaks and why 

one point for the 30mg WPI hot dog is so far from the others in figure 4.15, 

outside of the circle with the other, similar peaks. 

 Once we were able to prove that the method was able to detect whey in a 

real world product under realistic conditions, we decided to try and see if the 

method could go further and detect lower concentrations of whey in a hot dog. 

Again, the staff in the meat science laboratory created hot dogs with whey added 

to them, but this time at a concentration of 15mg of WPI per 50g of hot dog. The 

experiment was repeated, the same as the 30mg WPI/ hot dog, and the Raman 

spectra for the experiment can be seen below in figure 4.16. 
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Figure 4.16: Average Raman spectra of the 15mg WPI hot dog and the negative 
control. While there appears to be a small peak on the 15mg WPI hot dog, it was 
shown to be not significant enough to differentiate between a 0mg WPI hot dog 
and the spiked hot dog group.  

 

 The spectra above appear to show a small peak at the 1004cm-1 mark for 

the 15mg WPI hot dog, but it is noticeably smaller than the 30mg WPI hot dog. A 

2nd derivative of the average spectra was created to further see if the 15mg WPI 

hot dog could be differentiated from the negative control.  
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Figure 4.17: 2nd derivative of the 15mg WPI hot dog and the negative control. 
The 2nd derivative shows that while the bump on the raw spectra might be 
present, it doesn’t end up being that distinguished from the negative control. 
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The 2nd derivative spectra shows that that the two hot dogs aren’t that 

different, even though the 15mg WPI hot dog’s raw spectra did contain a small 

peak at 1004cm-1. As with the other hot dogs throughout the experiment, a PCA 

graph was created to give a nonobjective decision if the 15mg WPI hot dog could 

be separated from the negative control, which can be seen below in figure 4.17.  

 

 

Figure 4.18: PCA graph of the 15mg WPI hot dogs and the negative controls. 
The 15mg WPI hot dogs are surrounded in the graph by the negative controls, 
meaning that the 15mg WPI hot dogs are not indistinguishable from the negative 
controls. 

 

 The PCA graph in figure 4.17 shows that the two hot dogs are in fact not 

distinguishable from each other. This is a great example of how a PCA graph 

gives a clear method to distinguish spectra from each other free from human 

objectivity. This can be even better seen when you add the 30mg WPI spectra to 

the PCA graph, as was done for figure 4.18 below. 
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Figure 4.19: PCA graph of a 30mg WPI/hot dogs and 15mg WPI/hot dog with 
the negative control hot dogs. 

 

 One thing that was observed when testing with hot dogs was that the 

negative controls showed slightly more variability than the spiked hot dogs. The 

peak at 1004cm-1 on the 2nd derivatives for the negative controls ranged 

anywhere from 0 in intensity all the way to -0.4. This variability could possibly be 

from some nonspecific binding to the beads (Biorad Manual, 2015), which in turn 

leads to a slight peak in the spectra. Even with the use of washing agents, such 

as Tween-20 to the washing step, the variability was still present. With this 

variability in the negative controls, the detection limit for this method was 

determined to be 30mg of WPI per 50g of hot dog. With the variability seen by 

some of the negative hot dog spectra, the 15mg WPI hot dogs couldn’t be 

significantly distinguished from the negative hot dogs, as seen in figure 4.18. 
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4.3.1 Detection of Whey Using Aptamer IMS Coupled with SERS 

 As with the antibody IMS, we started the aptamer IMS off by trying to 

detect whey in a pure solution. The difference here was that instead of using 

10mM PBS, 10mM NaCl was used to dissolve the WPI. This was done because 

it was found out during optimization that the aptamer we used was better able to 

bind to the whey in 10mM NaCl versus 10mM PBS. We used circular dichroism, 

which detects the difference in left and right handed absorption of polarized light, 

to detect the aptamer forming what is called a G-quadruplex, which is the 

conformation of our aptamer that best allows it to bind with whey. Using circular 

dichroism, CD, we scanned our aptamer in different solution and found 10mM 

NaCl to be the optimum solution for our aptamer to be able to bind to whey. The 

results of the CD plot are shown below in figure 4.19. 
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Figure 4.20: CD plot of the aptamer in different solutions. The three solutions 
that were chosen were 10mM PBS, and 10mM PBS-T. The 10mM NaCl had a 
larger peak at roughly 265nm and a smaller one at 295 meaning it was better 
suited to help form a G-quadruplex. 

 

 The CD graph showed us that the aptamer forms an antiparallel formation 

based off of the dip at 260-265nm and the peak at about 295-300nm (Li et al, 

2005). The deeper dip and higher peak shown by the aptamer in 10mM NaCl 

indicated that it resulted in a better formation that was suitable to bind to its target 

molecule. 

 Once the aptamer solution was decided on, we started to test the aptamer 

IMS based method in 10mM NaCl with various WPI concentrations. The aptamer 

IMS method was tested at various concentrations of WPI, 1000, 500, 250, and 
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125μg/mL to see if the aptamer would maintain its binding capacity once it was 

attached to the magnetic beads. The results of the IMS run can be seen in figure 

4.20 below. 

 

Figure 4.21: Average spectra from the aptamer IMS run in 10mM NaCl solution. 

 

 The spectra that were collected from the solution showed a strong peak at 

1004cm-1 for the 1000 and 125μg WPI/mL and slight less intense peaks for the 

500 and 250μg WPI/mL concentrations. This difference could be associated with 

the location of where the readings were taken with on the dried sample or some 

other small variability while conducting the experiment. The 2nd derivative spectra 

and PCA graph can be seen below in figure 4.21 and 4.22 further showing the 

difference between the positive samples and the negative control. 
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Figure 4.22: 2nd derivative spectra were created to further show the difference 
between the positive samples and the negative control. The 125μg showed a 
slightly more intense reading than expected, possibly a result of higher than 
average duplicates taken during the scanning process. 
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Figure 4.23: PCA graph of the 0-1000μg WPI/mL IMS run. Similar to what was 
shown in figure 4.21, the 125μg/mL sample was a little higher than expected, 
most likely because of a reading that was more intense and pulled the average 
higher than expected. 

 

 Again, the 125μg WPI/mL had a slightly more intense peak at 1004cm-1 

than expected, this most likely being from one or two of the spectra being more 

intense than expected and thus skewing the average a little higher. This again 

shows why taking multiple readings per sample is advantageous as it will better 

capture the true average versus only doing two or three readings per sample. 

Once we were able to show that the aptamer IMS could function in a pure 

solution, we moved on to using the spiked hot dogs, just as was done for the 

antibody IMS. 

 

4.3.2 Detection of Whey in Spiked Hot Dogs Using Aptamer IMS/SERS

 Just as with the antibody IMS, we prepared the control hot dogs for the 

aptamer IMS using the extraction method outlined in section 3, except that we 

used 10mM NaCl instead of PBS as the extraction solution. After allowing the hot 

dogs to extract for at least 8 hours and then filtering out the larger particulates, 
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the aptamer based IMS was run using the same method that was used with the 

pure solution. Figure 4.23 below shows the spectra for the negative control hot 

dogs versus the 30mg WPI hot dogs. 

 

Figure 4.24: Spectra from the aptamer IMS run using the spike and negative 
control hot dogs. Both spectra show a peak at 1004cm-1, seemingly indicating 
that they are both “positive” results. 

 

 Both spectra came back with peaks at 1004cm-1 and appear almost 

identical to each other. Since the presence of a sharp peak at 1004cm-1 has 

been the indicator for a “positive” during this experiment, having the negative 

control exhibit a peak at that point indicated something wasn’t working. A 2nd 

derivative plot was created to see if a baseline correction could yield a clearer 

picture, seen in figure 4.24. 
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Figure 4.25: 2nd derivative spectra again show how the two are identical to each 
other. 

 

 The 2nd derivative spectra give even a better picture of how similar the two 

spectra are. Figure 4.24 shows the two spectra overlaid and how they almost 
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appear as a single spectrum, with both being almost unrecognizable from each 

other. 

 As with the other IMS runs, a PCA graph was created to see if maybe an 

outlier was skewing the average enough that the spectra look similar to each 

other. The graph in figure 4.25 below shows that that was not the case and that 

something was giving off a signal in both hot dogs, masking their spectra and 

giving off a false positive result for the negative control. 

 

Figure 4.26: PCA graph of the 30mg hot dogs and the negative control hot dogs. 
The intertwining points of the two spectra show that the two can’t be 
differentiated from each other. 

 

 Looking at the PCA graph and the 2nd derivative spectra for the run, it is 

clear there is some type of interference going on. Since the IMS-SERS worked 

with the antibodies, the negative control hot dogs were deduced to not contain 

any whey or whey product in them, since their spectra didn’t give off such a high 

signal as the negative control in the aptamer IMS run. This left only a few 

possibilities; that there possibly was some type of small molecule sticking to the 

aptamer/bead complex or that some protein was sticking to it and giving off a 
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signal at 1004cm-1. There have been studies that mentioned similar issues with 

magnetic beads and some of the issues that non-specific binding can have on 

the final results (Chalmers et al, 2009). They mentioned that the magnetization 

from the beads possibly causes an increase in the non-specific binding of cells, 

most likely through their surface proteins. While that paper focuses on the non-

specific binding of cells to magnetic beads, the theory behind their argument, that 

the magnetic field created by the beads could affect non-specific binding, could 

be what is responsible for the issue with the aptamer IMS results. 

 To see what kind of non-specific binding was occurring, the aptamer IMS 

run with hot dogs was run again, except this time, the eluent wasn’t used for 

SERS analysis, but instead was used for gel electrophoresis. The theory was 

that if the non-specific binding was protein related, we would see bands appear 

on the gel indicating that protein was interacting with the bead complex. If not, 

that would show that the source of the non-specific binding was smaller than a 

protein and most likely some Raman active small molecule. Aptamer IMS was 

repeated under the same conditions as before and the eluent collected. Next, gel 

electrophoresis was performed under standard conditions. The resulting gel was 

then photographed and the resulting images can be seen in figure 4.26 below. 
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Figure 4.27: Image of gel with various eluents ran on it. Lane 1 was the negative 
control for the aptamer IMS ran in 10mM NaCl, Lane 2 was the positive control 
for the aptamer IMS ran in 10mM NaCl, Lane 3 was the aptamer in DDI water, 
Lane 4 was the protein ladder marker, Lane 5 was the negative control during the 
hot dog aptamer IMS, Lane 6 was the positive control for the hot dog aptamer 
IMS, Lane 7 WPI in DDI, and Lane 8 was the negative control hot dog slurry in 
10mM NaCl. 

 

 The image of the gel shows quite a few protein bands on the hot dog 

aptamer IMS eluents, indicating that the non-specific binding occurring is most 

likely protein based. When lanes 5 and 6 are compared to lane 8, the negative 

control hot dog slurry, there are some obvious similarities that point to protein 

from the hot dog are somehow managing to stick with the beads despite the 

washing steps used during the IMS procedure. Most notable are the bands at 40-

45kD, which appear in all three hot dog lanes. Along with those bands, a slightly 

fainter band at 27-28kD appears in all three hot dog lanes as well. It is worth 

noting that while there appears to be a band matching the WPI band at about 

17kD in lane 8, the matching band in lane 8 is most likely bovine myoglobin, 
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which has a similar molecular weight of about 17-18kD (Uniprot ID P02192, 

2016), since the main ingredient for the hot dogs is beef from a cow. Also, the 

small band found on all the lanes with aptamer IMS eluent was deduced to be a 

small subunit of streptavidin that is most likely cleaved off at higher temperatures, 

like those used during the elution step of the aptamer IMS protocol (Howarth et 

al, 2008). It was determined that this subunit was not responsible for the signal 

interference since the subunit is present in the aptamer IMS run in NaCl, but 

didn’t cause the same interference found in the hot dog aptamer IMS. 

 Once we figured out the source of the signal interference, we tried a 

blocking method to see if that would prevent the interfering protein from attaching 

to the bead/aptamer complex. For our blocking agent, we went with BSA, as it is 

commonly used in other detection methods to prevent non-specific binding. The 

BSA blocking step was added to the protocol just before incubation with the hot 

dog samples, with the beads being blocked for 1 hour under constant rotation. 

The spectra below in figure 4.27 is the result from the BSA blocked aptamer IMS 

run. 



93 
 

 

Figure 4.28: Raman spectra of the spiked and negative control hot dog run. A 
blocking step was used prior to the incubation with the hot dog samples to try 
and see if the interference could be eliminated. 

 

 Looking at figure 4.27, you can see that the BSA blocking didn’t eliminate 

the peak that was interfering at 1004cm-1 on the negative hot dogs. It’s possible 

that since the interference with the signal in the first place was protein in origin, 

then using a protein to block that signal wasn’t going to work. Either the protein 

binds to the beads stronger than the BSA or that the BSA binds in a similar 

fashion as whatever protein is interfering in the first place and now the BSA is 

causing the interference. Either way, there is still interference and it appears that 

the BSA didn’t help. A 2nd derivative spectra was created to get a baseline look at 

how the two groups looked compared to each other. 
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Figure 4.29: 2nd derivative spectra from the BSA-blocked aptamer IMS run. 

 

 The 2nd derivative spectra created showed that one of the spiked hot dogs 

actually had less intense of a signal at 1004cm-1 than both the negative control 

hot dogs. This shows that the signal interference is sporadic and prevents us 
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from implementing up with a baseline correction that could be applied to the 

spectra. If there was some consistency in the interference or background, we 

could either subtract it from the spectra or adjust the baseline for the negative 

control. Without some way of removing this interference or at the very least 

finding a way to mitigate it so it gives a consistent interference so a baseline can 

be created, this method cannot be used to detect whey in a hot dog matrix at this 

time. 
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5 Conclusions 

5.1 Comparison of Antibody and Aptamer IMS/SERS 

 The two methods used during this study were very similar in nature; the 

primary difference being the capture agent that was used to separate the whey 

protein from the sample hot dog matrix. The antibody based system relied on 

antibodies, which attach to an allergenic protein by targeting their specific epitope 

or epitopes. This mechanism allows an antibody to work in a variety of different 

conditions and still function properly versus an aptamer. The aptamer, on the 

other hand, is more durable in nature being able to survive harsher conditions, 

such as high heat, acidic conditions, denaturation of the aptamer itself, and still 

revert back to its working configuration (Meyers et al, 2004). With regards to 

availability of the two agents, antibodies are more commercially available than 

aptamers are, with large companies supplying a broad range of antibodies to the 

scientific community (Sigma Aldrich and Abcam, 2016). Aptamers can be 

purchased from scratch, but a lot of the services available require researchers to 

foot the bill of the entire creation process of the aptamer from scratch, which can 

end up costing anywhere from thousands to tens of thousands of dollars 

depending on the selected antigen (Base Pair Biotechnologies and Aptagen, 

2016).  While antibodies are more readily available, if one knows the process 

needed to create aptamers and has a lab that with the needed equipment, new 

aptamers can be created in a much shorter time than it would be needed to 

create a brand new antibody (Mosing et al, 2009). Using a method such as the 
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SELEX process, the turnaround time for a new aptamer can be as short as two 

weeks, whereas some monoclonal antibodies can take up to 4-6 months 

depending on which host animal is chosen and the purity required. Another 

difference between the two is the cost for the individual capture agents. Per 

milliliter, the antibody for this experiment cost about $65, while the aptamer cost 

about $32.50 (Sigma Aldrich and Integrated DNA Technologies, 2015). Again, 

this most likely goes back to the amount of work needed to create each agent, 

with the aptamer requiring far less labor to create. While it may cost less, the 

aptamer could have taken up to 2-3 weeks to get to us, depending on if the 

company was successful in creating the needed sequence in the correct 

concentration. Finally, the other difference between the two would be the cost of 

their respective magnetic beads needed during the IMS procedure. This time, the 

antibody’s magnetic beads ended up being cheaper, being about $50/mL, where 

the aptamer’s magnetic beads were about $225/mL (BioRad and Thermo Fisher, 

2015). This most likely has to do with the fact that antibody IMS has been around 

longer, and as such, has had longer to find ways to cut down on production cost 

versus the aptamer’s magnetic beads. 

The two methods used in this experiment both were successful in being 

able to separate and detect whey in solution. Both methods, in solution, were 

able to create spectra with an identifying signal at 1004cm-1 that signaled that 

whey was present, as seen below in figure 5.1. Both the antibody and the 

aptamer IMS were able to signal a positive result, showing that method, at the 
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very least, was capable of working in a basic solution. It also appears that the 

difference in incubation solutions, 10mM PBS-T and 10mM NaCl with Tween, 

didn’t. Also, both methods were able to be run from start to finish in almost the 

same time, about an hour and forty-five minutes. That time included all prep 

work, pipetting, aspirating washed solution, incubation, drying, and reading using 

the Raman spectrometer. 
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Figure 5.1: Spectra of the antibody IMS (top) and the aptamer IMS (bottom). 
Both were able to detect whey in a pure solution, showing that their respective 
methods could be used to detect whey. 

 

But once a real life sample was used, the antibody based IMS method 

proved to be the effective method in detecting whey, whereas the aptamer 
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method was unable to differentiate the negative control hot dogs from the spiked 

hot dogs. The antibody method was able to detect whey in a hot dog matrix at a 

concentration of 30mg of WPI per 50g of hot dog or about 600μg of WPI/g of hot 

dog.  The aptamer on the other hand, was unable to differentiate between the 

spiked hot dog and the negative control. It was deduced that the reason behind 

the failure to differentiate was an interfering signal from a protein found in the hot 

dog matrix. Gel electrophoresis was used on the eluent from the IMS procedure 

to determine this, finding similar bands in the hot dog matrix and the negative 

control eluent. We also ran gel electrophoresis on the antibody IMS to make sure 

this interference wasn’t occurring. The images of the gels ran for both methods 

can be seen below in figure 5.2. 
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Figure 5.2: Images of gels from the aptamer (top) and antibody (bottom) IMS 
procedures. The aptamer eluent gel shows bands on the negative control hot dog 
that match up with the hot dog solution. The negative control hot dog eluent for 
the antibody IMS does have some bands on it, but not as many. 

 

 The gel from the antibody IMS showed what we had already known from 

the Raman spectra, that there weren’t any interfering proteins in the antibody 



102 
 

based IMS procedure. The negative control hot dog did show some bands 

sticking to it, but there were some bands that were missing in the antibody IMS 

gel that were present in the aptamer IMS gel. The most noticeable bands that 

were missing were the bands around the 40-45kD mark. These were speculated 

to be some of the bands of protein that could be causing the interference with the 

aptamer IMS method. The fact that they were missing in the antibody IMS 

method adds some credence to the theory that these proteins were the culprit of 

the interference for the aptamer based IMS procedure. 

 Overall the antibody based IMS method was the more successful method 

for detecting whey. With the antibody IMS being able to not only detect a smaller 

amount of whey than the aptamer IMS in pure solution, but being able to also 

detect whey in a hot dog product, the antibody IMS method is the better choice. 

Besides the performance difference between the two methods, there wasn’t 

many other differences. The overall time needed to complete detection for both 

was about the same and the cost was about the same, if you take into account 

that while the cost of the capture agent for the antibody IMS was more 

expensive, the magnetic beads needed to run the method were cheaper for the 

antibody IMS. A table comparing the two methods can be seen below in table 

5.1. 
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Table 5.1: Side by side comparison of the antibody based IMS method and the 
aptamer based IMS method. 

 
Aptamer Antibody 

LOD in Pure Solution 125ug/mL 50ug/mL 

LOD in a Food Matrix X 30mg WPI/50g Hot Dog 

Total Run Time ~1 hour 45 min ~1 hour 45 min 

Cost for Capture Agent $32.50/mL $65/mL 

Cost for Magnetic Beads $225/mL $50/mL 

 

5.2 Possible Use in the Food Industry 

 Now that we’ve shown this method to be able to work on a real life food 

product, we can now look to how this method could be used in the food industry. 

While there are other commercially available methods to detect allergens such as 

whey, they either take too much time to run a sample or use up expensive 

reagents with every test. SERS presents a system that not only is rapid, but after 

the initial startup cost of purchasing the spectrometer, can be run relatively 

cheaply compared to other methods. This method could be used in the food 

industry as a screening tool to test batches of product for allergens. The first step 

would be to create a library of positive result spectra that future samples will be 

compared with. This library of standards would then be uploaded to a program 

such as TQ Analyst, where the groupings of positive samples would create zones 
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that can be used as a reference to compare samples to. An example of this is 

seen in figure 5.3 below. 

 

Figure 5.3: Example of “zones” created in TQ Analyst using known standards. 
The red circles show “failed” samples, ones with whey, and the green circles 
show samples that would “pass”. The top graph shows a multi-variable PCA, 
which could be used to show different amounts of whey, while the bottom is a 
simpler pass/fail graph where anything outside the green circle would be 
considered contaminated. 

 

 Once a standards library is uploaded into TQ analyst, all future test 

samples can be quickly compared to it and the software will compare the 

unknown spectra to the standards library, telling us if the sample is either 

contaminated or is clean. A more in-depth PCA graph can be created that not 

only could show if a sample is contaminated or not, but will also show how 
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contaminated it is. The only drawback to this would be that the company would 

have to invest in creating the standards library for each additional level, but this 

would allow a company to tell just how contaminated a sample was. This could 

also be used to help with products that have an allotted tolerance for an allergen. 

The different zones would allow to see the level of the allergen in the product and 

if a batch of product was close to the tolerance or if it was well under the 

tolerance level. 
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6 Future Research 

 While the method proved to be able to detect whey in a hot dog, there is 

still room for improvement.  The extraction method for this method was a simple 

one, with the blended hot dog sitting in a solution for a few hours and then the 

heavier particulates strained and separated. This could be looked into more and 

is one area that could allow for a lower limit of detection by being able to extract 

more of the whey into the solution. Also, if there was a way to combine the 

bead/antibody complex overnight and then remove the beads, this would save 

tremendous amount of time and allow for a next day turn around to get the 

results. And while it was much worse in the aptamer IMS, the reduction of 

background noise and interference would allow for the limit of detection to be 

reduced even further. As for the limit of detection, I would like to see an in depth 

study performed to evaluate the effects of processing on the allergenicity of whey 

in a hot dog. If the effects of the processing are known, the process can be 

changed and then the limit of detection wouldn’t need to be as low for it to be 

successful. And finally, while the allergenicity of milk proteins has been fairly well 

documented in literature, notably by the risk analysis studies done by Dr. Steven 

Taylor and his lab at the University of Nebraska (The Food Allergy Research and 

Research Program), the allergenicity of whey and milk proteins isn’t well known 

and comparing how the proteins behave and induce allergic reactions would 

better allow the industry to make smarter safety guidelines. This could be done 



107 
 

by performing an in depth risk analysis for whey in hot dogs similar to what Dr. 

Taylor and his lab has done for other allergens in other food matrices. 
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8 Appendices 

Appendix A- Antibody IMS/SERS Spectra 

The following spectra are individual replicates that made up the averages shown 

throughout the paper. 
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50mg WPI/mL in 10mM PBS 
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0mg WPI/mL with Spiked Hot Dog Matrix in 10mM PBS 

 

1mg WPI/mL with Spiked Hot Dog Matrix in 10mM PBS 
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Appendix B- Aptamer IMS/SERS Spectra 

The following spectra are individual replicates that made up the averages shown 

throughout the paper. 

0mg WPI/mL in 10mM NaCl

 

 

 

 

 

 

 

-100

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)



136 
 

 

125mg WPI/mL in 10mM NaCl 

 

250mg WPI/mL in 10mM NaCl 

 

-100

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)



137 
 

 

500mg WPI/mL in 10mM NaCl 

 

1000mg WPI/mL in 10mM NaCl 

 

-100

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)



138 
 

 

0mg WPI/mL with Spiked Hot Dog Matrix in 10mM NaCl #1 

 

0mg WPI/mL with Spiked Hot Dog Matrix in 10mM NaCl #2 

 

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)

-50

-0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

In
t

 800    1000   1200   1400   1600   1800   2000  

Raman shift (cm-1)



139 
 

 

1000mg WPI/mL with Spiked Hot Dog Matrix in 10mM NaCl #1

 

1000mg WPI/mL with Spiked Hot Dog Matrix in 10mM NaCl #2 
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0mg WPI/mL with Spiked Hot Dog Matrix in 10mM & 5% BSA NaCl  #1 

 

0mg WPI/mL with Spiked Hot Dog Matrix in 10mM & 5% BSA NaCl #2 
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1000mg WPI/mL with Spiked Hot Dog Matrix in 10mM & 5% BSA NaCl #1 

 

1000mg WPI/mL with Spiked Hot Dog Matrix in 10mM & 5% BSA NaCl #2 
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Appendix C- Raman Specifications 

Nicolet Almega XR Raman Spectrometer 

Wavelength: 785nm 

Aperture: 25μm Slit 

Resolution: High 

Estimated Spot Size: 0.5μm 

Collect Exposure Time: 5 seconds 

# of Exposures: 4 per replicate 

# of Replicates per sample: 10 


