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Abstract 
 
Rocks containing three Al2SiO5 polymorphs (andalusite, kyanite, sillimanite) are uncommon; only ten localities 
have previously been reported. By determining the crystallization sequence of the polymorphs, 
tectonic/metamorphic histories can be unlocked. Two crystallization sequences have been proposed: (1) 
kyanite -> sillimanite -> andalusite (Idaho, New Mexico, Spain, Italy), and (2) andalusite -> kyanite -> sillimanite 
(Colombia, Turkey, Iran, Russia, South Korea, and Japan). The newest locality is Lesjaverk, Norway. Sequence 
(1) suggests continental collision in which exhumation of moderate-P/T (Barrovian) rocks was followed by 
high-P / low-T conditions, whereas Sequence (2) suggests contact metamorphism preceded more typical 
Barrovian metamorphism.  

In the Lesjaverk, Norway, rock that contains andalusite, kyanite, and sillimanite, observation of the 
Al2SiO5 polymorphs in thin section indicate crystallization Sequence (2). Temperatures were calculated using 
Zr-in-rutile thermometry; results of 580-650°C indicate that rutile likely equilibrated in the kyanite or 
sillimanite stability field. Analysis of trace elements in rutile further indicate that Zr, Nb, Cr, and Fe participate 
in elemental substitution in rutile.  

 
 

Introduction 
 
 Kyanite, andalusite, and sillimanite bearing rocks are uncommon, as only ten localities have been 
previously reported. Two crystallization sequences have been proposed for the ten localities (Fig. 1) with 
South Korea, Japan, and Russia yet to be confirmed, as only two of three polymorphs have been found in a 
single sample. In order for a locality to be classified as a “triple point locality”, all three polymorphs must be 
found in the same sample.  

All three polymorphs occur in schists from Lesjaverk, Norway (Fig. 2). In this study, the crystallization 
sequence was determined, as this indicates the pressure and temperature path for the rock and therefore 
explains the possible tectonic environment, although such interpretations are uncertain without absolute age 
information for polymorph crystallization. 

 



Fig. 1: World map of proposed triple point localities. The colors indicate crystallization sequence. Pink: Sequence (1) for Idaho, New Mexico, Spain, 
and Italy. Green: Sequence (2) for Colombia, Turkey, and Iran. Orange: proposed Sequence (2) for Russia, South Korea, and Japan. Yellow: proposed 

Sequence (2) for Norway. Map provided by D.L. Whitney, map key by W.J. Samuelson 

 
 
 

(a)    (b)   
Fig. 2: Photographs of one sample from Lesjaverk, Norway with a ballpoint pen for scale. The dark blue crystal is kyanite, with visible red andalusite. 

D.L. Whitney.  

 

World Localities 

Table 1 is a compilation of the other world localities, excluding Norway. Each locality has been divided into 
location, crystallization sequence, host rock, accessory minerals, pressure and temperature path, and tectonic 
environment. (A = andalusite; K = kyanite; S = sillimanite; L = low; H = high; T = temperature; P = pressure). 
Table 1 has been made to more clearly organize each locality, crystallization sequence, and correlating 
reference and serve as a reference table.  

 

Table 1 

     Sequence (1) 

 

 



 

Sequence (2) 

 

 

 

 



 

 

Petrographic Analysis 

In the a Lesjaverk rock, kyanite crystals are kinked, andalusite shows the most deformation, and sillimanite is 
texturally present as fibrolite. Other major minerals in the rock are quartz, plagioclase, and muscovite. 
Accessory minerals include staurolite, garnet, zircon, and rutile. Figure 3 shows scans of three thin sections in 
cross-polarized (XPL) and plain-polarized light (PPL) along with the rutile grains. The presence of zircon and 
quartz makes the Zr-in-rutile-thermometry possible. Plagioclase grains show euhedral zoning including some 
occurrences of oscillatory zoning. Muscovite commonly bends around the plagioclase grains and the quartz 
grains show recrystallization.  

 

(a)   (b)   (c)  

(d)  (e)  (f)  

Figure 3: Scans of three thin sections, top and directly below correspond to the same thin section. (a), (b), and (c) are in XPL, and (d), (e), and (f) are 
in PPL. The dark brown grains are rutile, occurring in the matrix and in kyanite.   

 

 



(a)      (b)   

 

(c)     (d)  

Fig. 4: Photomicrographs. (a) and (b) the growth of kyanite and the deformation of andalustie. (c) rutile. (d) kinked kyanite.  

 

Zr-in-rutile thermometry 

 
Rutile was found in the matrix and within inclusion in kyanite grains and composition was analyzed for 
application of the Zr-in-rutile thermometer. Using 16 sample points within 5 rutile grains from 2 samples, 
temperatures were calculated using equations from Tomkins et al. (2007) at 4-9 kbar for both the alpha and 
beta-quartz fields (Equations 1, 2). 
 
 
Equation (1):   
  α-quartz field:  

𝑇(°𝐶) =
83.9 + 0.410𝑃

0.1428 − 𝑅𝑙𝑛𝛷
 − 273 

 
 
 

 
Equation (2): 

β-quartz field: 

𝑇(°𝐶) =
85.7 +  0.473𝑃

0.1453 − 𝑅𝑙𝑛𝛷
− 273 

 
 
 



 
Results indicate temperatures of 580 - 660°C. The calculated temperatures were then plotted against 
estimated pressures (Fig. 5). This temperature range suggests the rutile equilibrated within the kyanite and/or 
sillimanite P-T stability fields. 
 
Analyses in 5 rutile grains were taken from grain rims and cores (Fig. 7). Of the 16 sample points, 4 were within 
a rutile inclusion in kyanite (Fig. 8b, 8c), the remaining 10 were in the matrix (Fig. 8a). In matrix rutile, Zr 
abundance is much greater in rutile rims (262 ppm) than the cores (218 ppm) (Fig. 8a), similar to one of the 
rutile inclusions in kyanite (rim: 261 ppm; core: 197 ppm) (Table 2). The other inclusion showed significant 
zoning with a darker core and a lighter colored rim visible in the BSE image (Fig. 8c). The lighter rim has higher 
Zr ppm than the darker core (rim: 305 ppm; core: 350 ppm) which is the opposite trend (Table 2). 
 
Rutile trace-element composition 
 
Abundances of different elements were plotted against each other to evaluate trends (Fig. 5). Some elements 
appear to be correlated with each other, and some are not. As Zr increases, Nb and Cr also increase; as Zr 
increases, Ti decreases and Fe very slightly decreases. Trends for Nb are very similar, as Nb increases, Cr 
increases, and Ti decreased with Fe showing the same slight decrease. Other element trends include: 
increased Ti with decreased Fe, increased Cr with decreased Fe, and a very slight decrease of Ti with Cr 
increase indicating a very slight relationship.  The Zr and Nb appear to behave similarly, indicating elemental 
substitution.  
 
 
 
 

 
Fig. 5: Pressure-temperature graph for 16 rutile samples gathered from Microprobe data and calculated using Tomkins et al. (2007). 

 



 
Fig. 6:  Pressure-temperature graph with kyanite-andalusite-sillimanite triple-point boundary. In addition the alpha-beta quartz boundary is 

included in red.  Tectonic environments corresponding to pressure-temperature regimes are overlaid. 
 
 
 

 
Fig. 7: Temperature plotted against Zr in ppm for rutile grain rim and core. Temperatures used at 7kbar in pressure.  

 
 
 



Table 2: 

 (a)       (b) 

Zr ppm CORE Temp at 7kbar 

240 619 

243 620 

186 601 

196 604 

350 649 

253 624 

218 612 

170 594 

 
 

(a)  
 

(b)   (c)  
 

Fig 8: Sample points indicated by red dots. (a) Rutile grain in the matrix. (b) Rutile grain in kyanite. (c) Rutile grain in kyanite, shaded zoning.  

Zr ppm RIM Temp at 7kbar 

321 642 

334 646 

260 626 

305 638 

201 606 

269 628 

179 598 

269 628 



 
 

(a)  

(b)  
Fig. 9:  Nb and Zr elemental trend graphs, both plotted against Cr and Fe. Nb and Zr behave similarly indicating elemental substitution.  

 
 
 
Interpretation 
 
Contact metamorphism occurred early on, with andalusite forming first. A second or additional event of 
continental collision occurred later, although timing is unknown. A counter-clockwise crystallization path of 
andalusite->kyanite->sillimanite aligns with the tectonic regimes of contact metamorphism then continental 
collision (Fig. 6). In matrix rutile, Zr abundance is greater at the rim than in the cores, similar to one of the 
analyzed rutile inclusions in kyanite, indicating an increase in temperature during rutile growth. The other 
analyzed rutile inclusion in kyanite has higher Zr ppm in the core compared to the rim with zoning present. 
This indicates a decrease in temperature as rutile grew. Some elements appear to be related to others: as Zr 
increases, Nb and Cr increase and Fe very slightly decreases. Zr and Nb appear to behave similarly, indicating 
elemental substitution in rutile (Fig. 9, Appendix). Ti does not participate in elemental substitution as no 
relationship was indicated between Ti and Zr or Nb.  
 



Lesjaverk, Norway has Sequence (2) crystallization order, which is the common sequence in 3-Al2SiO5 
localities. Accessory minerals of staurolite and garnet are reported, though rutile has rarely been reported for 
triple point localities, making Lesjavery, Norway, unique. Pressure ranges of 4-9 kbar encompass all locality 
pressure measurements, and 580-660°C is on the higher end of reported temperatures, with the exception of 
Japan with 700°C.  
 
 
Conclusion 
 
In matrix rutile, Zr is lower in the core and higher at the rim, indicating an increase in temperature during 
rutile growth. Rutile primarily formed in the kyanite stability field, indicating moderately high temperatures 
and moderate pressures. Zr and Nb, Fe, and Cr participate in elemental substitution in rutile. Crystallization 
order was andalusite->kyanite->sillimanite. These P-T conditions are consistent with metamorphism during 
early contact/arc metamorphism followed by continental collision. Though timing of events are unknown, at 
least two tectonic events took place in Lesjaverk, Norway. 
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Appendix  

 

 

Fig. 10:  Zr vs. Nb graph, As Zr wt % increases, the Nb wt % also increases.   
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