PELP1: A Potential Biomarker for Breast Cancer Initiation

Olivia Wicker and Julie Ostrander, Ph.D.
Department of Medicine

Introduction

PELP1 (proline, glutamic acid, and leucine rich protein 1) is an estrogen receptor co-activator protein that is a potential biomarker for breast cancer. It normally localizes in the nucleus of cells, but is found to localize in the cytoplasm in 40% samples from women at high-risk for developing breast cancer. For pre-cancerous lesions, such as ductal carcinoma in situ (DCIS) to become invasive breast cancer, cells must acquire genetic and epigenetic changes that allow them to invade through the basement membrane.

I hypothesize that PELP1 cytoplasmic signaling participates in breast cancer initiation by promoting epithelial cell migration and stem-cell phenotype, making it a good potential biomarker for breast cancer.

Methods

Vector control: LXSN
PELP1-wt cell
PELP1-cyto cell

Scratch Assay
Plate cells and allow to reach confluence
Scratch
Cells grow for ~7 days

Tumorsphere Assay
Strain and plate cells in tumorsphere media
Cells to grow for ~14 days

Vector control: LXSN
PELP1-wt cell
PELP1-cyto cell

Results

PELP1-cyto cells formed more tumorspheres than PELP1-wt and control cells in primary tumorsphere assay

Figure 1: PELP1-cyto cells formed significantly more tumorspheres than PELP1-wt and control cells in both 1st and 2nd tumorsphere assays. In the 2nd tumorsphere assay, PELP1-cyto cells formed larger tumorspheres than other cells.

PELP1-cyto cells treated with EGF for 18 hours show higher migration levels than PELP1-wt and control cells in scratch assay

Figure 2: PELP1-cyto cells treated with EGF had higher migration levels, as shown by percent closure, than PELP1-wt or control cells. Untreated PELP1-wt cells showed significantly lower migration levels than PELP1-cyto and control cells.

Discussion

The tumorsphere assay demonstrated the ability of PELP1-cyto cells to form tumorspheres, suggesting that cytoplasmic localization of PELP1 promotes a stem-cell phenotype. Tumor cells with stem cell phenotypes and typically also have a migratory phenotype.

The scratch assay, while not significant, was trending towards showing that PELP1-cyto cells have greater migratory ability than PELP1-wt cells. This would suggest that cytoplasmic localization of PELP1 may allow for increased migration of pre-cancerous cells.

Increased migratory ability and returning to a stem cell phenotype are traits seen in cells progressing toward cancer.

Future Directions

Could PELP1 be a biomarker for breast cancer? More studies need to be done to find out.
- Transwell assays can be performed to further test migration and invasion.
- Gene expression analysis can be performed with qPCR.
- Cells could be tested for tumorigenicity in vivo using intraductal injection into the breast duct to mimic DCIS.

PELP1 as a biomarker could be used clinically to determine which women will likely develop breast cancer, and could be used to make treatment decisions.

Acknowledgements

This work was supported by the Ostrander Lab and its members.
A special thanks to Dr. Julie Ostrander for her mentorship.

Bibliography

- Servier Medical Art Powerpoint Image Bank found at http://www.servier.com/Powerpoint-image-bank