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Old Evidence and Logical Omniscience in 
Bayesian Confirmation Theory 

The Bayesian framework is intended, at least in part, as a formalization 
and systematization of the sorts of reasoning that we all carry on at an 
intuitive level. One of the most attractive features of the Bayesian approach 
is the apparent ease and elegance with which it can deal with typical 
strategies for the confirmation of hypotheses in science. Using the 
apparatus of the mathematical theory of probability, the Bayesian can show 
how the acquisition of evidence can result in increased confidence in 
hypotheses, in accord with our best intuitions. Despite the obvious 
attractiveness of the Bayesian account of confirmation, though, some 
philosophers of science have resisted its manifest charms and raised serious 
objections to the Bayesian framework. Most of the objections have 
centered on the unrealistic nature of the assumptions required to establish 
the appropriateness of modeling an individual's beliefs by way of a point­
valued, additive function. 1 But one recent attack is of a different sort. In a 
recent book on confirmation theory, Clark Glymour has presented an 
argument intended to show that the Bayesian account of confirmation fails 
at what it was thought to do best. 2 Glymour claims that there is an 
important class of scientific arguments, cases in which we are dealing with 
the apparent confirmation of new hypotheses by old evidence, for which 
the Bayesian account of confirmation seems hopelessly inadequate. In this 
essay I shall examine this difficulty, what I call the problem of old evidence. 
I shall argue that the problem of old evidence is generated by the 
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requirement that the Bayesian agent be logically omniscient, a require­
ment usually thought to follow from coherence. I shall show how the 
requirement oflogical omniscience can be relaxed in a way consistent with 
coherence, and show how this can lead us to a solution of the problem of old 
evidence. 

Since, as I. J. Good has conclusively shown, there are more kinds of 
Bayesianism than there are Bayesians3

, it will be helpful to give a quick 
sketch of what I take the Bayesian framework to be before entering into the 
problem of old evidence. By the Bayesian framework I shall understand a 
certain way of thinking about (rational) belief and the (rational) evolution of 
belief. The basic concept for the Bayesian is that of a degree of belief. The 
degree of belief that a person S has in a sentence pis a numerical measure of 
S's confidence in the truth of p, and is manifested in the choices S makes 
among bets, actions, etc. Formally S's degrees of belief at some time t0 are 
represented by a function P0 defined over at least some of the sentences of 
S's language L. 4 What differentiates the Bayesian account of belief from 
idealized psychology is the imposition of rationality conditions on S's 
beliefs. These rationality conditions are of two sorts, synchronic and 
diachronic. The most widely agreed upon synchronic condition is 
coherence: 

(D 1) AP-function is coherent iff there is no series of bets in accordance 
with P such that anyone taking those bets would lose in every possible 
state of the world. 

Although there are those who would argue that coherence is both 
necessary and sufficient for S's beliefs to be rational at some given time, I 
shall assume only that coherence is necessary. One of the central results of 
Bayesian probability theory is the coherence theorem, which establishes 
that if Pis coherent, then it is a (finitely additive) probability function on 
the appropriate group ofobjects (i.e., the sentences of S's language L). 5 In 
the discussions below, I shall assume that an individual's degrees of belief 
have at least that much structure. Although there is little agreement about 
rational belief change, one way of changing one's beliefs is generally 
accepted as rational by most Bayesians, conditionalization. One changes 
one's beliefs in accordance with conditionalization when, upon learning 
that q, one changes one's beliefs from P 0 to P 1 as follows: 

P1(p) = Po(p/q) 

where conditional probability is defined as usual. There are some who take 
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conditionalization as the sine qua non of the Bayesian account of belief, but 
I shall regard it as one among a number of possible ways of changing 
rational belief, a sufficient but not necessary condition of diachronic 
rationality. 6 Despite this proviso, though, conditionalization will have a 
major role to play in the discussion of confirmation that follows. 

There are two competing ways of thinking about what the Bayesian is 
supposed to be doing, what I call the thought police model and the learning 
machine model. On the thought police model, the Bayesian is thought of as 
looking over our shoulders and clubbing us into line when we violate 
certain principles of right reasoning. On this view, the axioms of the theory 
of probability (i.e., coherence) and, perhaps, the dynamical assumption 
that we should change our beliefs in accordance with conditionalization are 
the clubs that the Bayesian has available. On the learning machine model, 
on the other hand, the Bayesian is thought of as constructing an ideal 
learning machine, or at least describing the features that we might want to 
build into an ideal learning machine. 7 Unlike others, I do not see a great 
deal of difference between these two ways of thinking about the enterprise. 
The Bayesian thought policeman might be thought of as clubbing us into 
behaving like ideal learning machines, if we like. Or, alternatively, we can 
think of the ideal learning machine as an imaginary person who behaves in 
such a way that he never needs correction by the Bayesian thought police. 
The two models thus seem intertranslatable. Nevertheless, I prefer to 
think of the Bayesian enterprise on the learning machine model. Although 
this has no theoretical consequences, I think that it is a better heuristic 
model when one is thinking about the confirmation of hypotheses from a 
Bayesian point of view. 

I. The Problem of Old Evidence 
In the course of presenting his own ingenious account of the confirma­

tion of scientific hypotheses by empirical evidence, Clark Glymour offers a 
number ofreasons why he chooses not to follow the Bayesian path. Many of 
Glymour's arguments are worth serious consideration; but one of the 
problems Glymour raises seems particularly serious, and seems to go to the 
very foundations of the Bayesian framework. Glymour writes: 

Scientists commonly argue for their theories from evidence known 
long before the theories were introduced. Copernicus argued for his 
theory using observations made over the course of millenia . . . . 
Newton argued for universal gravitation using Kepler's second and 
third laws, established before the Principia was published. The 
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argument that Einstein gave in 1915 for his gravitational field 
equations was that they explained the anomalous advance of the 
perihelion of Mercury, established more that half a century earlier 
.... Old evidence can in fact confirm new theory, but according to 
Bayesian kinematics it cannot. For let us suppose that evidence e is 
known before theory Tis introduced at time t. Because e is known at t, 
Probt(e) = 1. Further, because Probt (e) = 1, the likelihood of e given 
T, Probt(e, T), is also 1. We then have: 

Probt(T) x Probt(e, T) 

The conditional probability ofT one is therefore the same as the prior 
probability ofT: e cannot constitute evidence for T . ... None of the 
Bayesian mechanisms apply, and if we are strictly limited to them, we 
have the absurdity that old evidence cannot confirm a new theory. 8 

Before trying to understand what is going wrong for the Bayesian and 
seeing what can be said in response, it will be worth our while to look more 
closely at the problem itself. There are at least two subtly different 
problems that Glymour might have in mind here. One of these problems 
concerns the scientist in the midst of his investigations who appears to be 
using a piece of old evidence to increase his confidence in a given theory. If 
we adopt a Bayesian model of scientific inquiry, then how could this 
happen? How could an appeal to old evidence ever raise the scientist's 
degree of belief in his theory? This is what I shall call, for the moment, the 
historical problem of old evidence. 9 But there is a second possible problem 
lurking in Glymour's complaints, what might be called the ahistorical 
problem of old evidence. When we are first learning a scientific theory, we 
are often in roughly the same epistemic position that the scientist was in 
when he first put the theory to test; the evidence that served to increase his 
degrees of belief will increase ours as well. But having absorbed the theory, 
our epistemic position changes. The present appeal to Kepler's laws does 
not any more actually increase our confidence in Newton's theory of 
universal gravitation, nor does the appeal to the perihelion of Mercury 
actually increase our confidence in general relativity any more. Once we 
have learned the theories, the evidence has done its work on our beliefs, so 
to speak. But nevertheless, even though the old evidence no longer serves 
to increase our degrees of belief in the theories in question, there is still a 
sense in which the evidence in question remains good evidence, and there 
is still a sense in which it is proper to say that the old evidence confirms the 
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theories in question. But if we are to adopt a Bayesian account of 
confirmation in accordance with which e confirms h iff P (hie)> P (h), then 
how can we ever say that a piece of evidence, already known, confirms h ?10 

Now that we have a grasp on the problems, we can begin .to look for some 
possible ways of responding. One obvious response might begin with the 
observation that if one had not known the evidence in question, then its 
discovery would have increased one's degrees of belief in the hypothesis in 
question. That is, in the circumstances in which e really does confirm h, if it 
had been the case that P (e) > 1, then it would also have been the case that 
P (h/e) > P (h). There are, to be sure, some details to be worked out here. 11 

If P (e) were less than one, what precisely would it have been? What, for 
that matter, would all of the rest of the P-values have been? If such details 
could be worked out in a satisfactory way, this counterfactual gambit would 
offer us a reasonably natural solution to the ahistorical problem of old 
evidence. This solution amounts to replacing the identification of confirma­
tion with positive statistical relevance with a more subtle notion of 
confirmation, in accordance with which e (ahistorically) confirms h iff, if e 
had been previously unknown, its discovery would have increased our 
degree of belief in h. That is, e (ahistorically) confirms h iff, if P(e) (and, of 
course, P(h)) were less than one, then P(h/e) would be greater than P(h). In 
what follows I shall assume that the ahistorical problem of old evidence can 
be settled by some variant or other of this counterfactual strategy. 12 

It should be evident, though, that however well the counterfactual 
strategy might work for the ahistorical problem of old evidence, it leaves 
the historical problem untouched. When dealing with Einstein and the 
perihelion of Mercury, we are not dealing with a counterfactual increase in 
Einstein's confidence in his theory: we are dealing with an actual increase 
in his degree of belief. Somehow or other, Einstein's consideration of a 
piece of old evidence served to increase his confidence in his field 
equations, not counterfactually, but actually. This is something that the 
counterfactual solution cannot deal with. 

How, then, are we to deal with the historical problem of old evidence, 
the cases in which considerations involving old evidence seem actually to 
raise an investigator's confidence in one of his hypotheses? We can put our 
finger on exactly what is going wrong in the Bayesian account if we go back 
and examine exactly when a piece of old evidence does seem to confirm a 
new hypothesis. It is appropriate to begin with the observation that 
Glymour's conclusion is not always implausible. There are, indeed, some 
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circumstances in which an old e cannot raise the investigator's degree of 
belief in a new h. For example, suppose that S constructed h specifically to 
account for e, and knew, from the start, that it would. It should not add 
anything to the credibility ofh that it accounts for the evidence that S knew 
all along it would account for. In this situation, there is not confirmation, at 
least not in the relevance sense of that term. 13 The evidential significance 
of the old evidence is, as it were, built into the initial probability that S 
assigns to the new hypothesis. Where the result is paradoxical is in the case 
in which h was concocted without having e in mind, and only later was it 
discovered that h bears the appropriate relations to e, i.e., that h (and 
perhaps some suitable auxiliaries) entails e, that e is a positive instance ofh, 
or the like. Just what the relationship in question is a matter of some 
debate. But it seems clear that in the cases at hand, what increases S's 
confidence in his note itself, but the discovery of some generally logical or 
mathematical relationship between h and e. In what follows I shall often 
assume for simplicity that the relation in question is some kind of logical 
entailment. But although the details may be shaped by this assumption, 
the general lines of the discussion should remain unaffected. 

With this in mind, it is now possible to identify just which part of the 
Bayesian framework is generating the problem. In the Bayesian frame­
work, coherence is almost always taken to imply that the rational subject S, 
the constraints on whose degrees of belief the Bayesian is trying to 
describe, is logically omniscient. Since logical (and mathematical) truths 
are true in all possible states of the world, if P is to be coherent, then 
coherence must, it seems, preclude the possibility of S's accepting a bet 
against a logical truth. Consequently, coherence seems to require that S be 
certain of (in the sense of having degree of belief one in) all logical truths 
and logical entailments. Now for logically omniscient S it is absolutely 
correct to say that old evidence e does not increase his confidence in a new 
hypothesis h. Because of S's logical omniscience, Swill see immediately, 
for every new hypothesis, whether or not it entails his previously known 
evidence (or, perhaps, bears the appropriate logical relations to it). No 
hypothesis ever enters S's serious consideration without his knowing 
explicity just which of his past observations it entails. So every new 
hypothesis S takes into consideration is, in a clear sense, based on the 
previously known observations it entails: the initial probability assigned to 
every new hypothesis already takes into account the old evidence it entails. 
For no hypothesis h and evidence e can the logically omniscient S ever 
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discover, after the fact, that h entails e. And, as I have suggested above, in 
such a circumstance, it is perfectly intuitive to suppose that the previously 
known evidence does not confirm the new hypothesis in the sense of raising 
its probability. The historical problem of old evidence, then, seems to be a 
consequence of the fact that the Bayesian framework is a theory of 
reasoning for a logically omniscient being. 

It has generally been recognized that the Bayesian framework does not 
seem to allow the Bayesian agent to be ignorant oflogical truths, and thus 
does not allow a Bayesian account of logical or mathematical reasoning. 
Although this has been considered a weakness of the framework, it has 
usually been accepted as an idealization that we must make in order to 
build an adequate account of the acquisition of empirical knowledge. What 
the problem of old evidence shows is that this idealization will not do: 
without an account of how the Bayesian can come to learn logical truths, we 
cannot have a fully adequate theory of empirical learning either. So if we 
are to account for how old evidence can raise the investigator's degree of 
belief in new hypotheses, we must be able to account for how he can come 
to know certain logical relations between hypothesis and evidence that he 
did not know when he first formulated the new hypothesis. 

The problem of old evidence is not of course the only reason for seeking 
an account oflogical learning consistent with Bayesian principles. There is 
an even deeper concern here. With the assumption oflogical omniscience, 
there is a philosophically disturbing asymmetry between logical and 
empirical knowledge in the Bayesian framework. Although it may be 
unfortunate that we lack omniscience with respect to empirical truths, the 
Bayesian account makes it irrational to be anything but logically omni­
scient. The Bayesian agent who is not logically omniscient is incoherent, 
and seems to violate the only necessary condition for synchronic rationality 
that Bayesians can agree on. This is an asymmetry that smacks of the 
dreaded analytic-synthetic distinction. But scruples about the metaphysi­
cal or epistemic status of that distinction aside, the asymmetry in the 
treatment oflogical and empirical knowledge is, on the face of it, absurd. It 
should be no more irrational to fail to know the least prime number greater 
than one million than it is to fail to know the number of volumes in the 
Library of Congress. 14 

The project, then, is clear: if the Bayesian learning model is to be saved, 
then we must find a way to deal with the learning oflogical truths within the 
Bayesian framework. If we do this correctly, it should give us both a way of 
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eliminating the asymmetry between logical and empirical knowledge, and 
a way of dealing with the problem of old evidence. This is the problem 
taken up in the following sections. 

2. Two Models of Logical Learning 

A solution to the problem of old evidence requires that the Bayesian be 
able to give an account of how the agent Scan come to know logical truths 
that he did not previously know. In this section I shall present and discuss 
two possible Bayesian models oflogical learning. Because of the immediate 
problem at hand, the models will be formulated in terms of a particular 
kind oflogical truth, those of the form "p logically entails q," symbolized by 
"p I- q," although much of what I say can be extended naturally to the more 
general case. In this section I shall not discuss the precise nature of the 
logical implications dealt with here (i.e., truth-functional entailment vs. 
first order quantificational entailment vs. higher order quantificational 
entailment, etc.), nor shall I discuss the nature of the underlying language. 
These clarifications and refinements will be introduced as needed in the 
succeeding sections. But even without these refinements, we can say some 
interesting things about the broad paths we might follow in providing a 
Bayesian account of logical learning. 

The two models of logical learning that I would like to discuss are the 
conditionalization model and the evolving probability model. On the 
conditionalization model, when S learns that p I- q, he should change his 
beliefs from P 0 to P1 as follows: 

P1( - ) = Po ( -/p I- q) 

On the evolving probability model, on the other hand, when S learns that 
p I- q, he is required to change his beliefs in such a way that P(q/p) = 1, and 
to alter the rest of his beliefs in such a way that coherence is maintained, or 
at least in such a way that his beliefs are as coherent as they can be, given his 
imperfect knowledge of logical truth. 15 

Which, if either, of these models should the Bayesian adopt? The 
conditionalization model has obvious attractions, since it fits neatly into the 
most popular Bayesian account of belief change in general. But however 
attractive it might be on its face, the conditionalization model has one 
obvious difficulty. I pointed out earlier that coherence seems to require 
that all logical truths get probability one. Consequently we are left with an 
unattractive choice of alternatives. It seems as if we must either say that the 
conditionalization model fails to allow for any logical learning, since in the 
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case at hand P1 must always equal P0 ; or we must radically alter the notion 
of coherence, so that logical truths can get probability ofless than one. Let 
us then set the conditionalization model aside for the moment and see if we 
can make do with evolving probability. 

The evolving probability model does not have the obvious difficulties 
that the conditionalization model has. It does, however, require a major 
change in the way we think about coherence. If we adopt the evolving 
probability model, then we are implicity removing coherence as a syn­
chronic constraint on rational belief. The best that we can say is that an 
individual ought to regard coherence as an ultimate goal. That is, the 
evolving probabilist seems forced to the position according to which the 
synchronic condition for rationality is not coherence itself, but only that the 
rational individual try to become as coherent as he can. Although this is 
intuitively not unattractive, it does have at least one unattractive conse­
quence. If it is not required that an individual be coherent at any given 
time, then it would seem that nothing very strong could be said about the 
general characteristics that a rational individual's beliefs would have to 
satisfy at any given time. All of the wonderful theorems of the mathematical 
theory of probability would not apply to the rational investigator, but 
would only apply at the limit, at the end of inquiry, when his beliefs 
became fully coherent. But although this is somewhat unattractive, we 
could probably learn to live with this consequence if the evolving 
probability model turned out to be otherwise adequate to the task. 

Unfortunately, though, it does not. Even if we could accept the required 
weakening of the constraint of coherence, there are three other problems 
that should give us serious pause. For one, the evolving probability model 
as stated gives us very little guidance as to how we ought to change our 
beliefs upon discovering that h I- e. If the only required changes in our 
beliefs upon learning that h I- e are to alter P(e/h) to one and restore 
coherence, we can always find a way of changing our beliefs consistent with 
the evolving probability model that will raise, lower, or leave P(h) 
unchanged. Suppose at t0 , P0 (E/h) < 1. That is, P0 (e & h) < P0 (h). Suppose, 
then, that we learn that h I- e, so that we alter P 0 in such a way that P1(e/h) 
= 1. That is, we now have P1(e & h) = P1(h). But it is clear that this result 
can be arrived at in any of three ways: we can lower P0 (h), leave P0 (h) 
unchanged and raise P 0 (e & h), or we can raise both Po(h) and P 0 (h & e) to 
the same level. Each of these ways of altering one's beliefs is consistent 
with the evolving probability model. Consequently the evolving probabil-
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ity model can tell us nothing general about the effect that learning that 
h ~ e may have on the rest of one's beliefs. The effect it has is determined 
by the way in which one changes from P(e/h) < 1 to P(e/h) = 1, and the 
evolving probability model says nothing about this. 16 

There is a second, more philosophical difficulty connected with the 
evolving probability model. Although the evolving probability model gives 
the Bayesian a way of dealing with logical learning, something of the 
original asymmetry between logical and empirical learning still remains. 
Upon learning an empirical truth, one (presumably) changes one's beliefs 
through conditionalization, whereas upon learning a logical truth, one 
changes one's beliefs through evolving probabilities. This continuing 
asymmetry should make us feel somewhat uncomfortable. The asymmetry 
could be eliminated, of course. We could declare that the evolving 
probability scheme is the way to change one's beliefs whether we learn 
empirical truths or logical ones, and give up conditionalization altogether, 
even for empirical learning. One might say, for instance, when S learns that 
e, he should simply change his beliefs in such a way that P1(e) = 1, along 
with whatever other changes are necessary to restore coherence. But this is 
not very satisfactory. It would subject empirical learning to the same kind 
of indeterminacy that logical learning has on the evolving probability 
model, and prevent our saying anything interesting of a general nature 
about empirical learning as well. 

These two problems are serious. But there is a third problem even more 
serious than the previous two. Although the evolving probability model 
may give us a way of thinking about logical learning within the Bayesian 
framework, it is utterly incapable of dealing with the problem of old 
evidence. I argued that in the circumstances that give rise to the problem it 
is learning that our new hypothesis entails some piece of old evidence (or is 
related to it in some appropriate logical or mathematical way) that raises 
our degree of belief in h. But if we adopt the evolving probability model, 
learning that h ~ e in those circumstances will not change our beliefs at all! 
The evolving probability model tells us that when we learn that h ~e, we 
should alter our beliefs in such a way that P(e) = 1. But in the cases at hand, 
where e is old evidence, and thus P (e) = 1, P(e/h) already equals 1 (as does 
"P(h :J e)"). So, in the cases at hand, the evolving probability model will 
counsel no change at all in our degrees of belief. Thus learning that 
h ~ e can have no effect at all on our degree of belief in h, if e is previously 
known. 



OLD EVIDENCE AND LOGICAL OMNISCIENCE 109 

I have offered three reasons for being somewhat cautious about adopting 
the evolving probability model of logical learning. These arguments 
suggest that we turn to the conditionalization model. We must of course 
subject the conditionalization model to the same tests to which we 
subjected the evolving probability model. We must examine how well it 
determines the new probability function, how well it deals with the 
problem of asymmetry, and most important of all, how well it deals with the 
problem of old evidence. But first we must deal with the most basic and 
evident difficulty confronting the conditionalization model: can any sense 
be made of a probability function in which P(h 1-- e) is anything but 0 or l? 
Will allowing probability functions in which 0 < P(h 1-- e) < 1 force us into 
incoherence in both the technical and nontechnical senses of that word? 

3. Coherence and Logical Truth: An Informal Account 

As I noted earlier, the standard definition of coherence, (Dl), seems to 
require that all logical truths get probability 1. For surely, if h entails e, it 
entails e in every possible state of the world, it would seem. And if we were 
to assign probability less than one to a sentence like "h 1-- e," then we would 
be allowed to bet that "h 1-- e" is false, a bet that we would lose, no matter 
what state of the world we were in. Thus if we require P to be coherent, 
logical omniscience seems inescapable, and the conditionalization model of 
logical learning seems untenable. 

One way out of this problem might be to eliminate coherence as a 
necessary condition of rational belief. But this is not very satisfying. If we 
were to eliminate coherence, we would have no synchronic conditions on 
rational belief at all; the Bayesian framework would reduce to an idealized 
psychology. It might help to reintroduce coherence as an ultimate goal of 
inquiry, as the evolving probabilist implicitly does. But, as I suggested in 
the course of our examination of the evolving probability model, this is not 
very attractive. This ploy has the unfortunate consequence of allowing us to 
say nothing of interest about the characteristics that a rational person's 
beliefs would have to exhibit at any given time. Explicitly relativizing 
coherence to an individual's state of knowledge with respect to logical truth 
might seem attractive, and has actually been proposed. 17 But this will give 
us little of the mathematical structure that we want. Moreover, it has the 
extra problem of introducing the philosophically problematic notion of 
knowledge explicitly into the Bayesian framework. 

But all is not lost. Although it does not seem advisable to eliminate or 
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weaken coherence, perhaps a more careful examination of the coherence 
condition itself may give us a way of weakening the requirement oflogical 
omniscience. The definition of coherence is obviously relativized to 
another notion, that of a possible state of the world. How we understand 
that notion should have important consequences for the constraints that 
the coherence condition imposes on an individual's beliefs. And how we 
understand the notion of a possible state of the world, it turns out, depends 
on what we think the Bayesian learning model is supposed to do. 

One popular conception of the Bayesian enterprise is what I shall call 
global Bayesianism .18 On this conception, what the Bayesian is trying to 
do is build a global learning machine, a scientific robot that will digest all of 
the information we feed it and churn out appropriate degrees of belief. On 
this model, the choice of a language over which to define one's probability 
function is as important as the constraints that one imposes on that function 
and its evolution. On this model, the appropriate language to building into 
the scientific robot is the ideal language of science, a maximally fine­
grained language L, capable of expressing all possible hypotheses, all 
possible evidence, capable of doing logic, mathematics, etc. In short, L 
must be capable, in principle, of saying anything we might ever find a need 
to say in science. 

Now, given this global framework, there is a natural candidate for what 
the possible states of the world are: they are the maximal consistent sets of 
sentences in L. But if these are what we take to be the possible states of the 
world, then logical omniscience of the very strongest sort seems to be 
demanded, and the conditionalization model of logical learning goes out 
the window. For if the possible states of the world are the maximal 
consistent sets of sentences in the most fine-grained, ideal language of 
science, then they are, in essence, the logically possible states of the world. 
And ifl am coherent with respect to these states, i.e., ifl am not allowed to 
enter into bets that I would lose in every such logically possible state of the 
world, then I must have degree of belief one in all logical truths. 

But there are reasons for thinking twice before accepting this conclusion. 
Although global Bayesianism is a position often advanced, it is a very 
implausible one to take. For one thing, it does not seem reasonable to 
suppose that there is any one language that we can be sure can do 
everything, an immutable language of science of the sort that the Vienna 
Positivists sought to construct. Without such a language, the scientific 
robot model of Bayesianism is untenable, as is the idea that there is some 
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one unique set of logically possible states of the world to which we are 
obligated to appeal in establishing coherence. But even if it were possible 
to find a cannonical and complete language for science, it would not be of 
much use. One of the goals of the Bayesian enterprise is to reconstruct 
scientific practice, even if in an idealized or rationalized form. Typically 
when scientists or decision makers apply Bayesian methods to the clarifica­
tion of inferential problems, they do so in a much more restri'cted scope 
than global Bayesianism suggests, dealing only with the sentences and 
degrees of belief that they are actually concerned with, those that pertain to 
the problem at hand. 

This suggests a different way of thinking about the Bayesian learning 
model, what one might call local Bayesianism. 19 On this model, the 
Bayesian does not see himself as trying to build a global learning machine, 
or a scientific robot. Rather, the goal is to build a hand-held calculator, as it 
were, a tool to help the scientist or decision maker with particular 
inferential problems. On this view, the Bayesian framework provides a 
general formal structure in which one can set up a wide variety of different 
inferential problems. In order to apply it in some particular situation, we 
enter in only what we need to deal with in the context of the problem at 
hand, i.e., the particular sentences with which we are concerned, and the 
beliefs (prior probabilities) we have with respect to those sentences. 

So, for example, if we are interested in a particular group of hypotheses 
hi, and what we could learn about them if we were to acquire some 
evidence ei, then our problem relative language L' would naturally enough 
be just the truth-functional closure of the h; and the e;. Our probability 
functions would then, for the duration of our interest in this problem, be 
defined not over the maximally specific language of science L, but over the 
considerably more modest problem-relative language L'. 

In working only with the problem relative L', we are in effect treating 
each of the hi and ei as atomic sentences. This is not to say that hi and ei 
don't have any structure. Of course they do. It is by virtue of that structure, 
which determines their meanings, that we can tell in a given observational 
circumstance whether or not a given ei is true, and it is by virtue of that 
structure that we know what it is that our degrees of belief are degrees of 
belief about! But none of this extra content is entered into our Bayesian 
hand-held calculator. Whatever structure h; and ei might have in some 
language richer than L' is submerged, so to speak, and the hi and e; treated 
as unanalyzed wholes from the point of view of the problem at hand. This 
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extra structure is not lost, of course. But it only enters in extrasystemati­
cally, so to speak, when, for example, we are assigning priors, or when we 
are deciding whether or not a particular observational sentence is true in a 
particular circumstance. · 

This seems to open the door to a Bayesian treatment oflogical truth. In 
some investigations we are interested only in sentences like "hi" and "ei." 
But in others, like those in which the problem of old evidence comes up, 
we are interested in other sentences, like "hi I- ei." Sentences like 
"h; f- e/' certainly have structure. Depending on the context of investiga­
tion, ''f- "may be understood as truth-functional implication, or implica­
tion in L, the global language of science. We can even read "hi f- ei" as "ei 
is a positive instance of hi>" or as "e; bootstrap confirms hi with respect to 
some appropriate theory," as Glymour demands. 20 But whatever extrasys­
tematic content we give sentences like "hi I- eh" in the context of our 
problem-relative investigation we can throw such sentences into our 
problem-relative language as atomic sentences, unanalyzed and unanalyz­
able wholes, and submerge whatever content and structure they might 
have, exactly as we did for the hi and e;. 

Suppose now that we are in a circumstance in which logical relations 
between sentences are of concern to us. Say we are interested in some 
implicative relations between hypotheses and evidence, sentences of the 
form "h; I- e;." The problem-relative language will be the truth-functional 
closure of all the h;, e;, and sentences of the form "h; I- e;," where each of 
these sentences, including those of the form "h; f- e;" is treated as an 
atomic sentence of the problem relative language. Now the crucial question 
is this: what constraints does coherence impose on probability functions 
defined over this language? In particular, does coherence require that 
all sentences of the form "h; I- e;" get 0 or 1? If not, then we are out of 
the woods and on our way to an account of logical learning through 
conditionalization. 

As I argued, in order to decide what follows from coherence, we must 
determine what is to count as a possible state of the world. Now in giving up 
global Bayesianism and any attempt to formulate a maximally fine-grained 
language of science, we give up in effect the idea that there is some one set 
oflogically possible states of the world that stands behind every inferential 
problem. But how then are we to understand states of the world? The 
obvious suggestion is this. In the context of a particular investigation, we 
are interested in some list of atomic sentences and their truth-functional 
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compounds: hypotheses, possible evidence, and statements of the logical 
relations between the twu. Insofar as we are uncertain of the truth or falsity 
of any of these atomic sentences, we should regard each of them as true in 
some states of the world, and false in others, at least in the context of our 
investigation. And since, in the context of investigation, we are interested 
in no other sentences, our problem relative states of the world are easily 
specified: they are determined by every possible distribution of truth 
values to the atomic sentences of the local language L'. This amounts to 
replacing the logically possible worlds of the global language with more 
modest epistemically possible worlds, specified in accordance with our 
immediate interests. 

Now if the possible states of the world are those determined by all 
possible assignments of truth values to the atomic sentences of the local 
language L', then coherence imposes one obvious constraint on the 
scientist's degrees of belief: if sentence T in L' is true on all possible 
assignments of truth values to the atomic sentences of L', then P(T) == 1. 

That is, ifT is a tautology of L' then P(T) = 1. Coherence understood in this 
way, however, relativized to the problem-relative states of the world, does 
not impose any constraints on the atomic sentences of L'. Since for any 
atomic sentence ofL' there are states of the world in which it is false, we can 
clearly assign u:hatever degree of belief we like to any of the atomic 
sentences without violating coherence, i.e., without being caught in the 
position of accepting bets that we would lose in every (problem-relative) 
state of the world. And this holds even if one of those atomic sentences is 
extrasystematically interpreted as "h logically entails e ." 

This seems to get us exactly what we want. It seems to allow us to talk 
about uncertainty with respect to at least some logical truths, and in fact, it 
allows us to do this without even violating coherence! This is an interesting 
and slightly paradoxical result. In order to see better what is going on, and 
make sure that there is no contradiction lurking beneath the surface of the 
exposition, I shall try to set the result out more formally. 

4. Coherence and Logical Truth: a Formal Account 

In the previous section we dealt informally with relatively modest local 
languages, a few hypotheses, a few evidential sentences, a few logical 
relations. But the coherence result I argued for can be shown formally to 
hold for much larger languages as well. Let us consider first the language L, 
the truth-functional closure of a countably infinite collection of atomic 
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sentences, {aJ Let us build the larger language L* by adding to L some 
new atomic sentences, those of the form "A I- B," where A and Bare in L, 
and again, closing under truth-functional operations. L* is a truth­
functional language that allows us to talk about truth-functional combina­
tions of an infinite set of atomic sentences {ai}, and relations of implication 
between any truth-functional combination of these sentences. 21 So it is 
clearly adequate to handle any of the problem situations that we had been 
discussing earlier. 

Now, L* is just a truth-functional language generated by a countably 
infinite number of atomic sentences, i.e., those of the form "ai" or "A I- B." 
So, if the possible states of the world are identified with possible 
assignments of truth values to the atomic sentences of L *, on analogy with 
what I argued above with respect to the more modest local languages, then 
imposing coherence will fix no degrees of belief with respect to the atomic 
sentences of L*. There will be coherent P-functions that will allow us to 
assign whatever values we like in [O, l] to the atomic sentences of the form 
"A I- B," however these may be interpreted extrasystematically. The only 
specific values fixed by the requirement of coherence will be those of the 
tautologies and truth-functional contradictions in L*, i.e., the tautological 
and contradictory combinations of atomic sentences of L *. 

This almost trivial result follows directly from the fact that, from the 
point of view of the probability function, sentences like "A I- B" are 
uninterpreted and treated on a par with the ai> treated like structureless 
wholes. But, interestingly enough, a similar result can be obtained without 
such a strong assumption. That is, we can introduce a certain amount of 
structure on the atomic sentences of the form "A I- B" without restricting 
our freedom to assign them probabilities strictly between 0 and l. 

In introducing the atomic sentences of the form "A I- B" into our local 
problem-relative languages, I emphasized that "A I- B" could be inter­
preted extrasystematically in a variety of different ways, as "A truth­
functionally entails B," that is, as "'A :J B' is valid in L," as "A entails Bin 
some richer language" (e.g., in the maximally fine-grained ideal language 
of science), or as some logical or mathematical relation other than 
implication, e.g., as "B is a positive instance of A," or as "B bootstrap 
confirms A with respect to some appropriate theory," in the sense in which 
Glymour understands this relation. For the purpose of adding some 
additional structure, though, let us assume that we are dealing with some 
variety of implication or other. Now if "A I- B" is to be read as "A implies 
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B," we may want to require that our Bayesian investigator S recognize that 
atomic sentences of the form "A f- B" have some special properties, 
however implication is understood. Although we do not want to demand 
that S recognize all true and false ones, it does seem reasonable to demand 
that S recognize that modus ponens is applicable to these particular atomic 
sentences ofL*. That is, we might require that if"A f- B'' is to be properly 
read as "A implies B," then at very least, if S knows that A, and S knows that 
A f- B, he must also know that Bas well. Put probabilistically, this amounts 
to adopting the following constraint over reasonable degree of belief 
functions on L*: 

(K) P(B/A & A f- B) = 1, when defined. 

But since, Renyi and Popper aside, this conditional probability is unde­
fined when P(A & A f- B) = 0, we might replace (K) with the following 
slightly stronger condition: 

(K*) P(A & B & A f- B) = P(A & A f- B). 

(K*) clearly reduces to (K) when the conditional probability in (K) is 
defined. 

(K*) is a stronger condition than it may appear on the surface. If, in 
addition to coherence, we impose (K*) on all "reasonable" probability 
functions defined on L *, then we get a number of interesting and desirable 
properties, as outlined in the following theorem: 

(Tl) If P is a probability function on L* and P satisfies (K*), then: 
(i) If P(A f- B) = 1, then P(A ::J B) = 1 and P(B/A) = 1, when 

defined. 
(ii) P(-A/-B & A f- B) = 1 when defined. 

(iii) If A and B are truth-functionally inconsistent in L, then 
P(A & A f- B) = 0. 

(iv) P(B/(A f- B) & (-A f- B)) = 1, when defined. 
(v) If P(A & A f- B) = 1, then P(A f- - B) = 0. 

(vi) If B and C are truth-functionally inconsistent in L, then 
P(A/(A f- B) & (A f- C)) = 0, when defined. 

(vii) As P(B) -o, P(A/A f- B) -o and P(A f- BIA) -o. 
(viii) If A and - B are both tautologies in L, then P(A f- B) = 0. 
Proof All of the arguments are trivial and left to the reader. 

These properties are attractive, and seem appropriate when " f- " is 
interpreted as a variety of implication. 22 Imposing (K*) guarantees that 
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when we learn that A f- B, our degrees of belief in "A :l B" and our 
conditional degrees of belief in B given A will behave appropriately, by 
clause (i). It gives us a probabilistic version of modus tollens (clauses (ii) and 
(vii)). It also guarantees that Swill be certain of the truth of anything that 
follows both from A and from -A (clause (iv)), and that Swill be certain of the 
falsity of anything that has truth-functionally inconsistent consequences 
(clause (vi)). 

Now (K*) seems to be an appropriate constraint to impose on any 
probability function defined over L*, if"f-" is to be interpreted as a variety 
of logical implication. Although it does not guarantee that we are dealing 
with a variety of implication, 23 it is certainly reasonable to require that any 
variety of implication should satisfy (K*). But now matters are not so trivial. 
Might adding (K*) as an extra constraint take away all of the freedom we 
had in assigning probabilities to sentences of the form "A f- B'' in L *?The 
coherence condition imposes no constraints on assigning probabilities to 
the atomic sentences of L*, I have argued. Most importantly, it does not 

force us to logical omniscience, to the position in which all sentences of the 
form "A f- B'' are forced to take on probabilities of 0 or 1. But might 

coherence in conjunction with (K*)? The surprising answer is that with one 
small exception (already given in (Tl) (viii)), no! This result is set out in the 
following theorem: 

(T2) There exists at least one probability function Pon L* such that P 
satisfies (K*) and such that every atomic sentence in L* of the 
form "A f- B" where not both A and - Bare tautologies gets a value 
strictly between 0 and 1. 

Proof Consider Land L* as above. Let P be any strictly positive 
probability on L. That is, for A in L, P(A) = 0 iff A is truth­
functionally inconsistent in L. Then extend P to L * as follows: 

(i) Suppose that A in L is not a tautology. Then let C be any 

sentence in L which is nontautologous, noncontradictory, 
and inconsistent with A. If A is not truth-functionally 
inconsistent in L, then -A will do; otherwise let C be any 

atomic sentence ai in L. Then, for any Bin L, let P(A f- B) = 

P(C); and for any Din L*, let P([A f- B] & D) = P(C & D); 
P([A f- B]vD) = P(CvD); etc. 

(ii) Suppose that A in L is a tautology and B is not. Then let 
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P(A I- B) = P(B); P([A I- B] & D) = P(B & D); P([A I- B]vD) 
= P(BvD); etc. 

(iii) Suppose that A and B in L are both tautologies. Then let 
P(A I- B) = P(ai), where "ai" is an arbitrary atomic sentence 
in L; P([A I- B] & D) = P(ai & D); P([A I- B]vD) = P(aivD); 
etc. 

P so extended is clearly a probability on L *. Further, it can easily 
be shown that P so extended satisfies (K*). And finally, since Pon 
Lis strictly positive, P(A I- B) will never have a value of either 0 
or 1, except when both A and-Bare tautologies, in which case it 
will get a value of 0 by clause (ii). 24 

So it turns out that even if we add more structure, as we do when (K*) is 
introduced, we are not forced to logical omniscience. Even with (K*) and 
coherence, we are permitted to be uncertain of logical implications. 25 

These technical conclusions call for some reflection. How can I say that I 
have gotten rid of logical omniscience if S is still required to know all 
tautologies ofL*? And ifS is required to know all tautologies ofL*, mustn't 
the freedom he is given with respect to the sentences of the form "A I- B" 
inevitably lead to contradiction? As regards logical omniscience, that has 
been eliminated. Coherence still requires that we have some logical 
knowledge. But knowing the tautologies of L* is a far cry from logical 
omniscience, since there are many logical truths that are not tautologies of 
L*. The threat of internal contradiction is more subtle, though. Formally 
speaking, there is no contradiction. The key to seeing this lies in 
understanding the distinction between those logical truths that S is 
required to know and those that he is not. Let A, B, A I- B be sentences in 
our local problem relative language L *, where A and B are truth-functional 
combinations of atomic sentences of L, and "A I- B" is an atomic sentence 
ofL* interpreted (extrasystematically) as "A entails B." For the purposes of 
discussion, it does not matter whether the turnstile is interpreted as truth­
functional entailment in L, or something weaker. Now suppose that, as a 
matter of fact, A does truth-functionally entail B. What precisely does 
coherence require? It clearly requires that P(B/A) = 1 and P(A => B) = 1. 
That is, it requires that S be certain of B conditional on A, and certain of the 
tautology "A => B." But if my argument is correct, S is not required to be 
certain of the atomic sentence "A I- B," which can get a degree of belief 
strictly between 0 and 1. That is, in requiring that S be certain of"A => B," 
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coherence requires that S be certain that a particular truth-functional 
combination of atomic sentences of L is true. But at the same time, in 
allowing uncertainty with respect to "A I- B," coherence allows that S 
might be uncertain as to whether or not that truth-functional combination 
of atomic sentences is valid. And insofar as truth and validity are distinct, 
there is no formal contradiction in asserting that S may be certain that 
"A :::> B" is true without necessarily being certain that it is valid, i.e., 
without being certain that "A I- B" is true. 

But even if there is no formal contradiction, there does appear to be a 
kind of informal contradiction in requiring that S be certain of A :J B when A 
truth-functionally entails Bin L, while at the same time allowing him to be 
uncertain of A I- B. But this informal contradiction can be resolved easily 
enough by adopting a new constraint on reasonable probability functions 
on L*: 

(*) If "A :::> B" is a tautology in L, then P(A I- B) = 1. 

This would require that S know not only the truth of all tautologies of L, but 
also their validity. 26 Although I see no particular reason to adopt(*), doing 
so would resolve the informal appearance of contradiction without doing 
much damage to the formalism or its applicability to scientific reasoning. 
For truth-functional implication is not the only variety of implication. In 
fact, when we are interested in the logical relations between hypotheses 
and evidentiary sentences, the kind of implicatory relations we are 
interested in will most likely be not truth-functional implication, but 
quantification-theoretic implication in some background language richer 
than L* in which the hypotheses and evidence receive their (extrasystema­
tic) interpretation. So, in any realistic application of the formalism 
developed in this section, adding (*) as a constraint will fix only a small 
number of sentences of the form "A I- B," and leave all of the rest 
unaffected. (*)will fix all such sentences only in the case in which "A I- B'' is 
interpreted rather narrowly as "A truth-functionally entails Bin L," a case 
that is not likely to prove of much use in the analysis of scientific reasoning. 

5. The Conditionalization Model and Old Evidence Redux 
After this rather lengthy argument, it might help to review where we 

have been and gauge how much farther we have to go. Starting with the 
problem of old evidence, I argued that a fully adequate Bayesian account of 
scientific reasoning must include some account of the learning of logical 
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truths; in particular, it must allow for the fact that the logical and 
mathematical relations between hypotheses and evidence must be discov­
ered, just as the empirical evidence itself must be. I then presented two 
Bayesian models oflogical learning, the evolving probability model and the 
conditionalization model, argued that the evolving probability model has 
serious weaknesses, and suggested that we explore the conditionalization 
model. In the previous two sections I showed that the central problem with 
the conditionalization model, the widely held conviction that coherence 
requires that all logical truths get probability one, turns out not to be a 
problem at all. I showed that if we think of the Bayesian framework as 
problem-relative, a hand-held calculator rather than a scientific robot, then 
we can make perfectly good sense of assigning probabilities ofless than one 
to the logical truths we are interested in, without even violating coherence! 
This conclusion enables us to return to the conditionalization model for 
learning logical truth, and discuss its adequacy, particularly in regard to the 
problem of old evidence. 

On the conditionalization model, when S learns a logical truth, like 
"h f- e," he should change his beliefs as follows: 

P1( - ) = P0 ( - I h f- e) 

The investigations of the previous sections have shown that this does not 
necessarily reduce to triviality, nor does it force us to give up the 
requirement of coherence. But is it an otherwise attractive way to think 
about the consequences of learning a logical truth? In discussing the 
evolving probability model, I noted three problems: (a) the evolving 
probability model does not uniquely determine a new probability function 
upon learning that h f- e; (b) the evolving probability model maintains an 
asymmetry between logical and empirical learning; and (c) the evolving 
probability model offers no solution to the (historical) problem of old 
evidence. It is clear that the conditionalization model deals admirably with 
the first two of these problems. Since "P( - I h f- e )" is uniquely determined 
for all sentences in the language over which P is defined, the conditionali­
zation model gives us a unique new value for all sentences of that language, 
upon learning that h f- e. And there is obviously no asymmetry between 
logical and empirical learning: both can proceed by conditionalization. The 
third question, then, remains: how does the conditionalization model do 
with respect to the problem of old evidence? Unlike the previous two 
questions, the answer to this one is not obvious at all. 
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Earlier I argued that the (historical) problem of old evidence derives 
from the assumption oflogical omniscience. For the logically omniscient S, 
old evidence can never be appealed to in order to increase his degree of 
belief because, as soon as h is proposed, S can immediately see all of the 
logical consequences ofh, and thus his initial probability for h will be based 
on a complete knowledge of what it entails. If old evidence can be used to 
raise the probability of a new hypothesis, then, it must be by way of the 
discovery of previously unknown logical relations. In the cases that give 
rise to the problem of old evidence, we are thus dealing with circumstances 
in which hypotheses are confirmed not by the empirical evidence itself, but 
by the discovery of some logical relation between hypothesis and evidence, 
by the discovery that h I- e. Now the evolving probability model oflogical 
learning failed to deal with the problem of old evidence because on that 
model, when P(e) = I, learning that h I- e has no effects on S's degrees of 
belief. The evolving probability model thus breaks down in precisely the 
cases that are of interest to us here. But, one might ask, does the 
conditionalization model do any better? That is, is it possible on the 
conditionalization model for the discovery that h I- e to change S's beliefs 
when e is previously known, for P(h/h I- e) to be greater than P(h) when 
P(e) = l? Unfortunately, (T2) will not help us very much here. (T2) does 
have the consequence that P(h I- e) can be less than one when P(e) = 1, 
which is certainly necessary if P(h/h I- e) is to be greater than P(h). But 
because of the assumption of a strictly positive probability on Lin the proof 
of (T2), the probability function constructed there, in which (almost) all 
implications get probability strictly betwe~n 0 and 1 will be such that for 
any e, P(e) = 1 if and only if e is a tautology. Thus (T2) does not assure us 
that P(h I- e) can be less than one when S is certain of a nontautologous e. 
This is not very convenient, since the old evidence we are interesfed in is 
not likely to be tautologous! Furthermore, although (T2) assures us that 
(K*) does not require extreme values on all logical implications, it does not 
assure us that that strong constraint ever allows for probability functions in 
which P(h/h I- e) > P(h) for any e at all, tautologous or not. But luckily it is 
fairly easy to show that under appropriate circumstances, there is always a 
probability function on L* (in fact, an infinite number of them) that satisfies 
(K*) in which, for any noncontradictory e, and for any nonextreme values 
that might be assigned to P(h) and P(h I- e), P(e) = 1 and P(h/h I- e) > P(h). 
This is the content of the following theorem: 

(T3) For Land L* constructed as above, for any atomic sentence ofL* 
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of the form "A I- B" where B is not a truth-functional contradic­
tion in L and where A does not truth-functionally entail - B in L 
and B does not truth-functionally entail A in L, and for any r, sin 
(0, 1), there exist an infinite number of probability functions on 
L* that satisfy (K*) and are such that P(B) = l, P(A I- B) = r, 
P(A) = s, and P(A/A I- B) > P(A). 

Proof Consider all sentences si in L * of the following form (Carnapian 
state descriptions): 

where a1, ... , a11 are the atomic sentences of L that appear in every 
sentence of L equivalent to either A or B, if B is not a tautology, or 
those that appear in every equivalent of A, if it is, and"(±)" is replaced 
by either a negation sign or a blank. Define a function P over the si as 
follows. First of all, assign a P-value of 0 to any si that truth­
functionally entails - B in L*. Since B is not truth-functionally 
inconsistent, there will be some si that remain after the initial 
assignment. Divide the remaining si into the following classes: 

Class l: si that truth-functionally entail A&[A I- BJ 
Class 2: si that truth-functionally entail A&-[A I- BJ 
Class 3: si that truth-functionally entail -A&[A I- BJ 
Class 4: si that truth-functionally entail -A& -[A I- BJ 

Each si truth-functionally entails either [A I- BJ or -[A I- BJ, but not 
both, and since each si fixes the truth values of all of the atomic 
sentences in A, each si truth-functionally entails either A or -A, but 
not both. Thus every remaining si fits into one and only one of these 
classes. Also, since A does not truth-functionally entail - B, there will 
be some si that remain which entail A. And while every remaining si 
truth-functionally entails B, since B does not truth-functionally entail 
A, there will be some that remain which entail -A. Thus, it is obvious 
that none of these classes will be empty. Now, let & = min(r(l- s), s(l­
r)), and let Ebe an arbitrarily chosen number in (0, &J. Because of the 
constraints imposed on rand s, & > 0 and (0, &J is nontrivial. Given 
the constraints imposed on r, s, and E it can be shown that each of the 
following quantities is in [O, lJ: 

rs + £, s(l - r) - £, r(l - s) - £, (1 - r) (1 - s) + E 
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So, we can extend P to the remaining si, those that do not truth­
functionally entail - B, as follows: 

Class 1: Let P assign any values in [O, l] to the si in class 1 that sum to 

rs + E 

Class 2: Let P assign any values in [O, l] to the si in class 2 that sum to 
s(l - r) - E 

Class 3: Let P assign any values in [O, l] to the si in class 3 that sum to 
r(l - s) - E 

Class 4: Let P assign any values in [O, l] to the si in class 4 that sum to 
(1 - r) (I - s) + E 

This completes the definition of Pon the si. Since the values assigned 
sum to 1, P defines a unique probability function on the sublanguage 
of L* generated by the si. This can be further extended to the whole of 
L* by assigning a P-value ofO to all atomic sentences ofL* that do not 
appear in the si. P so defined clearly satisfies (K*), and is such that P(B) 
= 1. Also: 

P(A f- B) = rs + E + r(l - s) - E = r 
P(A) = rs + E + s(l - r) - E = s 

Furthermore, P(A& [A f- BJ) = rs + E> rs, so, P(A & [A f- BJ) > 
P(A)P(A f- B) and thus P(A/ A f- B) > P(A). Since E was arbitrarily chosen 
from (0, f>], there are an infinite number of probability functions on 
L * that have the required properties. 27 

To take a simple numerical example as an illustration of (T3), let us 
suppose that hand e are both atomic sentences of L, say a1 and a2, and let 
us suppose that we want to build a probability function on L* in which 
P(a1) = .4, P(a2) = 1, and P(a1 f- a2) = .4, and in which P(a1/a1 f- a2) > 
P(a1). One such function can be constructed by assigning the following 
probabilities to the appropriate state descriptions, and extending the 
function to L* as in the proof of (T3): 

P(a1&a2&[a1 f- a2]) = .3 
P( -a1 &a2&[a1 f- a2]) = .1 
P(a1&-a2&[a1 f- a2]) = 0 
P(-a1 &-a2&[a1 f- a2]) = 0 

P(a1&a2&-[a1 f- a2]) = .1 
P(-a1&a2-[a1 f- a2]) = .5 
P(a1&-a2&-[a1 f- a2]) = 0 
P(-a1&-a2&-[a1 f- a2]) = 0 

(Using the notation of the proofof (T3), r = s = .4, and f> = .24, allowing E 

to be any number in (0, .24]. The E chosen in the example is .14). The 
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extension of these probabilities on the state descriptions clearly satisfies 
(K*), and clearly assigns the specified values to P(a1), P(a2), and P(a1 I- a2). 

Furthermore, one can easily calculate that P(a1/a1 I- a2 ) = . 3/.4 = . 75, 
which is clearly greater than P(ai). Thus, on my construction, it is not 
trivially the case that P(h/h I- e) = P(h) when P(e) = 1, and the discovery 
that h 1-e can raise S's confidence in h. That is to say, unlike the evolving 
probability model, the conditionalization model oflogical learning does not 
break down over the case of the problem of old evidence, even when (K*) is 
assumed to hold. 

With this last feature of the conditionalization model in place, we have 
completed our solution to the problem of old evidence. I have shown how 
old evidence e can contribute to the confirmation of a more recently 
proposed h through the discovery that h I- e, and I have shown how this can 
be done in a way consistent with Bayesian first principles. Or, perhaps 
more accurately, I have shown one way in which the Bayesian can explain 

how, on his view of things, old evidence can confirm new hypotheses. This 
takes the sting out of Glymour's critique. With a bit of ingenuity the 
Bayesian can accommodate the kinds of cases that Glymour finds so 
damaging. But work remains before one can make a final judgment on the 
particular proposal that I have advanced, the particular way in which I have 
proposed to deal with the problem of old evidence. In particular, one must 
examine with great care the cases that Glymour cites-the case of 
Copernican astronomy and the ancient evidence on which it rested, 
Newton's theory of gravitation and Kepler's laws, and Einstein's field 
equations and the perihelion of Mercury-along with other cases like 
them, in order to determine whether or not my analysis of the reasoning fits 
the cases at hand. We must show that the scientists in question were 
initially uncertain that h I- e for the appropriate h and e, that their prior 
degrees of belief were such that P(h/h I- e) > P(h)28

, and that it was, 
indeed, the discovery that h I- e that was, as a matter of fact, instrumental 
in increasing their confidence in h. Such investigations go far beyond the 

scope of this paper. My intuition is that when we look carefully at such 
cases, the details will work out in favor of the account that I propose. 29 But 
this is just an intuition. 

6. Postscript: Bayesianizing the Bootstrap 

I should point out that Clark Glymourwas fully aware of the general lines 
of the solution to the problem of old evidence offered here at the time 
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Theory and Evidence was published. I proposed it to him while his book 
was still in manuscript, and we discussed it at some length. In the 
published version, Glymour gives a crude and early version of this line of 
argument, along with some remarks on why he does not believe it saves the 
Bayesian position. Glymour says: 

Now, in a sense, I believe this solution to the old evidence/new 
theory problem to be the correct one; what matters is the discovery of 
a certain logical or structural connection between a piece of evidence 
and piece of theory . . . . [The] suggestion is at least correct in 
sensing that our judgement of the relevance of evidence to theory 
depends on the perception of a structural connection between the 
two, and that the degree of belief is, at best, epiphenomenal. In the 
determination of the bearing of evidence on theory, there seem to be 
mechanisms and strategems that have no apparent connection with 
degrees of belief, which are shared alike by people advocating 
different theories . . . . But if this is correct, what is really important 
and really interesting is what these structural features may be. The 
condition of positive relevance [i.e., q confirms p iff P(p/q) > P(p)], 
even if it were correct, would simply be the least interesting part of 
what makes evidence relevant to theory. 30 

As I understand it, Glymour' s point is that what should be of interest to 
confirmation theory is not degrees of belief and their relations, but the 
precise nature of the structural or logical or mathematical relations 
between hypothesis and evidence by virtue of which the evidence confirms 
the hypothesis. Put in terms I used earlier, Glymour is arguing that what 
confirmation theory should interest itself in is the precise nature of the "f-" 
necessary to make the above given formalism applicable to the analysis of 
scientific contexts, rather than in the fine details of how the discovery that 
h I- e may, in some particular situation, raise (or lower) some scientist's 
degree of belief in h. Now the most difficult kind of criticism to answer is 
the one that says that a certain project is just not very interesting or 
important. I shall not attempt to defend the interest of my investigations; 
but I shall argue that they should be of some importance even to Glymour' s 
own program by showing that the account of confirmation through the 
discovery oflogical truth that I offered in the body of this paper can be used 
to fill in a large gap in Glymour' s theory of confirmation. 

The structural relation, which, Glymour argues, should be what is of 
interest to the confirmation theorist, is the main focus of Theory and 
Evidence. What he offers is a version of instance confirmation, but with an 
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important and novel twist. Unlike previous writers, Glymour allows the 
use of auxiliary theories in the arguments used to establish that a given 
piece of evidence is a positive instance of a given hypotheses. Glymour 
summarizes his account as follows: 

[N]eglecting anomalous cases, hypotheses are supported by posi­
tive instances, disconfirmed by negative ones; instances of a hypothe­
sis in a theory, whether positive or negative, are obtained by 
"bootstrapping," that is, by using the hypotheses of that theory itself 
(or, conceivably, some other) to make computations from values 
obtained from experiment, observation, or independent theoretical 
considerations; the computations must be carried out in such a way as 
to admit the possibility that the resulting instance of the hypothesis 
tested will be negative. Hypotheses, on this account, are not generally 
tested or supported or confirmed absolutely, but only relative to a 
theory .:31 

Glymour' s intuitive sketch could be filled out in a number of ways. But 
since the idea is clear enough, I shall pass over the details here. With 
Glymour' s bootstrap analogy in mind, I shall say that e BS confirms h with 
respect to T when the structural relation in question holds, and will 
symbolize it by "[h f- eh." 

Glymour tells us a great deal about BS confirmation. But one thing that 
he doesn't say very much about is how we can compare different BS 
confirmations. The discovery that [h f- eh is supposed to confirm h; it is 
supposed to support h and give us some reason for believing h. But when 
does one BS confirmation support h better than another? This is a general 
question, one that could be asked in the context of any confirmation theory. 
But it has special importance for Glymour. A distinctive feature of 
Glymour's theory of confirmation, one that he takes great pains to 
emphasize, is the fact that BS confirmations are explicitly relativized to 
auxiliary theories or hypotheses. By itself, this feature is unobjectionable. 
But it leads to a bit of a problem when we realize that for virtually any 
hypothesis h and any evidence e, there will be some auxiliary T such that 
[h f- eh. I shall not give a general argument for this, but the grounds for 
such a claim are evident enough when we examine how Glymour's BS 
method applies to systems of equations relating observational and theoreti­
cal quantities.:32 Let the hypothesis h be the following equation: 

X(q1, ... , %) = 0 

where q 1, ... , Cli are taken to be theoretical quantities; and let our 
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evidence e consist of an n-tuple e1, . . . , en of data points. The hypothesis 
h and evidence e may be entirely unrelated intuitively; h might be some 
equation relating physical magnitudes to one another, and e might be some 
quantities derived from a sociological study. Yet, as long as h is not itself a 
mathematical identity (i.e., not every j-tuple of numbers is a positive 
instance ofh), we can always construct an auxiliary hypothesis with respect 
to which e BS confirms h. Let Ci, . . . , ci be a j-tuple of numbers that 
satisfies h, and d1, ... , di be one that does not. The auxiliary appropriate 
to the data points e = {ei, . . . , en} can then be constructed as follows. Let 
F be a function which takes e onto Ci, . . . , ci and all other n-tuples onto 
d1 ... , di. Then consider the auxiliary T: 

F(p) = q 

where "p" is an n-tuple of"observational" quantities, and q = {q1, ... , Q.j} 
the j-tuple of theoretical terms appearing in h. Clearly, e BS confirms h 
with respect to T, since, on the assumption of T, e constitutes a positive 
instance of h. 

Given the ease with which we can come by BS confirmations, the 
question of comparative confirmation becomes quite crucial: why is it that 
some BS confirmations count for more than others? Why is it that we take 
BS confirmations with respect to some auxiliaries as seriously reflecting on 
the acceptability of the hypothesis, whereas we ignore the great mass of 
trivial BS confirmations, those relativized to ad-hoc auxiliaries? Glymour 
attempts to offer something of an answer: 

The distinctions that the strategy of testing makes with regard to what 
is tested by what with respect to what else are of use despite the fact 
that if a hypothesis is not tested by a piece of evidence with respect to a 
theory, there is always some other theory with respect to which the 
evidence confirms or disconfirms the hypothesis. It is important that 
the bearing of evidence is sensitive to the changes of theory, but the 
significance of that fact is not that the distinctions regarding evidential 
relevance are unimportant. For in considering the relevance of 
evidence to hypothesis, one is ordinarily concerned either with how 
the evidence bears on a hypothesis with respect to some accepted 
theory or theories, or else one is concerned with the bearing of the 
evidence on a hypothesis with respect to definite theory containing 
that hypothesis. 33 

Glymour is surely correct in his intuitions about what we ordinarily do. But 
this just rephrases the problem. Why should we do what we ordinarily do? 
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Why should we take some BS confirmations, those that use the "appropri­
ate" auxiliaries more seriously than we take others? If it is permissible to 
take seriously a BS confirmation relative to an untested auxiliary or relative 
to the hypothesis itself being tested, as Glyrnour often insists, how can he 
disregard any BS confirmations? 

What is missing from Glymour' s theory of confirmation seems obvious. 
Glyrnour gives us no way of mediating the gap between any one BS 
confirmation ofh, and our increased confidence in h; he gives us no way to 
gauge how much any one BS confirmation supports, h, and the factors that 
go into that determination. Although there may be a number of different 
ways of filling in this gap in Glymour's program, the earlier sections of this 
paper suggest one attractive solution. Earlier I offered a Bayesian response 
to the problem of old evidence, in which the problem is resolved by 
showing how confirmation in the cases at hand can be understood as 

proceeding by conditionalization on the discovery of some logical relation 
between the hypothesis and the evidence in question. Now the logical 
relation I talked about most explicitly was logical implication. But almost 
everything I said holds good for whatever conception of the logical relation 
we like: and this includes the logical relation that Glymour explicates, 

[h I- eh. This framework is ready-made to fill in the gap in Glymour's 
program. Within this framework, we can show how the discovery that a 
given e BS confirms h with respect to T may increase our confidence in h, 
given one group of priors, and how, given other priors, the discovery that e 
BS confirms h with respect to T may have little or no effect on our 
confidence in H. The Bayesian framework, as interpreted above, thus gives 
us the tools needed to distinguish between the effects that different BS 
confirmations may have on our confidence in h, and gives us a way of 
resolving the problem of the ad-hoc auxiliary. To those of us of the Bayesian 
persuasion, the conclusion is obvious: Glymour's theory of confirmation 
can be fully adequate only if it is integrated into a Bayesian theory of 
reasoning. :34 

Notes 
1. The criticisms are widespread, hut the following are representative of the literature: 

Henry Kyburg, "Subjective Probability: Criticisms, Reflections and Problems," Journal of 
Philosophical Logic 7 (1978): 157-180: Isaac Levi, "Indeterminate Probabilities," Journal of 
Philosophy 71 (1974): 391-418: and Glenn Shafor, A Mathematical Theory of Evidence 
(Princeton: Princeton University Press, 1976). 
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2. Clark Glymour, Theory and Eddence (Princeton: Princeton University Press, 1980), 
hereafter referred to as T & E . 

3. See I. J. Good, "466.56 Varieties of Bayesians." The American Statistician 2.5, .5 (Dec. 
1971): 62-61. 

4. Following Kolmogorov's influential systematization, Foundations of the Theory of 
Probability (New York: Chelsea Publishing Co., 19.50), most mathematical treatments of the 
theory of probability take probability fi.mctions to be defined over structured collections of 
sets, (er-) rings or (er-) fields, or over Boolean algebras. For obvious reasons philosophers of the 
Bayesian persuasian have often chosen to define probabilities over sentences in formal 
languages. I shall follow this practice. Because of the structural similarities among the 
different approaches, though, many of the theorems carry over from one domain to another, 
and in what follows, I shall not make use of the mathematicallv special features of probabilitv 
functions defined on languages. Although I talk of probability !i.mctions defined on sentences 
rather than propositions or statements, no philosophical point is intended. Any of these 
objects would do as well . 

.5. For a Ii.tiler treatment of the coherence theorem, originally due to de Finetti, see Abner 
Shimony, "Coherence and the Axioms of Probability." Journal of Symbolic Logic 20 (195.5); 1-
28 or John Kemeny, "Fair Bets and Inductive Probabilities." jorirnal of Symbolic Logic 20 
(1955): 263-273. The coherence theorem is not the only argument Bayesians appeal to to argue 
that degrees ofheliefought to be probabilities. See, e.g., the arguments given in L. J. Savage, 
The Foundations of Statistics (New York: John Wiley and Dover, 1954 and 1972). chapter 3, 
and R. T. Cox, The Algebra of Probable Inference (Baltimore: Johns Hopkins University 
Press, 1961). However, the coherence argument is often cited and well accepted by 
Bayesians. l\foreover, the coherence condition is closely connected with the requirement of 
logical omniscience, which will be one of the central foci of this paper. 

6. For justifications of conditionalization, see Bruno de Finetti, Theory of Probability vol. 
1 (New York: John Wiley, 1974), section 4 . .5; and Paul Teller, "Conditionalization, Observa­
tion, and Change of Preference," in W. Harper and C. Hooker, Foundations and Philosophy 
of Epistemic Applications of Probability Theory (Dordrecht: Reidel, 1976). pp. 205-2.59. 
Among other rational ways of changing one's heliefa I would include the extension of 
conditionalization proposed by Richard Jeffrey in chapter 11 of his The Logic of Decision (New 
York: McGraw-Hill, 1965), and the sorts of changes that one makes upon discovering an 
incoherence in one's beliefs. The former is appropriate when changing one's beliefs on the 
basis of uncertain observation, and the latter when one discovers, e.g., that one attributes 
probability . 5 to heads on a given coin, yet attributes probabilitv . 2.5 to a run of three heads on 
the same coin. There mav be other alternatives to conditionalization, but we shall not cnnsider 
them here. . 

7. Both of these conceptions of Bayesianism are widespread. For a statement of the 
thought-police model, see L. J. Savage, The Foundations of Statistics (New York: John Wiley 
and Dover, 1954 and 1972), p. 57, and for a statement of the ideal learning machine model, see 
Rudolph Carnap, The Aim oflnductive Logic, in E. Nagel, P. Suppes, and A. Tarski, Logic, 
Methodology and Philosophy of SciencP (Stanford: Stanford University Press. 1962), pp. 303-
318. 

8. T & E, pp. 8.5-6. 
9. The historical problem, as posed, appears to presuppose that evidence for an hypothesis 

must somehow serve to increase the scientist's degree of belief in that hypothesis. This may 
not hold for ei;erything that we want to call evidence. Peter Achinstein argues that the 
evidence for an hypothesis may not only fail to raise the scientist's degree of he lief in that 
hypothesis, but might actuallv lon·er it! See his "Concepts of Evidence," Mind 87 (1978); 22-
4.5, and "On Evidence: A Reply to Bar-Hillel and l\largalit," Mind 90 (1981 l: 108-112. But be 
that as it mav, it seems clear to me that in the sorts of cases Glvmourcites in this connection, 
we are deaiing with circumstances in which consideration~ relating to the evidence do 
increase the scientist's degree of belief in his hypothesis. Whatever more general account of 
the notion of evidence we might want to adopt, there is an important question as to how the 
Bayesian can account for that. Closely related to what I call the historical problem of old 
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evidence, the question as to how old evidence can increase the scientist's degree ofbeliefin a 
new hypothesis, is the question of how the Bayesian is to deal with the introduction of new 
theories at all. This is especially difllcult for what I shall later call global Bayesianism, where 
the enterprise is to trace out the changes that would occur in an ideally rational individual's 
degrees of belief as he acquires more and more experience, and where it is assumed that the 
degree of belief function is defined over some maximally rich global language capable of 
expressing all possible evidence and hypotheses. Since I shall reject global Bayesianism, I 
won't speculate on how a global Bayesian might respond. I shall assume that at any time, a new 
hypothesis can be introduced into the collection of sentences over which S's degree of belief 
function is defined, and his previous degree of belief function extended to include that new 
hypothesis. as well as all truth-functional combinations of that hypothesis with elements 
already in the domain of S's beliefs. The new degrees of belief will, of course, reflect S's 
confidence in the new hypothesis. Although these new degrees of belief will be prior 
probabilities in the strictest sense of the term, they will not be without ground, so to speak, 
since they may be based on the relations that the new hypothesis is known to bear to past 
evidence, other hypotheses already considered, and so oo. 

10. I am indebted to Brian Skyrms for pointing out the ambiguity in Glymour's problem. 
11. See T & E, p. 87-91 for a development of this line of argument, along with Glymour's 

criticisms. 
12. The logical probabilist, like Carnap, does not have to go to counterfactual degrees of 

belief to solve the ahistorical problem of old evidence. Since a logical c-function is taken to 
measure the degree of logical overlap between its arguments, we can always appeal to the 
value of"c(h/e)" as a measure of the extent to which e confirms h, regardless of whether or not 
we, as a mater of fact, happen to believe that e. But, as far as I can see, the logical probabilist 
will be in no better shape than his subjectivist comrade is with respect to the historical 
problem of old evidence. Even for Carnap's logically perfect learning machine, once e has 
been acquired as evidence, it is difllcult to see how it could be used to increase the degree of 
confirmation ofa new hypothesis. I would like to thank James Hawthorne for this observation. 

13. e confirms h in the relevance sense ifflearning that e would increase S's confidence or 
degree of belief in h. On the relations among the various senses of confirmation and the 
importance of the notion ofrelevance, see Wesley Salmon, Confirmation and Relevance, in 
Maxwell and Anderson, eds., Minnesota Studies in Philosophy of Science, vol. 6 (Minneapo­
lis: University of Minnesota Press, 1975). 

14. These worries are eloquently pressed by Ian Hacking in "Slightly More Realistic 
Personal Probability," Philosophy of Science 34 (1967): 311-325. Much of my own solution to 
the problem oflogical omniscience is very much in the spirit of Hacking' s, although the details 
of our two accounts differ significantly. 

15. The evolving probability model is suggested by I. J. Good in a number of places, 
though I know of no place where he develops it systematically. See, e.g., "Corroboration, 
Explanation, Evolving Probability, Simplicity and a Sharpened Razor," British Journal for 
the Philosophy of Science 19 (1968): 123-143, esp. 125, 129; "Explicativity, Corroboration, and 
the Relative Odds of Hypotheses", Synthese 30 (1975): 39-73, esp. 46, 57; and "Dynamic 
Probability. Computer Chess, and the Measurement of Knowledge," Machine Intelligence 8 
(1977), pp. 139-150. Good's preferred name for the position is now "dynamic probability." A 
similar position is expressed by Richard Jeffrey in a short note, "Why I am a Born-Again 
Bayesian," dated 5 Feb. 1978 and circulated through the Bayesian samizdat. To the best of my 
knowledge, the conditionalization model does not appear in the literature, although it is 
consistent with the sort of approach taken in I. Hacking, "Slightly More Realistic Personal 
Probability." 

16. My own intuition is that in any actual case, the way we change our beliefs upon 
discovering that h ~ e will be determined by the strength of our prior belief that h ~ e, and 
that it is because the evolving probability model leaves out any considerations of these prior 
beliefs that it suffers from radical indeterminacy. This, it seems to me, is where the evolving 
probability model differs most clearly from the conditionalization model, which does, of 
course, take into acount the relevant prior beliefs as prior probabilities. 
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17. See, e.g., Hacking, "Slightly More Realistic Personal Probability," and I. J. Good, 
Probability and the Weighing of Evidence (London: C. Griffin, 1950). 

18. Carnap, in The Aim of Inductive Logic, is an example of such an approach. 
19. The local approach is by far the dominant one among practicing Bayesian statisticians 

and decision theorists, although it is often ignored by philosophers. One exception to this is 
Abner Shimony, who takes locality to be of central importance to his own version of the 
Bayesian program. See his Scientific Inference, in R. C. Colodny, ed., The Nature and 
Function of Scientific Theories (Pittsburgh: University of Pittsburgh Press, 1970), pp. 79-172, 
esp. pp. 99-101. 

20. Glymour's bootstrap theory of confirmation will be discussed below in section 6. 
21. What this formalism does not allow is the embedding of the turnstile. So sentences like 

"[A f- BJ f- C" and "A f- [B f- CJ" will not be well formed. An extension of the language to 
include such sentences may be needed if we want to talk about the confirmation of sentences 
of the form "A f- B" and the problem of old evidence as it arises at that level. 

22. Not everything of interest can be derived from (K*). The following interesting 
properties are not derivable from (K*) and the axioms of the probability calculus alone: 

(a) P(A f- B & A f- C) = P(A f- B & C) 
(b) If A truth functionally entails B in L, P(A f- B) = 1 
(c) If A and B are truth functionallv inconsistent in L, then P(A f- B) 0 
(d) P(A f- B v A f- C) = P(A f- B ..; C) 
(e) P(A f- B & B f- C) s P(A f- C) 

Later we shall discuss adding (b). But any of these properties could be added as additional 
constraints. The more constraints we add, however, the less freedom S has in assigning 
probabilities, and the closer we get to the specter of logical omniscience. 

23. (K*) will be satisfied if "A f- B'' is interpreted as "A & B," say. 
24. I would like to thank William Tait for pointing out a mistake in an earlier and stronger 

but, unfortunately, false version of (T2), and for suggesting the method of proof used here. On 
the existence of strictly positive probabilities, see, e.g., A. Horn and A. Tarski, "Measures in 
Boolean Algebras," Transactions of the American Mathematical Society 64 (1948): 467-497; or 
J. L. Kelley, "Measures on Boolean Algebras," Pacific journal of Mathematics 9 (1959): 1165-
1177. The proof of Theorem 2.5 in Horn and Tarski suggests a simple way of actually 
constructing an infinite number of different strictly positive probabilities on L, one 
corresponding to each countably infinite ordered set of numbers in (0, 1) that sum to 1. 
Consequently, there are an infinite number of probabilities on L* having the properties 
specified in (T2). 

25. Although the recent literature on probability and conditionals, both indicative and 
subjunctive, is vast, something should be said about the relation between my results here and 
what others have done on conditionals. Two constraints on probabilities of conditionals have 
been toyed with in the literature, Stalnaker' s thesis and Harper's constraint: 

(Cl) P(h - e) = P(e/h) 
(C2) P(h - e) = 1 iff P(e/h) = 1 

Unfortunately both constraints seem too strong, and lead to triviality results. David Lewis has 
shown that if (Cl) is satisfied, then P can take on at most four different values. See his 
Probabilities of Conditionals and Conditional Probabilities. Philosophical Review 85 (1976): 
297-315. Similarly, Stalnaker has shown that if(C2) is satisfied, then P(h- e) = P(h :J e). See 
Letter by Robert Stalnaker to W. L. Harper, in Harper and Hooker, Foundations and 
Philosophy, pp. 113-115. Neither of these arguments has gone without challenge. See, e.g., 
Bas van Fraassen's answer to Lewis, Probabilities of Conditionals, in Harper and Hooker, 
Foundations and Philosophy, pp. 261-308 and Harper's answer to Stalnaker in Ramsey Test 
Conditionals and Iterated Belief Change, in Harper and Hooker, Foundations and Philoso­
phy, pp. 117-135. But (Cl) and (C2) are obviously strong conditions that introduce substantial 
complications. Luckily I don't have to worry about the complications or the triviality proofs. 
(Cl) and (C2) fail in my formalism when"__," is replaced by" f- . "Instead, I am committed 
only to the following more modest constraint: 

(C3) If P(h f- e) = 1 then P(e/h) = 1. 
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26. It would be unwise to adopt the slightly stronger constraint: 

(**) If P(A ~ B) = 1, then P(A f- B) = 1. 
(**) is certainly unnatural if" f- " is interpreted as implication, since S could be certain 

of"A ~ B" because he was certain thatA is false, say. Adopting (**)would also block our ability 
to use the formalism in the solution of the problem of old evidence, since (**) has the 
consequence that if P(e) = 1, then P(h f- e) = 1, no matter what h ore we are dealing with. 

27. The same basic technique can be used to construct other probability functions of 
interest. If the conditions of the theorem are satisfied, and E = 0, then P(A), P(B), and P(A f- B) 
will all have the required values and P(A/A f- B) = P(A). If E is chosen to be in the interval 
[-8',0), where 8' = min(rs, (1 - r) (1 - s)), then P(A/A f- B) < P(A). 

28. It certainly will not be the case that every configuration of priors is such that the 
discovery that h f- e will increase S's degree of belief that h. It can easily be shown that 
P(h/hf-e) > P(h) if and only if P(h f- e/h) > P(h f- e/-h). That is, the discovery that hf- e will 
increase S's degree of belief in h if and only ifS believes that it is more likely that h entails e ifh 
is true than if it is false. (This has an obvious parallel in the case ofe confirming h: the discovery 
that e confirms h if and only if e is more likely given h than it is given -h.) It is obvious that this 
condition will not always be satisfied. For example, when e is known to be false it is clear that 
P(h f- e/h) ought to be 0. Even when P(e) = 1, one would not always expect P(h f- e/h) to be 
greater than P(h f- e/-h) (let h be an arbitrary hypothesis in biology and e be Kepler's laws). I 
have found it impossible to specify in any illuminating way a set of circumstances in which it is 
always reasonable to expect that P(h f- e/h) > P(h f- e/-h). 

29. In the discussion period following this paper when it was presented at the Minnesota 
Center for Philosophy of Science, Clark Glymour suggested that the historical facts of the 
Einstein case do indeed agree with my analysis. 

30. T l- E, pp. 92-3. 
31. T & E, p. 122. 
32. I am appealing here to the formulation of bootstrap confirmation that Glymour outlines 

in T & E, pp. 116-117 
33. T & E, pp. 120-121. Glymour elsewhere discusses how his method can distinguish 

between the confirmation afforded to whole theories, i.e., collections of hypotheses. See 
T & Epp. 152-155, 182, 352-353. But nothing Glymour says there touches on the problem that 
concerns me here, so far as I can see. 

34. For a very different attempt to combine the bootstrap idea with Bayesian probability, 
see a paper that Glymour wrote after publishing T & E, "Bootstraps and Probabilities," 
journal of Philosophy 77 (1980): 691-699. In that essay, Glymour uses the tools of subjective 
probability directly in the explication of the relation, "e BS confirms h with respect to T," 
rather than considering the probability function defined over instances of that relation, itself 
defined independently of probabilistic notions. I am inclined to agree with Paul Horwich in 
thinking that "Glymour' s proposal may reduce under pressure to a trivial modification of 
probabilistic confirmation theories" ("The Dispensability of Bootstrap Conditions," journal of 
Philosophy 77 (1980): 699-702, esp. 700), and I am inclined to think that my way of combining 
bootstraps with probability yields a much richer and more palatable mixture than does 
Glymour's. 
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