
state of continual Huctuation , and only words lo lw co11 s train1·d into a tlcµ:n·1· of stuhilit y. 
can quite well believe that such confusions were present in the historical sit11utio11 ; in y 
complaint against you is that you seem to see no need to explica te the iss ues, or to resolvt· 
the confusions. 

10. I he re speak somewhat loosely, without care for the distinction be tween the Newto­
nian and Minkowski space-time structures. 

11. Similarly, when I said, in the passage you quote on p. 329, that " I see no way to 
confront the form er question"- namely, whether a certain re lation is involved in the struc­
ture of " the space-time manifold itself, considered apart from all other entities"­
"independently of the latter" (how to explicate the notion of "the space-time manifold 
itself'-to draw a line, so to speak, between it and "all other entities"); and that yet the 
converse may also seem to hold, e tc.: I was not claiming to offer a proof of vicious circularity 
in the enterprise under discussion. So your reply, in the Uncle-Jack-and-President-Giscard 
passage, aimed at refuting in general terms a charge of "necessary circularity," is in my 
opinion not to the purpose: I still see no way-you have certainly not shown me one-to 
confront the first question independently of the second, or to answer the second without 
begging the first. 

12. De gravitatione et aequipondio fluidorum , in Hall and Hall , ed. , Unpublished Scien ­
tific Papers of Isaac Newton (Cambridge University Press, 1962), pp. 131-132, 136; Latin on 
pp. 99-100, 103 . Hall and Hall mos t irritatingly re nder affectio through out as 
"disposition''-one among many seriously misleading mistranslations in their English ver­
sion of Newton 's Latin tex t. 

13. Again the Halls give a really terrible mistranslation: they have "it is not among the 
proper dispositions that denote substance." But it should be plain to anyone with a rudiment 
of philosophic discrimination that when Newton writes "Non est substantia tum quia non 
absolute per se subsistit; tum quia non substat ejusmodi propriis affectionibus quae 
substantiam denominant ," the two verbs in the two dependent clauses-subsistit and 
substat-are deliberately chosen for their association with substantia: substance is what is 
self-subsistent , and is also the substrate or supporter of properties. The meaning of substat 
has to be, not "stands among ," but "stands tmder": extension is not a substance because it 
does not support- underlie-stand under-the "characteristic denominations" (what Frege 
would call the "Merkmale") of a substance. 

14. The article may, of course, be disputed, since Latin possesses no articles, Newton's 
text reads: Spatium est entis quatenus ens affectio; and the Halls render: ''Space is a disposi­
tion of being qua being." The expression "being qua being" has indisputable standing ii) the 
metaphysical tradition- but not , I think, as denoting an individual subject of attributes, 
something that has "affections" (or "dispositions"). The translation I have given seems to me 
consonant with the sentences that fo llow. 

15. Not, as the f:lalls translate, "of the first existence of being"!-The "first existing 
thing," of course, according to Newton, is God (of whom he has previously characterized 
space as "an emanative effect (as it were)"; but it is noteworthy that the reason ·he g.ives for 
his statement that space is "an emanative effect of the first existing thing" is quite independ­
ent of what thing that may be. 

16. In what you call Riemann's "DH," it is this Wirkliche, rather than the spatial manifold 
itself, whose "binding forces" are said to give rise to the "Massverhaltnisse" in the manifold: 
that is, Riemann does not speak of binding forces as acting upon the spatial manifold (a 
notion it is hard to make any sense of), but as acting upon "the real. " 
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- - ---MIClliH:I. Fllll o,DMAN-----

Simultaneity in Newtonian Mechanics 

and Special Relativity 

1. Introduction 

Everyone will agree , I think , that the transition from Newtonian 
mechanics to special relativity taught us something of fundamental impor­
tance about time and simultaneity. Many philosophers have urged that 
there is a significant senumtic lesson to be learned from this transition. 
For example, the following kinds of views have been expounded: Eins.tein 
was aided in his discove ry of special relativity by an analysis of the "con­
cepts" of time and simultaneity; the transition from Newtonian mechanics 
to special relativity resulted in a profound "change of meaning" of ' time' 
and 'simultaneous'-a change that was so extensive as to make any com­
parison of the two theories problematic; in a special-relativistic world the 
notion of simultaneity is in an important sense conventional-statements 
about distant simultaneity lack truth-value , they are me re "definitions." 

Defenders of such views rarely provide explicit semantic theories 
within whi ch their claims can be evaluated. The re are, however , 
philosophical theories of meaning lurking in the background. Thus claims 
that Einstein analyzed the "concept" of simultaneity fit naturally into an 
operationalist account of meaning, since what Einstein did was to discuss 
ways of measuring time and distant simultaneity. Simila'rly, claims about 
the conventionality of distant simultaneity are supported (at least in 
Reichenbach's case) by a verificationist theory of meaning. Statements 
about distant simultaneity in a special-relativistic world lack truth-value , 
it is argued, because they are unverifiable in principle. On the other 
hand, vi ews that make much of the noncomparability or "incommensura­
bility" ·of the meanings of 'time' and 's imultaneous' in Newtonian 
mechanics and special relativity seem to involve some kind of "contex­
tual" theory of meaning-meaning is to be identified with "role in theory" 
or the like. 

In this paper I would like to see what light can be shed on these 
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seman tic issues using an approach lo th e theory or rncaning that has ht •t•n 
the subject of much contemporary discussion. The approach I have in 
mind takes reference rathe r than meaning as the central notion or seman­
tics. According to this approach, th e semantical proper ti es or a 
sentence-its trnth-value or lack of it, its inferential connections with 
other sentences, e tc.- are determined by (a) the referential properties of 
its component words-the objects denoted by its singular terms and the 
sets (properties) determined by its predicates; and (b) the "logical form" of 
the sentence-how it is built up from its component words by means of 
grammatical constrnctions like trnth-functions , quantifiers, etc. Let us 
call this kind of approach ref erential semantics. It is plausible to suppose 
that referential semantics can be an illuminating framework for discussing 
tradition al semantic issues about the tran sition from Newtonian 
mechanics to special relativity, because many of these issues involve 
claims about truth. Thus the conventionalists hold that statements about 
distant simultaneity lack truth-value in a special relativistic unive rse .' The 
" meaning change" and "incommensurability" theorists hold that we can­
not apportion truth and falsity to th e statements involving 'time' and 
'simultaneous' made by a Newtonian physici st according to the truth and 
falsity of corresponding statements of special relativity, because such 
statements have different meanings in their different theoretical contexts. 
Similarly, according to th e "meaning change" theoris ts , we cannot say 
that such statements made by a Newtonian physicist are approximately 
true that some statements of Newtonian mechanics are logical conse­
que~ces of special relativity, etc. From the point of view of referential 
semantics, all claims of this kind must depend on peculiarities in the 
referential properties of ' time' and 'simultaneous' (assuming that there is 
nothing problematic about the grammatical structure of the sentences in 

question). 

A second feature of my approach is that I shall treat both Newtonian 
mechanics and special relativity as space-time theories . I view both 
theories as theories about a four-dimensional manifold, space-time, and 
the geometrical structures that characterize it. Where the two theories 
differ is with respect to the geometrical structures that space-time actually 
possesses. In particular, differences be tween the two theories as to time 
and simultaneity are to be understood as differences in the geometrical 
properties predicated of sp ace-time. I adopt this view of the two theories 
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bec;.1ns1• il .~ 1 · 1 • n1 s lo 1111 · lo 111ak1 · lh l' ir similarities and diffe rences- th eir 
eomparison- 1·s p1 ·dall y d ear. I lowever, I sha ll not argue directly for this 
view he re (s<'<'. , .. g., Earman , 1970, and Earman and Friedman, 1973). 
Nor shall I argue directly for referential semantics (see, e.g., Field, 1972 
and 1973). Instead , I hope to show that the conjunction of these views 
provides a fruitful framework for the discussion of traditional philosophi­
cal issues relating to Newtonian mechanics and special relativity. Of 
course, if I am successful, this paper will constitute an indirect argument 
for the referential approach to semantics and the space-time approach to 
our two physical theories . 

My argl.\ment will proceed as follows. In section 2 I shall briefly sketch 
four-dimensional formulations of Newtonian mechanics and special rela­
tivity, as such formulations will probably be unfamiliar to most readers. 
In section 3 I shall discuss the question of whether 'time' and 'simultane­
ous' underwent a "meaning change" in the transition from the former 
theory to the latter . I shall argue that with respect to the kind of meaning 
that is most relevant to questions about the truth of statements in the two 
theories-Le., with respect to reference-it is plausible to suppose that 
there has been no change. In section 4 I shall discuss the issue of the 
conventionality of simultaneity in special relativity . I shall argue that 
conventionalists have not given us a good reason to regard statements of 
distant simultaneity as truth-valueless in th e context of special relativity. 

2. Four-Dimensional Formulations of N e wtonian Mechanics 
and Special Relativity 

According to the space-time point of view, the basic object of both our 
theories is a four-dim ensional manifold. I shall use R4, the set of quad­
ruples of real numbers , to represent the space-time manifold. Both 
theories agree that there is a natural system of straight lines defined on 
this manifold. If (a 0 , a 1> a2 , a 3), (h 0 , h 1> h2, h) are two fixed points in R4, 
then a straight line is a subset of R' consisting of elements (xo, X1> x,, X3) of 

the form 

(1) Xo = aor + ho 
x1 = a1r + h1 

x2 = a2r + h 2 

x3 = aar +ha 
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where r ranges through the real numhe rs . A curve on /!'1 is a (suitably 
continuous and differentiable) map a-: R --> R4 . Such a curve <T(11 ) is a 

geodesic if and only if it satisfies 

(2) x0 = a0u + b0 

x 1 = a 1u + b, 
X2 = a2U + b2 
Xa = aaU + ba 

where (xo, x,, X2, xa) = a-(u ) and the a; and b, are constants . So if a curve is a 
geodesic its range is a straight line. Note that the geodesics are just the 
curves that satisfy 

(3) d 2x11du 2 = 0 i = 0, 1, 2, 3. 

The importance of straight lines and geodesics is due to the fact that both 
theories agree that the trajectories of free particles are straight lines in 
space-time. So we can represent such trajectories as geodesics in R'. 

A coordinate system is a one-one (suitably continuous and differenti­
able) map </>: R' --> R'. A coordinate system is affine if and only if it is a 
linear transformation of R 4 , i.e. , it satisfies 

3 
(4) Yi = }'. aiJXj + b, i = 0, 1, 2, 3 

j=O 

where the aii and b, are constan ts and (y0 , y,, y2 , Ya) = c/>(x0 , x,, x2 , xa). 
Affine coordinate systems are precisely those that preserve the condition 

(5') d'y,!du 2 = 0 i = 0, 1, 2, 3 

for geodesics. As we shall see, such coordinate systems are a natural 
representation of the physicist's frames of reference. 

So far , Newtonian mechanics and special relativity agree on the struc­
ture of space-time. But the two theories differ over what further struc­
tures exist on the space-time manifold , and, in particular, over the indi­
vidual natures of space and time. In what follows I shall deal only with the 
kinematical aspects of our two theories , since these aspects are most 
relevant to the role of time and simultaneity. However, it should be noted 
that dynamics-Le., gravitational interaction in the case of Newtonian 
mechanics, and electromagnetic interaction in the case of special 
relativity-can be easily dealt with within this framework as well (see 
Anderson, 1967, Earman and Friedman, 1973, Havas, 1964, and Traut­
man , 1966). 
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(a) N1·wl1111l1111 M1·d1111tl"s 

The c1;11lrnl ohjt•d Iha! Ne wtonian kinematics postulates on the space­
time manifold i., an ohsolute time: a real-valued function t: R'--> R defined 
by t(x0 , x,, x2 , x,.) = x0 . Think oft as assigning a time to each point (event) 
in space-time. The hypersurfaces t = constant are called planes of abso­

lute simultaneity. Two points in R' are simultaneous if and only if they lie 
on the same t = constant hypersurface. Furthermore, on each plane of 
absolute simultaneity Newtonian kinematics postulates a Euclidean met­
ric, h, defined by 

(6) h((t , Xi. x2, xa), (t, x; , x; , x;))2 = (x 1 - x'1)
2 + (x2 - X2)

2 + (xa -
x3)2. 

Now any geodesic curve a-(u) satisfies x0 = a0u + b0 , so if we use x0 = t as a 
parameter for a- it remains a geodesic: i.e. , a-(t ) satisfies 

(7) d2x,ldt 2 = 0 i = 1, 2, 3. 

This is just Newton's law of inertia. 
An inertial coordinate system is an affine coordinate system which is 

generated by a Galilean transformation; i.e. , y0 , y 1, y2, Ya is ine rtial if and 
only if 

(8) Yo = Xo = t 
3 

Yi = ~ llijXj + b, 
j= 0 

i = 1, 2, 3 

where the a;;, i , j = 1, 2, 3 form an orthogonal matrix: l ai!ak1 = ~k = 1 
if i = k , 0 if i * k . Inertial coordinate systems are just those that preserve 
the above form of the law of inertia and the above form of the spatial 
metric h. I shall say that an inertial coordinate system y0 , y,, y2 , Ya is 
adapted to a trajectory a-(t) if and only if a-(t) satisfies the equations y0 = t, 

y, = 0, i = 1, 2, 3. Thus one can think of u as representing a particle at rest 
at the origin of y0 , y,, y2 , Ya· There exists an inertial coordinate system 
adapted to u if and only if a- is a geodesic. So if a- is a geodesic and cJ> is an 
inertial coordinate system adapted to a- , I shall call the pair (a-, </> ) an 
inertial frame. In inertial frames free particles satisfy Newton's first law. 

(h) Special Relativity 

In Newtonian kinematics time is represented by the function t, while 
space is represented by a t = constant hypersurface , endowed with a 
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three-dimensional Euclidean rnet ri c Ii . In special re lativity we ca pt11 n · 

the roles of both time and space by a single object: a four-dimensional 
pseudo metric g defined by 

(9) g((xo, x,, X2, x3), (i~. xi-, xi-, x'3))2 = 

(xo - xij) 2 
- (x , - x;)2 - (x2 - x~) 2 - (x3 - x3)2. 

g is called the Minkowski metric. Two points p , q E R4 have timelike 
separation if g(p, q)' > 0, spacelike separation if g(p, q)' < 0, null separa­
tion if g(p, q)2 = 0. A curve is timelike if every point on it has timelike 
separation from every other point, and similarly for spacelike and null. 
Equivalently, a curve u (u) is timelike if and only if 

(W) ~ 1);; dx, dx,> 0 
u J;;, du 

everywhere, and similarly for spacelike and null-where 1);; = 1 if i = j = 
0, -1 if i = j = 1, 2, 3, and 0 if i * j. We require that the trajectories of 
free particles be timelike geodesics. 

For any timelike curve u(u), we can define its length r by the formula 

(11) r(u) =Ju ~1);; ~~du. 
" du du 

T is called the proper time of u. On timelike curves we can use r as a 
parameter, and if u (r ) is a timelike geodesic it satisfies the law of motion 

(12) d'xrldr = 0 . 

An inertial coordinate system is an affine coordinate system which is 
generated by a Lorentz transformation; i. e., y 0, y 1, y2 , y3 is ine rtial if and 
only if 

(13) y; = ~ aux; +b, 
J 

where 

Inertial coordinate systems are just those that preserve the above form of 
the law of motion and the above form of the space-time pseudo metric f!.. 
Since in an ine rtial coordinate system a timelike geodesic u (r) satisfi es 

Yo = aor + ho. we can use y 0 as a parameter on curves as well without 
disturbing the condition for timelike geodesics . The y 0 coordinate of an 
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ine rtial sys l<"111 Is 1·1ill1 ·d 1111 · rn11rdi1wt1· lillll' of' th .. sys t1·111. l'ro111 11ow on I 
shall d1 ·11ot c s11d1 11 t't1ordi11al1• li1111· hy ' t .' Th11s in an ine rtial system the 
law of motio11 ca11 hl' written i11 th e form 

( 15) d'y,!dt' = 0 i = 1, 2, 3. 

I shall say that an inertial coordinate system is adapted to a trajectory 
u(r) if and only if u (r ) satisfies the equations y0 = t = T , y; = 0, i = 1, 2, 
3--whe re r is the proper time of u. There exists an inertial coordinate 
system adapted to u if and only if <T is a timelike geodesic. If <T is a 

timelike geodesic and <P is an ine rtial coordinate system adapted to <T, I 
shall call the pair ( cr, <P) an inertial frame. Relative to a given ine rtial 
frame we have hypersurfaces t = constant, where t is the coordinate time 
of the frame. These hypersurfaces are spacelike (every point in one has 

spacelike separation from eve1y other point) and are endowed with a 
Euclidean metric by g (if p, q have spacelike separation, define h(p, q) 2 = 
-g(p, q)2

). Two points p , q ER' are simultaneous with respect to the given 
inertial frame if and only if they lie on the same t =constant hypersurface. 

Le t us call a triple (R4
, t , h ), where tis an absolute time and his a 

Euclidean metric on the hypersurfaces t = constan t, Newtonian space­
time; a pair (R4

, g), where g is the Minkowski metric, Minkowski space­
time. 1 The basic claim of Newtonian kinematics is that our universe is a 
Newtonian space-time; the basic claim of special relativity is that our 
universe is a Minkowski space-time. Diffe rences between the two 
theories over the roles of time and simultaneity turn on structural dif­
ferences between Newtonian and Minkowski space-times . Thus in New­
tonian space-time there is a unique global time de termined by t , and a 
unique relation of simultaneity S such that pSq if and only if p and q 
lie on the same t = constant hypersurface . Both time and simultaneity are 
independent of coordinate system or reference frame. 

In Minkowski space-time, on the other hand, there is no such unique 
global time. Time is in the first instance a local property; the proper time 

of a particular timelike curve. Being local, proper time cannot be used to 
define a relation of simultaneity at all ; it can be used only to compare the 
times of points lying on the same trajectory. However, relative to a par­
ticular inertial frame F there is a global time Ip- the coordinate time of 
the inertial coordinate sys tem determined by F. Thus in Minkowski 
space-time the re is a multitude of simultaneity relations. For each inertial 
frame F there is a simultaneity relation SF such that pSF q if and only 
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if p and q lie on th e s;11110 11 .. = co11sta11l hypcrs11rface . So i11 spodul 
relativity (global) time and simultaneity are coordinate or fram e de prnul­
ent. It makes no sense to say that two events are simultaneous sin1pliciter, 
but only relative to this or that inertial frame or coordinate system. 

3. The "Meaning" of 'Simultaneous' in Newtonian Mechanics 
and Special Re lativity 

If special relativity is true , Newtonian mechanics as a whole is false. 
Our world is a Minkowski space-time, not a Newtonian space-time; and 
neither a frame-independent global time nor a frame-independent simul­
taneity relation exists. Nevertheless, although the whole system of beliefs 
about time and simultaneity held by Newtonian physicists was false, we 
might plausibly (and perhaps naively) suppose that some of these beliefs 
were true. For example, we might suppose that when a Newtonian physi­
cist uttered a sentence such as 

(16) Events e , and e2 are simultaneous in frame F , 

he said something true. On the other hand, when he uttered a sentence 
like 

(17) If e , and e2 are simultaneous in frame F, then e , and e2 are 
simultaneous in frame F' , 

he said something false . Our reasoning here is that (16) is tJue and (17) 
false because a relativistic physicist would accept (16) and reject (17), and 
we believe that special relativity is true.2 Furthermore, although (17) is 
strictly false, we might plausibly (and perhaps naively) suppose that it is 
approximately true---as long as e, and e2 are not widely separated in space 
and the relative velocities of F and F' are small. This is because of the 
following derivation in special relativity: Let events e 1 and e2 have coordi­
nates (xo, x., x2 , x3) and (x0 , l.', , x2 , x3) respectively in frame F. If y0 is the 
coordinate time of event e" and y' 0 is the coordinate time of e2 in frame 
F', it follows that their difference is given by 

(18) luJ- Yol =vi x;_-: x,1 1 Vl - v 2 

where v is the velocity of frame F' relative to frame F (I assume that F' is 
moving along the x1-axis of F and that c = 1). This difference is small ifv is 
small and Ix; - x1 I is small. Thus, if e 1 and e2 are simultaneous in F , they 
will be approximately simultaneous in F' whenever they are spatially 
close and the velocity of F' relative to F is small. 

410 

SIMlll.'l'/\Nli:l'I''' IN Nl•:WTONl/\N MIO: <:ll/\Nl<:S 

I low1 ·v«1', 11 " 11w1111i11µ; d1:111µ;1· " 1h.,orisl would 1101 ho happy with this 
way of looki11µ; al 1111· 111:1llm (see, e .µ;., Feyerabend, 1962 and Kuhn, 
1962). He would de11y that the foci that a relativistic !Jhysicist would 
accept (16) and reject (17) gives us a reason to think that a Newtonian 
physicist said something true when he uttered (16) and said something 
false when he uttered (17). For, according to the advocate of "meaning 
change," (16) and (17) do not express the same things when uttered by a 
Newtonian physicist and by a relativistic physicist; (16) and (17) have 
different meanings in their different theoretical contexts. Similarly, a 
"meaning change" theorist would deny that the fact that (18) is derivable 
in special relativity gives us a reason to think that (17) is approximately 
true in the context of Newtonian mechanics. The sentence that is deriva­
ble in special relativity is not an approximation to (17) as a principle of 
Newtonian mechanics, for the two have radically different meanings. 

Now the first thing to notice is that the relevant issue here is not 
whether 'simultaneous' has different meanings in the two different 
theoretical contexts, but whether it has different referents. For, ifthere is 
anything right about the referential approach to semantics, truth-value is 
a function of the referents of the component Words of the sentences in 
question. Thus, as long as 'simultaneous' has the same referent in our two 
theoretical contexts, (16) and (17) will have the same truth-values in the 
two contexts, whether or not they have the same meanings. As long as the 
reference of 'simultaneous' is preserved, our argument that (16) is true 
and (17) false in the context of Newtonian physics because (16) is true and 
(17) false in special relativity is correct. Similarly, if reference is pre­
served, we can regard (18) as an approximation to (17) , and we can 
therefore regard (17) as approximately true. Thus, if the problem of "in­
commensurability" relates to the comparison of the truth-values of sen­
tences in our two theories--e. g., if the problem is whether sentences in 
the two theories can contradict each other, whether sentences in one 
theory can be derived from sentences in the other, whether sentences in 
one theory can be approximations to sentences in the other, etc.-then 
the crucial issue is over the referents of words like 'time' and 'simultane­
ous,' not their meanings. The "meaning change" theorist must argue that 
'time' and 's imultaneous' have different referents in their different theo­
retical contexts, not merely that they have different meanings. 

How does the "meaning change" theorist argue for his view? Charac­
teristically, he appeals to the radical differences in the theoretical princi-
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pies involving time and sim111la11 l'i ty i11 tl1<· two th eo ri es. For t•x:1111plt •, i11 
Newtonian mechani cs time is an "absolute ," non re lational , f'ranw ­
indep endent quantity; while in special re lativity it is a relational , framt •­
dep endent quantity. H ow could te rms embedded in such radically dil~ 

fe rent theore tical principles have the sam e meaning? This line of thought 
can suppo1t claims about the referents of ' time ' and 'simultaneous' if we 
adopt the view that the reference of a theore ti cal te rm is de termined by 
the theore ti cal p rinciples containing the te rm . That is, we can use 
theoretical differences as an argument that ' time' and 'simultaneous' have 
diffe rent referents in Newtonian mechanics and sp ecial relativity if we 
adopt the view that a theore tical te rm refers to whatever satisfi es the 
th eore ti cal prin cipl es containing th e te rm , or whateve r sa ti sfi es a 
sufficient numbe r of such principles, or the like. Thus if ' time' refers to 
anything at all in the context of Newtonian mechanics, it refers to an 
"absolute ," fram e-indep endent quantity; if 'simultaneous' refers to any­
thing at all , it refers to an "absolute," frame-independent relation . On the 
othe r hand, in special re lativity ' time' refers to a relational, frame­
dep endent quantity; 'simultaneous' refers to a frame-dep endent relation . 
The refore these terms cannot possibly have the same referents in the two 
different theories. 

This view of how the reference of theoreti cal te rms is determined- that 
a theoretical term refers to whatever satisfi es (a suffi cient numbe r of) the 
theore ti cal principles containing the term-is closely analogous to the 
Russell-Searl e account of how the reference of proper names is de ter­
mined. According to the Russell-Searle account, the refere nt of a proper 
name is whoever satisfi es (a suffi cient numbe r of) the d escriptions we 
"associate" with the name. This acwunt of the reference of proper names 
has been the subject of much recent criti cal discussion (see Kripke, 1972). 
It seems to me that the parallel account of theoreti cal te rms has very 
similar fl aws. ln particular, if the account of theoreti cal terms in ques tion 
is correct , it is hard to see how a theory can eve r turn out to be false (or at 
least hard to see how the "central" principles of a theory can turn out to be 
false). If this account is correct , there either is an entity satisfying (a 
sufficient numbe r of) the theoreti cal principles involving a given te rm or 
there is not. If there is, the principles are true; if there is not , the given 
te rm lacks a referen t and the principles are trnth-valueless. So, fo r exam­
ple, if this account is correct , we cannot say that Newtonian mechanics 
represents a false view of time and simultaneity. Newtonian mechanics is 
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An obvious way 011! ol' !his di!Ti enlty is lo vi ew !he lhcore ti eal pri11cipl1 ·s 

involving ' lime' and 'simultaneous' of' Newtonian meeha11ies as 1·.ris le//li11/ 

assertions; or, what amounts to the sam e thing, to view theorc li e.1l l1 ·rn1s 
as analogous to definite descriptions, and to adopt Russell's ralhe r 1ha11 
Frege's view of the truth-values of sentences containing nonsati sli ed dt ·li ­
nite descriptions. That is, we construe Newtonian meehanics as eo11lai11 -

ing assertions of the form 

(19) The re ex ist a quantity t and a re lation 8 such that 

where the conjunction of the various theore tical principles involvi 11g 
'time' and 'simultaneous' is put in the blank. This constrnal allows us lo 

say that Newtonian mechanics as a whole is false, since there ex ists '"' 
such quantity t and no such re lation S . However, it does not allow 11 s lo 
say anything about the trnth-values of individual sen tences of Newtonian 
physics. We cannot say, for example, that (16) is true and (17) fa lse. No l<· , 
that it will not do to constrne individual theore ti cal sentences again as 
existential assertions . We cannot, e.g., constrne (16) as 

(20) There exists a relation S such that e , bears to e2 in Framl' F. 
and (17) as 

(21) The re exists a re lations S such that if e, bear s to e2 in fram t• /.' 
the n e, bears S to e2 in frame F'. 

This makes (16) come out trne, all right, but it also makes (17) true. For 
(21) is certainly true; the re exist plenty of frame-independent relations, 
e.~., the re lation of having spacelike separation! This last move makes it 
far too easy for an individual theoretical sentence to be true. 

These considerations sugges t that it is a mistake to view the refe rence of 
theore ti cal te rms as determined by the theoreti cal principles within 
which they occur. If we say that a theore tical te rm either refers to an 
entity that satisfi es (a sufficient number of) the theore tical principles con­
taining the te rm or to nothing at all, we make it too difhcult for such 
theore tical principles to turn out false . On the othe r hand, if we constrne 
theore tical terms as analogous to Russellian descriptions, and thereby 
constrne theoreti cal principl es as basically existential asse1tions, we make 
it too diffi cult for such principles to turn out true--for in thi s latte r case, 
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only the theory as a whole !'all IH' In"' or foist •. And 1101< · that this holds 
even if the theory as a whol e is complete ly and exactly true-we sti ll hav<· 
no general method for apportioning truth to the individual sentences ol' 
the theory. However, if the reference of a theoretical te rm is not dete r­
mined by the theoretical principles within which it occurs, how is it 
determined? In my opinion, so-called causal theories of reference are on 
the right track. That is , it seems to me that what a theoretical term refers 
to is not a matter of which entity (if any) satisfies the theoretical principles 
involving the term, but rather, a matter of which actual entities have the 
right sort of "historical" connection with the use of the term (see Kripke, 
1972 and Putnam, 1973). 

Now I grant that this way of talking is extremely vague, and I do not 
know how to give a precise account of what the right sort of "historical'' 
connection is. Nevertheless, in my view, this way of looking at the 
reference of theoretical terms does not leave us at a total loss either. On 
the contrary, I think we have enough intuitive ideas abou t what the "right 
sort of connection" is to at leas t get plausible candidates for the referents 
of most theoretical terms. For example, such questions as: 'What actual 
quantities are being measured by the measuring procedures used to 
determine values for the quantities postulated by the theory?' and 'What 
entities are actually responsible for the phenomena explained by the 
theory?' seem highly relevant for determining which quantities and rela­
tions the theoretical terms of our theory actually refer to. Furthermore, 
although the "historical" connection view of reference does not have any­
thing very precise to say about just what the reference relation is , it says 
enough to free us from the implausibilities of the satisfaction-of­
theore tical-principles account. That is , it shows us how even the central 
principles of a theory can tum out to be false, and it allows us to attribute 
truth and falsity to the individual sentences of a theory in a plausible way. 

The case of 'time' and 'simultaneous' in Newtonian mechanics provides 
a good illustration of these points . In determining the referen ts of these 
terms, we should not look for entities that satisfy the theoretical principles 
of Newtonian physics- there are no such entities! Rather, we should 
proceed as follows: given the entities-quantities, relations, etc.-that 
our best current theory postulates, we look for some among these which 
(a) give a plausible distribution of truth-values for the sentences involving 
'time' and 'simultaneous' used by Newtonian physicists; (b) are actually 
responsible for the phenomena explained by Newtonian mechanics; (c) 
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an· al'111111l y 1111 •11 ,, 111·1·d hy 1111 · 1111·11s11ring l""'''''d11n·s 11st •d lo test Newto­
nian 111ed11111i<-.•. S11pposi 11g li>r a 1110111c nt that special re lativity is our best 
current th eory, and using these (admittedly rough and incomple te) 
guides, I suggest we obtain the following results about the referents of 
'time' and 'simultaneous' in Newtonian mechanics: 

(i) In a context like 'time . .. in frame F,' ' time' refers to tp-the 
coordinate time of frame F. In a context like 'simultaneous ... in 
frame F ,' 'simultaneous' refers to SF -the relation of lying on the 

same hypersurface tp = cons tant. 
(ii) Where 'time' or 'simultaneous' occurs without explicit qualifica­

tion as to reference frame , but other features of the context "attach" the 
sentence to a particular reference frame-e .g., the sentence is uttered 
within a particular laboratory frame on the surface of the earth-'time' 
refers to the coordinate time tp of that frame and 'simultaneous' refers 
to SF. 

(iii) Where the context neither explicitly nor implicitly "attaches" the 
sentence to a particular inertial frame , 'time' and 'simultaneous' have 
no referents. 
These suggestions accord with (a)-{c) above . We have the intuitively 

plausible consequence, for example, that (16) is true and (17) fals e; we 
are able to attribute truth and falsity to the individual sentences used by 
Newtonian physicists; and we make it neither too hard nor too easy for 
such sentences to come out true . The quantity assigned to 'time'-i.e., 
the coordinate time of a particular frame in a particular context-is the 
quantity actually responsible for the phenomena explained by Newtonian 
kinematics. The central explanatory principle of Newtonian kinematics is 
the law of inertia (7); and, according to special relativity, the correct form 
of this law is (15)-which determines the trajectory of a free particle as a 
function of coordinate time. Finally, the quantity assigned to 'time' is the 
quantity actually measured by (ideal) clocks. According to special relativ­
ity, (ideal) clocks measure the proper time along their trajectories. So a 
clock at rest at the origin of a particular inertial frame F measures the 
coordinate time of F. 

If (i)-{iii) are correct, 'time' and 'simultaneous' have referential prop­
erties analogous to indexical words like 'I ,' 'you,' 'here,' and 'now.' Just as 
indexical words refer to different things relative to different contexts­
relative to different speakers , hearers , places, and times-'time' and 
'simultaneous' refer to different things relative to different inertial refer-
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ence frames. (And, as in th e case of indexical words, th e re levant conl<-xl 
may be either explicit or implicit. ) Just as the truth-values of senl<!nc"s 
containing indexical words can vary with contex t, the tnith-valnes of sen­
tences containing ' time' and 'simultaneous' vary with in ertial fram e . 
Neither kind of sentence possesses a truth-value absolutely , but only 
relative to this or that context (reference frame). Thus, when the sentence 
in question is not "attached" to any context (reference frame) of the ap­
propriate kind, it lacks a truth-value and its component words lack refer­
ents. 

If I am right, the transition from Newtonian mechanics to special rela­
tivity has taught us a semantic lesson. In a special relativisti c world the 
referents of 'time' and 'simultaneous' have to be taken as dependent on 
reference frame; ' time' and 'simultaneous' must be seen as possessing 
referential properties analogous to those of indexical words. If the world 
were Newtonian, this would not be necessary; 'time' and 'simultaneous' 
would have unique, frame-independent referents. However, it is not 
necessary to suppose that 'time ' and 'simultaneous' have changed their 
referential properties in this transition. Since our world is and always was 
(so we believ~modulo note 2) a special-relativis tic world , not a Newto­
nian world, th e words ' time' and 'simultaneous' have and always had 
referential properties appropriate to a special relativistic world . Thus, 
when used by a relativistic physicist , ' time' and 'simultaneous' have the 
same referential properties as they did when used by a Newtonian physi­
cist: i. e., (i)-(iii) still hold. (Of course, if a relativistic physicist is careful , 
case (iii) will never occur!) One is able to argue for a significant semantic 
change in the transition from Newtonian mechanics to special relativity 
only by employing wildly implausible theories about the reference of 
th eoretical terms. 

4 . The Conventionality of Simultaneity in Special Relativity 

The problem of the conventionality of simultaneity is typically intro­
duced in the following way: we are asked to imagine two points , p0 and p" 
in a given reference sys tem. Situated at each of the points is a clock. A 
light signal is sent from p0 to Pt> where it is reflected back to p0 • The ligh t 
signal leaves p 0 at t 1-as dete rmined by the clock at p 0-and returns 
to p0 at t2 . Our problem is to synchronize the clock at p 1 with the clock at 
p0; to say when, according to p 0-time, the light signal arrives at p 1. We 
must dete rmine which event be tween t 1 and t2 at p 0 is simultaneous with 
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or cl<'Fi11ilio11 whid1 1·v1·11I J,.. lw<'"" / 1 and t 2 is simultaneous with E; no 
choice is any ·· 1nwr .. than an y other. Of course , if we assume that the 
velocity of light is the same from p 0 to p 1 as it is on the return trip , the Po 
time of E would be unambiguously determined as 

(22) t = t, + ~ (t2 - t, ) 

E 

Figure 1 

However, conventionalists argue that any claim about the one-way veloc­
ity of light-as distinct from its round-trip velocity-is just as conven­
tional. They argue that 

(23) t = t, + E(t2 - t,) 

is just as good as (22) for determining the p0-time of E, where Eis any real 
number such that 0 < E < 1. Only computational simplicity can favor the 
choice E = ~ over any other admissible value of E. There are no facts that 
make (22) tme and (23) false. 

I think this prob lem can be greatly clarifi ed by looking at special relativ­
ity from the space-time point of view of section 2. Our discussion will be 
facilitated if we consider Minkowski space-time as a two-dimensional 
manifold-Le. , as R2 instead of R4

. This device simplifies the algebra 
without essentially changing the conceptual si tuation. Our theory remains 
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the same, except that the Minkowsk i pse udo-met ri c lakes th e simpl e r 
form 

' g((x0 , x,), (x0, x;))2 = (x0 - x0)2 - (x 1 - x\)2 

I 

in R 2. Thus, inertial coordinate systems y0 , y, are characterized by the 
condition 

g(p, q)2 = (Yo - yf,)2 
- (y, - y;)' 

where p has coordinates (y0 , y, ) and q has coordinates (y0 , y{ ). To set up 
the problem in this framework, consider a given inertial frame associated 
with the time-like geodesic u(r). Let there be given two null geodesics 
(light rays) which intersect u (r) at Yo = r ., and y0 = r2 respectively, and 
intersect each other at E. Since null geodesics have cons tant unit velocity 
in inertial sys tems (I have set c = 1), it is clear that if we fix the time at 
point E according to the synchronization role (22)-i. e ., if we let the time 
of Ebe 

t = r 1 + ~ (r2 - r, ) 

we are merely adopting the coordinate time t = y0 of our given inertial 
frame as our global time. That is , the rule (22) amounts to fixing the time 

Yo 

CT (T) 

Figure 2 
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What ar!' we cloin~ ii' we 11 s~ (23) instead ol' (22) to fix the time of 
E- i. e ., ii' we le t the time ol' E be 

(23) /. = r 1 + E(r 2 - r, ) 

with E * 'h? This latter procedure can be viewed as using the coordinate/. 
= z., of a noninertial coordinate system z0 z1 as our global time . It amounts 
to fi xing the time of events not on the trajectory u (r ) by means of the z0 = 

t coordinate of a noninerti al coordinate system adapted to u(r) (in the 
sense that u(r) satisfies z0 = r , z , = 0 in z0 , z 1). 

The relation between the noninertial sys tem z0 , z, and our original 
inertial system y0 , y, is easily seen to be 

(24) l = Zo = t + 28y 1 

z, = y, 

where 8 = E - 'h. The inve rse relation is of course 

(25) t = Yo = t - 28z1 

y, = z, 

Thus, using E * V2 in (22) amounts to performing the coordinate transfor­
mation (24) and using the "coordinate time" t of the new system to define 
simultaneity. Using (25) we find that the Minkowski metric takes the form 

(26) g(p , q)2 = (zo - zo)2 - 48(zo - zij) (z , - zl) + (482 - 1) (z , -

zD' 
in our new system z0 , z ,. Now a minimal condition for a z0-coordinate to 
be a temporal coordinate is that the curves z0 = constan t be spacelike. It 
follows from (26) that this is the case if and only if 

(27) 482 - 1 < 0. 

If we substitute E - 'h fo r 8 in (27), this minimal condition becomes 

(28) E(E - 1) < 0. 

(28) implies that 0 < E < 1. So the "coordinate time" of an E-system-a 
sys tem in which (26) bolds-is a sui table temporal coordinate only ifO < E 

< 1. 
Some useful facts about E-systems are the following. First , if a trajectory 

has velocity v = dy,!dt in an inertial coordinate system and "velocity" v = 
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dz,!cli inane-system , it li11lows from (24) and (25) that the two art· n·latc·d 

by 

(29) v = :V1(1 - 21l:V). 

Second, the relation between the coordinate time t and the proper time T 

of a trajectory in an inertial system is given by 

(30) dT=Yl-v 2 c[ 

In e-systems (30) becomes 
.-~~~~~~~~~~ 

(31) dT = V l - 4/lv + (482 - 1) v 2 dt 

or (32) dT = V (1 - v(2e - 1)) 2 
- v 2 dt. 

Finally, we know that two inertial sys tems , t , y 1 and t* , Yi are related by 

a Lorentz transformation 

(33) t* = (t - vy, )IV 1 - v 2 

yf = (y, - vt)IV 1 - v2 

where v is the relative velocity of the two systems. How are two different 

e-systems related? 
Let the re be given two e-systems, I and II , with coordinates t , z, andt* , 

zi respectively. Let th e respective values of e in the two frames be e1 and 
e2, and le t fram e II move with "velocity" v with respect to frame I. We can 
use the following procedure to find the transformation connecting the two 
fram es: (1) use (25) to transform I into an inertial fram e t, y1 ; (2) use (28) 

. and (32) to transform t , y, into a second inertial fram e t* , Y,~ moving with 
velocity v with respect to the first; (3) use (24) to obtain the frame II. This 
procedure results in some tedious algebra and 

(34) 

t* = z~ = (2v(l - e, - e2) + l)t - (2(e, - e2) + 4v•1(1 - e1))z 1 

V (1 - v(2E1 - 1))2 - v 2 

z* I 
V (1 - v(2e1 - 1))2 - v2 

Note that when e1 = E2 = ~ , v = v and (34) reduces to a Lorentz 
transformation (33). 

John Winnie (1970) derives the above transformations from a com­
pletely different point of view. 3 He calls the relations (34) the •-Lorentz 
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ln111s/i1r11111ti1111s . Tl1e· pmposc· of Win11i<."s papc·r is lo ar).(IC< ' that s1><·cia l 
relativity as li1rn11dat..d 11si11).( lhl' standard sy11chrn11ization rnle (22) is 
"kinematica ll y equivalent" to a formulation using the nonstandard rule 
(23) with E "/' ~ -thus vindicating, according to Winnie , the thesis of the 
conventionality of simultaneity. In the present fram ework, Winnie's claim 
is that special relativity as formulated in e-systems is equivalent to special 
relativity as formulated in inertial systems. It seems to me that there is 
one sense in which this claim is obviously true , but completely trivial; and 
there is a second sense in which it is not at all obvious, and completely 
unsupported by Winnie's arguments. 

The sense in which the equivalence claim is obviously true is that 
Minkowski space-time can be described equally well from the point of view 
of e-coordinate systems as from the point of view of inertial coordinate 
systems. Formulations of special relativity in e-systems say the same thing 
about Minkowski space-time as formulations in inertial systems. Indeed, 
they are nothing but different coordinate representations of the same 
theory (the theory expressed in coordinate-independent form in note 4). 
Thus the two formulations cannot disagree about the behavior of light­
light follows null geodesics independently of coordinate system; nor about 
the behavior of free particles-free particles follow timelike geodesics 
independently of coordinate system; nor about the behavior of clocks­
(ideal) clocks measure the proper time along their trajectories independ­
ently of coordinate system; etc. But note that in this sense of'equivalence' 
there is no need to restrict ourselves to e-coordinate systems. Minkowski 
space-time can be equally well described from the point of view of any 
coordinate system; our theory can be represented in arbitrary coordinate 
systems. (This is especially obvious in the formulation of note 4.) Thus the 
equivalence of e-systems and inertial systems in this sense reveals no 
deep facts about Minkowski space-time or special relativity. Newtonian 
space-time can be represented in arbitrary coordinate sys tems as well; 
Newtonian kinematics can be formulated in systems that are not inertial 
with no change in theory. In fact , of course, any theory expressible in 
tensor form will have this property. 

Thus, if the equivalence claim is to be nontrivial, it must amount to 
something more than the assertion that e-coordinate systems and inertial 
coordinate systems are equally good representations of the basic facts 
about Minkowski space-time hypothesized by special relativity. Let us 
look a little close r. According to special relativity there is no unique global 
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time defined on space-time . 1 lowev(' r, speci al re lativity in its 11 s11al E = Yi 
form ulations associates a unique global time with eve ry state of in l' rtial 
motion. For every timelike geodesic u (T), th e re is a unique (up to a linea r 
transformation) way of ex tending its proper time to a glohal coordinat<' 
time t-the y0-coordinate of an ine1tial coordinate system adapted to <T(T). 
Now a defender of the equivalence claim can be construed as asserting 
that the re are other, equally good, ways of ex tending the proper time of a 
time-like geodesic to a global time-namely, th e z0-coordinates of 
e-systems adapted to <T(T). That is , he is claiming not merely that 
E;-sys tems and inertial sys tems are equally good coordinate representa­
tions ofMinkowski space-time, but that the z0-coordinate of an E;-sys tem is 
an equally good candidate for the global time associated with a given state 
of ine rtial motion as the y 0-coordinate of an ine rtial sys tem. The t of an 
E;-sys tem is an equally good representation of physical time as the t of an 
inertial sys tem. This explains why a defender of the equivalence thesis 
conside rs only e-systems with 0 < " < 1, and not arbitrary coordinate 
sys tems. For only the z0-coordinate of an E;-system with 0 < " < 1 satisfi es 
minimal conditions for representing physical time: the hypersurfaces z0 = 

constant being spacelike. 
If this is correct , arguments like Winnie's, which simply amount to 

showing how special relativity as formulated in inertial systems can be 
translated into a formulation in e-systems, do not support a nontrivial 
version of the equivalence thesis. Such translation procedures merely 
prove that E;-systems and inertial sys tems are equally good coordinate 
representations ofMinkowski space-ti me , a fact that is obvious in a tensor 
formulation of special re lativity. In support of a stronger version of the 
equivalence claim , we must be given some reason to th ink that the z0-

coordinate of an E;-sys tem is an equally good representation of physical 
time as the y0-coordinate of an inertial system. Clearly the condition 0 < " 
< 1 is a necessary condition for a z0-coordinate to represent physical 
time--bu t is it sufficient? Are there any plausible additional conditions 
that narrow the choice of " furth er? 

The advocates of so-called slow-transport synchrony (see Ellis and 
Bowman, 1967) may b e unders tood to propose a furth e r such necessary 
condition for a z0-coordinate to represent physical time . Consider again 
the problem of synchronizing two clocks in a given reference frame, one 
at P 0 and the othe r at P 1. The two are said to be in slow-transport synchrony 
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Figure 3 

if a clock synchronized with Po-time at t 0 is transported "infinite ly slowly" 
to P 1 and is in agreement with P ,-time at t ,. (We consider only "infinitely 
slow" transport to avoid the velocity-dependent relativistic time-dilation 
e ffects.) More precisely, let the re be given an arbitraiy e-system zo. z 1 

adapted to a given timelike geodesic u (T). 
Consider a timelike geodesic p(7'*)-representing a clock transported 

with constan t veloci ty-which intersects u (T) at To . Consider two events E 
and E' on u (T) and p(T*) respectively, and let the proper time T* of p equal 
that of <T at their intersection: i. e ., let To = T0*-the two clocks are 
synchronized . Finally, let the "veloci ty" of p in z0 , z , be v = dzi/dz0 . E 
and E' are slow-transport simultaneous if and only if lim (T 1 - T 1*) =0, 
where r 1 and T 1* are the respective proper times of E •;:id E' (Fig. 4). 

Now I take the advocates of slow-transport synchrony to be imposing 
the furth e r condition on a z0-coordinate that it agree with slow-transport 
simultane ity; i.e., that two events are simultaneous according to z0- they 
have the same z0-coordinate--if and only if they are slow- transport simul­
taneous . It is not hard to show that this requirement fixes " at ~ ; only the 
y0-coordinates of inertial sys tems satisfy this condition . For suppose that 
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Figure 4 

E and E • are z0-simultaneous in our diagram: th e z0-coordinate of E' is just 
T 1. It follows from (31) that 

(35) (T,* - To*) = (T, - T0)V l - 48 v + (482 - l )v2 

Expanding th e "dil ation te rm" in a binomial series we obtain 

(T1* - To*) = (T1 - To) (1 - 28v - ~ (482 - 1) v2 -

where the rest of the se1i es consists of second and higher p owers of v. 
Since To* = To we have 

(T, - T,*) = (T, - To) (28v - ~ (482 
- 1) v2 - . 

But (T, - To) = z/v where z1 is the "spatial" coordinate of E '. So we have 

(T, - T1*) = z ,28 - ~ (482 
- 1) v - . 

Letting v ~ 0 and substituting E - 112 fo r 8 we finall y get 
lim (T 1 - T 1*) = z 1 (2E - 1) 
V"~o 

So Zo simultaneity agrees with slow-transport simultane ity everywhere if 

and only if E = ¥2, if and only if z0 is the coordinate tim e of an inertial 
coordinate system adapted to <J"(T). 
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thi11g h«iug a r«lll"l '-"' "'ali1111 111" ph ys ical li11!(' is that it ag ree with slow­
lrausporl si111l!Jlall <0 il y, //,I'll tJ1 e ~- o-l'Oordi11af"es of E-sys tems with E 'f' ~ 
are not e<111ally good represe ntations of phys ical time as the y er-coordinates 
of ine rtial sys tems. Howeve r, thi s refutes th e conventionali st only if he 
con ced es that thi s r equire m e nt-agreem e nt with slow-tran sport 
simultaneity-is not itself conventional. And the conventionali st does not 
have to (nor does h e in fact : see Griinbaum, 1969 and Salmon, 1969) 
concede this. He can maintain that just as ch oosing E = 1i2 is not any 

"truer" or more "factual" than choosing E * ~ ; so, requiring agreement 
with slow-transport simultane ity is not any " true r" or more "factual" than 

not requiring it. Both choices may have the advantage of simplici ty over 
their alternatives, but not the advantage of truth. But now the debate 

over conventionali sm begins to look hopeless . The conventionali st asse rts 

that a ce rtain system of description is not "factual," and produces alterna­
tive d escriptions whi ch h e c la im s are "equally good"; th e anti­
conventionalist poin ts to various asymmetries be tween the original sys­
tem and the conventionalist's alternatives; the conventionalist replies that 
these differences are not "factual" eithe r , they are merely diffe rences in 
simplici ty; etc. If this debate is to have any point we need some kind of 
independent characte rization of the difference be tween "factual' ' and con­
ventional statements or descriptions. 

Now, if we look at the conventionality th esis from a semantic point of 
view, it is clear that one important difference between conventional 

statements and "factual" statements is that the former a re supposed to 
have no determinate truth-value, while the latter are either de te rmi­
nately true or dete rminately false. Therefore, one poss ible source of an 
indep endent characte rization of the diffe rence be tween "factual" and 
conventional statements is a semantic theo1y that is capable of dealing 
with sentences that lack de te rminate truth-value . As I sugges ted earlie r , I 

think that so-called ref erential semantics is the most p romising theory of 
this kind. According to referential semantics, the re are at least two ways 

in which a (grammatically well-formed) sentence can lack a de te rminate 
truth-value : (1) it can contain words that pick out no refe rents ; or (2) it can 
contain words that have a multiplicity of referents. In this latte r case, the 
sentence (like sentences containing indexical words) is ne ithe r true nor 
fal se simpliciter , but has differen t truth-vah1es re lative to different choices 

fro m among the multiplicity of referents in question . With this in mind , I 
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would like to turn to what I think are the most important arg111111·nts liir 
the conventionality thesis. 

It seems to me that there are at bottom only two arguments for th .. 
conventionality of simultaneity in the literature : Reiche nhach's and 
Griinbaum's. Reichenbach argues from an epistemological point of view; 
he argues that certain statements are conventional a~ opposed to "factual" 
because they are unverifiable in principle. Griinbaum argues from an 
ontological point of view; he argues that certain statements are conven­
tional because there is a sense in which the properties and relations with 
which they purportedly deal do not really exist, they are not really part of 
the objective phys ical world . Thus, Reichenbach's and Griinbaum's ar­
guments depend on two different characterizations of the difference be­
tween conventional and "factual" statements. According to Reichenbach, 
th e "factual"/conventional distinction is just the verifiable/unverifiable 
distinction . According to Griinbaum, the "factual"/conventional distinc­
tion rests on a prior distinction between properties and relations that are 
objective constituents of the physical world and those that are not. 

How does Reichenbach argue for the conventionality thesis? He con­
siders various methods for determining distant simultaneity in a given 
reference system-various methods of verifying statements of the form 
'Events e 1 and e2 are simultaneous with respect to the given state of 
inertial motion M'-and tries to show that none of these methods fur­
nishes an unambiguous answer in a special-relativistic world. Thus, for 
example, if there were no upper limit to the velocity of signals, we could 
dete rmine which event at a given place P0 is simultaneous with a given 
event Eat P 1 by considering arbitraiily fast signals that are sent from P0 

and are refl ected back from P 1 at event E . In a special relativistic world, 
on the other hand, there is an upper limit to the velocity of signals. 
Consequently, we can use signals to dete rmine simultaneity only if we 
know their velocities; and knowledge of (one-way) velocity presupposes 
knowledge of distant simultaneity: 

Thus we are faced with a circular argument. To determine the simul­
taneity of distant events we need to know a velocity, and to measure a 
velocity we require knowledge of the simultaneity of distant events. The 
occurrence of this circularity proves that simultaneity is not a matter of 
knowledge, but of a coordinative definition, since the logical circle shows 
that a knowledg_e of simultaneity is impossible in principle (1958, 126-127). 

Of course, just because one method of determining simultaneity in-
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volvt•s drcn l11ri ly, ii dill's nol lii llow tlrnt 1l11 ·y nil do; so Heid1enhad1 
l:Olls id1 ·rs. in addil'io11 , tl11· possihility or dd1·rnli11ing distant simultane ity 
hy transporting docks frorn one place to anoth e r. About this method he 
makes two points: (1) in a spedal-relativistic world it does not determine a 
unique simultaneity relation, because the rate of clocks dep ends on their 
velocity; (2) even if the relation so de te rmined were unique, it would still 
only constitute a definition , because it would dep end on unvelifiable 
assumptions to the effect that if two clocks are seen to run at the same rate 
when together they continue to run at the same rate when spatially sepa­
rated (1958, pp. 133-135). 

I think Reichenbach' s treatment of the clock-transport method is not so 
convincing as his treatment of the signal method. First, the method of 
"4nfi.nitely slow" clock transport avoids problem (1). Slow-transport simul­
taneity is a unique simultaneity relation. Second, while it is true that 
slow-transport simultaneity depends on assumptions about the rates of 
spatially separated clocks, these appear to be additional assumptions. 
That is , we do not appear to be faced with the same kind of obvious 
circularity as in the signal method, in which the determination of simul­
taneity depends on assumptions about velocity, and assumptions about 
velocity depend on the de termination of simultaneity. Le t me try to be 
more precise. The uniqueness of the slow transport method-its agree­
ment with e = ~ simultaneity-depends on assumptions about the 
proper time metric. That is , we assume that the proper time metric in a 
particular- e-system is given by (31), i. e., 

dr = Y 1 - 400 + (482 - 1) v 2 dt 

If we assume instead a different proper time metric, e.g., 

(37) dr = V 1 - 4& - (482 
- l)v 2 dt - 2.Sv dt 

we can eliminate the uniqueness of slow-transport simultaneity. Thus, 
according to the metric (37) 

(38) Jim (r1 - r 1*) = 0 
v->O 

in all e-systems. Therefore. the method of slow-transport depends on 
assumptions about the temporal metric. However, these assumptions 
seem to be independent of assumptions about the value of e-even if we 
fix the value of e we are sti ll free to choose between (31) and (37) as our 
proper time metric. One can argue that such assumptions about the te rn-
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poral metri e are th,•111si ·lves l'OllVt'11tio11al , li11t this requires an i11d1·111 ·111/ ­
ent argument. 

In any case, the main problem with Reichenbach's argument is this: 
whether or not statements about distan t simultaneity are in some sense 
unverifiable in the context of special relativity, we have been given no 
reason to suppose that unverifiability implies lack of dete rminate truth­
value . It would seem that sufficient conditions for a sentence's possession 
of a truth-value are: (1) that it be grammatically well-formed, and (2) that 
its component words pick out determinate referents. If (1) and (2) are 
satisfied, the sentence has a determinate truth-value, regardless of its 
epistemic status. Thus it seems to me that Reichenbach's approach to the 
problem of conventionality is vitiated by his reliance on bad semantics­
his reliance on the verifiability theory of meaning. Note that Re ichenbach 
himself was perfectly explicit about his reliance on this theory. For exam­
ple, in his comments on th e significance of E in stein's views on 
simultanei ty-unders tood as a version of the conventionality thesis, of 
course-Reichenbach wri tes: 

The physicist who wanted to unders tand the Michelson experiment had 
to commit himself to ·a philosophy for which the meaning of a statement is 
reducible to its ve rifiability, that is, he had to adopt the verifiability 
theory of meaning if he wanted to escap e a maze of ambiguous ques tions 
and gratuitous complications . It is this positivist, or let me rather say, 
empiricist commitment which de te rmines the philosophical position of 
Einstein (1949, pp. 290-291). 

Griinbaum's approach to the conven tionali ty thesis is very different . 
Unlike Reichenbach , he does not rely on the ve rifiability theory of mean­
ing; he does not use verifiability as a criterion for possessing a truth-value. 
Instead, he argues that in a special-relativistic world the re is no objective 
simultaneity relation at all , there is no genuine physical relation for 
'simultaneity' to refe r to. Griinbaum's argument proceeds as follows: Let 
us say that two events, at P0 and P, respectively, are topologically simul­
taneous just in case they are connectible by no causal signal. In a Newto­
nian world , in which the re is no upper bound to the velocity of causal 
propagation, there is a unique event at P 0 topologically simultaneous with 
a given event Eat P 1• In such a world , the relation of topological simul­
taneity uniquely determines the relation of metrical simultaneity. In a 
special-relati vistic world like our own, on the othe r hand, in which the re 
is a finite upper bound to the velocity of causal propagation , there are a 
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11111llit11d<' (i11 lill'I :111 i11ii11il y) or t'V<' lltS al /'0 whi ch art· topo l o~icaJly simul­
ta11 eo11s with/<: . 111 thi s ki11cl or world , th erefore, th e relation of metrical 
sim11ltane ity is not 1111iq11cly dete rmined by the relation of topological 
simultaneity (see 1973 , pp. 28ff; pp . 345ff. ) 

If this is correct, 4 in a special-relativistic world it is impossible to define 
a relation of metrical simultaneity solely on the basis of causal relations 
between events, while in a Newtonian world such a definition would be 
possible. But why should the relation of metrical simultaneity be defin­
able solely on the basis of causal re lations? Why should we take the 
indefin ability of metrical simultaneity on the basis of topological simul­
taneity as a reason for concluding that there is no objective phys ical 
relation of metiical simultaneity? Why can't metrical simultaneity stand 
on its own feet, as it were? 

The answer, in Griinbaum's case, is that he holds a causal theory of 
time. He believes that all objective temporal relations are cons tituted by 
causal relations be tween events; the only temporal relations that objec­
tively exist are those determined solely by causal relations: 

By maint_aining that the ve ry existence of temporal relations between 
non-coinciding events depends on the obtaining of some physical rela­
tions between them , Einstein espoused a concep tion of time (and space) 
which is relational by regarding them as systems of relations be tween 
physical events and th ings. Since time relations are first cons tituted by 
the system of physical relations obtaining among events , the character of 
the temporal order will be determined b y the physical attributes in virtue 
of which events will be held to sus tain relations of "simultaneous with", 
"earlier than", or "later than". In particular, it is a ques tion of physical fact 
whether these attributes are of the kind to deli ne temporal relations 
uniquely . . .. (1973, pp. 345--346). 

So in a world in which metrical simultaneity is not definable solely on the 
basis of causal relations , th ere is no such physical relation . Note the 
similari ty between Griinbaum's argument here and his argument for the 
conventionality of congruence. H e argues that on a continuous set of 
spatial or temporal points the re is no objective ("intrinsic") congruence 
relation , because on such a set congruence is not definable solely on the 
basis of topological properties (like cardinality) and order relations. Thus 
this argument depends on the claim that the only objective phys ical rela­
tions on a set of spatial or temporal points are those constituted by top­
ological and ordinal relations 5-just as the argument for the convention-
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ality of simultaneity depends on the claim that the only objective tc rn ­
poral relations are those constituted by causal relations between events. 

Griinbaum's argument, unlike Reichenbach's, has the advantage that if 
it were correct, we could draw semantic conclusions about the truth-value 
of sentences containing 'simultaneous ' on the basis of the referential 
properties of their key terms. For, if Griinbaum's argument is correct, it 
follows that 'simultaneous' has no referent-there is no objective physical 
relation for it to refer to . And this would make the conventionalist conten­
tion that sentences like 'Events e1 and e2 are simultaneous with respect to 
state of inertial motion M' lack determinate truth-value highly plausible. 
Howeve r, it seems to me that Griinbaum's actual argument is much less 
persuasive than Reichenbach's. Reichenbach has given some plausibility 
to the claim that statements about distant simultaneity may be unveri­
fiable within the context of special relativity. As far as I can see, Griin­
baum has given us no reason to accept the view that the only objective 
temporal relations are constituted by causal relations. Indeed , how could 
one possibly support such a view? Our only grip on which properties and 
relations are objective constituents of the physical world is via our best 
theories of the physical world. The properties and relations that we hold 
to exist objectively are those that our best physical theories postulate. 
And since our best theories do not merely postulate the kind of ordinal 

(causal) temporal relations favored by Griinbaum-they postulate met­
rical relations as well-we have no reason to grant such ordinal (causal) 
relations the privileged ontological status that Griinbaum wants to ascribe 
to them. 

In sum, it seems to me that we have not been given a basis for the 
"factual"/conventional distinction on which (a) conventional statements 
turn out to lack dete rminate truth-values, and (b) statements about distant 
simultaneity turn out to be conventional. Reichenbach has given a crite­
rion for conventionality-i.e., unverifiability-which statements about 
distant simultaneity in a special-relativistic world can be· held to fulfill 
with some plausibility. The verification of such statements is at least much 
more complicated in a special-relativistic world than it is in a Newtonian 
world. But there is no clear connection between Reichenbach' s criterion 
and the lack of a determinate truth-value. Reichenbach's argument for the 
conventionality thesis res ts on a dubious semantics. On the other hand, 
Griinbaum has given a criterion for conventionality-L e., having con­
stituent terms with no objective physical referents-which has a plausible 
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co111HTlio11 will1 tlH · l:wk o l' a dt'lt·n1iir1al <' ln1ll1 -va l11c· . llC1 \\l t ' \ ' c• r , <: rli11 -

ha11111 's arg111111·11I 111"1 's i1111illa11 <"0 11 s· i11d1 ·<"d 1,,\'ks an ohj<"cl iv<" n ·l(. r<" nl 
depends 011 "" 1111 s11pport!'d , a11cl s('1·111i11gly 1111 s11pportahl <' , a priori 
judgment as to which re lations are objective . Crii11ha11111°s argument for 
the conventionality thesis rests on a dubious ontology. 

Notes 
1. It is worth noting that both Newtonian mechanics and special relativity can be formu­

lated wi thin a more general point of view by starting with a fo ur-d ime nsional ex manifold M 
instead ofR 4 (cf. Ande rson, 1967, Earman and Friedman, 1973, Havas, 1964 , and Trautman, 
1966). In this framework , aNewtonian space-time is a q uadruple (M, f/ ,.., t i, h.ii), where f / A- is 
a symmetric affine connection , t i a ccc covector fie ld, and hiJ a C ""' symmetric te nsor fi e ld of 
type (2, 0) and signature (0, I , I , 1). These objects satisfy the fi eld equations 

(1) R ;;k1 = 0 
(2) h0 ,. = 0 
(3) l;J = 0 
(4) hUt ;I; = 0 

wh ere R ;ikt is the curvature tenso r of f / h·· 
Our law of motion is 

(S) c/2.r1 + f I dx; dx,. 
d11 2 i k d 11 du = O. 

A Minkowski space- tim e is a triple (M, f/,.. , gj1) , where f/,.. is a symm etric affine connec­
tion and gij is a c o: symme tric te nsor fi eld of type (0, 2) and signature (l , - 1, - 1, - 1). Ou r 
fleld equations are just 

(6) R ;;A·/ = 0 
(7) !'u,k = 0 

and our law of mot ion is again (5). This more general fram ework faci li tates th e compari son of 
these two th eori es with general relativity. In this contex t a general relatit;istic space-time is a 
quadruple (M, f/ ,.. , g0 , T11), wh ere f/ ,.. and gu are as in special re lativity and r u is a C 00 

tensor field s of type (2, 0) representi ng th e mass-energy density. O ur eq uation of motion 
remains the same , and we have one fi eld eq uation 

(8) Ru - 'hgi;R = -8rrkT;; 

where Ru is the Ri cci tensor off/k> His the contracted Ricci te nsor, and k is the gravitational 
constant. (The notions from diffe rential geometry used he re are explained in Hkks 1965.) 

-2. Of course, we really think that special relativity is only approximately true. Howeve r, 
my d iscussion will be much simpler if I ignore this. lf I were to take acco unt of the actual 
si tua tion, I would have to change ' inerti al frame' everywhere to 'approximately inertial 
frame ,' e tc. 

3. Compare (33) with th e relations in \.Vinnie , 1970, p. 234, reme mbe1ing tha t I have set 
c = I. Note that at the end of his paper \Vinnie bri efl y alludes to the possibility of obtaining 
his t ransformations in some th ing like the above manner-cf. pp. 236-2.37. 

4. (Added in proof) E ven this much seems actually incorrect. David Malament has re­
centl y shown tha t the standard E = lJi sim ultaneity re lation is (in a natural sense) uniquely 
definable in te rms of causal relations in Minkowski space- time . See Malarn ent, "Causal 
Theories of Time and the Conventionality of Simultaneity," forthcoming. 

5. See Friedman , 1972 for such an in terpre tation of Crlinbaum 's argume nt. 
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On Con:oentimwhty and Sirnultaneity­

A nother Reply 

1. Introduction 

In "Conventionality in Distant Simultaneity," Brian Ellis and I (1967) 
discussed the position Reichenbach and Griinbaum had taken on this 
issue. That article received considerable comment (Griinbaum and Sal­
mon , 1969; Winnie, 1970; Feenberg, 1974), much of the critical part of 
which Ellis answered in "On Conventionality and Simu ltaneity-A Re­
ply" (1971). He re I shall reformulate, extend , and supplement his answer 
to some of the critiques (Griinbaum , 1969; Salmon , 1969; van Fraassen , 
1969). E lsewhere I treat the topic in a less polemical manne r (Bowman , 
1974 and 1976). 

The conventionality of distant simultane ity, as maintained by Reich en­
bach and Griinbaum , is after all this commen tary so widely known that it 
can be stated ve1y briefly. Let us consider two points A and B which are 
separated from one anothe r in an ine rtial fram e K. For a light signal 
emitted from A and reflected at B back to A , we compare the time inte1val 
for the outgoing trip to that for the round hip. This ratio is call ed "epsi­
lon" (E). In formu lating the special theory of relativity, Ei nstein effectively 
took E to be ~; thus we may use E = ~ in defining what is now called 
"s tandard signal synchrony. " Re ichenbach views E as restricted only by 
the causal relations involved in the signaling process. That is , the refl ec­
tion of the light ray at B must take place after the ray's emiss ion at A b ut 
before its return to A. These considerations require us to res tiict E be­
tween zero and one, but Reichenbach insists that within these limits 
values of E = ~ "could not be called false" (1958, p. 127). He claims that 
there are no facts that would mediate against using these values in defini­
tions that are now called "nonstandard signal synchrony," This allegedly 

NOTE: This pape r fo llows subsection J .1 of my dissertation (1972) with only minor expository 
changes except for th e last pa~c of the present subsection 2.c, which is a substantive 
revision. 
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