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state of continual fluctuation, and only words to be constrained into a degree of stability. 1
can quite well believe that such confusions were present in the historical situation; my
complaint against you is that you seem to see no need to explicate the issues, or to resolve

the confusions.

10. I here speak somewhat loosely, without care for the distinction between the Newto-
nian and Minkowski space-time structures.

11. Similarly, when I said, in the passage you quote on p. 329, that "I see no way to
confront the former question”—namely, whether a certain relation is involved in the struc-
ture of “the space-time manifold itself, considered apart from all other entities”—
“independently of the latter” (how to explicate the notion of “the space-time manifold
itself’—to draw a line, so to speak, between it and “all other entities”); and that yet the
converse may also seem to hold, etc.: I was not claiming to offer a proof of vicious circularity
in the enterprise under discussion. So your reply, in the Uncle-Jack-and-President-Giscard
passage, aimed at refuting in general terms a charge of “necessary circularity,” is in my
opinion not to the purpose: I still see no way—you have certainly not shown me one—to
confront the first question independently of the second, or to answer the second without
begging the first.

12. De gravitatione et aequipondio fluidorum, in Hall and Hall, ed., Unpublished Scien-
tific Papers of Isaac Newton (Cambridge University Press, 1962), pp. 131-132, 136; Latin on
pp. 99-100, 103. Hall and Hall most irritatingly render affectio throughout as
“disposition”—one among many seriously misleading mistranslations in their English ver-
sion of Newton’s Latin text.

13. Again the Halls give a really terrible mistranslation: they have “it is not among the
proper dispositions that denote substance.” But it should be plain to anyone with a rudiment
of philosophic discrimination that when Newton writes “Non est substantia tum quia non
absolute per se . . . subsistit; tum quia non substat ejusmodi propriis affectionibus quae
substantiam denominant,” the two verbs in the two dependent clauses—subsistit and
substat—are deliberately chosen for their association with substantia: substance is what is
self-subsistent, and is also the substrate or supporter of properties. The meaning of substat
has to be, not “stands among,” but “stands under”: extension is not a substance because it
does not support—underlie—stand under—the “characteristic denominations” (what Frege
would call the “Merkmale”) of a substance.

14. The article may, of course, be disputed, since Latin possesses no articles. Newton's
text reads: Spatium est entis quatenus ens affectio; and the Halls render: “Space is a disposi-
tion of being qua being.” The expression “being qua being” has indisputable standing in the
metaphysical tradition—but not, I think, as denoting an individual subject of attributes,
something that has “affections” (or “dispositions”). The translation I have given seems to me
consonant with the sentences that follow.

15. Not, as the Halls translate, “of the first existence of being”l—The “first existing
thing,” of course, according to Newton, is God (of whom he has previously characterized
space as “an emanative effect (as it were)”; but it is noteworthy that the reason he gives for
his statement that space is “an emanative effect of the first existing thing” is quite independ-
ent of what thing that may be.

16. In what you call Riemann’s “DH,” it is this Wirkliche, rather than the spatial manifold
itself, whose “binding forces” are said to give rise to the “Massverhiltnisse” in the manifold:
that is, Riemann does not speak of binding forces as acting upon the spatial manifold (a
notion it is hard to make any sense of), but as acting upon “the real.”
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Stmultaneity i Newtonan Mechanics
and Special Relativity

1. Introduction

Everyone will agree, 1 think, that the transition from Newtonian
mechanics to special relativity taught us something of fundamental impor-
tance about time and simultaneity. Many philosophers have urged that
there is a significant semantic lesson to be learned from this transition.
For example, the following kinds of views have been expounded: Einstein
was aided in his discovery of special relativity by an analysis of the “con-
cepts” of time and simultaneity; the transition from Newtonian mechanics
to special relativity resulted in a profound “change of meaning” of ‘time’
and ‘simultaneous’—a change that was so extensive as to make any com-
parison of the two theories problematic; in a special-relativistic world the
notion of simultaneity is in an important sense conventional—statements
about distant simultaneity lack truth-value, they are mere “definitions.”

Defenders of such views rarely provide explicit semantic theories
within which their claims can be evaluated. There are, however,
philosophical theories of meaning lurking in the background. Thus claims
that Einstein analyzed the “concept” of simultaneity fit naturally into an
operationalist account of meaning, since what Einstein did was to discuss
ways of measuring time and distant simultaneity. Similarly, claims about
the conventionality of distant simultaneity are supported (at least in
Reichenbach’s case) by a verificationist theory of meaning. Statements
about distant simultaneity in a special-relativistic world lack truth-value,
it is argued, because they are unverifiable in principle. On the other
hand, views that make much of the noncomparability or “incommensura-
bility” of the meanings of ‘time’ and ‘simultaneous’ in Newtonian
mechanics and special relativity seem to involve some kind of “contex-
tual” theory of meaning—meaning is to be identified with “role in theory”
or the like.

In this paper I would like to see what light can be shed on these
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semantic issues using an approach to the theory of meaning that has been
the subject of much contemporary discussion. The approach 1 have in
mind takes reference rather than meaning as the central notion of seman-
tics. According to this approach, the semantical properties of a
sentence—its truth-value or lack of it, its inferential connections with

other sentences, etc.—are determined by (a) the referential properties of

its component words—the objects denoted by its singular terms and the

sets (properties) determined by its predicates; and (b) the “logical form” of
the sentence—how it is built up from its component words by means of

grammatical constructions like truth-functions, quantifiers, etc. Let us
call this kind of approach referential semantics. 1t is plausible to suppose
that referential semantics can be an illuminating framework for discussing
traditional semantic issues about the transition from Newtonian
mechanics to special relativity, because many of these issues involve
claims about truth. Thus the conventionalists hold that statements about
distant simultaneity lack truth-value in a special relativistic universe. The
“meaning change” and “incommensurability” theorists hold that we can-
not apportion truth and falsity to the statements involving ‘time’ and
‘simultaneous’ made by a Newtonian physicist according to the truth and
falsity of corresponding statements of special relativity, because such
statements have different meanings in their different theoretical contexts.
Similarly, according to the “meaning change” theorists, we cannot say
that such statements made by a Newtonian physicist are approximately
true, that some statements of Newtonian mechanics are logical conse-
quences of special relativity, etc. From the point of view of referential
semantics, all claims of this kind must depend on peculiarities in the
referential properties of ‘time’ and ‘simultaneous’ (assuming that there is
nothing problematic about the grammatical structure of the sentences in
question).

A second feature of my approach is that I shall treat both Newtonian
mechanics and special relativity as space-time theories. 1 view both
theories as theories about a four-dimensional manifold, space-time, and
the geometrical structures that characterize it. Where the two theories
differ is with respect to the geometrical structures that space-time actually
possesses. In particular, differences between the two theories as to time
and simultaneity are to be understood as differences in the geometrical
properties predicated of space-time. I adopt this view of the two theories
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because it seems to me to make their similarities and differences—their

comparison—cespecially clear. However, 1 shall not argue directly for this
view here (sce, ¢.g., BEarman, 1970, and Earman and Friedman, 1973).
Nor shall I argue directly for referential semantics (see, e.g., Field, 1972
and 1973). Instead, I hope to show that the conjunction of these views
provides a fruitful framework for the discussion of traditional philosophi-
cal issues relating to Newtonian mechanics and special relativity. Of
course, if I am successful, this paper will constitute an indirect argument
for the referential approach to semantics and the space-time approach to
our two physical theories.

My argument will proceed as follows. In section 2 I shall briefly sketch
four-dimensional formulations of Newtonian mechanics and special rela-
tivity, as such formulations will probably be unfamiliar to most readers.
In section 3 I shall discuss the question of whether ‘time” and ‘simultane-
ous’ underwent a “meaning change” in the transition from the former
theory to the latter. I shall argue that with respect to the kind of meaning
that is most relevant to questions about the truth of statements in the two
theories—i.e., with respect to reference—it is plausible to suppose that
there has been no change. In section 4 I shall discuss the issue of the
conventionality of simultaneity in special relativity. I shall argue that
conventionalists have not given us a good reason to regard statements of
distant simultaneity as truth-valueless in the context of special relativity.

2. Four-Dimensional Formulations of Newtonian Mechanics
and Special Relativity

According to the space-time point of view, the basic object of both our
theories is a four-dimensional manifold. I shall use R?, the set of quad-
ruples of real numbers, to represent the space-time manifold. Both
theories agree that there is a natural system of straight lines defined on
this manifold. If (ao, @i, as, as), (be, b1, by, by) are two fixed points in R,
then a straight line is a subset of R* consisting of elements (x, x;, x2, x3) of
the form

1) xo = aor + by

x =ar + by
Xs = aor + by
x3 = asr + b
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where r ranges through the real numbers. A curve on R is a (suitably
continuous and differentiable) map o: R — R*. Such a curve o(u) is a
geodesic if and only if it satisfies
2 X0 = agu + by

X =au + by

Xy = asu + b,

x3 = asu + bg

where (xy, x1, x2, x3) = o'() and the a; and b; are constants. So if a curve is a
geodesic its range is a straight line. Note that the geodesics are just the
curves that satisfy

3) d*x/du® = 0 i=0,1,2 3

The importance of straight lines and geodesics is due to the fact that both
theories agree that the trajectories of free particles are straight lines in
space-time. So we can represent such trajectories as geodesics in R%.

A coordinate system is a one-one (suitably continuous and differenti-
able) map ¢: R* — R*. A coordinate system is affine if and only if it is a
linear transformation of RY, i.e., it satisfies

3
@ y=3am+b i=0123
ji=0
where the a; and b; are constants and (yo, y1, o, y3) = b(xo, x4, o, X3).
Affine coordinate systems are precisely those that preserve the condition

(6) d*y;/du® = 0 i=0123

for geodesics. As we shall see, such coordinate systems are a natural
representation of the physicist’s frames of reference.

So far, Newtonian mechanics and special relativity agree on the struc-
ture of space-time. But the two theories differ over what further struc-
tures exist on the space-time manifold, and, in particular, over the indi-
vidual natures of space and time. In what follows I shall deal only with the
kinematical aspects of our two theories, since these aspects are most
relevant to the role of time and simultaneity. However, it should be noted
that dynamics—i.e., gravitational interaction in the case of Newtonian
mechanics, and electromagnetic interaction in the case of special
relativity—can be easily dealt with within this framework as well (see
Anderson, 1967, Earman and Friedman, 1973, Havas, 1964, and Traut-
man, 1966).
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(a) Newtonian Mechanies

The central object that Newtonian kinematics postulates on the space-
time manifold is an absolute time: a real-valued function t: R* — R defined
by t(xo, x;, X2, x3) = xo. Think of t as assigning a time to each point (event)
in space-time. The hypersurfaces t = constant are called planes of abso-
lute simultaneity. Two points in R* are simultaneous if and only if they lie
on the same ¢ = constant hypersurface. Furthermore, on each plane of
absolute simultaneity Newtonian kinematics postulates a Euclidean met-
ric, h, defined by
®)  h(@, x1, %2, x9), (¢ X1, x5, 2)° = (@ — 2+ (0 — 2 + (13 —

).
Now any geodesic curve o(u) satisfies xo = agu + by, soif we usex, =tasa
parameter for o it remains a geodesic: i.e., oft) satisfies
(7 d*;/dt* = 0 i=1,2,8.
This is just Newton’s law of inertia.

An inertial coordinate system is an affine coordinate system which is
generated by a Galilean transformation; i.e., yo, Y1, Y2, ys is inertial if and
only if
(©)] Yo =

Yyi =
j

=1

a,;,xj+b1 i=1228
0

I Mo 2

where the a;;, i, j = 1, 2, 3 form an orthogonal matrix: 3 aa; = 8 = 1
ifi =k, 0ifi # k. Inertial coordinate systems are just those that preserve
the above form of the law of inertia and the above form of the spatial
metric h. I shall say that an inertial coordinate system yq, y;, y2, ys is
adapted to a trajectory o(¢) if and only if o(t) satisfies the equations y, = ¢,
y; =0,i =1, 2, 3. Thus one can think of o as representing a particle at rest
at the origin of ¥, ¥, y2, ys. There exists an inertial coordinate system
adapted to o if and only if o is a geodesic. So if o is a geodesic and ¢ is an
inertial coordinate system adapted to o, I shall call the pair (o, ¢) an
inertial frame. In inertial frames free particles satisfy Newton’s first law.

(b) Special Relativity

In Newtonian kinematics time is represented by the function ¢, while
space is represented by a t = constant hypersurface, endowed with a
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three-dimensional Euclidean metric . In special relativity we capture
the roles of both time and space by a single object: a four-dimensional
pseudo metric g defined by

©  8llwo, x4, %2, x3), (x6, afs xF; x5)? =
(o — 29 — (X1 — x)? — (2 — 13 — (x5 — x3)2

g is called the Minkowski metric. Two points p, g € R* have timelike
separation if g(p, q)* > 0, spacelike separation if g(p, q)* <0, null separa-
tion if g(p, q)* = 0. A curve is timelike if every point on it has timelike
separation from every other point, and similarly for spacelike and null,
Equivalently, a curve o(u) is timelike if and only if
(10) % _d_xi d_xi> Y

i du du

everywhere, and similarly for spacelike and null—where n;; = 1 ifi = j=
0, —lifi =j =1,2,3,and 0ifi #j. We require that the trajectories of
free particles be timelike geodesics.

For any tlmellke curve o(u), we can define its length 7 by the formula

(11) T(u \/—nu dx; dx; du.
U du du
7 is called the proper time of o. On timelike curves we can use 7 as a
parameter, and if o(r) is a timelike geodesic it satisfies the law of motion
(12) d*;/dr* = 0.
An inertial coordinate system is an affine coordinate system which is

generated by a Lorentz transformation; i.e., yo, y1, ys, ys is inertial if and
only if

A3 yi =3 ayxy +b;
7
where

(14) Ek: Al Mik = Mjt-
Kt

Inertial coordinate systems are just those that preserve the above form of
the law of motion and the above form of the space-time pseudo metric g.
Since in an inertial coordinate system a timelike geodesic o(7) satisfies
Yo = aoT + by, we can use y, as a parameter on curves as well without
disturbing the condition for timelike geodesics. The y, coordinate of an
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inertial systenm is called the coordinate time of the system. IFrom now on |
shall denote such a coordinate time by “." Thus in an inertial system the

law of motion can be written in the form
(15) d*y;/dt* = i=1,2.38

I shall say that an inertial coordinate system is adapted to a trajectory
o(7) if and only if o(7) satisfies the equationsyo =t =7,y, =0,i =1, 2,
3—where 7 is the proper time of o. There exists an inertial coordinate
system adapted to o if and only if o is a timelike geodesic. If o is a
timelike geodesic and ¢ is an inertial coordinate system adapted to o, 1
shall call the pair (o, ¢) an inertial frame. Relative to a given inertial
frame we have hypersurfaces ¢ = constant, where ¢ is the coordinate time
of the frame. These hypersurfaces are spacelike (every point in one has
spacelike separation from every other point) and are endowed with a
Euclidean metric by g (if p, ¢ have spacelike separation, define h(p, q)* =
—g(p, q)»). Two points p, q € R* are simultaneous with respect to the given
inertial frame if and only if they lie on the same ¢t = constant hypersurface.

Let us call a triple (R%, ¢, h), where t is an absolute time and h is a
Euclidean metric on the hypersurfaces t = constant, Newtonian space-
time; a pair (R*, g), where g is the Minkowski metric, Minkowski space-
time.! The basic claim of Newtonian kinematics is that our universe is a
Newtonian space-time; the basic claim of special relativity is that our
universe is a Minkowski space-time. Differences between the two
theories over the roles of time and simultaneity turn on structural dif-
ferences between Newtonian and Minkowski space-times. Thus in New-
tonian space-time there is a unique global time determined by ¢, and a
unique relation of simultaneity 8 such that pSq if and only if p and ¢
lie on the same ¢ = constant hypersurface. Both time and simultaneity are
independent of coordinate system or reference frame.

In Minkowski space-time, on the other hand, there is no such unique
global time. Time is in the first instance a local property; the proper time
of a particular timelike curve. Being local, proper time cannot be used to
define a relation of simultaneity at all; it can be used only to compare the
times of points lying on the same trajectory. However, relative to a par-
ticular inertial frame F there is a global time tz—the coordinate time of
the inertial coordinate system determined by F. Thus in Minkowski
space-time there is a multitude of simultaneity relations. For each inertial
frame F there is a simultaneity relation 8 © such that pS¥q if and only
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if p and g lie on the same t, = constant hypersurface. So in special
relativity (global) time and simultaneity are coordinate or frame depend-
ent. It makes no sense to say that two events are simultaneous simpliciter,
but only relative to this or that inertial frame or coordinate system.

3. The “Meaning” of ‘Simultaneous’ in Newtonian Mechanics
and Special Relativity

If special relativity is true, Newtonian mechanics as a whole is false.
Our world is a Minkowski space-time, not a Newtonian space-time; and
neither a frame-independent global time nor a frame-independent simul-
taneity relation exists. Nevertheless, although the whole system of beliefs
about time and simultaneity held by Newtonian physicists was false, we
might plausibly (and perhaps naively) suppose that some of these beliefs
were true. For example, we might suppose that when a Newtonian physi-
cist uttered a sentence such as

(16) Events ¢, and e, are simultaneous in frame F,

he said something true. On the other hand, when he uttered a sentence

like

) If e; and e, are simultaneous in frame F, then e, and e, are
simultaneous in frame F’,

he said something false. Our reasoning here is that (16) is true and (17)
false because a relativistic physicist would accept (16) and reject (17), and
we believe that special relativity is true.? Furthermore, although (17) is
strictly false, we might plausibly (and perhaps naively) suppose that it is
approximately true—as long as e, and ¢, are not widely separated in space
and the relative velocities of F and F' are small. This is because of the
following derivation in special relativity: Let events ¢; and e, have coordi-
nates (xo, X, X3, x3) and (xg, ¥,, X, x3) respectively in frame F. If y, is the
coordinate time of event e, and y’, is the coordinate time of e, in frame
F’, it follows that their difference is given by

(18) lys — yo| = o] x,’_—_ x|/ V1 - o?

where v is the velocity of frame F' relative to frame F (I assume that F' is
moving along the x;-axis of F and that ¢ = 1). This difference is small if v is
small and |x1’ —x; | is small. Thus, if e, and e, are simultaneous in F, they
will be approximately simultaneous in F’ whenever they are spatially
close and the velocity of F’ relative to F is small.
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However, a “maemning change” theorist would not be happy with this
way of looking at the matter (see, e.g., Feyerabend, 1962 and Kuhn,
1962). He would deny that the fact that a relativistic physicist would
accept (16) and reject (17) gives us a reason to think that a Newtonian
physicist said something true when he uttered (16) and said something
false when he uttered (17). For, according to the advocate of “meaning
change,” (16) and (17) do not express the same things when uttered by a
Newtonian physicist and by a relativistic physicist; (16) and (17) have
different meanings in their different theoretical contexts. Similarly, a
“meaning change” theorist would deny that the fact that (18) is derivable
in special relativity gives us a reason to think that (17) is approximately
true in the context of Newtonian mechanics. The sentence that is deriva-
ble in special relativity is not an approximation to (17) as a principle of
Newtonian mechanics, for the two have radically different meanings.

Now the first thing to notice is that the relevant issue here is not
whether ‘simultaneous’ has different meanings in the two different
theoretical contexts, but whether it has different referents. For, if there is
anything right about the referential approach to semantics, truth-value is
a function of the referents of the component words of the sentences in
question. Thus, as long as ‘simultaneous’ has the same referent in our two
theoretical contexts, (16) and (17) will have the same truth-values in the
two contexts, whether or not they have the same meanings. As long as the
reference of ‘simultaneous’ is preserved, our argument that (16) is true
and (17) false in the context of Newtonian physics because (16) is true and
(17) false in special relativity is correct. Similarly, if reference is pre-
served, we can regard (18) as an approximation to (17), and we can
therefore regard (17) as approximately true. Thus, if the problem of “in-
commensurability” relates to the comparison of the truth-values of sen-
tences in our two theories—e.g., if the problem is whether sentences in
the two theories can contradict each other, whether sentences in one
theory can be derived from sentences in the other, whether sentences in
one theory can be approximations to sentences in the other, etc.—then
the crucial issue is over the referents of words like ‘time’ and ‘simultane-
ous,” not their meanings. The “meaning change” theorist must argue that
‘time’ and ‘simultaneous” have different referents in their different theo-
retical contexts, not merely that they have different meanings.

How does the “meaning change” theorist argue for his view? Charac-
teristically, he appeals to the radical differences in the theoretical princi-
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ples involving time and simultaneity in the two theories. For example, in
Newtonian mechanics time is an “absolute,” nonrelational, frame-
independent quantity; while in special relativity it is a relational, frame-
dependent quantity. How could terms embedded in such radically dif-
ferent theoretical principles have the same meaning? This line of thought
can support claims about the referents of ‘time’ and ‘simultaneous’ if we
adopt the view that the reference of a theoretical term is determined by
the theoretical principles containing the term. That is, we can use
theoretical differences as an argument that ‘time’ and ‘simultaneous” have
different referents in Newtonian mechanics and special relativity if we
adopt the view that a theoretical term refers to whatever satisfies the
theoretical principles containing the term, or whatever satisfies a
sufficient number of such principles, or the like. Thus if ‘time’ refers to
anything at all in the context of Newtonian mechanics, it refers to an
“absolute,” frame-independent quantity; if ‘simultaneous’ refers to any-
thing at all, it refers to an “absolute,” frame-independent relation. On the
other hand, in special relativity ‘time’ refers to a relational, frame-
dependent quantity; ‘simultaneous’ refers to a frame-dependent relation.
Therefore these terms cannot possibly have the same referents in the two
different theories.

This view of how the reference of theoretical terms is determined—that
a theoretical term refers to whatever satisfies (a sufficient number of) the
theoretical principles containing the term—is closely analogous to the
Russell-Searle account of how the reference of proper names is deter-
mined. According to the Russell-Searle account, the referent of a proper
name is whoever satisfies (a sufficient number of) the descriptions we
“associate” with the name. This account of the reference of proper names
has been the subject of much recent critical discussion (see Kripke, 1972).
It seems to me that the parallel account of theoretical terms has very
similar flaws. In particular, if the account of theoretical terms in question
is correct, it is hard to see how a theory can ever turn out to be false (or at
least hard to see how the “central” principles of a theory can turn out to be
false). If this account is correct, there either is an entity satisfying (a
sufficient number of) the theoretical principles involving a given term or
there is not. If there is, the principles are true; if there is not, the given
term lacks a referent and the principles are truth-valueless. So, for exam-
ple, if this account is correct, we cannot say that Newtonian mechanics
represents a false view of time and simultaneity. Newtonian mechanics is
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not a theory about anything. The terms “time” and “simultancous” have no
referents, and, consequently, the theoretical principles involving these
terms are not false but truth-valueless.

An obvious way out of this difficulty is to view the theoretical principles
involving ‘time” and ‘simultaneous’ of Newtonian mechanics as existential
assertions; or, what amounts to the same thing, to view theoretical terms
as analogous to definite descriptions, and to adopt Russell's rather than
Frege’s view of the truth-values of sentences containing nonsatisfied defi-
nite descriptions. That is, we construe Newtonian mechanics as contain-

ing assertions of the form
(19) There exist a quantity ¢ and a relation & such that |

where the conjunction of the various theoretical principles involving
‘time” and ‘simultaneous’ is put in the blank. This construal allows us to
say that Newtonian mechanics as a whole is false, since there exists no
such quantity t and no such relation 8 . However, it does not allow us to
say anything about the truth-values of individual sentences of Newtonian
physics. We cannot say, for example, that (16) is true and (17) false. Note,
that it will not do to construe individual theoretical sentences again as
existential assertions. We cannot, e.g., construe (16) as

(20) There exists a relation 8 such that ¢, bears to e, in Frame I,
and (17) as
(21) There exists a relations 8 such that if e, bears to ¢, in frame I

then ¢; bears & to ¢, in frame F'.

This makes (16) come out true, all right, but it also makes (17) true. For
(21) is certainly true; there exist plenty of frame-independent relations,
e.g., the relation of having spacelike separation! This last move makes it
far too easy for an individual theoretical sentence to be true.

These considerations suggest that it is a mistake to view the reference of
theoretical terms as determined by the theoretical principles within
which they occur. If we say that a theoretical term either refers to an
entity that satisfies (a sufficient number of) the theoretical principles con-
taining the term or to nothing at all, we make it too difficult for such
theoretical principles to turn out false. On the other hand, if we construe
theoretical terms as analogous to Russellian descriptions, and thereby
construe theoretical principles as basically existential assertions, we make
it too difficult for such principles to turn out true—for in this latter case,
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only the theory as a whole can be true or false. And note that this holds
even if the theory as a whole is completely and exactly true—we still have
no general method for apportioning truth to the individual sentences of
the theory. However, if the reference of a theoretical term is not deter-
mined by the theoretical principles within which it occurs, how is it
determined? In my opinion, so-called causal theories of reference are on
the right track. That is, it seems to me that what a theoretical term refers
to is not a matter of which entity (if any) satisfies the theoretical principles
involving the term, but rather, a matter of which actual entities have the
right sort of “historical” connection with the use of the term (see Kripke,
1972 and Putnam, 1973).

Now I grant that this way of talking is extremely vague, and I do not
know how to give a precise account of what the right sort of “historical”
connection is. Nevertheless, in my view, this way of looking at the
reference of theoretical terms does not leave us at a total loss either. On
the contrary, I think we have enough intuitive ideas about what the “right
sort of connection” is to at least get plausible candidates for the referents
of most theoretical terms. For example, such questions as: “What actual
quantities are being measured by the measuring procedures used to
determine values for the quantities postulated by the theory? and “What
entities are actually responsible for the phenomena explained by the
theory?” seem highly relevant for determining which quantities and rela-
tions the theoretical terms of our theory actually refer to. Furthermore,
although the “historical” connection view of reference does not have any-
thing very precise to say about just what the reference relation is, it says
enough to free us from the implausibilities of the satisfaction-of-
theoretical-principles account. That is, it shows us how even the central
principles of a theory can turn out to be false, and it allows us to attribute
truth and falsity to the individual sentences of a theory in a plausible way.

The case of ‘time” and ‘simultaneous’ in Newtonian mechanics provides
a good illustration of these points. In determining the referents of these
terms, we should not look for entities that satisfy the theoretical principles
of Newtonian physics—there are no such entities! Rather, we should
proceed as follows: given the entities—quantities, relations, etc.—that
our best current theory postulates, we look for some among these which
(a) give a plausible distribution of truth-values for the sentences involving
‘time’ and ‘simultaneous’ used by Newtonian physicists; (b) are actually
responsible for the phenomena explained by Newtonian mechanics; (c)
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are actually mensured by the measuring procedures used to test Newto-
nian mechanics. Supposing for a moment that special relativity is our best
current theory, and using these (admittedly rough and incomplete)
guides, I suggest we obtain the following results about the referents of
‘time’ and ‘simultaneous’ in Newtonian mechanics:

(i) In a context like ‘time . . . in frame F,” ‘time’ refers to t,—the
coordinate time of frame F. In a context like ‘simultaneous . . . in
frame F,” ‘simultaneous’ refers to S“—the relation of lying on the
same hypersurface tr = constant.

(ii) Where ‘time’ or ‘simultaneous’ occurs without explicit qualifica-
tion as to reference frame, but other features of the context “attach” the
sentence to a particular reference frame—e.g., the sentence is uttered
within a particular laboratory frame on the surface of the earth—'time’
refers to the coordinate time tp of that frame and ‘simultaneous’ refers
to ST,

(iii) Where the context neither explicitly nor implicitly “attaches” the
sentence to a particular inertial frame, ‘time” and ‘simultaneous’ have
no referents.

These suggestions accord with (a)~(c) above. We have the intuitively
plausible consequence, for example, that (16) is true and (17) false; we
are able to attribute truth and falsity to the individual sentences used by
Newtonian physicists; and we make it neither too hard nor too easy for
such sentences to come out true. The quantity assigned to ‘time’'—i.e.,
the coordinate time of a particular frame in a particular context—is the
quantity actually responsible for the phenomena explained by Newtonian
kinematics. The central explanatory principle of Newtonian kinematics is
the law of inertia (7); and, according to special relativity, the correct form
of this law is (15—which determines the trajectory of a free particle as a
function of coordinate time. Finally, the quantity assigned to ‘time’ is the
quantity actually measured by (ideal) clocks. According to special relativ-
ity, (ideal) clocks measure the proper time along their trajectories. So a
clock at rest at the origin of a particular inertial frame F measures the
coordinate time of F.

If (i)—(iii) are correct, ‘time’ and ‘simultaneous’ have referential prop-
erties analogous to indexical words like ‘I, ‘you,” ‘here,” and ‘now.’” Just as
indexical words refer to different things relative to different contexts—
relative to different speakers, hearers, places, and times—time’ and
‘simultaneous’ refer to different things relative to different inertial refer-
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ence frames. (And, as in the case of indexical words, the relevant context
may be either explicit or implicit.) Just as the truth-values of sentences
containing indexical words can vary with context, the truth-values of sen-
tences containing ‘time’ and ‘simultaneous’ vary with inertial frame.
Neither kind of sentence possesses a truth-value absolutely, but only
relative to this or that context (reference frame). Thus, when the sentence
in question is not “attached” to any context (reference frame) of the ap-
propriate kind, it lacks a truth-value and its component words lack refer-
ents.

If I am right, the transition from Newtonian mechanics to special rela-
tivity has taught us a semantic lesson. In a special relativistic world the
referents of ‘time” and ‘simultaneous’ have to be taken as dependent on
reference frame; ‘time’ and ‘simultaneous’ must be seen as possessing
referential properties analogous to those of indexical words. If the world
were Newtonian, this would not be necessary; ‘time’ and ‘simultaneous’
would have unique, frame-independent referents. However, it is not
necessary to suppose that ‘time’ and ‘simultaneous’ have changed their
referential properties in this transition. Since our world is and always was
(so we believe—modulo note 2) a special-relativistic world, not a Newto-
nian world, the words ‘time’ and ‘simultaneous’ have and always had
referential properties appropriate to a special relativistic world. Thus,
when used by a relativistic physicist, ‘time” and ‘simultaneous’ have the
same referential properties as they did when used by a Newtonian physi-
cist: i.e., (i)—(iii) still hold. (Of course, if a relativistic physicist is careful,
case (iii) will never occur!) One is able to argue for a significant semantic
change in the transition from Newtonian mechanics to special relativity
only by employing wildly implausible theories about the reference of
theoretical terms.

4. The Conventionality of Simultaneity in Special Relativity

The problem of the conventionality of simultaneity is typically intro-
duced in the following way: we are asked to imagine two points, po and p,
in a given reference system. Situated at each of the points is a clock. A
light signal is sent from p, to p;, where it is reflected back to p,. The light
signal leaves p, at t;—as determined by the clock at py—and returns
to po at t,. Our problem is to synchronize the clock at p, with the clock at
Po; to say when, according to po-time, the light signal arrives at p,. We
must determine which event between ¢, and t, at p, is simultaneous with
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the event E at py. According to the conventionality thesis it is a matter
of definition which event between ¢, and t, is simultaneous with E; no
choice is any “truer” than any other. Of course, if we assume that the
velocity of light is the same from pg to p, as it is on the return trip, the p,
time of E would be unambiguously determined as

(22) t=t+ 3(t: —t)

s 4

t

Po P

Figure 1

However, conventionalists argue that any claim about the one-way veloc-
ity of light—as distinct from its round-trip velocity—is just as conven-
tional. They argue that

(23) t=1t +€lts —ty)

is just as good as (22) for determining the po-time of E, where € is any real
number such that 0 < € < 1. Only computational simplicity can favor the
choice € = } over any other admissible value of €. There are no facts that
make (22) true and (23) false.

I think this problem can be greatly clarified by looking at special relativ-
ity from the space-time point of view of section 2. Our discussion will be
facilitated if we consider Minkowski space-time as a two-dimensional
manifold—i.e., as R? instead of R*. This device simplifies the algebra
without essentially changing the conceptual situation. Our theory remains
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the same, except that the Minkowski pseudo-metric takes the simpler

form ‘

g((xo, x1), (x5, x1))° = (xo — x0)* — (’x‘x —xp)?
in R2 Thus, inertial coordinate systems y,, y; are characterized by the
condition

g, 9 = (o = yi)* — W —y))®
where p has coordinates (yo, y;) and g has coordinates (y¢ , y{ ). To set up
the problem in this framework, consider a given inertial frame associated
with the time-like geodesic a(r). Let there be given two null geodesics
(light rays) which intersect o(r) at y, = 74, and y, = 7, respectively, and
intersect each other at E. Since null geodesics have constant unit velocity
in inertial systems (I have set ¢ = 1), it is clear that if we fix the time at

point E according to the synchronization role (22)—i.e., if we let the time
of E be

1
t=7+;(12 —7)

we are merely adopting the coordinate time t = y, of our given inertial
frame as our global time. That is, the rule (22) amounts to fixing the time

Figure 2
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of events not on the trajectory a(7) by means of the coordinate time of an
inertial coordinate system adapted to o(7).

What are we doing il we use (23) instead of (22) to fix the time of
E—i.e., if we let the time of E be
(23) = T + €(ry — 7))

with € # %? This latter procedure can be viewed as using the coordinate ¢
= z¢ of a noninertial coordinate system z, z; as our global time. It amounts
to fixing the time of events not on the trajectory o(r) by means of the z, =
t coordinate of a noninertial coordinate system adapted to o(r) (in the
sense that o(7) satisfies zo = 7, z; = 0 in zy, 24).
The relation between the noninertial system zy, z; and our original
inertial system y,, y, is easily seen to be
(24) t=z0=1t+ 208y,
21 =
where 8 = € — %. The inverse relation is of course
25 t=yo=1t— 28z
Y1 =2z
Thus, using € # % in (22) amounts to performing the coordinate transfor-
mation (24) and using the “coordinate time” ¢ of the new system to define
simultaneity. Using (25) we find that the Minkowski metric takes the form
26) g, g = (0 — 20 — 48(zo — z0) (21 — 2) + (48 — 1) =z —
z1)?*
in our new system z,, z;. Now a minimal condition for a zy-coordinate to

be a temporal coordinate is that the curves z, = constant be spacelike. It
follows from (26) that this is the case if and only if

@) 48 -1<0.

If we substitute € — % for & in (27), this minimal condition becomes
28) ee — 1) <O.

(28) implies that 0 < € < 1. So the “coordinate time” of an e-system—a
system in which (26) holds—is a suitable temporal coordinate only if 0 < €
< L

Some useful facts about e-systems are the following. First, if a trajectory
has velocity v = dy,/dt in an inertial coordinate system and “velocity” v =
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dz,/dt in an e-system, it follows from (24) and (25) that the two are related
by
29 v =0/l — 28v).
Second, the relation between the coordinate time ¢ and the proper time 7
of a trajectory in an inertial system is given by

(B0) dr=V1-idr.
In e-systems (30) becomes
B dr=V 1-480 + @48 - 1)vdt

or (32) dr =V (1 —o(2e — 1)2 — v2 dt.

Finally, we know that two inertial systems, ¢, y; and t¥, y ¥ are related by
a Lorentz transformation

@3) =0 —oy)V 1-0
yt =@ —o)/V. 1 -0

where v is the relative velocity of the two systems. How are two different
e-systems related?

Let there be given two e-systems, I and II, with coordinates ¢, z, and ¥,
=% respectively. Let the respective values of € in the two frames be €, and
€, and let frame II move with “velocity” v with respect to frame I. We can
use the following procedure to find the transformation connecting the two
frames: (1) use (25) to transform I into an inertial frame ¢, y;; (2) use (28)
and (32) to transform ¢, y, into a second inertial frame ¢*, y* moving with
velocity v with respect to the first; (3) use (24) to obtain the frame II. This
procedure results in some tedious algebra and

o= 2% _Q(l —& — &) + 1t — 2e, — &) + 4ve(l — &)z
Vo1 - 02 — 1) — 02
(34) —

2% =! 1

- Vo1 - o2 — 1) — v?

, v = v and (34) reduces to a Lorentz

11—

Note that when ¢, = €, =
transformation (33).

John Winnie (1970) derives the above transformations from a com-
pletely different point of view.? He calls the relations (34) the e-Lorentz
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transformations. ‘The purpose of Winnie's paper is to argue that special
relativity as formulated using the standard synchronization rule (22) is
“kinematically equivalent”™ to a formulation using the nonstandard rule
(23) with € # ) —thus vindicating, according to Winnie, the thesis of the
conventionality of simultaneity. In the present framework, Winnie’s claim
is that special relativity as formulated in e-systems is equivalent to special
relativity as formulated in inertial systems. It seems to me that there is
one sense in which this claim is obviously true, but completely trivial; and
there is a second sense in which it is not at all obvious, and completely
unsupported by Winnie’s arguments.

The sense in which the equivalence claim is obviously true is that
Minkowski space-time can be described equally well from the point of view
of e-coordinate systems as from the point of view of inertial coordinate
systems. Formulations of special relativity in e-systems say the same thing
about Minkowski space-time as formulations in inertial systems. Indeed,
they are nothing but different coordinate representations of the same
theory (the theory expressed in coordinate-independent form in note 4).
Thus the two formulations cannot disagree about the behavior of light—
light follows null geodesics independently of coordinate system; nor about
the behavior of free particles—f{ree particles follow timelike geodesics
independently of coordinate system; nor about the behavior of clocks—
(ideal) clocks measure the proper time along their trajectories independ-
ently of coordinate system; etc. But note that in this sense of ‘equivalence’
there is no need to restrict ourselves to e-coordinate systems. Minkowski
space-time can be equally well described from the point of view of any
coordinate system; our theory can be represented in arbitrary coordinate
systems. (This is especially obvious in the formulation of note 4.) Thus the
equivalence of e-systems and inertial systems in this sense reveals no
deep facts about Minkowski space-time or special relativity. Newtonian
space-time can be represented in arbitrary coordinate systems as well;
Newtonian kinematics can be formulated in systems that are not inertial
with no change in theory. In fact, of course, any theory expressible in
tensor form will have this property.

Thus, if the equivalence claim is to be nontrivial, it must amount to
something more than the assertion that e-coordinate systems and inertial
coordinate systems are equally good representations of the basic facts
about Minkowski space-time hypothesized by special relativity. Let us
look a little closer. According to special relativity there is no unique global
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time defined on space-time. However, special relativity in its usual € = %
formulations associates a unique global time with every state of inertial
motion. For every timelike geodesic o(r), there is a unique (up to a lincar
transformation) way of extending its proper time to a global coordinate
time t—the yo-coordinate of an inertial coordinate system adapted to o(7).
Now a defender of the equivalence claim can be construed as asserting
that there are other, equally good, ways of extending the proper time of a
time-like geodesic to a global time—namely, the z(-coordinates of
e-systems adapted to o(r). That is, he is claiming not merely that
e-systems and inertial systems are equally good coordinate representa-
tions of Minkowski space-time, but that the z¢-coordinate of an e-system is
an equally good candidate for the global time associated with a given state
of inertial motion as the yo-coordinate of an inertial system. The ¢ of an
e-system is an equally good representation of physical time as the ¢ of an
inertial system. This explains why a defender of the equivalence thesis
considers only e-systems with 0 < € < 1, and not arbitrary coordinate
systems. For only the zo-coordinate of an e-system with 0 < € < 1 satisfies
minimal conditions for representing physical time: the hypersurfaces zy =
constant being spacelike.

If this is correct, arguments like Winnie’s, which simply amount to
showing how special relativity as formulated in inertial systems can be
translated into a formulation in e-systems, do not support a nontrivial
version of the equivalence thesis. Such translation procedures merely
prove that e-systems and inertial systems are equally good coordinate
representations of Minkowski space-time, a fact that is obvious in a tensor
formulation of special relativity. In support of a stronger version of the
equivalence claim, we must be given some reason to think that the z,-
coordinate of an e-system is an equally good representation of physical
time as the y,-coordinate of an inertial system. Clearly the condition 0 < €
< 1 is a necessary condition for a z,-coordinate to represent physical
time—but is it sufficient? Are there any plausible additional conditions
that narrow the choice of € further?

The advocates of so-called slow-transport synchrony (see Ellis and
Bowman, 1967) may be understood to propose a further such necessary
condition for a zo-coordinate to represent physical time. Consider again
the problem of synchronizing two clocks in a given reference frame, one
atPand the other at P ,. The two are said to be in slow-transport synchrony
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Figure 3

if a clock synchronized with P time at ¢ is transported “infinitely slowly”
to Py and is in agreement with P -time at ¢,. (We consider only “infinitely
slow” transport to avoid the velocity-dependent relativistic time-dilation
effects.) More precisely, let there be given an arbitrary e-system zg, z,
adapted to a given timelike geodesic o(7).

Consider a timelike geodesic p(*)—representing a clock transported
with constant velocity—which intersects a(r) at 7,. Consider two events E
and E’ on o(r) and p(7*) respectively, and let the proper time 7* of p equal
that of o at their intersection: i.e., let 7, = 7o*—the two clocks are
synchronized. Finally, let the “velocity” of p in zy, z; be v = dz,/dz,. E
and E’ are slow-transport simultancous if and only if lim (r, — 7,%) =0,
where 7, and 7.* are the respective proper times of E ‘and E’ (Fig. 4).

Now I take the advocates of slow-transport synchrony to be imposing
the further condition on a zg-coordinate that it agree with slow-transport
simultaneity; i.e., that two events are simultaneous according to zo—they
have the same z,-coordinate—if and only if they are slow-transport simul-
taneous. It is not hard to show that this requirement fixes € at 3 s only the
yo-coordinates of inertial systems satisfy this condition. For suppose that
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Figure 4

E and E' are zy-simultaneous in our diagram: the z,-coordinate of E’ is just
7. It follows from (31) that

(B3 (=) = (1 — 1)V — 480 + (48® — 1)p?

Expanding the “dilation term” in a binomial series we obtain
(r* = m®) = (ry ~ 70) (1 — 285 — 148 — ) o* — . .
where the rest of the series consists of second and higher powers of ©.
Since 7p* = 7, we have
(= 7%) = (1 —79) 280 — (48 — D2~ . . .
But (1, — 7¢) = 2,/ where z, is the “spatial” coordinate of E’. So we have
(i —7%) =228 - ;48 — 1)p — . .
Letting v — 0 and substituting € — % for § we finally get

l_im (11— 7%) = 2, (2 —1)
v—0

So z simultaneity agrees with slow-transport simultaneity everywhere if
and only if € = %, if and only if z, is the coordinate time of an inertial
coordinate system adapted to o(7).
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What does this show? It shows that if a necessary condition for some-

thing being a representation of physical time is that it agree with slow-
transport simultancity, then the zg-coordinates of e-systems with € # é

are not equally good representations of physical time as the y i-coordinates
of inertial systems. However, this refutes the conventionalist only if he
concedes that this requirement—agreement with slow-transport
simultaneity—is not itself conventional. And the conventionalist does not
have to (nor does he in fact: see Griinbaum, 1969 and Salmon, 1969)
concede this. He can maintain that just as choosing € = % is not any
“truer” or more “factual” than choosing € # ; ; so, requiring agreement
with slow-transport simultaneity is not any “truer” or more “factual” than
not requiring it. Both choices may have the advantage of simplicity over
their alternatives, but not the advantage of truth. But now the debate
over conventionalism begins to look hopeless. The conventionalist asserts
that a certain system of description is not “factual,” and produces alterna-
tive descriptions which he claims are “equally good”; the anti-
conventionalist points to various asymmetries between the original sys-
tem and the conventionalist’s alternatives; the conventionalist replies that
these differences are not “factual” either, they are merely differences in
simplicity; etc. If this debate is to have any point we need some kind of
independent characterization of the difference between “factual” and con-
ventional statements or descriptions.

Now, if we look at the conventionality thesis from a semantic point of
view, it is clear that one important difference between conventional
statements and “factual” statements is that the former are supposed to
have no determinate truth-value, while the latter are either determi-
nately true or determinately false. Therefore, one possible source of an
independent characterization of the difference between “factual” and
conventional statements is a semantic theory that is capable of dealing
with sentences that lack determinate truth-value. As I suggested earlier, I
think that so-called referential semantics is the most promising theory of
this kind. According to referential semantics, there are at least two ways
in which a (grammatically well-formed) sentence can lack a determinate
truth-value: (1) it can contain words that pick out no referents; or (2) it can
contain words that have a multiplicity of referents. In this latter case, the
sentence (like sentences containing indexical words) is neither true nor
false simpliciter, but has different truth-values relative to different choices
from among the multiplicity of referents in question. With this in mind, I
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would like to turn to what I think are the most important arguments for
the conventionality thesis.

It seems to me that there are at bottom only two arguments for the
conventionality of simultaneity in the literature: Reichenbach’s and
Griinbaum’s. Reichenbach argues from an epistemological point of view;
he argues that certain statements are conventional as opposed to “factual”
because they are unverifiable in principle. Griinbaum argues from an
ontological point of view; he argues that certain statements are conven-
tional because there is a sense in which the properties and relations with
which they purportedly deal do not really exist, they are not really part of
the objective physical world. Thus, Reichenbach’s and Griinbaum’s ar-
guments depend on two different characterizations of the difference be-
tween conventional and “factual” statements. According to Reichenbach,
the “factual”/conventional distinction is just the verifiable/unverifiable
distinction. According to Griinbaum, the “factual”/conventional distinc-
tion rests on a prior distinction between properties and relations that are
objective constituents of the physical world and those that are not.

How does Reichenbach argue for the conventionality thesis? He con-
siders various methods for determining distant simultaneity in a given
reference system—various methods of verifying statements of the form
‘Events ¢, and e, are simultaneous with respect to the given state of
inertial motion M'—and tries to show that none of these methods fur-
nishes an unambiguous answer in a special-relativistic world. Thus, for
example, if there were no upper limit to the velocity of signals, we could
determine which event at a given place P, is simultaneous with a given
event E at P, by considering arbitrarily fast signals that are sent from P,
and are reflected back from P, at event E. In a special relativistic world,
on the other hand, there is an upper limit to the velocity of signals.
Consequently, we can use signals to determine simultaneity only if we
know their velocities; and knowledge of (one-way) velocity presupposes
knowledge of distant simultaneity:

Thus we are faced with a circular argument. To determine the simul-
taneity of distant events we need to know a velocity, and to measure a
velocity we require knowledge of the simultaneity of distant events. The
occurrence of this circularity proves that simultaneity is not a matter of

knowledge, but of a coordinative definition, since the logical circle shows
that a knowledge of simultaneity is impossible in principle (1958, 126-127).

Of course, just because one method of determining simultaneity in-
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volves circalarity, it does not follow that they all do; so Reichenbach
considers, in addition, the possibility of determining distant simultaneity
by transporting clocks from one place to another. About this method he
makes two points: (1) in a special-relativistic world it does not determine a
unique simultaneity relation, because the rate of clocks depends on their
velocity; (2) even if the relation so determined were unique, it would still
only constitute a definition, because it would depend on unverifiable
assumptions to the effect that if two clocks are seen to run at the same rate
when together they continue to run at the same rate when spatially sepa-
rated (1958, pp. 133-135).

I think Reichenbach’s treatment of the clock-transport method is not so
convincing as his treatment of the signal method. First, the method of
“infinitely slow” clock transport avoids problem (1). Slow-transport simul-
taneity is a unique simultaneity relation. Second, while it is true that
slow-transport simultaneity depends on assumptions about the rates of
spatially separated clocks, these appear to be additional assumptions.
That is, we do not appear to be faced with the same kind of obvious
circularity as in the signal method, in which the determination of simul-
taneity depends on assumptions about velocity, and assumptions about
velocity depend on the determination of simultaneity. Let me try to be
more precise. The uniqueness of the slow transport method—its agree-
ment with € = ; simultaneity—depends on assumptions about the
proper time metric. That is, we assume that the proper time metric in a
particular e-system is given by (31), i.e.,

dr =V 1-46v + (48 — 1) o2 dt

If we assume instead a different proper time metric, e.g.,
B7) dr=V 1-—48 — 48 — vidt — 280 dt

we can eliminate the uniqueness of slow-transport simultaneity. Thus,
according to the metric (37)

(38) lim (r, = 7,%) =0

v—0

in all e-systems. Therefore the method of slow-transport depends on
assumptions about the temporal metric. However, these assumptions
seem to be independent of assumptions about the value of e—even if we
fix the value of € we are still free to choose between (31) and (37) as our
proper time metric. One can argue that such assumptions about the tem-
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poral metric are themselves conventional, but this requires an independ -
ent argument.

In any case, the main problem with Reichenbach’s argument is this:
whether or not statements about distant simultaneity are in some sense
unverifiable in the context of special relativity, we have been given no
reason to suppose that unverifiability implies lack of determinate truth-
value. It would seem that sufficient conditions for a sentence’s possession
of a truth-value are: (1) that it be grammatically well-formed, and (2) that
its component words pick out determinate referents. If (1) and (2) are
satisfied, the sentence has a determinate truth-value, regardless of its
epistemic status. Thus it seems to me that Reichenbach’s approach to the
problem of conventionality is vitiated by his reliance on bad semantics—
his reliance on the verifiability theory of meaning. Note that Reichenbach
himself was perfectly explicit about his reliance on this theory. For exam-
ple, in his comments on the significance of Einstein’s views on
simultaneity—understood as a version of the conventionality thesis, of
course—Reichenbach writes:

The physicist who wanted to understand the Michelson experiment had
to commit himself to'a philosophy for which the meaning of a statement is
reducible to its verifiability, that is, he had to adopt the verifiability
theory of meaning if he wanted to escape a maze of ambiguous questions
and gratuitous complications. It is this positivist, or let me rather say,

empiricist commitment which determines the philosophical position of
Einstein (1949, pp. 290-291).

Griinbaum’s approach to the conventionality thesis is very different.
Unlike Reichenbach, he does not rely on the verifiability theory of mean-
ing; he does not use verifiability as a criterion for possessing a truth-value.
Instead, he argues that in a special-relativistic world there is no objective
simultaneity relation at all, there is no genuine physical relation for
‘simultaneity’ to refer to. Griinbaum’s argument proceeds as follows: Let
us say that two events, at P, and P; respectively, are topologically simul-
taneous just in case they are connectible by no causal signal. In a Newto-
nian world, in which there is no upper bound to the velocity of causal
propagation, there is a unique event at P, topologically simultaneous with
a given event E at P,. In such a world, the relation of topological simul-
taneity uniquely determines the relation of metrical simultaneity. In a
special-relativistic world like our own, on the other hand, in which there
is a finite upper bound to the velocity of causal propagation, there are a
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multitude (in fact an infinity) of events at Py which are topologically simul-
tancous with £, In this kind of world, therefore, the relation of metrical

simultaneity is not uniquely determined by the relation of topological
simultaneity (see 1973, pp. 28ff; pp. 345ff.)

If this is correct,” in a special-relativistic world it is impossible to define
a relation of metrical simultaneity solely on the basis of causal relations
between events, while in a Newtonian world such a definition would be
possible. But why should the relation of metrical simultaneity be defin-
able solely on the basis of causal relations? Why should we take the
indefinability of metrical simultaneity on the basis of topological simul-
taneity as a reason for concluding that there is no objective physical
relation of metrical simultaneity? Why can’t metrical simultaneity stand
on its own feet, as it were?

The answer, in Griinbaum’s case, is that he holds a causal theory of
time. He believes that all objective temporal relations are constituted by
causal relations between events; the only temporal relations that objec-
tively exist are those determined solely by causal relations:

By maintaining that the very existence of temporal relations between
non-coinciding events depends on the obtaining of some physical rela-
tions between them, Einstein espoused a conception of time (and space)
which is relational by regarding them as systems of relations between
physical events and things. Since time relations are first constituted by
the system of physical relations obtaining among events, the character of
the temporal order will be determined by the physical attributes in virtue
of which events will be held to sustain relations of “simultaneous with”,
“earlier than”, or “later than”. In particular, it is a question of physical fact

whether these attributes are of the kind to define temporal relations
uniquely. . . . (1973, pp. 345-346).

So in a world in which metrical simultaneity is not definable solely on the
basis of causal relations, there is no such physical relation. Note the
similarity between Griinbaum’s argument here and his argument for the
conventionality of congruence. He argues that on a continuous set of
spatial or temporal points there is no objective (“intrinsic”) congruence
relation, because on such a set congruence is not definable solely on the
basis of topological properties (like cardinality) and order relations. Thus
this argument depends on the claim that the only objective physical rela-
tions on a set of spatial or temporal points are those constituted by top-
ological and ordinal relations®>—just as the argument for the convention-
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ality of simultaneity depends on the claim that the only objective tem-
poral relations are those constituted by causal relations between events.

Griinbaum’s argument, unlike Reichenbach’s, has the advantage that if
it were correct, we could draw semantic conclusions about the truth-value
of sentences containing ‘simultaneous’ on the basis of the referential
properties of their key terms. For, if Griinbaum’s argument is correct, it
follows that ‘simultaneous’ has no referent—there is no objective physical
relation for it to refer to. And this would make the conventionalist conten-
tion that sentences like ‘Events e, and e, are simultaneous with respect to
state of inertial motion M’ lack determinate truth-value highly plausible.
However, it seems to me that Griinbaum’s actual argument is much less
persuasive than Reichenbach’s. Reichenbach has given some plausibility
to the claim that statements about distant simultaneity may be unveri-
fiable within the context of special relativity. As far as I can see, Grin-
baum has given us no reason to accept the view that the only objective
temporal relations are constituted by causal relations. Indeed, how could
one possibly support such a view? Our only grip on which properties and
relations are objective constituents of the physical world is via our best
theories of the physical world. The properties and relations that we hold
to exist objectively are those that our best physical theories postulate.
And since our best theories do not merely postulate the kind of ordinal
(causal) temporal relations favored by Griinbaum—they postulate met-
rical relations as well—we have no reason to grant such ordinal (causal)
relations the privileged ontological status that Griinbaum wants to ascribe
to them.

In sum, it seems to me that we have not been given a basis for the
“factual”/conventional distinction on which (a) conventional statements
turn out to lack determinate truth-values, and (b) statements about distant
simultaneity turn out to be conventional. Reichenbach has given a crite-
rion for conventionality—i.e., unverifiability—which statements about
distant simultaneity in a special-relativistic world can be held to fulfill
with some plausibility. The verification of such statements is at least much
more complicated in a special-relativistic world than it is in a Newtonian
world. But there is no clear connection between Reichenbach’s criterion
and the lack of a determinate truth-value. Reichenbach’s argument for the
conventionality thesis rests on a dubious semantics. On the other hand,
Griinbaum has given a criterion for conventionality—i.e., having con-
stituent terms with no objective physical referents—which has a plausible
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connection with the Lwek of o determinate trath-value. However, Griin-
baum’s argument that ‘simultancous” indeed lacks an objective relerent
depends on an unsupported, and scemingly unsupportable, a priori
judgment as to which relations are objective. Griinbaum’s argument for
the conventionality thesis rests on a dubious ontology.

Notes

1. It is worth noting that both Newtonian mechanics and special relativity can be formu-
lated within a more general point of view by starting with a four-dimensional C* manifold M
instead of R* (cf. Anderson, 1967, Earman and Friedman, 1973, Havas, 1964, and Trautman,
1966). In this framework, a Newtonian space-time is a quadruple (M, I'ji, t;, hY), where [}y is
a symmetric affine connection, ¢;a C* covector field, and h¥ a C* symmetric tensor field of
type (2, 0) and signature (0, 1, 1, 1). These objects satisfy the field equations

(1) Ry =0
(@) hiy =0
(@) ti; =0

(4) hitt; = 0

where Ry is the curvature tensor of Iy
Our law of motion is

e d2x dx;  dy,
8y 0 p SO SRR
’ aE I du du = O

A Minkowski space-time is a triple (M, ['fx, g;;), where Iy is a symmetric affine connec-
tion and g;; is a C* symmetric tensor field of type (0, 2) and signature (1, —1, =1, —1). Our
field equations are just

(6) Riyy = 0
(7 gk =0

and our law of motion is again (5). This more general framework facilitates the comparison of
these two theories with general relativity. In this context a general relativistic space-time is a
quadruple (M, Tj, g, T7), where I/, and g; are as in special relativity and T% is a C*
tensor fields of type (2, 0) representing the mass-energy density. Our equation of motion
remains the same, and we have one field equation

(8) RV — %g"R = —8mkT¥

where R¥ is the Ricci tensor of ', R is the contracted Ricci tensor, and k is the gravitational
constant. (The notions from differential geometry used here are explained in Hicks 1965.)

2. Of course, we really think that special relativity is only approximately true. However,
my discussion will be much simpler if I ignore this. If I were to take account of the actual
situation, 1 would have to change ‘inertial frame’ everywhere to “approximately inertial
frame,” etc.

3. Compare (33) with the relations in Winnie, 1970, p. 234, remembering that I have set
¢ = 1. Note that at the end of his paper Winnie briefly alludes to the possibility of obtaining
his transformations in something like the above manner—cf. pp. 236-237.

4. (Added in proof) Even this much seems actually incorrect. David Malament has re-
cently shown that the standard € = % simultaneity relation is (in a natural sense) uniquely
definable in terms of causal relations in Minkowski space-time. See Malament, “Causal
Theories of Time and the Conventionality of Simultaneity,” forthcoming.

5. See Friedman, 1972 for such an interpretation of Griinbaum’s argument.
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On Conventionality and Simultaneity—-—

Another Reply

1. Introduction

In “Conventionality in Distant Simultaneity,” Brian Ellis and I (1967)
discussed the position Reichenbach and Griinbaum had taken on this
issue. That article received considerable comment (Griinbaum and Sal-
mon, 1969; Winnie, 1970; Feenberg, 1974), much of the critical part of
which Ellis answered in “On Conventionality and Simultaneity—A Re-
ply” (1971). Here I shall reformulate, extend, and supplement his answer
to some of the critiques (Grinbaum, 1969; Salmon, 1969; van Fraassen,
1969). Elsewhere I treat the topic in a less polemical manner (Bowman,
1974 and 1976).

The conventionality of distant simultaneity, as maintained by Reichen-
bach and Griinbaum, is after all this commentary so widely known that it
can be stated very briefly. Let us consider two points A and B which are
separated from one another in an inertial frame K. For a light signal
emitted from A and reflected at B back to A, we compare the time interval
for the outgoing trip to that for the round trip. This ratio is called “epsi-
lon” (e). In formulating the special theory of relativity, Einstein effectively
took € to be 1; thus we may use € = } in defining what is now called
“standard signal synchrony.” Reichenbach views € as restricted only by
the causal relations involved in the signaling process. That is, the reflec-
tion of the light ray at B must take place after the ray’s emission at A but
before its return to A. These considerations require us to restrict € be-
tween zero and one, but Reichenbach insists that within these limits
values of € = é “could not be called false” (1958, p. 127). He claims that
there are no facts that would mediate against using these values in defini-
tions that are now called “nonstandard signal synchrony.” This allegedly
NoTE: This paper follows subsection J.1 of my dissertation (1972) with only minor expository

changes except for the last page of the present subsection 2.c, which is a substantive
revision.
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