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Abstract 

A mental disorder is a medical condition that disrupts a person's thinking, feeling, mood, 

ability to relate to others and daily functioning. Despite decades of research, the exact 

cause of most mental disorders remains unknown and no objective tests are available for 

their diagnosis. It is crucial to explore quantitative, discriminative and interpretable 

biomarkers for mental disorders, which could not only assist in clinical diagnosis, but 

also help in gaining insight into the underlying mechanisms of the illnesses. 

In this research, we explore neuroimaging biomarkers for two common mental 

disorders: schizophrenia and borderline personality disorder (BPD). An interdisciplinary 

research framework covering feature extraction, selection, classification and validation is 

presented. Signal processing and graph theory approaches are employed to process and 

model neuroimaging data, and create meaningful feature sets to characterize brain 

activity, connectivity and network topologies. Machine learning based feature ranking 

and classification is performed to select discriminating feature subset and distinguish 

psychiatric patients from healthy subjects. Statistical analysis is performed to validate the 

significance of the identified features and control the False Discovery Rate (FDR).  

In the first part of the dissertation, we explore spatial-temporal-spectral neural 

oscillation patterns for schizophrenia using magnetoencephalography (MEG) data. We 

first extract Event-Related Desynchronization/Synchronization (ERDS) patterns along 

the space, time and frequency dimensions combined. A two-step feature ranking 

algorithm combining F-score filtering and Support Vector Machine – Recursive Feature 

Elimination (SVM-RFE) algorithm is applied to select a small subset of features 

according to their discriminating power. With top 20 ERDS features, 90% specificity and 

91.67% sensitivity is achieved in classifying 12 schizophrenia patients from 10 healthy 

controls using a linear SVM classifier, following cross validation procedure.  

Next, two novel spatial-temporal-spectral feature sets, the Band Power Ratio (BPR) 

and the Window Power Ratio (WPR) are created, based on the Power Spectral Density of 

MEG data. Cluster-based nonparametric permutation tests are employed to identify key 

features with significant between-group difference, which control the FDR while 
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maintaining low False Negative Rate. The minimum-Redundancy-Maximum-Relevance 

criteria are then employed to select the optimal feature combinations for classification. 

Based on only 2 WPR and 1 BPR feature combined, over 95% cross validation 

classification accuracy is achieved using three different linear classifiers separately, 

which indicates strong discriminating power of the key Spectral Power Ratio features. 

Using spectral power features, a computer-aided schizophrenia screening system based 

on majority voting of single MEG trials is then presented.  

In the second part of the dissertation, we explore functional brain network 

connectivity and topology patterns for BPD using resting-state functional magnetic 

resonance imaging (fMRI) data. Frequency-specific brain networks are constructed by 

correlating wavelet-filtered fMRI time series from 82 cortical and subcortical regions. 

Network-based statistics are employed to identify altered connections using cluster-based 

thresholding of statistical maps. An interconnected subnetwork in 0.03–0.06Hz frequency 

band is identified that shows significantly lower connectivity strength in patients. The 

mean connectivity of the subnetwork shows negative correlation with several key clinical 

symptom scores, and achieves 90% sensitive and 90% specificity in BPD classification 

using a simple linear classifier.  

We further employ graph theory to investigate the global and local topological 

structure of the frequency-specific brain connectivity networks. Statistical analysis show 

that BPD patients have significantly larger measures of global network topology, 

including the size of largest connected component, clustering coefficient, small-

worldness and local efficiency, indicating increased local cliquishness in the functional 

brain network. These global topology metrics show positive correlations with several 

clinical symptom scores associated with BPD. Additionally, compared to controls, 

patients show lower nodal centrality at several hub regions but higher centrality at several 

non-hub regions in the network. These findings may add to the current understanding of 

functional brain networks in BPD. 
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Chapter 1 
 

Introduction 

1.1 Introduction 

1.1.1 Background  

A mental disorder, also called a mental illness or a psychiatric disorder, is a clinically 

significant behavioral or psychological syndrome, which is associated with present 

distress (e.g., a painful symptom) or disability (i.e., impairment in one or more important 

areas of functioning) or with a significantly increased risk of suffering death, pain, 

disability, or an important loss of freedom [1]. Examples of mental disorder include 

anxiety disorders, mood disorders, schizophrenia, personality disorders, eating disorders, 

and addictive behaviors.  Mental disorders affect people’s mood, thinking and behavior, 

and can cause various problems in people’s daily life, such as confused thinking or 

reduced ability to concentrate, detachment from reality (delusions), paranoia or 

hallucinations, extreme mood changes of highs and lows, withdrawal from friends and 

activities, alcohol or drug abuse, suicidal thinking, etc. [2].  

Mental disorders are common in the United States and internationally.  According to 

the National Institute of Mental Health (NIMH), an estimate of 43 million Americans 

aged 18 or older suffer from a diagnosable mental disorder in a given year.  This number 

represented nearly 1 in 5 of all U.S. adults [3].  Fully 20 percent of American children 

ages 13 to 18, either currently or at some point during their life, have had a seriously 

debilitating mental disorder [4].  In addition, mental disorders were showed as the largest 

cost drivers in healthcare at $2.5 trillion in global costs in 2010, and projected costs of 

$6.0 trillion by 2030 [5].   
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To provide effective prevention, accurate diagnosis, and appropriate treatment for 

mental disorders, it is crucial to understand the causes and the underlying mechanisms of 

the illnesses. Current research suggests that mental disorders are caused by a combination 

of genetic, biological, psychological and environmental factors. However, the exact cause 

of most mental illnesses remains unknown [6].  Furthermore, current diagnosis of mental 

illnesses is mainly based on a person’s self-reported symptoms, thoughts, feelings and 

behavior patterns, followed by a clinical assessment by a mental health professional [7].  

Such subjective diagnostic process remains uncertain since there is no objective test to 

support it.  Therefore, it is highly desirable to explore quantitative, discriminative, and 

interpretable biomarkers – objective biological measures that can predict clinical 

outcomes – for mental illnesses, which could not only assist in validating the clinical 

diagnosis, but also help in gaining insight into the underlying mechanisms of the illnesses. 

A lot of recent research effort has been made to search for “neuroimaging 

biomarkers” for mental disorders [8]. Modern neuroimaging (also called brain imaging) 

techniques provide powerful tools for scientists to study the structure and function of 

human brain.  For example, Magnetic Resonance Imaging (MRI) uses magnetic fields 

and radio waves to produce high quality images of the brain’s structure; functional 

Magnetic Resonance Imaging (fMRI) uses MRI technology to measure brain activity by 

detecting changes associated with blood flow [9]. Another type of functional 

neuroimaging technique called Magnetoencephalography (MEG) can map ongoing brain 

activity on a millisecond-by-millisecond basis, by recording magnetic fields produced by 

electrical currents occurring naturally in the brain [10].  Figure 1.1 shows how MRI and 

MEG data are acquired from subjects in a non-invasive manner.  
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Various quantitative measures can be extracted from neuroimaging data using 

advanced signal processing and image processing techniques. If these imaging measures 

demonstrate sufficient precision and reliability in predicting a clinical diagnosis, they will 

become objective and tangible “imaging biomarkers” for mental disorders [8]. The 

discovery of such imaging biomarkers could enable quantitative assessment of the 

illnesses and bring knowledge to the current understanding of mental disorders, which 

would benefit a large population of psychiatric patients.  

1.1.2 Research Overview 

In this research, we focus on exploring discriminative and interpretable imaging 

biomarkers for two common mental disorders: schizophrenia and borderline personality 

disorder (BPD).  Schizophrenia is a chronic, severe, and disabling mental disorder 

characterized by deficits in thought processes, perceptions, and emotional responsiveness. 

It affects about 1.1% of U.S. adult population [11].  BPD is a serious mental disorder 

characterized by pervasive instability in moods, interpersonal relationships, self-image, 

and behavior. It affects about 1.6% of U.S. adults [12].  Two neuroimaging modalities: 

     

    (a)               (b) 

Figure 1.1: Acquisition of (a) Magnetoencephalography (MEG) and (b) Magnetic 

Resonance Imaging (MRI). 

 [Source: https://www.nimh.nih.gov/health/publications/neuroimaging-and-mental-

illness-a-window-into-the-brain/index.shtml] 
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MEG and fMRI are used to assess brain dysfunctions associated with schizophrenia and 

BPD, respectively. Various signal processing, graph theory, machine learning and 

statistical analysis approaches are employed to process the neuroimaging data, extract, 

select and validate discriminating patterns, and build computer-aided classification 

systems for diagnosing and understanding the illnesses. Figure 1.2 shows the 

interdisciplinary research framework of this work.  

 

First of all, neuroimaging data are acquired from both psychiatric patients and healthy 

controls, during either task or resting state. Raw data is preprocessed to remove noise, 

artifacts and other unwanted components. Advanced signal processing and graph theory 

approaches are employed to further process and model the preprocessed neuroimaging 

data, and create meaningful feature sets to characterize brain activity, connectivity and 

network structure from different perspectives. For the schizophrenia study, we 

particularly focus on creating spatial-temporal-spectral features, since MEG assesses 

ongoing neural oscillatory activity at different brain locations with very high temporal 

resolution. From signal processing perspective, this type of data is a good source for 

 

Figure 1.2: Framework of this research 

 

 

 

 

 

 

Figure 1.2: Interdisciplinary research framework of this work  
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detailed time-frequency analysis. For the BPD study, we focus on investigating 

functional brain network connectivity and topology patterns. The main consideration is 

that fMRI data has relatively low temporal resolution but good spatial resolution, which 

is suitable for analyzing the interactions among different brain regions.  

The original feature sets are extracted from multiple spatial locations, time periods 

and frequency ranges. Therefore, the dimensionality of the feature space is usually much 

larger than the sample size, i.e., number of features is much greater than number of 

subjects. Feature ranking is performed to select a subset of the original feature set that 

shows high discrimination between psychiatric patients and healthy controls. On the one 

hand, feature selection process leads to a better understanding of the underlying process 

that generated the abnormalities in brain functioning that distinguish patients from 

controls. On the other hand, feature selection improves prediction performance and 

reduces complexity of a machine learning model by removing irrelevant features and 

preventing model overfitting [13]. Based on the selected subset of discriminating features, 

a machine learning classifier can be designed as a computer-aided screening system to 

assist in clinical diagnosis of mental illnesses.  

From statistics point of view, individual features that show high discriminating power 

may be false discoveries due to multiple comparisons [14], i.e., simultaneous testing of 

more than one hypothesis. Therefore, appropriate statistical tests are necessary to validate 

the significance of the identified discriminating features and control the False Discovery 

Rate (FDR). Traditional multiple comparison correction approach, such as Bonferroni 

correction [15], is too conservative and does not consider the properties of neuroimaging 

data. In this work, we employ application-specific statistical analysis methods, such as 

cluster-based non-parametric tests [16] and Network-based Statistics (NBS) [17], which 

control the FDR while maintaining a relatively low False Negative Rate (FNR) compared 

with traditional methods. Finally, the key features will be interpreted using domain 

knowledge. 
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1.2 Summary of Contributions 

The key contribution of this research is the identification of several discriminating and 

interpretable neuroimaging patterns, including the spatial-temporal-spectral neural 

oscillation patterns in schizophrenia, and the functional brain network connectivity and 

topology patterns in BPD [18]–[21].  These patterns may bring new knowledge into the 

current understanding of mental disorders, and may have potential to become objective 

biomarkers for quantitative assessment of the illnesses. Furthermore, the biomarker 

discovery process follows a rigorous interdisciplinary research framework. Various signal 

processing, graph theory, machine learning and statistics approaches are presented for 

neuroimaging data processing, feature extraction, selection, validation and classification. 

These data analysis methods can be easily applied to other related studies that aim at 

identifying neuroimaging patterns to distinguish different brain states.  

1.2.1 Multidimensional Neural Oscillation Patterns in Schizophrenia  

MEG records ongoing brain activity from whole-brain locations with very high temporal 

resolution. This motivates us to explore spatial-temporal-spectral features in neural 

oscillatory activity assessed by MEG. We first investigate a traditional neural oscillation 

feature set called Event-Related Desynchronization/Synchronization (ERDS) [22], which 

represents power decrease or increase of MEG signals during cognitive functions. ERDS 

features are computed along the frequency, time, and space dimensions combined. A 

two-step feature ranking algorithm combining F-score [23] filtering and Support Vector 

Machine – Recursive Feature Elimination (SVM-RFE) algorithm [24] is applied to select 

a small subset of features according to their discriminating power. With top 20 ERDS 

features, 90% specificity and 91.67% sensitivity is achieved in classifying 12 

schizophrenia patients from 10 healthy controls, using a linear SVM classifier [25], [26], 

following leave-one-out cross validation procedure [27]. The space, time and frequency 

information of the top features is discussed in detail.  
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1.2.2 MEG Spectral Power Ratio Patterns in Schizophrenia 

We next propose two novel spatial-temporal-spectral feature sets: the Band Power Ratio 

(BPR) and the Window Power Ratio (WPR), based on Power Spectral Density analysis of 

neural oscillations measured by MEG. Different from traditional spectral power features, 

the BPR and the WPR reflect the inter-relationships of spectral power between different 

frequency bands, and between different time periods of neural oscillatory activity, 

respectively. Cluster-based nonparametric permutation tests are employed to identify key 

features that show significant between-group difference, which control the FDR while 

maintaining a low FNR [16]. The minimum-Redundancy-Maximum-Relevance (mRMR) 

criteria are then employed to select the optimal feature combinations for classification 

[28]. Based on only two WPR and one BPR features combined, over 95% cross 

validation classification accuracies are achieved using three different linear classifiers 

separately, which indicates strong discriminating power of the proposed Spectral Power 

Ratio (SPR) features.  

1.2.3 Functional Brain Connectivity Patterns in BPD 

Resting-state fMRI measures intrinsic brain activity with high spatial resolution. This 

motivates us to explore fMRI patterns that characterize the functional interactions 

between different brain regions-of-interest (ROI).  Frequency-specific functional brain 

networks are constructed by correlating wavelet-filtered fMRI time series from 82 

cortical and subcortical regions. Network-based Statistics (NBS) are employed to identify 

altered functional connectivity using cluster-based thresholding of statistical maps [17]. 

An interconnected subnetwork in 0.03–0.06Hz frequency band is identified that shows 

significantly lower connectivity strength in patient group. The links in the subnetwork are 

mainly long-distance connections between regions located at different lobes. The mean 

connectivity in the subnetwork shows negative correlations with several key clinical 

symptom scores, and achieves 90% sensitive and 90% specificity in classifying 20 BPD 

patients from 10 healthy controls using a simple linear discriminant classifier.  
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1.2.4 Functional Brain Network Topology Patterns in BPD 

Neuroimaging research on BPD has revealed structural and functional abnormalities in 

specific brain regions and connections. However, little is known about the topological 

organizations of functional brain networks in BPD. Based on the bivariate functional 

connectivity analysis, we further employ graph-theory based complex network analysis to 

extract several network measures which characterize the global and local topological 

structure of the functional brain networks. Statistical analysis show that patients with 

BPD have significantly larger measures of global network topology, including the Size of 

Largest Connected Graph Component, Clustering Coefficient, Small-Worldness and 

Local Efficiency, indicating increased local cliquishness of the functional brain network. 

These global metrics show positive correlations with several clinical symptom scores 

associated with BPD. Additionally, compared to healthy controls, BPD patients show 

lower Nodal Centrality at several hub nodes but greater centrality at several non-hub 

nodes in the network. These novel findings may add new knowledge to the current 

understanding of functional brain networks in BPD. 

1.3 Outline of the Dissertation 

The organization of the rest of this dissertation is outlined as follows. 

Chapter 2 presents the computation, identification and classification of discriminating 

ERDS patterns for schizophrenia, using MEG data collected during language processing 

tasks. The two-step feature ranking scheme combing F-score filtering and SVM-RFE 

algorithm is described. 

Chapter 3 introduces two novel MEG Spectral Power Ratio (SPR) feature sets for 

schizophrenia: the Band Power Ratio and the Window Power Ratio. We described how 

SPR features are extracted along space, time and frequency dimensions, and how key 

features are identified and validated by cluster-based nonparametric permutation tests. 

Machine learning based feature selection and classification approaches are also presented. 
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Chapter 4 presents the design of a machine learning based schizophrenia screening 

system, using majority voting of spectral power features extracted from single-trial MEG. 

A two-stage feature selection algorithm combining F-score filtering and Adaptive 

Boosting (Adaboost) model is presented. 

Chapter 5 presents the exploration of functional brain connectivity patterns in BPD 

using resting-state fMRI data. We describe how to construct frequency-specific 

functional brain networks and apply network-based statistics to identify an interconnected 

subnetwork with altered connectivity strength in BPD.  

Chapter 6 presents the identification of functional brain network topology patterns in 

BPD, using graph-theory based complex network analysis. The computation of various 

global and local topological patterns is described in detail. The correlation of key network 

patterns with BPD clinical symptom scores is also presented. 

Finally, Chapter 7 concludes the dissertation with a summary of all the contributions 

and points out future research directions.  
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Chapter 2 

 

Multidimensional Neural Oscillation 

Patterns in Schizophrenia 

2.1 Introduction 

Schizophrenia is a chronic, severe and complex mental illness which affects about 1.1% 

of the world population age 18 and older [29]. The key symptoms of the illness include 

hallucinations, delusions, paranoia, social withdrawal, and disorganization of thought and 

language [29].  Earlier research in schizophrenia has focused on relating specific cortical 

regions to the psychotic symptoms. However, recent theory has suggested that the 

psychotic phenomena and the cognitive dysfunctions that characterize schizophrenia are 

not simply due to a spatially circumscribed deficit, but rather due to disruptions of 

coordinated activity in cortical circuits [30]–[32]. Accordingly, neural oscillations, a 

fundamental mechanism for enabling coordinated activity during normal brain 

functioning, has become a crucial target for investigating the pathophysiology of 

schizophrenia, as well as the mechanisms of the cognitive deficits and other symptoms of 

this disease [32]–[34]. 

Neural oscillations can be assessed by methods that record dynamic brain activity 

with high temporal resolution, such as magnetoencephalogram (MEG) and 

electroencephalogram (EEG). Neural oscillations detected by MEG/EEG correspond to 

the synchronous firing of the pyramidal neurons. The oscillatory frequency reflects the 

frequency of neural firing, and the power of a frequency reflects the number of pyramidal 

neurons firing at that frequency [22]. Previous research has shown that cognitive 

functions modulate neural oscillations at multiple frequencies simultaneously [22], and 
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this modulation takes place at the frequency, spatial, and temporal dimensions [35], [36], 

[18]. This led to the hypothesis that oscillations detected by MEG/EEG are the sum of the 

activity of neural generators oscillating at different frequencies and distributed in time 

and space. Consequently, to get a better understanding of the oscillatory activity, the full 

scale of the frequency, spatial, and temporal dimensions of the brain oscillations needs to 

be evaluated. 

In this chapter, we explore multidimensional neural oscillation patterns in 

schizophrenia using MEG data recorded during a language processing task [18].  

Language disorder is one of the core symptoms in schizophrenia [37]. Linguistic research 

in schizophrenia has frequently shown abnormalities at multiple levels of language 

processing (lexical, semantic, syntactic and pragmatic levels) [38], as well as abnormal 

dynamics between these processing levels [39]. Therefore, the hypothesis here is that 

neural oscillatory activity during language processing in schizophrenic patients differs 

from healthy controls at certain frequency ranges, brain locations and time periods. Such 

frequency, space and time information can be extracted as multidimensional features 

from MEG data to distinguish schizophrenia patients from healthy subjects. 

Cognitive processing, including language processing, results in a change in the 

ongoing MEG/EEG in form of an Event-Related Desynchronization (ERD) or Event-

Related Synchronization (ERS) [40], [41]. The ERD represent frequency-specific power 

decrease of neural oscillatory activity, due to a decrease in synchrony of the underlying 

neural populations. On the contrary, the ERS represent power increase in specific 

frequency bands, due to an increase in synchrony of the neural populations [40].  In this 

study, we extract ERD/ERS from multiple frequency bands, brain locations and time 

points of MEG signal, to construct a multidimensional neural oscillation feature set.  

Machine learning based feature selection and classification algorithms are applied to 

identify the most discriminating features and distinguish schizophrenia patients from 

healthy controls. The frequency, time, and space information contained in the top features 

are analyzed, which may add new knowledge to the current understanding of abnormal 

neural mechanisms related to language disorder in schizophrenia. 
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The rest of this chapter is organized as follows. In Section 2.2, the subjects’ 

information and the MEG data acquisition and preprocessing procedures are described. In 

Section 2.3, the ERDS feature computation and the feature selection and classification 

methods are presented. Section 2.4 presents the classification results and the analysis of 

top features.  Finally, in Section 2.5, discussions and conclusions are presented. 

2.2 Subjects and Data 

2.2.1 Subjects 

Participants included 12 schizophrenia patients (12 male) and 10 healthy controls (9 

male). All the subjects were native English speakers and were right-handed. Handedness 

was assessed by the Edinburgh Handedness Inventory [42]. None of the control subjects 

had neurological disease or major medical illness. All the patients met the criteria of the 

“Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) [43]” for 

schizophrenia or schizoaffective disorder. All the subjects gave written informed consent 

before entering the study. The experimental protocol was approved by the relevant 

Institutional Review Boards (IRB).  

Measures of premorbid intellectual functioning were obtained using the National 

Adult Reading Test (NART) [44]. The severity of psychopathology was assessed with the 

Brief Psychiatric Rating Scale (BPRS) [45] and the Positive and Negative Symptoms 

Scale (PANSS) [46]. The duration of illness was derived from reviews of patient records. 

Table 2.1 summarizes the demographic and clinical characteristics of the subjects. 
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2.2.2 Language Processing Task 

Subjects were instructed to distinguish between correct and incorrect word stimuli. A 

correct stimulus is a set of five real English words, e.g., “cabin-fire-roped-big-the”. An 

incorrect stimulus is a set of five elements with four real English words and one 

pronounceable non-word, e.g., “cabin-freet-roped-big-the”. The elements in each 

stimulus were presented visually one at a time in the center of a monitor placed in front 

of the subjects. Each element appeared for 750 milliseconds followed by a 250 

milliseconds blank screen. There was a 10-second interval between consecutive trials. 

Subjects were instructed to read the stimuli silently and press a button with their right 

index finger for incorrect stimuli.  

Epochs included a baseline period (3 seconds immediately before the first word), and 

an active period (8.5 seconds after the onset of the first word). The active period included 

a 5-second ‘‘encoding phase’’ (stimuli presentation) and a 3.5-second ‘‘post-stimuli 

phase’’ (after stimuli presentation). The timing diagram of the task is shown in Figure 2.1. 

Table 2.1: Demographic and clinical characteristics of the subjects. 

Characteristics 
Control 

mean (std.) 
Patient 

mean (std.) 

Age, year 49.7 (11.1) 49.5 (7.0) 

Education, year 15.0 (2.2) 15.5 (4.7) 

Parents education, year 13.6 (2.4) 12.4 (2.7) 

NART full score 111.3 (7.3) 106.5 (6.8) 

NART performance score 110.5 (3.9) 108.0 (3.6) 

NART verbal score 109.3 (8.5) 104.4 (7.8) 

BPRS - 41.4 (9.4) 

PANSS, negative symptoms - 7.5 (4.3) 

PANSS, positive symptoms - 8.8 (5.7) 

Duration of illness, year - 22.1 (10.0) 

Chlorpromazine equivalent dose, mg - 330.3 (118.7) 

NART: National Adult Reading Test; BPRS: Brief Psychiatric Rating Scale  

PANSS:  Positive and Negative Syndrome Scale 
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To note, the word processing task was part of a comprehensive procedure for 

language evaluation described in detail in previous work [38], [39]. The task is based on 

a standard psycholinguistic procedure - anomaly detection [47]. Here, the detection of a 

pronounceable non-English word would require the correct identification - and 

accordingly processing - of English words. To maximize word processing operations, the 

task was designed in a way that minimize significantly verbal working memory load. 

That is, subjects were only required to detect the anomaly (non-English word) and were 

not required to remember the English words. As there was only one possible anomaly per 

stimulus, there was a working memory load of one item - the lowest working memory 

load possible. 

In the task, each subject performed 60 trials that included 45 correct stimuli and 15 

incorrect stimuli. The average correct response rate was 94.17% for the control group and 

87.5% for the patient group. In this study, we only analyze trials with correct stimuli, as 

we are interested in investigating the abnormal neural oscillation patterns in 

schizophrenia during normal word processing. 

2.2.3 MEG Data Acquisition and Preprocessing 

During the task, MEG data were recorded from 248 axial gradiometers (Magnes 

3600WH, 4-D Neuroimaging, San Diego, CA) in a 2-layer mu-metal magnetically 

 

Figure 2.1: Timing diagram of the word processing task 
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shielded room (IMEDCO, Hagendorf, Switzerland), with a sampling rate of 1024Hz. 

Subjects were in a supine position with their heads in the sensor helmet and on a head 

support to minimize movement. Ambient and distant biological magnetic noises were 

reduced by using 23 SQUID reference channels, which were situated within the sensor 

and above the cortical channels. Electrooculogram (EOG) and electrocardiogram (ECG) 

were recorded to identify and correct epochs contaminated by eye movements and 

heartbeats.  

Artifacts (blinks and heartbeats) correction was carried out according to an algorithm 

described by Ille et al [48]. Visual inspection was performed to reject trials with residual 

artifacts. After preprocessing, successful trials were filtered between 1 to 64 Hz and 

down-sampled to 256Hz. Out of the 45 trials with correct stimuli, the number of artifact 

free trials did not differ significantly between schizophrenia patients (mean 36, std. 7.2) 

and healthy controls (mean 41, std. 3.3), p-value > 0.05. In addition, successful trials 

from the same MEG channel were averaged for each subject for further analysis.  

2.3 Data Analysis 

2.3.1 Feature Extraction   

As ERD/ERS has frequency-specific behavior, each MEG channel was filtered into 8 

frequency sub-bands:   (1-4 Hz),   (4-8 Hz),   (8-12 Hz), 1  (12-16 Hz), 2  (16-24 

Hz), 3  (24-32 Hz),  1  (32-40 Hz) and 2  (40-48 Hz).  For each sub-band, the power 

(square of amplitude) values of MEG signal were computed and smoothed using a 250-

millisecond moving window with 125 millisecond overlap, to reduce the variability and 

the number of data points for the ERD/ERS calculation. For each 11.5-seconds trial, the 

total number of time points in each channel was reduced to 92, including 24 points in the 

baseline period (3 seconds) and 68 samples in the active period (8.5 seconds). Finally, the 

ERD/ERS value was calculated as the percentage power change in each smoothed mean 

power data relative to the mean power within the baseline period: 
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where ( )A i  is the ith  smoothed mean power sample and R  is the average power of 

baseline period, which is calculated as 
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The reason for using relative power change is to remove the additive effects like 

medication, coffee and tobacco consumption, as those effects affect both the baseline and 

the active period. A positive power change represents ERS while a negative power 

change represents ERD.  

2.3.2 Feature Selection and Classification 

Multidimensional evaluation of neural oscillations results in a very large ERD/ERS 

feature set: 8 frequency sub-bands * 248 MEG channels * 92 time points per channel, 

leading to a total of 182,528 features per subject.  Compared to the small sample size (22 

subjects) and small number of groups to discriminate (patient group vs. control group), the 

features are in an extremely high dimensional space. To avoid spurious group differences, 

we employed a classification based two-step feature selection algorithm to select a small 

sub-set of features that have high discriminating power in patient and control 

classification.  These top discriminating features reflect the frequency, brain region and 

time of oscillations that are abnormal during word processing in schizophrenia, which may 

help us understand the underlying mechanism of this impairment.  

In the two-step feature selection algorithm, we first used F-score filtering to eliminate 

large number of “garbage” features. F-score is a simple and generally effective technique 

to measure the discrimination of two sets of real numbers [49]. Consider n training 

samples: , 1,...,kx k n  and let the number of positive and negative samples be n


 and 

n


 respectively. Each sample is a vector with m  features. The F-score of the ith  feature 

is defined as: 
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where ix , ( )
ix
 , ( )

ix
  represent the averages of the thi  feature of the whole, positive, 

and negative data samples, respectively; 
( )
,k ix


 and 
( )
,k ix


 are the thi  feature of the thk  

positive and negative sample, respectively. In short, the numerator indicates the 

discrimination between the positive and negative sets, and the denominator represents the 

discrimination within each of the two sets. The higher the F-score is, the more likely this 

feature is discriminative.  

After F-score filtering, large number of irrelevant features were eliminated except the 

top 150 features with the highest F-score were kept for next step feature ranking by SVM-

RFE, a classification based feature selection algorithm [24]. Basically, it is a backward 

selection strategy using the weights of SVM model [25], [26] to produce a feature ranking. 

Due to the nature of our dataset (small sample size vs. large number of features) as well as 

computational consideration, we employed linear SVM, in which the weight vector w is 

obtained by solving the following quadratic optimization problem: 
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1
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                              (2.3)  

where kx  is the training vector and {1, 1}ky    is the corresponding class label; k  is 

the so called slack variable which allows margin errors and b is a bias term. C  is a penalty 

parameter set by the users to control the tradeoff between margin size (generalization 

ability of the classifier) and the number of samples inside the slab (training error).  

To get the optimal C value, the training samples were subdivided into learning set and 

validation set. We used the learning set to build SVM models with different C values 
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( 2log { 1,0,1,...,10}C   ) and used these models to classify the validation set. The C 

value associated with the smallest validation error was used to build the final SVM 

classifier using all the training samples. Then, the weight values in the classifier were 

squared and the feature with smallest weight was removed from the ranking list, based on 

the idea that the smaller the weight is, the less important the feature is. This procedure was 

repeated after all features were removed from the list, as shown in Figure 2.2. According 

to the backward elimination characteristic of SVM-RFE algorithm, the later a feature is 

removed from the list, the higher its ranking is. 

 

To test the robustness and the generalization ability of the selected discriminating 

features, a leave-one-out double cross validation procedure was performed [27]. Each 

time, 21 subjects were used for feature selection and training a SVM classifier based on 

the selected top features, while the other one subject was used for testing the classification 

result. The testing sample was completely left out before testing and the procedures were 

repeated until all subjects were classified.   

initialization

SVM train 

compute

weight vector 

compute

ranking criteria 

f = argmin(R) 

eliminate feature

with smallest R

update ranking 

list

full feature set

surviving features

2i iR W
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Figure 2.2: Flowchart of the SVM-RFE feature ranking algorithm 
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2.4 Experimental Results 

2.4.1 Classification Result 

We first observed that the group classification accuracy was affected by the number of 

features used to build the classifier. The prediction accuracy versus the number of 

features is shown in Figure 2.3. The highest accuracy was achieved with 20 to 40 top 

features selected by the SVM-RFE algorithm. When the feature number is further 

increased, the accuracy is degraded due to the negative impact of the less discriminating 

features. We present the classification result using 20 top features in Table 2.2.  A 

90.91% overall prediction accuracy is achieved for all the subjects. The classification 

accuracy for control and patient groups is 90% (True Negative Rate) and 91.67% (True 

Positive Rate), respectively. The high discriminating power reflects significant oscillation 

difference between schizophrenia patients and healthy controls at the specific frequencies, 

brain locations, and time periods indicated by these top features. 

 

 

Figure 2.3: Prediction accuracy versus number of features 
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2.4.2 Feature Analysis 

We extract the frequency, space, and time information from the top-ranking features. A 

general observation is that a variety of frequency bands and cortical areas at different 

time periods of the language processing need to be selected to get the best discrimination 

between the patients and the controls. The top-ranked features were located at the 

occipital and the left frontal-temporal areas, and covered a wide frequency range, 

including:   (1-4 Hz),   (8-12 Hz),   (12-32 Hz), and   (32-48 Hz) bands. 

To illustrate the above findings, 5 most frequently selected features (Table 2.3) are 

analyzed below in detail. The time-varying ERD/ERS waveforms and brain locations of 

these features are presented in Figure 2.4 to Figure 2.8. The ERD/ERS values shown on 

the 3D head (plotted by EEGLab [50]) are at the specific time point of the corresponding 

feature. Red color (positive value) represents ERS, while blue color (negative value) 

represents ERD. 

 

Table 2.3: List of 5 most frequently selected ERDS features 

 Channel Time Frequency 

f1 181, occipital lobe 70, post-stimuli 1-4 Hz 

f2 239, occipital lobe 50, encoding 16-24 Hz 

f3 241, occipital lobe 44, encoding 32-40 Hz 

f4 129, left-temporal lobe  40, encoding 8-12 Hz 

f5 123, left-frontal lobe  68, post-stimuli 32-40 Hz 

 

Table 2.2: Classification results using top 20 ERDS features 

Control Patient Overall 

Error TNR FPR Error TPR FNR Error Accuracy 

1/10 90% 10% 1/12 91.67% 8.33% 2/22 90.91% 

TNR: True Negative Rate; FPR: False Positive Rate; TPR: True Positive Rate; FNR: False 

Negative Rate. 
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Figure 2.5: Top feature f2 (16-24Hz, occipital lobe, encoding phase) 

 

Figure 2.4: Top feature f1 (1-4Hz, occipital lobe, post-stimuli phase) 
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Figure 2.7: Top feature f4 (8-12Hz, left-temporal lobe, encoding phase) 

 

Figure 2.6: Top feature f3 (32-40Hz, occipital lobe, encoding phase) 
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Features f1, f2, and f3 were selected from the visual cortex at the occipital lobe, 

which is related to the visual modality of the stimuli. Feature f1 was selected from 1-4Hz 

at the beginning of the post-stimuli stage. Controls exhibited an increased power (high   

band ERS) while patients were still showing ERD, which reflects a difficult recovery 

from the active state in lower band at the occipital lobe for patients with schizophrenia.   

Features f2 and f3 were also located at the occipital lobe but were selected from 

higher frequency range. Feature f2 was selected from 16-24Hz   band. Its time course 

showed reduced power in patients with schizophrenia after each word presentation and in 

the post-stimuli phase. Feature f3 was selected from 32-40Hz   band. The two groups 

showed opposite modulation (ERS in controls while ERD in patients), during the 

encoding and post-stimuli stages. Therefore, processing visual lexical stimuli in 

schizophrenia was associated with abnormal oscillatory activity in the visual cortex. This 

abnormality covered a wide range of oscillation frequencies and was characterized by 

power reduction after each word and in the post-stimulus period. The first indicates 

 

Figure 2.8: Top feature f5 (24-32Hz, left-frontal lobe, post-stimuli phase) 
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abnormal lexical encoding activity, and the second indicates abnormal recovery from the 

activity of encoding. 

In contrast to these features, the spatial location of feature f4 was near the Wernicke 

area at the left temporal lobe, a well-known area involved in the understanding of written 

and spoken language. During lexical encoding, both groups showed an 8-12Hz ERD, but 

the ERD level for the patients was significantly lower than the controls. The ERD is 

associated with the activation of cortical areas [40]. This result suggested that the 

activation of neural circuits in the temporal lobe was less active in patients with 

schizophrenia than in healthy controls during lexical processing.  

Finally, feature f5 showed smaller 24-32Hz   band modulation in the patient group 

than in the control group at the left frontal lobe. At the end of stimuli encoding, controls 

showed a pronounced power increase (change from ERD to ERS), while patients showed 

persistent ERD. This insufficient   modulation reveals dysfunction of this area in 

patients with schizophrenia during lexical processing. 

2.5 Discussions and Conclusions 

In this chapter, we investigated discriminating biomarkers in schizophrenia from MEG 

data recorded during language processing task. We specifically investigated neural 

oscillation patterns, given their important functional significance as measures of the 

synchrony of neural populations and their important role in cognition and language. The 

MEG recordings provide information in the frequency, space, and time dimensions. It 

was previously shown that an evaluation of oscillations along these dimensions combined 

is informative and is necessary to fully understand the oscillatory activity associated with 

cognitive functions [51]. Multidimensional evaluation of the oscillations results in a 

dauntingly large amount of data, and machine learning methods have been successfully 

used previously to address this problem. Using machine learning techniques, we found 

the top features of oscillatory activity that discriminate between patients and controls. 

Following the leave-one-out cross-validation procedure, we obtained a 90.91% overall 
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prediction accuracy using the top 20 features of oscillatory activity that demonstrated the 

robustness of these top features. 

The most discriminating features were selected from the active phase (encoding and 

post-stimuli), and no feature was selected from the baseline period. This result is 

consistent with the findings that functional brain state provides better classification 

accuracy for patients and control discrimination than resting state [52].  More importantly, 

the discriminating features provide information about the electrophysiology of the 

functional state and word processing in the current context. The spatial locations of the 

top features were not restricted to one specific cortical area but rather involved several 

different brain regions. These findings combined the support of many recent theories that 

emphasize the role of a dysconnection syndrome and disturbed coordination in the 

pathophysiology of schizophrenia [32]. According to our results, the main impaired areas 

are the occipital and the left frontal-temporal lobes.  

Furthermore, the dysfunctional regions mentioned above were associated with 

specific oscillation frequencies. Because of conduction delays in the brain, slow 

oscillations, such as  , are considered necessary to link remote areas of the brain. Fast 

oscillations, such as  , are considered necessary for the synchrony of local circuits [32], 

[53].  Consistent with the above, our results showed that ERD/ERS patterns selected from 

low-frequency bands ( , ) represent similar behavior of a relatively large region, while 

the features selected from   band seem more localized. 

First, the time evolution of feature f1 showed that the presentation of the visual 

stimuli excited   ERS at the occipital lobe during lexical processing. This is consistent 

with other studies that reported low-frequency ERS during stimuli encoding in healthy 

control subjects [52], [54]. However, at the end of the encoding stage to the beginning of 

the post-stimuli stage, controls showed further power increase (higher ERS) while 

patients were still showing ERD. This reduced   band power indicates failure of the 

neural systems to resume idle state in patients with schizophrenia [51]. 
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Second, feature f4 showed higher level of   ERD (8-12 Hz) in healthy controls than 

in patients with schizophrenia, at the left temporal lobe near the Wernicke area. The   

activity is associated with attention demands or modulated by stimulus-related aspects or 

semantic memory process [55]. Significant   ERD was reported in healthy control 

subjects during a lexical decision task using both visual and auditory stimuli [54], and an 

auditory lexical processing task [56]. As higher level of ERD reflects a higher level of 

attention and alertness during encoding, as well as the activation of cortical areas 

involved in the cognitive information processing [40], reduced   ERD in schizophrenia 

reflects that the left temporal lobe was hypoactive during lexical processing. Abnormal 

  oscillation in schizophrenia was also reported in several recent oscillation studies [53], 

[57]. 

The time evolution of features f2(16-24 Hz) and f5(24-32Hz) showed somewhat 

similar   band behavior in the occipital and frontal areas, respectively. The ERD/ERS 

after each word presentation was followed by a pronounced ERS (transient in f5) at the 

end of the encoding phase in the control group. This result is consistent with another 

lexical decision task using visual stimuli in healthy control subjects [54]; however, the 

late   ERS was not found in the patient group. Abnormal   oscillation in schizophrenia 

has been widely reported [32], [53], [57]. The timing of the reduced   ERS suggests 

similar difficulty of the neural system to resume idle state in schizophrenia. 

Finally, feature f3(32-40 Hz) exhibited localized   ERS during lexical encoding at 

the occipital lobe for healthy control subjects, while patients with schizophrenia showed 

opposite modulation (ERD). The   oscillation reflects a stage of active information 

processing [40] and is often the first component in response to a sensory stimulus, 

including visual stimuli [53]. It was proposed that neurons in different parts of the visual 

cortex fire at nearly the same time during a cycle of   oscillations to convey different 

attributes of the scenery and to help form a unified representation [58]. The   band ERS 

has been found in many cortical areas and is induced by different stimuli or tasks [59]. In 

the domain of language,   oscillations have been associated with lexical processing [60]; 
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and in a recent MEG study,   ERS was reported in healthy control subjects during 

lexical processing [56]. In schizophrenia,   oscillation has become a major research 

focus because of its role in cognition [61]. A series of studies have examined   band 

activity in patients with schizophrenia, providing consistent evidence for the presence of 

abnormal   band oscillations. Overall, reductions in power or synchrony of evoked   

oscillations have been reported in chronic, first episode as well as early-onset 

schizophrenia [58]. 

In summary, this chapter investigated abnormal neural oscillation patterns in patients 

with schizophrenia during lexical processing. As neural oscillation abnormality may be 

due to the mechanisms of the disease [53], the spectral, spatial and temporal content of 

the discriminating features may offer useful information to help us understand the 

physiological basis of language disorder in schizophrenia, as well as the underlying 

mechanism of the illness itself. 
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Chapter 3 
 

MEG Spectral Power Ratio Patterns 

in Schizophrenia 

3.1 Introduction 

As introduced in Chapter 2, cognitive dysfunctions in schizophrenia, such as language 

disorder, is not simply due to a spatially circumscribed deficit, but rather represents a 

distributed impairment involving many cortical areas and their connectivity 

(disconnection hypothesis) [32]. Based on these findings, neural oscillations and their 

synchronization have become a crucial research area, due to their role in realizing flexible 

communication within and between cortical areas; abnormal brain oscillations have been 

frequently reported in schizophrenia (see [32] for review). 

MEG/EEG studies that examined neural oscillations in schizophrenia at different 

temporal and spatial scales have reported decreased or increased oscillation power in all 

frequency bands, including delta (< 4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz) 

and gamma (> 30Hz) bands (see [53] for review). The specificity of frequency 

abnormalities may provide key biological markers linking disease mechanism to the 

clinical dysfunctions in schizophrenia [53].  Furthermore, some recent MEG/EEG studies 

showed that band power of neural oscillations during both cognitive tasks and resting 

state could be used as quantitative features to distinguish schizophrenia patients from 

healthy controls with machine learning classifiers [20], [18], [52], [62]–[65].  

In this chapter, we specifically investigate the Power Spectral Density (PSD) of 

neural oscillatory activity during word processing measured by MEG. The central 
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hypothesis here is that the spectral power of neural oscillations in schizophrenic patients 

differs from healthy controls at certain frequency ranges, brain locations and time periods 

of word processing. Such spectral-spatial-temporal information can be extracted as 

quantitative features from MEG recordings to distinguish schizophrenia patients from 

healthy subjects. Note that in Chapter 2, the ERD/ERS features were obtained by 

computing power of MEG sample points in time-domain, while in this chapter, the 

spectral power features are extracted from the PSD of MEG signal in frequency domain.   

The key contribution of this chapter is three-fold. First, we extracted two novel 

Spectral Power Ratio (SPR) feature sets: the Band Power Ratio (BPR) and the Window 

Power Ratio (WPR), to assess neural oscillatory activity in schizophrenia. Spectral power 

has been employed in previous studies to delineate oscillatory abnormalities in 

schizophrenia, mostly in the form of Absolute Band Power (ABP) [65]–[68] or Relative 

Band Power (RBP), i.e., ABP normalized by the total power [63], [69].  Unlike ABP and 

RBP, which characterize oscillation power in different frequency bands and in different 

time windows separately, the BPR and the WPR reflect the inter-relationships of spectral 

power between different frequency bands, and between different time periods of word 

processing, respectively.  

On the one hand, the ratio of band power (BPR) amplifies the increase of power in 

one band and the decrease of power in another band, which has been shown to be 

effective in epileptic seizure prediction [70], [71], seizure detection [72], and stroke 

diagnosis [73]. Previous work has also shown the discriminating power of BPR in 

schizophrenia classification, using single-trial MEG data during sentence processing [20]. 

On the other hand, the ratio of power in two consecutive time windows (WPR) for a 

specific spectral band captures the power change across different time periods of word 

processing, which could not be assessed by single window based analysis. As such, the 

BPR and WPR provide information about the frequency and temporal dynamics of neural 

oscillations, respectively. To the best of our knowledge, BPR and WPR have not been 

employed together before to analyze MEG data collected from schizophrenia patients 

during word processing. 
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 Second, we employed cluster-based non-parametric permutation test [16] to identify 

statistically significant SPR features. SPR features are extracted from hundreds of brain 

locations measured by MEG. Discriminating features identified by sample-wise 

uncorrected p-values or other univariate feature ranking methods that measure the 

between-group difference at single feature level may be false discoveries due to multiple 

comparisons [14]. Some previous studies employed traditional Bonferroni correction 

[63], [69] or False Discovery Rate (FDR) control procedures [67] for multiple 

comparison correction. These methods are not optimized for MEG data, and may lead to 

high False Negative Rate (FNR), i.e., low sensitivity for detecting significant features, 

due to the small sample size compared with the large feature size. The cluster-based non-

parametric permutation tests [16] we employed in this study control the FDR while 

maintaining a low FNR, which results in high specificity and sensitivity of the 

discriminating features. It may be noted that cluster-based non-parametric permutation 

test has rarely been employed as a feature selection procedure in the context of 

schizophrenia classification.  

Third, after identifying statistically significant SPR features, we applied machine 

learning based feature selection algorithm to select optimal feature combinations for 

classifying schizophrenia patients from healthy controls. We achieved over 95% 

classification accuracy using three different linear classifiers separately, following cross 

validation procedures.  

The rest of this chapter is organized as follows. Section 3.2 describes the SPR feature 

extraction, statistical testing and classification procedures. Sections 3.3 and 3.4 presents 

the data analysis results and discusses the significance and limitations of the work, 

respectively. Section 3.5 concludes the current work and points out future directions. 

3.2 Materials and Methods 

3.2.1 Subjects and Data  
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In this chapter, we use the same MEG data as described in Chapter 2. See Section 2.2 for 

details about subjects’ information and MEG data acquisition and preprocessing 

procedures.  

3.2.2 Feature Extraction 

The BPR and the WPR feature sets are extracted from the PSD of the MEG recordings. 

Both BPR and WPR are spatial-temporal-spectral feature sets with each single feature 

containing specific frequency, time and space information. Details of the feature 

extraction procedures are described below. 

Define Spatial Locations:  

Unlike most EEG/MEG studies that extract features from each single MEG sensor 

separately, we averaged MEG signals from 3 adjacent sensors before feature extraction. 

More specifically, for each MEG sensor, we form 8 triangles from its 8 nearest neighbor 

sensors which have shortest circumference, as shown in Figure 3.1. This procedure 

results in 822 averaged MEG signals for each subject. The spatial location of the 

averaged signal is defined as the geometric center of the 3 averaged MEG sensors.  

 

The reason for averaging signals from adjacent sensors is that MEG recordings are 

generally considered “noisy” where the noise level is higher than the signal of interest. 

To cope with this problem, after averaging trials from same MEG sensor, we average 

 

Figure 3.1: Average MEG signals from three adjacent sensors that form a triangle 

with shortest circumference 



 

 32 

signals from adjacent sensors to further suppress the random noise components. In 

addition, due to volume conduction effect, MEG gradiometers tend to show spread 

activation in sensor space. That is, MEG sensors that are close to each other tend to 

record similar activities, which makes it reasonable to average signals from a few 

adjacent sensors. Furthermore, with axial gradiometers, a local brain source is best 

captured by adjacent sensors, rather than by a sensor just above the source [52]. 

Define Time Windows: 

The averaged MEG signal from each spatial location is further segmented into 5 

phases of word processing, using time windows shown in Figure 3.2: 1) baseline (BA), 

three seconds right before the onset of the first word; 2) transition from baseline to 

encoding (BE), one second before and two seconds after the onset of the first word; 3) 

encoding (EN), stimuli presentation, five seconds right after the onset of the first word; 4) 

transition from encoding to post-stimuli (EP), one second before the end of stimuli 

presentation to two seconds after stimuli presentation; 5) post-stimuli (PO), three seconds 

right after stimuli presentation. After this step, new MEG segments are obtained with 

each one corresponding to one spatial location and one time window (phase of word 

processing). 

 

 

Figure 3.2: Segmentation of the MEG signal into 5 time windows of word processing: 

1) baseline (BA), 2) transition from baseline to encoding (BE), 3) encoding (EN), 4) 

transition from encoding to post-stimuli (EP), and 5) post-stimuli (PO). 
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Define Spectral Power Ratios: 

For each MEG segment, the power spectral density (PSD), which describes how the 

power of a signal is distributed over different frequencies, is estimated using the Welch 

method [74], which can be computed in an efficient manner with low complexity [75]. 

Afterwards, the spectral power is computed in 5 frequency bands by integrating the PSD 

within that frequency band. The frequency ranges of the 5 bands of interests are: delta (1-

4Hz), theta (4-8Hz), alpha (8-13 Hz), beta (13-30Hz) and gamma (30-57 Hz). The 

spectral power of MEG signal at the thi  spatial location, the thj  time window, and the 

thk  frequency band is defined as:  

min max
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where min
kf and max

kf  represent the lowest and highest frequency of the thk  frequency 

band, respectively.  

The first SPR feature set BPR is defined as the ratio of spectral power between two 

different frequency bands, at the same spatial location and in the same time window. The 

BPR between band 1k  and band 2k  at region i  and during time window j  is defined as:  
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The second SPR feature set WPR is defined as the percentage power change across 

two consecutive time windows. The WPR between the thj  and the ( 1)thj   time 

window at the thk  frequency band and the thi  region is defined as:  
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The total number of BPR features is 10 BPRs * 4 time windows * 822 spatial 

locations = 32880 (BA window is not used). The total number of WPR features is: 4 

WPRs * 5 frequency bands * 822 spatial locations = 16440. All features are normalized 

to have zero mean and standard deviation one before further analysis. 

3.2.3 Statistical Analysis 

Non-parametric Permutation test is employed to determine the statistical significance of 

the extracted SPR features and control the False Positive Rate (Type I error) caused by 

multiple comparisons [16]. The test is performed for BPR in each time window and WPR 

in each frequency bands separately. The permutation test uses a test statistic that is based 

on clustering of adjacent spatial locations that exhibit a similar SPR difference (in sign 

and magnitude) between patient group and control group. The calculation of the test 

statistic involves the following steps:  

Step 1:  Compute the t-score for each SPR feature from all spatial locations: 

2 2/ /

c p

c c p p

X X
t

s N s N






, where cX  and pX  are the sample means, cs  and ps  are the 

sample standard deviations, and cN  and pN  are the sample sizes of the control group 

and the patient group, respectively. This t-score is called the sample-specific uncorrected 

t-score.  

Step 2:  Select all SPR features with absolute value of uncorrected t-score greater than 

a threshold, 2.5 in the current study. This step identifies a set of "candidate positives", of 

which a high proportion is likely to be true. 

Step 3:  Cluster the selected features in connected sets based on spatial adjacency. In 
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this study, we define two spatial locations as neighbors if their distance is less than 

0.03mm. Note that the clustering is performed for features with positive and negative t-

scores separately. 

Step 4:  The cluster-level statistic is defined as the sum of t-scores within a cluster. 

After getting the cluster-level test statistics for all clusters, the significance of these 

clusters is obtained by calculating the Monte-Carlo estimate of the p-values. The steps are 

as follows:  

Step 1:  Randomly reassign the group identity of each subject without replacement. 

Step 2: Calculate the cluster-level test statistics on this random partition and record 

the largest of these statistics. 

 Step 3:  Repeat step 1 and step 2 for a large number of times, 50,000 in this study, 

and construct a permutation distribution of the test statistics. 

Step 4:  The Monte Carlo p-value of a cluster is defined as the proportion of random 

partitions that have a larger test statistic than the observed one. An SPR cluster with 

Monte Carlo p-value less than 0.05 is considered statistically significant in this study. 

3.2.4 Feature Selection 

After identifying statistically significant SPRs, we test whether they could be used as 

features in machine learning classifiers to distinguish schizophrenia patients from healthy 

controls (predict diagnosis) with high accuracy. The mean SPR within a significant 

cluster is used as a scalar feature representing the cluster. A feature ranking algorithm 

based on the minimum-Redundancy-Maximum-Relevance (mRMR) criteria is employed 

to select the optimal feature combinations for classification [28].  The mRMR algorithm 

selects features according to the maximal statistical dependency criterion based on 

mutual information I. Mutual information based feature selection aims at finding a 

feature set S with m features { }ix , which jointly have the largest dependency on the 
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target class c.     
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Features selected according to the maximal dependency criterion could have large 

redundancy. When two features highly depend on each other, the respective class-

discriminative power would not change much if one of them was removed. Therefore, the 

following minimal redundancy condition can be added to select mutually exclusive 

features:  
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Finally, an operator ( , )D R is defined in terms of dependency D and redundancy R. 

The mRMR criterion solves the optimization problem given by: 

max ( , ), .D R D R                                                                      (3.6) 

3.2.5 Classification 

Since our sample size is small, to avoid complex classification models overfitting the 

data, three commonly used linear classifiers are employed to classify patients vs. 

controls: Linear Discriminant Analysis (LDA) [76], Perceptron [77] and linear Support 

Vector Machine (SVM) [25], [26]. The basic principle of SVM is described in Section 

2.3.2. The basic principles of LDA and perceptron are described below.  

Linear Discriminant Analysis (LDA): 

Given samples from two classes 1C  and 2C , the goal of LDA is to find out the 

direction as defined by a vector w , such that when the data are projected onto w , the 



 

 37 

samples from the two classes are as well separated as possible. Let z  Tw x  be the 

projection of x  onto w . In our two-class case, it is a dimensionality reduction from 

original d-dimensional feature space to a 1-dimensional line space. Define the within-

class scatter matrix wS  as: 

1 2

2 2
T T

C C
 

 
 w 1 1
x x

S (x - m )(x - m ) (x - m )(x - m )                   (3.7) 

where 1m  and 2m  are the means of class 1C  and class 2C , respectively. The LDA 

solution of the projection direction is: 

.-1
w 1 2w = S (m - m )                                                                                (3.8) 

After obtaining this direction, the data can be easily classified using the following 

linear classification rule:  
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where the bias term b can be calculated as:  

2
1

.
2

b   T T
1(w m +w m )                                                                   (3.10) 

Perceptron: 

Perceptron is a linear classifier aiming at finding a decision hyperplane 

0( ) 0g w  Tx w x  defined by the weight vector w . The weight vector is solved by 

an optimization problem which tries to minimize the following cost function:  

( ) T
x

x Y
J w w x


                                                                             (3.11)  

where Y is the subset of the training data which are misclassified by the hyperplane. The 
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variable x  is chosen so that 1x    if 1x w  (class label = +1) and 1x    if 

2x w  (class label = -1). It is obvious that ( ) 0J w   and the minimum value 0 is 

achieved when Y is empty, i.e., no data is misclassified. To minimize this cost function, 

an iterative scheme based on gradient descent method is employed to update the weight 

vector.  

( )
( )

( 1) ( ) |t w w t
J w

w t w t
w


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
  


                                                    (3.12) 

We employed a cross-validation scheme to test the generalization ability of the 

classification results. Three controls and four patients are randomly chosen from each 

group to form a testing set. The rest seven controls and eight patients are used as training 

set to train the classifiers. We construct 1000 such training and testing sets by random 

sampling and calculate the average classification accuracy, specificity and sensitivity of 

each classifier over the 1000 test sets.   

3.3   Experimental Results 

3.3.1 Significant BPR Features 

Each BPR feature contains specific frequency, time and space information. In Figure 3.3, 

we show the frequency-time distribution of the BPR features with absolute value of 

uncorrected t-score greater than 2.5 (candidate positives). Most of the BPR features that 

show significant between-group difference before the permutation test are: 1) BPR 

(theta/delta, EN), i.e., the theta/delta band power ratio during the encode window, 2) 

BPR (alpha/delta, BE), i.e., the alpha/delta band power ratio during the base-to-encode 

window, and 3) BPR (beta/delta, EN), i.e., the beta/delta band power ratio during the 

encode window. The spatial locations of these three significant BPRs are shown in Figure 

3.4.  
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From Figure 3.4, we can observe several spatial clusters associate with each of the 

three significant BPRs. The significant BPR (theta/delta, EN) features are located at the 

middle-to-right frontal, left temporal and middle parietal areas. The significant BPR 

(alpha/delta, BE) features are located at the left temporal, middle parietal, right temporal 

and right frontal areas. The significant BPR (beta/delta, EN) features are located at the 

middle frontal-parietal, right temporal and occipital areas. However, only three clusters of 

these candidate BPRs pass the permutation test (corrected p-value < 0.05), including 1) 

the middle-to-right frontal cluster of BPR (theta/delta, EN), average t-score = -2.792, 

corrected p-value = 0.024, 2) the middle parietal cluster of BPR (alpha/delta, BE), 

 

Figure 3.3: Number of occurrences of each BPR that shows significant between-group 

difference (absolute value of uncorrected t-score > 2.5) in each time window 

          

                       (a)                                         (b)                                         (c) 

Figure 3.4: Spatial locations of the BPR features with absolute value of uncorrected t-

score > 2.5 for (a) BPR (theta/delta, EN), (b) BPR (alpha/delta, BE), and (c) BPR 

(beta/delta, EN) 
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average t-score = -2.798, corrected p-value = 0.047, and 3) the middle frontal-parietal 

cluster of BPR (beta/delta, EN), average t-score = -2.770, corrected p-value=0.046. The 

3D head plot of the spatial locations, the boxplot of the mean BPR within cluster, and the 

normalized PSD of a signal in the cluster are shown in Figure 3.5 to Figure 3.7, for the 

three significant clusters, respectively. 

 

 

 

                          

                           (a)                                                           (b) 

 

(c) 

Figure 3.5:  (a) Spatial locations (middle-to-right frontal areas) that show significantly 

increased BPR (theta/delta, EN) in schizophrenia patients (average t-score = -2.792, 

corrected p-value = 0.024). (b) Boxplot of the mean BPR within cluster. (c) 

Normalized PSD of MEG signal from a location in the cluster for control group and 

patient group. 



 

 41 

 

 

 

                  

                                (a)                                                           (b) 

 

(c) 

Figure 3.6: (a) Spatial locations (middle parietal area) that show significantly 

increased BPR (alpha/delta, BE) in schizophrenia patients (average t-score = -2.798, 

corrected p-value = 0.047). (b) Boxplot of the mean BPR within cluster. (c) 

Normalized PSD of MEG signal from a location in the cluster for control group and 

patient group. 
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From Figure 3.5, we can observe that patient group shows significantly increased 

theta/delta BPR during encoding period of word processing, at the middle-to-right frontal 

area. This is due to a decreased proportion of delta band power and an increased 

proportion of theta band power in the full spectrum in patient group. In Figure 3.6, we 

can observe that patients show an increased alpha/delta power ratio at the middle parietal 

area during baseline to encoding period of word processing. The PSD plot shows that the 

proportion of delta power decreases and the proportion of alpha power increases in 

schizophrenia patients compared with healthy controls. Figure 3.7 shows an increased 

                         

                                    (a)                                                         (b) 

 

(c) 

Figure 3.7:  (a) Spatial locations (middle frontal-parietal areas) that show significantly 

increased BPR (beta/delta, EN) in schizophrenia patients (average t-score = -2.770, 

corrected p-value = 0.046). (b) Boxplot of the mean BPR within cluster. (c) 

Normalized PSD of MEG signal from a location in the cluster for control group and 

patient group. 
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beta/delta band power ratio at the middle frontal-parietal areas, during encoding phase of 

word processing. This is due to a decreased portion of delta band power and an increased 

proportion of beta band power in the full spectrum of the MEG signal in patient group, as 

shown in the PSD plot. 

3.3.2 Significant WPR Features 

Similarly to the BPR features, in Figure 3.8, we show the time-frequency distribution of 

all WPRs with absolute value of uncorrected t-score greater than 2.5 (candidate 

positives). Most of the WPR features that show significant between-group difference 

before multiple comparison correction are the WPR (BE/BA, beta), i.e., the beta band 

power ratio across baseline and base-to-encode time windows, and the WPR (PO/EP, 

beta), i.e., the beta band power ratio across encode-to-post and post-encoding time 

windows. The spatial locations of the two WPRs are shown in Figure 3.9.  

 

 

 

Figure 3.8: Number of occurrence of each WPR in different frequency bands with 

absolute value of uncorrected t-score > 2.5 
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From Figure 3.9, we can observe that the significant WPR (BE/BA, beta) features are 

mainly located at the left parietal and right occipital areas. The significant WPR (PO/EP, 

beta) features are located at the middle fontal, left parietal, right parietal and occipital 

areas. Among these candidate WPR features, three spatial clusters pass the permutation 

tests (corrected p-value < 0.05), including 1) the left parietal cluster of the WPR (BE/BA, 

beta), average t-score = 3.015, corrected p-value = 0.037, 2) the right occipital clusters of 

the WPR (BE/BA, beta), average t-score = -3.431, corrected p-value = 0.037, and 3) the 

middle frontal cluster of the WPR (PO/EP, beta), average t-score = -3.115, corrected p-

value = 0.013. The 3D head plot of the spatial locations, the boxplot of the mean WPR 

within cluster, and the beta band spectrogram of a signal in the cluster for each group are 

shown in Figure 3.10 to Figure 3.12, for the three significant WPR clusters, respectively. 

 

 

 

 

                   

                                    (a)                                                           (b)                                     

Figure 3.9: Spatial locations of WPR features with absolute value of uncorrected t-

score > 2.5 for: (a) WPR (BE/BA, beta) and (b) WPR (PO/EP, beta) 



 

 45 

 

 

 

 

 

 

 

                                       

 (a)                                                                (b) 

           

  (c)                                                               (d) 

Figure 3.10: (a) Spatial locations (right occipital area) that show significantly 

decreased WPR (BE/BA, beta) in schizophrenia patients (average t-score = 3.015, 

corrected p-value = 0.037). (b) Boxplot of the mean WPR within cluster. (c) and (d) 

beta band spectrogram of MEG signal from a location in the cluster for control 

group and patient group, respectively. 
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     (a)                                                             (b) 

       

     (c)                                                             (d) 

Figure 3.11: (a) Spatial locations (left parietal area) that show significantly increased 

WPR (BE/BA, beta) in schizophrenia patients (average t-score = -3.431, corrected p-

value = 0.037). (b) Boxplot of the mean WPR within cluster. (c) and (d) beta band 

spectrogram of MEG signal from a location in the cluster for control group and 

patient group, respectively. 
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Figure 3.10 shows a decreased WPR (BE/BA, beta) at the right occipital area in 

schizophrenia patients. From the spectrogram, we can observe that from the baseline to 

base-to encode phase of word processing, control group shows a significantly increased 

beta band power while opposite change is observed in patient group. Therefore the WPR 

(BE/BA, beta) is lower in patient group compared with that in control group.  Figure 3.11 

shows a significantly increased WPR (BE/BA, beta) at the left parietal area in 

schizophrenia patients. This is due to an increase of beta band power from baseline to 

base-to encode window in patient group, which is not shown in the control group. Figure 

                                               

                              (a)                                                                     (b) 

            

                              (c)                                                                     (d) 

Figure 3.12: (a) Spatial locations (middle frontal area) that show significantly 

increased WPR (PO/EP, beta) in schizophrenia patients (average t-score = -3.115, 

corrected p-value = 0.013). (b) Boxplot of the mean WPR within cluster. (c) and (d) 

beta band spectrogram of MEG signal from a location in the cluster for control group 

and patient group, respectively. 
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3.12 shows a significantly increased WPR (PO/PE, beta) at the middle frontal area in 

patient group. This is due to an increase of beta band power from encode-to-post window 

to post-encoding window in the patient group, as shown in the spectrogram. This increase 

is not observed in the control group. 

3.3.3 Classification Results 

Table 3.1 summarizes the 6 significant SPR clusters. The mean SPR within each cluster 

is used as a scalar feature and the mRMR algorithm is employed to select combinations 

of 1 to 6 SPR features for classification. Figure 3.13 shows the classification results using 

combinations of BPR and WPR features, with LDA, perceptron and linear SVM 

classifiers. The highest classification accuracy is achieved using 2 WPR and 1 BPR 

features combined for all three classifiers. The three features selected by the mRMR 

feature ranking algorithm are: F1: WPR (BE/BA, beta), F2: BPR (theta/delta, EN), and 

F3: WPR (PO/EP, beta)). The detailed classification accuracy, specificity and sensitivity 

using these three features are listed in Table 3.2. As comparisons, we also list the 

classification results using 3 BPR features alone and using 3 WPR features alone in Table 

3.3 and Table 3.4, respectively. We can see that a combination of BPR and WPR features 

achieves better classification results than using same number of BPR or WPR features 

separately.  

 

Table 3.1: List of the 6 Significant SPRs with the corresponding spatial locations, the 

mean t-score within cluster, and the corrected p-value 

Feature Spacial Location t-score p-value 

BPR (theta/delta, EN) middle-to-right frontal -2.792 0.024 

BPR (alpha/delta, BE) middle parietal -2.798 0.047 

BPR (beta/delta, EN) middle frontal-parietal -2.770 0.046 

WPR (BE/BA, beta) right occipital 3.015 0.037 

WPR (BE/BA, beta) left parietal -3.431 0.037 

WPR (PO/EP, beta) middle frontal -3.115 0.013 
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Table 3.2: Classification results using 1 BPR and 2 WPR features selected by the 

mRMR algorithm 

Classifier Accuracy Specificity Sensitivity 

LDA 0.9637 0.9970 0.9387 

Perceptron 0.9550 0.9850 0.9325 

Linear SVM 0.9773 0.9830 0.9730 

 

       

                                  (a)                                                                 (b) 

              

                                  (c)                                                                 (d) 

Figure 3.13: Classification results using combinations of BPR and WPR features 

selected by the mRMR algorithm for (a) LDA, (b) perceptron and (c) linear SVM 

classifiers. (d) Scatter plot of the 22 subjects in the 3D space formed by top 3 features 

selected by mRMR algorithm. F1: WPR (BE/BA, beta), F2: BPR (theta/delta, EN), 

F3: WPR (PO/EP, beta). 
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3.4   Discussions 

Increasing evidence have suggested that abnormalities in the neural oscillatory activity 

are related to the impairments in various cognitive functions in schizophrenia [32].  In 

this chapter, we investigate abnormal neural oscillation patterns in schizophrenia using 

MEG data from a visual word processing task. Abnormal neural oscillations during 

cognitive tasks with language stimuli have been reported in both low and high frequency 

bands,  at different brain areas, and during different time periods of language processing 

[18], [51], [52]. This motivates us to explore spectral-spatial-temporal MEG features to 

characterize neural oscillations in frequency, space and time dimensions.  

Different from commonly used band power features which consider different 

frequency bands or time windows separately, we created two SPR feature sets which 

reflect the relationship of oscillation power between two frequency bands (BPR), and the 

oscillation power changes across two consecutive time windows of word processing 

(WPR). The reason for taking ratios of spectral power from two frequency bands is that 

Table 3.4: Classification results using 3 WPR features 

Classifier Accuracy Specificity Sensitivity 

LDA 0.9251 0.9897 0.8768 

Perceptron 0.8920 0.9420 0.8545 

Linear SVM 0.9224 0.9883 0.8730 

 

Table 3.3: Classification results using 3 BPR features 

Classifier Accuracy Specificity Sensitivity 

LDA 0.8097 0.8473 0.7815 

Perceptron 0.7354 0.8237 0.6693 

Linear SVM 0.7883 0.8060 0.7750 
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changes in the power of oscillations occurs at multiple frequencies simultaneously, and 

patients may show different power changes (increase or decrease) in different frequency 

bands compared with healthy controls. Taking ratio between one band that has an 

increased power and a band that has a decreased power, will further amplify the between-

group difference, and thus improve the discriminating power of the feature. Similarly, the 

oscillation power is changing during different time periods of word processing. Taking 

the relative power changes across consecutive time windows can reveal the changes of 

oscillation power across different time periods of word processing, which cannot be 

learned by analyzing the power in one time window at a time.   

After extracting the BPR and the WPR feature sets from 822 spatial locations, 5 time 

windows of word processing and 5 frequency bands, appropriate statistical tests are 

needed to identify features that show significant differences between groups. Due to large 

number of statistical comparisons (822 spatial locations) for each SPR feature, it is not 

possible to control the False Positive Rate (FPR) while maintaining a low False Negative 

Rate (FNR) by means of traditional Bonferroni correction or FDR control procedures. 

Therefore, we employed cluster-based non-parametric permutation test to identify 

significant SPRs, which controls the FPR unconditionally and solve the multiple 

comparison problem (MCP) in a simple way [16]. The rationale for cluster-based MCP 

control is based on the idea that MEG signal at a particular location is produced by 

physiological sources that also affect the MEG from nearby locations. Thus, if a sensor-

specific null hypothesis is false for one sensor, then it is also false for the nearby sensors 

[16]. 

Note that the cluster-based statistic depends on the threshold that is used to select 

samples for clustering. It has been shown that the threshold does not affects the false 

alarm rate of the statistical test but affect the sensitivity of the test [16]. There is no 

definite criterion about  how to choose this threshold to obtain maximum sensitivity for 

the unknown effect that is present in the data: for a weak and widespread effect, the 

threshold should be low, and for a strong and localized effect, the threshold should be 

high [16].  The threshold 2.5 we used in this study is a reasonable sample-specific t-value 
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threshold which corresponds to uncorrected p-value of about 0.025. In addition, we need 

to point out that the sensitivity and the FNR of the cluster-based nonparametric test is less 

than that of the uncorrected p-value approach which does not control the FDR. This is 

because multiple testing adjustments control false positives at the potential expense of 

more false negatives. For example, some features within the right-temporal cluster of the 

BPR (alpha/delta, BE) (Figure 3.4b) have very high sample-specific uncorrected t-scores. 

However, the cluster where these features are located did not survive from the MCP 

correction (marginally, corrected p-value = 0.06). The cluster-based nonparametric tests 

trade in some sensitivity for FPR control to deal with the MCP. 

 By applying the cluster based permutation test, we identified three BPR clusters 

which show significantly increased theta/delta, alpha/delta and beta/delta band power 

ratios during BE and EN periods of word processing, mainly at the frontal-parietal lobes. 

We also identified three significant WPR clusters which show altered beta band power 

changes when transferring from BA to BE window at the occipital and parietal lobes, and 

from EP to PO window at the frontal lobe. The spatial locations of the significant SPRs 

are not restricted to one specific cortical area but rather involved several different brain 

regions. This finding supports recent theory that the cognitive dysfunctions that 

characterize schizophrenia are not due to a circumscribed deficit but rather represent a 

distributed impairment involving many cortical areas and their connectivity [32]. 

According to our results, the most impaired regions are the frontal-parietal areas. 

Dysconnections of the frontal-parietal networks have been shown to contribute to 

cognitive impairment in schizophrenia [78]. Previous studies have also reported 

abnormalities in these areas in word processing and verbal working memory tasks [18], 

[51], [52]. The frequency distribution of the significant SPRs show that abnormal 

oscillations occur in all frequency bands, which is consistent with previous findings [53]. 

Furthermore, the time periods when these abnormalities occur include the baseline to 

encoding phase of word processing, as well as the post-encoding periods. These findings 

suggest failure of the neural systems to respond to task and problem to resume idle state 

after task, which is consistent with previous findings using event-related-
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desynchronization/synchronization (ERD / ERS) features [18]. 

Finally, based on combination of two WPR and one BPR features, over 95% cross 

validation classification accuracy is achieved using three different linear classifiers 

separately. This result is better than using same number of BPR or WPR features 

separately, since WPR and BPR offer complementary information to each other. And the 

mRMR feature selection algorithm selects the optimal feature combinations that 

maximize the relevant information for classification while minimizing the redundant 

information among features [28]. A number of recent studies have also reported 

schizophrenia classification results using various types of EEG/MEG features and 

classification methods, as listed in Table 3.5. The promising classification result of this 

study suggests high discriminating power of the identified SPR features, as well as the 

effectiveness of the feature extraction and selection methods. The reader is, however, 

cautioned that the present classification results are based on a small sample size (12 

patients vs. 10 controls) and have not been fully validated on large samples. Additionally, 

only linear classifiers are employed in this study in order to avoid overfitting the data 

with small sample size. More complex classification models can be designed in future 

studies with a larger sample size.  

A limitation of the current study is that the spatial resolution of the significant SPRs 

is relatively low. This is due to the spatial resolution of the imaging modality as well as 

the cluster-based statistical testing procedure. Source localization techniques can be used 

in future studies to obtain better localization of the significant SPR features. Besides, as 

mentioned above, the results of the study are limited by small sample size. Therefore, the 

main purpose of the study is to provide new ways of extracting and identifying 

discriminating neural oscillation patterns. The findings should be viewed as exploratory 

and need to be validated in future study with larger samples.  
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3.5   Conclusions 

In summary, this study analyzed abnormal neural oscillatory activity in schizophrenia 

patients during visual word processing task. Two spectral-spatial-temporal feature sets: 

the BPR and the WPR were extracted from MEG recordings as quantitative features. 

Cluster-based nonparametric permutation tests identified 3 BPR clusters and 3 WPR 

clusters that show significant differences between schizophrenia patients and healthy 

Table 3.5: Summary of recent EEG/MEG classification studies for schizophrenia 

identification 

Study Task Signal Feature Classifier Nc/Np Accuracy 

Boostani et al. 

(2009) [62] 

rest, 

eyes open 
EEG 

AR coefficients, 

band power, 

fractal dimension 

boosted 

LDA 
18/13 87.51% 

Sabeti et al. 

(2009) [152] 

rest, 

eyes open 
EEG 

entropy, 

complexity 

LDA, 

Adaboost 
20/20 

89%, 

91% 

Sabeti et al. 

(2011) [65] 

rest, 

eyes open 
EEG 

AR coefficients, 

band power, 

fractal dimension  

LDA, 

Adaboost 
20/20 

85.9% 

91.94% 

Escudero et al. 

(2013) [63] 
rest MEG 

frequency 

spectrum 

logistic 

regression 
17/15 71.3% 

Ince et al. 

(2009) [52] 

working 

memory 
MEG ERD/ERS LDA 23/15 

83.8%~ 

94.6% 

Xu et al. 

(2013)  

[18] 

word 

processing 
MEG ERD/ERS linear SVM 10/12 90.91% 

Present work 

[19] 

word  

processing 
MEG BPR, WPR 

LDA 

perceptron 

linear SVM 

10/12 

96.37% 

95.50% 

97.73% 

Nc/Np = number of controls/number of patients; AR = auto-regressive; ERD/ERS = event 

related desynchronization/synchronization; ANN = artificial neural network; LDA = linear 

discriminant analysis; SVM = support vector machine; AUC = area under curve 
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controls. Using 2 WPR features and 1 BPR feature combined, over 95% cross validation 

accuracy was achieved in classifying 12 patients from 10 controls, using LDA, 

perceptron and linear SVM classifiers separately. Future work will be directed towards 

exploring more effective features from neural oscillations using neuroimaging, signal 

processing and machine learning techniques, and to test the robustness of the proposed 

scheme on other datasets. More detailed feature analysis such as source localization will 

also be performed to find more accurate spatial locations of the key features. 
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Chapter 4 
 

A Machine Learning based 

Schizophrenia Screening System 

4.1 Introduction 

The importance of biomarker discovery is that a computer-aided screening system can be 

built based on the quantitative and discriminative patterns to assist in clinical diagnosis of 

mental disorders. A computer-aided screening system generally contains four major parts: 

brain signal acquisition, feature extraction, feature selection (dimensionality reduction) 

and classification.  First of all, brain signals are acquired from subjects during either 

resting or functional state. Different neuroimaging techniques can be applied for recording 

the brain activity, such as fMRI, EEG and MEG. Next, features are extracted from the 

recorded brain signals using signal processing approaches. Then, a feature ranking step 

can be applied to select a small subset of discriminating features. Finally, a machine 

learning based classifier is trained, which predicts a test subject into the corresponding 

group, healthy subject or psychiatric patient in the current context. 

Recently, much research has been carried out under the above mentioned framework 

for automated screening of schizophrenia. In [79], independent components of fMRI data 

obtained during an auditory oddball task are used as features and projection pursuit is used 

for classification. In [80], the classification is based on resting-state EEG rhythms, with 

Artificial Neural Network (ANN) as classifier. In [81], high classification accuracy is 

achieved based on synchronous neural interactions derived from MEG in an eye fixation 

task, using Genetic Algorithm – Linear Discriminant Analysis (GA-LDA) as classifier. In 

[18], [52], Event-Related Desynchronization/Synchronization (ERD/ERS) derived from 
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averaged MEG signals in working memory and word processing tasks has been shown to 

be effective features for schizophrenia, with classification methods such as LDA and 

support vector machine (SVM).  

In this chapter, we propose a machine learning based system for schizophrenia 

screening with two major contributions. First, we extract Power Spectral Density Ratio 

(PSDR) features across 5 frequency bands at 7 different brain locations from single-trial 

MEG recordings. This is different from the ERDS features described in Chapter 2 and the 

SPR features described in Chapter 3, which were extracted after averaging MEG signals 

from the same channel. In addition, the MEG signals we analyze here are acquired during 

a sentence processing task. Language disorder in schizophrenia has been reported at all 

levels, including sentence [39]. Compared with some other related works using brain 

activity during resting state [80] or an eye fixation task [84], the current study not only 

performs schizophrenia classification, but also looks into an impaired brain function 

associated with this illness. To the best of our knowledge, this specific feature set has not 

been previously investigated as biomarkers for schizophrenia diagnosis.  

Secondly, we propose a two-stage feature ranking algorithm which combines F-score 

[23] filtering and Adaptive Boosting (Adaboost) algorithm [82]. This algorithm leads to 

improved classification accuracy with reduced number of features. A boosted model with 

linear decision stumps as base classifiers is employed to classify single MEG trials, and a 

majority voting scheme is followed to combine trial results and make final classification 

decisions. Experimental results demonstrate the effectiveness of the proposed system.  

The organization of this chapter is as follows. Section 4.2 presents the subjects’ 

information, the MEG data acquisition process, as well as the feature extraction, selection 

and classification methods. Section 4.3 presents the classification results and information 

about top features. Conclusion of this chapter is presented in Section 4.4. 
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4.2   Materials and Methods 

4.2.1 Subjects and MEG Data Acquisition 

13 healthy control subjects (12 male, 1 female) and 10 schizophrenic patients (10 male) 

participated in the study. The patient group did not differ significantly (p<0.05) from the 

control group with respect to age, personal or parental level of education, and premorbid 

overall and verbal intelligence. None of the control subjects had psychiatric or 

neurological disease or major medical illness. All the patients met the DSM-IV criteria [43] 

for schizophrenia or schizoaffective disorder. All the subjects were native English 

speakers and were right-handed. The experimental protocol was approved by the relative 

Institutional Review Boards (IRB). All the subjects gave written informed consent before 

entering the study. 

Subjects were instructed to read silently sentence stimuli visually presented in the 

center of a monitor in front of the subjects. Each stimulus was a semantically and 

syntactically correct English sentence composed of 5 words (e.g., the boy ate the apple). 

Different stimuli were presented in different trials. The five elements in each stimulus 

were presented one at a time at a rate of one per second and there was a 10 seconds 

interval between two consecutive trials. This sentence processing task was part of a 

comprehensive procedure for language evaluation described in detail in previous work 

[38], [39]. 

MEG data were recorded during task performance from 248 axial gradiometers 

(Magnes 3600WH, 4-D Neuroimaging, San Diego, CA) in a 2-layer mu-metal 

magnetically shielded room (IMEDCO, Hagendorf, Switzerland), with a sampling rate of 

1024Hz. Subjects were in a supine position with their head in the sensor helmet and on a 

head support to minimize movement. Ambient and distant biological magnetic noises 

were further reduced by using 23 SQUID reference channels, which were situated within 

the sensor and above the cortical channels. Blinks and heartbeats were removed and the 

epochs were visually inspected to remove residual artifact activity for each subject. Finally, 
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30 to 45 artifact corrected trials for each subject were down-sampled to 256Hz for further 

analysis.  

4.2.2 Feature Extraction 

We extract Power Spectral Density Ratio (PSDR) as feature to characterize the brain 

activity during sentence processing. These features are extracted from the MEG signals 

during stimuli presentation period, i.e., 5 seconds right after the onset of the first word of 

each sentence stimulus.   

First, 4 electrodes are selected from each of the following 7 brain regions: left frontal 

(LF), right frontal (RF), left temporal (LT), right temporal (RT), left parietal (LP), right 

parietal (RP) and occipital (OC), as shown in Figure 4.1. The 4 channel MEG signals from 

the same region are averaged which results in 7 mean signals, one for each region. Next, 

the Power Spectral Density (PSD) of each mean signal is estimated using the Welch 

method [74] with Hamming window, length 256 and 50% overlap. Then, the Spectral 

Power values are extracted from the PSD in 5 frequency sub-bands:  (4-8Hz),  (8-

13Hz),  (13-30Hz), 1 (30-57Hz) and 2 (63-128Hz). The 60±3Hz frequency 

components are not included to remove the 60Hz line noise. 

min max
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spectral power PSD f k
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                                (4.1) 

where k is the index of the frequency band,  min
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the kth sub-band. Finally, the PSDR is defined as the ratio of the spectral power in two 
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. The 7 brain regions and 10 PSDR for each region lead to a total of 70 features 

for each trial. 
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4.2.3 Feature Ranking 

The objective of feature selection for a computer-aided schizophrenia screening system is 

three-fold: 1) a reduced feature dimension can provide faster and more cost-effective 

predictors for classification; 2) the removal of irrelevant features may improve prediction 

performance; and 3) the selected top ranked features may inform about the abnormal 

spatial-spectral characteristics of brain activity in the patient group. In this chapter, a novel 

two-step feature selection algorithm which combines F-score filtering and Adaboost 

model [82] based feature ranking is proposed to select the top feature set for classification 

and analysis. 

Step 1: F-score filtering   

The basic idea of F-score is that a feature with a large between-group distance and a 

small within group variance has high F-score value. The higher the F-score, the more 

discriminating the feature is. The readers may refer to [9] for a detailed definition. We 

rank the 70 features based on their F-score values and keep top 35 for next-step feature 

ranking by Adaboost.    

 

Figure 4.1: MEG sensor locations for the 7 regions: left frontal (LF), right frontal 

(RF), left temporal (LT), right temporal (RT), left parietal (LP), right parietal (RP) 

and occipital (OC) 
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Step 2: Adaboost model based feature ranking  

Adaboost is a boosting approach which combines m base classifiers (classifiers that 

are only marginally better than guessing) to produce a boosted classification model. A 

base classifier is called a “decision stump” which is a simple linear classifier based on one 

single feature. It is defined as: 

1
( )

1
d

j
d

if x th
b x

if x th

 
 

 

                                                                              (4.2) 

where d indicates the feature based on which the split is created and th is a threshold value 

used to differentiate the two classes.  

The Adaboost model training process follows an iterative process. Given n  training 

sample ix  and class label  1,1 ,iy    first initialize the weight assigned to each sample 

as 
1

i n
  . Use the base classifier to fit the training samples with weights i  and 

produce classification results ( ).j ib x  Then, calculate the classification error jerr  for the 

base classifier and its weight jw : 
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Update the weights for each sample where misclassified samples were assigned larger 

weights. 

exp( ( ( ))).i i j i jw I y b   ix                                                                   (4.5) 
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The above procedures are repeated m times with all base classifiers involved. Finally, 

a testing sample can be classified using the weighted majority vote of all base classifiers: 

1
( ) ( ( )).

m
j j

j
f sign w b


x x                                                                               (4.6) 

The classifiers with lower training errors receive greater weight and therefore have more 

influence on the combination [13].  

Adaboost model building process implicitly performs feature selection. During each 

iteration, the base classifier is built based on one single feature which is chosen to 

minimize the risk function. Based on this fact, a simple criterion for feature ranking is 

created: if a feature is selected earlier, we give it a higher ranking.  During feature ranking 

process, we observe that some features are never selected in any of the base classifiers, 

which implies that they can be discarded when building the final classification model.  

4.2.4 Classification 

Top ranked features are used to rebuild an Adaboost model for classifying the test subject. 

For diagnosis purpose, a Leave-One-Out Cross Validation (LOO-CV) procedure [27] is 

strictly followed. Each time, all trials from one subject are left out for testing while all 

trials from other 22 subjects are used for feature selection and training the classifier 

model. This procedure is repeated until every subject has been used as a test subject 

exactly once.  

Within each cross-validation (CV) fold, trials from the test subject are classified 

separately using the boosted classifier based on the top selected features. After all trials 

are labeled, a simple majority voting scheme is employed to decide the final class of the 

test subject. More specifically, if more than half of the trials vote control, the test subject is 

classified as a control, otherwise classified as a patient.  Figure 4.2 shows the flow chart of 

the feature selection and classification procedures. 
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4.3   Experimental Results 

4.3.1 Classification Result 

In Figure 4.3, we show the LOO-CV classification accuracy (percentage of correctly 

diagnosed subjects) versus the number of top features. We compare the discriminating 

power of the top features selected by three feature selection methods: the proposed two-

step feature ranking algorithm, ranking using only F-score and ranking using only 

Adaboost.  In addition, the highest classification accuracy, specificity (true negative rate 

(TNR)) and sensitivity (true positive rate (TPR)) associated with these three feature 

selection methods and classification using all 70 features without feature selection are 

shown in Table 4.1.   

 

Figure 4.2: Flow chart of the feature selection and classification process 
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Table 4.1: Classification results with different feature selection 

Feature Selection 

Method 

# of 

Features 
Accuracy Specificity Sensitivity 

No feature selection 70 73.91% 76.92% 70%  

F-score only 30 82.61% 92.31% 70% 

Adaboost only 3 78.26% 84.62% 70%  

F-score + Adaboost 16 82.61% 92.31% 70%  

 

 

Figure 4.3: Classification accuracy vs. number of top features with 3 different feature 

section methods 
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82.61% classification accuracy is achieved using 16 top features ranked by the 

proposed 2-step feature selection algorithm. This result is higher than classification using 

all 70 features without dimensionality reduction (73.91%), or using features selected by 

only Adaboost (78.26%). The same accuracy can be achieved using top features ranked 

by F-score only, but using 30 features. These results demonstrate the effectiveness of the 

proposed 2-step feature selection algorithm, as well as the whole system for 

schizophrenia identification. 

4.3.2 Feature Analysis  

To explore the brain locations and frequency ranges that are most related to the 

discrimination between controls and patients, we show the region and frequency 

distributions of top features ranked by the proposed feature ranking algorithm in Figure 

4.4. Note that feature selection is performed in each CV fold, which results in 23 different 

feature sets. We here pick out the top 3 features from each fold which forms a new top 

feature set containing a total of 12 features. We count the number of occurrences for each 

of these 12 features in the new set. Then, as each feature is associated with a specific brain 

region and a PSDR between two frequency sub-bands, we can obtain the number of 

occurrences of the 7 brain regions and the 10 PSDRs according to the number of 

occurrences of the 12 top features. From Figure 4.4, we can observe that the most 

discriminating features are the ratios between alpha (8-13Hz) and beta (13-30Hz) bands, 

and are selected from the right parietal, right temporal and right frontal regions. 
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In Table 4.2, we list the 3 features with the highest number of occurrences and show 

their boxplots in Figure 4.5 (a, b, c). Patients show higher PSDR at the specific brain 

locations and frequency ranges indicated by these top features. At the 3D space formed by 

these 3 features (Figure 4.5d), we can observe a good separation between samples from 

the two groups. This indicates the potential of the PSDRs as a functional biomarker for 

differentiating brain activity of schizophrenia patients from healthy subjects during 

sentence processing.  

 

Figure 4.4: Number of occurrences of the 7 brain regions (a) and the 10 PSDRs (b) 

based on top 3 features selected in each CV fold 
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4.4   Conclusions 

We have designed a computer-aided system for schizophrenia screening. The graphical 

user interface of this system is shown in Figure 4.6. First of all, PSDR features in 7 brain 

regions and 5 frequency sub-bands are extracted from single-trial MEG during sentence 

Table 4.2: Top 3 features with highest number of occurrences 

Rank 
Number of 

occurrence 
Region PSDR 

1 22 right temporal /   

2 13 right frontal 2/   

3 13 right parietal /   

 

 

Figure 4.5: Box plot of the top 3 features with highest number of occurrence (a, b, c) 

and 3D scatter of trial data at the space formed by the 3 features (d) 
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processing. They are explored as features for schizophrenia diagnosis. A two-step feature 

ranking algorithm is proposed to select the top discriminating features. A boosted 

classifier is built with linear decision stumps as base classifiers using Adaboost. An 

82.61% overall classification accuracy has been achieved among 13 healthy controls and 

10 schizophrenia patients following the LOO-CV procedure, which demonstrates the 

effectiveness of the proposed system. The frequency and space distributions of the top 

ranked features may provide insight into the abnormal neural activity associated with 

sentence-level language processing in schizophrenia. Future work will be directed towards 

improving the sensitivity of current results by employing more effective feature selection 

and classification approaches.  

 

 

 

Figure 4.6: Graphical user interface of the computer-aided schizophrenia screening 

system. The system contains 4 major components: reading MEG data, feature 

extraction, feature ranking and analysis, and classification. 
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Chapter 5 
 

Functional Brain Connectivity 

Patterns in BPD 

5.1 Introduction 

Borderline Personality Disorder (BPD) is a serious and complex mental illness 

characterized by a pervasive pattern of instability in affect regulation, interpersonal 

relationships, impulse control, and self-image. It affects about 1.6 percent of adults in the 

United States [12]. Currently, BPD is diagnosed by a mental health professional based on 

a thorough interview and a discussion about symptoms. No single medical test can 

diagnose the disease, and unfortunately, it is often underdiagnosed or misdiagnosed [83]. 

Furthermore, the neurobiology of BPD is poorly understood, and this limited knowledge 

hinders progress in developing novel, neuroscience-based treatments that target specific 

biological abnormalities. There is now increasing interest in identifying the structural and 

functional brain abnormalities associated with BPD, which could help in gaining 

knowledge about the underlying neurophysiological basis of the disease.  

Neuroimaging techniques have recently become one of the most influential tools to 

detect structural and functional brain abnormalities in patients with BPD (See [84], [85] 

for recent neuroimaging findings in BPD). At the structural level, structural Magnetic 

Resonance Imaging (sMRI) studies have reported consistent findings of volume reduction 

in limbic and paralimbic areas [86], [87], prefrontal cortex [88], [89] and various regions 

of the temporal and parietal lobes [90], in patients with BPD compared with healthy 

subjects. At the functional level, a number of functional MRI (fMRI) studies have 
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revealed hyper-reactivity of limbic areas and hypo-activation of frontal brain areas in 

response to emotional stimuli, in patients with BPD [91].  

Furthermore, in addition to examination of regional activation, a few recent fMRI 

studies have begun to focus on quantifying functional coupling between brain regions, 

primarily using seed-based correlation [92], [93] or independent component analysis 

(ICA) [94], [95]. Aberrant functional coupling between limbic and frontal areas during 

emotional challenge [96], [97], as well as altered resting-state functional connectivity in 

the default mode network and the executive network were observed in patients with BPD 

[98], [99]. Together these findings suggest disruptions of functional connectivity between 

brain regions in BPD.  

In this chapter, we employ resting-state fMRI to investigate intrinsic functional brain 

connectivity patterns in patients with BPD. Resting-state fMRI has become an important 

tool for understanding the dynamic neural architecture in the absence of task-related 

activity in psychiatric patients [84]. Different from previous fMRI studies that used seed-

based correlation or ICA analysis, a recently-developed Network-based Statistic (NBS) 

approach [17] is employed to identify altered functional connections in patients with 

BPD. NBS is a Family-Wise Error Rate (FWER) control approach specifically designed 

under the framework of a network model. It offers high sensitivity in detecting 

dysconnections in a network by exploiting the extent to which the abnormal connections 

are interconnected [17].  After identifying BPD-related abnormalities in functional brain 

network connectivity, we examine correlations between the connectivity measure and 

clinical symptom scores, and use the connectivity measure to distinguish BPD patients 

from healthy controls with a machine learning classifier. 

The rest of this chapter is organized as follows. Section 5.2 describes the subjects’ 

information and the fMRI data acquisition and preprocessing procedures. Section 5.3 

presents the data analysis methods, including the construction of frequency-specific 

functional brain networks and the Network-based Statistics. Section 5.4 describes the 

identified subnetwork that shows significant connectivity difference between BPD patients 
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and healthy controls. Section 5.5 further discusses the findings and points out limitations 

of this work. Conclusions of this chapter are presented in Section 5.6. 

5.2 Subjects and Data 

5.2.1 Subjects 

The participants in the current study were a sub-group of a larger, multi-site clinical trial 

study for adults with BPD [100] (overall PI: Black, site PI: Schulz). A subset of 

participants in the University of Minnesota site of the larger study were invited to 

participate in a supplemental neuroimaging study, in which they would undergo 

neuroimaging before and after the study treatment. A sample of 10 healthy controls was 

recruited to undergo diagnostic and neuroimaging procedures as a comparison group. The 

study was approved by the University of Minnesota Institutional Review Board. 

Interested and eligible participants completed a separate consent form for the 

neuroimaging portion of the study.  

The participants of the present study included 20 patients with BPD aged 20 to 45, 

and 10 healthy controls aged 19 to 45. The two groups of subjects did not differ 

significantly in gender (p-value = 0.802) and age (p-value = 0.56). The subjects could not 

be entered if taking medication within last six weeks, so no subjects were taking any 

medication at the time of these scans. None of the control subjects met criteria for a 

psychiatric or neurological disease or had any major medical illnesses, either currently or 

historically. All the patients met the DSM-IV-TR criteria [43] for BPD diagnosis, and 

met the criteria for BPD using the Revised Diagnostic Interview for Borderlines [101].  

A minimum score of 9 for total score on the Zanarini Rating Scale for Borderline 

Personality Disorder (ZAN-BPD) was used as a criterion [102]. In order to reduce 

confounds associated with diagnostic comorbidity, the patients included in this study did 

not have a history of any psychotic disorder, bipolar disorder, major depressive disorder 

with psychotic features, obsessive-compulsive disorder, generalized anxiety disorder, 
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social phobia, or post-traumatic stress disorder. The Structured Clinical Interview for 

DSM-IV (SCID) [103] was used to screen for the presence of co-morbid Axis I 

psychiatric disorders. Among the selected patients, five had history of non-psychotic 

major depressive disorder and four had history of substance abuse. However, these 

diagnoses were in remission at the time of the current study. Table 5.1 lists the 

demographic information of the subjects, including three commonly used clinical 

measures for BPD diagnosis: the ZAN-BPD [102] interview (ZAN-BPD_I) and self-

rating (ZAN-BPD_SR), and the symptom checklist 90 (SCL90) [104]. 

 

5.2.2 fMRI Data Acquisition and Pre-processing 

Structural and functional MRI data were acquired at the University of Minnesota’s Center 

for Magnetic Resonance Research, using a Siemens 3T TIM Trio scanner. Whole-brain 

anatomical images were acquired using a T1-weighted high-resolution magnetization 

prepared gradient echo (MPRAGE) sequence: TR = 2530ms; TE = 3.65ms; TI = 1100ms; 

flip angle = 7 degrees; FOV = 256; voxel size 1x1x1 mm; GRAPPA = 2. The 6-minute 

resting-state fMRI scans were obtained using 180 contiguous echo planar imaging (EPI) 

whole brain volumes with TR = 2000ms; FOV = 220; voxel size = 3.43x3.43x4 mm; 34 

slices. Subjects were instructed to relax, try not to think about anything in particular, and 

remain awake with their eyes closed. Physiological data, including heart rate and 

Table 5.1: Demographic information of the subjects 

 Control BPD 

Gender (male / female) 4 / 6 7 / 13 

Age (mean years ± SD) 27 ± 7.5 29 ± 7.3 

ZAN-BPD_I total score (mean ± SD) N/A 18.65 ± 4.32 

ZAN-BPD_SR total score (mean ± SD) N/A 16 ± 6.4 

SCL90 total score (mean ± SD) N/A 113.55 ± 59 

SD: standard deviation; SCL90: symptom checklist 90 

ZAN-BPD_I: Zanarini Rating Scale for Borderline Personality Disorder, interview score;  

ZAN-BPD_SR: Zanarini Rating Scale for Borderline Personality Disorder, self-rating score 
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respiration, were acquired during the fMRI scan. A field map was collected with 

compatible acquisition parameters as the resting -state fMRI data. The scanning protocol 

also included diffusion imaging and magnetic resonance spectroscopy (which was 

collected between the T1 scan and the resting-state fMRI scan) and two task fMRI 

experiments, which were collected after the resting-state fMRI scan. The current paper 

focuses only on the baseline resting-state fMRI and T1 data. 

FreeSurfer [105] was used to process the T1 data including brain extraction and 

parcellation of data into a standard set of anatomically-based regions of white and grey 

matter. FreeSurfer output was visually inspected on a slice-by-slice basis and manually 

corrected when deemed necessary. The fMRI data was registered to the T1 data using 

bbregister. For the resting fMRI data, a de-noising procedure was applied incorporating 

RETROICOR [106] to remove the physiological noises caused by cardiac and respiratory 

cycles as well as any linear trends. The fMRI processing was mainly conducted using 

tools from the FMRIB software library [107]. Initial processing included brain extraction 

and motion correction. Correction for magnetic field inhomogeneity-induced geometric 

distortion was conducted using the field map. FreeSurfer-generated regions of interest 

(ROIs) for lateral ventricles (cerebrospinal fluid; CSF) and white matter (WM) were 

aligned to the fMRI data. We performed a regression of each other voxel’s time series on 

eight nuisance variables: WM time series, CSF time series, and the six motion 

parameters. Data scrubbing was performed following guidelines proposed by previous 

research [108], excluding any volume with a DVARS value exceeding 8 and/or a 

framewise dependent value exceeding 0.5, along with the previous volume and the two 

following volumes. The deleted volumes were then linearly interpolated by averaging 

previous and following undeleted volumes to make sure all time series have the same 

number of time points. Finally, mean fMRI time series from 82 cortical and subcortical 

areas (41 for each hemisphere) were obtained for connectivity analysis. Table 5.2 lists the 

selected region of interests (ROIs).   
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5.3   Data Analysis 

5.3.1 Construction of Functional Brain Networks 

Table 5.2: List of FreeSurfer-based regions-of-interest (ROIs) 

No. Region of Interest (ROI) Abbr. No. Region of Interest (ROI) Abbr. 

1 
Banks superior temporal 

sulcus 
BANK 22 Posterior-cingulate cortex PCC 

2 
Caudal anterior-cingulate 

cortex 
CauACC 23 Precentral gyrus PreCG 

3 Caudal middle frontal gyrus CauMFG 24 Precuneus cortex PCUN 

4 Cuneus cortex CUN 25 
Rostral anterior cingulate 

cortex 
RosACC 

5 Entorhinal cortex EC 26 
Rostral middle frontal 

gyrus 
RosMFG 

6 Fusiform gyrus FFG 27 Superior frontal gyrus SFG 

7 Inferior parietal cortex IPC 28 Superior parietal cortex SPC 

8 Inferior temporal gyrus ITG 29 Superior temporal gyrus STG 

9 Isthmus– cingulate cortex ICC 30 Supramarginal gyrus SMG 

10 Lateral occipital cortex LatOC 31 Frontal pole FPO 

11 Lateral orbital frontal cortex LatOFC 32 Temporal pole TPO 

12 Lingual gyrus LING 33 
Transverse temporal 

cortex 
TTC 

13 Medial orbital frontal cortex MedOFC 34 Insula INS 

14 Middle temporal gyrus MTG 35 Thalamus THA 

15 Parahippocampal gyrus PHG 36 Caudate CAU 

16 Paracentral lobule PCL 37 Putamen PUT 

17 Pars opercularis ParsOPE 38 Pallidum PAL 

18 Pars orbitalis ParsORB 39 Hippocampus HIP 

19 Pars triangularis ParsTRI 40 Amygdala AMYG 

20 Pericalcarine cortex PCAL 41 Accumbens ACCU 

21 Postcentral gyrus PoCG    
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Observations from previous studies have shown that the strength of functional 

connectivity between brain regions is not equal at all frequencies [109], and the 

sensitivity of different frequencies to disease-related alternations of brain connectivity is 

different [110], [111]. In this study, we applied a 4-level stationary discrete wavelet 

transform (SDWT) [112], [113] with ‘db4’ wavelet, to filter the fMRI signal into 

different frequency bands. The SDWT overcomes the lack of translation-invariance of 

traditional decimated wavelet transform by removing the down-samplers and up-samplers, 

and up-sampling the filter coefficients.  

The filtered signal at each wavelet scale approximately corresponds to frequency 

ranges of 0.12~0.25Hz (scale 1), 0.06~0.12Hz (scale 2), 0.03~0.06Hz (scale 3), and 

0.015~0.03Hz (scale 4), respectively. We next estimated the functional connectivity by 

computing the Pearson linear correlation coefficients between all possible pairs of fMRI 

time series at each wavelet scale separately for each subject. At each wavelet scale, a 

frequency-specific 82-by-82 undirected connectivity graph was constructed based on the 

3321 correlation coefficients. Figure 5.1 shows the mean connectivity matrix in 0.03-

0.06Hz frequency range for control group and patients group. 

 

   

                               (a)                                                                 (b)         

Figure 5.1: Mean connectivity matrix for control group (a) and patients group (b) 

based on Pearson correlation of resting-state fMRI signals from 82 brain regions in 

0.03~0.06 Hz frequency range. 
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5.3.2 Network-based Statistics 

The functional brain networks consisted of 3321 edges resulting from the pair-wise 

correlation of the 82 brain regions. To identify altered functional connectivity between 

nodes  in the network, we employed the NBS approach, which is based on the idea of 

cluster-based thresholding of statistical maps [17]. It is a method of controlling the 

FWER in the context of a large number of univariate tests are computed at each 

connection of the network. Specifically, we first computed the t-score for each pairwise 

connection separately. Then, we applied a primary threshold to the t-scores to select a set 

of supra-threshold links with t-score exceeding the threshold. The thresholding procedure 

was performed for links with positive and negative t-scores separately to identify 

connected components where subjects with BPD had either significantly higher or 

significantly lower connectivity strength compared to healthy controls (directed 

hypothesis). Connections comprising this set represented potential candidates for which 

the null hypothesis could be rejected.  

Note that the primary threshold is a user-determined parameter in NBS framework, 

and there is no definite rules guiding how to choose it. Conservative thresholds, e.g., p-

value < 0.001, characterize strong, topologically focal differences, while liberal 

thresholds, e.g., p-value < 0.05, characterize subtle yet topologically extended differences 

[17]. Therefore, we tested different primary thresholds in this study. Fortunately, 

although the choice of primary threshold affects the sensitivity of the method, the control 

of FWER is guaranteed irrespective of the threshold choice [17].   

Next, we identified any connected components in the set of supra-threshold links and 

stored the size of each component. To determine the significance of each component, we 

performed non-parametric permutation test. For each permutation, all subjects were 

randomly reallocated into control group and patient group. The t-score was computed 

independently for each link, and the size of the largest connected component (LCC) 

within the supra-threshold links was recorded. This procedure was repeated 10,000 times 

to obtain the null distribution of the pseudo size of the connected component. Finally, the 
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corrected p-value for a true component of size M was determined by the proportion of 

permutations with size of LCC larger than M. 

5.3.3 Classification 

The mean connectivity in the significant connected component identified by NBS 

approach was used as a scalar feature, based on which a linear discriminant analysis 

(LDA) classifier [76] was trained to distinguish BPD patients from healthy controls. A 

leave-one-out cross-validation (LOO-CV) procedure was followed during classification. 

Each time, 29 subjects were used for classifier training, while the other one subject was 

used for testing the classification accuracy. The procedure was repeated 30 times until 

each subject has been used as a testing sample. This machine learning based classification 

scheme provides a framework for evaluating the discriminating power of connectivity 

measure in BPD identification.  

5.3.4 Clinical Correlates of Connectivity Patterns 

We examined clinical correlates of the mean connectivity in the significant sub-network 

identified by NBS approach. The clinical scores include: 1) ZAN-BPD (interview and 

self-rating) total score and 13 sub-scores (anger, moodiness, chronic emptiness, identity 

problems, suspiciousness, fear of abandonment, suicidal thoughts and self-injurious 

behaviors (STSIB), impulsivity, relationship problems, sum affect, sum cognitive, sum 

impulsivity, and sum relationships) [102]; 2) SCL90 total score and 13 sub-scores: 

somatization, obsessive-compulsive symptoms (OCS), interpersonal sensitivity, 

depression, anxiety, hostility, phobic anxiety, paranoid ideation, psychoticism, additional 

items, general severity index (GSI), positive symptom distress index (PSDI), positive 

symptom total (PST) [104].   

Linear partial correlation coefficient was used to examine the relationships between 

connectivity measure and the symptoms of the disease, while controlling the gender and 

age effects. In addition to age and gender, depressive symptoms measured by the 
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Montgomery–Åsberg Depression Rating Scale (MADRS) [114] were also partialed out, 

considering the high comorbidity with depression in major depressive disorder. 

5.4   Experimental Results 

5.4.1 Altered Functional Brain Connectivity in BPD 

The NBS approach identified an interconnected subnetwork in 0.03~0.06Hz frequency 

band, which showed significantly (corrected p-value < 0.05) lower connectivity strength 

in BPD patients. No connected components showed significantly increased connectivity 

in patients in this frequency range, and no significant between-group difference were 

found in other three frequency bands.  

The size of the connected subnetwork in 0.03~0.06Hz that showed lower connectivity 

in BPD is related to the choice of primary threshold in NBS test, as discussed in Section 

5.3.2. Table 5.3 lists the number of nodes and links in the subnetwork with different 

primary thresholds. Generally speaking, the size of the subnetwork increases when the 

primary threshold is lower, since more candidate links are admitted to the supra-threshold 

link set. However, significant results cannot always be found with arbitrary choice of 

primary threshold. If the threshold is chosen too low, e.g., p = 0.05, large components can 

arise in the permuted data as a matter of chance and thereby reduce the sensitivity. In 

contrast, if the threshold is set too high, e.g., p = 0.001, connections comprising the effect 

of interest may not be admitted to the set of supra-threshold links [17]. 
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Figure 5.2 shows the subnetwork obtained with primary threshold t-score = 2.75, and 

the boxplot of the mean connectivity in this subnetwork. The 40 nodes in the subnetwork 

covered frontal, temporal, parietal, occipital and limbic lobes. The 57 links were mainly 

long-distance connections that connected brain regions located at different lobes, e.g., 

between medial occipital lobe and cingulate cortex, between medial occipital lobe and 

frontal lobe, and between medial occipital lobe and inferior parietal lobe. All the 

connections within the subnetwork showed lower values of correlation coefficient in 

BPD patients as compared with in healthy controls. 

Table 5.3: Number of nodes and links, and the corrected p-value of the connected 

subnetwork in 0.03~0.06Hz that shows significantly lower connectivity strength in 

BPD patients, under different primary threshold in NBS tests. 

primary threshold No. of nodes No. of links corrected p-value 

t = 1.75, p ≈ 0.05 no significant result 

t = 2.05, p ≈ 0.025 68 205 0.048 

t = 2.5, p ≈ 0.01 49 87 0.0408 

t = 2.75, p ≈ 0.005 40 57 0.0298 

t = 3.05, p ≈ 0.0025 26 26 0.0304 

t = 3.4, p ≈ 0.001 no significant result 
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5.4.2 Classification Result 

Given the significant between-group difference of the connectivity strength in the 

identified subnetwork, we tested whether the mean connectivity in this network could be 

used as a feature to distinguish BPD patients from healthy controls using a simple LDA 

classifier. Following cross-validation procedure, the LDA classifier achieves 90% 

accuracy (90% specificity and 90% sensitivity) in classifying 20 BPD patients from 10 

healthy controls. Two patients and one control were misclassified. This promising 

(a)

(b)

(c)

 
Figure 5.2: (a) The connected subnetwork in 0.03~0.06Hz frequency band that showed 

significantly lower connectivity strength in BPD patients identified by NBS approach 

with primary threshold t-score = 2.75. Size of the nodes corresponds to the number of 

dysconnections to the nodes, and the color of the nodes represents different lobes: 

yellow: occipital, red: temporal, purple: parietal, green: frontal, blue: limbic, light blue: 

basal ganglia. (b) Permutation distribution of the size of largest connected component 

in NBS tests. (c) Boxplot of the mean connectivity strength in the subnetwork. 
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classification performance further demonstrates the high between-group difference of the 

identified connectivity pattern. 

5.4.3 Clinical Correlates of the Connectivity Pattern 

The mean connectivity in the subnetwork identified by NBS method with primary 

threshold t-score = 2.75 is negatively (p < 0.05, uncorrected) correlated with a variety of 

SCL90 and ZANBPD symptom scores (Table 5.4, Table 5.5, Figure 5.3). As shown in 

Section 5.4.1, the mean connectivity in the NBS network is significantly lower in patients 

compared with in controls. The lower the mean connectivity, the higher these correlated 

clinical scores. These results together suggest that altered functional brain network 

connectivity may contribute to specific symptoms of the disease. 

 

 

Table 5.4: Correlations between SCL90 symptom scores and the mean connectivity in 

the subnetwork that showed significantly lower connectivity strength in BPD 

identified by NBS method (primary threshold t-score > 2.75). Age, gender and 

MADRS score were partialed out. 

SCL90 correlation  p-value 

Obsessive-Compulsive Symptoms (OCS) -0.6293 0.0068 

Depression -0.6235 0.0075 

Hostility -0.5164 0.0338 

General Severity Index (GSI) -0.5064 0.0389 

Total Score -0.5024 0.0391 
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5.5 Discussions 

5.5.1 BPD-Related Alteration of Functional Brain Connectivity  

Functional brain networks are constructed by pair-wise connections between all nodes in 

the network. We explore BPD-related functional connectivity patterns in the resting-state 

networks. By applying the NBS approach, we identified an interconnected subnetwork in 

the 0.03~0.06 Hz frequency band that showed significantly lower connectivity strength in 

Table 5.5: Correlations of ZAN-BPD Interview and Self-raging scores with the mean 

connectivity in the subnetwork that showed significantly lower connectivity strength 

in BPD identified by NBS method (primary threshold t-score > 2.75). Age, gender and 

MADRS score were partialed out. 

ZAN-BPD_I correlation  p-value ZAN-BPD_SR correlation  p-value 

Affect -0.6218 0.0077 Mood -0.6238 0.0075 

Total -0.5961 0.0116 Affect -0.5064 0.0381 

Impulsivity -0.5369 0.0263 Relationships -0.4951 0.0433 

Relationships -0.4865 0.0477    

 

 

                      (a)                                         (b)                                          (c) 

Figure 5.3: Scatter plot of the mean connectivity of the connected subnetwork that 

showed lower connectivity in BPD identified by NBS method with primary threshold 

t-score = 2.75, against several clinical scores. The mean connectivity of NBS network 

is negatively correlated with: (a) SCL90 obsessive-compulsive symptoms, (b) 

ZANBPD_I sum affect, and (c) ZANBPD_SR mood scores. 
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patients with BPD compared to healthy controls. The nodes in the subnetwork were 

mainly located at the medial occipital lobe (lingual gyrus, cuneus cortex and pericalcarine 

cortex), cingulate cortex (posterior and isthmus divisions), temporal lobe (banks of 

superior temporal sulcus, transverse temporal cortex), prefrontal lobe (middle frontal 

gyrus, superior frontal gyrus), inferior parietal lobe (inferior parietal cortex, 

supramarginal gyrus), and basal ganglia areas (caudate, putamen).  

The links in the subnetwork were mainly long-distance connections between regions 

located at different lobes. The most number of dysconnections existed between the 

medial occipital lobe and cingulate cortex, medial occipital lobe and prefrontal cortices, 

medial occipital lobe and inferior parietal lobe, temporal lobe and prefrontal cortices, as 

well as between temporal lobe and inferior parietal lobe. Note that the posterior cingulate 

cortex, medial prefrontal cortex, inferior parietal lobe, superior temporal gyrus and 

cuneus are considered as core regions in the default mode network (DMN) [98], [115], 

[116]. A recent fMRI study using ICA-based correlation analysis also reported altered 

resting-state functional connectivity in DMN regions, including decreased connectivity in 

the cuneus, inferior parietal lobule and middle temporal cortex, in patients with BPD 

compared with healthy controls [98]. Together these findings suggest alterations in long-

distance functional connections between regions associated with self-referential processes 

in patients with BPD. Previous fMRI study using ICA approach also reported increased 

resting-state functional connectivity in the left frontal-parietal cortices and left insula in 

DMN [98], which was not identified in this study. A possible reason is that the NBS 

approach focuses on dysconnections that form an interconnected structure, rather than 

isolated links. Therefore, some supra-thresholded links with increased connectivity in 

patients may not be considered significant if they could not form a connected component 

with enough size. Nevertheless, the finding of impaired long-distance connectivity in this 

study may add new insight into previous connectivity analysis for BPD that used ICA or 

seed-based correlation analysis [98], [99], [117].  
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5.5.2 Methodological Considerations  

To identify functional dysconnections in BPD from more than 3000 links in the whole 

brain network, it is necessary to control the FWER due to multiple comparisons. In this 

study, we employed the recently-developed NBS approach, instead of traditional FDR 

controlling procedure that calculates the test statistic and corresponding p-value 

independently for each link [118]. The main consideration here is two-fold.  

On the one hand, NBS approach aims at detecting altered functional connectivity that 

exists in a connected component, rather than disconnected abnormal links. In our 

functional brain network analysis, brain regions are defined to be interconnected. 

Therefore, focal dysconnections can propagate along interconnected pathways, which is 

suitable for NBS method to detect [17]. Such interconnected structure of dysconnected 

links was not explored in previous seed-based or ICA-based correlation analysis with 

traditional FDR controls [98], [99], [117].  

On the other hand, compared with traditional FDR control procedure, the NBS 

approach offers greater sensitivity in network (graph) analysis. Under traditional FDR 

control, to survive from thousands of multiple comparisons, the link-based p-values need 

to be very small, less than 1e-5 in this study, which leads to high False Negative Rates. 

However, under the NBS framework, the link-based p-value only needs to be significant 

enough to pass a primary threshold to be admitted into the supra-threshold link set. 

Connections can be declared significant if they form an interconnected component.  

Despite these advantages of NBS in identifying significant connections, there are 

limitations of this approach. First, when using NBS, a rather arbitrary choice must be 

made to select the primary threshold used to define the set of supra-threshold links. In 

Figure 5.4, we show the connected subnetwork in 0.03~0.06Hz frequency band that 

showed significantly lower connectivity in BPD patients identified by NBS approach 

with primary threshold t-score = 3.05. This subnetwork contains 26 nodes and 26 links, 

which is a smaller size compared with the subnetwork with primary threshold t-score = 

2.75 (Figure 5.2, Table 5.3). Second, the localizing power of NBS is coarser than 
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traditional link-based approach. Third, only a connected component can be declared 

significant, but the individual connections comprising the component cannot [17].  

 

5.6 Conclusions 

In this chapter, we explore functional brain connectivity patterns in BPD, using resting-

state fMRI data. Frequency-specific functional brain networks were constructed by 

correlating filtered fMRI time series from 82 cortical and subcortical areas. A recently 

developed NBS approach was employed to identify significant connectivity changes in 

patient group. By applying the NBS approach, we identified an interconnected 

subnetwork in the 0.03~0.06Hz frequency band that showed significantly lower 

connectivity strength in patients with BPD compared to controls. The mean connectivity 

in this subnetwork showed negative correlations with several key clinical symptom 

scores and achieved 90% prediction accuracy in BPD classification. The high accuracy 

 

Figure 5.4: The connected subnetwork in 0.03~0.06Hz frequency band that showed 

significantly lower connectivity in BPD patients identified by NBS approach with 

primary threshold t-score = 3.05. Size of the nodes corresponds to the number of 

dysconnections to the nodes, and the color of the nodes represents different lobes: 

yellow: occipital, red: temporal, purple: parietal, green: frontal, blue: limbic, light 

blue: basal ganglia. 
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indicates the potential of the resting-state functional connectivity pattern as biomarker for 

BPD identification.  A limitation of this study is the small sample size. Therefore, the 

results of this work need to be viewed as preliminary and need to be tested in future 

studies. Future work will be directed towards complex network analysis of the 

topological structure of the functional brain networks in BPD patients. 
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Chapter 6 
 

Functional Brain Network Topology 

Patterns in BPD 

6.1 Introduction 

Although brain dysfunctions have been previously shown in patients with BPD, prior 

studies have largely been based on specific regions of interest, i.e., regional functional 

activations and between-area functional connections. However, whether BPD affects the 

topological organizations in the whole-brain functional networks has not yet been 

investigated. For example, how different brain areas are integrated and segregated for 

communication and specialized processing remains unknown. Given the complexity of 

BPD psychopathology, knowledge about possible disruptions of topological properties in 

functional brain networks could potentially advance current understanding of brain 

dysfunctions associated with the disease, and suggest new avenues for developing 

neuroscience-based treatment. However, to the best of our knowledge, very few studies 

have reported results on the global and local topological properties of functional brain 

networks in patients with BPD. 

Recent research has shown that graph-theory based complex network analysis 

provides a powerful framework for examining the topological properties of brain 

networks, where nodes represent brain regions and edges represent the anatomical or 

functional connections between brain regions [119]–[122]. Network analysis of structural 

and functional connectivity data for healthy people have revealed important “small-

world” properties in the healthy brain, characterized by high clustering coefficient and 
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low mean path length [109], [123]–[126].  High clustering is associated with high local 

efficiency of information transfer for specialized processing (functional segregation); 

while short mean path length indicates high global efficiency of parallel information 

transfer for distributed processing (functional integration) [119]. Knowledge about these 

informative topological properties could advance a comprehensive understanding of how 

brain networks are organized and how they generate complex dynamics. Furthermore, 

comparisons of network topology between healthy subjects and psychiatric patients have 

reported significant abnormalities of brain connectivity networks in patients with 

schizophrenia [127]–[130], Alzheimer’s disease [110], [131]–[133] and depression [134], 

[135]. These promising results motivate us to explore BPD-related patterns of topological 

properties in the functional brain networks, which have not been investigated in previous 

studies.   

In this chapter, we perform graph-theory based network analysis on resting-state 

fMRI data to explore the topological structure in whole-brain functional networks in 20 

adults with BPD versus 10 matched healthy controls. The central hypothesis is that BPD 

disrupts the global and regional topological organizations in functional brain networks. 

To test this hypothesis, we first constructed frequency-specific connectivity graphs by 

correlating wavelet filtered fMRI signals from different brain regions. Next, we 

quantified network topological properties (small-world properties, network efficiency, 

and nodal centrality) and compared these properties between groups. We computed a 

variety of global and nodal network measures, including the clustering coefficient, 

characteristic path length, small-worldness, local efficiency, global efficiency and degree 

[121]. Non-parametric permutation tests were used for group comparisons. After 

identifying BPD-related abnormalities in functional brain network topology, we further 

examined the correlations between the significant network measures and clinical 

symptom scores, and used the network features to distinguish BPD patients from healthy 

controls with a machine learning classifier. The correlation between the key topology 

patterns and the network connectivity pattern we identified in Chapter 5 will also be 

discussed. The framework of the study design is shown in Figure 6.1. 
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The rest of this chapter is organized as follows. In Section 6.2, the graph-based 

functional brain network analysis procedures are presented, including details of 

computing network topology measures. Section 6.3 presents the data analysis results, 

which describes altered network topology patterns in BPD. Discussions and conclusions 

are presented in Section 6.4 and Section 6.5, respectively.  

6.2 Graph Analysis of Brain Network Topology 

6.2.1 Subjects and Data 

In this study, we use the same resting-state fMRI data as described in Chapter 5. See 

Section 5.2 for details about subjects’ information and fMRI data acquisition and pre-

processing steps.  

 

Figure 6.1: Framework of the study design 
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6.2.2 Thresholding 

First of all, as described in Section 5.3.1, we construct frequency-specific functional brain 

networks by computing the Pearson linear correlation coefficients between all possible 

pairs of fMRI time series at each wavelet scale separately for each subject. At each 

wavelet scale, a frequency-specific 82-by-82 undirected connectivity graph is constructed 

based on the 3321 correlation coefficients. 

To analyze the topological properties of brain networks using graph measures, the 

original weighted connectivity matrices were first converted to binary matrices by 

applying a set of thresholds to the correlation coefficients, such that if the correlation 

coefficient between two ROIs exceeded a threshold, a connection was defined between 

the two ROIs. To ensure that the graph measures were mathematically comparable across 

subjects, subject-specific thresholds were used so that the connectivity graphs from 

different subjects had the same graph density, i.e., the ratio of the number of existing 

links over the number of all possible links in the graph. Instead of studying network 

properties at a single graph density, we thresholded the connectivity matrices repeatedly 

over a wide range of graph densities between 0.1 and 0.5, with an increment of 0.01. A 

graph density of 0.1, for example, means keeping the top 10% of the highest correlation 

coefficients. This specific graph density range is chosen to ensure that the graph is sparse 

and the small-world properties are estimable [136]. 

6.2.3 Network Topology Measures 

The thresholding procedure reduced the weighted connectivity matrix to a set of binary 

graphs, each of which we characterized using a variety of graph-based measures. See 

[121] for review of complex network measures of brain connectivity. In this study, we 

specifically investigated the small-world properties [136], network efficiency [137], and 

nodal centrality. 
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Small-World Properties 

Prior functional neuroimaging studies have shown that functional connectivity 

networks in a healthy brain can be modeled as a “small-world” system [109], [125], 

[126]. A small-world system has the ability for specialized processing to occur within 

densely interconnected groups of brain regions (highly segregated), and also has the 

ability to combine specialized information from distributed brain regions (highly 

integrated) [121].  

The small-world properties of a network are mainly quantified by the clustering 

coefficient and the characteristic path length of the network. The clustering coefficient 

ic  of a node i  is defined as the ratio of the number of existing links and the number of all 

possible links among the direct neighbors of the node. High value of ic  implies that most 

of the neighbors of the node are also neighbors of each other. The clustering coefficient 

of the entire network netC  is the mean ic  of all nodes in the network. This global 

measure quantifies the cliquishness of a network.  

The characteristic path length netL  quantifies the integration ability of a network. 

The original definition of netL  is the average distance between any two nodes in the 

network. To avoid the disconnection problem, i.e., the distance between some nodes is 

infinity, the harmonic mean version of the original definition is used in this study: 

1

( 1)
net

ij
i j G

N N
L

d


 


 , where G  is the set of all nodes in the network, N  is the total number 

of nodes in the network, and ijd  is the shortest path length between node i  and node j  

[138]. 

To diagnose the small-world properties, netC  and netL  are normalized by the same 

metrics estimated from random networks with same number of nodes, edges and degree 

distribution. The normalized network clustering coefficient is defined as 
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net
norm

rand

C
C

C
 , while the normalized characteristic path length is defined as 

net
norm

rand

L
L

L
 . A small-world network is expected to have high local clustering and 

low mean path length, i.e., 1normC   and 1normL  . Finally, a scalar summary of the 

small-worldness of the network is defined as: norm

norm

C
S
L

  [139]. A small-world network 

has 1S  . 

Network Efficiency 

Network efficiency measures how efficiently information is exchanged over the 

network. Small-world networks are seen as systems that are both globally and locally 

efficient [137]. The global efficiency of the network is defined as the mean inverse 

shortest path length between all node pairs in the network: 

1
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efficiency of node i  is defined in the subgraph of the direct neighbors of node i : 
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
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
, where iG  is the set of nodes that are directly connected to 

node i , ( )jh id G  is the shortest path length between node j  and node h  that contains 

only direct neighbors of node i , and ik  is the number of direct neighbors of node i . The 

local efficiency of the whole network is the mean ,loc ie  of all nodes in the network: 

,
1

loc loc i
i G

E e
N




 . This metric plays a similar role to the clustering coefficient, and it 

shows how efficient the communication is between the direct neighbors of node i  when 

node i  is removed [137]. 
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Nodal Centrality 

Degree ik  was used to measure the centrality of a node. It is defined as the number of 

links connected to the node. Hub regions often interact with many other regions in the 

network and thus have high centrality. 

6.2.4 Statistical Testing 

The set of graph metric values computed at each single graph density form a functional 

curve, where the x-axis represents the graph density and the y-axis represents the graph 

metric value. To determine whether there exists significant between-group difference in 

the graph measures, we performed non-parametric permutation tests on the area under the 

graph-metric-versus-graph-density curve of each graph metric. The area under curve 

(AUC) is computed by integrating the curve over specified density range, which serves as 

a scalar feature for the topological property of the network. We first calculated the 

difference D  between the mean AUC of control group and patient group. To test the null 

hypothesis that the observed group difference (BPD > control or BPD < control, directed 

hypothesis) could occur by chance, we then randomly reassigned the group identity 

(healthy control or BPD patient) for each subject without replacement. The difference 'D  

between the mean AUC of the two pseudo groups were recorded for each permutation. 

This procedure was repeated 10,000 times, and the p-value of the group difference was 

defined as the number of times that 'D  is greater or less than D , divided by 10,000, 

depending on the sign of D .  

In addition to the p-value, the effect size and the power for each significant graph 

measure (p-value < 0.05) were also analyzed. The effect size of the group mean 

difference is measured using Cohen’s d with pooled standard deviation [140]. The 

statistical power of the test with significance level 0.05 is calculated based on the group 

means, standard deviations and sample sizes, using online power calculator [141]. To 

note, before group comparison of each graph measure using permutation tests, the 

confounding factors of gender and age were removed by multiple linear regression 
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(independent variables: gender and age; dependent variables: the AUC of each graph 

measure).   

6.2.5 Clinical Correlates and Classification 

We examined clinical correlates of the AUC of the significant network topology 

measures.  In addition, the AUC of the significant topology measures was used as a scalar 

feature to distinguish BPD patients from healthy controls using a linear discriminant 

analysis (LDA) classifier [76]. Detailed descriptions of the clinical symptom scores and 

the cross validation classification procedures are described in Section 5.3.3 and Section 

5.3.4, respectively. 

6.3   Experimental Results 

6.3.1 Altered Small-World Properties and Network Efficiency 

Figure 6.2 shows the group mean curve of 6 global network measures versus graph 

densities in 4 frequency bands. Figure 6.2a-c show the 3 small-world measures, including 

the normalized characteristic path, normalized clustering coefficient, and small-

worldness. The functional brain networks of both healthy controls and BPD patients 

showed small-world properties within density range 0.1 to 0.5: 1normC  , 1normL  , 

and 1S  . Furthermore, the small-worldness and the clustered structure were more 

salient in low frequency bands compared to in high frequency bands: scale 4 

(0.015~0.3Hz) ≈ scale 3 (0.03~0.6Hz) > scale 2 (0.06~0.12Hz) > scale 1 (0.12~0.25Hz), 

for S  and normC .  This finding is consistent with previous fMRI study that examined the 

small-world properties in multiple wavelet scales in healthy brain [109].  

Figure 6.2d-e shows the normalized global and local network efficiency across graph 

densities. From Figure 6.2d, we can observe that the globE  is slightly lower than one, and 

it approaches one as graph density increases. This is consistent with the findings that the 
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normL  is slightly greater than one but approaches one as graph density increases, since 

both the characteristic path length and the global efficiency are based on the average 

distance between nodes in the network. The shorter the characteristic path length is, the 

higher the global efficiency. The values of normL  and globE  together show that resting-

state functional brain networks have slightly longer but almost equal path length as 

degree-preserved random networks with same number of nodes and edges. From Figure 

6.2e, we can observe that the values of locE  in scale 4 ≈ locE  in scale 3 > locE  in scale 2 

> locE  in scale 1 >1 across graph densities. This is consistent with the normC  measure, 

since both normC  and locE  measure the local cliquishness, i.e., clustered structure, in a 

network. 

Besides the small-world properties and network efficiency, another simple but 

important graph measure, the size of largest connected component (LCC) is shown in 

Figure 6.2f. We can observe that as the graph density decreases, a few nodes become 

disconnected, and that the number of disconnected nodes is larger in high frequency 

bands compared with in low frequency bands.  
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 (a)                                                                    (b)                                                         

     

(c)                                                                    (d)                                                     

    

(e)                                                                    (f)      

Figure 6.2: Mean global network measures across graph densities in 4 frequency 

bands for control group (C) and BPD group (P): (a) normalized characteristic path 

length, (b) normalized clustering coefficient, (c) small-worldness, (d) normalized 

global efficiency, (e) normalized local efficiency, (f) size of largest connected 

component. 
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We next analyzed the between-group difference of the graph measures by non-

parametric permutation test of the AUC, as described in Section 6.2.4.  Although all 

graph measures defined in this study can deal with disconnected nodes, the AUC for 

group comparison was computed within density range 0.2 to 0.5, instead of the whole 

small-world regime 0.1 to 0.5. This density range was chosen so that the network was 

connected with just a few disconnected nodes. Permutation test results showed that the 

between-group difference of network topology are most significant in the 0.03~0.06Hz 

frequency range. At this frequency band, BPD patients showed significantly (p-value < 

0.05) larger size of LCC, normC , S , and normL , compared with healthy controls. The 

boxplots of these significant features are shown in Figure 6.3, and the corresponding p-

value, effect size and power are listed in Table 6.1. BPD patients also showed higher 

normC  in 0.015~0.03Hz network, and greater size of LCC and normC  in the 0.06~0.12Hz 

frequency bands. No between-group differences were found in the 0.12~0.25Hz 

frequency band.    
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Table 6.1: P-value, effect size, and power of global network measures in 0.03~0.06Hz 

frequency band that show significant between-group difference (p-value<0.05) 

graph measures p-value effect size power 

size of largest connected 

component 
0.0008 1.2049 0.8295 

normalized clustering 

coefficient 
0.0285 0.7550 0.3918 

small-worldness 0.0308 0.7263 0.3789 

normalized local efficiency 0.0193 0.8155 0.4415 

 

              

 (a)                                                                   (b)                                                         

                 

                                (c)                                                                  (d)         

Figure 6.3: Boxplots of global network measures in 0.03~0.06Hz that show 

significant between-group difference (p-value <0.05): (a) size of the largest connected 

component (LCC), (b) normalized clustering coefficient, (c) small-worldness, (d) 

normalized local efficiency. 
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The increased size of LCC, normC , S  and normL  together suggests increased local 

cliquishness (clustering) in the intrinsic functional brain networks in patients with BPD 

versus healthy controls. Table 6.2 and Table 6.3 list the brain regions that showed 

increased nodal clustering coefficient and increased nodal local efficiency in BPD 

patients, respectively. These regions are mainly located within the limbic system, which 

is associated with various structural and functional abnormalities in BPD, as reported by 

previous neuroimaging studies. 

 

 

Table 6.3: Brain regions that show significantly (permutation p-value < 0.05, 

uncorrected) higher local efficiency in patients in 0.03~0.06Hz network 

brain regions p-value effect size power 

right temporal pole 0.0004 1.3161 0.8753 

left temporal pole 0.0022 1.0724 0.7329 

right pallidum 0.0087 0.9511 0.6102 

left entorhinal 0.0161 0.7832 0.5106 

right amygdala 0.0137 0.8187 0.5351 

left amygdala 0.0251 0.7237 0.4515 

 

Table 6.2: Brain regions that show significantly (permutation p-value < 0.05, 

uncorrected) higher clustering coefficient in patients in 0.03~0.06Hz network 

brain regions p-value effect size power 

right temporal pole 0.0004 1.3596 0.8711 

left temporal pole 0.0029 1.1129 0.7154 

right pallidum 0.0053 1.0349 0.6681 

left entorhinal 0.0197 0.7489 0.4612 

right amygdala 0.0257 0.7588 0.4356 

left amygdala 0.0432 0.6246 0.3525 
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It is noteworthy that a simple measure, the size of largest connected component 

(LCC), showed the most significant between-group difference compared with other 

discriminating global network measures (Figure 6.3). Previous fMRI study of resting-

state functional brain connectivity has suggested that the size of LCC is a non-trivial 

predictor of a wide variety of other graph metrics, and is sensitive to disease state [130]. 

In Figure 6.4, we show the scatter plot of the size of LCC against other discriminating 

graph measures in the 0.03~0.06Hz band network, including the normalized clustering 

coefficient, normalized local efficiency and small-worldness. Correlation analysis (age 

and gender partialed out) shows that the size of LCC is positively correlated with all 

these three significant graph measures.  

 

After identifying the significant network topology patterns, we further investigated 

the relationship between these topology patterns with the altered functional brain 

connectivity pattern we identified in chapter 5.  Figure 6.5 shows the scatter plot of the 

mean connectivity in the subnetwork with primary threshold t-score = 2.75, against the 

size of LCC, normalized clustering coefficient, normalized local efficiency and small-

worldness. Mean connectivity of the subnetwork was negatively correlated with all these 

four graph topology measures (age and gender partialed out). 

           

                       (a)                                         (b)                                           (c) 

Figure 6.4: Scatter plot of the size of largest connected component (LCC) in 

0.03~0.06Hz band network against other significant graph measures. The size of LCC 

is positively correlated with (a) the normalized clustering coefficient, r =0.6172, p = 

5e-4, (b) normalized local efficiency, r = 0.6377, p = 3e-4 and (c) small-world-ness, r 

= 0.6465, p = 2e-4. 
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6.3.2 Altered Nodal Centrality 

Figure 6.6 shows the degree distribution of brain regions in the 0.03~0.06Hz functional 

brain network, and marks the brain regions with significantly increased or decreased 

degree (permutation p-value < 0.05, uncorrected) in BPD patients. The permutation p-

values of the discriminating regions are listed in Table 6.4 and Table 6.5. BPD patients 

showed increased degree at several brain regions with low degree, and decreased degree 

at several brain regions with high degree, indicating reduced number of connections to 

             

                                           (a)                                                                  (b) 

                          

                                         (c)                                                                (d) 

Figure 6.5: Scatter plot of the mean connectivity of the subnetwork that showed lower 

connectivity strength in BPD identified by NBS method (primary threshold t-score = 

2.75), against the four significant graph topology measures. The mean connectivity of 

the subnetwork shows significant negative correlations with: (a) size of largest 

connected component, r = -0.7294, p = 1.1e-6, (b) the normalized clustering 

coefficient, r = -0.7157, p = 1.9e-5, (c) small-worldness, r = -0.7126, p = 2.1e-5, and 

(d) normalized local efficiency, r = -0.7207, p = 1.5e-5. 
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hub nodes and increased number of connections to non-hub nodes in the resting-state 

functional brain network. Furthermore, we observed that brain areas that show increased 

clustering coefficient and local efficiency (Table 6.2 and Table 6.3), including the 

bilateral temporal poles, bilateral amygdala, pallidum and entorhinal cortex, are nodes 

with low degree. This finding suggests that the increased local cliquishness in BPD is 

located at the non-hub nodes in the functional brain networks. 

 

 

Table 6.4: P-value, effect size and power of brain regions that showed significantly 

(permutation p-value < 0.05, uncorrected) higher degree measure in BPD compared 

with healthy controls.  

brain regions p-value effect size power 

left pars orbitalis 0.001 1.176 0.676 

left temporal pole 0.007 1.02 0.5996 

right temporal pole 0.008 0.97 0.5567 

left accumbens 0.014 0.917 0.5143 

right accumbens 0.014 0.939 0.5048 

right inferior temporal gyrus 0.026 0.778 0.4187 

 

 

Figure 6.6: Degree distribution in the 0.03~0.06Hz functional brain network. The size 

of a node reflects the value of degree associated with the node. Nodes with large size 

represent hub regions with high degree. The red and blue nodes are regions that show 

significantly higher and lower degree in patients compared with controls, respectively. 
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6.3.3 Clinical Correlates of Network Topology Measures 

The normalized clustering coefficient, the small-worldness and the local efficiency are 

positively (p-value < 0.05, uncorrected) correlated with ZANBPD relationship, anger and 

affect scores (Table 6.6 and Figure 6.7). The higher the values of the topological 

measures are, the higher these correlated clinical scores. Together with the result in 

Section 5.4.3, the findings suggest that altered functional brain network topology and 

connectivity may contribute to specific symptoms of the disease. 

Table 6.5: P-value, effect size and power of brain regions that showed significantly 

(permutation p-value < 0.05, uncorrected) lower degree measure in BPD compared 

with healthy controls.  

brain regions p-value effect size power 

right isthmus– cingulate cortex 0.008 -0.995 0.5533 

right supramarginal gyrus 0.008 -1.024 0.5539 

right transverse temporal cortex 0.023 -0.84 0.4205 

left transverse temporal cortex 0.027 -0.77 0.4015 

left lingual gyrus 0.031 -0.722 0.4055 

left caudate 0.033 -0.736 0.381 

right superior frontal gyrus 0.033 -0.734 0.3707 

right caudate 0.034 -0.759 0.3867 

right cuneus cortex 0.038 -0.704 0.3695 
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6.3.4 Classification Results 

Given the significant between-group difference of network topology features, we tested 

whether these measures could be used as features to distinguish BPD patients from 

healthy controls using LDA classifier. Table 6.7 lists the leave-one-out classification 

Table 6.6: Correlations between clinical symptom scores and global network 

topology measures (age, gender and MADRS partialed out) 

 

Normalized 

Clustering 

Coefficient 

Normalized Local 

Efficiency 
Small-worldness 

 r p-value r p-value r p-value 

ZANBPD_SR 

relationship 
0.7175 0.0012 0.6982 0.0018 0.7079 0.0015 

ZANBPD_I 

relationship 
0.6683 0.0034 0.6942 0.002 0.6619 0.0038 

ZANBPD_I anger 0.5317 0.0281 0.5663 0.0178 0.543 0.0243 

ZANBPD_I 

sum_affect 
0.519 0.0328 0.4977 0.0421 0.516 0.034 

ZAN-BPD_I: Zanarini Rating Scale for Borderline Personality Disorder interview score;  

ZAN-BPD_SR: Zanarini Rating Scale for Borderline Personality Disorder self-rating score  

 

                      (a)                                      (b)                                            (c) 

Figure 6.7: Scatter plots of ZANBPD_SR relationship problem scores against three 

global network topology measures: (a) normalized clustering coefficient, r = 0.7175, 

p = 0.0012, (b) normalized local efficiency, r = 0.6982, p = 0.0018, (c) small-

worldness, r = 0.7079, p = 0.0015. 
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results using single global network measures that showed significant between-group 

difference, including size of largest connected component, normalized clustering 

coefficient, normalized local efficiency and small-worldness of the whole functional 

brian network. The best classification result was achieved using the size of largest 

connected component (85% sensitivity and 60% specificity). Besides the discriminating 

global network features, the left and right temporal poles showed the most significant 

between-group difference in nodal topological measures compared with other brain areas 

(Table 6.2 and Table 6.3). Table 6.8 lists the classification results using nodal network 

measures of these two regions, including nodal clustering coefficient, local efficiency and 

degree. The best classification result was achieved using the clustering coefficients of 

these two regions (90% sensitivity and 70% specificity). 

 

 

Table 6.8: Classification results using pairs of regional network measures of the left 

and right temporal poles, including clustering coefficient, local efficiency and degree  

 Accuracy Specificity Sensitivity 

clustering coefficient 0.8333 0.7 0.9 

local efficiency 0.8 0.6 0.9 

degree 0.7 0.7 0.7 

 

Table 6.7: Classification results using single global network measure: size of largest 

connected component, normalized clustering coefficient, normalized local efficiency 

and small-worldness 

 Accuracy Specificity Sensitivity 

size of largest connected 

component 
0.7667 0.6 0.85 

normalized clustering coefficient 0.6667 0.7 0.65 

normalized local efficiency 0.6667 0.7 0.65 

small-worldness 0.6667 0.7 0.65 
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6.4 Discussions 

6.4.1 BPD-Related Alterations of Functional Brain Network Topology 

Using graph-theory based complex network analysis approach, we examined the 

topology of resting-state functional brain networks of adults with BPD versus healthy 

controls. As hypothesized, patients with BPD showed evidence for abnormalities in 

topological structure in the intrinsic functional brain networks. These abnormalities 

appear to be related to specific symptoms of BPD and can be used as features to 

distinguish patients with BPD from healthy controls using a machine learning classifier. 

These findings add to prior neuroimaging studies that have reported abnormal 

connections between specific brain regions in BPD, and may provide new, clinically-

relevant knowledge about the neurophysiology of the disease. 

The emergence of graph-theory based complex network analysis provides an 

important mathematical framework to characterize the global and regional topology in 

brain connectivity networks. Our graph analysis identified significant alterations of 

small-world properties and network efficiency in patients with BPD versus healthy 

controls at the 0.03~0.06Hz frequency band, including increased size of largest connected 

network component (LCC), small-worldness, clustering coefficient and local efficiency. 

The increased size of LCC indicates a lower number of disconnected nodes in the 

network. Previous fMRI study of resting-state functional brain networks has reported 

increased size of LCC in schizophrenia patients, and suggested that the size of LCC is a 

predictor of other graph measures in graph analysis [130]. This is consistent with our 

finding that the size of LCC is positively correlated with other discriminating network 

topology measures, including the small-worldness, clustering coefficient and local 

efficiency.  

The higher values of clustering coefficient and local efficiency together suggest 

greater network cliquishness, i.e., clustered structure, within the resting-state functional 

brain networks in BPD patients. Brain regions that showed increased local cliquishness in 
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patients include the bilateral temporal poles, bilateral amygdala, right pallidum, and left 

entorhinal cortex. These regions are mainly located within the limbic and paralimbic 

systems. Abnormalities of limbic regions in BPD have been consistently reported by both 

structural and functional neuroimaging studies [84], [85]. For example, the amygdala, 

which plays a crucial role in emotion processing and in the initiation of fear and stress 

responses [142], has been considered to be highly relevant to BPD psychopathology 

[143]. Neural imaging studies reported volume reduction [144], hyperreactivity in 

response to emotional stimuli [84], and increased functional connectivity in resting-state 

[117], at this area in BPD patients. Note that hyperconnectivity of brain regions 

implicated in emotion processing may reflect clinically well-observed BPD features such 

as affective hyperarousal and intense emotional reactions [84].  

The bilateral temporal poles, i.e., the anterior-most portion of the temporal lobes, are 

also associated with significantly increased local cliquishness in patients. Temporal pole 

is often considered part of an extended limbic system, which is lateral to the amygdala 

and has tight connectivity to limbic and paralimbic regions. Research has suggested that 

this area binds complex, highly processed perceptual inputs to visceral emotional 

responses [145]. Structural and functional deficits of this area in patients with BPD have 

also been reported by previous neuroimaging studies [146]. The finding in this study that 

in resting-state functional brain networks, patients with BPD show higher levels of local 

cliquishness at the amygdala and temporal poles, which are responsible for processing 

negative emotion and visceral responses to negative emotion, could potentially explain 

the vulnerability in this patient group for a rapid rise to negative affect that is difficult for 

them to regulate. 

In addition to the small-world properties and network efficiency, we also investigated 

the centrality of brain regions, which characterizes the importance of a node in the whole 

brain network. On the one hand, BPD patients show higher nodal centrality than controls 

at several brain regions with low degree, such as temporal poles and the nucleus 

accumbens. On the other hand, patients with BPD showed lower nodal centrality than 

controls at several hub nodes in the network, such as the supramarginal gyrus and the 
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transverse temporal cortex. These findings suggest that BPD might cause an increased 

number of connections to non-hub nodes and a decreased number of connections to hub 

nodes in functional brain networks. Furthermore, we also noticed that brain regions 

where patients with BPD showed increased local cliquishness are associated with low 

degree, suggesting that the increased local cliquishness in the whole brain network 

discussed above occurs in non-hub nodes. These alterations in the topological 

organizations of functional brain networks may add new knowledge to the current 

understanding of neural dysfunction in BPD. 

In this study, we found several important relationships among the network measures 

and between network and clinical measures, which add strength and validity to the 

overall findings. First, mean connectivity within the subnetwork differentiating patients 

with BPD from controls at the 0.03~0.06Hz frequency band was associated with 

significant alterations of network topology. Interestingly, the mean connectivity of the 

subnetwork was negatively correlated with all four global network topology measures 

that had shown significant group differences (higher in patients), including the size of 

largest graph component, normalized clustering coefficient, small-worldness, and 

normalized local efficiency. In these relationships, participants with lower mean 

connectivity showed higher values of the global measures. This finding suggests a 

possible relationship between the functional connectivity between brain areas and the 

topological organizations of whole-brain functional networks.  

Second, the properties of small-worldness, clustering coefficient and local efficiency 

all showed positive correlations with several key BPD symptom scores, including 

problems in relationships, anger and affect problems. The decreased functional 

connectivity in the NBS subnetwork we discussed in Chapter 5 showed negative 

correlations with a variety of key BPD symptoms, such as depression, obsessive 

compulsive symptoms, hostility, affect, impulsivity, and relationship problems. Although 

these correlation analyses were exploratory and the results were not corrected for 

multiple comparisons, the preliminary findings suggest that the aberrant topological and 

connectivity features may have important clinical relevance. BPD is very heterogeneous, 
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and so treatments will optimally be tailored to each individual’s aberrant pattern of 

neurobiology. By better characterizing the neural underpinnings of specific facets of 

illness, this type of research will pave the way for conceptualizing and testing more 

targeted, neuroscientifically-informed treatments.  

Last but not least, the significant network topology features showed promising 

classification accuracy in distinguishing BPD patients from healthy controls with LDA 

classifier, which further demonstrated the between-group differences of these network 

properties showed in statistical tests. Together these findings suggest that the network 

measures derived from graph theory in this study are clinically meaningful, and may shed 

light on the neurobiological underpinnings of BPD, and could eventually have potential 

in clinical applications such as diagnosis and treatment selection. 

Finally, we wish to highlight that we consider this exploratory study is a first and 

important step. The preliminary findings of group differences and relationships with 

clinical measures reported here require replication with larger samples. Once confirmed, 

these findings could form the basis for longitudinal studies testing important questions 

such as: (1) how topological network structure and functional connectivity change in 

patients with BPD across stages of illness; (2) whether these abnormalities present early 

in development, even before onset of the disorder; (3) which factors contribute to 

development of network organization abnormalities; and (4) whether and how 

interventions for BPD impact these aspects of neural network organization and 

connectivity. 

6.4.2 Methodological Considerations 

To compute various network topology measures, after obtaining the correlation 

coefficients between all brain regions, we used thresholding to remove weak and non-

significant links, since they may represent spurious connections and may obscure the 

topology of strong and significant connections in functional brain networks [121]. 

Negative connections, i.e., functional anti-correlations, and self-connections were ignored 

in the present study, as suggested in [121]. We applied a set of subject-specific 
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correlation thresholds to ensure that all networks have the same number of nodes and 

links at each graph density. To determine the statistical significance of each graph 

measure, an efficient test is needed to compare the graph-metric-versus-graph-density 

curves between groups. Instead of performing massive comparisons at each single 

density, we performed non-parametric permutation test on the AUC of each graph 

measure, which serves as a scalar summary of the curve values across densities. This 

approach offers a comprehensive examination of the entire topological structure of the 

original weighted connectivity graph over specific density range of interest. In addition, a 

machine learning classifier was applied to classify BPD patients from healthy controls 

based on the discriminating network measures. The significant network features and the 

machine learning based classification scheme may have potential to be used in a 

computer-aided objective test to assist in clinical diagnosis of BPD.  

6.4.3 Limitations 

The limitation of the study is the small sample size (20 patients vs. 10 controls), which 

leads to low statistical power: 0.38~0.83 (mean 0.51, std. 0.214) for global measures and 

0.35~0.875 (mean 0.518, std. 0.15) for nodal measures. Low statistical power not only 

reduces the probability of detecting a true effect, but also reduces the probability that a 

statistically significant results reflects a true effect [147].  The effect sizes (Cohen’s d) for 

the four global topology measures are 0.726~1.205 (mean 0.875, std. 0.222), indicating 

medium to large effects [140]. The absolute values of effect size for nodal topology 

measures are 0.625~1.36 (mean 0.888, std. 0.193), also indicating medium to large 

effects [140]. These effect sizes are comparable with previous effect sizes reported in 

neuroimaging studies that have compared BPD subjects and healthy volunteers [144], 

[148]–[150]. However, they might be overestimated due to low statistical power [147]. 

Besides the power issue, small number of subjects does not allow us to assess the relative 

differences between subtypes of the disease, or design more complex classification 

models which might cause data overfitting. Therefore, the findings of this study should 

be viewed as exploratory, and need to be validated and extended on large samples with 

high statistical power.   



 

 111 

Some other limitations of the current work need to be further addressed. First, 82 

cortical and subcortical regions were chosen as nodes in the functional brain networks. 

Brain networks derived using different parcellation schemes may show different 

topological structures. In addition, Pearson correlation coefficients were used to measure 

the functional connectivity in the network, which could only measure the linear 

relationship between two time series. There are other types of connectivity measures like 

coherence, and mutual information, which could account for time lags and measure non-

linear correlations between two time series. Further studies are needed to compare the 

topology and connectivity of functional brain networks constructed with different node 

sets and connectivity measures. Lastly, it is important to note that the current study 

considers a single static network structure as an average representation of the overall 

resting-state functional connectivity over 6 minute time duration. This method is 

consistent with other similar studies on topological organization of functional brain 

networks [110], [130], [134]. However, recent fMRI research has shown that resting-state 

functional brain connectivity is not static [151]. Therefore, future work is needed to 

explore the dynamic network topology changes across longer time durations. 

6.5 Conclusions 

In this chapter, we applied graph-theory based complex network analysis to investigate 

BPD-related alterations of topological organizations in resting-state functional brain 

networks. In the 0.03~0.06Hz functional brain networks, BPD patients showed increased 

local cliquishness characterized by increased size of largest connected component, 

clustering coefficient, local efficiency, and small-worldness, particularly at the limbic 

areas. Patients also showed decreased nodal centrality at several hub nodes, but increased 

nodal centrality at several non-hub nodes in the network.  In addition, the significant 

network measures were positively correlated with several clinical symptom scores for 

BPD diagnosis, and showed high predictive power in patient vs. control classification 
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using a machine learning classifier. The findings of this work may help in gaining new 

knowledge into the neural underpinnings of BPD.  

However, due to limitation of small sample sizes, the reported results should be 

viewed as exploratory and need to be validated on large samples in future works. Future 

efforts will be directed towards studying functional brain networks constructed with 

different node sets and connectivity measures, exploring the dynamic network structure 

across time, and testing the results on a larger sample size. Future work will also be 

directed towards comparing the topological properties of functional brain networks in 

different psychiatric disorders, including BPD, obsessive compulsive disorder, and major 

depressive disorder. 
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Chapter 7 
 

Conclusions and Future Work 

7.1 Conclusions 

In this research, we explore quantitative, discriminative and interpretable neuroimaging 

biomarkers for two common mental disorders: schizophrenia and borderline personality 

disorder (BPD). We have presented an interdisciplinary research framework that 

combines domain knowledge, neuroimaging techniques, signal processing, graph theory, 

machine learning and statistical analysis approaches to address four key problems related 

to biomarker discovery: feature extraction, feature selection, feature validation and 

classification. The identified neuroimaging patterns contain meaningful space, frequency 

and time information in brain activity, connectivity and network structure, which may 

add new knowledge to the current understanding of the underlying mechanisms of the 

illnesses. Furthermore, based on the discriminating patterns, a computer-aided screening 

system can be build that uses machine learning classifiers to distinguish psychiatric 

patients from healthy people. Such system may enable quantitative assessment of mental 

disorders, which would benefit a large number of psychiatric patients. 

In the first part of the dissertation, we present our work on biomarker discovery for 

schizophrenia using MEG data recorded during language processing tasks. MEG captures 

ongoing brain activity from whole-head locations with very high temporal resolution. 

This motivates us to explore spatial-temporal-spectral features in neural oscillatory 

activity. We first identified several Event-Related Desynchronization/Synchronization 

(ERDS) features that showed high discriminating power in schizophrenia classification. 

Then, we proposed two novel Spectral Power Ratio (SPR) feature sets: the Band Power 

Ratio (BPR) and the Window Power Ratio (WPR), which reflect the inter-relationships of 
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spectral power between different frequency bands, and between different time periods of 

neural oscillatory activity. We identified 3 BPR and 3 WPR clusters that showed 

significant between-group difference using rigorous statistical tests. Based on only two 

WPR and one BPR feature combined, over 95% cross validation classification accuracies 

were achieved using three different linear classifiers separately, which demonstrated 

strong discriminating power of the key SPR features. These features may bring new 

insight about the neural mechanisms of language processing impairments in patients with 

schizophrenia. 

In the second part of the dissertation, we explore biomarkers in BPD using resting-

state fMRI data. Considering the high spatial resolution of fMRI, we focus on 

investigating the connectivity and topological structure patterns of the functional brain 

networks. Using graph-theory based analysis and Network-based Statistics (NBS), we 

identified an interconnected subnetwork in 0.03–0.06 Hz frequency band that showed 

significantly lower connectivity strength in patient group. We also identified several 

network topology features that showed increased network cliquishness and altered 

centrality in BPD. These significant network measures were correlated with several 

clinical symptom scores for BPD diagnosis, and showed high predictive power in patient 

vs. control classification using a machine learning classifier. These novel findings may 

add new knowledge to the current understanding of functional brain networks in BPD. 

7.2 Future Work 

The limitation of this research is the small sample size for both schizophrenia (22 

subjects) and BPD (30 subjects) studies. Small sample size leads to low statistical power, 

which not only reduces the probability of detecting a true effect, but also reduces the 

probability that a statistically significant results reflect a true effect [147] . The effect size 

of the identified features might be overestimated due to low statistical power [147]. 

Besides the power issue, small number of subjects does not allow us to assess the relative 

difference between subtypes of the illnesses. The biomarkers are assumed to be valid 
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across all the patients in the study, i.e., assume disease is homogenous. However, this 

assumption does not always hold true due to disease and population heterogeneity. 

Different subsets of patients tend to have different factors that drive the phenotype of 

interest. Furthermore, small sample size does not allow us to design complex 

classification models which might cause data overfitting. Therefore, the findings of this 

study should be viewed as exploratory, and need to be validated and extended on larger 

samples in future research before clinical applications.   

For the schizophrenia study, a future research direction would be to improve the 

spatial resolution of the MEG features. MEG is a non-invasive neuroimaging modality 

that assesses brain activity using sensors outside the head. The signal collected at each 

MEG sensor is a weighted sum of electric activity from multiple brain sources. Therefore, 

the challenge posed by MEG is to determine the location of electric activity within the 

brain from the induced magnetic fields outside the head. Future work will be directed 

towards solving the source localization problem using advanced signal processing 

techniques such as beamforming and independent component analysis (ICA).   

For the BPD study, there are several problems that can be further investigated in 

future works. First, 82 cortical and subcortical regions were chosen as nodes in the 

functional brain networks. Brain networks derived using different parcellation schemes 

may show different connectivity and topological structures. In addition, linear correlation 

coefficients were used to measure the functional connectivity in the network, which could 

only measure the linear relationship between two time series. There are other types of 

connectivity measures like spectrum coherence and mutual information, which could 

account for time lags and measure non-linear correlations. Further studies are needed to 

compare the topology and connectivity of functional brain networks constructed with 

different node sets and connectivity measures.  Lastly, it is important to note that the 

current study considers a single static network structure as an average representation of 

the overall resting-state functional connectivity over 6-minute time duration. Recent 

fMRI research has shown that resting-state functional brain connectivity is not static 
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[151]. Therefore, future work can be directed to exploring the dynamic network topology 

changes across longer time durations. 
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