
Stochastic Tree Search for Highly Coordinated Planning

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Bilal Kartal

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Prof. Stephen J. Guy and Prof. Maria Gini

August, 2016

c© Bilal Kartal 2016

ALL RIGHTS RESERVED

Acknowledgements

I would like to take this opportunity to thank everybody who supported me to earn this

PhD degree at a worldwide well-respected research university.

First and foremost, I would like to thank my advisor Stephen J. Guy. He encouraged

me to perform research on challenging and interesting problems and gave me enough

freedom to explore. He has introduced me to the field of stochastic planning three years

ago which has evolved to my PhD thesis. Several times, Stephen sat down with me and

help debugging my code. I am very lucky to have an advisor so accessible and helpful

enabling me to progress for my thesis work quickly. Secondly, I would like to thank my

co-advisor Maria Gini for her support and advices over the years. She always helped

me to converge my research goals around an overarching theme. I am indebted to both

Stephen and Maria for their countless hours of help for me to grasp both technical

capabilities and responsibilities, more importantly the philosophical aspects of a PhD

degree.

I would like to thank all the faculty members at the University of Minnesota that

served on my committees during my PhD. I would like to thank Prof. Jarvis Haupt,

Prof. Stergios Roumeliotis, and Prof. John Weissman for serving on my written and

oral preliminary exam committees. I would like to thank my advisors, Prof. Victoria

Interrante, and Prof. Jarvis Haupt for serving on my thesis committee.

I would like to thank many friends with whom I wrote research papers, had con-

versations about random and non-random topics, brainstormed for research ideas, and

most importantly survived the stress of PhD. The list of people include everybody in

Stephen’s Applied Motion Laboratory and Maria’s Artificial Intelligence, Robotics, and

Vision Laboratory. Particularly I want to thank Julio, Vikas, Ernesto, Akash, Nick,

Balu, and Baris for all the lunches and social events.

i

Lastly, but most importantly, I would like to thank my wife, my princess, Selda for

her patience and never-ending support. She could earn herself a PhD degree with the

effort she spent on keeping me on the track for this PhD achievement. We are thankful

to have two lovely kids, our daughter Azra and our son Omer Alparslan who brought

so much joy to our lives.

ii

Dedication

Bu doktora tezi ülkem Türkiye Cumhuriyetine adanmıştır. (This PhD thesis is dedicated

to my country, Republic of Turkey.)

iii

Abstract

Coordination plays a key role in efficiently solving multi-agent problems such as

exploration of unknown environments, search and rescue, and surveillance. Planning

in a highly coordinated fashion causes traditional search algorithms to perform poorly

as it creates combinatorial search spaces that renders exploration versus exploitation

dilemma challenging as well. Recently, there has been great improvement in stochastic

planning in large search spaces with sampling based algorithms. One particular algo-

rithm is Monte Carlo Tree Search (MCTS) which is an anytime stochastic planning

algorithm. MCTS employs the well-established multi-armed bandit theory to solve op-

timization problems by asymmetrically sampling actions where it foresees the existence

of an optimal solution.

In this thesis, we propose new algorithms and heuristics in order to address several

challenges arising due to highly coordinated planning in physical and abstract domains.

Our algorithms improve scalability for search in large domains, provides data-driven

evaluation functions to guide the search algorithm better, and enables finite search al-

gorithms to produce infinite length solutions. In the first part of this thesis, we study

two multi-robot planning problems that require high degree of coordination, patrolling

and task allocation. The main challenge for these domains is the large search space.

For patrolling, we propose a novel search technique, the Monte Carlo Tree Search with

Useful Cycles, which can generate optimal cyclic patrol policies with theoretical conver-

gence guarantees. For task allocation, we develop a parallelized MCTS based planner

where branch and bound paradigm is integrated to the search algorithm for admissible

pruning. In the second part of this thesis, we study two coordinated abstract planning

problems within the field of procedural content generation, goal-driven computer nar-

rative generation and Sokoban puzzle level creation. In these problems, virtual agents

coordinate their actions to procedurally create stories and puzzles which have numer-

ous application areas ranging from video games to education. We formulate both story

generation and Sokoban puzzle generation as optimization problems and propose data-

driven heuristic evaluation metrics for efficient coordinated solutions using MCTS.

iv

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Main Contributions . 3

2 Background 6

2.1 Coordinated Multi-Agent Planning . 6

2.2 Exploration versus Exploitation Dilemma in Planning 7

2.3 Monte Carlo Tree Search (MCTS) . 9

3 Multi-Robot Patrolling 12

3.1 Introduction . 12

3.2 Main Results . 13

3.3 Related Work . 13

3.4 Problem Formulation . 14

3.5 Policy Generation . 16

3.6 Monte Carlo Tree Search with Useful Cycles 17

v

3.7 Convergence of MCTS-UC . 19

3.8 Pursuit and Evasion Simulation Experiments 20

3.9 Patrolling Simulation Experiments . 21

3.10 Real Robot Patrolling Experiments . 22

3.10.1 Robot Experiments Results . 23

3.11 Performance Analysis . 24

3.12 Conclusions . 26

4 Multi-Robot Task Allocation 28

4.1 Introduction . 28

4.2 Main Results . 29

4.3 Related Work . 30

4.4 Approach Overview . 31

4.4.1 Problem Formulation . 32

4.4.2 Approach Overview . 33

4.4.3 Policy Evaluation Function . 33

4.5 Application of Branch and Bound . 35

4.6 Parameterized Root Parallelization for MCTS 35

4.7 Experimental Setup and Results . 36

4.7.1 Comparison to other methods . 37

4.7.2 Fixed number of robots . 38

4.7.3 Free number of robots . 41

4.7.4 Analysis . 42

4.8 Conclusions . 42

5 Computer Narrative Generation 44

5.1 Introduction . 44

5.2 Main Results . 44

5.3 Related Work . 45

5.3.1 Narrative Formalization . 45

5.3.2 Narrative Planning . 45

5.3.3 Narrative Learning . 46

5.4 MCTS for Story Generation . 46

vi

5.4.1 Story Domain . 47

5.4.2 Approach Overview . 48

5.4.3 Believability . 49

5.5 Enhancement to the MCTS Algorithm 50

5.5.1 Iterative MCTS Algorithm . 50

5.5.2 Biased MCTS Algorithm . 51

5.5.3 Selection Biasing . 51

5.5.4 Rollout Biasing . 52

5.6 Analysis . 52

5.6.1 Search Method Comparison . 52

5.6.2 Heuristic Comparison . 54

5.6.3 Large Scale Scenarios . 54

5.7 User-Driven Narrative Variety . 55

5.8 Learning Narrative Planning Domains 57

5.8.1 Approach Overview . 57

5.8.2 Prior Knowledge Inference . 62

5.8.3 Action Template Matching . 64

5.8.4 Template Weight Computation 64

5.8.5 Word Probability Update . 64

5.8.6 Believability Inference . 66

5.9 Domain Learning Results . 67

5.10 Story Generation from the Learned Domains 70

5.11 Conclusions . 72

6 Sokoban Puzzle Generation 73

6.1 Introduction . 73

6.2 Main Results . 74

6.3 Background . 74

6.3.1 Sokoban Puzzle . 76

6.4 Anytime Formulation with MCTS . 77

6.4.1 Action set . 77

6.5 Data-Driven Evaluation Function . 79

vii

6.5.1 Estimating Perceived Difficulty 79

6.5.2 Feature Analysis . 80

6.5.3 Level Evaluation . 83

6.6 Generating Level Sets . 84

6.7 Analysis and Discussion . 84

6.8 Conclusions . 87

7 Conclusions and Future Work 88

7.1 Summary of Contributions . 88

7.2 Limitations and Future Work . 89

References 91

viii

List of Tables

3.1 Capture probabilities for a line where |V | = 21. 21

3.2 Capture probabilities in a perimeter with |V | = 15 and n = 3. 21

3.3 Capture probabilities in a grid environment with |V | = 25 and n = 2.

Budget is fixed to 1280K nodes. 22

4.1 Comparison of our MCTS solutions to the best known solutions (found

by 16 different methods) on Solomon Benchmark 40

4.2 Summary of results for MCTS using the same number of robots of the

best known solutions for Solomon benchmark. 41

4.3 The ratio of found solutions to the best known are present for MCTS

with free number of robots within Solomon data set. 41

5.1 Inferred believabilities for actor-action pairs for a subset of actions for

the detective story domain. 66

5.2 Domain knowledge learned for the Children story domain. The words

are listed by the order they converged. 68

5.3 Inferred believabilities for item-action pairs for a subset of actions for the

detective story domain. 68

5.4 Domain knowledge learned for the Detective story domain. The words

are listed by the order they converged. 68

5.5 Domain knowledge learned for the Shakespeare story domain. The words

are listed by the order they converged. 70

6.1 Correlation (Pearson r correlation coefficients) for six features from the

user study. The most correlated features were used for level evaluation

function. 83

ix

6.2 Puzzle Scaling. Average computation time to find puzzles of various

scores and size. While smaller puzzles with few boxes can be found in

a under a second, scaling to larger sizes and box counts requires several

minutes of computation. Results are averaged over 5 runs with with

different random seeds. 85

x

List of Figures

1.1 Overview of my contributions for coordinated planning in physical do-

mains: (Left) The robots employ an optimal patrol policy obtained with

our MCTS-UC approach. (Right) A near-optimal task allocation policy

found by our parallelized approach with an approximation rate of 1.03 to

an optimal solution is shown. 4

1.2 Overview of my contributions for coordinated planning in abstract do-

mains: (Left) The GUI for our story generator is shown which enables

the user-in-the-loop to alter story domain parameters interactively to in-

teract with the planner. (Right) A high scoring 5x5 Sokoban puzzle

generated by our method is shown where the goal is to move the agent

to push boxes (brown squares) so that all goals (yellow discs) are covered

by the boxes. Yellow filled boxes represent covered goals. 5

2.1 Turtlebot robots are in a patrol mission along the corridor following an

optimal solution generated by our MCTS-UC approach. The robots are

programmed by using ROS (Robotic Operating System) framework. We

firstly map the corridor by creating a 2-D occupancy grid by using a

particle filter based SLAM approach. Using this map, we developed a

mission controller for patrolling that is built on top of ROS navigation

and localization stacks. 8

xi

2.2 Overview of Monte Carlo Tree Search algorithm: (a) Selection

step: Starting from the node, UCB1 equation is employed recursively

until a node with explored action is selected. As shown in Figure 2.2a,

nodes A and B are selected. (b) Expansion step: A new node cor-

responding to a unexplored state is added to the search tree as shown

in Figure 2.2b, node C is added to the tree. (c) Random Rollout: A

series of random actions are taken from the expanded node, i.e. node C,

to complete the deterministic but partial strategy as actions correspond-

ing to the nodes A,B, and C are unlikely to be a complete strategy. (d)

Back-propagation step: Full strategy consisting of selected tree node

actions and random rollout is evaluated and the score is back-propagated

from the expanded node to the root, i.e. nodes C, B, A, and the root. . 11

3.1 Examples of patrol graphs used in our simulation experiments for n

robots:(a) A circular scenario where |V | = 8 and n = 2. (b) A line

scenario where |V | = 4 and n = 1. (c) A grid scenario where |V | = 25

and n = 1. (d) A grid scenario with obstacles where |V | = 19 and n = 2. 13

3.2 Trajectories of 2 robots on a perimeter, |V | = 8. Both robots start at the

same vertex and they adjust their placements to equidistant vertices and

patrol in the same direction continuously. V7 and V0 are adjacent vertices. 15

3.3 Overview of Monte Carlo Tree Search with Useful Cycles: (a) During the

back-propagation of node B, node A is found to have the same state. (b)

A new cyclic node C is created to capture the cycle. (c) While node B is

evaluated with standard rollouts, node C is evaluated cyclically. 18

3.4 The created map of the corridor in Keller Hall 2nd floor at University

of Minnesota is shown. We employed Gmapping ROS package based

on a particle filter approach. The created map is represented as a 2D

occupancy grid. Robots compute global plans based on this map for

navigation while reacting to real-time collisions by still sensing with a

local planner. 22

xii

3.5 Robot trajectories are shown with different colors. The robots start from

the the lab, i.e. the square region inwards from the corridors. We em-

ployed a uniform intrusion model for the whole map. All the robots cover

the whole the map by dispersing to equidistant locations. 24

3.6 Robot trajectories are shown with different colors. The robots start from

the the lab, i.e. the square region inwards from the corridors. We assigned

a higher risk of intrusion for the lab and one robot (shown with green

trajectory) mostly stayed in the lab while covering very small portion of

the corridor from time to time. 25

3.7 Capture probabilities of Iterative MCTS-UC as compared to standard

MCTS-UC (x-axis is log-scaled). 26

4.1 A near-optimal solution generated by MCTS for C101 test scenario in

Solomon benchmark. This solution has an approximation rate of 1.03 to

an optimal one. Ri, i ∈ {0, 1, 2, . . . , 9} indicate the robots. 29

4.2 Smaller is better. Embedding branch and bound in the MCTS algorithm

improves the overall distance ratio to the best known solutions 11% across

all instances in the Solomon data set. 37

4.3 Task completion rates versus search time with MCTS for problems from

the Solomon dataset. On average, MCTS achieves 50% task completion

rate in 5 minutes with the help of random rollout extensions for allocation

policies. With more planning time, we achieve up to 98% completion rate

over all categories. 39

5.1 Comparison of Search Methods Our proposed approach using Monte

Carlo Tree Search (MCTS) outperforms other search techniques such as

Breadth-First Search, Depth-First Search, and Best-First Search. (a)

Even for a small search budget, MCTS outperforms other methods (b)

The gains improve dramatically for larger budgets. 53

5.2 Low Scoring Story (Score: 0.016) . 53

5.3 High Scoring Story (Score: 0.68) . 54

xiii

5.4 Effect of Heuristics (a) For small search budgets (<500K nodes ex-

plored) the search heuristics tested had only a moderate effect on perfor-

mance. (b) For large search budgets, the advantage of the rollout biasing

heuristic can be clearly seen. Additionally, while the selection bias heuris-

tic helps with small budgets it tends to get stuck in local minima. . . . 55

5.5 Iterative vs Non-iterative For very large story domains, MCTS can

run out of memory trying to store the entire search tree. In the 20-

person domain, the non-iterative approach could only explore trees up to

5 Million nodes before failing. Our proposed iterative approach uses tree

pruning to reduce memory and can explore much large trees (producing

higher value narratives). 56

5.6 Aladdin’s Magic Story Generator for Interactive Narrative Generation.

Users can modify believabilities of various actions, set story goals, select

a planning strategy, and choose a planning budget. As the generation

process unfolds, the best story found so far is displayed along with a

graph of the story evaluation score progress. 58

5.7 Users can set believability of actions to generate diversity in generated

stories. 59

5.8 Story generated from believability setup shown in Figure 5.7(a). In this

configuration, the believability of “citizen arrest” action is set high, re-

sulting Bob arresting the murderer. 59

5.9 Story generated from believability setup shown in Figure 5.7(b). In this

configuration, the Inspector Lestrade arrests the murder due to low be-

lievability of “citizen arrest” action. 60

5.10 An example subgraph of ConceptNet is presented. Words are related to

each other by a set of predefined relations which provides a rich informa-

tion setting. 63

5.11 The evolution of category probability distribution for a selected set of

words is presented. Blue lines refer to Actors, red to Items, and green to

Places. 63

5.12 Classification and misclassification(dashed lines) accuracies are presented

for categories of actors, items, and places. 69

xiv

5.13 A low quality story generated in a second from the Fairytales story do-

main with inferred domain knowledge. 70

5.14 A converged high quality story generated in less than a minute from the

Fairytales story domain with inferred domain knowledge. 71

5.15 A low quality story generated in a second from the Detective story domain

with inferred domain knowledge. 71

5.16 A converged high quality story generated in less than a minute from the

Detective story domain with inferred domain knowledge. 71

6.1 A high scoring 5x5 Sokoban puzzle generated by our method. The goal is

to move the agent to push boxes (brown squares) so that all goals (yellow

discs) are covered by the boxes. Yellow filled boxes represent covered

goals. Obstacles (gray squares) block both agent and box movement . . 75

6.2 A generated Sokoban puzzle with solution (score = 0.31). 75

6.3 Our user study application, which presents pairs of puzzles to subjects

and asks them to identify the one that is more challenging. Subjects were

able to play each level presented as much or as little as desired before

making a decision. 79

6.4 Generating Level Sets. (Top) The evolution of the best score from a

single run of MCTS. (Bottom) Several levels generated from the same

run. Later levels have higher score, and are therefore predicted to be

more difficult. 81

6.5 The evaluation score of the puzzles in the generated level set were well

correlated with perceived difficulty (r2 = .91). 85

6.6 Procedurally generated puzzles of varying sizes 86

xv

Chapter 1

Introduction

Many real-world problems have such structures, e.g. firefighting, logistics, and border

patrolling where decision makers do not act independently, but they need to consider

every possible decision the others can make in order to find efficient solutions. The coor-

dination aspect of these problems create very large search spaces rendering traditional

search algorithms ineffective. Planning algorithms need to efficiently localize impor-

tant parts of this large search space to find reasonable solutions quickly. This process

yields another challenge, i.e. the exploration versus exploitation dilemma where the

planner needs to make decisions given uncertain quality of actions at every branching

level. Recently, there has been great improvement in large-scale planning with sampling

based algorithms where the quality of actions is measured by sampling towards future

states. One example is Monte Carlo Tree Search [1, 2], an anytime stochastic planning

algorithm which has been shown to perform well for large planning domains.

MCTS employs the theoretically well-grounded machine learning approach of Upper

Confidence Bounds to addressing the exploration versus exploitation dilemma. Even

though MCTS has been very successful in the game of Go [2] and several other do-

mains [1], there are several challenges in applying it to highly coordinated physical and

abstract planning domains. For example, in some planning domains, solutions are in

the form of policies that are infinite length such as multi-robot patrolling and surveil-

lance. However, existing search algorithms do not support infinite policy generation

from finite search. Another challenge is that many planning domains such as those in

1

2

procedural content generation has diverse action sets where finding well-suited evalu-

ation functions is non-trivial. In this thesis, we present our contributions addressing

these challenges in different application areas within the field of multi-robot planning

and procedural content generation by adapting and extending sampling based stochastic

search techniques.

In the first part of this thesis, we propose search based approaches for two NP-

hard multi-robot coordination problems, i.e. the multi-robot patrolling problem and

multi-robot task allocation problem with time windows and capacity constraints. The

patrolling problem investigates how to generate continuous patrol regions strategically

to prevent intrusions and it has been an active research problem within the last decade,

especially as more and more autonomous robots are available for surveillance tasks

at much lower costs. Our approach generates cyclic continuous patrolling strategies

optimally on perimeter patrolling, and near-optimally on arbitrary environments. We

deploy our patrol algorithms on real robots and perform indoor experiments. A more

general multi-robot planning problem that we study is the multi-robot the multi-robot

task allocation problem with time windows and capacity constraints. This problem has

many application areas such as surveillance and logistics where robot team must be

allocated to tasks with spatial and temporal constraints. Our search-based approach,

which also use branch and bound paradigm, quickly generates high quality solutions on

complex problem scenarios and generalizes well over varying set of scenarios.

In the second part of this thesis, we apply MCTS to two problems within the field of

procedural content generation, i.e. computer narrative generation and Sokoban puzzle

generation. Narrative generation problem investigates how to automatically create sto-

ries in a coherent fashion. Application areas of computerized narrative generation are

numerous such as automating text scripts in computer games, generating military train-

ing scenarios, possible uses in education, and summary generation for task-executing

robots. For narrative generation, we propose an MCTS based planner along with new

heuristics by formulating the multi-agent narrative generation problem as an optimiza-

tion problem. Our approach aims to find plausible story events and create story plans

accomplishing predefined goals where story domains are hand-crafted. However, one

major bottleneck for the computerized narrative generation community is the manual

authoring needed to define story domains consisting of actors, items, places, and the

3

believability of certain actors performing certain actions. To address this challenge,

we also propose a data-driven domain inference technique that can infer these domain

parameters by employing semantic knowledge networks and existing story books. Many

video games have puzzles either at their core or as a mini-game. Automatically gener-

ating these puzzles can improve game design phase, and keep games varied and more

exciting. Secondly, we adapt MCTS for puzzle generation in a novel way where the

puzzles are generated through simulated game play. This novel approach guarantees

solvability in all generated puzzles.

1.1 Thesis Statement

My thesis will show that sampling-based stochastic tree search techniques can be adapted

to efficiently find approximate solutions to highly coordinated problems that arise in a

variety of domains. The resulting approaches are scalable, support data-driven evalua-

tion functions, and can generate infinite length policies as needed for applications such

as multi-robot planning and procedural content generation. These stochastic approaches

can be successfully applied to domains with large state spaces, and their sampling-based

nature allows flexibility in the details of the problem formulation and supports quick

feedback for user-in-the-loop interaction.

1.2 Main Contributions

Coordination is important for planning problems as it yields efficient results. In this

dissertation, we study planning problems in physical and abstract domains as shown in

Figures 1.1 and 1.2. Here we briefly describe the characteristics of these problems.

• Multi-robot patrolling: For this problem, we seek to find continuous patrol

policies for the robots to cover the patrolling areas or perimeters. However, since

patrolling problem requires infinitely long patrol policies, standard search algo-

rithms including MCTS is not suitable. We propose a stochastic search technique

which augments the search with cyclic nodes that compactly represent continuous

policies without breaking the convergence properties of MCTS. Robots must co-

ordinate their actions to minimize the risk of intrusion. For state representation,

4

Figure 1.1: Overview of my contributions for coordinated planning in physical domains:
(Left) The robots employ an optimal patrol policy obtained with our MCTS-UC ap-
proach. (Right) A near-optimal task allocation policy found by our parallelized ap-
proach with an approximation rate of 1.03 to an optimal solution is shown.

each tree node keeps robots’ locations, and each transitioning action corresponds

to robots moving to adjacent vertices on a graph environment. We will discuss

this contribution in Chapter 3. Portions of this work have been published in [3].

• Multi-robot task allocation: For this problem, each robot must be allocated

to a disjoint subset of tasks where each task has spatial and temporal constraints

along with capacity and duration constraints. In a highly coordinated fashion,

robots must share the tasks, and the overall distance cost of the robot team must

be minimized. Tree structure is identical to the aforementioned one for patrolling.

We will discuss this contribution in Chapter 4. Portions of this work have been

published in [4, 5].

• Multi-agent story generation: In this problem, we firstly formalize narra-

tive generation problem as a goal-driven multi-agent optimization problem where

agents coordinate their actions to generate a story that satisfies the predefined

story goals. Given that application areas include games and virtual reality, this

problem necessitates efficient solutions with lower run-times which allows the ap-

proach to generate a variety of content quickly. We adapt MCTS so that the user-

in-the-loop can interact with the planner by changing our proposed data-driven

believability heuristic without modifying the MCTS planner. We will discuss this

5

Figure 1.2: Overview of my contributions for coordinated planning in abstract domains:
(Left) The GUI for our story generator is shown which enables the user-in-the-loop to
alter story domain parameters interactively to interact with the planner. (Right) A
high scoring 5x5 Sokoban puzzle generated by our method is shown where the goal is
to move the agent to push boxes (brown squares) so that all goals (yellow discs) are
covered by the boxes. Yellow filled boxes represent covered goals.

contribution in Chapter 5. Portions of this work have been published in [6, 7].

• Sokoban puzzle generation: In this problem, we propose a Sokoban puzzle

generator with a novel concept that guarantees solvability in all puzzles without

the computationally expensive step of solving the puzzle. In our planner two

agents coordinate their actions to generate a non-trivial puzzle where the first

agent initialize the puzzle while the second one intelligently play it to finalize the

board. We perform user-studies and infer puzzle difficulty metrics with a data-

driven approach to evaluate puzzles. Our approach proposes a search tree struc-

ture that compactly combines simulated game play into level generation search.

Since MCTS is anytime, we can save intermediate puzzles which lets us save tens

of puzzles in a single run. We will discuss this contribution in Chapter 6. Portions

of this work have been published in [8, 9].

Chapter 2

Background

In this section, we present background information on the problems that are studied in

this dissertation. As MCTS algorithm is at the core of my thesis, we will conclude this

section with a detailed description of it.

2.1 Coordinated Multi-Agent Planning

Coordination can be defined as a common protocol that intelligent agents follow by

considering each other’s actions while decision-making and acting. Coordination plays

a crucial role in effectively solving problems involving multiple agents, i.e. people and/or

robots, where tasks can be divided into sub-tasks and shared among the agents such

as pick-up and delivery problems. There are also scenarios where an individual task

requires multiple agents simultaneously such as multi-robot box pushing.

Coordinated multi-agent planning is inherently a difficult problem due to the com-

binatorial explosion of possible actions [10, 11, 12]. For example, let’s consider a simple

planning setting where two agents Alice and Bob might move around different places.

Their joint-space actions will create an exponential search space. At any decision level,

joint space representation will include all possible permutations of places that Alice and

Bob can go. The problem is further amplified by the number of decision levels if a

specific path is to be generated for Alice and Bob while they arrive their goals. Agents

coordinate their behavior to accomplish a goal, and depending on the problem, some

optimization function must be developed which will direct the agents to accomplish

6

7

their goal. We study different variants of coordinated multi-robot planning problems,

i.e. multi-robot patrolling, and multi-robot task allocation problems. These problems

have many application areas such as surveillance and logistics. Although explicit coordi-

nation requirement for these problems make them computationally harder due to large

state spaces, sparse sampling based stochastic search techniques such as Monte Carlo

Tree Search (MCTS) have been shown to perform well in problems with similar search

spaces. Most notably, an MCTS-based computer Go player outperformed top human

professional players on a 9x9 board [13] and very recently on a 19x19 full board [2] where

Go game is currently one of the most challenging problems due to enormous branching

factors AI community is working on.

2.2 Exploration versus Exploitation Dilemma in Planning

Multi-armed bandit problem [14] investigates how a gambler can maximize his cumu-

lative rewards from a row of slot machines where each slot machine has a fixed but

unknown reward distributions. The gambler has to find an ordering of machines to play

to maximize his gain. However, each time a slot is used, the reward is drawn from its

initially unknown distribution. This is a challenging task since the gambler both needs

to learn the reward distribution and maximize his gain during the learning phase. Each

time the gambler chooses a slot machine (trying an action in our setting), he records

the reward and he can maintain statistics, e.g. average reward and how many times

the slot machines is tried, about the slot machine to estimate its reward distribution.

Exploration vs. exploitation dilemma is the tradeoff between choosing the best looking

slot machine (exploiting) and trying sub-optimal looking (might be an optimal one)

or new slot machines (exploring). Bandit theory has been employed in many domains

such as signal jamming [15], computer vision [16], and medical applications [17]. Bandit

theory provides a theoretical foundation for the exploration vs. exploitation dilemma.

One of the machine learning techniques to address this dilemma is upper confidence

bounds (UCB1) [18] as shown in Eqn. 2.1.

When multi-robot planing and procedural content generation problems are formu-

lated as tree search problems, each level of the tree corresponds to a multi-armed bandit

8

Figure 2.1: Turtlebot robots are in a patrol mission along the corridor following an
optimal solution generated by our MCTS-UC approach. The robots are programmed
by using ROS (Robotic Operating System) framework. We firstly map the corridor by
creating a 2-D occupancy grid by using a particle filter based SLAM approach. Using
this map, we developed a mission controller for patrolling that is built on top of ROS
navigation and localization stacks.

9

problem where the exploration versus exploitation dilemma arises from the possible ac-

tions in the planning domain. UCB1 guarantees convergence to an optimal solution

for finite horizon planning problems given infinite computation power and memory.

Employing UCB1 method for searching tree structures is referred to as UCT (Upper

Confidence bounds applied to Trees) [19] which also refers to MCTS indeed. In UCT

approach, we need to devise an evaluation function in order to measure the quality of

actions based on the problem domain. The evaluation function must be in the range of

0 and 1 for asymptotic convergence guarantees.

f(c) = W (πc) + C

√
lnnv
cv

(2.1)

where W (.) denotes the average evaluation score obtained and let π keeps the policy

(an ordered set of coordinated actions from the initial state), πc is the parent’s policy

so far including node c, nv is the total number of times the parent node n has been

visited, and cv is the total number of times that the action transitioning node n to node

c has been previously tried. C is the constant that determines the exploration versus

exploration tradeoff. The value of C must be
√

2 for theoretical convergence guarantees,

but it can be tuned depending on the problem scenario.

2.3 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is a stochastic search method that has been remark-

ably successful for large-scale planning problems. The key mechanism for MCTS is

that it expands the most promising areas in the large search space with uneven tree

growth. MCTS has been applied for a variety of challenging planning problems. Monte

Carlo Tree Search is a best first search algorithm that has gained traction after its

breakthrough performance in the game Go on a smaller game board [13]. Indeed, very

recently an MCTS based distributed approach remarkably beat a top human profes-

sional on a full size Go board [2]. Other than game AI [20, 21, 22, 23, 24, 25, 26, 27, 28],

MCTS has been employed for a variety of domains such as planning for Physical-TSP

problem [29], single vehicle transportation planning [30], computer vision [31, 32], game

level generation [33] and large POMDPs [34]. A recent work experimented different

strategies for final strategy construction is presented in [35]. The authors [36] analyzed

10

different types of evaluation functions for MCTS and show that the success of the al-

gorithm depends on the smoothness of the domain. The authors in [37] proposed a

method to improve performance by better accounting for transpositions. We refer the

reader to the excellent survey on MCTS for further information [1].

Overall MCTS algorithm consists of four main operations, i.e. selection, expansion,

rollout, and back-propagation as shown in Alg. 1 where ω represents full strategy in-

cluding random rollout actions and R(ω) represents the evaluation score, i.e. quality,

of the full strategy. In this algorithm, budget is the number of simulations which needs

to be set to lower values for interactive applications, and but can be set higher given

memory and time constraints. We present MCTS steps in in Figure 2.2 by describing

each step in the algorithm in detail. After back-propagation steps, the selection step is

started from the root node again. This way, the tree can grow in an uneven manner,

biased towards good policies. After a fixed number iterations, we construct the final

strategy by walking down the tree from the root node by recursively selecting action sets

with highest visit counts until hitting a non-parent node which is observed to perform

more robust. For completely deterministic problems, we can also keep the best policy

found so far after rollouts, and use the best one after search is finished or halted.

MCTS is an anytime algorithm, i.e. it returns the best found solution if the search

algorithm is halted at any time. As MCTS is a sampling based technique, the algorithm

must be given the environment dynamics and the protocols defining how the agents will

interact with both environment and each other. The root of the tree keeps the state

information about the agents and their defined properties. The edges correspond to

transitioning actions which can modify both agent and environment properties, and

each node keeps updated states.

Algorithm 1: MCTS Algorithm

Input : Budget
Output: Policy
while Budget > 0 do

Node ← ucbSelection(root) ;
ω ← rollout(node);
backpropagate(R(ω)) ;
Budget = Budget−1 ;

end

11

Root

A

B

(a)

Root

A

B

C

(b)

Rollout

Root

A

B

C

(c)

Root

A

B

C

(d)

Figure 2.2: Overview of Monte Carlo Tree Search algorithm:
(a) Selection step: Starting from the node, UCB1 equation is employed recursively
until a node with explored action is selected. As shown in Figure 2.2a, nodes A and B
are selected.
(b) Expansion step: A new node corresponding to a unexplored state is added to the
search tree as shown in Figure 2.2b, node C is added to the tree.
(c) Random Rollout: A series of random actions are taken from the expanded node,
i.e. node C, to complete the deterministic but partial strategy as actions corresponding
to the nodes A,B, and C are unlikely to be a complete strategy.
(d) Back-propagation step: Full strategy consisting of selected tree node actions and
random rollout is evaluated and the score is back-propagated from the expanded node
to the root, i.e. nodes C, B, A, and the root.

Chapter 3

Multi-Robot Patrolling

3.1 Introduction

Robots are nowadays commonly used to perform critical tasks, such as search and

rescue operations [38], intelligent farming [39], mine sweeping and environmental mon-

itoring [40, 41, 42]. The robots employ sensing capabilities for both localization and

monitoring purposes [43]. In such tasks, robots have to observe or sweep an environ-

ment by solving a coverage planning problem [44, 45, 46]. A variant of this problem

is the multi-robot patrolling problem, in which multiple robots must coordinate their

motions in order to minimize the probability of intrusion. Unlike coverage, patrolling

needs to be performed continuously. Efficient patrolling methods can be used in many

settings such as country borders and smaller areas in cities to increase the safety of

citizens, or making sure that everywhere in large environments is sweeped for cleaning

purposes [47].

The multi-robot patrolling problem has been an active research area within the last

decade, especially as more and more autonomous robots are available for surveillance

tasks at low costs. This problem is NP-hard in its general sense [48]. Therefore, sev-

eral heuristics and approximation algorithms have been propose, with efficient solutions

found for simple cases. We adapt Monte Carlo Tree Search (MCTS) algorithm [19]

to generate patrolling policies across arbitrary environments. MCTS can successfully

search in large domains by using random sampling. The algorithm is anytime and con-

verges to optimal solutions given enough time and memory for finite-horizon problems.

12

13

(a) (b) (c) (d)

Figure 3.1: Examples of patrol graphs used in our simulation experiments for n
robots:(a) A circular scenario where |V | = 8 and n = 2. (b) A line scenario where
|V | = 4 and n = 1. (c) A grid scenario where |V | = 25 and n = 1. (d) A grid scenario
with obstacles where |V | = 19 and n = 2.

3.2 Main Results

One of the main challenges to adapt MCTS to the patrolling domain is the ability to

generate infinite length policies; the policies generated by MCTS are valid for a small

time horizon while patrolling task has to be performed continuously. We address this

issue by introducing Monte Carlo Tree Search with Useful Cycles, MCTS-UC, which

augments standard MCTS with cyclic nodes to return infinite, cyclic policies.

We firstly propose the use of stochastic tree search for patrolling policy genera-

tion. Second, we show how useful cycles can be incorporated into MCTS to efficiently

generate continuous cyclic policies without losing convergence guarantees. Finally, we

experimentally show the applicability of MCTS-UC across a variety of scenarios. Cou-

pled with a pruning heuristic, our approach can generate policies for intractably large

environments.

3.3 Related Work

Multi-robot patrolling problem is an optimization based problem where multiple robots

must cover and patrol an environment continuously in a coordinated fashion to prevent

intrusions. It is a variant of coverage problems [47, 49, 50], and it has been studied

since at least the work of [51] and a diversity of patrolling strategies was theoretically

analyzed in the following years [48, 52, 53]. Patrolling strategies for a team of robots

can be computed either in a centralized manner where a central entity computes the

14

policy for all the robots [54], or in a decentralized manner [55]. In general, centralized

approaches lead to more optimal policies than its decentralized counterparts, but are

more computationally demanding as the policy space is exponential with respect to the

number of robots in the environment. We plan over the joint patroller space and convert

the resulting centralized policy into individual policies that each of the robots should

follow.

A diversity of strategies for patrollers have been propose to account for static and

stochastic intruders [56, 57, 58], including multiple intruders performing coordinated

attacks [59]. Decentralized approaches are present in [60, 61, 62], and a temporal-logic

based approach for persistent surveillance is present in [63]. Previous work has also

focused on extending the longevity of the patrolling task by replacing robots based on

their battery life [64]. Patrolling problem has also been extensively studied in a game

theoretic context where interactions between patrollers and intruders are modeled as a

leader-follower game [54, 65]. In a recent work [66], a trust model has been propose

such that poorly performing patrollers are identified and patrolling tasks are reassigned

dynamically. The authors in [67] propose an approach minimizing the communication

latency for the patrolling task. We refer the reader to the survey in [68] for more

information about the patrolling problem.

3.4 Problem Formulation

In our problem setting, we are given n patroller robots, r = {r1, . . . , rn}, that have

to periodically cover an environment to guard it from intrusions. For simplicity, we

model the environment as an undirected graph G = (V,E), where the vertices V denote

the patrol regions and the edges E represent the connectivity between these regions as

shown in Figure 3.1. We assume that time can be discretized, and elimination of an

intruder is instantaneous. Initially, at t = 0, each robot is placed at vertex 0. At each

discrete time step, the possible actions for a robot are to move to a neighbor vertex in G

or to stay still. Multiple robots are allowed to occupy the same vertex simultaneously.

We assume that an intruder q enters the environment at a specified time te, and it

takes tp time steps to complete a successful attack. As typically assumed in the literature

(e.g. [57]), the intruder has the same motion model as the patroller robots, but this can

15

0	

1	

2	

3	

4	

5	

6	

7	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Vi
si
te
d	
Ve

rt
ex
	

Time	 	 step	

Robot	 1	

Robot	 2	

Figure 3.2: Trajectories of 2 robots on a perimeter, |V | = 8. Both robots start at the
same vertex and they adjust their placements to equidistant vertices and patrol in the
same direction continuously. V7 and V0 are adjacent vertices.

also be altered to different models easily. We further assume that the intruder can enter

the environment from any vertex in V . Two intruder models are considered:

1. Dynamic: The intruder enters at a random vertex at the same time as the patroller

robots, te = 0, and performs a random walk exploring the environment.

2. Stationary: The intruder enters at a random time te ≥ 0, at a random vertex and

spends tp time-steps at the location completing the intrusion.

Given a patroller team r and a single intruder q following one of the above models,

our goal is to find a joint policy π for the robots that maximizes the likelihood of

capturing the intruder before the attack is successful. We evaluate any policy π using

the following function:

R(π) =

1 if ∃ri ∈ r s.t. ri(t) = q(t) and t ≤ te + tp

0 otherwise
(3.1)

where ri(t) denotes the location of ri at time t and q(t) is the intruder’s location at t.

From Eq. 3.1, we assume a robot can only sense an intruder on the vertices of G

16

at discrete time steps. We assumed a discrete sensing model since continuous sensing

causes more power usage and noisier observations that might be caused by robot motor

noise or camera image blur.

Importantly, this assumption makes the problem more challenging in the presence

of dynamic intruders; if the intruder moves past a patroller while it crosses an edge, the

intruder will not be detected.

3.5 Policy Generation

In this section, we explain how the MCTS approach can be employed to the multi-robot

patrolling problem in order to generate near-optimal finite length trajectories for the

patrolling robots.

An overview of the MCTS is present in Algorithm 1. The algorithm maintains a

tree structure where each node represents the complete state of the world, st, consisting

of the locations of the robots at a certain time t, with t also referring to the depth

of the node in the tree. The root of the tree contains the initial state of the world

that corresponds to the initial locations of robots. Each link in the tree represents

one possible joint action set consisting of n actions, one per each robot. The MCTS

algorithm proceeds by repeatedly adding one node at a time to the current tree until a

given budget (e.g., number of simulations) is met. The newly added node represents the

resulting world state after applying the corresponding joint action to the robot team.

For each potential joint action set, we keep track of how many times we have tried it,

and what its average evaluation score is.

MCTS generates policies through uniform random rollouts. A simulated policy ω

consists of a sequence of joint action sets:

ω = {a1, a2, . . . az, ξ1, ξ2, . . . ξx}, (3.2)

where each ai refers to deterministic action sets obtained from the existing tree and

each ξi refers to uniform random action sets. The task of random rollouts is to provide

a probabilistic evaluation of incomplete deterministic policies. After evaluating ω using

Eq. 3.1, the resulting R(ω) is used to update the average evaluation scores from the

leaf node to the root node while incrementing their visit counts, in a process known as

17

back-propagation.

3.6 Monte Carlo Tree Search with Useful Cycles

Standard MCTS is limited to produce a finite length policy for finite search budgets as

the search tree can only grow to a fixed depth. However, the patrolling problem requires

the generation of infinite policies. To address this issue, we propose an MCTS variant,

Monte Carlo Tree Search with Useful Cycles (MCTS-UC) that generates continuous

cyclic policies for the patroller team. The notion of useful cycles has been previously

studied in [69] to improve path quality on probabilistic roadmaps. Following their work,

we define a useful cycle as a set of patrolling paths that starts and ends in the same

vertex set for all robots. Therefore, we exploit the spatial similarity of visited vertices

of patrollers, i.e. whether the same set of vertices are visited between any two states or

not, to determine a useful cycle.

In terms of implementation, MCTS-UC creates artificial cyclic nodes which represent

continuous policies. These nodes will be part of the tree search during exploration-

exploitation. Our MCTS-UC algorithm is summarized in Algorithms 2-3.

Algorithm 2: Rollout with cylic action sets

Input: leafNode
if leafNode == CyclicArm then

PerformCyclicActions() ;
else

RandomRollout();
end

To find a useful cycle and generate a cyclic node, our approach first needs to deter-

mine the spatial similarity of robot locations among different states. We assume that

two states are equivalent if the same set of vertices are occupied by the patrollers in both

states. We check for equivalent states during back-propagation step (see Algorithm 3).

Consider, for example, two equivalent nodes A and B as shown in Fig. 3.3a. Given

these equivalent nodes, a cyclic node, node C, is created as a sibling arm to node B

and its cyclic parent node is set to node A as depicted in Fig. 3.3b. Node C will be

part of UCB1 selection phase just as any ordinary arm. When node B is selected after

18

A

B

(a)

A

B C

(b)

Rollout

A

B C

(c)

Figure 3.3: Overview of Monte Carlo Tree Search with Useful Cycles: (a) During the
back-propagation of node B, node A is found to have the same state. (b) A new cyclic
node C is created to capture the cycle. (c) While node B is evaluated with standard
rollouts, node C is evaluated cyclically.

19

Algorithm 3: Back-propagation with cyclic arm creation

Input: leafNode
tempNode ← leafNode.getParent();
while tempNode ! = root do

if tempNode == leafNode then
leafNode.CreateCyclicSiblingArm();

end
tempNode ← tempNode.getParent();
UpdateVisitCounts();
UpdateWinrates();

end

creating node C, we do a roll-out and expand the tree as in standard MCTS. However,

if the cyclic node C is selected in further iterations of MCTS-UC, our algorithm creates

a cyclic action buffer by pushing actions one by one while walking up the tree from itself

to its cyclic parent (i.e. node A) and continuously performs these actions (Fig. 3.3c),

evaluates the cyclic policy and back-propagates the policy score through the non-cyclic

parent nodes as in standard MCTS. We should also note that both nodes A and B

storing the equivalent states are kept unchanged to maintain the integrity of MCTS

convergence conditions.

Our approach, MCTS-UC, maintains convergence properties of MCTS for finite

horizon problems as we can obtain a cyclic policy in a bounded patrol environment.

We should note that the UCB1 equation (Eq. 2.1) guarantees that exploration always

continues, and this leads to asymptotic convergence. However, we should state that as

MCTS-UC has additional cyclic nodes at different levels of the tree, the required time

to converge to the optimal policy might increase. For instance, if cyclic nodes close to

the root node lead to sub-optimal but much better policies than that of sibling nodes,

we might end up having longer convergence time.

3.7 Convergence of MCTS-UC

MCTS-UC shares the convergence properties of the original MCTS for finite horizon

problems. On one hand, the UCB equation (Eq. 2.1) guarantees that exploration al-

ways continues. On the other hand, the artificially added cyclic arms’ rewards are also

20

identically and independently distributed by Hoeffdings inequality as cyclic nodes are

also evaluated for the same probabilistic intruder model. Similar to MCTS, the con-

vergence analysis of MCTS-UC is also based on non-stationary arms having rewards

sequences satisfying two drift conditions: 1) The expected average value of the arms

has to converge to their true values Xin = 1
n

∑n
k=1Xik, where Xik refers to the reward

of i’th arm and k’th trial. From our policy evaluation function (Eq. 3.1) we know that

0 ≤ Xik ≤ 1 holds. Since we employ cyclic action sets repeatedly when cyclic nodes are

selected, cyclic arms converge to their true values faster, empirically, as cyclic action

sets lead to the coverage of the same regions repeatedly. 2) The tail distribution criteria

should also be satisfied [19]. In MCTS-US this is true, since all cyclic and non-cyclic

arms’ rewards are identically and independently distributed.

We should note that as MCTS-UC has additional cyclic nodes at different levels

of the tree, the required time to converge to the optimal policy might increase. For

instance, if cyclic nodes close to the root node lead to sub-optimal but much better

policies than that of sibling nodes, the search algorithm might end up having longer

convergence time.

3.8 Pursuit and Evasion Simulation Experiments

To demonstrate the suitability of standard MCTS in policy generation, we apply it

to the pursuit-evasion problem described by Noori et al. [70]. Here the task is to

find an optimal pursuing strategy on a line (see Fig. 3.1(b)) for a modified random

walker evader that always moves either left or right, where te = 0 and tp varies. The

authors employed an MDP analysis to show that their results are near optimal. For this

problem, MCTS generates policies with competitive capture probabilities for a budget

of 1M as shown in Table 3.1. The resulting policies are approximately equal to the

scores reported in the MDP analysis across all the authors’ scenarios, slightly over-

performing for smaller policy lengths and slightly under-performing for larger policy

lengths. This near-optimality motivated our extensions to MCTS for the patrolling

domain as explained in the following section.

21

tp = 9 tp = 14 tp = 19 tp = 24 tp = 29

Noori et al. [70] 0.297 0.429 0.564 0.710 0.803
MCTS 0.301 0.432 0.569 0.692 0.740

Table 3.1: Capture probabilities for a line where |V | = 21.

3.9 Patrolling Simulation Experiments

We evaluated our MCTS-UC algorithm by comparing it to standard MCTS in terms of

capture probability in three different environments: a line, a perimeter, and a 2D grid

as shown in Fig. 3.1. We considered the two types of intruder strategies described in

Section 3.4.

As previously discussed, infinite length policies are required in the multi-robot pa-

trolling domain. Unlike standard MCTS, our MCTS-UC approach can successfully gen-

erate such policies. Table 3.2 shows the capture probabilities of a stationary intruder

on a perimeter (Fig. 3.1(a)), where the number of vertices |V | is 15 and the number of

patrollers n is 3. As it can be seen in Table 3.2, for large simulation budgets MCTS-UC

leads to policies with higher capture probabilities. However, for smaller budgets up to

500K, MCTS is slightly better than MCTS-UC. The reason behind this is that MCTS-

UC invests some of its exploration budget on creating cyclic nodes, which pays off when

a larger budget is available (≥ 3M simulations), converging to an optimal cyclic policy

given a budget of 5M simulations. In contrast, MCTS produces short-term policies for

the same budget sizes, and is intractable after 5M explored nodes.

In a grid environment with n = 2 and a dynamic intruder (Fig. 3.1(c)) MCTS-

UC outperforms MCTS for varying tp’s as shown in Table 3.3. Note that the capture

probability never reaches 1, as intruders that cross paths with patrollers (in edges) are

not captured. In the same scenario with n = 1 against a stationary intruder, MCTS-

UC creates policies with capture probability of 0.81, and 1 for tp = 25, and tp = 50

respectively.

Budget 1K 10K 500K 3M 5M 6M

MCTS 0.1778 0.231 0.2698 0.3012 0.3125 -
MCTS-UC 0.1612 0.171 0.255 0.3217 1 1

Table 3.2: Capture probabilities in a perimeter with |V | = 15 and n = 3.

22

tp = 30 tp = 40 tp = 50

MCTS 0.532 0.551 0.592
MCTS-UC 0.626 0.774 0.829

Table 3.3: Capture probabilities in a grid environment with |V | = 25 and n = 2. Budget
is fixed to 1280K nodes.

Figure 3.4: The created map of the corridor in Keller Hall 2nd floor at University of
Minnesota is shown. We employed Gmapping ROS package based on a particle filter
approach. The created map is represented as a 2D occupancy grid. Robots compute
global plans based on this map for navigation while reacting to real-time collisions by
still sensing with a local planner.

3.10 Real Robot Patrolling Experiments

We performed experiments with multiple Turtlebot [71] robots by developing a ROS

(Robotic Operating System) [72] based controller for the patrolling mission. The exper-

iments took place on the second floor of Keller Hall at University of Minnesota campus.

We have three Turtlebot 2 robots that are equipped with Kinect like sensors as shown

in Figure 2.1.

For autonomous robot navigation, the robots both keep track of their positions and

orientations and learn the environment that they are navigation in. SLAM (Simultane-

ous Localization and Mapping) deals with this problem where robots need to solve two

23

problems at the same time, i.e. learning the map of environment and localizing them-

selves while creating a map. There are a variety of SLAM algorithms in literature such

as those based on Extended Kalman Filter [73] and Particle Filters [74, 75]. ROS pro-

vides several libraries for SLAM algorithms. The authors in [76] analyzed and compared

these ROS based SLAM libraries extensively on different environments with different

assumptions on the available sensor data. SLAM algorithm that use only camera sensor

perform poorly on environments with long corridors due to high spatial similarities.

For our setting where there are long corridors in the environments, gmapping which

harnesses both camera sensor and odometry information performs better. We present

the generated map in Figure 3.4 which is obtained by tele-operating a single robot with

a joystick on corridors couple of times for loop-closure. The created map is employed

by all robots.

3.10.1 Robot Experiments Results

We have performed two sets of patrolling experiments on the map shown in Figure A.

In the first experiment, we generate a policy against a uniform probabilistic intrusion

model. In the second experiment, we have a non-uniform probabilistic intrusion model

where we weigh the lab much more than the corridors. In both settings, our approach

quickly finds solutions with high capture rates.

Patrolling with Uniform Intrusion Model

For this experiment, we have employed a uniform intrusion model where it is equally

likely that there will be an attack on any point on the map. Our algorithm has generated

an optimal solution in less than two minutes where robots disperse in the environment

and continously patrol in the same direction. We present robot trajectories in Figure 3.5.

In this experiment, penetration time tp is set to 8. The policy our algorithm has

produced resulted in a capture rate of 99%. Some intrusions are still possible as it

takes a while for robots to disperse in the environment to make their first visits to every

location.

24

Figure 3.5: Robot trajectories are shown with different colors. The robots start from
the the lab, i.e. the square region inwards from the corridors. We employed a uniform
intrusion model for the whole map. All the robots cover the whole the map by dispersing
to equidistant locations.

Patrolling with Non-Uniform Intrusion Model

In this experiment, we have employed a non-uniform intrusion model where the lab,

i.e. the square region inwards from the corridors, has been assigned a higher intrusion

probability than the corridors. Our method has found a solution in four minutes with a

capture rate of 81% where tp = 15 has been employed. Figure 3.6 shows the real robot

trajectories following this policy where one robot covers the lab and hallway immediately

outside (green path), while the others two robots cover larger sections of the corridor

away from the lab (pink and blue paths). This experiment shows that our approach can

be extended to different intrusion distribution models.

3.11 Performance Analysis

Scalability: Besides having better capture probabilities than MCTS, MCTS-UC uses

an order of magnitude less memory than MCTS. This is because whenever a useful

cyclic node is selected, the search tree will not grow for that simulation as the cyclic

25

Figure 3.6: Robot trajectories are shown with different colors. The robots start from
the the lab, i.e. the square region inwards from the corridors. We assigned a higher risk
of intrusion for the lab and one robot (shown with green trajectory) mostly stayed in
the lab while covering very small portion of the corridor from time to time.

action set will be performed repeatedly. However, computing policies for all robots can

be prohibitively expensive for large environments. In these cases, heuristics that reduce

the search space can mitigate the problem. For this purpose, we evaluated MCTS-UC

with the Iterative heuristic on a 20x20 grid where |V | = 400, n = 2, and tp = 200

for a dynamic intruder. We compare the capture probabilities of MCTS-UC with and

without the Iterative heuristic. In this scenario, even a simple sweep of the environment

requires 200 optimal moves which makes the problem intractable for MCTS-UC without

the Iterative heuristic when using large budgets.

Runtime: The runtime of MCTS based approaches relies on the branching factor and

the depth of the search tree. The Iterative heuristic provides runtime improvement in

later simulations as it increases the number of initial committed steps. It can be seen

in Fig. 3.7 that Iterative MCTS-UC is able to find better policies with larger budgets

in less time. For the perimeter scenario shown in Fig. 3.1(a), MCTS-UC requires 10

seconds to obtain an optimal policy, and the grid scenario shown in Fig. 3.1(b) requires

26

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.01	 0.1	 1	 10	 100	

Ca
pt
ur
e	
Pr
ob

ab
ili
ty
	

Budget	 (in	 millions	 of	 simula7ons)	

Itera/ve	

Non-‐itera/ve	

Figure 3.7: Capture probabilities of Iterative MCTS-UC as compared to standard
MCTS-UC (x-axis is log-scaled).

one minute for an optimal solution with MCTS-UC.

3.12 Conclusions

We have present an anytime approach capable of generating continuous policies for

patrolling problems with different intruder models. Our approach exploits spatial simi-

larity of different robot configurations with time shifts to create infinitely long policies

from finite simulation budget. It generates theoretically proven optimal policies for

perimeters and near-optimal policies for arbitrary environments. One limitation of us-

ing MCTS-UC in our domain is the high branching factor due to joint-action space.

While its spatial complexity scales polynomially with respect to the environment size,

the degree of each node scales exponentially with respect to the number of robots, e.g.

grid environments with n ≥ 5 are intractable for MCTS-UC as the branching factor

exceeds one thousand.

In next Chapter, we will present our contribution for multi-robot task allocation

27

problem, i.e. a more generalized version of many planning problems where robots coor-

dinate how to share tasks among each other to minimize overall team distance cost.

Chapter 4

Multi-Robot Task Allocation

4.1 Introduction

Multi robot systems generally necessitate a high level task allocation planner for effi-

ciency. We study the multi-robot task allocation (MRTA) problem with temporal and

capacity constraints with homogeneous robots (henceforth MRTA-TW). This problem

falls under the category single-task robot, single-robot task, time extended allocation

with in-schedule dependencies ID[ST-SR-TA] [77], although the constraints herein con-

sidered are far more complex than the ones specified in the taxonomy.

In MRTA-TW, a fixed set of tasks is allocated to a team of robots such that the total

distance traveled by all robots is minimized, and temporal and other side constraints

are satisfied. This problem is NP-hard, even when a single-robot is considered. The

single-robot version of the problem is a variant of the elementary shortest path problem

with resource constraints, which is a well-known NP-hard problem. For this reason,

optimal methods are not practical for datasets involving tens of robots and hundreds

of tasks due to large run times (several hours to days for hundreds of tasks and tens of

robots). Hence, efficient but suboptimal solutions are needed.

Approximate centralized and decentralized methods have been propose for task al-

location problems (e.g. [78, 79, 80, 81, 82, 83, 84]). While there exist some efficient

schedulers (e.g. [80]) for problems in which distances are small enough to be subsumed

into tasks’ durations, little attention has been given to solvers for problems in which

28

29

Figure 4.1: A near-optimal solution generated by MCTS for C101 test scenario in
Solomon benchmark. This solution has an approximation rate of 1.03 to an optimal
one. Ri, i ∈ {0, 1, 2, . . . , 9} indicate the robots.

routing and scheduling problems have to be solved simultaneously. Our approach tack-

les the latter problem and provides a solver that achieves asymptotic optimality, while

attaining optimal or near-optimal results for non-trivial number of tasks and robots

within practical run-times.

4.2 Main Results

This Chapter describes our MCTS-based planner for MRTA-TW problem. To propose

an efficient planner that can well generalize over different problem scenarios, we improve

upon MCTS in three fundamental ways: (1) We design a multi-objective evaluation

30

function that balances between minimizing the distance traveled by all the robots and

maximizing the task completion rate. (2) We propose a customized root parallelization

scheme that helps the algorithm better explore the solution space. (3) We use branch

and bound to prune parts of the search tree that do not improve upon the best found

solution to improve speed and solution quality.

Our solution’s quality is assessed empirically using the Solomon data set [85] for

vehicle routing problems with time-windows (VRPTW), and compared with many op-

timal results from VRPTW. Our method finds solutions that are at most 1.59 away

from optimal ones, and achieve an average of 98% task completion rate across all data

sets.

4.3 Related Work

Our work draws knowledge from the multi-robot task allocation (MRTA) with time

windows. There have been previous attempts to deal with variants of our problem in

the MRTA literature. The authors in [86] studied the allocation of tasks that have to be

done at a certain location and have constraints on their start time. They offer a Mixed

Integer Linear Programming (MILP)-based solution and a more scalable tabu-search

algorithm. Unlike our problem, they only consider precedence ordering of tasks, and

not hard temporal constraints on tasks. Heuristics based approaches have been propose

as well such as [87].

The authors in [88] propose a MILP-based heuristic for allocating tasks with deadline

constraints to heterogeneous robots. They consider only problems where task types and

robot capabilities have to match. Like in [86], their MILP-based approach does not

scale to large number of tasks and robots.

Task allocation with resource contention has been recently studied in [89] as well.

The closest work to ours is present in [90], who explore the vehicle routing problem

with location choice. The main difference between the latter work and ours is that

they include precedence constraints. Precedence constraints impose structure on the

ordering of tasks. With pre-processing, the ordering would reduce the size of our search

space.

Our problem can also be cast as a VRPTW [85]. There is a rich literature of

31

Algorithm 4: MCTS with Search Parallelization

Input : Budget
Output: Policy
D(ˆπbest) = ∞ ;
ThreadId = get thread num();
bestLocalScore[ThreadId] = ∞ ;
while timeElapsed ≤ Budget do

Expanded Node ← ucbSelection(root[ThreadId]) ;
π̂ ← rollout(Expanded Node) ;
if f(π̂) >bestLocalScore[ThreadId] then

bestLocalScore[ThreadId] = f(π̂);
bestLocalPolicy[ThreadId] = π̂;
if m′ = m AND D(π̂) <D(ˆπbest) then

set lock(&writelock);
if D(π̂) <D(ˆπbest) then

D(ˆπbest) = D(π̂);
ˆπbest = π̂;

end
unset lock(&writelock);

end

end
backpropagate(f(π̂)) ;

end

centralized methods for VRPTW [91, 92]. Most of the heuristic methods that yield

good quality solutions efficiently require modeling and parameter tuning specific to a

data set, which makes these methods hard to generalize. Instead, our approach, which

is based on Monte Carlo Tree Search, is more general and is guaranteed, given enough

time, to converge to an optimal solution.

4.4 Approach Overview

We formalize the MRTA-TW problem and describe how we adapt MCTS to address

it. We introduce our propose evaluation function and present how branch and bound

paradigm can be applied within the MCTS algorithm, along with a simple but novel

search parallelization method.

32

4.4.1 Problem Formulation

In the MRTA-TW problem, there are m tasks which need to be allocated to n robots.

The objective is to minimize the total distance that the robots must travel to reach the m

tasks while satisfying the temporal and capacity constraints. We assume n ≤ m. Each

task has a x-y location, service time, capacity demand, and time window. Demand is the

number of capacity units consumed. A time window specifies the temporal constraints

for task execution, by specifying the earliest time to start the task, and the latest time

to end it. Time windows can have different lengths and are allowed to overlap.

We assume point mass robots, each with an x-y coordinate, a capacity, and a global

deadline by which it has to return to a designated depot. We assume that a task needs

only one robot to be executed, and a robot can perform several tasks, one at a time.

Hence, the ultimate goal is to compute a route for each robot that starts and ends at

the depot. A robot assigned to a route should be able to execute each task within the

task’s time window, and have enough time to travel between tasks and return to the

depot. Each task should be included in only one route, and routes should cover all the

tasks.

The problem is modeled as a directed graph, G = (V,E), where the vertices V are

the locations of the tasks and the depot. The set of weighted edges E includes only

feasible edges obtained from pairing vertices in V . Edge eba ∈ E is a feasible edge if

and only if task b can be completed after task a without violating the time-window

constraints. The weight on the edges represent the distance between the pair of tasks.

In our MCTS model routes are turned into allocation policies.

Let πi = {{ri, t1i }, {ri, t2i },, {ri, t
|πi|
z }} denote the individual task allocation policy

of robot ri, where tji corresponds to the j-th allocated task in the policy of robot ri

and tz corresponds to the depot. For each employed robot, the return to depot action is

included as a dummy task. Let π̂ = {π1 ∪ π2 ∪ ∪ πn} denote the global task allocation

policy for the entire set of robots, where each task is allocated to a single robot. In

addition, let D(π̂) represent the total distance traveled by the robots while following

the policy π̂. A complete policy is one where all tasks are allocated, i.e., |π̂| = m+ n′,

while in an incomplete policy some tasks remain unallocated, i.e., |π̂| < m + n′ where

n′ ≤ n is the number of robots that performed at least one task. Our objective is to find

a complete policy π̂ such that D(π̂) is minimized. Once the search is over, the solution

33

π̂ is decomposed into n individual robot policies to be executed simultaneously.

4.4.2 Approach Overview

We formulate the MRTA-TW problem as a tree search and propose an MCTS based

method as outlined in Alg. 4. In our tree structure, robots are employed sequentially,

i.e., the route for robot ri+1 will be computed once robot ri returns to the depot.

At each level of the tree, a single robot is assigned one of the remaining tasks or

returns to the depot. Once a robot returns to the depot it cannot be allocated any

other task. This creates unbalanced allocations, however it keeps the branching factor

at a manageable size.

During the search, the UCB algorithm is used to choose which task to allocate to

each robot, as shown in Eqn. 2.1. Given that our problem formulation is completely

deterministic, we can store the best found solution during the search and optionally halt

the search with some solution quality threshold by exploiting the anytime property of

MCTS.

4.4.3 Policy Evaluation Function

The MCTS algorithm needs an evaluation function to estimate the true rewards of tree

actions by measuring the quality of full policies extended with random rollout actions.

Evaluation functions are straightforward in most games where the player gets a payoff

of 1, 0.5, and 0 for winning, tying, and losing, respectively. Evaluation is more complex

for MRTA-TW because neither the value of the optimal solution is known nor most

candidate solutions allocate all the tasks. The evaluation function in (6.3) helps find

complete allocations that take distance and allocation percentage into account.

Let m′ represent the number of allocated tasks for task allocation policy π̂. Due

to the nature of highly constrained properties of tasks, most candidate solutions fail to

allocate all the tasks. However, MCTS still needs to direct the search to find better

solutions. In this work, we propose an anytime policy evaluation function which guar-

antees that given more planning time, MCTS will find better solutions. Let α denote

a loose upper bound on the total traveled distance D(π̂), and Ê be a sorted version of

E (in descending order of their distances). Then, α = 2×
∑m+n

i=1 ei where ei ∈ Ê. Let

34

δ denote task completion of the candidate policy where δ = 1 if m′ = m, and δ = 0.5

otherwise.

To discourage incomplete policies, we define a negative reward parameter, ψ, which

is computed as follows: ψ = 2×
∑m−m′

i=1 ei, ei ∈ E′, where E′ ⊂ E is the set of edges

directed from completed to uncompleted tasks, from uncompleted to uncompleted tasks,

and from uncompleted tasks to the depot sorted in descending order of distances. While

calculating ψ, we use the simple observation that no edge in graph G will be traveled

twice.

Based on these definitions, we propose an evaluation function f(π̂), to assess policy

π̂, as follows:

f(π̂) =
α− (D(π̂) + ψ)

α
× δ (4.1)

Our evaluation function considers the worst case insertion cost of the unfulfilled tasks

from the remaining feasible edges for penalty term. This helps MCTS to avoid getting

trapped by partial policies with small total distances which are unlikely to complete all

tasks.

Our evaluation function guarantees that f(π̂a) > f(π̂b) holds if π̂a completes all the

tasks and π̂b misses at least one task. To show this, we can simply show bounds of f(π̂a)

and f(π̂b) separately, which would imply our claim.

Case 1: 0.5 ≤ f(π̂a) < 1. We can observe that D(π̂) ≤ α/2 is true as α is accumulated

from the longest m + n edges on graph G and multiplied by 2, while |π̂| ≤ m + n

depending on the number of robots utilized. Therefore, ψ = 0 and δ = 1 holds by

completion of all the tasks which completes our claim for case 1.

Case 2: 0 < f(π̂b) < 0.5. This holds true because by missing at least one task δ will be

set to 0.5, and D(π̂) + ψ > 0 holds for any policy. The δ parameter behaves like a step

function.

Lastly, our evaluation function returns monotonically increasing values along any

path from the tree root as more tasks are allocated. For every allocated task, the

actual traveled distance increases by some c ≥ 0, while ψ decreases by at least c; this

guarantees that the evaluation score of the policy never decreases for any sequence of

actions in the tree as more tasks are completed.

35

4.5 Application of Branch and Bound

Branch and bound is used to prune nodes during search, based on the incumbent solution

that allocates all the tasks. A simple observation is that no matter how many robots

are utilized, each edge in E will be traveled at most once. We let D(ˆπbest) denote the

total distance traveled corresponding to the best solution found so far that completes

all the tasks.

Given a partial task allocation policy πp which completes mp tasks using np robots

with a total distance of D(π̂p), there are two cases to consider. First, let’s assume

that all remaining robots, n − np, are at the depot. Then we generate a possible edge

list, Erest ⊂ E by considering all edges from the depot to the uncompleted tasks, from

uncompleted to uncompleted tasks, and from uncompleted tasks to the depot. Second,

if there is a robot that completed a task but did not return to depot yet, we also

consider edges from the robot location to uncompleted tasks and to depot for Erest.

In case there is no robot at depot, we neglect edges directed from the depot. During

bounding tree branches, if there are fewer robots than tasks, we assume that each robot

has to complete at least one task while a lower-bound on the future distance to travel

is computed along tree branches.

We branch new nodes if the following condition holds D(ˆπbest)−D(π̂p) >
∑q

i=1 ei

where ei ∈ Erest and Erest is sorted in ascending order. Here, q is the minimum number

of edges to cover to complete a partial allocation policy, which is computed as follows;

if n < m, then q = (m+ n)− |πp|, otherwise q = m−mp.

4.6 Parameterized Root Parallelization for MCTS

Several different search parallelization methods have been propose for MCTS, such as

tree parallelization, leaf parallelization and root (or single run) parallelization, as sum-

marized in [1]. Among these different approaches, root parallelization has been shown

to perform best for the game Go [93]. The authors in [94] show the effectiveness of root

parallelization by exhaustive experiments over different problems. Root parallelization

simply creates multiple search trees, one per thread, and merges the search trees once

the search budget is complete to generate policies. It has minimal overhead as the

threads do not communicate until the merging step.

36

We propose a novel variant of root parallelization, henceforth parameterized root

parallelization. Each tree is given a different UCB exploration parameter so that they

can explore the search space in different ways. Similar to pure root parallelization,

our approach also creates multiple independent search trees per thread. There is a

globally shared variable, D(ˆπbest), keeping the best complete solution distance found by

any tree. The design idea for our approach is that finding a locally optimal solution

early can better calibrate the search direction for all threads given the very large state

space. This also improves memory efficiency as we can prune existing nodes that are

guaranteed to not beat the best found so far.

For parallelization with k cores, we can set UCB exploration parameters as follows;

Ĉ = {2Ck ,
4C
k , . . . , C, 2C, 3C . . . , (

k
2 + 1)C} where C =

√
2. The first half of the cores are

assigned smaller exploration parameters so that they can search deeper early to find a

complete solution to expedite pruning in all trees, while the second half of the cores will

explore more so as not to get trapped by a local maximum. In cases where none of the

threads is able to find a task allocation policy which completes all the tasks, the result

of our parallelization approach is identical to running MCTS k times with different C

values with a single core and returning the best found solution consecutively.

4.7 Experimental Setup and Results

We assessed our MCTS method using the Solomon dataset for vehicle routing on com-

modity hardware. We used 8 logical cores on an Intel Core i7-4790 3.6 GHz Quad-Core

computer with 32GB RAM. The algorithm is run once for each data instance with search

times set to 1 hour. We present a near-optimal solution generated by our approach in

Figure 4.1. We show how branch and bound improves our results for all categories in

Figure 4.2. Overall anytime behavior of our approach is present in Figure 4.3.

The Solomon dataset provides a rich variety of problem scenarios for task locations

and time windows. Tasks are either clustered (C), randomly scattered (R), or a mix

of clustered and randomly scattered (RC). Each of these categories has either tight

time windows (type 1) or large time windows (type 2). The individual spatiotemporal

categories (e.g. C1, R2) have between 8-12 individual instances.

Each instance has 100 tasks, each task has a uniformly generated demand drawn

37

C R RC ALL
1.1

1.2

1.3

1.4

1.5

1.6

With Branch and Bound

Without Branch and Bound

Solomon Dataset Scenarios

D
is

ta
n

ce
 r

a
tio

 to
 th

e
 b

e
st

 k
n

o
w

n

Figure 4.2: Smaller is better. Embedding branch and bound in the MCTS algorithm
improves the overall distance ratio to the best known solutions 11% across all instances
in the Solomon data set.

from U(1, 50), and service times of either 10 (C and RC data instances) or 90 (R data

instances). The earliest start time for the time windows is drawn from U(1, 1000) and

U(1, 3400) for types 1 and 2 data instances, respectively. The latest finishing times are

drawn from U(20, 1000). The x-y coordinates of the tasks and robots are uniformly

drawn from U(0, 100). The global deadlines for the robots have values between ∼ 200

and ∼ 3500.

4.7.1 Comparison to other methods

As no single method produces the best results for all problem instances in Solomon

benchmark, we compare our results with the best known results [95] obtained from up

to 16 methods including metaheuristics, local search, ant-based, and genetic algorithms.

While these methods are more efficient, unlike our method, they neither generalize well

across data sets nor do they provide any guarantees. We summarize our results in

Table 4.1 and Table 4.2.

In Figure 4.2, we present how branch and bound technique is improving our results

for all categories of the benchmark. Overall quality increase with branch and bound

38

is about 11%, i.e. computed by considering all completed instances in the benchmark

as branch and bound approach is activated only when a complete solution is found.

Exploring the search space by eliminating branches which have no chance of improving

the current best complete solution proves to be useful as it enables the search algorithm

to explore the rest of the search space with more budget.

We report results for two scenarios: when the number of robots is fixed from the

start, and when this number is as large as the number of available tasks.

4.7.2 Fixed number of robots

In this set of experiments the number robots used is upper bounded by the number of

robots used in the best known solutions from the VRPTW literature.

Task allocation percentage results for type 1 and 2 data instances are present in

Figure 4.3. Our algorithm allocates more than 40% of the tasks after 5 minutes; it

allocates nearly all tasks across all datasets within one hour. The average task allocation

rate and the percentage of instances in which all tasks are allocated are reported in

Table 4.2. The algorithm yields high average allocation rates across all datasets, and it

attains relatively lower percentages of instances in which 100% of tasks are allocated.

We observe that our approach in general is more successful for test instances where

the number of robots is large and time windows are not very large. For example, the

algorithm struggles to fully allocate tasks in C2 test instances, where the number of

robots is 3 for all instances, while it does better in all type 1 instances where there are

9 or more robots. In type 2 instances each robot performs many more tasks. Having

more robots enable random rollouts to complete more tasks. As shown in Figure 4.3, in

5 minutes we obtain much higher completion rates in type 1 scenarios. Also, we obtain

best solutions for RC2 in type 2 instances as shown in Table 4.2. Our observation is

also supported by the fact that in average RC2 has at least 50% more robots than other

type 2 scenarios.

Detailed distance ratio results are reported in Table 4.1 and Table 4.2. The results

reported in Table 4.1 show that our algorithm yields solutions with quality at most 1.59

away from the best-known for completed instances. These results are corroborated by

the average distance ratio results in Table 4.2.

Similar to the completion results, our algorithm yields larger distance ratio values

39

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

C100

R100

RC100

Search time (in minutes)

Ta
sk

 c
o

m
p

le
tio

n
 r

a
te

 (
%

)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

C200

R200

RC200

Search time (in minutes)

Ta
sk

 c
o

m
p

le
tio

n
 r

a
te

 (
%

)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

C average

R average

RC average

Search time (in minutes)

Ta
sk

 c
o

m
p

le
tio

n
 r

a
te

 (
%

)

Figure 4.3: Task completion rates versus search time with MCTS for problems from the
Solomon dataset. On average, MCTS achieves 50% task completion rate in 5 minutes
with the help of random rollout extensions for allocation policies. With more planning
time, we achieve up to 98% completion rate over all categories.

40

Scenario MCTS Optimal Task % Ratio to Opt.

C101 853.5 827.3 1 1.03

C102 1287.7 827.3 1 1.55

C103 1320.5 826.3 1 1.59

C104 1249.9 822.9 1 1.51

C105 1038.2 827.3 1 1.25

C106 982.6 827.3 0.99 -

C107 1117 827.3 0.98 -

C108 1076.1 827.3 0.99 -

C109 1173.9 827.3 1 1.42

R101 1820.8 1637.7 1 1.11

R102 1716.5 1466.6 1 1.17

R103 1593.4 1208.7 1 1.31

R104 1303.1 971.5 1 1.34

R105 1640.9 1355.3 1 1.21

R106 1532.9 1234.6 1 1.24

R107 1363.9 1064.6 0.99 -

R108 1051 960.9 0.96 -

R109 1428.6 1146.9 1 1.25

R110 1381.8 1068 1 1.29

R111 1436.5 1048.7 1 1.37

R112 1055.2 982.1 0.93 -

RC101 1515.2 1619.8 0.96 -

RC102 1851.4 1457.4 1 1.27

RC103 1554.2 1258 0.98 -

RC104 1373.7 1135.5 0.94 -

RC105 1973 1513.7 1 1.30

RC106 1520.8 1424.7 0.91 -

RC107 1614.1 1207.8 0.99 -

RC108 1515.2 1114.2 0.99 -

Table 4.1: Comparison of our MCTS solutions to the best known solutions (found by
16 different methods) on Solomon Benchmark

41

C1 R1 RC1 C2 R2 RC2 Avg.

Completion Rate Avg. 0.99 0.99 0.97 0.97 0.97 0.98 0.98

% Instances all completed 0.67 0.75 0.25 0.00 0.27 0.63 0.43

Ratio to Opt. Distance 1.39 1.25 1.28 - 1.51 1.48 1.38

Table 4.2: Summary of results for MCTS using the same number of robots of the best
known solutions for Solomon benchmark.

in type 2 data instances compared to type 1 ones. As stated before, the larger time

windows cause the algorithm to evaluate more policies. Hence, we argue that larger

run times would improve solution quality, given that the algorithm would be able to

eventually focus the search away from allocations with larger distances.

4.7.3 Free number of robots

Given that it is challenging to complete all the tasks through random sampling with the

tight robot team sizes we obtained from the best known solutions, we have experimented

our approach by keeping everything the same but only changing the number of robots

to be the same as the number of tasks to guarantee task completion with random

rollouts. This setup also simplifies our evaluation function as ψ = 0 and k = 1 both

hold. However, as expected, using more robots causes extra distance cost of leaving the

depot and coming back.

Scenarios C R RC All

Distance Ratio 2.01 1.41 1.58 1.67

Team-size Ratio 2.65 2.11 1.92 2.23

Table 4.3: The ratio of found solutions to the best known are present for MCTS with
free number of robots within Solomon data set.

We present a summary of the results obtained in this experiment in Table 4.3.

This approach overall uses 123% more robots with an overall solution quality within

1.67 of the best known ones. Our first observation is that within each category as the

time windows get tighter, MCTS finds solutions using more robots resulting in large

team travel distances. Secondly, we obtain worst results for the clustered test cases as

multiple robots are possibly assigned to the same clusters inflicting large distance costs,

42

and lastly we obtain best results for the R-type scenarios, the one with no clusters.

4.7.4 Analysis

When the number of robots is fixed, the random trajectories during rollouts fail to

accomplish all the tasks due to the highly constrained nature of the problem. Our

evaluation function punishes task allocation policies with uncompleted tasks to direct

the search towards regions where the robots are likely to complete more tasks with

smaller distances.

Our approach performs better for problems where n is not very small. We think

that this might be due to a weakness caused by our evaluation function and our tree

structure model which uses robot ri+1 once robot ri returns to the depot. Although

our evaluation function punishes incomplete policies with an additional distance cost,

the search can be biased towards individual robot routes with smaller distances for test

instances with small n. As each robot route contains many tasks for small n, MCTS

can only recognize late that it cannot generate a policy which completes all the tasks

through a good looking branch.

In our approach even a single sub-optimal allocation made early in the plan dimin-

ishes the quality of a fully complete policy. The main challenge is that the delayed

rewards for actions resulting from earlier allocations can be understood much later.

Test cases with smaller n further increase the delay of acquiring less noisy rewards due

to longer routes.

4.8 Conclusions

We propose an MCTS based anytime centralized approach to solve the multi-robot task

allocation problem with time windows and capacity constraints. The propose MCTS

heuristic combines branch and bound pruning and a parameterized root parallelization

to obtain high quality solutions while maintaining relatively low computation times.

We experimentally show that our approach can generate near-optimal task allocation

policies in an hour using the Solomon benchmark for vehicle routing with 100 tasks.

We found solutions that are at most 1.59 away from the best-known solutions, while

completing nearly all tasks. Our method maintains asymptotic completeness guarantees

43

of the MCTS algorithm as we employ no biasing or domain-dependent heuristic during

the search.

Chapter 5

Computer Narrative Generation

5.1 Introduction

Narrative is an important aspect in our lives as we can learn from narratives, convey

some messages, or entertain with narratives. Other than education and training applica-

tions of narratives, as new gaming and virtual reality technologies arise, the importance

of both understanding the narrative dynamics and generating narratives in a coherent

and believable way increased. In this perspective, computer narrative generation has

been a growing field in AI where researchers are investigating automation of narrative

generation systems.

5.2 Main Results

This Chapter describes a framework for narrative generation which can learn partial

narrative domain knowledge from existing books. Different from the existing work in

computer narrative, our narrative planning approach provides an interactive way to

create a variety of stories. Firstly, variety in obtained stories is very important due to

application areas of story generators. However, to the best of our knowledge the liter-

ature has not addressed this earlier. Secondly, our narrative learning work (presented

in section 5.8) address a greater challenge of understanding narrative dynamics consist-

ing of story domain definition and action believabilities from existing story books while

similar approaches constrained the training input to only very small scenarios with fixed

44

45

events.

5.3 Related Work

In this section, we will review existing work in how to model and formalize narratives

along with planning and learning aspects of computer narrative generation.

5.3.1 Narrative Formalization

Some efforts to automate narrative generation have focused on the important step of

formalizing narratives. One example is the logic-based narrative formalization approach,

Impulse, presented in [96]. Other researchers have focused on formalizing the notion of

conflict for narrative generation [97], and the properties of pretend play [98]. Our work

most closely follows the formalisms expressed in [99]. Like these approaches, we assume

a user-defined probabilistic logic exists which defines the effects of various actions for

the story domain.

5.3.2 Narrative Planning

A variety of approaches have been proposed for automating narrative planning and story

creation. For example, character-centric narrative generations systems have been pro-

posed in [100, 101] where each characters’ beliefs and intentions are employed for story

generation. In contrast, story-centric methods have also been proposed which reason

over intentions and corresponding actions from the point of view of the audience [102].

Narrative generation has also been studied as a multi-agent planning problem [103] or

by using stochastic search techniques [7]. Other authors have also looked at improving

narratives by incorporating a process for influence generation [104], and by generating

stories which contain morals [105].

A common application for automated story generation is that of computer games [106].

For example, the work of [107] proposes a story-making game that studies the relation-

ship between human user behavior and narrative coherence. Likewise, a case based

interactive storytelling system where a human user can contribute to the generated

story is proposed in [108] which uses a knowledge base obtained from millions of stories.

Another case-based system for story generation process is presented in [109]. Their

46

framework has a sample story database and a given a new story query, they generate

the overall structure of story plots with case comparisons. Computational narrative

generation has also been used to create stories interactively as a game unfolds, such as

in the work of [110], where a computer assisted narrative authoring system dynamically

accounts for human intervention during a visual story generation.

Character-centric approaches deal with narrative generation by granting some of the

narrative characters the role of story level design so that these characters ease the global

planning process. For example, the work presented in [111] on Virtual Storyteller models

autonomous agents and assigns them roles within the story by an external plot-agent.

Storytelling has also been studied within the domain of multi-agent planning [112].

More recently, intentional planning has been combined with the multi-agent planning

approaches [113].

5.3.3 Narrative Learning

Recently, many authors have looked at applying learning techniques to improve com-

puter narrative generation. Recent examples include various approaches to the learning

of drama manager strategies [114, 115, 116]. More closely related to this work, enrich-

ing story domains and learning domains have been increasingly studied recently. For

example, a new technique has been proposed that enriches a given narrative domain

by adding the antonymic actions of the existing actions in [117], which has also been

applied to clinical narratives [118]. To decrease the authorial burden during story gen-

eration, a playable model of social interaction is proposed in [119]. The authors in [120]

proposed a framework that learns a story domain from crowd-sourced stories to use in

story generation. The authors in [121] proposed a method to learn character roles from

unannotated folk tales. Lastly, the authors in [122] presented a data-driven learning

based approach that designs different reward functions for interactive narratives.

5.4 MCTS for Story Generation

In this section, we first introduce a new story domain in which we evaluate our method.

We then introduce our believability metric that guides the MCTS search, and provide

a detailed explanation of our planning method.

47

5.4.1 Story Domain

Planning based story generation typically works over a user-specified story domain.

We support a custom domain based on a simplified PDDL-type [99] of environment

specification. While our approach is generic, we demonstrate it using the following

crime-story inspired domain.

Our domain has three types of entities: Actors, Items, and Places. Actors, which

are intended to represent people or other characters, can pick up or use various Items,

or move to other places. Each Item allows different actions for an Actor. Items and

Actors can be located at different Places.

Each entity has several attributes which allows the planner to keep track of what

effect various actions have on the Actors, Items, and Places. For example, actors have a

“health” attribute which is decreased when they are attacked. Below is an abbreviated

list of the various actions allowed in our story domain followed by a brief description of

its affect:

• Move(A, P): A moves to place P.

• Arrest(A, B): B’s place is set to jail.

• Steal(A, B, I): A takes item I from B. This increase B’s anger.

• Play Basketball(A, B): A and B play basketball. This decreases A’s and B’s

anger.

• Kill(A, B): B’s health to zero (dead).

• FindClues(A): A searches for clues at its current location

• ShareClues(A, B): A shares with B any clues he has found.

• Earthquake(P): An earthquake strikes at place P. This causes people at P to

die (heath = 0), items to be stuck, and place P to collapse.

Associated with each action are methods to convert the action and corresponding

Actors, Items, and Places to English text.

For Actors we have several citizens: Alice, Bob, Charlie, David, etc. There is also

a detective named Sherlock, and an inspector named Inspector Lestrade. For Places

there are several homes, recreation areas (e.g., basketball courts), and a downtown.

48

Items include flower vases, basketballs, baseball bats, guns and handcuffs. As discussed

below, the believability of an actor taking a certain action will depend on where they

are, what items they have, and their past experiences with other people.

We assume that the user specifies both an initial configuration and a goal for the

story (e.g., who is in their own house, who is in downtown, where are the guns and

vases). An example goal might be, “at least two people are dead and the murderer

is arrested”. For the purpose of running experiments, we can make the domain more

complex by adding more citizens, items and places, and by changing the goal.

5.4.2 Approach Overview

Our approach uses the MCTS algorithm to find the chain of actions which accomplishes

the user-defined goals with the maximum amount of believability. To apply MCTS, we

must first define a function which evaluates the extent that a given story believably

reaches the user’s goals.

Formally, we represent a given story as a set of actions A = {a1 · · · an}. We define

a story evaluation function E as:

E(A) = G(A)B(A) (5.1)

where G(A) is the percentage of the user-defined goals the current story accomplishes,

and B(A) is the believability of the story as specified in Eqn 5.4.

There is a tradeoff between overall believability of a generated story and the number

of goals it achieves; a story that maximizes the value of E(A) simply finds such an

optimal tradeoff which does not necessarily completes all the goals.

Importantly, this formulation allows for a series of actions that are not very believable

to occur in the story if it is the only way to achieve the user’s specified goals.

While E(A) provides a natural way to evaluate a completed story, it is of limited

use for partial narratives that will be encountered during a tree search. This is because

until a story satisfies some of the goals, the evaluation will always be 0. We address this

issue by adding a random rollout to the story, that is a series of random actions that

is added to the partial story until all the goals are met (or until a story grows past a

49

length threshold). We denote this randomized extension of A as A′:

A′ = {a1, a2, ...an, r1, r2, ...rn}. (5.2)

where r1 · · · rn are randomly generated actions. This allows a probabilistic evaluation

of A even when A does no yet reach the goal. We denote this probabilistic evaluation

as E′:

E′(A) = E(A′). (5.3)

We can now formulate story generation as a Monte Carlo tree search problem. Each

node in the tree will represent the complete state of the world. Each link in the tree

represents one possible action from that state, and that child of the node represents the

resulting world state after applying that action. The root of the tree is the initial state

of the world. The MCTS algorithm proceeds by repeatedly adding one node at a time

to the current tree. For each potential action, we keep track of how many times we have

tried that action, and what the average evaluation was.

5.4.3 Believability

Our approach focuses on goal-oriented narrative generation. However, rather than

searching to find any story which satisfies a user’s goal, our approach searches for the

best-possible story as evaluated by our metric. For this work, we chose a broad evalua-

tion criteria based on how believable an action is contextually, given the current state

of the story. The believability of each action is a user-defined measure on a scale from

0 to 1, which is treated as a Bayesian probability. That is, given the current state of

the world, how likely it is that an event happens conditioned on the current state of the

environment. For example, character A attacking character B may be more believable

if A is angry. Likewise, a character arresting someone may be more believable if the

character is an inspector. Some key examples from our domain are presented below.

• Arrest(A, B) More believable if A is an inspector. More believable if A has clues

to a crime.

• Steal(A, B, I) More believable if item I is valuable.

50

• Kill(A, B) More believable if A is angry. More believable if A has previously

killed someone.

• FindClues(A, P) More believable if A is an inspector or a detective.

• ShareClues(A, B) More believable if B is an inspector.

• Earthquake(P) Very low believability.

For a series of actions, we evaluate the overall believability as the product of the believ-

ability of each individual action:

B(a1, a2, ..., an) =
n∏
i=1

Bai (5.4)

5.5 Enhancement to the MCTS Algorithm

In this section, we present our contributions to improve the efficiency and success of the

MCTS algorithm for story generation which can be applied in other domains as well.

5.5.1 Iterative MCTS Algorithm

The MCTS algorithm keeps the entire tree in memory and can exhaust memory when

exploring domains with large branching factors. This can be alleviated by pruning

sections of the search tree that are unlikely to be productive. To this end, we propose

an iterative approach which plans the story only one action at a time. This approach

first grows the tree for a fixed number of actions. Then, only the current best action is

kept, and its sibling actions’ and their subtrees are pruned. This action forms the new

initial condition and the tree search continues. Pseudocode for the iterative approach

is presented in Algorithm 5.

As only a fixed number of nodes are added between each pruning step, the amount

of memory used is bounded. We should note that this iterative approach is no longer

probabilistically complete, as it is possible to prune a promising branch early on, leading

to a local maxima rather than the global optimum. However, in practice we can generate

high scoring narratives while using much less memory than the non-iterative approach.

51

Algorithm 5: Iterative MCTS for story generation and other domains.

Input : Budget and max iterations
Output: Best story
for i← 1 to max iterations do

while budget > 0 do
Node ← uctSelection(root);
result ← rolloutStory(node);
backpropagate(result);
if result > bestScoreSoFar then

updateBestScore();
saveBestStory();

end

end
root ← root’s most visited child;
Prune all other subtrees;

end
return Best Story;

5.5.2 Biased MCTS Algorithm

Monte Carlo Tree Search can be improved by applying heuristics to help guide the

search. For example, recently the authors in [123] performed selection biasing based

on human-play data to generate to a player that can imitate human players. We in-

stead heuristically learn bias from simulations. We incorporate two domain independent

heuristics. For both heuristics, we keep a history table that stores average evaluation

results, E′, for each action (independent of it’s depth in the tree). We explore two ways

of using this history table: selection biasing and rollout biasing.

5.5.3 Selection Biasing

Here we modify Eqn. 2.1 to incorporate the average value for the action stored in the

history table. We introduce a parameter ζ which weighs the history average value more

strongly when very few (less than q) rollouts have been performed. Formally:

f(n) = ζE′(An) + (1− ζ)H(n) +

√
2 ln v

nv
(5.5)

where H(n) is the average value stored in history table and ζ = nv/q.

52

5.5.4 Rollout Biasing

In this heuristic we use the history table to bias the random rollouts. Rather than

choosing pure random actions, our approach preferentially choose actions which have

had a higher evaluation score as stored in the history table.

5.6 Analysis

For search method comparisons, we tested our approach on an instance of the crime story

domain described above which utilized 5 actors (including 1 policeman and 1 detective),

5 places, and 5 items. The story goal is set as 2 people dead and the murderer arrested.

Because each actor can use multiple items and travel to different places the resulting

search space was fairly large with an average of 50 total actions available across all the

actors at any given time (resulting in a search tree with an average branching factor of

50).

5.6.1 Search Method Comparison

We first compare our method to the traditional search algorithms of Breadth-First

Search, Depth-First Search, and Best-First Search. We chose these search algorithms

because, like MCTS, none of them requires a search heuristic. Furthermore, Breadth-

First Search and Best-First Search algorithms are guaranteed to find an optimal solution

given sufficient time and memory. Additionally, Best-First Search and Depth-First

Search will explore longer paths earlier which can potentially find optimal solutions

earlier in the search process. All search algorithms are implemented such that they

maximize score from Eqn. 5.3. Figure 5.1 shows a comparison of the best story found

by the different methods both for small and large search budgets (results averaged over

3 trials).

Depth-First search was observed to use very little memory, however, it failed to find

narratives which met any goals. Best-First search suffers from delay caused by trying

to accomplish the goals through a set of believable actions due to its high exploratory

behavior. As a result, it tends to require higher budget to eventually find the optimal

solution.

53

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

MCTS Breadth First Best First Depth First

S
to

ry
 E

va
lu

at
io

n

Search Method

(a) Low Budget (100K Nodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MCTS Breadth First Best First Depth First

S
to

ry
 E

va
lu

at
io

n

Search Method

(b) High Budget (3 Million Nodes)

Figure 5.1: Comparison of Search Methods Our proposed approach using Monte
Carlo Tree Search (MCTS) outperforms other search techniques such as Breadth-First
Search, Depth-First Search, and Best-First Search. (a) Even for a small search bud-
get, MCTS outperforms other methods (b) The gains improve dramatically for larger
budgets.

While Breadth-First search outperforms the Best-First search and Depth-First search

methods, it is unable to find a believable means to achieve the goal even with a budget

of several million nodes. In contrast, our MCTS approach outperforms all the other

search techniques for both small and large budgets, and is able to find a high score

story.

The difference in narratives generated by the various search approaches is highlighted

in the illustrative sample narratives in Figures 5.3 and 5.2. These narratives are direct

outputs from our code. We note that we automatically combine two consecutive related

actions into a single sentence to improve readability of the narratives.

Figure 5.3 shows a sample of a high quality story, that has been generated by our

MCTS algorithm. The story achieves the goals while containing several plausible actions

(such as revenge killing).

Sherlock moved to Alice’s House. An Earthquake occurred at Alice’s House! Sherlock
and Alice both died due to the earthquake.

Figure 5.2: Low Scoring Story (Score: 0.016)

Figure 5.15 shows a story found by Breadth-First search. While the story is short

54

Alice picked up a vase from her house. Bob picked up a rifle from his house. Bob
went to Alice’s house. While there, greed got the better of him and Bob stole Alice’s
vase! This made Alice furious. Alice pilfered Bob’s vase! This made Bob furious. Bob
slayed Alice with a rifle! Bob fled to downtown. Bob executed Inspector Lestrade with
a rifle! Charlie took a baseball bat from Bob’s house. Sherlock went to Alice’s house.
Sherlock searched Alice’s house and found a clue about the recent crime. Bob fled to
Alice’s house. Sherlock wrestled the rifle from Bob! This made Bob furious. Sherlock
performed a citizen’s arrest of Bob with his rifle and took Bob to jail.

Figure 5.3: High Scoring Story (Score: 0.68)

and accomplishes the goal of two people being killed, it fails to achieve the more complex

goal of somebody being arrested. Furthermore, the story makes use of an earthquake

to reach its goals, which has a very low believability score.

5.6.2 Heuristic Comparison

We also experiment to determine the effect of our two proposed heuristics on search

performance. Figure 5.4 summarizes our results (averaged over 3 trials). For low search

budgets, the selection biasing heuristic improves performance over standard MCTS (Fig

5.4a). However, this heuristic gets stuck at a local minima and fails to improve the

story even with large search budgets. In contrast, the rollout biasing heuristic leads to

a substantial improvement over standard MCTS for large search budgets (Fig 5.4b).

5.6.3 Large Scale Scenarios

While the vanilla MCTS approach works well, it consumes large amounts of memory.

This large memory usage can restrict its applicability on very large scenes. To illustrate

this limitation, we extend the crime story domain above to contain 20 actors, 7 places,

and 7 items. This increases the branching factor to 150 potential actions on average.

Figure 5.5 compares standard MCTS with our iterative approach described in Algo-

rithm 5. Importantly, the non-iterative approach fails to complete its execution when

the search budget is larger than 5 million nodes. This failure happens because the

non-iterative approach is using over 100GB of memory for such large search trees. In

contrast, our proposed iterative approach produce better results for lower budgets, and

55

0

0.01

0.02

0.03

0.04

0.05

100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

S
to

ry
 E

va
lu

at
io

n

Nodes Explored

MCTS

Rollout Biasing

Selection Biasing

(a) Low Budget

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
to

ry
 E

va
lu

at
io

n

Nodes Explored (in Millions)

MCTS

Rollout Biasing

Selection Biasing

(b) High Budget

Figure 5.4: Effect of Heuristics (a) For small search budgets (<500K nodes explored)
the search heuristics tested had only a moderate effect on performance. (b) For large
search budgets, the advantage of the rollout biasing heuristic can be clearly seen. Addi-
tionally, while the selection bias heuristic helps with small budgets it tends to get stuck
in local minima.

can run much larger budgets without failure. In fact, we were able to run with a bud-

get over 50 million nodes on the same machine with no memory issues with iterative

heuristic.

Runtime For the 5 actor story domain, our method was able to find detailed stories in

under 5 seconds, and find the optimal story in less than 1 minute (using a single core

on an Intel 2.2 GHz laptop processor). For the 20 actors story domain, stories took

much longer to generate, though a high quality story could generally be found in under

1 hour with the iterative approach.

5.7 User-Driven Narrative Variety

We have developed an interactive framework that can generate narratives with para-

metric narrative goals and configurable context-sensitive believability metrics for each

available action as shown in Figure 5.6. Our framework employs a graphical user inter-

face which allows users to modify the believability of various actions by dragging several

sliders. By changing believability of actions, users can influence the actions present in

generated narratives via Eqn 5.4. For example, the user can generate a narrative where

56

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

0 2 4 6 8 10 12 14

S
to

ry
 E

va
lu

at
io

n

Node#Explored#(in#Millions)#

Non-iterative

Iterative

Figure 5.5: Iterative vs Non-iterative For very large story domains, MCTS can run
out of memory trying to store the entire search tree. In the 20-person domain, the non-
iterative approach could only explore trees up to 5 Million nodes before failing. Our
proposed iterative approach uses tree pruning to reduce memory and can explore much
large trees (producing higher value narratives).

the goal is preferentially accomplished through earthquakes by increasing the believ-

ability of the earthquake action. In this case, given the story goal of “two people dead”,

the resulting story is similar to the story presented in Figure 5.15.

As additional examples, we present two user-selected believability configurations in

Figure 5.7. In the choice of believabilities shown in Figure 5.7(a), the user set the

believability of “eartquake” and “play basketball” actions to a very low value, and the

believability of “Citizen arrest” is set very high. Ideally, these choices of believabilities

should generate a story where the arrest is performed by a citizen. As Figure 5.8 shows,

the resulting story meets this expectation. In contrast, the second believability setup

(shown in Figure 5.7(b)) has a lower belivability of citizen’s arresting each other. The

resulting story is shown in Figure 5.9, with the arrest ultimately made by Inspector

Lestrade. Note that the two stories have similar beginnings, but they are resolved in

different fashions in accordance with the user specified believabilities.

Further options are presented to the user to modify other parameters associated with

our narrative generation approach. For example, selecting between iterative and non-

iterative, setting the budget of maximum nodes explored, and other similar parameters.

57

This allows the user to control the trade-off between story quality and story generation

time. The GUI along with our believability heuristic let the user be in the loop by

interacting with the planner without modifying the MCTS side of the framework.

5.8 Learning Narrative Planning Domains

Our initial work [7] on story generation assumed that a high level domain is manually

authored and input to the MCTS planner. However, this step is time-consuming and it

must be repeated when the narrative domain is changed. In this part of this thesis, we

will present our work on learning narrative domains from existing story books that can

be obtained from project Gutenberg.

The need for a user to manually author high-level story domain creates a bottle-

neck for the automation of narrative generation. We propose a data-driven narrative

learning method that employs a Bayesian inference approach to learn high-level story

domains from collections of existing stories. Our method generates both story domain

parameters and the believability of various actions that may be taken on these learned

story parameters. Our method is semi-supervised, largely automating the process of

domain generation and story creation, while still allowing for easy feedback from users

to quickly edit, augment, or delete any unsatisfying aspects of the learned domains.

The resulting story domains are unique, reflecting key aspects of the source text used

in training. As a proof of concept, we employ our learned story domain knowledge to

automatically generate narratives.

5.8.1 Approach Overview

We formulate narrative domain inference problem as a learning problem. Besides the

set of actions (which are assumed to be given), we define a story domain as a set of

actors who perform these actions, a set of items which the actors can use, and a set

of places over which the story unfolds. Additionally, I require domains to incorporate

some notion of believability which captures how likely a given person is to perform a

given action with a given item (e.g., killing with a rifle should be much more likely than

killing with a handkerchief). Our goal then, is to learn all of these elements from source

stories.

58

Figure 5.6: Aladdin’s Magic Story Generator for Interactive Narrative Generation.
Users can modify believabilities of various actions, set story goals, select a planning
strategy, and choose a planning budget. As the generation process unfolds, the best
story found so far is displayed along with a graph of the story evaluation score progress.

59

(a) Citizen arrest configuration (b) Officer arrest configuration

Figure 5.7: Users can set believability of actions to generate diversity in generated
stories.

Alice got a vase from her house. Bob picked up a rifle and a baseball bat from his
house. Sherlock stopped by the basketball court on his way to Alice’s house. Charlie
went to Alice’s house. Charlie took Alice’s vase! This made Alice furious. Alice stole
Charlie’s vase! This made Charlie furious. Alice killed Charlie with a flower vase,
very interesting! Bob went to Alice’s house. Meanwhile Sherlock went to the basketball
court. Inspector Lestrade stopped by Bob’s house on his way to Alice’s house. Alice fled
to the basketball court. Bob searched Alice’s house and found a clue about the recent
crime. Sherlock went to Bob’s house. Meanwhile Bob went to downtown. Alice stopped
by Alice’s house on her way to Bob’s house. Inspector Lestrade went to downtown.
Meanwhile Bob went to Alice’s house. Alice executed Sherlock with a flower vase, very
interesting! Bob went to Bob’s house. Bob arrested Alice with his baseball bat and took
Alice to jail.

Figure 5.8: Story generated from believability setup shown in Figure 5.7(a). In this con-
figuration, the believability of “citizen arrest” action is set high, resulting Bob arresting
the murderer.

60

Alice secured a vase from her house. Bob secured a baseball bat and a rifle from his
house. Bob went to Alice’s house. Alice pilfered Bob’s rifle! This made Bob furious.
Inspector Lestrade went to the basketball court. Bob slayed Alice with a baseball bat! Bob
slayed Charlie with a baseball bat! Bob fled to the basketball court. Meanwhile Sherlock
went to Bob’s house. Sherlock went to Alice’s house. Meanwhile Inspector Lestrade went
to Bob’s house. Inspector Lestrade went to Alice’s house. Inspector Lestrade searched
Alice’s house and found a clue about the recent crime. Inspector Lestrade went to the
basketball court. Meanwhile Bob went to Alice’s house. Bob stopped by the basketball
court on his way to downtown. Bob and Sherlock both went to the basketball court.
Sherlock picked up a basketball from the basketball court. Inspector Lestrade arrested
Bob with his police gun and took Bob to jail.

Figure 5.9: Story generated from believability setup shown in Figure 5.7(b). In this
configuration, the Inspector Lestrade arrests the murder due to low believability of
“citizen arrest” action.

We group together several stories which share common source materials in order to

increase the amount of training data for each domain. Specifically, I work with three

classes of stories, i.e. Children Fairy Tale, Detective, and Shakespeare (all obtained

from Project Gutenberg, a repository of public domain books (www.gutenberg.org)).

For each story dataset, the corpus vocabulary is denoted by V , and the set of all

sentences as Ŝ. We define Sji as the jth word of the ith sentence, and |Si| denotes the

number of words in ith sentence. We select a subset of sentences denoted by S that

contains all of the sentences including our action words:

S = {Si ∈ Ŝ | ∃j : Sji ∈ A}. (5.6)

We treat the word to category assignment task as a probabilistic categorization

problem. Specifically, our goal is to estimate the probability that each word in the

vocabulary belongs to one of categories of (person, place, item, or no category). We do

this by estimating a probability distribution, P , for each word in V over all categories:

61

Pi =

p(Vi = Person)

p(Vi = Item)

p(Vi = Place)

p(Vi = Other)

 . (5.7)

Given a prior for each term in our vocabulary, the role of the data-driven learning

process is to refine these priors based on the input corpus stories. Our approach cen-

ters around the use of potential sentence templates that match each action. Broadly

speaking, we develop an iterative approach with two alternating update steps. First,

for each sentence, the currently estimated word category probabilities are used to com-

pute the most likely action template that sentence belongs to. Second, we update the

word category probabilities based on these inferred templates for each sentence. These

category probabilities will, in turn, affect the template matching process on subsequent

iterations, and so on. The process is run iteratively until convergence, or some other

stopping criteria is met (such as a maximum number of iterations).

Once our approach has categorized each term, we then seek to quantify the believ-

ability of the various terms in the context of various actions. we employ a two step

process to learn the distribution of categories for each term. First, we utilize a pre-

existing semantic knowledge base to obtain domain independent initial probabilities of

possible categorizations of each term. Second, we use our story corpus to refine these

initial probability estimates following an EM-style approach of iterative refinement.

We preprocess story corpuses by splitting into sentences, removing common words,

and lemmatizing words using Natural Language Toolkit (NLTK) [124]. After the pre-

processing, our algorithm proceeds with the following five steps:

• Split corpus into sentences using NLTK sentence splitter.

• Remove common words (e.g. the, of, and in).

• Filter out sentences not containing any of our action words.

• Lemmatize words using NLKT lemmatizer which reduce words to a more general

form (e.g. dogs become dog).

62

• Generate a local dictionary from all words in our filtered and lemmatized sen-

tences.

5.8.2 Prior Knowledge Inference

We primarily employ ConceptNet [125], an automatically generated semantic knowledge

base, that maps words to each other with a set of predefined relationships. We present

an extracted subset of the ConceptNet graph in Figure 5.10. We selected a salient

subset of these relationships to infer prior probabilities of words. We employed relative

frequencies of these salient relationships to initialize prior probabilities. These frequen-

cies are regularized and then normalized to produce an estimated initial distribution of

categories for each word. Regularization reduces the risk of becoming over confident in

the prior values.

Algorithm 6: Prior Generation from ConceptNet

for i=1:|V | do
Pi = [0 ; 0 ; 0 ; 0]
Rel = Query Vi from ConceptNet
if Rel[begin] is Vi then

if Rel[end] ∈ PersonF lag then
Pi[1] + +

end
if Rel ∈ ItemFlag then

Pi[2] + +
end

end
else

if Rel ∈ PlaceF lag then
Pi[3] + +

end

end
if Rel ∈ OtherF lag then

Pi[4] + +
end
Pi = Pi + c // Regularization

Pi =
Pi
‖Pi‖1

// Normalization

end

63

Kill

Rifle

Gun

Station

Police

Arrest

UsedFor

CapableOf

AtLocation

CapableOf

UsedFor

IsA

At
Lo
ca
tio
n

AtLocation

Figure 5.10: An example subgraph of ConceptNet is presented. Words are related to
each other by a set of predefined relations which provides a rich information setting.

Number of Iterations
0 50 100 150

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Claysburg
Leonard
Collection
Gun
Archway
Holmes

Figure 5.11: The evolution of category probability distribution for a selected set of
words is presented. Blue lines refer to Actors, red to Items, and green to Places.

64

5.8.3 Action Template Matching

For each action, we derive a corresponding set of action templates that capture the

typical usage of the action. For example, one of the templates for the Move action is

{Person, Place}, which would match the sentence “Bob went to the school”, whereas the

Arrest action has the template of {Person, Person, Item} and would match the sentence

“Alice used her gun to place Bob under arrest”.If a sentence has multiple actions, it is

arbitrarily assigned to one action category.

To improve performance, we restrict template length to four. In addition to restrict-

ing template length, we pad short templates with an “other” category, such that all

templates are of length four. When sentences are longer than templates, we select a

subset of words to match to the template length. Through repeated iterations of our

algorithm, many different word combinations will be tried for each template.

5.8.4 Template Weight Computation

We use a bag-of-words model to calculate the degree to which the template fits the

words. That is, we find the order-independent permutation of words for which the

categories best match the templates. The template score is computed by the product

of percentage of each word’s distribution in the appropriate category for the template.

5.8.5 Word Probability Update

To update the probability a word is a particular type, we sum the probability of each

template it appears in as that word type. we then normalize these such that the sum

over all category types for a particular term is 1. As our data is inherently noisy, we

don’t replace our prior with this new value, we instead firstly incorporate a dynamic

regularization term to smooth out the computed posterior category probabilities. This

smoothing terms depends on two factors that determine the observation confidence.

First, the larger the template score, the more confident our approach is that random

words chosen are the best ones fitting to the sentence’s action template. Secondly, we

look at ratio between the number of times a word appears associated with one of our

known actions, versus its occurrence in the entire corpus. We denote this ratio as F .

Words, which typically are associated with our actions will therefore converge more

65

Algorithm 7: Domain Learning Algorithm

while Not converged do
for i=1:|S| do

for template ∈ Templates(Si) do
if |Si| > |template| then

words = Randomly Pick from Si
end
else

words = Si
end
permutations = permute(template)
for permutation ∈ permutations do

fi=
∏
j P (Sji = permutationj)

Add fi to posterior matrix
end

end
Smoothly Normalize Posterior (Eqn. 5.8)
Update Category Estimates (Eqn. 5.9)

end

end

quickly than those which are not. This process is captured by the following equation,

which also includes a user-tunable parameter k:

P̂ = P̂ + k
F

max(fi)
. (5.8)

After applying this equation, the probabilities are normalized across the categories so

as to sum to one. We now use this newly inferred category distribution to update the

prior distribution via a multiplicative update as follows:

P = P ∗ P̂ . (5.9)

Algorithm 7 outlines the entire category learning processes.

66

Steal Kill Arrest Grab Search Marry

Holmes 0.86 0.11 0.37 1.00 1.00 0.21

John 1.00 1.00 0.39 0.16 0.33 1.00

Police 0.02 0.16 1.00 0.20 1.00 0.00

Table 5.1: Inferred believabilities for actor-action pairs for a subset of actions for the
detective story domain.

5.8.6 Believability Inference

Once the story domains are created, our approach infers approximate believability pa-

rameters by using a simple context information. To generate believabilities, the pairwise

co-occurrence of words is considered. The more frequently words occur in the same sen-

tence, the more believable that pair is. We compute the item-action believability by

dividing each item-action co-occurrence by the maximum item-action co-occurrence.

Formally, let I keep the co-occurrence count of items for all actions in A, and let B

be the item-action believability matrix of size the same size I where B(i, j) denotes the

believability of using item i with action j.

B(i, j) =
I(i, j)

max(I(:, j))
. (5.10)

where the item-action co-occurrences are divided by the maximum item-action co-

occurrence. We can compute the actor-action believabilities similarly using the actor-

action co-occurrences. To approximately compute the believability of an actor i per-

forming action j with item k, we simply multiply the actor-action believability with the

item-action believability.

Additionally, we employ the same metric as Eqn. 5.10 to find initial locations for

actors and items in the story environment. We normalize the co-occurrence rates of the

actors and items with places to calculate the probability of an actor or item appearing

in a particular place.

A sample of the actor-action believability matrix is shown in Table 5.1. Once again,

our approach creates some intuitive results, such as Holmes and Police searching fre-

quently, but it also generates some incorrect results, such as Holmes stealing frequently.

67

5.9 Domain Learning Results

We present the inferred believability matrix for item-action relationship in Table 5.3.

Our results are mostly intuitive, with revolvers being most likely used to kill or to arrest,

while games are very likely used for play. However, there are some small issues, such as

money being used to arrest being relatively believable. We experimented our approach

on the following three domains collected from the Project Gutenberg. We report both

learned domain knowledge and results on classification errors for each story corpus.

• Fairy Tale A collection of children’s fairy tales

• Detective A collection of Sherlock Holmes novels

• Shakespeare A collection of Shakespeare plays

Figure 5.12c shows the evolution of the classification and misclassification rates over

time for the Shakespeare domain. A word is only considered classified if it’s probability

for the correct category is greater than 50%. It is considered misclassified if the proba-

bility is greater than 50% in an incorrect category. As the figure shows, the classification

rate is much higher than the misclassification rate. In addition, the classification rate

converges much quicker than the misclassification rate. This allows us to limit the num-

ber of iterations to reduce the misclassification rate, with little effect on the classification

rate.

For runtime, a single iteration with approximately 10,000 sentences takes about 15

seconds (using a single core on an Intel 2.2 GHz laptop processor).

We present the learned children story domain in Table 5.2, detective domain in

Table 5.4, and Shakespeare domain in Table 5.5 for the corpus we studied. Words are

listed in the order at which they converge to a single category. At this point, we allow

human intervention, where the user can select and-or remove some of the words from

the converged words lists. Finally selected words will be fed into the story planning

algorithm. We should note that pronouns are removed from the actor words as they are

the fastest converging words across all domains.

Figure 5.11 shows the results of the category learning process in action, presenting

the convergence of different words across multiple iterations over the Detective training

68

Learned Children Story Domain

Actors
King - Prince - Dog - Jack - Princess
Bride - Lass - Queen - Calf - Hero

Items
Game - Heart - Sword - Wood - Ball
Harp - World - Bone - Money - Arrow

Places
House - Country - Forest - Room - Tree
Road - Palace - Path - Street - Sea

Table 5.2: Domain knowledge learned for the Children story domain. The words are
listed by the order they converged.

Steal Kill with Arrest with Play with Grab

Revolver 0.08 0.72 1.00 0.02 1.00

Knife 0.03 1.00 0.04 0.07 0.95

Necklace 0.22 0.12 0.11 0.04 0.59

Money 1.00 0.04 0.31 0.23 0.09

Game 0.04 0.05 0.00 1.00 0.05

Table 5.3: Inferred believabilities for item-action pairs for a subset of actions for the
detective story domain.

story corpus. Some terms, such as Gun, have very good values coming from our prior

initialization step (Alg. 6) . These terms very quickly converge to the correct value

(100% item categorization). In contrast, some words such as Holmes have little or no

relevant relationship in ConceptNet, so start with a nearly uniform prior (25% item,

25% actor, 25% place, 25% other). However, these terms can still be seen to converge

to the correct categories. Words like Holmes that appear frequently in our corpus, can

often converge faster than those that appear infrequently.

Learned Detective Story Domain

Actors
Aston - Girl - Police - Murderer - Heredith
Shepley - Glenthorpe - Holmes - John - Prisoner

Items
Card - Diamond - Money - Heart - Evidence
Knife - Revolver - Fortune - Necklace - Handkerchief

Places
Room - Street - Door - Marbury - Office
Gate - Hotel - Village - Air - London

Table 5.4: Domain knowledge learned for the Detective story domain. The words are
listed by the order they converged.

69

Number of Iterations
0 100 200 300

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Children Fairy Tales Domain

Person
Item
Place

Number of Iterations
0 100 200 300

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Detective Domain

Person
Item
Place

Number of Iterations
0 100 200 300

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shakespeare Domain

Person
Item
Place

Figure 5.12: Classification and misclassification(dashed lines) accuracies are presented
for categories of actors, items, and places.

70

Learned Shakespeare Story Domain

Actors
Thee - Lord - Sir - Ceasar - King
Faith - Maid - Mistress - Villain - Troyans

Items
Hearth - Fortune - Soul - Music - Sword
Ducat - Letter - Instrument - Spirit - Wager

Places
Heaven - Paris - House - Country - Lobby
University - Street - Ere - Gloucestershire - Nature

Table 5.5: Domain knowledge learned for the Shakespeare story domain. The words are
listed by the order they converged.

5.10 Story Generation from the Learned Domains

We employ Monte Carlo Tree Search for generating story plans as proposed in [7].

However, we use the learned story domain parameters for the sets of actors, items, and

places. Furthermore, we infer two believability matrices, item-action and actor-action,

to employ during planning for more believable stories. Also, in this work, we relax

the action-item matching constraint proposed in the aforementioned study and instead

let the planning phase resolve it. Since we don’t predefine which items can be used

for which actions, we have a much bigger search space for planning phase. However,

MCTS is shown to perform well for large search spaces and we present some examples

of generated stories in Figures 5.16 and 5.14.

We present a story generated with very low search time in Figure 5.15 where the kill

and arrest actions are performed with items whose action-item matrix scores are low,

therefore the resulting story is less believable.

Princess went to the forest. Prince and Princess fell in love with each other. [...]
Princess killed King with the treasure at the castle. [...] Prince and Princess got mar-
ried!

Figure 5.13: A low quality story generated in a second from the Fairytales story domain
with inferred domain knowledge.

We employed detective and children fairy tale stories as corpus to generate different

stories. For detective story domain, we defined the goal as follows: one actor was killed,

and murder was arrested. However, over time planning yields a converged story as

shown in Figure 5.16 where actions are performed with items such that action-item

71

King picked up treasure and sword at the castle. Princess went to the forest. King
went to the forest. King and Princess fell in love with each other. Prince stole King’s
treasure. King killed Prince with the sword at the forest. Princess witnessed the crime.
King and Princess got married!

Figure 5.14: A converged high quality story generated in less than a minute from the
Fairytales story domain with inferred domain knowledge.

values are high, resulting a more believable story.

John picked up the game at the house. John killed Holmes with the game at the house.
Policeman picked up the necklace at the station. Policeman went to the house. Police-
man arrested John with the necklace at the house.

Figure 5.15: A low quality story generated in a second from the Detective story domain
with inferred domain knowledge.

John picked up the money and the knife at the office. Police went to the street. Police
picked up the revolver at the street. Police went to the office. Holmes went to the office.
Holmes stole John’s money. John killed Holmes with the knife at the office. Police
witnessed the crime. Police arrested John with the revolver at the office.

Figure 5.16: A converged high quality story generated in less than a minute from the
Detective story domain with inferred domain knowledge.

For this goal, our search approach finds the low quality story excerpted in Figure 5.13

where the story is less believable because Princess is employing the treasure to kill King,

where both the believability of killing with treasure and Princess’ being the murderer

have low believability scores.

For the children story domain, we defined the story goal as follows: one actor died,

one item was stolen, and a marriage took place. With several more seconds of search,

the story in Figure 5.14 is generated. Here, the story is of a much higher quality

accomplishing all the story goals and supports our inferred believabilities through action-

item and action-actor matrices.

We presented a data-driven approach to extract salient narrative domain knowledge

from story books. We also presented a method for employing this knowledge coherently

with different actions. Our approach is able to learn different domain parameters from

72

different story corpuses. We also used the learned word probabilities in our story plan-

ning system to infer item-action and actor-action believabilities. We let a human user

intervene and edit story domain parameters to choose what will be used in the planning

phase. Finally, we presented rendered stories showing that converged stories get more

and more believable.

5.11 Conclusions

We have presented a framework capable of generating believable narratives which satisfy

user-defined goals from large story domains. By using Monte Carlo Tree Search, our

method is able to balance exploiting the most promising branches along with exploring

other potentially good choices at each level of the tree. The resulting framework gen-

erates complex, believable narratives with only a few seconds of computation time for

small domains, and a few minutes for larger ones. We also introduced a user-friendly

tool that can be used by authors and teachers to generate full or partial narratives for

specific scenes. We further presented an inference technique to better automate the

computer narrative generation. Our approach is able to learn different domain param-

eters from different existing story corpuses obtained from project Gutenberg. We also

used the learned word probabilities in our story planning system to infer item-action

and actor-action believabilities. While we are able to generate believable stories from

our corpuses, we still require some manual authoring of domain knowledge.

In Chapter 6, we study another closely related PCG problem, i.e. Sokoban puzzle

generation which has application areas such as games and education similar to computer

generated stories.

Chapter 6

Sokoban Puzzle Generation

6.1 Introduction

Puzzle games play an integral role in entertainment, intellectual exercise, and our un-

derstanding of complex systems. Generating these puzzles automatically can reduce

bottlenecks in design, and help keep games new, varied, and exciting. Furthermore,

generating a variety of puzzles with controlled difficulty allows us to custom tailor game

experiences to serve a much wider population, including those with little previous video

game or puzzle solving experience.

We study the above challenges within the context of the puzzle game of Sokoban.

Developed for the Japanese game company Thinking Rabbit in 1982, Sokoban involves

organizing boxes by pushing them with a player controlled agent on a discrete grid

board. We propose a method that automatically generates Sokoban puzzles. In order

to support the dynamic needs of a large variety of users, our system needs to address

several challenges inherent in the field of puzzle generation. These include the speed of

the system, supporting on-demand puzzle generation, and producing a variety of puzzles.

These properties support a range of player skills, and are key factors in keeping player

experiences engaging.

73

74

6.2 Main Results

This chapter describes our method for Sokoban puzzle generation. Current methods

for procedural Sokoban puzzle generation tend to use exponential time algorithms that

require templates or other human input. Achieving the goal of a fast, varied, and pre-

dictive system requires overcoming several challenges in automating the understanding

of puzzle difficulty and generating puzzles of desired difficulty levels. Our work moves

towards addressing these challenges via the following contributions:

• Assessing level difficulty. We utilize a user study to annotate the perceived diffi-

culty of an initial set of Sokoban puzzles.

• Learning features predictive of difficulty. We use statistical analysis to infer fea-

tures that are predictive of puzzle difficulty and are efficient to compute.

• Generating varied, solvable puzzles that optimize learned features. We formulate

puzzle generation as an MCTS optimization problem, modeling the search tree

structure such that puzzles are generated through simulated game play.

The result is an anytime algorithm that produces levels of varying difficulty that are

guaranteed to be solvable.

6.3 Background

There have been many applications of Procedural Content Generation (PCG) methods

to puzzle games, such as genetic algorithms for Spelunky [126], MCTS based Super

Mario Bros [33], map generation with Markov chains [127, 128, 129], and regular ex-

pression based level generation [130]. Other approaches propose search as a general tool

for puzzle generation [131], and generation of different start configurations for board

games to tune difficulty [132]. Some even dynamically adapt to player actions [133].

The authors in [134] propose an answer set programming based paradigm for PCGs

for games and beyond. A recent approach parses game play videos to generate game

levels [135]. The authors in [136] proposed a probabilistic approach to better under-

stand the game-space that can be used during design process. We refer the reader to

the survey [137] for a more detailed overview.

75

Figure 6.1: A high scoring 5x5 Sokoban puzzle generated by our method. The goal
is to move the agent to push boxes (brown squares) so that all goals (yellow discs)
are covered by the boxes. Yellow filled boxes represent covered goals. Obstacles (gray
squares) block both agent and box movement

Figure 6.2: A generated Sokoban puzzle with solution (score = 0.31).

76

6.3.1 Sokoban Puzzle

The Sokoban game board is composed of a two-dimensional array of contiguous tiles,

each of which can be an obstacle, an empty space, or a goal. Each goal or space tile may

contain at most one box or the agent. The agent may move horizontally or vertically,

one space at a time. Boxes may be pushed by the agent, at most one at a time, and

neither boxes nor the agent may enter any obstacle tile. The puzzle is solved once the

agent has arranged the board such that every goal tile also contains a box. We present

an example solution to a Sokoban puzzle level in Figure 6.2.

Previous work has investigated various aspects of computational Sokoban including

automated level solving, level generation, and assessment of level quality.

Previously proposed frameworks for Sokoban PCG involve creating many random

levels and analyzing the characteristics of feasible solutions. However, solving Sokoban

puzzles has been shown to be PSPACE-complete [138]. Some approaches have focused

on reducing the effective search domain [139]. Recently, Pereira et al. [140] have pro-

posed an approach for solving Sokoban levels optimally, finding the minimum necessary

number of box pushes. Pure MCTS has been shown to perform poorly for solving

Sokoban puzzles [141].

While there have been many attempts for solving Sokoban puzzles, the methods for

their procedural generation are less explored. To the best of our knowledge, Murase et

al. [142] proposed the first Sokoban puzzle generation method which firstly creates a

level by using templates, and proceeds with an exponential time solvability check. More

recently, the authors [143] proposed a similar approach, using templates for empty

rooms and enumerating box locations in a brute-force manner. Their method can gen-

erate compelling levels that are guaranteed to be solvable. However, the run-time is

exponential, and the method does not scale to puzzles with more than a few boxes.

There have been several efforts to assess the difficulty of puzzle games. One example

is the very recent work by [144], which combines features common to puzzle games into a

difficulty function, which is then tuned using user study data. Others consider Sokoban

levels specifically, comparing heuristic based problem decomposition metrics with user

study data [145], and using genetic algorithm solvers to estimate difficulty [146]. More

qualitatively, Taylor et al. [147] have conducted a user-study and concluded that com-

puter generated Sokoban levels can be as engaging as those designed by human experts.

77

6.4 Anytime Formulation with MCTS

One of the challenges for generating Sokoban puzzles is ensuring solvability of the gen-

erated levels. Since solving Sokoban has been shown to be PSPACE-complete, directly

checking whether a solution exists for a candidate puzzle becomes intractable with in-

creasing puzzle size. To overcome this challenge, we exploit the fact that a puzzle can

be generated through simulated gameplay. To do so, we decompose the puzzle gener-

ation problem into two phases: puzzle initialization and simulated gameplay. Puzzle

initialization refers to assigning the box start locations, empty tiles, and obstacle tiles.

Simulated gameplay consists of a simulated player performing sequences of box pushes

to determine goal locations. As the agent moves around during the simulation, it pushes

boxes to different locations. A final snapshot of the resulting board configuration defines

goal locations for boxes.

We apply MCTS by formulating the puzzle creation problem as an optimization

problem. The main reasons for using MCTS to generate Sokoban puzzles include its

success in problems with large branching factors, the anytime property, and the search

structure that guarantees solvability. As discussed above, the search tree is structured

such that the game can be generated by simulated gameplay. The search is conducted

over both puzzle initializations and gameplay actions. Because the simulated gameplay

is conducted using Sokoban game rules, invalid paths are never generated. In this way,

our method is guaranteed to generate only solvable levels.

Anytime algorithms return a valid solution (if a solution exists) even if it is inter-

rupted at any time. Given that our problem formulation is completely deterministic,

MCTS can store the best found puzzle after rollouts during the search and optionally

halt the search at some quality threshold. This behavior also enables us to create many

puzzle levels from a single MCTS run with monotonically increasing scores.

6.4.1 Action set

Our search tree starts with a board fully tiled with obstacles, except for the agent start

position. Initially, the following actions are possible at any node in the search tree:

1. Delete obstacle: An obstacle that is adjacent to an empty space is replaced with an

empty space. This progressive obstacle deletion prevents boards from containing

78

unreachable regions.

2. Place box : A box may be placed in any empty tile.

3. Freeze level : This action takes a snapshot of the board and saves it as the start

configuration of the board.

After the Freeze level action is chosen, the action set for descendant nodes of the frozen

puzzle node is replaced by two new actions:

1. Move agent : This action moves the agent on the game board. The agent cannot

move diagonally. This action provides the simulated gameplay mechanism, where

the boxes are pushed around to determine goal positions.

2. Evaluate level : This action is the terminal action for any action chain; it saves

the rearranged board as the solved configuration of the puzzle (i.e. current box

locations are saved as goal locations).

These two action sets separate the creation of initial puzzle configurations (actions

taken until the level is frozen) from simulated gameplay (agent movements to create

goal positions). A key property of this two-phase approach is that it maintains the

uniqueness of states throughout the tree; no two nodes represent the same board layout

and agent path. This helps improve efficiency by reducing redundant search paths.

Since the agent can move indefinitely back and forth, we enable the Evaluate Level

action at all the branches where the agent can move.

Once the Evaluate level action is chosen, we apply a simple post-processing to the

board in order to remove elements that are known to be uninteresting. In particular, we

turn all boxes that are never pushed by the agent into obstacles as this does not violate

any agent movement actions. We also replace boxes that are pushed only once with an

empty space (and delete the associated goal). This post-processing is performed before

evaluating the level.

A critical component of our MCTS formulation that has yet to be addressed is

the evaluation function. As MCTS is an optimization algorithm, we must provide it

with an objective function that describes the desired properties of candidate puzzles.

To accomplish this, the function maps from candidate puzzles to a score dependent

79

Figure 6.3: Our user study application, which presents pairs of puzzles to subjects and
asks them to identify the one that is more challenging. Subjects were able to play each
level presented as much or as little as desired before making a decision.

upon how difficult or interesting the puzzle is. This involves finding features of Sokoban

puzzles that can be computed quickly and are predictive of puzzle difficulty. We propose

a data driven way to produce such a function in the following section.

6.5 Data-Driven Evaluation Function

Our goal is to generate levels which are not only solvable, but also engaging or difficult.

We address this with a data-driven approach. First, we perform a user study analyzing

the perceived difficulty of Sokoban puzzles. We then use this analysis to propose and

validate new features estimating the level difficulty. Finally, we utilize these inferred

features in our MCTS framework to efficiently generate Sokoban puzzles.

6.5.1 Estimating Perceived Difficulty

One challenge in taking a data-driven approach for difficulty estimation is the lack of

large datasets of Sokoban puzzles that have known difficulty. The purpose of our user

80

study was to create such a dataset. To facilitate this, we developed a custom Sokoban

player application where users are shown two levels and asked to select the one that

is more difficult (Figure 6.3). The users can switch between shown levels anytime and

decide on the harder level without needing to complete the games. This application

was placed on an Android tablet and users were allowed to rate as many puzzle pairs

as they liked.

We collected user ratings for 120 preexisting puzzles including both human-designed

puzzles obtained from [148] and computer generated ones obtained from [8]. Over

the course of two weeks, we had approximately 30 participants provide 945 pairwise

comparisons.

In order to estimate the perceived difficulty of each puzzle, we employed the TrueSkill

Bayesian skill estimation system [149]. Briefly, each puzzle’s estimated difficulty is

represented by a Gaussian, with a mean at the estimated difficulty score, and a standard

deviation representing the uncertainty in the estimation. Each time a puzzle is decided

to be more difficult than another, its mean (estimated difficulty) increases and the

other puzzle’s mean decreases. The estimated uncertainty decreases as more ratings are

gathered for each puzzle. These TrueSkill means typically range from 0 (least difficult)

to 50 (most difficult), and are referred to in this paper as Perceived Difficulty.

6.5.2 Feature Analysis

The comparison results from the user study were compiled and used to annotate the

puzzles with their perceived difficulty. Because the evaluation function is invoked for

every Evaluate level action of MCTS, we restricted our search for features to only those

that were efficient to compute. In particular, we do not include features based on an

optimal solution, as finding an optimal solution is a PSPACE-complete task.

We tested several features for correlation with perceived difficulty, including:

Metrics analyzing the layout of obstacles and free space

• Tile Mixing. The number of free space tiles next to obstacle tiles, and obstacle

tiles next to free space.

• 3x3 Block Count. The number of tiles not in a 3x3 block of solid obstacles or open

space.

81

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250
time (seconds)

s
c

o
re

Figure 6.4: Generating Level Sets. (Top) The evolution of the best score from a single
run of MCTS. (Bottom) Several levels generated from the same run. Later levels have
higher score, and are therefore predicted to be more difficult.

Metrics which measured the placement of boxes and goals:

• Box Count. The number of boxes on the board.

• Goal Distance. The average distance between all possible pairings of boxes and

goals

And metrics which measured how congested the paths from boxes to their goals were:

• Congestion v1. A weighted sum of the number of boxes, goals, and obstacles in

the bounding rectangle between a box and its goal.

• Congestion v2. A refinement on the above congestion measure designed to maxi-

mize correlation with perceived difficulty (see below).

Importantly, each of these metrics can be computed in just a few microseconds, even

for larger boards, allowing them to be efficiently used during MCTS rollout evaluation.

To test the efficacy of candidate features, the signed Pearson correlation coefficient

r was computed for each feature with respect to perceived difficulty of the puzzles.

For features which contained tuning parameters, we ran a grid search to find which

parameters yielded the highest correlation. Table 6.1 shows the correlation between

each metric and the perceived difficulties of the puzzles. We also show the correlation

82

with only the procedural generated puzzles (PCG) tested, as the human crafted puzzles

tended to have a significant effect on the analysis.

Looking at the correlations we can see several interesting trends. For example, the

tile mixing metric is well correlated with difficulty for the entire dataset, but when only

computer generated levels are considered the metric is not very predictive. In contrast,

the simpler metric penalizing 3x3 blocks is more consistent. Likewise, the total distance

the user must push all the boxes is slightly less correlated than the simpler approach

of just counting the number of boxes to push (recall that boxes that are not pushed at

least two spaces will be removed).

Simpler methods were not always the most predictive. In particular, the first version

of the congestion metric was a weighted sum of the number of boxes bi, number of goals

gi, and number of obstacles oi within the bounding rectangle between the start and the

goal for each box i. That is
n∑
i=1

αsi + βgi + γoi. (6.1)

where, n is the number of boxes to be pushed, and α, β, and γ are scaling weights.

While intuitive and relatively well correlated with difficulty for computer generated

puzzles, this simple metric was almost completely uncorrelated with level difficulty

when including human designed puzzles, even after tuning the values of α, β, and γ.

Investigating the puzzles suggests this lack of correlation arises in part because the

metric rewards pushing a box past obstacles even if there are no other boxes directly in

the way. To address this issue, we refined the metric to be

b∑
i=1

αsi + βgi
γ(Ai − oi)

, (6.2)

where Ai is the total area enclosed in the rectangle from the box i to its goal. The intent

was to make the metric reward box paths that actually encounter boxes and obstacles,

instead of just having them nearby an otherwise unconstrained path. While this was

a small change to the measure of congestion, this new metric now correlates well with

difficulty in both procedurally-generated and human-generated levels.

83

r value r value
Feature (PCG levels) (all levels)

Tile Mixing -0.05 0.17
3x3 Block 0.09 0.24
Box Count 0.48 0.23

Goal distance -0.16 0.20
Congestion v1 0.41 0.05
Congestion v2 0.43 0.32

Table 6.1: Correlation (Pearson r correlation coefficients) for six features from the user
study. The most correlated features were used for level evaluation function.

6.5.3 Level Evaluation

Using the results from our feature analysis, we developed an evaluation function for use

in MCTS. For game playing AI, evaluation functions generally map to 0 for loss, 0.5

for a tie, and 1 for a win, with MCTS implementations typically calibrated to optimize

on this scale. For Sokoban puzzle generation, this is not directly applicable (as the

measure of success is not analogous to loss/tie/win). Instead, we propose to use a

weighted combination of puzzle features to estimate the difficulty on a scale close to

this 0 to 1 range.

By optimizing several metrics which are each independently correlated with puzzle

difficulty, MCTS can be used to find more difficult puzzles than optimizing any one

feature alone. Here, we used the Box Count, 3x3 Blocks, and Congestion v2, as they

were the most positively correlated with difficulty. Additionally, each of these metrics

captures an intuitive aspect of what makes an interesting Sokoban level: the 3x3 Blocks

metric (Pb) rewards heterogeneous landscapes, and discourages large clearings which are

easy to navigate; the Congestion metric (Pc) rewards box paths which overlap with each

other and are thereby likely to develop precedence constraints between box pushes; and

the Box count (n) rewards levels with more boxes which makes complex interactions

between boxes more likely. The resulting function is as follows:

f(P) =
wbPb + wcPc + wnn

k
(6.3)

The parameter k is employed to help normalize scores to the range of 0 to 1, though

84

some of our top scoring puzzles can fall outside of this range.

While generating puzzles, f(P) was used to evaluate MCTS rollouts. The weights

wc, wb, and wn were set empirically to be 1, 5, and 10 respectively and k was set to 50.

6.6 Generating Level Sets

A given run of the MCTS tree search will generate several levels of increasing (predicted)

difficulty. We exploit this feature to reach our goal of creating a level set, that is, a series

of levels that are of increasing difficulty. Because MCTS is an anytime algorithm that

explores a wide, randomized section of the search space, it is well suited for this task;

each run of MCTS creates several levels as it explores deeper in the tree, each with

increasing difficulty.

While each run of MCTS can generate a large number of levels, many are slight

variations of each other. To help create variation in the level sets, we chose a subset of

these levels with different estimated difficulty scores. Figure 6.4 shows the results from

one of these level sets. The entire run of MCTS for this set took 240s, and generated

20 of levels of varying difficulty.

6.7 Analysis and Discussion

Our approach efficiently generates dozens of levels with monotonically increasing scores

within 5 minutes on on a laptop using a single core of an Intel i7 2.2 GHz processor with

8GB memory. We observe that it generates more levels with low and medium scores

than high scores. An instance of this behavior can be seen in Figure 6.4.

To validate our updated evaluation function, we performed a second user-study on

20 levels generated in a single run (a subset of which is shown in Figure 6.4). This

user study included 6 participants who provided 210 level comparisons. The perceived

difficulty scores were then compared to the scores assigned by our evaluation function.

The results can be seen in Figure 6.5. We observe a very high correlation (r2 = 0.91)

between the perceived difficulty of a level and the score assigned by MCTS. This confirms

that MCTS will produce levels of increasing difficulty by optimizing this function.

Our method is capable of producing a wide variety of levels. Because MCTS is a

85

Size Num. Computation
Score (Empty Tiles) Boxes Time (s)

0.4 10.8 2.0 0.01
0.8 16.8 4.2 0.54
1.2 21.1 6.0 39.7
1.4 27.3 7.0 120

Table 6.2: Puzzle Scaling. Average computation time to find puzzles of various scores
and size. While smaller puzzles with few boxes can be found in a under a second,
scaling to larger sizes and box counts requires several minutes of computation. Results
are averaged over 5 runs with with different random seeds.

10

20

30

40

0.00 0.25 0.50 0.75 1.00 1.25
Score

P
er

ce
iv

ed
 D

iff
ic

ul
ty

Figure 6.5: The evaluation score of the puzzles in the generated level set were well
correlated with perceived difficulty (r2 = .91).

86

Figure 6.6: Procedurally generated puzzles of varying sizes

stochastic algorithm, each run naturally generates different levels from previous runs,

and even within a single run (see Figure 6.4). Additional variation can be achieved by

changing the maximum size of the board, randomizing the start position of the agent,

or limiting the number of boxes in a level (see Figure 6.6). Figures 6.1, 6.2, 6.3, and 6.6

showcase the variety in the puzzles that are generated.

Limitations Generation of large puzzles remains a bottleneck as the time grows ex-

ponentially as the explored space and number of boxes grow linearly (see Table 6.2).

This is due to a quickly growing branching factor in the puzzle initialization phase; ev-

ery Delete obstacle action that is taken adds up to three more available Delete obstacle

actions. Additionally, while our evaluation function is very highly correlated with per-

ceived difficulty, the levels that our method generates are typically easier than human

generated puzzles. Box count continues to be a main factor in both puzzle score and

87

perceived difficulty. While increasing the number of boxes does increase puzzle com-

plexity, many human designed puzzles tend to focus on creating complexity through

other means.

6.8 Conclusions

In this work we have proposed and implemented a method for Sokoban puzzle gener-

ation. We formulated the problem as MCTS optimization, generating puzzles through

simulated gameplay to ensure solvability. We developed an evaluation function with

a data-driven approach, utilizing a user study to find puzzle features well correlated

with perceived difficulty. Our method is efficient, producing a variety of puzzles with

monotonically increasing scores within minutes. We validated our evaluation function

through an additional user study and show that it correlates very well with perceived

difficulty.

Going forward, we plan to investigate ways of efficiently creating larger puzzles of

increasing difficulty. Some ways to overcome the current challenges in scaling up puzzles

may include composing larger puzzles from smaller puzzle elements, reducing the size of

the search space via data-driven heuristics, and exploring if some properties of optimal

solutions may be computed quickly. Additionally, we plan to perform a follow up user

study focused on larger levels and those of very high difficulty. Lastly, we plan to

parallelize MCTS to increase computation performance.

Chapter 7

Conclusions and Future Work

In this dissertation, we addressed several challenges such as scalability, support for di-

verse action sets, and infinite policy generation which often arise in highly coordinated

planning problems that have large search spaces. We have adapted Monte Carlo Tree

Search algorithm for coordinated planning problems in both physical and abstract do-

mains. We have shown that sampling-based stochastic tree search techniques can be

adapted to efficiently find approximate solutions to large-scale planning problems that

arise in a variety of domains including multi-robot planning and procedural content

generation. These stochastic approaches can be successfully applied to domains with

large state spaces, and their sampling-based nature allows flexibility in the details of

the problem formulation and supports quick feedback for user-in-the-loop interaction.

7.1 Summary of Contributions

Our main contributions are as follows:

1. We propose Monte Carlo Tree Search with Useful Cycles algorithm [3, 150], i.e.

an extended version of MCTS to search for infinite length multi-robot patrolling

policies. Our approach improves the state of the art in the sense that it can be

easily adapted to different intrusion models and arbitrary environments as long as

an MDP simulator exists for the formulated problem.

2. We have proposed a novel parallelization technique for MCTS algorithm along with

88

89

employing branch and bound technique to improve search success for multi-robot

task allocation problem with time windows and capacity constraints [4, 5]. Our

approach is general unlike previous heuristics tailored for specific problems and it

maintains completeness of MCTS. It finds near-optimal solutions for non-trivial

problems in an existing test benchmarks within an hour.

3. We have proposed an MCTS based story generation algorithm [6, 7] along with a

Bayesian inference method that can learn partial domain knowledge to be used by

the planner. The main novelty of our approach improving the state-of-the art is

its ability to allow the user to interact with the planner by changing believability

of actions and interact with the planner in real-time.

4. We have proposed an MCTS based approach that creates Sokoban puzzles through

simulated game play, guaranteeing solvability in all generated puzzles without

checking for a solution [8, 9]. The concept of content generation with simulated

play can be a touchstone and applied to other puzzles.

7.2 Limitations and Future Work

For MCTS, the main limitation is the further scalability for very large domains although

MCTS is still one of the best options for planning domains with large branching factors.

We can use pruning based heuristics to improve the scalability, but those heuristics

render MCTS algorithm a locally optimal algorithm. To further improve scalability, one

avenue is the search parallelization. However parallelization techniques are unlikely to

provide more than linear improvement while problem complexity grows exponentially in

the problem size. Recently, the authors in [151, 152] propose approaches that aggregate

state space to obtain an abstracted state space so as to improve scalability of sampling

based approaches. One avenue is to integrate these approaches to improve the planner

performance for larger problems.

For multi-robot task allocation work, we did not consider possible traffic/contention

during optimization. It is possible that theoretically optimal task allocation solutions

causes traffic among robots and perform poorly on the field. We plan to adapt our

90

planner so that it encourages separation between robots to prevent traffic and it gener-

ates flexible scheduling in order to complete tasks in a robust way in real world settings

where delays and uncertainties are inevitable.

For multi-robot patrolling, our approach scales large environments only by using

pruning techniques that result in locally optimal solutions. One possible way to over-

come this challenge is to use an approach where the environment is initially coarsened

enough to find a quick solution at a higher level, and then individual solutions are gen-

erated for each high level plan iteratively until finding primitive plans as described by

the authors in [153] for efficient path-finding.

For Sokoban puzzle generation work, there are several avenues for future work. Cur-

rently, our method generates puzzles mostly in the form of dynamic topology [154] where

the difficulty is mainly achieved through temporal order of box pushing as optimized by

our metrics. The player needs to push a box to create an opening for other boxes. One

direction would be understanding the features that would enable the planner to generate

puzzles in the form of static topology as well. Future work also includes comparison

with different sampling based approaches such as Nested Monte Carlo search proposed

in [155].

References

[1] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, Simon Colton, et al. A survey of monte carlo tree search methods. Compu-

tational Intelligence and AI in Games, IEEE Transactions on, 4(1):1–43, 2012.

[2] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. Nature, 529(7587):484–489, 2016.

[3] Bilal Kartal, Julio Godoy, Ioannis Karamouzas, and Stephen J Guy. Stochastic

tree search with useful cycles for patrolling problems. In Proc. IEEE Int’l Conf.

on Robotics and Automation, pages 1289–1294, 2015.

[4] Bilal Kartal, Ernesto Nunes, Julio Godoy, and Maria Gini. Monte carlo tree

search for multi-robot task allocation. In Thirtieth AAAI Conference on Artificial

Intelligence, 2016.

[5] Bilal Kartal, Ernesto Nunes, Julio Godoy, and Maria Gini. Monte carlo tree

search with branch and bound for multi-robot task allocation. In The IJCAI-16

Workshop on Autonomous Mobile Service Robots, 2016.

[6] Bilal Kartal, John Koenig, and Stephen J Guy. Generating believable stories in

large domains. In Ninth Artificial Intelligence and Interactive Digital Entertain-

ment Conference, 2013.

91

92

[7] Bilal Kartal, John Koenig, and Stephen J Guy. User-driven narrative variation

in large story domains using monte carlo tree search. In Proc. Int’l Conf. on

Autonomous Agents and Multi-Agent Systems, pages 69–76, 2014.

[8] Bilal Kartal, Nick Sohre, and Stephen Guy. Generating sokoban puzzle game

levels with monte carlo tree search. In The IJCAI-16 Workshop on General Game

Playing, 2016.

[9] Bilal Kartal, Nick Sohre, and Stephen Guy. Data-driven sokoban puzzle generation

with monte carlo tree search. In Twelfth Annual AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE), 2016.

[10] Frank Von Martial. Coordinating plans of autonomous agents. Springer-Verlag

Berlin, 1992.

[11] Craig Boutilier. Planning, learning and coordination in multiagent decision pro-

cesses. In Proceedings of the 6th conference on Theoretical aspects of rationality

and knowledge, pages 195–210. Morgan Kaufmann Publishers Inc., 1996.

[12] Jur Van den Berg, Jack Snoeyink, Ming C Lin, and Dinesh Manocha. Centralized

path planning for multiple robots: Optimal decoupling into sequential plans. In

Robotics: Science and systems, pages 2–3, 2009.

[13] Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal. Fue-

goan open-source framework for board games and go engine based on monte carlo

tree search. Computational Intelligence and AI in Games, IEEE Transactions on,

2(4):259–270, 2010.

[14] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit alloca-

tion indices. John Wiley & Sons, 2011.

[15] SaiDhiraj Amuru, Cem Tekin, Mihaela van der Schaar, and R Michael Buehrer.

A systematic learning method for optimal jamming. In Communications (ICC),

2015 IEEE International Conference on, pages 2822–2827. IEEE, 2015.

93

[16] Shuvra S Bhattacharyya, Mihaela van der Schaar, Onur Atan, Cem Tekin, and

Kishan Sudusinghe. Data-driven stream mining systems for computer vision. In

Advances in Embedded Computer Vision, pages 249–264. Springer, 2014.

[17] Cem Tekin, Onur Atan, and Mihaela Van Der Schaar. Discover the expert:

Context-adaptive expert selection for medical diagnosis. Emerging Topics in Com-

puting, IEEE Transactions on, 3(2):220–234, 2015.

[18] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[19] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In

ECML, pages 282–293, 2006.

[20] Radha-Krishna Balla and Alan Fern. Uct for tactical assault planning in real-time

strategy games. In IJCAI, pages 40–45, 2009.

[21] Niek GP Den Teuling and Mark HM Winands. Monte-carlo tree search for the

simultaneous move game tron. Univ. Maastricht, Netherlands, Tech. Rep, 2011.

[22] Tom Pepels, Mark HM Winands, and Marc Lanctot. Real-time monte carlo tree

search in ms pac-man. IEEE Trans. on Computational Intelligence and AI in

Games, 6(3):245–257, 2014.

[23] Marc Lanctot, Mark HM Winands, Tom Pepels, and Nathan R Sturtevant. Monte

Carlo tree search with heuristic evaluations using implicit minimax backups. In

Proc. IEEE Conf. on Computational Intelligence and Games (CIG), pages 1–8,

2014.

[24] Frederik Frydenberg, Kasper R Andersen, Sebastian Risi, and Julian Togelius.

Investigating MCTS modifications in general video game playing. In Proc. IEEE

Conf. on Computational Intelligence and Games (CIG), pages 107–113, 2015.

[25] Viliam Lisỳ, Marc Lanctot, and Michael Bowling. Online monte carlo counterfac-

tual regret minimization for search in imperfect information games. In Proceed-

ings of the 2015 International Conference on Autonomous Agents and Multiagent

94

Systems, pages 27–36. International Foundation for Autonomous Agents and Mul-

tiagent Systems, 2015.

[26] Erik Steinmetz and Maria Gini. Mining expert play to guide monte carlo search

in the opening moves of go. In Proceedings of the 24th International Conference

on Artificial Intelligence, pages 801–807. AAAI Press, 2015.

[27] Johannes Heinrich and David Silver. Smooth uct search in computer poker. Pro-

ceedings of the 24th International Joint Conference on Artifical Intelligence, 2015.

[28] Alberto Uriarte and Santiago Ontañón. High-level representations for game-tree

search in rts games. In Tenth Artificial Intelligence and Interactive Digital Enter-

tainment Conference, 2014.

[29] Edward J Powley, Daniel Whitehouse, Peter Cowling, et al. Monte carlo tree

search with macro-actions and heuristic route planning for the physical travelling

salesman problem. In Computational Intelligence and Games (CIG), 2012 IEEE

Conference on, pages 234–241. IEEE, 2012.

[30] Stefan Edelkamp and Max Gath. Solving single vehicle pickup and delivery prob-

lems with time windows and capacity constraints using nested monte-carlo search.

ICAART (1), pages 22–33, 2014.

[31] Mohamed Amer, Sinisa Todorovic, Alan Fern, and Song-Chun Zhu. Monte carlo

tree search for scheduling activity recognition. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1353–1360, 2013.

[32] Mikko Lauri, Nikolay Atanasov, George Pappas, and Risto Ritala. Active Ob-

ject Recognition via Monte Carlo Tree Search. In ICRA Workshop on Beyond

Geometric Constraints, 2015.

[33] Adam James Summerville, Shweta Philip, and Michael Mateas. Mcmcts pcg 4

smb: Monte carlo tree search to guide platformer level generation. In Eleventh

Artificial Intelligence and Interactive Digital Entertainment Conference, 2015.

[34] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances

in neural information processing systems, pages 2164–2172, 2010.

95

[35] Nick Sephton, Peter I Cowling, and Nicholas H Slaven. An experimental study of

action selection mechanisms to create an entertaining opponent. In Computational

Intelligence and Games (CIG), 2015 IEEE Conference on, pages 122–129. IEEE,

2015.

[36] Steven James, Benjamin Rosman, and George Konidaris. An investigation into

the effectiveness of heavy rollouts in uct. In The IJCAI-16 Workshop on General

Game Playing, page 55, 2016.

[37] Abdallah Saffidine, Tristan Cazenave, and Jean Méhat. Ucd: Upper confidence

bound for rooted directed acyclic graphs. Knowledge-Based Systems, 34:26–33,

2012.

[38] M Sakti Alvissalim, Big Zaman, Z Ahmad Hafizh, M Anwar Ma’sum, Grafika

Jati, Wisnu Jatmiko, and Petrus Mursanto. Swarm quadrotor robots for telecom-

munication network coverage area expansion in disaster area. In SICE Annual

Conference (SICE), 2012 Proceedings of, pages 2256–2261. IEEE, 2012.

[39] Jnaneshwar Das, Gareth Cross, Chao Qu, Anurag Makineni, Pratap Tokekar,

Yash Mulgaonkar, and Vijay Kumar. Devices, systems, and methods for auto-

mated monitoring enabling precision agriculture. In IEEE International Confer-

ence on Automation Science and Engineering (CASE), vol., no, pages 462–469,

2015.

[40] Volkan Isler, Narges Noori, Patrick Plonski, Alessandro Renzaglia, Pratap

Tokekar, and Josh Vander Hook. Finding and tracking targets in the wild: Algo-

rithms and field deployments. In 2015 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR), pages 1–8. IEEE, 2015.

[41] Haluk Bayram, Joshua Vander Hook, and Volkan Isler. Gathering bearing data for

target localization. IEEE Robotics and Automation Letters, 1(1):369–374, 2016.

[42] Bobby Davis, Ioannis Karamouzas, and Stephen J Guy. C-opt: Coverage-aware

trajectory optimization under uncertainty. IEEE Robotics and Automation Let-

ters, 1(2):1020–1027, 2016.

96

[43] Mikko Lauri, Aino Ropponen, and Risto Ritala. Risk-aversive optimal planning

of sensing. In Journal of Physics: Conference Series, volume 588, pages 12023–

12028, 2015.

[44] Pratap Tokekar and Vijay Kumar. Visibility-based persistent monitoring with

robot teams. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Inter-

national Conference on, pages 3387–3394. IEEE, 2015.

[45] J Melin, M Lauri, A Kolu, J Koljonen, and R Ritala. Cooperative sensing and

path planning in a multi-vehicle environment. IFAC-PapersOnLine, 48(9):198–

203, 2015.

[46] David Salda, Reza Javanmard Alitappeh, Luciano CA Pimenta, Renato Assun,

Mario FM Campos, et al. Dynamic perimeter surveillance with a team of robots.

In 2016 IEEE International Conference on Robotics and Automation (ICRA),

pages 5289–5294. IEEE, 2016.

[47] Mazda Ahmadi and Peter Stone. A multi-robot system for continuous area sweep-

ing tasks. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE

International Conference on, pages 1724–1729. IEEE, 2006.

[48] Yann Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In

Proceedings of Intelligent Agent Technology (IAT), 2004.

[49] Pooyan Fazli, Alireza Davoodi, Philippe Pasquier, and Alan K Mackworth. Com-

plete and robust cooperative robot area coverage with limited range. In Intelligent

Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages

5577–5582. IEEE, 2010.

[50] Pooyan Fazli and Alan K Mackworth. The effects of communication and visual

range on multi-robot repeated boundary coverage. In Safety, Security, and Rescue

Robotics (SSRR), 2012 IEEE International Symposium on, pages 1–8. IEEE, 2012.

[51] Aydano Machado, Geber Ramalho, Jean-Daniel Zucker, and Alexis Drogoul.

Multi-agent patrolling: An empirical analysis of alternative architectures. In

Multi-Agent-Based Simulation II, pages 155–170. Springer, 2003.

97

[52] Fabio Pasqualetti, Antonio Franchi, and Francesco Bullo. On cooperative pa-

trolling: Optimal trajectories, complexity analysis, and approximation algorithms.

Robotics, IEEE Transactions on, 28(3):592–606, 2012.

[53] David Portugal, Charles Pippin, Rui P Rocha, and Henrik Christensen. Finding

optimal routes for multi-robot patrolling in generic graphs. In Intelligent Robots

and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages

363–369. IEEE, 2014.

[54] Nicola Basilico, Nicola Gatti, and Federico Villa. Asynchronous multi-robot pa-

trolling against intrusions in arbitrary topologies. In Twenty-Fourth AAAI Con-

ference on Artificial Intelligence, 2010.

[55] Alessandro Marino, Lynne Parker, Gianluca Antonelli, and Fabrizio Caccavale.

Behavioral control for multi-robot perimeter patrol: A finite state automata ap-

proach. In IEEE International Conference on Robotics and Automation, pages

831–836, 2009.

[56] Tiago Sak, Jacques Wainer, and Siome Klein Goldenstein. Probabilistic multia-

gent patrolling. In Advances in Artificial Intelligence-SBIA 2008, pages 124–133.

Springer, 2008.

[57] Noa Agmon, Gal A Kaminka, and Sarit Kraus. Multi-robot adversarial patrolling:

Facing a full-knowledge opponent. Journal of Artificial Intelligence Research,

42:887–916, 2011.

[58] Ahmad Bilal Asghar and Stephen L Smith. Stochastic patrolling in adversarial

settings. In American Control Conference. IEEE, 2016.

[59] Efrat Sless, Noa Agmon, and Sarit Kraus. Multi-robot adversarial patrolling:

facing coordinated attacks. In Autonomous agents and multi-agent systems, pages

1093–1100, 2014.

[60] Armando Marino, Gianluca Antonelli, A Pedro Aguiar, António Pascoal, and

Stefano Chiaverini. A decentralized strategy for multirobot sampling/patrolling:

Theory and experiments. Control Systems Technology, IEEE Transactions on,

23(1):313–322, 2015.

98

[61] Tauhidul Alam, Matthew Edwards, Leonardo Bobadilla, and Dylan Shell. Dis-

tributed multi-robot area patrolling in adversarial environments. In International

Workshop on Robotic Sensor Networks, Seattle, WA, USA, 2015.

[62] Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. Distributed on-line dynamic

task assignment for multi-robot patrolling. Autonomous Robots, pages 1–25, 2016.

[63] Derya Aksaray, Kevin Leahy, and Calin Belta. Distributed multi-agent persistent

surveillance under temporal logic constraints. IFAC-PapersOnLine, 48(22):174–

179, 2015.

[64] Elizabeth Jensen, Michael Franklin, Sara Lahr, and Maria Gini. Sustainable multi-

robot patrol of an open polyline. In IEEE International Conference on Robotics

and Automation, pages 4792–4797, 2011.

[65] Praveen Paruchuri, Jonathan P Pearce, Milind Tambe, Fernando Ordonez, and

Sarit Kraus. An efficient heuristic approach for security against multiple adver-

saries. In Autonomous agents and multiagent systems, page 181, 2007.

[66] Charles Pippin and Henrik Christensen. Trust modeling in multi-robot patrolling.

In IEEE International Conference on Robotics and Automation, pages 59–66,

2014.

[67] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni. Minimizing communica-

tion latency in multirobot situation-aware patrolling. In Intelligent Robots and

Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 616–622.

IEEE, 2015.

[68] David Portugal and Rui Rocha. A survey on multi-robot patrolling algorithms.

In Technological Innovation for Sustainability, pages 139–146. Springer, 2011.

[69] Dennis Nieuwenhuisen and Mark H Overmars. Useful cycles in probabilistic

roadmap graphs. In IEEE International Conference on Robotics and Automa-

tion, volume 1, pages 446–452, 2004.

[70] Narges Noori, Alessandro Renzaglia, and Volkan Isler. Searching for a one-

dimensional random walker: Deterministic strategies with a time budget when

99

crossing is allowed. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 4811–4816, 2013.

[71] Turtlebot 2. http://www.turtlebot.com, 2016.

[72] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating

system. ICRA workshop on open source software, 3(3.2):5, 2009.

[73] Esha D Nerurkar and Stergios Roumeliotis. Power-slam: a linear-complexity,

anytime algorithm for slam. The International Journal of Robotics Research,

page 0278364910390539, 2011.

[74] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fast-

slam: A factored solution to the simultaneous localization and mapping problem.

In Aaai/iaai, pages 593–598, 2002.

[75] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques

for grid mapping with rao-blackwellized particle filters. IEEE transactions on

Robotics, 23(1):34–46, 2007.

[76] Joao Machado Santos, David Portugal, and Rui P Rocha. An evaluation of 2d

slam techniques available in robot operating system. In 2013 IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 1–6. IEEE,

2013.

[77] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. A comprehensive

taxonomy for multi-robot task allocation. The International Journal of Robotics

Research, 32(12):1495–1512, 2013.

[78] Lantao Liu and Dylan A Shell. Large-scale multi-robot task allocation via dynamic

partitioning and distribution. Autonomous Robots, 33(3):291–307, 2012.

[79] Julio Godoy and Maria Gini. Task allocation for spatially and temporally dis-

tributed tasks. In Proc. Int’l Conf. on Intelligent Autonomous Systems, pages

603–612, 2012.

100

[80] Matthew Gombolay, Ronald Wilcox, and Julie Shah. Fast scheduling of multi-

robot teams with temporospatial constraints. In Robotics: Science and Systems,

2013.

[81] S. S. Ponda, J. Redding, Han-Lim Choi, J.P. How, M. Vavrina, and J. Vian.

Decentralized planning for complex missions with dynamic communication con-

straints. In Proc. American Control Conf., pages 3998–4003, 2010.

[82] Ernesto Nunes and Maria Gini. Multi-robot auctions for allocation of tasks with

temporal constraints. In Twenty-Ninth AAAI Conference on Artificial Intelli-

gence, 2015.

[83] Mitchell McIntire, Ernesto Nunes, and Maria Gini. Iterated multi-robot auctions

for precedence-constrained task scheduling. In Proceedings of the 2016 Interna-

tional Conference on Autonomous Agents & Multiagent Systems, pages 1078–1086.

International Foundation for Autonomous Agents and Multiagent Systems, 2016.

[84] Haluk Bayram and H Işıl Bozma. Coalition formation games for dynamic mul-

tirobot tasks. The International Journal of Robotics Research, 35(5):514–527,

2016.

[85] Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations Research, 35(2):254–265, 1987.

[86] M. Alighanbari, Y. Kuwata, and J. P. How. Coordination and control of multiple

UAVs with timing constraints and loitering. In Proc. American Control Conf.,

pages 5311–5316, June 2003.

[87] Hakim Mitiche, Dalila Boughaci, and Maria Gini. Efficient heuristics for a time-

extended multi-robot task allocation problem. In New Technologies of Information

and Communication (NTIC), 2015 First International Conference on, pages 1–6.

IEEE, 2015.

[88] Mary Koes, Illah R. Nourbakhsh, and Katia P. Sycara. Heterogeneous multirobot

coordination with spatial and temporal constraints. In Proc. AAAI Conf. on

Artificial Intelligence, pages 1292–1297, 2005.

101

[89] Changjoo Nam and Dylan Shell. Assignment algorithms for modeling resource

contention in multirobot task allocation. IEEE Trans. on Automation Science

and Engineering, 12(3):889–900, 2015.

[90] G. Ayorkor Korsah, Anthony Stentz, M. Bernardine Dias, and Imran Aslam

Fanaswala. Optimal vehicle routing and scheduling with precedence constraints

and location choice. In Workshop on Intelligent Autonomous Systems at IEEE

ICRA, 2010.

[91] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows,

part I: Route construction and local search algorithms. Transportation Science,

39(1):104–118, February 2005.

[92] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows,

part II: Metaheuristics. Transportation Science, 39(1):119–139, February 2005.

[93] Guillaume MJ-B Chaslot, Mark HM Winands, and H Jaap van Den Herik. Parallel

Monte-Carlo Tree Search. In Computers and Games, pages 60–71. Springer, 2008.

[94] Alan Fern and Paul Lewis. Ensemble monte-carlo planning: An empirical study.

In Twenty-First International Conference on Automated Planning and Scheduling,

2011.

[95] Marius M. Solomon. Vrptw benchmark problems. http://web.cba.neu.edu/

~msolomon/problems.htm, 2005.

[96] Markus Eger, Camille Barot, and R Michael Young. Impulse: A formal character-

ization of story. In OASIcs-OpenAccess Series in Informatics, volume 45. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[97] Stephen G Ware, Robert M Young, Brent Harrison, and David L Roberts. A

computational model of plan-based narrative conflict at the fabula level. Com-

putational Intelligence and AI in Games, IEEE Transactions on, 6(3):271–288,

2014.

[98] Nicholas Davis, Margeaux Comerford, Mikhail Jacob, Chih-Pin Hsiao, and Brian

Magerko. An enactive characterization of pretend play. In Proceedings of the 2015

102

ACM SIGCHI Conference on Creativity and Cognition, pages 275–284. ACM,

2015.

[99] Maria Fox and Derek Long. PDDL2. 1: An extension to PDDL for expressing

temporal planning domains. J. Artif. Intell. Res.(JAIR), 20:61–124, 2003.

[100] Theo Wadsley and Malcolm Ryan. A belief-desire-intention model for narrative

generation. In Ninth Artificial Intelligence and Interactive Digital Entertainment

Conference, 2013.

[101] Hans Brinke, Jeroen Linssen, and Mariët Theune. Hide and sneak: story gener-

ation with characters that perceive and assume. In Tenth Artificial Intelligence

and Interactive Digital Entertainment Conference, 2014.

[102] Mark O Riedl and Robert Michael Young. Narrative planning: Balancing plot

and character. Journal of Artificial Intelligence Research, 39(1):217–268, 2010.

[103] Mei Si, Stacy C Marsella, and David V Pynadath. Thespian: Using multi-agent

fitting to craft interactive drama. In Proceedings of the fourth international joint

conference on Autonomous agents and multiagent systems, pages 21–28, 2005.

[104] David L Roberts and Charles L Isbell. Lessons on using computationally generated

influence for shaping narrative experiences. Computational Intelligence and AI in

Games, IEEE Transactions on, 6(2):188–202, 2014.

[105] Margaret Sarlej and Malcolm Ryan. Generating stories with morals. In Interactive

Storytelling, pages 217–222. Springer, 2013.

[106] Barbaros Bostan and Tim Marsh. The interactiveof interactive storytelling: cus-

tomizing the gaming experience. In Entertainment Computing-ICEC 2010, pages

472–475. Springer, 2010.

[107] Mirjam P Eladhari, Philip L Lopes, and Georgios N Yannakakis. Interweaving

story coherence and player creativity through story-making games. In Interactive

Storytelling, pages 73–80. Springer, 2014.

103

[108] Reid Swanson and Andrew S Gordon. Say anything: Using textual case-based

reasoning to enable open-domain interactive storytelling. ACM Transactions on

Interactive Intelligent Systems (TiiS), 2(3):16, 2012.

[109] Pablo Gervás, Belén Dı́az-Agudo, Federico Peinado, and Raquel Hervás. Story

plot generation based on cbr. Knowledge-Based Systems, 18(4):235–242, 2005.

[110] Mubbasir Kapadia, Jessica Falk, Fabio Zünd, Marcel Marti, Robert W Sumner,

and Markus Gross. Computer-assisted authoring of interactive narratives. In

Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, pages

85–92, 2015.

[111] Mariet Theune, Sander Faas, Er Faas, Anton Nijholt, and Dirk Heylen. The virtual

storyteller: Story creation by intelligent agents. In Proceedings of the Technologies

for Interactive Digital Storytelling and Entertainment (TIDSE) Conference, pages

204–215, 2003.

[112] Michael Brenner. Creating dynamic story plots with continual multiagent plan-

ning. In Proc. AAAI Conf. on Artificial Intelligence, 2010.

[113] Jonathan Teutenberg and Julie Porteous. Efficient intent-based narrative genera-

tion using multiple planning agents. In Proc. Int’l Conf. on Autonomous Agents

and Multi-Agent Systems, pages 603–610, 2013.

[114] Seung Y Lee, Jonathan P Rowe, Bradford W Mott, and James C Lester. A

supervised learning framework for modeling director agent strategies in educa-

tional interactive narrative. Computational Intelligence and AI in Games, IEEE

Transactions on, 6(2):203–215, 2014.

[115] Mark J Nelson, David L Roberts, Charles L Isbell Jr, and Michael Mateas. Re-

inforcement learning for declarative optimization-based drama management. In

Proceedings of the fifth international joint conference on Autonomous agents and

multiagent systems, pages 775–782, 2006.

[116] Hong Yu and Mark Owen Riedl. Personalized interactive narratives via sequential

recommendation of plot points. Computational Intelligence and AI in Games,

IEEE Transactions on, 6(2):174–187, 2014.

104

[117] Julie Porteous, Alan Lindsay, Jonathon Read, Mark Truran, and Marc Cavazza.

Automated extension of narrative planning domains with antonymic operators.

In Proceedings of the 2015 International Conference on Autonomous Agents and

Multiagent Systems, pages 1547–1555, 2015.

[118] Alan Lindsay, Fred Charles, Jonathon Read, Julie Porteous, Marc Cavazza, and

Gersende Georg. Generation of non-compliant behaviour in virtual medical nar-

ratives. In Intelligent Virtual Agents, pages 216–228. Springer International Pub-

lishing, 2015.

[119] Joshua McCoy, Mike Treanor, Ben Samuel, Noah Wardrip-Fruin, and Michael

Mateas. Comme il faut: A system for authoring playable social models. In AIIDE,

2011.

[120] Boyang Li, Stephen Lee-Urban, George Johnston, and Mark Riedl. Story gener-

ation with crowdsourced plot graphs. In Twenty-Seventh AAAI Conference on

Artificial Intelligence, 2013.

[121] Josep Valls-Vargas, Jichen Zhu, and Santiago Ontañón. Toward automatic role

identification in unannotated folk tales. In Tenth Artificial Intelligence and Inter-

active Digital Entertainment Conference, 2014.

[122] Jonathan Rowe, Bradford Mott, and James Lester. Optimizing player experience

in interactive narrative planning: A modular reinforcement learning approach.

In Tenth Artificial Intelligence and Interactive Digital Entertainment Conference,

2014.

[123] Ahmed Khalifa, Aaron Isaksen, Julian Togelius, and Andy Nealen. Modifying

mcts for human-like general video game playing. Proceedings of the 25th Interna-

tional Joint Conference on Artifical Intelligence, 2016.

[124] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python. ” O’Reilly Media, Inc.”, 2009.

[125] Hugo Liu and Push Singh. Conceptnet a practical commonsense reasoning tool-

kit. BT technology journal, 22(4):211–226, 2004.

105

[126] Walaa Baghdadi, Fawzya Shams Eddin, Rawan Al-Omari, Zeina Alhalawani, Mo-

hammad Shaker, and Noor Shaker. A procedural method for automatic generation

of spelunky levels. In European Conference on the Applications of Evolutionary

Computation, pages 305–317. Springer, 2015.

[127] Sam Snodgrass and Santiago Ontañón. Generating maps using markov chains.

In Proceedings of the 2013 AIIDE Workshop on Artificial Intelligence and Game

Aesthetics, pages 25–28, 2013.

[128] Sam Snodgrass and Santiago Ontañón. A hierarchical mdmc approach to 2d video

game map generation. In Eleventh Artificial Intelligence and Interactive Digital

Entertainment Conference, 2015.

[129] Sam Snodgrass and Santiago Ontañón. Controllable procedural content generation

via constrained multi-dimensional markov chain sampling. Proceedings of the 25th

International Joint Conference on Artifical Intelligence, 2016.

[130] David Maung and Roger Crawfis. Applying formal picture languages to procedural

content generation. In Computer Games: AI, Animation, Mobile, Multimedia,

Educational and Serious Games (CGAMES), 2015, pages 58–64, 2015.

[131] N Sturtevant. An argument for large-scale breadthfirst search for game design and

content generation via a case study of fling. In AI in the Game Design Process

(AIIDE workshop), 2013.

[132] Umair Z Ahmed, Krishnendu Chatterjee, and Sumit Gulwani. Automatic gen-

eration of alternative starting positions for simple traditional board games. In

Twenty-Ninth AAAI Conf. on Artificial Intelligence, 2015.

[133] David Stammer, Tobias Gunther, and Mike Preuss. Player-adaptive spelunky level

generation. In Computational Intelligence and Games, 2015 IEEE Conference on,

pages 130–137, 2015.

[134] Adam M Smith and Michael Mateas. Answer set programming for procedural

content generation: A design space approach. Computational Intelligence and AI

in Games, IEEE Transactions on, 3(3):187–200, 2011.

106

[135] Matthew Guzdial and Mark O Riedl. Toward game level generation from gameplay

videos. In Proceedings of the FDG workshop on Procedural Content Generation

in Games, 2015.

[136] Aaron Isaksen and Andy Nealen. Comparing player skill, game variants, and learn-

ing rates using survival analysis. In Eleventh Artificial Intelligence and Interactive

Digital Entertainment Conference, 2015.

[137] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron

Browne. Search-based procedural content generation: A taxonomy and survey.

Computational Intelligence and AI in Games, IEEE Transactions on, 3(3):172–

186, 2011.

[138] Joseph Culberson. Sokoban is PSPACE-complete. In Proceedings in Informatics,

volume 4, pages 65–76, 1999.

[139] Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-

agent search methods using domain knowledge. Artificial Intelligence, 129(1):219–

251, 2001.

[140] André G Pereira, Marcus Ritt, and Luciana S Buriol. Optimal sokoban solving

using pattern databases with specific domain knowledge. Artificial Intelligence,

227:52–70, 2015.

[141] Diego Perez, Spyridon Samothrakis, and Simon Lucas. Knowledge-based fast

evolutionary mcts for general video game playing. In Proc. IEEE Conf. on Com-

putational Intelligence and Games (CIG), pages 1–8, 2014.

[142] Yoshio Murase, Hitoshi Matsubara, and Yuzuru Hiraga. Automatic making of

sokoban problems. In Pacific Rim International Conference on Artificial Intelli-

gence, pages 592–600. Springer, 1996.

[143] Joshua Taylor and Ian Parberry. Procedural generation of sokoban levels. In

North American Conf. on Intelligent Games and Simulation, pages 5–12, 2011.

107

[144] Marc Van Kreveld, Maarten Loffler, and Paul Mutser. Automated puzzle difficulty

estimation. In Proc. IEEE Conf. on Computational Intelligence and Games (CIG),

pages 415–422, 2015.

[145] Petr Jarušek and Radek Pelánek. Difficulty rating of sokoban puzzle. In Stairs,

volume 222, page 140, 2010.

[146] Daniel Ashlock and Justin Schonfeld. Evolution for automatic assessment of the

difficulty of sokoban boards. In Evolutionary Computation, pages 1–8, 2010.

[147] Joshua Taylor, Thomas D Parsons, and Ian Parberry. Comparing player attention

on procedurally generated vs. hand crafted sokoban levels with an auditory stroop

test. In Conf. on the Foundations of Digital Games, 2015.

[148] David W. Skinner. Sokoban puzzle dataset microban. http://www.abelmartin.

com/rj/sokobanJS/Skinner/David%20W.%20Skinner%20-%20Sokoban.htm,

2000.

[149] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill: A bayesian skill rating

system. In Advances in Neural Information Processing Systems, pages 569–576,

2006.

[150] Bilal Kartal. Monte carlo tree search with useful cycles for motion planning. In

2015 IEEE International Conference on Robotics and Automation (ICRA) PhD

Forum. IEEE, 2015.

[151] Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in monte carlo

tree search. In Proc. AAAI Conf. on Artificial Intelligence, pages 2446–2452,

2014.

[152] Hao Cui, Roni Khardon, Alan Fern, and Prasad Tadepalli. Factored mcts for large

scale stochastic planning. In Proc. AAAI Conf. on Artificial Intelligence, pages

3261–3267, 2015.

[153] Nathan Sturtevant and Michael Buro. Partial pathfinding using map abstraction

and refinement. In Proc. AAAI Conf. on Artificial Intelligence, volume 5, pages

1392–1397, 2005.

108

[154] David Holland. The two styles of sokoban. http://www.games4brains.de/

twostyles.html, 2001.

[155] Tristan Cazenave. Nested monte-carlo search. In Proc. Int’l Joint Conf. on Arti-

ficial intelligence, volume 9, pages 456–461, 2009.

