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Abstract 

The low signal-to-noise ratio encountered during auscultation in many high noise 

environments can impede a physician’s successful examination and diagnosis of a 

patient’s health. This thesis develops a vibro-acoustic model for an electronic stethoscope 

and investigates a number of techniques to improve the signal-to-noise ratio. The 

techniques explored are: 

1. Redesign of stethoscope components for improved vibration isolation 

2. Use of dual piezoelectric transducers and dynamic model inversion for 

elimination of physician handling noise 

3. Implementation of active noise cancellation using either a reference microphone 

or a reference accelerometer  

In a digital stethoscope, a piezoelectric transducer is used to convert chest sounds into 

electrical signals. Due to the larger chestpiece size needed to accommodate the 

electronics of a digital stethoscope, noise due to physician handling of the device is often 

greater. To characterize the effects of the device’s construction on its sensitivity to 

handling disturbances, a theoretical stethoscope model is developed. The vibro-acoustic 

model relates force inputs acting on the body of the stethoscope to voltage signals created 

by its piezo-ceramic transducer.  

Using the theoretical model, simulations are conducted to demonstrate that traditional 

vibration isolation applied between the chestpiece and the transducer results in poor 

coupling—loss in sensitivity—between the transducer and the patient’s chest. By using a 

floating transducer housing, equally effective vibration isolation can be accomplished 

with far less loss in sensitivity to patient signals. The proposed isolation design was 

experimentally evaluated by redesigning the stethoscope’s components. However, 

limitations in the damping and stiffness values of available isolation materials resulted in 

some loss of sensitivity over a narrow frequency range. 
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Next, as a superior alternative to physically isolating the stethoscope transducer from 

external disturbances a signal processing based approach to compensate for handling 

noise is developed. It is possible to use a redundant sensor and novel input estimation 

techniques to digitally remove the undesired noise measurement components. By adding 

a second piezo to the stethoscope assembly, it is shown that an inverse dynamic mapping 

can be used to relate the measured signals to original directional inputs acting on the 

stethoscope. An output feedback observer is developed to account for the unknown initial 

state of the system dynamics. In simulation, it is shown that the effects of the unknown 

and undesired disturbance input can be removed over the entire frequency range critical 

for auscultation. In physical experiments, the feasibility of the dual-piezo stethoscope 

approach to estimate and remove these disturbances is also demonstrated. 

In many patient transport environments, the ambient noise can routinely exceed 75 dB 

with the most severe environments having noise sources more than 3000 times louder 

than a typical auscultation signal. For noise from the patient side of the stethoscope, 

passive isolation methods cannot be used as they will impede transmission of the desired 

chest sounds to the transducer. Based on helicopter field data acquired with an electronic 

stethoscope retrofitted with an array of microphones and accelerometers, it is 

demonstrated that primary noise corruption during auscultation in a helicopter can be 

attributed to vehicle vibrations. Using this information, it is shown that a reference 

accelerometer can be used in place of a conventional reference microphone to estimate 

the noise corruption. Using either the LMS or NLMS active noise cancellation 

algorithms, it is possible to extract the desired auscultation signal. This is confirmed 

experimentally by simulating the internal cabin noise levels of the harshest noise 

environment in which injured military personnel are routinely examined—a mobile Black 

Hawk helicopter. 
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CHAPTER 1: 

INTRODUCTION 

1.1 MOTIVATION 

Auscultation refers generally to the practice of listening to sounds emanating from the 

body. Since the advent of the stethoscope in 1816 [1], it has quickly risen to obtain status 

as the ubiquitous sign of a doctor. This is due largely to the clinical relevance and 

versatility of the stethoscope as a diagnostic tool for preliminary patient assessment and 

triage. 

Despite advances in stethoscope technology, auscultation is still not possible in many 

emergency medicine environments. This is due to the presence of high levels of ambient 

noise which can mask the clinical signals of interest. This problem is particularly severe 

when attempting to auscultate during patient transport in both ground and air vehicles. 

By understanding the characteristics of these unwanted additive signals, it is possible to 

improve the design of stethoscope to mitigate the effects of noise and successfully enable 

auscultation in these harsh environments. 

1.1.1 Auscultation 

In a standard clinical setting, the stethoscope is routinely used for examination of a 

patient’s cardiovascular, respiratory, and gastrointestinal systems. 

During auscultation of the cardiovascular system, the stethoscope diaphragm is placed on 

the patient’s chest over various positions of the heart while a clinician observes the 

cardiac rate and rhythm. A trained physician can use this method to detect both heart 

murmurs and gallop rhythms.   

Similarly, for auscultation of the lung, the stethoscope is placed on an array of positions 

on both the posterior and anterior chest adjacent to the main lobes of the lung. In addition 
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to the traditional cadence of a healthy breath sound caused by air moving through the 

respiratory system, a physician is looking for pathological chest sounds such as wheezes, 

crackles, and stridor which are noted by their pitch and continuity. A brief introduction to 

the specific characteristics of these chest sounds and their analysis is provided by Dalmay 

and Reichert [2, 3]. 

A time recording of clean heart and lung sounds in a healthy patient can be seen in Figure 

1-1 and Figure 1-2 respectively. 

 

Figure 1-1: Normal and unsplit first and second heart sounds 

 

Figure 1-2: Normal vesicular lung sounds 
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There are many physiological factors which can affect the transmission of auscultation 

signals prior to reaching the stethoscope [4, 5]. However, there has been considerable 

research conducted to evaluate the standard spectral properties of both heart and lung 

sounds as they would appear at the surface of the body. In one of the earliest of such 

studies, Gavriely found that typical breath sounds contain frequency content between .5-1 

kHz [6]. In future work, he has refined these results to indicate that inspiration and 

expiration lung sounds contain frequency components between 736-999 Hz and 426-796 

Hz respectively [7]. In similar work conducted for the evaluation of heart sounds, Arnott 

has reported that heart sounds in healthy subjects are concentrated below 150 Hz [8]. 

Other investigations have focused on the frequency content of many cardiac 

irregularities. These reports suggest that many abnormal heart sounds may contain 

frequency components as high as 1000Hz [9]. A summary of the frequency content of 

healthy and abnormal chest sounds is provided in Figure 1-3. 

 

Figure 1-3: Frequency content of healthy and abnormal chest sounds [3, 7, 8, 9, 10, 11, 12] 
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To enable successful auscultation, the stethoscope’s primary function is to amplify 

sounds emanating from the body. Normal chest sounds typically vary between 22-30 dB 

at the skins surface [13]. After amplification through the stethoscope, these sounds are 

amplified to 60-75 dB at which point they are audible to the user. In their modern form, 

stethoscopes come in both mechanical and electronic versions. Although their 

construction may differ, all stethoscopes generally consist of three primary components: 

(1) the chestpiece, (2) the tubing, and (3) the binaurals (see Figure 1-4). Based on factors 

such as construction, geometry, and material selection, each of these components can 

have a distinct effect on the quality of sound transmitted to the user [14, 15]. 

 

Figure 1-4: Primary components of a modern stethoscope 

The chestpiece is the main component of the stethoscope which is placed on a patient 

during examination. It is responsible for acquiring the desired auscultation signal 

generated by small pressure waves at the skin’s surface. The resulting sound is 

transferred to the user (i.e. physician) through the tubing and subsequently delivered by 

way of the stethoscope binaurals which are placed in the user’s ears. 

The chestpiece of a mechanical stethoscope contains one or two small air cavities which 

are used to transmit the desired sound to the user. Depending on the application or 

design, the cavity may be covered by a small tightly stretched diaphragm which vibrates 

as a result of the chest signal. Other designs feature an open cavity which relies on direct 

vibrations of the patient’s skin acting as the diaphragm. For both configurations, the 
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pressure change caused in the air cavity by this motion is what creates the sound 

observed by the user. The characteristics of the relayed sound are affected by the both the 

shape and volume of the air cavity. A large diameter and short cavity with a diaphragm 

will generally transmit higher frequency signals. Conversely, a small deep cavity will 

better transmit lower frequency sounds. Some types of stethoscopes will have both a 

diaphragm (high frequency, short cavity) and a bell (low frequency, deep cavity) side to 

allow a physician to selectively listen to different chest sounds depending on which side 

of the device is used. 

In an electronic stethoscope, the direct transmission of acoustic waves through 

stethoscope chestpiece is replaced by a sensor and speaker. Traditionally, the sensor is 

either a small microphone or piezoceramic disc which can detect the vibrations at the 

skins surface. For some microphone based stethoscopes, a diaphragm and closed air 

cavity is still employed to provide the required pressure differential which is measured by 

the sensor. The conversion of an acoustic signal to an analog measurement enables 

further modification to a sound before it is presented to the user. Many commercially 

available electronic stethoscope models allow the selection of different filter modes 

which can limit the frequency range of the sound played to the user. In this way, the 

electronic stethoscope can provide a similar level of versatility as a conventional two-

sided (bell and diaphragm) mechanical stethoscope. After acquiring and possibly filtering 

the signal, the sound is transmitted to the user with a small speaker placed either at the 

base of the tubing or directly at the binaurals. 

1.1.2 Noise in Emergency Setting 

Due to its versatility in clinical diagnostics, the stethoscope is commonly used by medical 

practitioners in a wide variety of environments. In many of these settings, the presence of 

high levels of ambient environmental noise and operational noise caused during routine 

handling of the stethoscope has been found to interfere with successful auscultation. The 

potential noise sources can be broken into four main categories: 
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1. Ambient acoustics: Airborne noise leaking into the stethoscope chestpiece, 

tubing, or binaurals (e.g. people talking or loud equipment nearby) 

2. Ambient vibrations: Structure borne noise traveling through the patient or 

physician and detected at the chestpiece (e.g. vibrations in a moving vehicle 

traveling on a rough road) 

3. Physician noise: Noise due to handling of the stethoscope (e.g. rubbing caused by 

a physician’s fingers moving on the chestpiece) 

4. Patient contact noise: Noise due to relative motion between the stethoscope and 

the patient (e.g. friction caused by repositioning the stethoscope on a patient’s 

chest)  

Some of these noise sources are periodic or sudden in nature and can be avoided with 

improved training or control of the environment, but others may be more persistent 

and/or unavoidable. Each presents a unique challenge to auscultation and directly impacts 

the quality of diagnostics capable with either a mechanical or electronic stethoscope. 

In many hospital emergency departments the ambient noise level can vary between 60-

70dB. At this level, heart and lung sounds are still audible, but the detection of heart 

murmurs and other clinically relevant chest sound irregularities is not possible [16, 17]. 

With the elevated sound levels present during patient ground transport, one study has 

found that, even on a paved road with no sirens, lung sounds in a healthy subject were 

detected with only a 9.2% success rate [18]. Thus, in aeromedical transport environments, 

where noise levels are well in excess of 75 dB, it is obvious that there exists a clear 

challenge to successful auscultation.  
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Presented in Table 1-1 are the ambient noise levels in common emergency patient 

examination environments. 

Table 1-1: Ambient noise levels in common emergency patient examination environments 

Environment Conditions Ambient Noise Level (dB) 

Hospital 

Pediatric clinic examining room 75 [17] 

Surgical ward 65 [17] 

Emergency department 55.9-76.6 [19] 

Medical clinic examining room 55 [17] 

Ambulance 
In transit, with siren 93-100 [20] 

In transit, no siren 68 [21] 

Helicopter 

Civilian Medevac Bell 206L LongRanger  80-95 [22] 

Civilian Medevac MBB BK-17  93-97 [23] 

Army Medevac Sikorsky UH-60 104 [24] 

MBB BO-105 94.9-96.4 [25] 

Plane 

Bell Jet Ranger 206B 90-100 [26] 

Falcon 50 77 [27] 

C-130 80-100 [28] 

 

In the quietest aeromedical transportation environment, the Falcon 50 Plane, the use of an 

electronic stethoscope was found to improve detection of heart sounds, but all clinically 

relevant details were barely audible [27]. Similar assessments of stethoscope performance 

in helicopters have demonstrated that auscultation of both lung and heart sounds was not 

possible [25, 29]. Working in a simulated high noise chamber, Cain has quantified the 

severity of the problem and determined that ambient noise levels in excess of 85dB and 

75-80 dB respectively will prevent successful auscultation of heart and lung sounds [29]. 

In transportation environments, the ambient acoustic noise is often coupled with the 

presence of structurally transmitted noise [30]. These vibrations originate from 

mechanical components within the vehicle engine, or the rotor in the case of a helicopter. 

Additionally, during ground transport vibrations caused by the vehicle frame as it travels 

over rough road surfaces may be present. Irrespective of their origin, these vibrations can 

be transferred to the stethoscope by traveling through either the patient or the physician 
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and to the stethoscope. When traveling through the patient, they can appear as additive 

components generally indistinguishable from the clinically relevant chest signal. 

In addition to ambient noise, successful auscultation can be impeded by operational noise 

caused by the user handling the stethoscope. This noise can be caused by finger/hand 

movement along the stethoscope chestpiece surface, accidental contact with the 

chestpiece, or muscle hand tremors. Generally, this noise is independent of the 

environment in which the device is used. However, the presence of large levels of 

vibration in a transportation environment may amplify the problem. For the case of hand 

tremors and accidental bumping of the device, the noise will appear as short bursts with 

large relative amplitude. Particularly, in an electronic stethoscope, the high sensitivity of 

the transducer causes a large amplification of these noise artifacts. Additionally, handling 

noise may appear due to rubbing on the chestpiece or other stethoscope components. 

Characteristic of the underlying mechanisms of friction, this noise will be broadband in 

nature.  

1.2 EXISTING TECHNOLOGIES 

A variety of approaches have been documented for addressing the different noise 

components which have been found to interfere with auscultation. The approaches can be 

generally divided into two main categories: those which try to minimize the energy of the 

noise before it is sensed by the stethoscope, and those which try to eliminate the noise 

with filtering or signal processing methods after it has already been picked up by the 

stethoscope. Depending on the severity of the noise source, the existing technologies 

have had varied success, but ultimately no complete design solution has been presented 

which can guarantee successful auscultation in the harshest environments. 

 Spectral Filtering 1.1.1

An initial approach to mitigate the ambient noise in high noise environments may be 

spectral band filtering. If the primary noise corruption exists in a frequency range other 

than that of the desired signal, it is possible to design a filter to remove any detected 
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signal components that lie in this range. This approach has been presented by Orton 

where a design is proposed which features a variable bandpass filter with an adjustable 

center frequency and bandwidth [31]. Recall that both heart and lung sounds contain 

frequency content up to 1 kHz. In lieu of this, for spectral band filtering to be successful 

in enabling auscultation in high noise environments, it is imperative that majority of 

ambient noise exists only at frequencies above 1 kHz. However, numerous reports have 

documented that this is not a valid assumption. Cain has found that considerable noise 

components in a UH-60 Sikorski helicopter exist in the sub-1000 Hz frequency range of 

interest. His analysis reveals that the ambient SPL is higher at the heart frequencies than 

the breath frequencies, but is sufficiently high to successfully mask the desired 

auscultation signal in both cases [29]. Similar results by Poulton in other helicopter 

environments indicate that simple electronic filtration of helicopter noise is impossible 

[30]. Therefore, all designs similar to that of Orton will be insufficient in these 

environments. 

1.2.1 Active Noise Cancellation 

The inability of simple spectral filtering to remove the unwanted noise components has 

led many authors to investigate the use of more advanced methods. One of such 

approaches is the application of Active Noise Cancellation (ANC). Initially proposed by 

Leug in 1934 for the mitigation of tonal noise in ducts, ANC has since been well 

documented in numerous applications [32, 33, 34, 35]. The classic noise cancellation 

structure commonly used today was presented by Widrow in 1975. His method relies on 

a Finite Impulse Response adaptive filter in a feedforward path to estimate the noise with 

a Least Mean Square (LMS) adaptive algorithm used to adjust the filter weights [36]. 

The first well documented application of ANC on a stethoscope to remove the effects of 

ambient noise was conducted by the US Army in 1993 [26]. For this study they attempted 

to detect heart and lung sounds in a Bell Jet Range 206B Helicopter using a dual 

stethoscope transducer design. A primary stethoscope transducer was placed at the 

auscultation site to obtain the desired signal, and a secondary transducer was placed 
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elsewhere on the patient’s chest to obtain a high fidelity noise reference signal. Using the 

LMS algorithm they were able to achieve 30dB noise reduction between 20-100Hz and 

10-20dB reduction between 100-300Hz in a simulated environment.  

Using similar methods, future work conducted by Suzuki was able to extend the range of 

ambient noise reduction achieved by the LMS algorithm to 40-500Hz with 30dB noise 

reduction. His work was also performed in a simulated noise environment, but in place of 

ambient recordings he used white acoustic noise. His design additionally altered the dual 

transducer configuration to incorporate both the primary and reference sensor in a single 

device. One electret microphone is used to detect the primary patient signal and the other 

is directed towards the ambient environment to obtain a reference noise signal. Although 

his results need to be extended to achieve the necessary reduction at higher frequency 

ranges, he was the first to identify that a substantial portion of ambient acoustic noise is 

coupled through the patient’s chest [37]. The specific level of noise coupled to the sensor 

in this manner has been estimated to be around 6.6 dB [38]. Therefore, in high noise 

environments passive shielding of the device will be ineffective.  

In 1998, Fleeter and Patel both investigated ambient stethoscope noise reduction with 

LMS and NLMS algorithms in a simulated C-130 Aircraft environment [28, 39]. Using a 

stethoscope chestpiece with two omnidirectional electret microphones (shown in Figure 

1) and the LMS algorithm, Patel achieved 15dB noise reduction between 100-600Hz. By 

switching to the NLMS algorithm, he demonstrated faster convergence and an additional 

5dB reduction above 450Hz. Using a similar stethoscope design, Fleeter reported 

comparable noise reduction between 20-800Hz using the NLMS approach. In the last and 

most recent work on the subject, Belloni and colleagues were also able to demonstrate 

15dB reduction with the LMS algorithm using dual electret microphones [40]. However, 

this research was limited to noisy office environments notably quieter than most 

transportation scenarios. 
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Figure 1-5: Dual microphone stethoscope chestpiece design [39] 

Moving beyond basic LMS and NLMS approaches, Wang has proposed a time-shared 

blind identification process to improve ANC performance [41]. Using two microphones 

to obtain the primary and noise reference signals, his work leveraged the a priori 

knowledge of auscultation signal characteristics to improve filter convergence. He 

constrained adaptation of the filter to operate during estimated pauses in the desired 

signal. Subsequently, the updated filter was used for signal estimation until the next 

pause in the desired signal was detected. A similar method was demonstrated by Han for 

the case of breath sound extraction [42]. It has also been shown that noise reduction may 

be possible with nonlinear time scaling or fuzzy detection algorithms [43, 44]. Although 

these results demonstrate improved performance, they rely on a moderate to low ambient 

noise level to ensure accurate detection of signal cycles. This limitation is also present in 

the work of Chang, where a spectral subtraction method was used to minimize the effects 

of ambient noise sources [45]. 

All the aforementioned studies share the common element of Active Noise Cancellation 

based on a reference microphone signal. Although each was able to demonstrate 

considerable SNR improvements, their findings are limited by the use of a simulated 

acoustic noise environment. Research conducted by Poulton has demonstrated that ANC 

in a real transportation environment is hampered due to the significant presence of 

structurally transmitted noise [30]. This suggests that an alternative sensor capable of 
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detecting this noise could outperform a reference microphone and provide the additional 

noise reduction necessary to ensure successful auscultation. To date, very limited 

research has been conducted analyzing this hypothesis. A 2010 study by Pandia has 

investigated the use of a single chest-worn accelerometer to remove motion artifacts from 

heart sounds [46].  Using a Savitzky-Golay polynomial smoothing filter to estimate 

motion artifacts caused by healthy subjects walking at normal speed, heart sounds could 

be detected with 99.36% accuracy. However, this algorithm will likely suffer in the 

presence of high levels of broadband noise. 

1.2.2 Passive Isolation 

As a different characteristic type of noise, other methods can be employed to specifically 

address the effects of handling noise caused by the physician. Specifically, vibration 

isolation can be employed to dissipate the noise prior to reaching the stethoscope 

transducer. Although these techniques have been well understood in a wide variety of 

disciplines, their application to the improvement of stethoscopes’ susceptibility to 

handling noise (or other noise traveling from the physician) has been limited.  

An early design presented by Greenberger proposes the use of a flexible member between 

the primary chestpiece assembly and its shell to achieve handling noise isolation [47]. 

Although his design was intended for mechanical stethoscopes, the intent can be 

extended to those with an electronic sensing element. However, the suggested 

embodiment of the device appears to be effective in only a narrow frequency range. Bilan 

has developed a similar isolation strategy for use with an electronic stethoscope [48]. By 

using a floating mass and a flexible diaphragm to stabilize the sensing element, added 

isolation is achieved from both vibrational waves traveling from the physician as well as 

surface waves traveling along the patient’s skin. The primary limitation of this design is 

the direct coupling path which exists for vibrational energy traveling from the physician, 

through the patient, and back into the sensing element. Although some isolation for noise 

traveling on this path is achieved by Cusson with his earlier design of a resonant chamber 

sound pick-up device, these effects were not well understood [49]. However, his design 
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did characterize a valuable alternate embodiment of vibration isolation. Using a floating 

mass similar to Bilan, he encapsulated the sensing element (microphone) in a high 

compliance foam shield to provide the desired isolation. This successfully absorbed 

mechanical vibrational energy as it attempted to pass through the device. 

As a means to specifically address handling noise in the form of friction, a team at 3M 

proposed a stethoscope outer surface coated in a low friction material [50]. This approach 

may reduce the levels of frictional noise caused by handling, but will not mitigate 

physician noise in the form of sudden impacts. Additionally, this design does not address 

other known types of noise that may propagate through the physician. 

1.3 THESIS CONTRIBUTIONS  

This thesis focuses on the design and development of passive and active stethoscope 

technology to reduce the stethoscope’s susceptibility to noise and enable successful 

auscultation in high noise environments. Major contributions of this dissertation include: 

1. Development and validation of a theoretical electro-mechanical model of the 

stethoscope to better understand its sensing mechanisms and the transmission of 

noise.  

2. Development and experimental validation of a vibration isolation design to 

dissipate mechanical vibrational energy from the physician prior to reaching the 

stethoscope transducer.  

3. Derivation and implementation of a directional disturbance estimation algorithm 

which uses dual sensors to estimate and remove the effects of unwanted noise 

caused by the physician. 

4. Development of an accelerometer based active noise cancellation system which 

can be used to remove ambient noise encountered during auscultation in 

transportation environments.  

1.4 THESIS OUTLINE 

Chapter 2 describes the development of a vibro-acoustic model for a piezo-ceramic based 

stethoscope. A theoretical multi-DOF rigid body vibration model consisting of discrete 

connected components is developed for the piezoelectric stethoscope. The model captures 
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the resulting internal dynamics caused by force inputs from either the patient or physician 

holding the device. Using a two-port lumped parameter model, the mechanical vibrations 

are related to a resulting electrical signal. The parameterized state-space model is 

experimentally validated and its parameters identified by using a thorax simulator and 

vibration shaker.   

Chapter 3 develops a new design to isolate the stethoscope transducer from disturbances 

caused by the physician during routine handling of the device. Using the theoretical 

model, the benefits of different isolation methods are explored. It is shown that if 

isolation is introduced between the transducer housing and the rest of the stethoscope, the 

greatest vibration isolation can be achieved with minimal losses in patient sensitivity.  

Constructing the modified stethoscope design, experimental results are presented to study 

the influence of the proposed design changes and confirm the predicted model behavior. 

Chapter 4 presents an alternate, digital method for reducing the effects of physician 

handling noise without resulting in a loss in device sensitivity to patient signals. The 

chapter develops a method by which an inverse dynamic model can be obtained to relate 

measured auscultation signals corrupted by noise to the original noise free signals. Two 

different dynamic observers are derived to produce the desired signal estimates from the 

measurement. With a combination of theoretical simulations and experimental results, the 

successful estimation and removal of an undesired external disturbance signal is 

demonstrated. 

Chapter 5 discusses the use of accelerometer based active noise cancellation to remove 

the influence of high levels of ambient noise in emergency patient transportation 

environments. Data is presented from testing conducted in a U.S. Army Sikorsky UH-60 

helicopter to demonstrate the existing challenges to auscultation in this environment. 

With a combination of simulations and experimental data it is shown that adaptive noise 

cancellation techniques using a reference accelerometer within the device or placed 

remotely in the vehicle would be significantly more effective at enabling auscultation 

than conventional microphone based systems. 
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CHAPTER 2: 

STETHOSCOPE MODELING 

2.1 MOTIVATION 

This chapter focuses on the development of a theoretical model to study the influence of 

noise and vibration on chest sound measurements with a piezoelectric stethoscope.  Two 

types of vibrations, namely inputs through the patient’s chest and disturbances from the 

physician, influence the acoustic measurement.  The goal of this work is to develop a 

model to understand the propagation of these vibrational noises through the stethoscope 

and to the piezoelectric sensing element.   

A multi-DOF rigid body vibration model consisting of discrete connected components is 

developed for the piezoelectric stethoscope.  Using a two-port lumped parameter model, 

the mechanical vibrations are related to the resulting electrical signal. The parameterized 

state-space model is experimentally validated and its parameters identified by using a 

thorax simulator and vibration shaker.  

2.1.1 3M™ Littmann® Electronic Stethoscope 

The 3M™ Littmann® Model 3200 Electronic Stethoscope is a recent advance in 

stethoscope technology (see Figure 2-1). At the heart of the design is a small flexible disc 

piezoceramic transducer. When placed on the skin of a patient, small pressure waves and 

vibrations caused by heart or lung sounds excite the piezo causing a proportional voltage 

signal. Subsequently, the signal is broadcast to the user via a small speaker at the base of 

the binaural tube. The stethoscope comes equipped with three different electronic filter 

modes to condition the signal prior to playing it for the user. These modes, each with a 

different frequency response, allow the user to select the type of sounds of interest. 
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Figure 2-1: 3M™ Littmann® Model 3200 electronic stethoscope [51] 

Although the electronic stethoscope has many distinct advantages over its mechanical 

counterpart, it has some potential drawbacks. Its added sensitivity makes the device 

increasingly susceptible to unwanted background noise caused by both the ambient 

environment and routine handling of the device. The piezo is capable of picking up even 

the faintest sounds caused by any incidental rubbing or tapping along the main body of 

the device. Therefore, in emergency transportation environments, as vehicle vibrations 

are transmitted through the physician and patient and into the stethoscope, auscultation 

can become increasingly difficult.  

The construction of the model 3200 electronic stethoscope is shown in Figure 2-2. The 

piezoceramic element, hereafter “piezo”, is mounted in a light-weight aluminum 

transducer housing. Directly on either side of the piezo is a thin layer of foam. A small 

metal disc is placed on the front side of the piezo to both protect the sensing element and 

to allow a more even distribution of force. The housing is secured to a plastic ring, 

referred to as a “foot”, which is subsequently attached to the primary chestpiece of the 

device. The transducer housing is attached to the foot by way of two small metal tabs 

press fit into the underside of the ring. An additional six tabs are used to stabilize the 

housing against the foot, although these tabs are not rigidly attached to the ring. The foot, 

with attached transducer housing assembly, is secured to the chestpiece using four small 

screws. 
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Figure 2-2: Electronic stethoscope assembly exploded view with internal components 

The construction of the device results in a sturdy design. However, it is evident that the 

rigid connection of the transducer housing to the chestpiece provides a direct coupling 

path for noise caused by routine handling of the stethoscope. As a user makes contact 

with the outer surface of the chestpiece, the resulting vibrations travel through the device 

directly to the sensing element. Additionally, there is no isolation provided from 

unwanted noise traveling from the patient. As required to sense all the auscultation 

signals of interest, the sensing element is directly coupled to the patient’s skin.  

2.1.2 Electronic Stethoscope Performance Characterization 

In order to better understand the mechanisms by which these disturbances are transmitted 

to the sensing element, the device performance can be examined when subjected to 

different noise sources. This was accomplished by studying the stethoscope’s physical 

design and sensing mechanism. The mechanical transmission of noise to the piezo can be 

divided into two distinct paths, forward (patient side) and backward (physician side), 𝐻𝑝,𝑝 

and 𝐻𝑝,𝑚 respectively. The sensitivity of the piezo to off-axis stimuli is generally small. 

Accordingly, all lateral transmission paths have been left out of this investigation. 
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Once the signal has been acquired, it undergoes digital signal processing and filtering. As 

different filter modes are selected, this filtering affects the system differently. 

Subsequently, this will be regarded as its own second independent subsystem, 𝐻𝑓𝑘
, where 

𝑘 = 1,2,3 corresponds to the selected filter mode.  

Lastly, the signal is output to the user via a speaker through the binaural tubing. Thus, 

this will be treated as the third and final subsystem, 𝐻𝑠. A block diagram showing the 

signal path from each noise source to the user is provided in Figure 2-3 below. 

 

Figure 2-3: Electronic stethoscope system block diagram 

By breaking the stethoscope into these subsystems, it is possible to understand how each 

individually affects the overall performance of the device. Also, as each subsystem 

operates independently of the others, analysis on each as a standalone system is both 

valid and advantageous.  

As an initial investigation, it was possible to experimentally determine the frequency 

response of the two sensor transmission paths, 𝐻𝑝,𝑝 and 𝐻𝑝,𝑚. This was accomplished by 

stimulating the stethoscope with vibrational noise from both potential noise sources. 

Similar to the work done by other authors, in our test environment, the source of the 

vibrations was an electro-dynamic shaker system [52, 53]. The method by which the 

stethoscope was coupled to the shaker was varied depending on which noise source was 

being emulated. For the generation of patient noise, a thorax simulator was used to 

transmit vibrations from the shaker into the stethoscope. The thorax simulator was 

employed to more accurately capture the dynamic coupling caused by contact between 

the face of the stethoscope and the patient. In order to improve the accuracy and 

reproducibility of this method, multiple simulator (“phantom”) designs have been 
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investigated by other authors. The simplest approach has been the use of a sound source 

coupled to the sensor with an air chamber [54, 55]. However, the most common of these 

methods illustrate the use of coupling materials that better mimic biological soft tissue. 

With this objective, proposed phantom designs have included sound sources embedded in 

viscoelastic materials [56, 57], water-filled polymer or latex bladders [58, 53], and 

electromagnetic speakers covered with viscoelastic layers [52].  

Leveraging the work of these authors, our phantom has been constructed by covering a 

viscoelastic polymer mold with a thin flexible polymer membrane. Together, the layered 

approach of this phantom closely imitates the mechanical properties of a subject’s skin 

and subcutaneous tissue. 

When testing a stethoscope, the piezo sensor side of the device is placed on the surface of 

the thorax simulator (see Figure 2-4). The nominal application pressure was held constant 

by allowing the stethoscope to rest using its own weight as has been done by other 

authors [52]. Although less sturdy, this is closer to its actual usage condition and thus 

preferred over alternate test configurations in which the stethoscope has been firmly 

secured to the test apparatus [55]. In order to even further improve the clinical relevance 

of the method selected, additional tests were conducted with added weight to simulate the 

added pressure traditionally applied by a physician during auscultation. This is congruent 

with the methods proposed by Kraman [59], although here only a single 50g weight was 

selected. 
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Figure 2-4: Frequency response test apparatus for simulating patient inputs 

For all testing conducted, a compatible vibration exciter and force transducer were 

employed. Each has a bandwidth in excess of 7,500 Hz—well above the highest observed 

stethoscope system resonance. During each test, the coherence between the input and 

output signals was carefully monitored to ensure that no undesired resonance caused by 

the test apparatus was present and corrupting the data. 

Providing zero-mean, unit variance, white Gaussian noise to the shaker, the frequency 

response, 𝐺(𝑓), of the stethoscope can be estimated. Specifically, this is obtained by 

taking the ratio of the output Power Spectral Density, 𝑆𝑦(𝑓), to the input Power Spectral 

Density, 𝑆𝑢(𝑓).  

 𝐺(𝑓) =
𝑆𝑦(𝑓)

𝑆𝑢(𝑓)
 (2.1) 

In order to simplify analysis and isolate the desired mechanical subsystem, the 

stethoscope output was taken directly before the analog to digital converter contained on 

the stethoscope’s onboard processor. Thus, the transfer function estimates correspond to 

only the forward and backward mechanical transmission paths without the addition of 

filtering in the stethoscope. 
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The secondary (backward) transmission path, 𝐻𝑝,𝑚, can be tested using the same test 

apparatus. However, for this test the stethoscope is inverted and securely mounted above 

the shaker (see Figure 2-5). The inverted stethoscope is press fit into the specially 

designed stethoscope holder. By stimulating the system again with white noise, it is 

possible to obtain the frequency response of the stethoscope chestpiece for physician 

inputs. 

 

Figure 2-5: Frequency response test apparatus for simulating physician inputs while (a) 

unloaded and (b) loaded 

This test can be conducted with and without the addition of a load on the piezo 

transducer. During normal operation, the stethoscope would be placed against the 

patient’s body. Therefore, a more accurate end use measure would be testing the 

chestpiece backward transmission path sensitivity while loaded. This has been 

accomplished by applying the thorax simulator on top of the inverted stethoscope. The 

weight of the thorax simulator alone is used to apply the desired level of pressure. Its soft 

surface allows the load to conform to the face of the chestpiece as would normally occur 

with the patient’s chest. 

Employing the test methods as defined above, transfer functions for both the forward and 

backward mechanical transmission paths of an unmodified Model 3200 electronic 

stethoscope have been obtained (see Figure 2-6 and Figure 2-7).  
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Figure 2-6: Experimental frequency response to white noise patient input  

 

Figure 2-7: Experimental frequency response to white noise physician input 

From these results, the following observations can be made: 

 In all loading conditions, the stethoscope is more sensitive to inputs at 

intermediate frequencies. For noise sources of equal magnitude, a sound at 1000 

Hz will be roughly 40 dB louder than one at 20 Hz.  

10
1

10
2

10
3

10
4

-60

-40

-20

0

20

40

60

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

10
1

10
2

10
3

10
4

-60

-40

-20

0

20

40

60

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

Unloaded

Loaded



 

 23 

 In both the patient and physician input frequency responses, three prominent 

resonant frequencies exist. However, for the physician input scenario, these 

resonances exist at higher frequencies.  

 In the presence of physician inputs, a load on the face of the stethoscope causes 

the device’s first dominant resonant peak to shift to a higher magnitude and lower 

frequency. Thus, the device is noticeably more sensitive to low frequency noise 

while loaded when compared to the unloaded case. In practice, the pressure 

applied by the physician during auscultation may vary and the actual frequency 

response encountered will vary between the two extremes presented—the loaded 

and unloaded case. 

In order to provide a framework with which to interpret these and future frequency 

response data, it is important to recall the frequency range of clinically relevant 

auscultation signals. Using this information, it is possible to assess if or how the inherent 

system resonance affects a doctor’s ability to assess chest sounds. The majority of 

auscultation signals fall below 1000 Hz, just above the first dominant resonant frequency 

in the stethoscope’s dynamics. In this range, it can be seen that the stethoscope has an 

approximately equal sensitivity to chest sounds and handling noise (when placed on a 

patient’s chest).   

2.2 ONE-DIMENSIONAL MECHANICAL MODEL 

To begin work on understanding the mechanical transmission of vibrations through the 

device, the stethoscope has been studied to identify the degrees of freedom necessary in a 

theoretical model. Deconstructing the device, each component capable of independent 

motion was identified. In the model, these were each treated as an individual mass and 

degree of freedom. Subsequently, to characterize the interactions between masses, the 

coupling between each component has been reduced to simple spring or spring/damper 

connections.  
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The resulting mechanical system has five degrees of freedom—five independent masses. 

Due to the device’s construction, very little motion and/or dynamics are exhibited by 

these masses when exposed to lateral forces. Correspondingly, lateral forces induce very 

little bending in the piezoceramic sensor. Thus, their contribution to the output signal is 

negligible, and only forces acting through the plane of the piezo need be considered. It is 

possible, however, that an uneven force distribution on the face of the piezo may cause 

additional dynamics in the system due to tilting of each component. This motion could 

result in piezo bending and a noticeable output response. In practice, once the stethoscope 

is placed on a patient’s chest, most vibration energy will be observed in the form of plane 

waves. Thus, the response due to localized forces—non-axisymmetric forces—is 

uncommon. Therefore, a uniaxial model in line with the piezo sensing element accounts 

for the majority of all practical input energy that will have a noticeable impact on the 

output signal. The resulting one dimensional model shown in Figure 2-8 clearly 

demonstrates the independent masses which have been identified and their corresponding 

interconnections. 

 

Figure 2-8: One-dimensional stethoscope mechanical model 

Although they have not been explicitly illustrated in the simplified model representation 

above, at each spring location is a corresponding viscous damper.  
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In the selected one-dimensional stethoscope mechanical model, two independent inputs 

have been identified, 𝐹𝑝 and 𝐹𝑚, corresponding to vibrational inputs from the patient and 

medic/physician respectively. In a noise free setting, 𝐹𝑚 would correspond to the static 

force applied by a physician on the back of the stethoscope as it is placed on a patient’s 

chest and 𝐹𝑝 would correspond to the desired auscultation signal.  

Using the defined inputs and established component relationships, the equations of 

motion for each independent mass have been derived. Combining these equations into a 

state-space representation, the stethoscope’s dynamic model is given as follows: 

 𝑥̇𝑑 = Ad𝑥𝑑 + Bd𝑢 (2.2) 

where 𝑥𝑑 ∈ ℝ10 is the state, 

 𝑥𝑑 = [𝑧T 𝑧̇T]T (2.3) 

and 𝑢 ∈ ℝ2 is the input, 

 𝑢 = [𝐹𝑝 𝐹𝑚]T (2.4) 

The system matrices Ad ∈ ℝ10×10 and  Bd ∈ ℝ10×2 are given by: 

 Ad = [
05×5 I5×5

−M−1K −M−1C
] (2.5) 

 Bd = [
1/m1 0 1/m3 1/m4 0 01×5

0 0 0 0 −1/m5 01×5
]
T

 (2.6) 

with, 𝑀 the mass matrix 

 M = 𝑑𝑖𝑎𝑔(𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5) (2.7) 

𝐾 the stiffness matrix, 

 K =

[
 
 
 
 
𝑘1 + 𝑘3 −𝑘1 −𝑘3 0 0

−𝑘1 𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘3 −𝑘2 𝑘2 + 𝑘3 + 𝑘4 −𝑘4 0
0 0 −𝑘4 𝑘4 + 𝑘5 −𝑘5

0 0 0 −𝑘5 𝑘5 ]
 
 
 
 

 (2.8) 

and 𝐶 the damping matrix, 
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 C =

[
 
 
 
 
𝑐1 + 𝑐3 −𝑐1 −𝑐3 0 0
−𝑐1 𝑐1 + 𝑐2 −𝑐2 0 0
−𝑐3 −𝑐2 𝑐2 + 𝑐3 + 𝑐4 −𝑐4 0
0 0 −𝑐4 𝑐4 + 𝑐5 −𝑐5

0 0 0 −𝑐5 𝑐5 ]
 
 
 
 

 (2.9) 

After having identified the independent components and their dynamic relationships, it is 

necessary to ascribe numerical values to each parameter defined in the model. The mass 

of each component was easily measured and recorded. Since they are less easily 

measured, theoretical approximations based on material properties and dimensions were 

used to quantify the stiffness and damping values corresponding to each connection.  

The foot of the stethoscope is connected to the chestpiece housing by four small screws. 

Based on the material and diameter of the screws and other dimensions of the joint, the 

stiffness of this connection is well defined [60]. 

 𝑘 =
𝜋𝐸𝑑𝑐 tan𝛼𝑓

ln[
(2𝐿𝑖 tan𝛼𝑓+𝑑𝑖−𝑑𝑐)(𝑑𝑖+𝑑𝑐)

(2𝐿𝑖 tan𝛼𝑓+𝑑𝑖+𝑑𝑐)(𝑑𝑖−𝑑𝑐)
]

 (2.10) 

where 𝐸 is the modulus of elasticity, 𝑑𝑐 is the face diameter, 𝑑𝑖 is the outer thread 

diameter, 𝛼𝑓 is the pressure distribution frusta angle, and 𝐿𝑖 is the bolted length of the 

thread. 

Proceeding in a similar manner, the connection between the transducer housing and the 

foot can be defined.  Here, the connection is characterized by the stiffness of the tabs on 

the transducer housing. The tabs can each be treated as a beam rigidly supported on end. 

By calculating the moment of inertia of the tabs and using beam bending theory, a simple 

approximation can be made for the tab’s stiffness [61]: 

 𝑘 =
3𝐸𝐼

𝐿3  (2.11) 

where 𝐸 is the modulus of elasticity, 𝐼 is the moment of inertia, and 𝐿 is the length of the 

tab. 
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Lastly, an approximation is required to characterize the foam used on either side of the 

piezo in the transducer housing. Using a Kelvin-Voigt model with a spring and damper in 

parallel, the viscoelastic behavior of the foam can be approximated [62]. Subsequently, 

each foam connection can be estimated by defining the stiffness of the foam using 

Hooke’s law [61]: 

 𝑘 =
𝐸𝐴

𝐿
 (2.12) 

where 𝐸 is the modulus of elasticity of the foam, 𝐴 is its cross-sectional area, and 𝐿 is the 

length/height of the material.  

Using equations (2.10), (2.11), and (2.12) with the applicable material properties and 

dimensions for each component, the stiffness of each joint was calculated. Using these 

values and adding a small level of damping to each connection provided a preliminary 

dynamic model approximation. Since an analytical expression for the damping at each 

connection is not readily available, all connections were assumed to a damping 

coefficient of 10%. These values were later refined using experimental verification. The 

mass, stiffness, and damping parameters employed in the final model can be found in 

Table 2-1. 

Table 2-1: Mechanical model mass, stiffness, and damping parameters 

Index, i Mass, 𝑚𝑖 Stiffness, 𝑘𝑖 Damping, 𝑐𝑖 

1 0.18 2.02 x 104 4.85 x 10-2 

2 0.11 1.36 x 104 9.99 x 10-2 

3 1.83 3.29 x 104 1.99 x 10-1 

4 2.46 4.25 x 107 1.41 x 10-1 

5 51.71 1.02 x 107 1.19 x 101 

    

2.3 LUMPED PARAMETER PIEZOELECTRIC MODEL 

The derived one-dimensional mechanical model can be used to relate the vibrational 

inputs to forces on the piezo sensing element. However, a conversion is required to relate 

these forces to an output voltage. For the piezo, the output voltage is proportional to the 

strain due to bending. The specific piezo element within this stethoscope is an 
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axisymmetric piezo unimorph with unequal radii for the piezoelectric layer and substrate 

(see Figure 2-9). 

 

  

Figure 2-9: Cross-sectional schematic of piezoceramic transducer 

Based on the material properties and geometric relationships of the shim and 

piezoceramic layers, it is possible to determine a two-port lumped parameter model that 

relates an applied pressure on the face of the shim to an induced voltage [63]. An 

equivalent circuit representation of this model can be seen in Figure 2-10. 

 

Figure 2-10: Two-port electroacoustic piezo model 

In the acoustic domain of the equivalent lumped-element model, 𝐶𝐴𝑆 is the short circuit 

acoustic compliance, 𝑀𝐴𝑆 is the acoustic mass, and 𝑃(𝑡) is the uniform pressure load 

applied to the face of the shim. In order to account for structural damping and acoustic 

losses, an acoustic resistance, 𝑅𝐴𝑆, has been added to the model.  

The electrical and acoustic elements of the two-port model are related by an ideal 

transformer. The transformer turns ratio, 𝜙, is the electroacoustic transduction coefficient. 

This quantity is given by the negative ratio of the volumetric displacement of the piezo 

due to a unit voltage loading relative to the volumetric displacement of the piezo due to a 

unit pressure loading. 
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In the electrical domain, the input/output voltage of the conventional electroacoustic 

model is given by the voltage across 𝐶𝐸𝐵, the blocked electrical capacitance of the piezo. 

In order to account for losses and to include the effect of measuring this voltage, a small 

load resistance and capacitance, 𝑅𝐿 and 𝐶𝐿 respectively, have been added to this model. 

The new voltage output is taken as the voltage across the load resistor. This causes a 

high-pass filtering effect on the voltage across 𝐶𝐸𝐵.  

Using the selected two-port model representation, and selecting the two-port model states 

𝑥𝑝 ∈ ℝ3 as 

 𝑥𝑝 = [𝑄 𝑄̇ 𝑖]T (2.13) 

the state-space representation of the differential equations relating pressure and voltage 

can be written as follows 

 𝑥̇𝑝 = Ap𝑥𝑝 + Bp𝑃̇ (2.14) 

 𝑉 = Cp𝑥𝑝 (2.15) 

where the system matrices are given by 

 Ap =

[
 
 
 

0 1 0

−
1

𝑀𝐴𝑆
(

𝜙2

𝐶𝐸𝐵
+

1

𝐶𝐴𝑆
) −

𝑅𝐴𝑆

𝑀𝐴𝑆

𝜙

𝑀𝐴𝑆𝐶𝐸𝐵

𝜙

𝑅𝐿𝐶𝐸𝐵
0 −

1

𝑅𝐿
(

1

𝐶𝐿
+

1

𝐶𝐸𝐵
)]
 
 
 

 (2.16) 

 Bp = [0
1

𝑀𝐴𝑆
0]

T

 (2.17) 

 Cp = [0 0 𝑅𝐿] (2.18) 

2.4 COMBINED STETHOSCOPE MODEL 

In order to incorporate the electroacoustic piezo model into the previously derived 

mechanical vibration model, the pressure applied to the sensing element must be 

expressed in terms of the motions of physical components within the stethoscope. If you 

denote 𝐹12 as the forces exerted by the shim, 𝑚1, on the piezo, 𝑚2, then the pressure on 

the face of the piezo is given by 
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 𝑃 =
F12

𝐴
 (2.19) 

Here, the area over which these forces act on the piezo is taken as the area of the shim, 

𝐴 = 𝜋𝑅2
2. From the mechanical model’s dynamic equations, the relevant forces acting on 

the piezo are defined as 

 𝐹12 = 𝑘1(𝑧1 − 𝑧2) + 𝑐1(𝑧̇1 − 𝑧̇2) (2.20) 

Applying equation (2.20) to equation (2.19) and using the state definitions given by 

equation (2.3), the equation for pressure can be written in matrix form as 

 𝑃 = Cd𝑥𝑑 (2.21) 

where, 

 Cd =
1

A
[𝑘1 −𝑘1 0 0 0 𝑐1 −𝑐1 0 0 0] (2.22) 

Augmenting the original mechanical model’s state vector with states from the piezo two-

port model as follows 

 𝑥 = [𝑥𝑑
T 𝑥𝑝

T]
T
 (2.23) 

and using the dynamic and two-port model state-space system matrices given by 

equations (2.5), (2.6), (2.16), and (2.17),  the complete stethoscope model can be 

expressed as  

 𝑥̇ = [
Ad 010×3

03×10 Ap
] 𝑥 + [

010×1

Bp
] 𝑃̇ + [

Bd

03×2
] 𝑢 (2.24) 

Applying equation (2.21) to equation (2.24) and using the definition given by equation 

(2.2), the complete model is given by: 

 𝑥̇ = A𝑥 + B𝑢 (2.25) 

 𝑉 = C𝑥 (2.26) 

where the combined state-space representation matrices have been defined as 

 A = [
Ad 010×3

BpCdAd Ap
] (2.27) 
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 B = [
Bd

BpCdBd
] (2.28) 

 C = [01×10 Cp] (2.29) 

2.5 MODEL VALIDATION 

By applying all derived estimates to the established system model, a preliminary 

stethoscope model estimate was obtained. In order to validate the model against the 

actual physical performance of the stethoscope, the predicted frequency domain transfer 

function estimate was compared to frequency domain data from experiments on the 

unmodified stethoscope. 

For valid comparisons between experimental data and the derived model, appropriate 

boundary conditions were required to obtain the theoretical response. These conditions 

accounted for the method by which the physical device was tested. Accordingly, the mass 

and elastic coupling due to contact between the stethoscope and thorax simulator needed 

to be incorporated into the theoretically obtained responses. This was accomplished by 

replacing the direct force input to the stethoscope model by forces acting on each mass on 

the face of the stethoscope through a spring and damper pair. The stiffness and damping 

were assumed to be proportional to the application area of each mass in contact with the 

thorax simulator. Similarly, the mass of the stethoscope holder used during physician 

input response testing was accounted for.  

Model verification and validation were accomplished manually by comparing 

discrepancies between theoretical and experimental results. Since the damping values 

were not derived theoretically, their values were increased gradually until the theoretical 

model exhibited the same level of damping at each critical resonant frequency. 

Preference was given to agreement between the lower frequency modes and resonances. 

Although higher order dynamics can be important to understanding the full system 

behavior of the stethoscope, they do not interfere with the relevant frequency range for 

auscultation and can be regarded as having little effect on the stethoscope’s overall 
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function. If future applications of this model require increased accuracy over a higher 

frequency range, more rigorous model fitting and model validation techniques can be 

employed to account for these dynamics. The resulting model estimate can be seen to 

demonstrate a high level of agreement with the experimental data for all testing 

conditions (see Figure 2-11 and Figure 2-12). 

  

Figure 2-11: Theoretical and experimental frequency response to white noise patient input 

 

Figure 2-12: Theoretical and experimental frequency response to white noise physician input 
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2.6 CONCLUSIONS 

In a digital stethoscope a piezoelectric transducer is used to convert the heart and lung 

induced motions of the chest into electrical signals.  It has been demonstrated that during 

routine use of the device, physician handling noise created by rubbing of fingers on the 

chestpiece, motion of chestpiece on the patient’s chest, tapping of fingers on chestpiece, 

etc., can possibly prevent successful auscultation.  

In order to characterize the stethoscope response to excitation inputs from the physician’s 

handling and from the patient’s chest, a theoretical model has been developed and 

experimentally validated. The parameterized model enables detailed analysis and 

investigation into the effects of each component on the stethoscope’s overall 

performance.  

The transmission of vibrational inputs acting on the stethoscope from both sources 

(physician and patient) was characterized by a one-dimensional mechanical model. The 

connections between components were represented by elementary spring and damper 

pairs. The resulting forces on the piezoceramic transducer were related to a voltage signal 

by employing a two-port electroacoustic model. After applying initial theoretical 

estimates for each parameter value, the model was validated against experimentally 

obtained frequency responses of the stethoscope to white noise inputs from both the 

patient and physician. Accounting for minor discrepancies in the assumed levels of 

damping at each connection in the mechanical model, it demonstrates close agreement to 

the experimental data. 
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CHAPTER 3: 

VIBRATION ISOLATION 

3.1 MOTIVATION 

This chapter focuses on reducing the influence of handling disturbances from the 

physician on measurements obtained with a piezoelectric stethoscope. Using a theoretical 

model of the stethoscope, methods to reduce the influence of these disturbances acting on 

the stethoscope’s transducer are explored.   

Based on predictions from the model, the introduction of vibration isolation so as to 

reduce the transmission of physician noise to the transducer is pursued.  It is shown that 

direct vibration isolation between the transducer and the rest of the stethoscope structure 

leads to a reduction in coupling with the patient’s chest.  However, if isolation is instead 

introduced between the transducer housing and the body of the stethoscope, then 

vibration isolation from the physician is achieved with a far less reduction in patient 

coupling. 

A modified stethoscope assembly is constructed to introduce the desired isolation and 

verify its efficacy. Experimental results from the modified stethoscope design are 

presented to study the influence of the proposed design changes and confirm the 

predicted model behavior.    

3.2 THEORETICAL VIBRATION ISOLATION DESIGN 

Having validated the stethoscope dynamic model with experimental results, it is possible 

to use the model to investigate potential design changes that could improve stethoscope 

performance. It was anticipated that by decoupling the sensor from the chestpiece, the 

device’s susceptibility to handling noise could be effectively reduced.  
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Corresponding to the simplest physical change that could possibly provide the desired 

isolation, the first option explored was increased isolation between the chestpiece housing 

and transducer. In the model, this corresponds to a reduction of 𝑘2. Simulations with the 

developed model revealed that the level of stiffness reduction required at this connection 

to achieve sufficient isolation from physician noise would cause poor coupling—loss in 

sensitivity—between the transducer and the patient’s chest. The lack of a stiff connection 

behind the transducer results in less deformation of the piezoceramic element. Instead of 

bending, the piezo will have the tendency to experience rigid body motion. Thus, by this 

method of isolation, it is not possible to achieve a high sensitivity to auscultation signals 

while also successfully isolating the sensing element from undesired noise transmitted 

from/through the physician. 

An alternate method of isolation is provided through a reduction of the stiffness between 

the transducer housing and the chestpiece. Physically, this corresponds to a reduction in 

stiffness of the metal tabs on the transducer housing (𝑘4) that are press-fit into the 

stethoscope foot. After implementing this change in the model, the predicted physician 

input frequency response due to increasing levels of isolation at this connection can be 

obtained (see Figure 3-1). 

 

Figure 3-1: Theoretical frequency response to physician input with and without isolation  
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As shown, the model predicts that softening the connection between the chestpiece and 

transducer housing (leaving all other model parameters constant) moves a primary system 

corner frequency well below the first primary peak observed in the original system. After 

this resonance, the high frequency transmission of noise is considerably attenuated. 

Looking at the patient input frequency response, it is evident that the isolation is achieved 

with little change to the device’s sensitivity to patient input in the relevant frequency 

range (see Figure 3-2). 

 

Figure 3-2: Theoretical frequency response to patient input with and without isolation 

3.3 EXPERIMENTAL VIBRATION ISOLATION 

3.3.1 Modified Stethoscope Design 

In order to experimentally verify the change in the system response predicted 

theoretically, it was necessary first to alter the mechanical design of the stethoscope to 

accommodate modifications at the desired connection. For this purpose, the stethoscope 

foot and transducer housing were modified to allow a foam insert on either side of the 

transducer housing mounts.  

The small metal tabs on the transducer housing are insufficient for the foam isolation 

intended. Specifically, the housing requires tabs with a larger surface area. This design is 

desired for both for ease of assembly as well as investigational purposes during the 
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prototype phase. With too small a surface, the size of foam used for isolation is limited. 

However, with a larger initial surface, the size of foam used can always be reduced as 

desired. In attempt to isolate the observed changes in performance to only those caused 

by the altered mounting configurations, the existing transducer housing assembly was 

incorporated into the new design.  A small adapter was designed to mount firmly to the 

rear side of the transducer housing (see Figure 3-3). This adapter has the added mounting 

surfaces desired. The only change to the transducer housing is the removal of the small 

metal tabs that were initially used for mounting (see Figure 3-4). 

 

Figure 3-3: Transducer housing adapter for 

vibration isolation design 

 

Figure 3-4: Modified transducer housing 

assembly with incorporated vibration isolation 

Six different iterations of this adapter were built (see Table 3-1). The various adapters 

have different heights and different masses to allow a characterization of the effects of 

changes in each. 

Table 3-1: Vibration isolation stethoscope prototype transducer housing adapters 

Transducer Housing Adapter 
Mass Height 

(g) (mm) (in) 

Short, s 2.66 
4.0 0.157 

Short Hollow, sh 1.92 

Medium, m 2.93 
4.5 0.177 

Medium Hollow, mh 2.03 

Tall, t 3.19 
5.0 0.197 

Tall Hollow, th 2.15 
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To accommodate the modified transducer housing, a small recess was included on the 

rear face of a new foot design. The diaphragm was constructed with two different pocket 

sizes, 3mm or 5mm. This provides the level of design flexibility necessary to vary the 

thickness of each isolation material. 

Both the transducer housing adapters and feet designs were prototyped using a PC/ABS 

blend. The prototype material is similar to the material currently used to manufacture the 

foot on the commercially available Model 3200 electronic stethoscope.  

Multiple different foam and rubber samples were selected to provide the desired 

isolation. By using samples with varying thicknesses and elastic moduli, it was possible 

to explore the effect of both decreased stiffness and increased damping at this connection. 

A summary of the full set of isolation samples can be seen in Table 3-2 below. 

Table 3-2: Vibration isolation stethoscope prototype isolation materials 

P/N Material 
Thickness 

(mm) (in) 

8614K71 Open Cell Polyurethane Foam, F1 

3.18 .1250 8722K13 Open Cell Polyethylene Foam, F2 

- Closed Cell Polyurethane Foam, F3 

8722K17 Open Cell Polyethylene Foam, F4 1.59 .0625 

8824T122 40 OO Durometer Polyurethane Rubber, R1   

1.52 .0600 8824T123 50 OO Durometer Polyurethane Rubber, R2 

8824T124 60 OO Durometer Polyurethane Rubber, R3 

8599K19 Natural Latex Rubber, R4 0.76 .0300 

    

3.3.2 Experimental Results 

Using the selected materials with the modified stethoscope, the level of added isolation 

resulting from the addition of foam mounts for the physician side mechanical 

transmission path, 𝐻𝑝,𝑚, was experimentally tested. The same test methods were 

employed as had been used during original device characterization testing on the 

unmodified stethoscope.  

After calibrating for small performance changes between individual piezo transducers, 

the results for physician input tests (with and without loading) with prototype designs in 

which transducer housing isolation was added (i.e. reduced 𝑘4) can be seen in Figure 3-5.  
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Figure 3-5: Experimental frequency response of stethoscope with vibration isolation to white 

noise physician inputs (a) unloaded and (b) loaded  

The experimental results demonstrate that the added foam provides isolation from 

unwanted physician noise. This confirms the prediction made by the theoretical model. 

The softer the foam at this connection the greater the attenuation achieved. To more 

clearly highlight the differences between each of the experimental results, provided in 

Table 3-3 are the first primary resonant frequency and the 𝐻2 norm for each experimental 

frequency response. 
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Table 3-3: Physician input frequency response (unloaded) summary. 

Isolation 

1st Corner 

Frequency 

(Hz) 

Band-limited 𝐻2 Norm 

“Heart Sounds” 

20Hz - 1kHz 

“Lung Sounds” 

500Hz - 1kHz 

“Patient Noise” 

20Hz - 2kHz 

“Physician Noise” 

20Hz – 12.8kHz 

Original 1,950 74.34 69.99 721.64 1304.8 

Stiff Foam 735 290.43 287.72 383.73 402.18 

Soft Foam 450 109.18 81.36 209.28 228.72 

Extra-Soft Foam 375 73.47 38.78 171.72 184.63 

Rubber 1,375 198.01 193.17 519.11 581.14 

      

In addition to moving a resonant mode of the system to this new lower frequency (i.e. 1st 

corner frequency listed in Table 3-3), the shifted mode has less damping—larger 

amplitude resonance. At frequencies higher than this resonance, the response is 

attenuated and the amplitude begins to roll off. Higher damping—smaller amplitude 

resonance—was expected for tests conducted with rubber samples. This is due to the 

increased energy dissipative characteristics of rubber. In agreement with these 

expectations, for these samples we observed lower amplitude resonance at the new 

location of the shifted resonant mode. 

In order to fully understand the results of these changes to the physician side mechanical 

transmission path, they must be viewed in light of changes that also occurred to the 

frequency response for the patient side mechanical transmission path, 𝐻𝑝,𝑝. Accordingly, 

the chestpiece prototype assemblies were tested using the thorax simulator. The results 

for these tests can be seen in Figure 3-6. 
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Figure 3-6: Experimental frequency response of stethoscope with vibration isolation to white 

noise patient inputs 

These results demonstrate that the added isolation affected not only the physician side 

transmission path, but also the patient side transmission.  

To objectively evaluate the effectiveness of the various isolation designs, it is helpful to 

normalize the results. Using the patient side transmission path frequency response of the 

unmodified Model 3200 stethoscope as the design standard, the following calculation can 

be performed on each data set. 

 Gp,p =
H̅p,p

Hp,p
 (3.30) 

 Gp,m = Hp,m ∗ Gp,p (3.31) 

where the bar has been used to denote the frequency response of the unmodified 

stethoscope. Effectively, this equation normalizes all data sets to have an equivalent 

patient side transmission path frequency response. Any compensation necessary to 

achieve this equivalence has been added to the medic/physician side transmission path. 

By comparing this new frequency response curve for each data set, it is more reasonable 

to draw conclusions. These normalized frequency responses can be seen in Figure 3-7 

below. 
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Figure 3-7: Normalized experimental frequency response of stethoscope with vibration isolation 

to white noise physician inputs (a) unloaded and (b) loaded 

Using these normalized frequency responses, the system performance improvements and 

degradation are noted by a decrease and increase in the frequency response respectively. 

It is evident in each plot that the notch caused by the isolation in the patient side 

transmission path adversely affects performance. In all cases, this results in an overall 

degradation of stethoscope sensitivity to handling noise in the effected frequency range. 

However, it is evident that the stethoscope sensitivity to noise at frequencies above this 

range is considerably reduced. 
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Overall, it can be noted that the experimental results demonstrate a higher level of 

attenuation than originally predicted by the model. Additionally, the modified 

stethoscope’s response to patient inputs has a narrowband loss in sensitivity that was not 

initially predicted. Theoretically, the change that was physically implemented should 

have corresponded to only a change in the connection stiffness 𝑘4. However, in order to 

accommodate the isolation materials, a number of surrounding components were altered. 

In order to properly assess the model agreement to the added isolation, these changes in 

mass and configuration must be accounted for.  

Making the required adjustments, the new model prediction is obtained (see Figure 3-8 

and Figure 3-9). 

  

Figure 3-8: Theoretical frequency response of stethoscope with vibration isolation and adjusted 

masses to white noise physician input 
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Figure 3-9: Theoretical frequency response of stethoscope with vibration isolation and adjusted 

masses to white noise patient input 

After having verified the resulting changes in the stethoscope’s response both 

experimentally and theoretically, it is necessary to assess the modified device’s overall 

performance. Comparing all the experimental responses, it is evident that for all tests at 

frequencies below this resonance the performance is unaffected by the added isolation. 

For the unloaded stethoscope case, the isolation affects primarily only frequencies 

beyond the primary range of interest (20 Hz to 2 kHz). However, as noted with the 

original testing conducted on the unmodified stethoscope, the first major resonant 

frequency is shifted to lower frequencies and higher magnitudes once a load has been 

applied. The same is true of the added corner frequency caused by the new isolation 

designs. Thus, with an applied load, the isolation affects a much larger portion of the 

frequency range critical for auscultation. 

These results demonstrate that the added isolation affected not only the physician side 

transmission path, but also the patient side transmission. A change in the frequency 

response for this path must be carefully considered. The isolation designs cause a loss in 

piezo sensitivity to patient noise between approximately 300 Hz and 1100 Hz. This was 

not originally predicted by theory given that the changes to surrounding components 
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required to accommodate the added isolation were not accounted for. Looking at both the 

experimental and theoretical results, it is evident that the softer the foam used in the 

isolation design, the lower the new resonant peak in the patient side transmission. In 

order to achieve comparable isolation without the observed loss in sensitivity, the 

isolation material must have both a low stiffness and high damping characteristic. These 

combined properties were not available in the isolation materials investigated. However, 

if a suitable material satisfying these conditions were introduced, successful isolation of 

the full relevant frequency range would be possible. Additionally, it is possible that by 

leveraging the model an optimal solution which combines simultaneous changes to 

multiple components and connections may be possible. 

3.4 CONCLUSIONS 

In order to investigate the effectiveness of added isolation at minimizing the propagation 

of handling noise to the piezo transducer, it was necessary to introduce soft vibration 

isolation mounts between the chestpiece and the transducer.  Using the theoretical model, 

it was possible to demonstrate that traditional sensor isolation introduced immediately 

behind the sensing element would cause a large loss in stethoscope sensitivity to 

auscultation signals. If isolation is instead introduced between the transducer housing and 

the stethoscope foot, a greater reduction in handling noise can be achieved with less loss 

in patient noise sensitivity. The added mass of the transducer housing allows greater 

isolation to be realized while maintaining greater coupling of the sensing element with 

the patient’s chest. This prevents a wideband reduction of patient noise sensitivity.  

Experimentally, this work has been verified by introducing foam and other soft polymer 

materials as vibration isolation pads between the transducer housing and the stethoscope 

chestpiece.  An improvement in vibration isolation from physician handling was achieved 

over a broad range of frequencies. However, this isolation was also found to cause some 

decrease in coupling with the patient’s chest over a narrow range of frequencies.  
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Alternate passive isolation configurations and methods are possible, but based on the 

analysis conducted it is believed that each will result in some level of patient signal loss. 

For optimal performance a new isolation material is required which exhibits both low 

stiffness and high damping characteristics. If wideband isolation is desired without 

compromising the device sensitivity to patient sounds, it is also possible that active noise 

cancellation and other signal processing methods can be employed. Moving beyond 

simple frequency based filtering, these approaches could leverage information about the 

noise and/or device design to actively estimate and remove unwanted disturbance inputs. 
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CHAPTER 4: 

DIRECTIONAL NOISE CANCELLATION 

4.1 MOTIVATION 

As discussed in the previous chapter, one of the potential noise sources in both transport 

and regular clinical settings is caused by a physician’s handling of the stethoscope. This 

noise can be caused by finger/hand movement along the stethoscope chestpiece surface, 

accidental contact with the chestpiece, or muscle hand tremors. Modern electronic 

stethoscopes which have significantly larger chest pieces and metallic surface areas 

experience higher occurrence of handling noise. Mechanical isolation of the 

stethoscope’s transducer from these noise sources is possible, but this isolation is often 

achieved at the cost of a loss in sensitivity to patient chest sounds. 

If the noise source cannot be adequately decoupled from the transducer, it is 

advantageous to pursue alternate methods by which this noise can be removed digitally. 

This can make it possible to overcome the existing performance limitations of passive 

design approaches. Specifically, by applying control system theory and active noise 

reduction methods improved results may be obtained. Regarding the physician handling 

noise as an unknown disturbance input acting on the stethoscope system, it is possible to 

estimate and remove the effects of this noise by using knowledge of the stethoscope’s 

dynamics.  

The problem of unknown input estimation has long been investigated as a tool for use in 

control applications. This problem typically arises in systems subject to disturbances, 

unmeasurable inputs, un-modeled dynamics, or in applications that require fault detection 

and isolation. 

For the linear time invariant system, 
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 𝑥̇ = 𝐴𝑥 + 𝐵𝑑 (4.1) 

 𝑦 = 𝐶𝑥 (4.2) 

where 𝑥 ∈ ℝ𝑛, 𝑑 ∈ ℝ𝑝, and 𝑦 ∈ ℝ𝑞 and the system matrices 𝐴 , 𝐵, and 𝐶 are known, 

constant, and of appropriate dimension, the objective is to estimate the unknown input, 𝑑, 

given the measured signal 𝑦. In the broadest class of observers, no a priori knowledge of 

the unknown input is assumed. 

Model inversion is one possible technique that has been established to generate a system 

mapping 𝑅−1: 𝑦 → 𝑢 given an initial system map 𝑅: 𝑢 → 𝑦. Research in this area can be 

roughly divided into two categories—that of the left and right system inverse. The left 

inverse solves the problem of estimating the input, 𝑢, from a set of measurements, 𝑦. The 

right inverse solves the complementary problem of determining the input, 𝑢, that will 

produce a desired output, 𝑦. In the event that the number of inputs is equal to the number 

of outputs, these two inverses reduce to the same problem.   

Looking at the topic of functional reproducibility, Brockett and Mesarović [64] gave the 

first necessary and sufficient conditions for invertibility. An alternate test for invertibility 

has been presented by Sain [65], but these two criteria have since been found to be 

equivalent [66, 67].  A strengthened version of these conditions has been presented by 

Willsky [68], and an alternate method which establishes invertibility based on the 

original system matrices (𝐴, 𝐵, 𝐶, 𝐷) instead of its Markov parameters (𝐷, 𝐶𝐵, 𝐶𝐴𝐵,…) 

has been derived [69]. Brockett [70] provided an inversion algorithm for the linear time-

invariant (LTI) single-input single-output (SISO) case. This was later generalized by 

Silverman [71] to include linear time-variable (LTV) systems. Dorato [72] derived a 

simplified criterion for invertibility and proposed a procedure for obtaining the inverse of 

a multiple-input multiple-output (MIMO) system. Further simplifications of this approach 

have since been presented by other authors [65, 73, 74]. Silverman has provided an 

iterative procedure for inversion of the MIMO system which includes a built-in existence 

test [75]. Also, he has demonstrated methods by which the inverse system can be reduced 
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after it has been constructed. Additional research has been conducted to study the 

stability of such inverse systems. The conditions for the existence of a stable system 

inverse and its construction are given by Moylan [76]. These preliminary findings were 

primarily focused on the existence of such systems and their inherent system properties. 

However, they do not account for unknown initial conditions and do not estimate the 

states.  

Another approach for determining unknown inputs acting on a system can be achieved 

through the use of a so-called unknown input observer (UIO). Preliminary observer 

design in this area was in the interest of estimating the unknown state independent of the 

unmeasurable disturbances [77, 78]. However, the unknown disturbance itself was not 

estimated. The first standard rank condition—the so called “Observer Matching 

Condition” was developed by Kudva [79] to determine when a reduced order UIO was 

possible. This requirement demonstrated that the necessary and sufficient condition for 

this class of observers to exist for a given system is the following simple condition:  

 𝑟𝑎𝑛𝑘(𝐶𝐷) = 𝑟𝑎𝑛𝑘(𝐷) = 𝑝 (4.3) 

Following from this condition, many reduced order UIO designs have been proposed [80, 

81]. These approaches use a linear transformation to separate the state vector into two 

sets—those driven by the unknown input and those that are independent. Additionally, 

other authors have presented methods for full order UIO design [82, 83]. Unfortunately, 

this necessary rank condition widely limits their applicability to many real world systems. 

A large advance in UIO theory has been the development of observers for system which 

do not satisfy the observer matching condition. In general, these systems will require the 

use of one or more output derivatives to successfully estimate the state and/or input. The 

work of Liu provides an approach for systems that violate the matching condition and 

have a relative degree equal to one [84]. However, this assumption on the relative degree 

is not valid for the stethoscope system which is explored here (and will generally not be 

valid for many applications). More recently, Floquet and Zhu have presented methods for 

systems with a higher relative degree [85, 86]. The approaches of both authors rely on the 
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use of high order sliding mode observers to estimate output derivatives. The methods 

which have been presented have complex design conditions and lack methods to add 

additional robustness considerations. Additionally, in practice the implementation of 

these sliding mode observers in discrete time can result in chatter. What is presented here 

is a simpler method by which a linear observer can be designed which requires only the 

solution of a linear matrix inequality and has a straight-forward discrete time 

implementation. 

4.2 MODEL INVERSION BASED INPUT ESTIMATION 

4.2.1 Generating a Model Inverse 

Given the initial system model, it is possible to estimate the unknown input, 𝑑, for a class 

of linear time-invariant systems. Without loss of generality, it can be assumed that the 

matrices 𝐵 and 𝐶 are full column and row rank respectively. As is done by most authors, 

it is necessary to restrict the class of systems to those for which the number of unknown 

inputs is less than or equal to the number of available outputs, 𝑝 ≤ 𝑞. For convenience of 

presentation, we have chosen to omit a known control input as it does not apply to the 

system investigated here or alter the method described herein. 

In order to obtain an expression for the unknown input, 𝑑, we first differentiate the output 

from equation (4.2). After taking the output derivative and substituting for the state 

dynamics, equation (4.1), we obtain the following 

 𝑦̇ = 𝐶𝑥̇ = 𝐶(𝐴𝑥 + Bd) (4.4) 

Define the relative degree 𝑟𝑗 for the 𝑗𝑡ℎ output as the number of times that this output 

needs to be differentiated for an input to appear, that is 𝐶𝑗𝐴
𝑖−1𝐵 = 0 for all 1 ≤ 𝑖 ≤ 𝑟𝑗 −

1 and 𝐶𝑗𝐴
𝑟𝑗−1𝐵 ≠ 0.  

Thus, after differentiating the 𝑗𝑡ℎ output 𝑟𝑗 times, we obtain 

 𝑦
𝑗

(𝑟𝑗) = 𝐶𝑗𝐴
𝑟𝑗𝑥 + 𝐶𝑗𝐴

𝑟𝑗−1𝐵𝑑 (4.5) 



 

 51 

where the superscript (𝑙) denotes the 𝑙𝑡ℎ  derivative of a variable. Choose  𝑝 of the 𝑦𝑗 

such that  ∑ 𝑟𝑗 is minimized. Without loss of generality, assume that 𝑟1 ≤ 𝑟2 ≤ ⋯ ≤ 𝑟𝑞. 

Then, the output derivatives can be combined in increasing order of relative degree in 

matrix form as follows: 

 

[
 
 
 
 𝑦1

(𝑟1)

𝑦2
(𝑟2)

⋮

𝑦𝑝

(𝑟𝑝)
]
 
 
 
 

= [

𝐶1𝐴
𝑟1

𝐶2𝐴
𝑟2

⋮
𝐶𝑝𝐴𝑟𝑝

] 𝑥 +

[
 
 
 
𝐶1𝐴

𝑟1−1𝐵

𝐶2𝐴
𝑟2−1𝐵
⋮

𝐶𝑝𝐴
𝑟𝑝−1𝐵]

 
 
 

𝑑 (4.6) 

This can be written in the following compact notation 

 𝑦̅ = 𝐶̅𝑥 + 𝐷̅𝑑 (4.7) 

by defining 𝑦̅ ∈ ℝ𝑝, 𝐶̅ ∈ ℝ𝑝×𝑛, and 𝐷̅ ∈ ℝ𝑝×𝑝 as 

 𝑦̅ =

[
 
 
 
 𝑦1

(𝑟1)

𝑦2
(𝑟2)

⋮

𝑦𝑝

(𝑟𝑝)
]
 
 
 
 

, 𝐶̅ = [

𝐶1𝐴
𝑟1

𝐶2𝐴
𝑟2

⋮
𝐶𝑝𝐴𝑟𝑝

], 𝐷̅ =

[
 
 
 
𝐶1𝐴

𝑟1−1𝐵

𝐶2𝐴
𝑟2−1𝐵
⋮

𝐶𝑝𝐴𝑟𝑝−1𝐵]
 
 
 

 (4.8) 

If the matrix 𝐷̅ is invertible, then equation (4.7) can be solved to find the input, 𝑑, in 

terms of the output derivatives and states 

 𝑑 = −𝐹−1𝐶′𝑥 + 𝐹−1𝑦′ (4.9) 

Applying equation (4.9) to the original system equation, a new state equation without the 

unknown input can be obtained: 

 𝑥̇ = 𝐴𝑥 + 𝐵(−𝐷̅−1𝐶̅𝑥 + 𝐷̅−1𝑦̅)  

  = (𝐴 − 𝐵𝐷̅−1𝐶̅)𝑥 + 𝐵𝐷̅−1𝑦̅ (4.10) 

If we define the matrices, 

 𝐴𝑏 = 𝐴 − 𝐵𝐷̅−1𝐶̅,  𝐵𝑏 = 𝐵𝐷̅−1, 

 𝐶𝑏 = −𝐷̅−1𝐶̅,   𝐷𝑏 = 𝐷̅−1 (4.11) 

the new dynamic equations relating the original system output to an estimate of the input 

is given by, 
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 𝑥̇ = 𝐴𝑏𝑥 + 𝐵𝑏𝑦̅ (4.12) 

 𝑑 = 𝐶𝑏𝑥 + 𝐷𝑏𝑦̅ (4.13) 

The resulting system requires 𝑟𝑗 derivatives of the measured output signal 𝑦𝑗 to estimate 

the original system input(s). Correspondingly, the matrix 𝐴𝑏 will have eigenvalues at zero 

with a minimum multiplicity of ∑ 𝑟𝑗. This is shown in the results of Lemma 1 and 

Theorem 1 which follow. 

Lemma 1. Given 𝐴𝑏 = 𝐴 − 𝐵𝐷̅−1𝐶̅, where 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑝, 𝐶̅ ∈ ℝ𝑝×𝑛, and 

𝐷̅ ∈ ℝ𝑝×𝑝 are nonzero matrices given by the definition provided by Eq. (16), 𝑟𝑗 ∈ ℤ is 

smallest value for which 𝐶𝑗𝐴
𝑖𝐵 = 0 for all 0 ≤ 𝑖 < 𝑟𝑗 − 1 and 𝐶𝑗𝐴

𝑟𝑗−1𝐵 ≠ 0, the matrix 

𝐶𝑗𝐴𝑏
𝑘 = 𝐶𝑗𝐴

𝑘 for all 0 ≤  𝑘 ≤ 𝑟𝑗 and 𝐶𝑗𝐴𝑏
𝑙 = 0 for all 𝑙 ≥ 𝑟𝑗.   

Proof: If 𝑟𝑗 = 1, then by using the fact that 𝐶𝑗𝐵 = 0 it is clear that  

𝐶𝑗𝐴𝑏  = 𝐶𝑗[𝐴 − 𝐵𝐷̅−1𝐶̅] 

 = [𝐶𝑗𝐴 − 𝐶𝑗𝐵𝐷̅−1𝐶̅] 

 = 𝐶𝑗𝐴  (4.14) 

Using similar methods, for systems where 𝑟𝑗 > 1 

𝐶𝑗𝐴𝑏
𝑘  = 𝐶𝑗𝐴𝑏𝐴𝑏

𝑘−1 

 = 𝐶𝑗[𝐴 − 𝐵𝐷̅−1𝐶̅]𝐴𝑏
𝑘−1 

 = [𝐶𝑗𝐴 − 𝐶𝑗𝐵(∙)]𝐴𝑏
𝑘−1  (4.15) 

where (∙) has been used to indicate a quantity that is not critical for the remainder of the 

derivation. Continuing to expand, 

𝐶𝑗𝐴𝑏
𝑘  = [𝐶𝑗𝐴 − 𝐶𝑗𝐵(∙)][𝐴 − 𝐵𝐷̅−1𝐶̅]𝐴𝑏

𝑘−2 

 = [𝐶𝑗𝐴
2 − 𝐶𝑗𝐵(∙) − 𝐶𝑗𝐴𝐵(∙)]𝐴𝑏

𝑘−2 

 = [𝐶𝑗𝐴
2 − 𝐶𝑗𝐵(∙) − 𝐶𝑗𝐴𝐵(∙) − 𝐶𝑗𝐴

2𝐵(∙)]𝐴𝑏
𝑘−3 

 ⋮ 

 = 𝐶𝑗𝐴
𝑘 − 𝐶𝑗𝐵(∙) − 𝐶𝑗𝐴𝐵(∙) − ⋯− 𝐶𝑗𝐴

𝑘−2𝐵 − 𝐶𝑗𝐴
𝑘−1𝐵(∙) (4.16) 
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Given that CjA
iB = 0 for all 0 ≤ i < rj − 1 this simplifies to 

 𝐶𝑗𝐴𝑏
𝑘 = 𝐶𝑗𝐴

𝑘 (4.17) 

for all 0 ≤ k < rj. Now, setting 𝑘 = 𝑟𝑗 we find  

 𝐶𝑗𝐴𝑏

𝑟𝑗  = 𝐶𝑗𝐴
𝑟𝑗 − 𝐶𝑗𝐴

𝑟𝑗−1𝐵𝐷̅−1𝐶̅ (4.18) 

Combining 𝐶𝑗𝐴𝑏

𝑟𝑗
 for all increasing 𝑗 in matrix form, this can be written as follows 

 

[
 
 
 
 
𝐶1𝐴𝑏

𝑟1

𝐶2𝐴𝑏
𝑟2

⋮

𝐶𝑝𝐴𝑏

𝑟𝑝
]
 
 
 
 

= [

𝐶1𝐴
𝑟1

𝐶2𝐴
𝑟2

⋮
𝐶𝑝𝐴𝑟𝑝

] −

[
 
 
 
𝐶1𝐴

𝑟1−1𝐵

𝐶2𝐴
𝑟2−1𝐵
⋮

𝐶𝑝𝐴𝑟𝑝−1𝐵]
 
 
 

𝐷̅−1𝐶̅ (4.19) 

Applying the definitions of 𝐶̅ and 𝐷̅ this can be simplified to 

 

[
 
 
 
 
𝐶1𝐴𝑏

𝑟1

𝐶2𝐴𝑏
𝑟2

⋮

𝐶𝑝𝐴𝑏

𝑟𝑝
]
 
 
 
 

= 𝐶̅ − 𝐷̅𝐷̅−1𝐶̅ = 𝐶̅ − 𝐶̅ = 0 (4.20) 

from which it is clear that each individual row is identically equal to zero, 𝐶𝑗𝐴𝑏

𝑟𝑗
= 0. 

Further, it is clear that 𝐶𝑗𝐴𝑏
𝑙 = 0 for all 𝑟𝑗 ≤ 𝑙. Thus, we have shown that 𝐶𝑗𝐴𝑏

𝑖 = 𝐶𝑗𝐴
𝑖 for 

all 1 ≤ 𝑖 ≤ 𝑟𝑗 − 1 and 𝐶𝑗𝐴𝑏
𝑙 = 0 for all 𝑟𝑗 ≤ 𝑙.  

Theorem 1. Given 𝐴𝑏 = 𝐴 − 𝐵𝐷̅−1𝐶̅, where 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑝, 𝐶̅ ∈ ℝ𝑝×𝑛, and 

𝐷̅ ∈ ℝ𝑝×𝑝 are nonzero matrices given by the definition provided by Eq. (16), 𝑟𝑗 ∈ ℤ is 

smallest value for which 𝐶𝑗𝐴
𝑖𝐵 = 0 for all 0 ≤ 𝑖 < 𝑟𝑗 − 1 and 𝐶𝑗𝐴

𝑟𝑗−1𝐵 ≠ 0,  the square 

matrix 𝐴𝑏 will have at least ∑ 𝑟𝑗
𝑝
1  eigenvalues at zero.   

Proof: The matrix 𝐴𝑏 has an eigenvalue at zero iff ∃𝑣 ≠ 0 such that 𝐴𝑏𝑣 = 0 

and 𝑣𝑇𝐴𝑏 = 0. Take 𝑣𝑇 = 𝑎(𝐶𝑗𝐴
𝑟𝑗−1) where 𝐶𝑗 ≠ 0 has rank 1, 𝑎 ∈ ℝ, and 𝑎 ≠ 0. Then, 

 𝑣𝑇𝐴𝑏  = 𝑣𝑇𝐴𝑏 

= 𝑎(𝐶𝑗A
rj−1)𝐴𝑏 (4.21) 
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From Eq. (4.17) in Lemma 1, 𝐶𝑗𝐴
𝑟𝑗−1 = 𝐶𝑗𝐴𝑏

𝑟𝑗−1
, and Eq. (28) can be rewritten  

 𝑣𝑇𝐴𝑏  = 𝑎(𝐶𝑗𝐴𝑏

𝑟𝑗−1
)𝐴𝑏   

= 𝑎𝐶𝑗𝐴𝑏

𝑟𝑗
 (4.22) 

and by employing Eq. (4.20) where 𝐶𝑗𝐴𝑏

𝑟𝑗 = 0, this is reduced to 

 𝑣𝑇𝐴𝑏  = 0 (4.23) 

Thus, 𝐶𝑗𝐴
𝑟𝑗−1 is an eigenvector of 𝐴𝑏 with an associated eigenvalue at zero. Since there 

are 𝑝 outputs, there are at least 𝑝 eigenvalues at zero. Each of the 𝑝 eigenvalues located at 

zero given by the eigenvectors above has algebraic multiplicity of 𝑟𝑗. By taking 𝑣2
𝑇 =

𝑎2𝐶𝑗 where 𝑎2 ∈ ℝ, and 𝑎2 ≠ 0, it is possible to show that 𝐶𝑗 is a generalized eigenvector 

of rank 𝑟𝑗 > 0  of 𝐴𝑏

𝑟𝑗
. First, by employing Lemma 1, it is clear that 𝐶𝑗 is an eigenvector 

of 𝐴𝑏

𝑟𝑗
corresponding to an eigenvalue at zero. 

 𝑣2
𝑇𝐴𝑏

𝑟𝑗  = 𝑎2
𝑇𝐶𝑗𝐴𝑏

𝑟𝑗
   

 = 0 (4.24) 

However, by the same Lemma it is possible to show that 𝐶𝑗 is not an eigenvector of all 

lower powers of 𝐴𝑏. That is ∀1 ≤  𝑖 ≤ 𝑟𝑗 − 1 

 𝑣2
𝑇𝐴𝑏

𝑖  = 𝑎2
𝑇𝐶𝑗𝐴𝑏

𝑗
 

= 𝑎2
𝑇𝐶𝑗𝐴

𝑗 

≠ 0 (4.25) 

Thus, based on generalized eigenvector theory the eigenvalue at zero corresponding to 

this eigenvector has a geometric multiplicity 𝑟𝑗. Therefore, it has been shown that there 

exist 𝑝 eigenvalues at zero each with multiplicity 𝑟𝑗 for the matrix 𝐴𝑏 = 𝐴 − 𝐵𝐷̅−1𝐶̅.  

The system given by equations (4.12) and (4.13) will provide an exact solution for the 

state and unknown input only if the original system is minimum phase and the initial 

state 𝑥(𝑡0) = 𝑥0 is perfectly known. In practice, the initial conditions are often unknown. 
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Accordingly, what follows is an observer design which uses output feedback to correct 

for unknown initial conditions. 

4.2.2 Model Inversion Based Input Observer 

In order to remove these restrictions and account for the effects of unknown initial 

conditions, it is possible to modify the design of the unknown input observer using 

classical observer design methods. 

Choose the following update law for the state estimate 

 𝑥̇̂ = (𝐴𝑏 − 𝐿𝐶)𝑥̂ + 𝐵𝑏𝑦̅ + 𝐿𝑦 (4.26) 

where 𝐿 ∈ ℝ𝑛×𝑝. Choose the Lyapunov candidate, 

 𝑉 = 𝑒T𝑃𝑒 (4.27) 

where  𝑃 = 𝑃𝑇 ∈ ℝ𝑛×𝑛. Differentiating, 

 𝑉̇ = 𝑒T𝑃𝑒̇ + 𝑒̇T𝑃𝑒 (4.28) 

From the state equation the state estimate error derivative can be rewritten as, 

 𝑒̇ = 𝑥̇ − 𝑥̇̂ 

 = (𝐴𝑥 + 𝐵𝑑) − (𝐴𝑏𝑥̂ + 𝐵𝑏𝑦̅ + 𝐿𝐶𝑒) 

 = (𝐴𝑥 + 𝐵𝑑) − [(𝐴 − 𝐵𝐷̅−1𝐶̅)𝑥̂ + (𝐵𝐷̅−1)(𝐶̅𝑥 + 𝐷̅𝑑) + 𝐿𝐶𝑒] 

 = (𝐴 − 𝐿𝐶 − 𝐵𝐷̅−1𝐶̅)𝑒 

 = (𝐴𝑏 − 𝐿𝐶)𝑒  (4.29) 

and 𝑉̇ can be simplified as follows 

 𝑉̇ = 𝑒T𝑃[(𝐴𝑏 − 𝐿𝐶)𝑒] + [(𝐴𝑏 − 𝐿𝐶)𝑒]𝑇𝑃𝑒 

  = −𝑒T𝑄𝑒  (4.30) 

where 𝑄 = 𝑄𝑇 ∈ ℝ𝑛×𝑛 is defined as 

 𝑄 = −𝑃(𝐴𝑏 − 𝐿𝐶) − (𝐴𝑏 − 𝐿𝐶)𝑇𝑃 (4.31) 

If there exist a pair of symmetric positive-definite matrices 𝑃 and 𝑄 that satisfy equation 

(4.31), then the observer can asymptotically estimate the unknown state. By extension, if 
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the observer guarantees that the state estimates will converge to the true state, the input 

estimate will converge to the true input. 

 lim𝑡→ ∞(𝑥 − 𝑥̂) = 0 ⇒ lim𝑡→ ∞(𝑑 − 𝑑̂) = 0 (4.32) 

The existence of this solution requires the pair (𝐴𝑏, 𝐶) to be observable or at a minimum 

detectable. If the original system is observable and minimum phase, this condition on the 

pair (𝐴𝑏, 𝐶) can be guaranteed. This is shown in Lemma 2 which follows. 

Lemma 2. Given the pair (𝐴, 𝐶) is observable and the system is minimum phase, the pair 

(𝐴𝑏, 𝐶) is detectable and the 𝑟̃ = ∑ 𝑟𝑗 modes at zero are observable.   

Proof: The observability matrix for the original system is given by the following 

 𝒪 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

] (4.33) 

Given that the pair (𝐴, 𝐶) is observable, the row rank of the matrix, 𝒪, is equal to 𝑛. 

Define the observability matrix of the pair (𝐴𝑏, 𝐶) as follows 

 𝒪𝑏 = [

𝐶
𝐶𝐴𝑏

⋮
𝐶𝐴𝑏

𝑛−1

] (4.34) 

and let  

 𝒪𝑏𝑗

′ =

[
 
 
 

𝐶𝑗

𝐶𝑗𝐴𝑏

⋮
𝐶𝑗𝐴𝑏

𝑛−1
]
 
 
 

 ∀1 ≤ 𝑗 ≤ 𝑞 (4.35) 

Then, 

 𝒪𝑏
′ =

[
 
 
 
 
𝒪𝑏1

′

𝒪𝑏2

′

⋮
𝒪𝑏𝑞

′
]
 
 
 
 

 (4.36) 
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where 𝑟𝑎𝑛𝑘(𝒪𝑏
′ ) = 𝑟𝑎𝑛𝑘(𝒪𝑏). Employing Lemma 1, the matrix 𝒪𝑏𝑗

′  can be simplified as 

follows 

 𝒪𝑏𝑗

′ =

[
 
 
 
 
 
 
 
 
 

𝐶𝑗

𝐶𝑗𝐴𝑏

⋮

𝐶𝑗𝐴𝑏

𝑟𝑗−1

𝐶𝑗𝐴𝑏

𝑟𝑗

𝐶𝑗𝐴𝑏

𝑟𝑗+1

⋮
𝐶𝑗𝐴𝑏

𝑛−1
]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝐶𝑗

𝐶𝑗𝐴

⋮
𝐶𝑗𝐴

𝑟𝑗−1

𝐶𝑗𝐴𝑏

𝑟𝑗

𝐶𝑗𝐴𝑏

𝑟𝑗+1

⋮
𝐶𝑗𝐴𝑏

𝑛−1
]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝐶𝑗

𝐶𝑗𝐴

⋮
𝐶𝑗𝐴

𝑟𝑗−1

0
0
⋮
0 ]

 
 
 
 
 
 
 

 (4.37) 

By the original assumption that 𝑟𝑎𝑛𝑘(𝒪) = 𝑛, the matrix 𝒪𝑏𝑗

′  has rank equal to 𝑟𝑗. Thus, 

for each output 𝑗 there are 𝑟𝑗 observable modes. Let 𝜆 be an observable mode of the 

system given by the pair (𝐴𝑏, 𝐶). Then, by the Popov-Belevitch-Hautos (PBH) test,  

 𝑟𝑎𝑛𝑘 ([
𝜆𝐼 − 𝐴𝑏

𝐶
]) = 𝑛 (4.38) 

This is equivalent to stating that the pair (𝐴𝑏, 𝐶) is unobservable if and only if there exists 

a 𝑣 ≠ 0 such that 𝐴𝑏𝑣 = 𝜆𝑣 and 𝐶𝑣 = 0. Suppose that 𝜆 = 0 is an unobservable mode of 

the system, then 

 𝑟𝑎𝑛𝑘 ([
−𝐴𝑏

𝐶
]) ≠ 𝑛  (4.39) 

Thus, there must exist a nonzero 𝑣 such that 𝐴𝑏𝑣 = 0 and 𝐶𝑣 = 0. Recall from Lemma 1, 

that 𝐶𝐴𝑏 = 0 (i.e. 𝐶 is a left eigenvector of 𝐴𝑏). By the first condition, 𝑣 is a right 

eigenvector of 𝐴𝑏. The second condition requires that the product 𝐶𝑣 = 0. However, by 

the orthogonality property of left and right-eigenvectors, the product of the left and right 

eigenvectors corresponding to a single eigenvalue should be equal to 𝛾 ≠ 0 (𝛾 = 1 if the 

eigenvectors are normalized). Thus, there exists a contradiction. Therefore, 𝜆 = 0 must 

be an observable mode of the pair (𝐴𝑏, 𝐶). By extension, all 𝑟̃ modes at zero are 

observable. Since only 𝑟̃ observable modes were found to exist for the system, it can be 

concluded that all remaining 𝑛 − 𝑟̃ modes of the system are unobservable. However, by 
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the original condition that the original system was minimum phase, the modes will be 

detectable.  

It has been shown that the states corresponding to the repeated eigenvalues at zero are 

observable. Additionally, it was demonstrated that all other eigenvalues—the zeros of the 

original system—are unobservable. Since we required the original system to be minimum 

phase, this guarantees that all poles of the observer are already or can be placed in the 

open left-half of the complex plane. Thus, a stable observer is possible. 

The benefit of this observer design is that it does not require any assumptions about the 

boundedness of the unknown input. However, since it requires that the original system is 

minimum phase, it may rule out its applicability to some physical applications in which 

sensor locations relative to the input location may result in unstable zeros. 

4.2.3 Unknown Input Observer 

As an alternate method to estimate the unknown input of a system, it is possible to design 

an unknown input and state observer that does not rely on the construction of an inverse 

dynamic model. 

Theorem 2. If there exist observer gain matrices 𝐿 and 𝒢 and two symmetric positive-

definite (SPD) matrices 𝑃𝑥, 𝑃𝑑, and 𝑄 such that  

 𝑄 = [
−𝑃𝑥(𝐴 − 𝐿𝐶) − (𝐴 − 𝐿𝐶)T𝑃𝑥 −𝑃𝑥𝐵 + 𝒞̃T𝒢T𝑃𝑑

−𝐵T𝑃𝑥 + 𝑃𝑑𝒢𝒞̃ 𝑃𝑑ℋ𝒟̃ + 𝒟̃TℋT𝑃𝑑

] (4.40) 

the observer given by  

 𝑥̇̂ = (𝐴 − 𝐿𝐶)𝑥̂ + 𝐵𝑑̂ + 𝐿𝑦 (4.41) 

 𝑑̇̂ = −𝒢𝒞̃𝑥̂ − ℋ𝒟̃𝑑̂ + 𝒢𝓎̃ (4.42) 

can be used to asymptotically estimate both the state and the unknown input.    

Proof: For a system where each output has a relative degree 𝑟𝑗 as previously defined, 

define the structures of the matrices, 𝒢 ∈ ℝ𝑝×(𝑟̃+𝑞), ℋ ∈ ℝ𝑝×𝑞, 𝒞̃ ∈ ℝ(𝑟̃+𝑞)×𝑛, and 𝒟̃ ∈

ℝ𝑞×𝑝 as follows: 
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 𝒢 =  [𝐺1 𝐺2 ⋯ 𝐺𝑞], ℋ = [𝐻1 𝐻2 ⋯ 𝐻𝑞], 

  𝒞̃ =

[
 
 
 
𝐶̃1

𝐶̃2

⋮
𝐶̃𝑞]

 
 
 

, 𝒟̃ =

[
 
 
 
𝐷̃1

𝐷̃2

⋮
𝐷̃𝑞]

 
 
 

 (4.43) 

where 

 𝑟̃ = ∑ 𝑟𝑖
𝑞
𝑖=1  (4.44) 

and the sub-matrices 𝐺𝑖 ∈ ℝ𝑝×(𝑟𝑖+1), 𝐻𝑖 ∈ ℝ𝑝×1, 𝐶̃𝑖 ∈ ℝ(𝑟𝑖+1)×𝑛, and 𝐷̃𝑖 ∈ ℝ1×𝑝 ∀𝑖 ∈

{1,2, … , 𝑞} are defined as follows 

 𝐺𝑖 = [𝐺𝑖,0 𝐺𝑖,1 ⋯ 𝐺𝑖,𝑟𝑖],  𝐻𝑖 = 𝐺𝑖,𝑟𝑖
, 

 𝐶̃𝑖 = [

𝐶𝑖

𝐶𝑖𝐴
⋮

𝐶𝑖𝐴
𝑟𝑖

], 𝐷̃𝑖 = 𝐶𝑖𝐴
𝑟𝑖−1𝐵 (4.45) 

Then, define the observer update law as follows 

 𝑥̇̂ = (𝐴 − 𝐿𝐶)𝑥̂ + 𝐵𝑑̂ + 𝐿𝑦 (4.46) 

 𝑑̇̂ = −𝒢𝒞̃𝑥̂ − ℋ𝒟̃𝑑̂ + 𝒢𝓎̃ (4.47) 

where 𝐿 ∈ ℝ𝑛×𝑞 and the output derivative vector, 𝓎̃ ∈ ℝ𝑟̃+𝑞,  is defined as  

 𝓎̃ = [

𝑦̃1

𝑦̃2

⋮
𝑦̃𝑞

] (4.48) 

with 𝑦̃𝑖 ∈ ℝ𝑟𝑖+1 

 𝑦̃𝑖 = [

𝑦𝑖

𝑦̇𝑖

⋮

𝑦𝑖
(𝑟𝑖)

] (4.49) 

Defining the state and input estimate errors as 

 𝑒𝑥 = 𝑥 − 𝑥̂, 𝑒𝑑 = 𝑑 − 𝑑̂ (4.50) 
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the observer state estimate can be rewritten as  

 𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑑̂ + 𝐿𝐶𝑒𝑥 (4.51) 

Similarly, after some manipulation, the unknown input estimate can be written as  

 𝑑̇̂ = 𝒢𝒞̃𝑒𝑥 + ℋ𝒟̃𝑒𝑑 (4.52) 

In order to show that state and unknown input estimate errors converge to zero, we can 

choose the Lyapunov candidate 

 𝑉 = 𝑒𝑥
T𝑃𝑥𝑒𝑥 + 𝑒𝑑

T𝑃𝑑𝑒𝑑 (4.53) 

where 𝑃𝑥 ∈ ℝ𝑛×𝑛 and 𝑃𝑑 ∈ ℝ𝑝×𝑝. Differentiating the Lyapunov function, we obtain 

 𝑉̇ = 𝑒𝑥
T𝑃𝑥𝑒̇𝑥 + 𝑒̇𝑥

T𝑃𝑥𝑒𝑥 + 𝑒𝑑
T𝑃𝑑𝑒̇𝑑 + 𝑒̇𝑑

T𝑃𝑑𝑒𝑑 (4.54) 

From the state equation, the state estimate error derivative can be rewritten as 

𝑒̇𝑥 = 𝑥̇ − 𝑥̇̂ 

 = (𝐴𝑥 + 𝐵𝑑) − (𝐴𝑥̂ + 𝐵𝑑̂ + 𝐿𝐶𝑒𝑥) 

= (𝐴 − 𝐿𝐶)𝑒𝑥 + 𝐵𝑒𝑑  (4.55) 

If we assume that the disturbance inputs are constant, 𝑑̇ = 0, then 𝑒̇𝑑 = −𝑑̇̂, and 𝑉̇ can be 

simplified as follows 

 𝑉̇ = 𝑒𝑥
T𝑃𝑥[(𝐴 − 𝐿𝐶)𝑒𝑥 + 𝐵𝑒𝑑] + [(𝐴 − 𝐿𝐶)𝑒𝑥 + 𝐵𝑒𝑑]T𝑃𝑥𝑒𝑥 

 −𝑒𝑑
T𝑃𝑑[𝒢𝒞̃𝑒𝑥 + ℋ𝒟̃𝑒𝑑] − [𝒢𝒞̃𝑒𝑥 + ℋ𝒟̃𝑒𝑑]

T
𝑃𝑑𝑒𝑑 (4.56) 

Expanding, this can be rewritten as follows 

𝑉̇ = 𝑒𝑥
T[𝑃𝑥(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)T𝑃𝑥]𝑒𝑥 + 𝑒𝑥

T[𝑃𝑥𝐵 − 𝒞̃T𝒢T𝑃𝑑]𝑒𝑑 

+𝑒𝑑
T[𝐵T𝑃𝑥 − 𝑃𝑑𝒢𝒞̃]𝑒𝑥 − 𝑒𝑑

T[𝑃𝑑ℋ𝒟̃ + 𝒟̃TℋT𝑃𝑑]𝑒𝑑 (4.57) 

In matrix form, this is given by 

 𝑉̇ = −[𝑒𝑥
T 𝑒𝑑

T]𝑄 [
𝑒𝑥

𝑒𝑑
] (4.58) 

where 
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 𝑄 = [
−𝑃𝑥(𝐴 − 𝐿𝐶) − (𝐴 − 𝐿𝐶)T𝑃𝑥 −𝑃𝑥𝐵 + 𝒞̃T𝒢T𝑃𝑑

−𝐵T𝑃𝑥 + 𝑃𝑑𝒢𝒞̃ 𝑃𝑑ℋ𝒟̃ + 𝒟̃TℋT𝑃𝑑

] (4.59) 

If there exists symmetric positive-definite matrices 𝑃𝑥, 𝑃𝑑, and 𝑄 that satisfy equation 

(4.59), then 𝑉 is positive definite and 𝑉̇ is negative definite on the entire space ℝ𝑛+𝑝. 

Additionally, since 𝑉 is radially unbounded, it is possible to conclude that 𝑒𝑥 = 0  and 

𝑒𝑑 = 0 is a globally asymptotically stable equilibrium point. Thus, the given observer can 

guarantee that both the state and unknown input can be asymptotically tracked.  It should 

be noted that although the disturbance was assumed to be an unknown constant, in 

practice a time varying disturbance can also be estimated in real-time if the sampling 

frequency is adequately fast. 

4.2.4 Observer Performance on an Example System 

In order to demonstrate the performance of the proposed input estimation methods, they 

can be applied to a simple low order single-input and single-output mass-spring-damper 

system. Here, a two mass system is presented where the unknown input is a force acting 

on one mass and the output is taken as the relative deflection between the two masses 

(see Figure 4-1). 

 

Figure 4-1: Schematic of two mass system for unknown input observer design example  

In state-space form, the physical system’s dynamic model is given as follows: 

 𝑥̇ = A𝑥 + B𝑑 (4.60) 

 𝑦 = 𝐶𝑥 (4.61) 
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where 𝑥 ∈ ℝ4 is the state, 𝑑 ∈ ℝ is the unknown force input, and the system matrices 𝐴 ∈

ℝ4×4, 𝐵 ∈ ℝ4×1, and  𝐶 ∈ ℝ1×4 are given by: 

 𝐴 = [

0 0 1 0
0 0 0 1

−20 10 −2 1
10 −20 1 −2

] (4.62) 

 𝐵 = [0 0 1 0]T (4.63) 

 𝐶 = [1 −1 0 0] (4.64) 

First, to obtain the relative degree, 𝑟, take the derivative of the output until the input 

appears, that is 𝐶𝐴𝑖−1𝐵 = 0 for all 1 ≤ 𝑖 ≤ 𝑟 − 1 and 𝐶𝐴𝑟−1𝐵 ≠ 0.  

After differentiating the first time, we obtain 

 𝑦̇ = 𝐶𝑥̇ (4.65) 

 = 𝐶(𝐴𝑥 + Bd) (4.66) 

 = [1 −1 0 0]𝑥 + [0]𝑑 (4.67) 

Given that the input does not appear, we take the derivative again to obtain 

 𝑦̈ = 𝐶𝐴𝑥̇ (4.68) 

 = 𝐶𝐴(𝐴𝑥 + Bd) (4.69) 

 = [−30 30 −3 3]𝑥 + [1]𝑑 (4.70) 

Here, the derivative explicitly appears (after two derivatives), therefore 𝑟 = 2. Using 

equation (4.8) obtain the following 𝑦̅ = 𝑦(2), 𝐶̅ = 𝐶𝐴2, and 𝐷̅ = 𝐶𝐴𝐵. Then, from 

equation (4.11) the inverse system matrices are given as follows: 

 𝐴𝑏 = [

0 0 1 0
0 0 0 1
10 −20 1 −2
10 −20 1 −2

] (4.71) 

 𝐵𝑏 = [0 0 1 0]T (4.72) 

 𝐶𝑏 = [30 −30 3 −3] (4.73) 

 𝐷𝑏 = 1 (4.74) 
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As anticipated, the resulting inverse system has two poles at zero (∑ 𝑟 = 2). Thus, for 

non-zero initial conditions the resulting estimate will diverge. The required observer has 

been obtained by using a linear matrix inequality (LMI) solver. From the solver, it has 

been found that the observer gain  

 𝐿 = [0.74647 −0.15893 15.84 14.562]T (4.75) 

and matrix  

 𝑃 = [

1.7391 0.5904 −0.49515 0.47155
0.5904 1.7335 −0.027814 0.13696

−0.49515 −0.027814 0.76687 −0.52263
0.47155 0.13696 −0.52263 0.75352

]

T

 (4.76) 

provide a positive definite 𝑄 as defined by equation (4.31).  

Similarly, an unknown input observer can be designed that does not rely on the inverse 

system model. From equation (4.43) define the matrices 𝐶̃ ∈ ℝ3×4, and 𝐷̃ ∈ ℝ as  

 𝐶̃ = [
𝐶
𝐶𝐴
𝐶𝐴2

] = [
1 −1 0 0
0 0 1 −1

−30 30 −3 3
] (4.77) 

 𝐷̃ = 𝐶𝐴𝐵 = 1 (4.78) 

Again, using an LMI solver, the following matrices are obtained  

 𝐺 = [16.122 1.7669 0.53552] (4.79) 

 𝐻 = 0.53552 (4.80) 

 𝐿 = [0.13862 −0.098478 −13.968 13.961] (4.81) 

 𝑃 = [

1.7008 0.68044 0.080704 −0.04769
0.68044 1.7528 −0.031092 0.084743
0.080704 −0.031092 0.27393 −0.033885
0.04769 0.084743 −0.033885 0.28682

]

T

 (4.82) 

to provide a positive definite 𝑄 defined by equation (4.59). 

To compare the baseline performance of each observer design, first the response was 

obtained when the unknown force was a constant, 𝑑 = 1. A simple first order difference 
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equation was used to calculate the derivatives of the output signal. The error of the 

resulting estimates as a function of time can be seen in Figure 4-2. 

 

Figure 4-2: Unknown input observer estimate error convergence in response to a constant input 

In addition to the two primary observers, a third hybrid estimate is presented. This 

estimate was obtained by combining the state dynamics from the non-inverse based 

observer with the estimate output equation from the inversion based observer. As shown 

in the figure, each estimate converges to zero. The inverse based estimate exhibits larger 

oscillatory transient behavior than the other two estimates. The hybrid estimate has 

comparable convergence speed but removes the transient oscillations. In contrast, the 

non-inverse based estimate has rapid convergence with no transient oscillations. 

If simulations are repeated with a complex sinusoidal input, the following behavior is 

observed (see Figure 4-3). 
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Figure 4-3: Unknown input observer estimate error convergence in response to a complex 

sinusoidal input 

Here, the general shape of the error dynamics is preserved, but the non-inverse and 

hybrid estimates have a non-zero steady-state error. This is due to a violation of the 

assumption that the unknown input is constant. The inverse based estimate relies on no 

assumptions of the input behavior. Thus, its error demonstrates no change in behavior. 

The hybrid estimate has a transient steady-state error but with less high frequency 

components.  

To improve the performance of the non-inverse based estimate, the gain of the observer 

matrices (𝐺 and 𝐻) can be increased by a constant factor. Scaling all elements of both 

matrices by 106 and using the same input signal, the following error is obtained (see 

Figure 4-4). 
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Figure 4-4: High gain unknown input observer estimate error convergence in response to a 

complex sinusoidal input 

The effect of the larger gain can be seen as a decrease in the response time of the estimate 

to changes in the unknown input derivative. With a larger gain, the observer is more 

responsive. However, as with most high-gain observers, the resulting system will have an 

increased sensitivity to measurement noise. 

As a final test of the observer performance, their response to a broadband random (white 

noise) input can be obtained (see Figure 4-5). As a worst case scenario, this signal tests 

the response of each observer to inputs at all frequencies. 
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Figure 4-5: High gain unknown input observer estimate error convergence in response to a 

white noise input 

It can be seen that the trend of each observer estimate error is preserved, but now each 

error has a non-zero error after “convergence.” The nature of the error can be better 

understood by looking at the power spectral density of the original input signal and its 

estimates for the end of the simulation results (see Figure 4-6). 
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Figure 4-6: Power spectral density of high gain unknown input observer estimates in response 

to a white noise input 

Each observer appears to fail at capturing the high frequency dynamics of the unknown 

input signal. This discrepancy can be attributed to errors in the derivatives obtained for 

the observers. The derivations of each observer relies having available the exact 

derivative of the measured system output signal. Without having access to this derivative, 

it is necessary to approximate it with a numerical derivative. The error shown here is a 

result of the error in a first order finite difference approximation given the sampling 

frequency employed. For a larger sampling frequency, the bandwidth of the observer 

estimate will increase. This implies that the sampling frequency is a critical design 

parameter which must be accounted for when applying the observers on a physical 

system.  

4.3 STETHOSCOPE INPUT ESTIMATION 

4.3.1 Model Inversion 

Having verified the theoretical performance of the proposed unknown input/disturbance 

estimation algorithms, it was then necessary to apply this technique on the stethoscope 

problem. As stated in the introduction, our unknown input observer approach will rely on 
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the assumption that the number of system outputs (i.e. measurements) must be greater 

than or equal to the number of unknown inputs. Given that the stethoscope has two 

unknown inputs, at least one more measurement is required beyond that currently 

available in the original stethoscope design in order to accurately estimate and remove 

the effects of the unknown disturbance. Accordingly, a second piezo assembly has been 

added to the design. In order to reduce the complexity and verify the methodology, a 

simplified dual-piezo mechanical system has been constructed. The design consists of 

two identical subassemblies each with a piezo sensor. Both piezos are encased in a rigid 

transducer housing with an upper and lower foam ring support. The two assemblies are 

connected via a foam disk. A one-dimensional mechanical model of the resulting system 

can be seen in Figure 4-7 below. 

  

Figure 4-7: Dual-piezo transducer assembly one-dimensional mechanical model 

Within the larger stethoscope body, this simplified mechanical design could be realized 

by the following  
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Figure 4-8: Preferred embodiment of a dual-piezo stethoscope assembly 

In state-space form, the physical system’s dynamic model is given as follows: 

 𝑥̇d = 𝐴𝑑𝑥𝑑 + 𝐵𝑑𝑑 (4.83) 

 𝑦𝑑 = 𝐶𝑑𝑥𝑑 (4.84) 

where 𝑥𝑑 ∈ ℝ8 is the state and 𝑑 ∈ ℝ2 is the unknown input, 

 𝑑 = [𝐹𝑝 𝐹𝑚]T (4.85) 

The system matrices 𝐴𝑑 ∈ ℝ8×8, 𝐵𝑑 ∈ ℝ8×2, and  𝐶𝑑 ∈ ℝ2×8 are given by: 

 𝐴𝑑 =

[
 
 
 
 
 
 
 

−44.08 1562.68 174.23 −153.38 213.30 112.67 −2.83 5.04
−1562.68 −94.40 −158.90 213.71 −261.99 −185.22 6.18 −8.10
−175.56 −161.87 −420.59 4158.95 −803.25 −847.52 86.22 −86.53
64.23 −2.88 −3615.96 −537.89 1471.00 998.75 −97.93 147.54

−213.03 −261.84 −843.69 −239.26 −2021.47 −4056.59 32.12 13.08
93.36 158.59 737.93 −816.94 3875.64 −1808.43 34.73 28.92

−27.23 −41.52 −195.15 −265.07 −475.81 −24.80 −1030.82 4472.69
−11.61 −17.37 −93.57 −378.44 −119.73 −602.68 −4383.90 −2312.17]

 
 
 
 
 
 
 

 (4.86) 

 𝐵𝑑 = [
−82521.54 −114774.36 −156926.33 −449007.32 −107215.10 −123552.41 −172406.83 −193414.42
300294.54 421995.38 445898.00 −236420.39 670076.75 −393644.12 52537.97 −10752.79

]
T

  

(4.87) 

 𝐶𝑑 = [
8648.32 −8602.71 67844.05 −108708.54 −82749.97 −30555.85 −179490.77 192359.08

311306.64 −437240.50 −467812.01 495665.84 −673535.73 −411445.29 16352.89 −22863.65
]  

(4.88) 

The original model which was theoretically derived has been replaced by a minimal 

balanced realization. This model can be used to relate the vibrational inputs to pressure 

on the piezo sensing elements. However, a conversion is required to relate these forces to 



 

 71 

output voltages. The state-space representation of the differential equations relating 

pressure and voltage for piezo 𝑖 can be written as follows 

 𝑥̇𝑝𝑖
= 𝐴𝑝𝑖

𝑥𝑝𝑖
+ 𝐵𝑝𝑖

𝑢𝑝𝑖
 (4.89) 

 𝑦𝑝𝑖
= 𝐶𝑝𝑖

𝑥𝑝𝑖
 (4.90) 

where x𝑝𝑖
∈ ℝ3 and the system matrices 𝐴𝑝𝑖

∈ ℝ3×3, B𝑝𝑖
∈ ℝ3×1, and  𝐶𝑝 ∈ ℝ1×3 are 

given by: 

 𝐴𝑝1
= [

−4923.06 −26157.30 −10510.92
32768.00 0 0

0 8192.00 0
], 

 𝐴𝑝2
= [

−2808.29 −22389.14 −7334.77
32768.00 0.00 0.00

0.00 4096.00 0.00
], 

 𝐵𝑝1
= [

0.03
0
0

],  𝐵𝑝2
= [

0.06
0
0

], 

 𝐶𝑝1
= [0 0 0.05],  𝐶𝑝2

= [0 0 0.04] (4.91) 

The output of each piezo sensor is quite small. In order to amplify and improve the signal 

quality, a small preamplifier circuit is used for each piezo. The state-space model for 

amplifier 𝑖 is given by the following 

 𝑥̇𝑎𝑖
= 𝐴𝑎𝑖

𝑥𝑎𝑖
+ 𝐵𝑎𝑖

𝑢𝑎𝑖
 (4.92) 

 𝑦𝑎𝑖
= 𝐶𝑎𝑖

𝑥𝑎𝑖
 (4.93) 

where x𝑎𝑖
∈ ℝ5 and the system matrices are given by 

 𝐴𝑎1
=

[
 
 
 
 
−44060.84 −19445.95 −7947.02 −2397.29 −1074.61
32768.00 0.00 0.00 0.00 0.00

0.00 16384.00 0.00 0.00 0.00
0.00 0.00 4096.00 0.00 0.00
0.00 0.00 0.00 512.00 0.00 ]

 
 
 
 

. 

 𝐴𝑎2
=

[
 
 
 
 
−62499.47 −20212.80 −10041.14 −2805.13 −723.10
65536.00 0.00 0.00 0.00 0.00

0.00 16384.00 0.00 0.00 0.00
0.00 0.00 4096.00 0.00 0.00
0.00 0.00 0.00 1024.00 0.00 ]

 
 
 
 

, 
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 𝐵𝑎1
= [32 0 0 0]T, 

 𝐵𝑎2
= [16 0 0 0]T, 

 𝐶𝑎1
= [0.00 12.46 6.15 1.24 0.10] 

 𝐶𝑎2
= [0.00 12.37 8.17 1.60 0.13] (4.94) 

For ease of development, the two preamplifier models will be stacked to create a 

decoupled two input and two output system, 𝐺𝑎, given by (𝐴𝑎,𝐵𝑎,𝐶𝑎).  

 𝐴𝑎 = [
𝐴𝑎1

0

0 𝐴𝑎1

], 𝐵𝑎 = [
𝐵𝑎1

0

0 𝐵𝑎1

] ,𝐶𝑎 = [
𝐶𝑎1

0

0 𝐶𝑎1

] (4.95) 

Similarly, the two piezo models have been stacked and the resulting system, 𝐺𝑝, is given 

by (𝐴𝑝,𝐵𝑝,𝐶𝑝). 

 𝐴𝑝 = [
𝐴𝑝1

0

0 𝐴𝑝1

], 𝐵𝑝 = [
𝐵𝑝1

0

0 𝐵𝑝1

], 𝐶𝑝 = [
𝐶𝑝1

0

0 𝐶𝑝1

] (4.96) 

Schematically, the interconnection of the sub-systems can be seen in Figure 4-9. The 

following change of notation will be introduced for the complete system model: 𝑢1 ≜ 𝐹𝑝, 

𝑢1 ≜ 𝐹𝑚, 𝑦1 ≜ 𝑦𝑎1
, and 𝑦2 ≜ 𝑦𝑎2

. 

  

Figure 4-9: Dual-piezo sensor system model schematic diagram 

4.3.2 Observer Design 

It is possible to construct a full system observer for the combined model. However, here 

we have chosen to design an unknown input observer for each cascaded subsystem. This 

minimizes the number of output derivatives required for each estimator (i.e. reduces the 

effect of measurement noise). 
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The dynamic model, 𝐺𝑑, has well defined relative degree equal to one for each output 

(𝑟𝑑1
= 1, 𝑟𝑑2

= 1). The piezo subsystems each have a relative degree of three (𝑟𝑝1
=

3, 𝑟𝑝2
= 3), and each preamplifier subsystem has a relative degree of two (𝑟𝑎1

= 2, 𝑟𝑎2
=

2). 

The inversion based observer for this system can be given by 

 𝑥̇̂𝑎 = (𝐴𝑏,𝑎 − 𝐿𝑎𝐶𝑎)𝑥̂𝑎 + 𝐵𝑏,𝑎𝑦̅𝑎 + 𝐿𝑎𝑦𝑎 (4.97) 

 𝑥̇̂𝑝 = (𝐴𝑏,𝑝 − 𝐿𝑝𝐶𝑝)𝑥̂𝑝 + 𝐵𝑏,𝑝𝑦̂̅𝑝 + 𝐿𝑝𝑦̂𝑝 (4.98) 

 𝑥̇̂𝑑 = (𝐴𝑏,𝑑 − 𝐿𝑑𝐶𝑑)𝑥̂𝑑 + 𝐵𝑏,𝑑 𝑦̂̅𝑑 + 𝐿𝑑𝑦̂𝑑 (4.99) 

where the observer gains 𝐿𝑎 ∈ ℝ8×2, 𝐿𝑝 ∈ ℝ6×2, and 𝐿𝑑 ∈ ℝ10×2 were selected as  

 𝐿𝑑 = [−3.39e−3 −4.30e−3 −1.04e−2 −1.73e−2 −3.99e−4 −5.27e−3 5.76e−3 −1.74e−3

−1.77e−3 −1.52e−3 8.06e−4 5.42e−4 2.68e−4 −4.26e−4 3.60e−5 2.21e−4 ]
T

, 

 𝐿𝑝 = [
516.16 713052.69 2797.54 0 0 0

0 0 0 240.93 1078955.40 3684.15
]
T

, 

 𝐿𝑎 =

[
 
 
 
 
 
 
 
 
 
43.08 0
151.58 0
280.68 0
2157.8 0
709.71 0

0 1.5636
0 −6.0234
0 37.024
0 443.2
0 348.38 ]

 
 
 
 
 
 
 
 
 

 (4.100) 

by solving the linear matrix inequality given by condition that a positive definite 𝑃 and 𝑄 

must exist where 𝑄 is defined by equation (4.31). The remaining observer system 

matrices are defined by equation (4.11). 

It is important to note that since a cascaded observer design was selected all systems after 

the first observer rely on the use of output estimates (the result of the prior observer’s 

estimate) and not a direct measurement. In the steady state, the internal stability of each 

observer guarantees that the cascaded observer will converge. 
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Similarly, a non-inversion based observer can be design for the stethoscope system. The 

state estimates are given by the following 

 𝑥̇̂𝑎 = (𝐴𝑎 − 𝐿𝑎𝐶𝑎)𝑥̂𝑎 + 𝐵𝑎𝑑̂𝑎 + 𝐿𝑎𝑦𝑎 (4.101) 

 𝑥̇̂𝑝 = (𝐴𝑝 − 𝐿𝑝𝐶𝑝)𝑥̂𝑝 + 𝐵𝑝𝑑̂𝑝 + 𝐿𝑝𝑦̂𝑝 (4.102) 

 𝑥̇̂𝑑 = (𝐴𝑑 − 𝐿𝑑𝐶𝑑)𝑥𝑑 + 𝐵𝑑𝑑̂𝑑 + 𝐿𝑑𝑦̂𝑑 (4.103) 

The update laws for the unknown input estimates for each stage of the observer are given 

by  

 𝑑̇̂𝑎 = −𝒢𝑎𝒞̃𝑎𝑥̂𝑎 − ℋ𝑎𝒟̃𝑎𝑑̂𝑎 + 𝒢𝑎𝓎̃𝑎 (4.104) 

 𝑑̇̂𝑝 = −𝒢𝑝𝒞̃𝑝𝑥̂𝑝 − ℋ𝑝𝒟̃𝑝𝑑̂𝑝 + 𝒢𝑝𝓎̃𝑝 (4.105) 

 𝑑̇̂𝑑 = −𝒢𝑑𝒞̃𝑑𝑥̂𝑑 − ℋ𝑑𝒟̃𝑑𝑑̂𝑑 + 𝒢𝑑𝓎̃𝑑 (4.106) 

The state observer gains 𝐿𝑎 ∈ ℝ8×2, 𝐿𝑝 ∈ ℝ6×2, and 𝐿𝑑 ∈ ℝ10×2 and the disturbance 

observer gains 𝒢𝑎 ∈ ℝ2×4, 𝒢𝑝 ∈ ℝ2×4, 𝒢𝑑 ∈ ℝ2×6, ℋ𝑎 ∈ ℝ2×2, ℋ𝑝 ∈ ℝ2×2, and 

ℋ𝑝 ∈ ℝ2×2 were obtained by solving the linear matrix inequality given by condition that 

a positive definite 𝑃 and 𝑄 must exist where 𝑄 is defined by equation (4.59). The 

remaining observer system matrices are defined by equation (4.45). 

4.3.3 Simulation Results 

The first step to verifying the designed unknown input/disturbance observer was to 

benchmark its performance using simulated data. Perfect measurements were obtained by 

passing inputs through the original theoretical system model. A clean heart sound 

recording was used for the desired patient signal. The disturbance input was created by 

generating a pure white noise signal. In this simulated scenario it is possible to compare 

to resulting signal estimates to the known input signals.  

After applying the specified input signals to the original dual-piezo model (with random 

initial conditions), the following two output measurements were obtained (see Figure 

4-10). 
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Figure 4-10: Simulated dual-piezo sensor system measurement signals 

It is evident that the noise due to the disturbance input is sufficient to completely mask 

the desired auscultation signal in either measurement. Applying these measurements to 

the unknown input estimation algorithm, the following input signal estimate errors are 

obtained (see Figure 4-11 and Figure 4-12). 

 

Figure 4-11: Simulated dual-piezo sensor system estimated patient input signal error 
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Figure 4-12: Simulated dual-piezo sensor system estimated disturbance input signal error 

In this expanded time window, it is possible to see that the error in both estimates 

converges after approximately 4 seconds. The large initial error is due to the unknown 

initial conditions. As the observer begins to accurately estimate the state trajectories, the 

input estimates converge. Looking at the end of the simulation results, it is possible to 

observe the performance of the converged estimates (see Figure 4-13 and Figure 4-14). 

 

Figure 4-13: Simulated dual-piezo sensor system estimated patient input signal 
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Figure 4-14: Simulated dual-piezo sensor system estimated disturbance input signal 

Although the heart sound is visible in the patient input estimate, it is obstructed by the 

presence of significant high frequency noise. In the frequency domain, the error in the 

estimates becomes quite clear (see Figure 4-15) 

 

Figure 4-15: Simulated dual-piezo sensor system estimated patient input signal 
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components above the desired auscultation signal, the following estimates are obtained 

(see Figure 4-16 and Figure 4-17) 

 

Figure 4-16: Simulated dual-piezo sensor system estimated patient input signal after filtering 

 

Figure 4-17: Simulated dual-piezo sensor system estimated disturbance input signal after 

filtering 
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In this frequency range, the estimates closely match both the desired heart sound and the 

broadband disturbance. The high frequency error in the signal estimates before filtering 

can be partially attributed to errors in the derivative approximations used in the 

algorithm. Repeating the simulations with exact derivatives, a high fidelity estimate is 

obtained for both inputs across the entire frequency range. By carefully selecting the 

observer gains, it is possible to improved performance may be obtained. Specifically, by 

adjusting the cost function used in the LMI solver to account for derivative estimation 

error, a more optimal gain for each observer can be identified. 

4.3.4 Experimental Results 

In order to experimentally verify the proposed design and algorithm on the physical 

system, a prototype of the proposed dual-piezo assembly was constructed and tested. 

Experimental testing was accomplished by stimulating the dual-piezo assembly with 

vibrational noise from both potential noise sources. For the generation of patient noise, a 

vibration shaker was used to generate a vibrational noise signal representative of a 

standard heartbeat. Traditionally, this noise would be coupled to the sensor via the 

patient’s thorax. In a lab setting, this effect is most commonly reproduced through the use 

of a thorax simulator. For the initial investigation presented here, a thorax simulator has 

been omitted and the sensor assembly has been directly coupled to the shaker system. 

During each test, the housing for the first piezo assembly was bonded to the shaker via a 

foam disk with double-sided adhesive tape. The second unknown input, a disturbance due 

to physician handling noise, was created by rubbing and tapping on the top surface of the 

second (upper) piezo housing. Although a known reference disturbance signal was not 

used for this noise source, knowledge of the desired chest sound signal allows for a 

sufficient assessment of the algorithms performance.  

In order to monitor the actual input acceleration experienced by the sensor assembly, a 

single axis accelerometer was rigidly attached to the shaker head. A National Instruments 

CompactRio chassis (NI cRIO-9074) with an analog input (NI 9205) and an analog 
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output (NI 9264) module has been used to generate and acquire the test signals. A 

constant sampling rate of 25 kHz has been used for all results presented.  

Before presenting results in which an auscultation signal is used to drive the system, an 

initial white noise only patient input test was conducted with no added disturbance signal. 

The following measurements from each piezo sensor were obtained (see Figure 4-18). 

  

Figure 4-18: Dual-piezo sensor assembly measurement in presence of unknown vibrational 

inputs from bottom of assembly only 

Since only a single input was present, after processing the data through the designed 

observer, the signal energy should all be attributed to a single input. More specifically, all 

the input should be identified as having originated from input 1 (i.e. 𝑢1). As shown in 

Figure 4-19, in general this is confirmed in the processed data.  
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Figure 4-19: Frequency response of estimate of unknown inputs from a dual-piezo sensor 

assembly subject to only a white noise patient input 

For frequency components below approximately 800 Hz, the signal estimate agrees well 

with the original input signal. In this same frequency range, the second input estimate has 

been reduced greatly. However, in both datasets it can be seen that considerable high 

frequency components exist which diverge from the desired signal. These errors are once 

again due to the numerical derivative approximation and the given choice of observer 

gains. Given that much of the estimate error lies above the frequency range of interest, it 

can be removed with filtering. After adjusting the responses, the time domain signal 

estimates shown in Figure 4-20 are obtained. 
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Figure 4-20: Time series data of estimate of unknown inputs from a dual-piezo sensor assembly 

subject to only a white noise patient input 

The estimate of the first input agrees will with the actual input signal used for the 

experiment. Additionally, as desired, the amplitude of the second input estimate is 

considerably smaller. 

To assess the performance of the observer when both inputs are present simultaneously, a 

test was conducted with both the known patient input and unknown tapping/rubbing on 

the top piezo assembly. The following measurement data was obtained (see Figure 4-21).  
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Figure 4-21: Dual-piezo sensor assembly measurements in the presence of unknown patient 

signals and disturbances 

As would be anticipated, both measurements contain a mix of signals resulting from the 

unknown inputs acting on both sides of the device. The large spikes seen in both 

measurements are the result of tapping. The short periods of broadband noise (most 

clearly visible in the second piezo measurement) are caused by rubbing motions on the 

top of the sensor assembly.  

After running the measurement data through the designed observer, the following 

estimates were obtain for both the unknown patient and unknown disturbance input 

signals (see Figure 4-22)  
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Figure 4-22: Frequency response of estimate of unknown inputs from dual-piezo sensor assembly 

in the presence of unknown patient signals and disturbances 

As shown in the case of only a single unknown input, the high frequency estimates 

deviate largely from the desired signals. However, the energy due to the patient input 

signal (heart sound) is properly estimated to be from the first input.  

In the time domain, the estimates appear as follows (see Figure 4-23) 

 

Figure 4-23: Time series data of estimate of unknown inputs from a dual-piezo sensor assembly 

in the presence of unknown patient signals and disturbances 
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As shown, much of the desired heart signal has been recovered. However, not all portions 

of the disturbance input have been successfully removed. Below 2kHz, this is explained 

due to small inaccuracies in the model estimate. Conducting smaller scale testing on only 

the preamplifier circuits, it was possible to accurately estimate the unknown inputs to 

each by using the proposed algorithms. This confirms that the errors are due to the 

mechanical model of the stethoscope (or that of the piezoceramic). By refining the initial 

dual-piezo assembly model to more accurately capture these underlying dynamics, it is 

anticipated that greater performance can be achieved. 

4.4 CONCLUSIONS 

Existing approaches to minimize the effect of disturbances caused by a physician during 

auscultation have been focused on passive improvements to the design. These methods 

attempt to isolate the transducer from such input signals and dissipate their energy prior 

to reaching the measurement sensor. Depending on the nature of the design, this isolation 

may not achieve sufficient noise reduction without compromising the device’s sensitivity 

to patient signals. Using an unknown input observer design based on a model of how 

these interference signals reach the sensor, their effects can be removed digitally. 

Given an original dynamic model, it has been shown that an inverse dynamic system can 

be constructed to relate measurement signals to estimates of the original system inputs 

acing on the system. In order to remove the errors due to unknown initial conditions a 

system observer based on the inverse dynamics has been derived. As an alternate 

approach, an additional observer design has been presented which does not rely on the 

system inverse model. 

The performance of both system estimate architectures has been demonstrated on a 

simplified system in simulation. The use of numerical differentiation required within each 

algorithm degrades the estimate performance in the high frequency range, but low 

frequency estimates demonstrate a high level of performance. 
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A duel piezo sensor assembly has been constructed to investigate the performance of the 

algorithms on the stethoscope application. With simulation results, it is shown that 

successful disturbance rejection is possible up to approximately 1000Hz. With additional 

refinement of the observer gains, it is likely that this range can be extended. 

Experimentally, the algorithm performance has been tested on the physical dual-piezo 

assembly. The inverse system can successfully attribute signal energy to the respective 

inputs, but errors in the phase of the original model compromise its performance. By 

refining the model of the new assembly, the estimates produced by the algorithms can be 

improved. 

Overall, it has been demonstrated that directional disturbance estimation is possible, 

provided that a sufficiently accurate model of the system dynamics is obtained. Using this 

approach, it is feasible that the unwanted effects of disturbances caused by the physician 

can be reduced while providing a high quality estimate of the original auscultation signal. 

This technology can improve the stethoscope’s performance and generally improve the 

quality of patient examination possible in a wide variety of environments. 
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CHAPTER 5: 

ACTIVE NOISE CANCELLATION 

5.1 MOTIVATION 

Since its advent, the design of stethoscopes has gradually advanced to improve the signal 

to noise ratio encountered during normal use. Most recently, electronic stethoscopes have 

been developed to further amplify the signals of interest. Due to its versatility in clinical 

diagnostics, the stethoscope is commonly used by medical practitioners in a wide variety 

of environments. In many of these settings, auscultation is not possible due to high levels 

of ambient noise. This problem is particularly severe during patient transport where noise 

levels are commonly well in excess of 75 dB. 

It is possible that with sufficient information about the nature of the noise in these 

environments, signal processing methods may be employed to improve signal quality. 

Specifically, if access is made available to a reference sensor which contains information 

about the noise, active noise cancellation may be possible. If the environmental noise and 

its propagation path are not known a priori, an adaptive filter architecture must be used. 

By this method, the noise corruption can be estimated in real-time and removed from the 

measured auscultation signal. 

5.2 ENVIRONMENTAL NOISE CHARACTERIZATION 

To better understand the characteristic high noise environments in which stethoscopes are 

commonly used, extensive field testing has been conducted. The testing provided 

information about the severity and nature of the ambient noise. By identifying the source 

of the noise and its effect on auscultation, it was possible to develop methods by which 

this noise can be mitigated. 
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5.2.1 Stethoscope Instrumentation 

A pair of modified electronic stethoscopes has been designed to enable the collection of 

data about the ambient environment. Specifically, modified 3M™ Littmann® Model 

3200 Electronic Stethoscopes have been developed to gather data for characterization of 

both the ambient acoustic and vibratory conditions during routine auscultation. A 

LabVIEW™ program was designed in conjunction with the test unit to enable high speed 

data capture in a mobile test environment. The program was specifically designed to 

index and save test data such that it was made available for detailed off-line analysis. 

Prior to development of the first generation test units, it was concluded that in a given 

environment both the acoustic and vibrational characteristics are of interest. The sensor 

included in the commercially available Model 3200 stethoscope is a small flexible disc 

piezo-ceramic transducer. The Ø15mm sensor is centered in the face of the device in a 

small metal housing [87]. Using the stethoscope’s built in electronic filters the device is 

capable of amplifying sounds from 20 – 2000 Hz [88]. When coupled to a patient’s chest, 

the sensor responds to small variations in pressure and produces a corresponding voltage 

signal. These variations can be caused by both acoustic waves and physical vibrations. 

Therefore, both forms of ambient noise have the potential to drastically mask the desired 

auscultation signal. 

Without having sufficient preliminary results available to indicate the general intensity or 

frequency content of the ambient conditions in the environments of interest, each test unit 

was designed to accommodate a wide range of testing conditions. In order to account for 

the scenario of varying sound pressure levels on a given face of the stethoscope, an 

evenly spaced radial arrangement of microphones was selected for one of the two test 

units. With this configuration, it is possible to identify if the noise corruption of the 

primary transducer exhibits any higher levels of correlation to a specified direction over 

another. In place of the radially configured microphones, the second test device featured 

a single internal MEMS microphone. The location of this microphone was selected to 

determine the level of acoustic energy that reaches the internal cavity of the device.  
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The design process required the development of multiple iterations of both test units. The 

device with a MEMS microphone was carefully configured to add the sensor without 

substantially altering the original internal configuration of the device. After the first 

iteration of the radial microphone design, the unit was improved to make it more 

compact. The new design helped the unit conform to the original fit and form of the 

unmodified 3M™ Littmann® Model 3200 Electronic Stethoscope (see Figure 5-1). 

  

Figure 5-1: Modified stethoscope test units with (a) MEMS microphone and 3-Axis 

accelerometer and (b) omnidirectional microphones and z-axis accelerometer 

As can be seen in the schematic of the sensor placement on each device, the first test unit 

(Device A) has been reconfigured with an internal MEMS microphone and a 16g 3-axis 

accelerometer. The second test unit (Device B) is another original stethoscope that has 

been retrofitted with five microphones (Front, Back, Left, Right, and Top) and one 

accelerometer. The microphones have been rigidly secured to the outside of the 

chestpiece housing via a hard plastic mounting ring. The 3g single-axis accelerometer has 

been rigidly attached inside the chestpiece and aligned with the original stethoscope 

piezoelectric sensing element. For both units, the accelerometer was included specifically 

to provide data that could demonstrate the level of correlation between the vibrations 

transmitted through the patient and the piezo transducer output. In addition to the 

hardware modifications visible in the figures provided, for Device B the original circuit 

(a) 

(b) 
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board provided in the stethoscope has been replaced with a pre-amplifier circuit 

necessary for the microphones. On both devices, the built-in piezo electronic filtering was 

disabled. This made it possible to acquire signals with frequency components outside the 

range of the pre-defined stethoscope filters. 

In conjunction with the test unit development, a program was developed in LabVIEW™ 

to enable high-speed capture of the analog signals from the piezo and additional reference 

sensors. Due to the known high frequency range of the environments under investigation, 

it was necessary to design the program with sufficiently high sampling rates. 

Accordingly, the final program was capable of recording up to 12 input channels with a 

sampling rate of 50 kHz. In addition to indexing and storing each dataset, the program 

allowed the test administrator to document and store pertinent information regarding the 

test conditions. 

5.2.2 Measurement of Helicopter Noise Characteristics 

As previously discussed, the versatility and portability of the stethoscope has motivated 

its use by medical personnel in a wide variety of environments. Given its previously 

documented status as the harshest of such environments, the Sikorsky UH-60 helicopter 

(see Figure 5-2) was selected as the primary test environment for further investigation. 

  

Figure 5-2: UH-60A Black Hawk helicopter on a medical mission [89] 

With the assistance of the U.S. Minnesota Army National Guard, extensive testing was 

conducted on the UH-60 “Black Hawk” both while idling on the ground and during 
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routine flight maneuvers. In order to enable successful comparative characterizations, 

additional testing was performed in less harsh environments (i.e. in the lab and during 

ground transport). These other tests allow for a broad characterization of the general 

environments in which the stethoscope is used. Additionally, they establish a proper 

framework with which to highlight the severity of the ambient conditions present during 

helicopter transport. 

For ground transport testing, a passenger van was used in place of an ambulance. 

Choosing to conduct testing without the use of a siren, it was anticipated that the type of 

vehicle was less critical than the type of roadway conditions. Therefore, testing was 

conducted on both smooth (e.g. paved) and rough (e.g. gravel) roads. 

For a baseline comparison, tests conducted in each environment were repeated with an 

unmodified 3M™ Littmann® Model 3200 Electronic Stethoscope. Also, in order to 

isolate noise sources caused by handling of the test devices, pure ambient sensor readings 

were also obtained. During each field test, an ambient microphone was suspended in the 

vehicle and a 3-axis accelerometer was mounted to the vehicle frame. Specifically, the 

ambient accelerometer was mounted directly to the vehicle on the floor immediately 

below the microphone. Shown in Figure 5-3 is a schematic of the Black Hawk 

helicopter’s internal cabin configuration. The location of both ambient sensors has been 

indicated with an “X”.  

  

Figure 5-3: UH-60 Black Hawk helicopter ambient sensor position in (a) passenger and (b) litter 

configurations (not drawn to scale) 

Also provided in the figure are alternate configurations of the UH-60 Black Hawk 

helicopter. Although multiple different internal cabin configurations are possible [90], the 
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ambient sensor location coincides closely to the general litter (i.e. patient) position during 

transport. Thus, these sensors provided data characteristic of the vehicle’s inherent 

operating noise conditions as they affect a medic’s interaction with a patient.  

After having gathered sufficient data from field testing, it was possible to accurately 

characterize the environments in which the stethoscope is intended for use. The primary 

analysis was concerned with determining the following:  

 Ambient acoustic noise levels 

 Ambient vibration levels 

 Ambient noise frequency content 

 Level of corruption caused by ambient noise 

 Primary contributor of corruption 

This analysis is necessary for future design considerations to help improve the 

stethoscope’s performance in high noise environments. 

5.2.3 Environmental Noise Levels 

The ambient acoustic microphone and vehicle mounted 3-axis accelerometer used for 

testing provided data containing the general environment characteristics desired. From 

this data, it was observed that the acoustic noise levels present in the UH-60 Sikorsky 

Helicopter were substantially higher than those recorded in all other test environments. In 

order to numerically evaluate and compare these levels, the average and peak sound 

pressure levels (SPL) were evaluated for all data sets available. The instantaneous sound 

pressure level, 𝐿𝑝[𝑛], and equivalent continuous A-weighted sound pressure level, 𝐿𝑒𝑞, in 

decibels are given by 

 𝐿𝑝[𝑛] = 20 𝑙𝑜𝑔10 [
𝑝𝐴

2 [𝑛]

𝑝0
2 ] (5.1) 

 𝐿𝑒𝑞 = 20 𝑙𝑜𝑔10 [
1

𝑁
∑

𝑝𝐴
2 [𝑛]

𝑝0
2

𝑁
𝑛=1 ] (5.2) 

where 𝑝𝐴[𝑛] is the measured instantaneous A-Weighted sound pressure level in Pascals, 

𝑝0 is the reference sound pressure level of 20 𝜇𝑃𝑎, and 𝑁 is the measurement samples for 
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a given test. The equivalent continuous sound pressure level is used here as it provides a 

measure of the average acoustic energy. 

Figure 5-4 below summarizes the sound pressure levels observed in each test 

environment. 

  

Figure 5-4: Measured sound levels (dB) in patient transportation environments 

Reported in the figure are the mean values from each test condition. As anticipated, the 

helicopter exhibits the highest noise level with peak noise levels in excess of 125 dBA. 

More importantly, the equivalent continuous sound pressure levels encountered in the 

helicopter were approximately 100 dBA (more than 3000 times the sound level of chest 

sounds at the skins surface)! Even without further analysis, this begins to illustrate the 

severity of the challenge in conducting successful auscultation during emergency 

helicopter patient transport. 

In addition to high acoustic noise levels, the data demonstrated that significant vibrations 

were present during operation of the helicopter both while grounded and mid-flight. 

These vibrations can be attributed to constant rotation of the helicopter rotor—primary 

moving mechanism of the helicopter. As the rotor turns, it produces an array of structure 

borne vibrations that propagate through the frame of the aircraft. For each dataset, both 

the peak and root mean square (RMS) acceleration levels were calculated. The RMS 

acceleration, 𝑎𝑅𝑀𝑆, is given by 
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 𝑎𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑎2[𝑛]𝑁

𝑛=1  (5.3) 

Figure 5-5 and Figure 5-6 below summarize the acceleration levels observed in each test 

environment. 

    

Figure 5-5: Measured peak acceleration levels (g) in patient transportation environments 

 

Figure 5-6: Measured RMS acceleration levels (g) in patient transportation environments 

As anticipated, the vibrations in the helicopter have significant content along all three 

axes. Although the testing conducted in the van provides some acceleration data, the peak 

acceleration levels due to vibrations of the helicopter are more than five times higher. 
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Thus, if the vibrations are found to be a large contributor to the stethoscope’s 

piezoelectric sensor’s disturbance, this will need to be considered when designing a 

device capable of operating in a helicopter. Similar to the acoustic noise levels observed, 

it is important to note that these vibrations are present not only while the helicopter is 

mid-flight, but also while the helicopter is idling on the ground. As long as the rotor is 

under power, the cabin of the helicopter appears to vibrate heavily. 

5.2.4 Environmental Frequency Content 

As arguably the harshest clinical environment in which a stethoscope is commonly used, 

the analysis that follows will focus only on the data corresponding to helicopter testing. 

Here, we have assumed that the rich acoustic and vibrational signatures exhibited by this 

environment present the worst case scenario for successful auscultation. Thus, a design 

solution that overcomes the current limitations of stethoscope use on a helicopter will be 

capable of operating in less severe environments. 

In addition to the overall amplitude, one of the key characteristics of the ambient noise is 

its power spectral density—the power of the signal at each frequency. Here, we have 

chosen to use Welch’s method for estimating the power spectral density. 

The data reveals that there is considerable frequency content in the low frequency range. 

Given that standard auscultation signals consist primarily of low frequency content, this 

provides a very significant technical challenge for stethoscope designs. Provided below is 

the power spectral density estimates from the ambient microphone data (see Figure 5-7).  
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Figure 5-7: Measured power spectral density of Black Hawk helicopter acoustic noise 

Although this estimate has been calculated from a single test, it is characteristic of the 

entire data set available. In order to better understand the significance of the frequency 

content observed, we can compare it to the frequency content contained in data from a 

heart sound recording obtained in a quiet environment. Figure 5-8 shows the signal-to-

noise ratio (SNR) in the low frequency range around which typical heart sounds occur. 

The data presented has been divided into 3rd Octave Bands. 

  

Figure 5-8: Observed signal-to-noise ratio of heart sounds relative to helicopter noise per third 

octave band 
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It is clear from the figure that although the SNR is worse in some frequency bands more 

than others, it is clearly unfavorable for successful auscultation across all frequencies of 

interest.  

Along with examining the acoustic frequency content, it is informative to study the power 

spectral density estimates of the accelerometer X, Y, and Z-Axis data (see Figure 5-9, 

Figure 5-10, and Figure 5-11 respectively). 

    

Figure 5-9: Measured power spectral density of Black Hawk helicopter vibration (X-Axis) 

 

Figure 5-10: Measured power spectral density of Black Hawk helicopter vibration (Y-Axis) 
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Figure 5-11: Measured power spectral density of Black Hawk helicopter vibration (Z-Axis) 

These power spectral density estimates reveal that significant low frequency vibrations 

exist. Specifically, below 500Hz the frequency spectrum shows elevated vibrational noise 

levels for all three axes.  

The data presented confirms that both the ambient vibrations and ambient acoustic noise 

corrupt the signal obtained by the stethoscope’s sensing element. Subsequently, it is 

necessary to characterize the relative noise level when compared to the desired 

auscultation signals. This is most simply captured by calculating the SNR as the ratio of 

the desired signal root-mean-square (RMS) power to the noise RMS power. Using data 

that has been acquired, the SNR can be estimated by comparing the signals obtained 

during routine auscultation in a quiet environment with those obtained in the helicopter. 

The SNR is given by the following equation, 

 𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 (5.4) 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  and 𝑃𝑛𝑜𝑖𝑠𝑒 are quantities proportional to the power of the pure auscultation 

signal and the pure noise signal respectively. If we denote 𝑝[𝑛] as the instantaneous 

output from the piezoelectric sensor for a given test 𝑁 samples long, then the signal 

measure, 𝑃, for that test is given by 
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 𝑃 =
1

𝑁
∑ 𝑝2[𝑛]𝑁

𝑛=1  (5.5) 

Applying this equation to the pure auscultation signal and the pure noise signal, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  

and 𝑃𝑛𝑜𝑖𝑠𝑒  were calculated to be 8.60 𝑚𝑉2/𝑠𝑎𝑚𝑝𝑙𝑒 and 55.80 𝑚𝑉2/𝑠𝑎𝑚𝑝𝑙𝑒 

respectively. Accordingly, by Eq. (5.4), it is estimated that the SNR with the electronic 

stethoscope tested is approximately 0.015.  

The poor SNR indicates that the noise corruption has enough power to completely mask 

the desired auscultation sounds. This is most clearly demonstrated by observing time 

waveforms of heart sound data from a healthy adult male subject acquired in both a quiet 

lab environment and in a mobile Black Hawk helicopter. With the first dataset 

corresponding to heart sounds acquired in a quiet environment, it is possible to clearly 

distinguish the periodic waveform created by the first and second heart sounds—closing 

of the atrial ventricular and semilunar valves respectively (see Figure 5-12).  

  

Figure 5-12: Measured piezo signal of heart sounds in a quiet lab 

This can be sharply contrasted with data acquired during a routine helicopter flight (see 

Figure 5-13).  

  

Figure 5-13: Measured piezo signal of heart sounds in a helicopter during flight 
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Here, it is evident that the even the most basic shape of the heart sounds is indiscernible 

amongst the high levels of ambient noise. Similarly, by looking at the frequency content 

of each signal as a function of time (i.e. its spectrogram), it is possible to note the large 

difference in measured signals in the quiet environment to that of the helicopter 

environment (see Figure 5-14 and Figure 5-15). 

 

Figure 5-14: Spectrogram of measured heart sounds in a quiet lab 

 

Figure 5-15: Spectrogram of measured heart sounds in a helicopter during flight 

In addition to demonstrating that the heart sound is completely undetectable in the 

presence of the helicopter noise, the spectrogram reveals that the noise field is 

approximately constant—the frequency content of the noise does not vary considerably 

over time. This improves the prospect of successfully applying active noise cancellation 

methods. 
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5.2.5 Primary Noise Corruption Source Identification 

After identifying the type, intensity, and spectral content of the noise present in a 

helicopter, the next objective was to characterize the nature of the relationship between 

these ambient noise sources and the noise that is directly sensed by an electronic 

stethoscope. Once a stethoscope has been placed against the skin of a patient’s chest, 

back, etc., the path of each noise source drastically changes. Taking a closer look at the 

usage conditions, the following acoustic noise paths can be identified: 

 𝐴1: Direct leakage at the user’s ear 

 𝐴2: Leakage through the stethoscope head, tubing, or binaurals 

 𝐴3: Reflection and/or propagation along the chest of the patient and into the 

stethoscope 

Similarly, two primary vibrational noise paths can be identified: 

 𝑉1: Transmission through the patient and into the device 

 𝑉2: Transmission through the physician/user and into the device 

Each different noise path (acoustic and vibrational) has been illustrated in the schematic 

below (see Figure 5-16). 

  

Figure 5-16: Schematic of environmental noise transmission paths 
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As the noise travels to the sensing element via these various paths, it undergoes distinct 

transformations. Depending on the nature of the transfer function and the ease with which 

noise is transmitted via a given path, each source may contribute differently to the 

specific noise corruption that has been found to interfere with auscultation. Although it is 

informative to understand all forms of noise irrespective of their contribution factor, in 

order to make advances in stethoscope design to better enable auscultation in such high 

noise environments, it is beneficial to narrow the investigation to only those noise sources 

that dominate corruption of the auscultation signal. In order to assess which noise sources 

required further consideration, the cross-correlation between the reference sensors on the 

stethoscope and the signal from the primary stethoscope sensor were calculated. The 

cross-correlation provides a quantifiable measure of how similar two waveforms are to 

one another. In this way, the reference sensors with higher correlation to the primary 

sensor signal can be identified as the larger contributors to corruption of the auscultation 

signals. Table 5-1 and Table 5-2 below summarize the cross-correlations calculated for 

the reference microphones and accelerometers respectively. 

Table 5-1: Microphone and primary sensor signal correlation during helicopter flight 

Device Sensor Location Raw Cross-Correlation (x103) 

A Internal 6.8 

B 

Front 1.6 

Back 6.8 

Left 3.1 

Right 4.6 

Top 7.8 
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Table 5-2: Accelerometer and primary sensor signal correlation during helicopter flight 

Device Axis Raw Cross-Correlation (x103) 

A 

X-Axis 9.0 

Y-Axis 4.7 

Z-Axis 19.4 

B Z-Axis 23.9 

   

For the microphone data, the highest cross-correlation values are seen to be with the Top, 

Back, and the internal MEMS microphones. This is most likely explained simply by the 

damping of signals obtained by the other microphones due to obstruction caused by 

placement of the test administrators hand during testing.  

Each of the Z-axis accelerometers exhibits high levels of correlation with the primary 

piezoelectric sensor signal. When compared with the microphone, the correlation 

between the accelerometers and primary signal are nearly five times stronger than that 

between any one of the microphones and the primary signal. This suggests that the 

highest level of corruption to the auscultation signal obtained by the stethoscope’s 

sensing element is caused by acceleration (i.e. vibrations) along the primary axis of the 

device (the Z-axis). 

5.3 SIMULATED ACTIVE NOISE CANCELLATION 

Based on the acquired information about the noise characteristics in a field environment, 

it is possible to assess methods by which this noise can be mitigated. Before beginning to 

investigate the performance of potential active noise reduction techniques, it is necessary 

to first present an overview of active noise cancellation and the surrounding principles. 

5.3.1 Least Mean Squares and Normalized Least Mean Squares Adaptive Filter  

Active Noise Cancellation refers generally to a class of algorithms relied on for the 

purpose of noise reduction. Although a wide variety of methods have been developed, 

each uses a primary signal and one or more noise reference signals. Here, we will focus 

on the case of a single reference sensor as shown in Figure 5-17. 
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Figure 5-17: Active noise cancellation block diagram 

As seen in the figure, the basic ANC model assumes that the primary signal, 𝑑, consists 

of the desired signal, 𝑠, and the transformation, 𝑛, of some additive noise, 𝑣, where the 

signal and noise are uncorrelated. Although in general the transformation of the noise can 

be both nonlinear and time-variant, the model assumes that this path is approximately 

linear. Therefore, by passing the noise reference input, 𝑣, through an estimate of this 

transformation, it is possible to create an estimate, 𝑛̂, of the noise that is corrupting the 

desired signal contained in the primary input, 𝑑. Subsequently, by subtracting this 

estimate from the primary signal, an estimate, 𝑠̂, of the desired signal can be generated. 

The key element to most ANC algorithms is the method employed to estimate this 

transformation. This is the distinguishing feature for most variations presented in 

literature. 

Traditionally, a feedforward FXLMS adaptive algorithm has been relied on for many 

active noise cancellation applications. This is typically necessary due to the unknown 

secondary path between the control output and residual error. However, by using a fully 

electronic stethoscope, the secondary path is eliminated and the traditional Least Mean 

Square (LMS) or Normalized Least Mean Square (NLMS) can be employed. In this 

configuration, the primary input and noise estimate can be combined digitally whereby 

avoiding secondary path errors. Thus, the original ANC model presented in Figure 5-17 

remains valid. 
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In the absence of secondary path errors, the performance of the filter is governed 

primarily by the quality of estimate, 𝐻̂(𝑧), for the original noise transformation, 𝐻(𝑧). If 

this transformation were known a priori, the solution would be trivial. However, this is 

typically a function of the specific operating conditions. For both the LMS and NLMS 

algorithms, the transformation is estimated by an N-tap transversal filter. For each, the 

tap-weights of the filter are estimated recursively based on instantaneous estimates of 

both the input signal autocorrelation and the cross correlation between the input and 

reference signal. If both the primary and noise signals are stationary, this will converge to 

the Wiener solution. The resulting equations governing the operation of the LMS 

algorithm can be seen as follows [91]: 

 n̂(m) = ∑ wi(m) v(m − i)N−1
i=0  (5.6) 

 ŝ(m) = d(m) − n̂(m) (5.7) 

where the adaptive filter weights are updated with the following recursive equation 

 wi(m + 1) = wi(m) − μ ŝ(m) v(m − i) (5.8) 

for all 0 ≤ i ≤ N. For the standard LMS algorithm, a constant step size 𝜇 determines the 

stability, rate of convergence, and misadjustment of the adaptive filter. A known 

drawback of this approach is its sensitivity to the power of the reference input signal. 

Thus, the choice of an adequate learning rate, 𝜇, that guarantees stability of the algorithm 

may be difficult [91]. Specifically, convergence can be guaranteed only when the step 

size 𝜇 obeys 

 0 < μ <
1

λmax
 (5.9) 

where 𝜆𝑚𝑎𝑥 is the largest eigenvalue of the reference signal autocorrelation matrix. To 

address this issue, the NLMS algorithm has been proposed with the following weight 

update equation [92, 93].  

 wi(m + 1) = wi(m) −
μ̃

∑ |v(m−i)|2k−1
i=0

 ŝ(m) v(m − i) (5.10) 

 μ[m] =
μ̃

∑ |v[m−j]|2N−1
j=0

  (5.11) 
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for all 0 ≤ i ≤ N. Here, the learning rate has been replaced by a normalized time-varying 

step size which is a function of both the constant 𝜇̃ and the squared Euclidian norm (i.e. 

power) of the reference signal. In addition to mitigating the gradient noise amplification 

problem due to large input signals, the NLMS algorithm may exhibit a potential faster 

rate of convergence over the LMS algorithm for both uncorrelated and correlated input 

data [92, 94]. 

For both the LMS and NLMS algorithms, convergence is governed largely by the quality 

of the reference input signal. Optimal performance requires the reference signal to be 

highly correlated to the noise source and entirely uncorrelated to the desired signal. If 

either condition is violated the filter performance can degrade substantially.  

5.3.2 Active Noise Cancellation with Field Test Data 

Using the field data acquired during routine helicopter flight, it was possible to assess the 

performance of the active noise cancellation algorithms with the available reference 

measurements. One limitation of interest for ANC is the presence of uncorrelated noise in 

either the error or reference inputs. An accepted measure to assess the level of 

uncorrelated noise is referred to as coherence. Given an input, 𝑥, and an output (or 

measurement), 𝑦, the coherence is given by 

 γxy
2 (f) =  

|Sxy(f)|
2

Sxx(f)Syy(f)
 (5.12) 

where 𝑆𝑥𝑥 , 𝑆𝑦𝑦 , and  𝑆𝑥𝑦 are the power spectral densities of 𝑥 and 𝑦 and the cross power 

spectral density of 𝑥 and 𝑦 respectively [95]. As a function of frequency, the coherence 

demonstrates the fraction of 𝑦 that can be related to 𝑥 by a linear transversal filter. If 𝑥 

and 𝑦 are perfectly related by a linear, time-invariant filter, then their coherence equals 

one. Therefore, for ANC to be successful, a large coherence is required. This relationship 

has been extended to use the coherence function as an estimate of the expected noise 

reduction in decibels resulting from ANC [96]. Letting the noise measurement, 𝑣, and 

primary signal measurement, 𝑑, serve as the input and output signals respectively, the 

estimated attenuation is given by 
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 A(f) = −10 log10[1 − γvd
2 (f)] (5.13) 

Therefore, by using this equation it is possible to analyze the expected performance of 

ANC using a given reference signal. This assessment has been conducted with the 

reference microphone and accelerometer data acquired during helicopter testing (see 

Figure 5-18 and Figure 5-19). 

  

Figure 5-18: Reference microphone and accelerometer coherence with noise measurement at the 

stethoscope’s primary piezo sensor 

  

Figure 5-19: Estimated noise attenuation possible with active noise cancellation using the 

reference accelerometer and microphone signals respectively 
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Looking at the coherence in Figure 5-18, it is clear that the piezo signal is highly coherent 

with the accelerometer signal over a broad frequency range. Correspondingly, in Figure 

5-19 the estimated attenuation demonstrates that by using an accelerometer based ANC 

system, considerable noise reduction can be achieved for a wide frequency range. 

Specifically, noise reduction is possible in a wider frequency range than has been 

demonstrated with the use of a reference microphone. As seen in Figure 5-19, there 

appears to be a slight drop in coherence between the accelerometer and piezo below 200 

Hz. It is believed that by using a higher quality piezo and more carefully selecting the 

accelerometer position within the device this can be improved.   

Analysis has been done on the effect of the signal-to-noise ratio as well as the effect of 

correlation between the reference sensors and the primary piezo signal. Objective 

measures of the ANC performance were calculated by implementing each algorithm on a 

mixed stethoscope signal. The signal was constructed by combining a pure heart sound 

recording (no noise disturbances) acquired with the stethoscope with a pure noise sound 

recording (no heart/lung sound). By using a known heart sound input, it was possible to 

compare the resulting estimate of the heart sound signal after active noise cancellation 

with the actual signal.  

Using the method previously described, it was possible to determine the threshold signal-

to-noise ratio for which the filter could accurately estimate the heart sound. This level is 

dependent on the reference sensor used. This dependence can be explained by the 

correlation level of the reference sensor to the input signal. For the quality of the 

reference accelerometer signal used in the initial investigation, it was concluded that the 

signal-to-noise ratio needs to be improved by at least a factor of three in order for the 

LMS filter to work as intended. Particularly good results are obtained when the signal-to-

noise ratio is improved by a factor of ten. An example of the LMS filtering results using a 

reference accelerometer and an artificially improved signal-to-noise ratio can be seen in 

Figure 5-20.  
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Figure 5-20: Accelerometer based ANC (a) desired original signal, (b) estimate after ANC with 

0.015 input SNR, and (c) estimate after ANC with 0.154 input SNR 

The filter accurately captures the characteristic peaks and valleys of the desired 

auscultation signal when the SNR is 0.154. This can be contrasted with the same analysis 

conducted with a reference microphone (see Figure 5-21). 

  

Figure 5-21: Microphone based ANC (a) desired original signal, (b) estimate after ANC with 

0.015 input SNR, and (c) estimate after ANC with 0.154 input SNR 
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Here, it is clear that the low correlation between the reference microphone and the 

primary sensor prohibits the algorithm from accurately estimating the desired signal (both 

with and without an artificially improved SNR). 

Understanding the limitations presented through this preliminary analysis, additional 

research was required in order to establish optimal reference sensor placement. Bearing 

in mind the higher correlation levels found for the accelerometer data, it is concluded that 

an accelerometer based ANC system will indeed outperform the results presented in 

literature using microphone based systems. 

5.4 ACTIVE NOISE CANCELLATION EXPERIMENTAL 

RESULTS 

5.4.1 Experimental Test Platform 

Data from field testing clearly indicated that noise corruption during auscultation can be 

attributed to both air-borne acoustics and structural vibration. Thus, it is necessary to 

investigate the effect of noise contributions from each path. For this multi-path noise 

environment, a block diagram illustrating the signal paths for the original system and the 

ANC implementation is shown in Figure 5-22 below. 

  

Figure 5-22: Dual noise path active noise cancellation block diagram 

As shown in the figure, two independent noise paths have been identified for this 

application: (1) noise propagating acoustically through the environment to the sensor, 𝐻𝑎, 

and (2) vibrational noise traveling through the structure to the sensor, 𝐻𝑣. Collectively, 
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the sum of these two noise signals is regarded as the noise, 𝑛, which corrupts the desired 

signal. It is assumed that both noise components originate from the same source but 

undergo a different transformation (i.e. noise propagation path) prior to reaching the 

sensor. Although additional uncorrelated airborne and structure borne noise may exist in 

practice, for the purpose of this study they are assumed to be negligible and omitted. 

In order to experimentally investigate the performance of the proposed active noise 

cancellation methods, a reliable experimental platform was required. For this purpose, a 

testbed was developed to provide acoustic and vibration stimuli representative of both 

ambient noise and patient auscultation signals. 

The generation of patient noise was achieved by using a thorax simulator to create and 

transmit auscultation signals into the stethoscope. For the thorax simulator employed 

here, a Dayton Audio DAEXEXT weatherproof exciter has been imbedded into a Shore 

10A Silicone rubber mold. By sending a voltage signal to the exciter, the thorax simulator 

is capable of reliably simulating chest sounds from 35-10,000 Hz. An illustration of the 

simulator assembly can be seen in Figure 5-23 below. 

  

Figure 5-23: Thorax simulator configuration and assembly 

When testing a stethoscope, the piezo sensor side of the device is placed on the surface of 

the thorax simulator. The nominal application pressure was held constant by allowing the 

stethoscope to rest using its own weight. 
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A Labworks ET-139 permanent magnet shaker was employed to generate the ambient 

vibration signal. Provided with a linear power amplifier (PA-138), the unit can deliver up 

to 17 lbf RMS random force in the frequency range from DC to 6,500 Hz. Additionally, 

the unit is capable of providing up to 20 g peak acceleration. The frequency range and 

acceleration levels are more than sufficient to accurately reproduce the desired vibration 

signal.  

The ambient audio signal has been created by using a pair of Fostex PM0.5n speakers. 

Equipped with both a low frequency woofer and a high frequency tweeter, the speakers 

can deliver a flat frequency response (+/- 2dB) from 50 Hz to 20 kHz.  

In order to provide a reliable reference signal of the ambient noise, the test platform has 

been fitted with both a reference accelerometer and microphone. The single-axis 

accelerometer (Measurement Specialties 805M1) is rigidly mounted to the base of the 

thorax simulator in-line with its active axis. This location was specifically selected 

because it provides a reliable measure of the vibration input provided by the shaker 

without being influenced largely by the patient sounds generated by the thorax simulator. 

The microphone (Knowles Electronics 21994-000) was suspended above the shaker 

assembly and positioned in-line with the speakers.  

A schematic of the testbed with both input and output devices clearly identified can be 

seen in Figure 5-24. 
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Figure 5-24: Schematic of active noise cancellation experimental testbed 

As shown in the figure, a centralized test controller has been implemented to coordinate 

the input and output signals during each test. Specifically, a National Instruments 

CompactRio chassis (NI cRIO-9074) with an analog output (NI 9264) and analog input 

(NI 9205) module has been used to generate and acquire the test signals. A constant 

sampling rate of 25 kHz has been used for all results presented. 

5.4.2 Comparison of Accelerometer and Microphone based Active Noise Cancellation 

When comparing the performance of ANC using an accelerometer reference sensor to 

that obtained when using a reference microphone, the origin and transmission of the noise 

into the stethoscope transducer is critical. In order to demonstrate the relative 

effectiveness of each reference sensor and their dependence on the nature of the noise 

source, a benchtop experiment was conducted. The stethoscope was stimulated with 

white noise from both the speaker and shaker simultaneously. However, the power of the 

noise signal distributed to each was varied. When the majority of the noise was 

transmitted via the shaker, it would be expected that the accelerometer would provide a 

higher quality reference signal over the microphone and vice-versa when the majority 
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was transmitted via the speakers. Before testing, both the speaker and shaker levels were 

calibrated to create an equivalent 0.3 Vrms response signal at the stethoscope’s piezo 

sensor. Subsequently, the relative power level was varied between the two ambient noise 

sources in 25% increments (e.g. 25% shaker power, 75% speaker power) while 

maintaining an overall constant signal-to-noise ratio. Both the desired signal sent through 

the thorax simulator and the ambient noise signal were 40 Hz to 2 kHz bandlimited white 

noise. 

The correlation of each signal estimate, 𝑠̂, to the desired signal, 𝑠,  was obtained to 

compare the resulting performance under each testing condition. The desired signal was 

taken as the measurement signal from the stethoscope transducer obtained when no 

ambient noise was introduced. If the correlation is calculated in a sliding fashion—for the 

past 1000 samples at each time-step—it is possible to observe both the convergence and 

steady-state performance of each estimate. Accordingly, the sliding correlation at each 

time-step was calculated with the following equation, 

 rsŝ[m] =
∑ (s[m−i]−s̅[m] )(ŝ[m−i]−ŝ̅[m])1000

i=0

∑ (s[m−i]−s̅[m])21000
i=0 ∑ (ŝ[m−i]−ŝ̅[m])

21000
i=0

     (5.14) 

where 

 s̅[m] =
1

1000
∑ s[m − i]1000

i=0  (5.15) 

 ŝ̅[m] =
1

1000
∑ s[m − i]1000

i=0  (5.16) 

When the noise power is distributed evenly between the two exciters, the following 

behavior was observed for ANC implemented with the reference accelerometer and 

microphone (see Figure 5-25, Figure 5-26, and Figure 5-27). 
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Figure 5-25: Time series data of (a) original noise corrupted measurement signal and (b) estimate 

of desired signal after accelerometer and microphone based ANC in bandlimited white noise 

environment with 50% acoustic and 50% vibration noise 
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Figure 5-26: Power spectral density of signal estimates after accelerometer and microphone 

based ANC with 50% acoustic and 50% vibration noise 

  

Figure 5-27: Sliding correlation raw data (dotted) and best fit line (solid) for accelerometer and 

microphone based ANC with 50% acoustic and 50% vibration noise 

As shown in the figure of the sliding correlation (Figure 5-27), a first order exponential 

saturation function of the form 

 c = a(1 − e−t/τ) + c0  (5.17) 

10
2

10
3

-120

-100

-80

-60

-40

-20

Frequency (Hz)

P
o

w
er

/F
re

q
u

en
cy

 (
d

B
/H

z)

 

 

Desired Signal

Measured Signal

Estimate After ANC w/Ref Accel

Estimate After ANC w/Ref Mic

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time (s)

C
o

rr
el

at
io

n

 

 

Measured Signal

Estimate After ANC w/Ref Accel

Estimate After ANC w/Ref Mic



 

 117 

was fit to each data set with nonlinear least squares regression. The estimated curve 

makes it possible to clearly quantify the transient and steady-state performance. From the 

regression line, the steady-state correlation is given by the sum of the constant 

coefficients 

 𝑐𝑠𝑠 = 𝑎 + 𝑐0 (5.18) 

and the approximate convergence time—time for the correlation to reach 98% of the 

steady-state value—is given by 

 𝑡𝑠𝑠 = −𝜏 ln(0.02)  (5.19) 

For the varying ambient noise source power distributions, the steady state correlation and 

approximate convergence time values are provided respectively in Table 5-3 and Table 

5-4.  

Table 5-3: Signal estimate mean steady-state correlation to desired signal after optimal Wiener 

filter and active noise cancellation with LMS adaptive filter 

Method 
Reference 

Signal 

Shaker Power % / Speaker Power % 

100 / 0 75 / 25 50 / 50 25 / 75 0 / 100 

Original signal (before filtering) - 0.1016 0.1022 0.1007 0.0969 0.0867 

Optimal solution from Wiener 

filter 
Accelerometer 0.9346 0.9180 0.8865 0.7950 0.0834 

Microphone 0.0388 0.9499 0.8818 0.8118 0.7380 

LMS adaptive filter (ANC) Accelerometer 0.9114 0.8850 0.8414 0.7488 0.0928 

Microphone 0.0930 0.6109 0.5077 0.4476 0.4080 

       

Table 5-4: Signal estimate steady-state convergence time (in seconds) after active noise 

cancellation with LMS adaptive filter 

Reference 

Signal 

Shaker Power % / Speaker Power % 

100 / 0 75 / 25 50 / 50 25 / 75 0 / 100 

Accelerometer 6.305 8.810 9.894 11.011 - 

Microphone - 40.592 52.421 58.459 61.888 

      

When vibrations were the sole noise source present, it is clear that the reference 

accelerometer provided superior active noise cancellation performance than the 

microphone. After processing the data with the ANC algorithm, the accelerometer ANC 
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estimate had a 91% correlation with the desired signal. As the acoustic noise level was 

gradually increased (and vibration levels decreased), the quality of the accelerometer 

based active noise cancellation estimate gradually decreased. When the vibrational noise 

was eliminated altogether and the noise source was purely acoustic, the microphone 

provided a superior estimate.  

An interesting trend can be observed for the case of microphone based active noise 

cancellation. As a larger ratio of noise was provided acoustically, it would be anticipated 

that the microphone based estimates would improve. However, the Wiener filter solution 

and ANC estimates both demonstrate the opposite trend. For the noise power ratios 

presented, the greatest microphone based estimate was obtained when 75% of the noise 

originated in the form of vibrations and only 25% originated as acoustics. In order to 

explain this data, further analysis was conducted. Looking at the power spectral density 

of the ANC estimates using the microphone reference sensor, it was discovered that the 

microphone based estimate fails to converge to the desired signal in the high frequency 

range. Specifically, in a narrow band of frequencies it appears that a large resonance 

dominates the estimate. Physically, this is explained by the presence of acoustic 

resonance within the room where testing was conducted. As noise from the speaker 

passes over the stethoscope, it bounces back off the walls and ceiling of the experimental 

room and returns to the stethoscope. This noise no longer passes first through the 

microphone and then to the stethoscope. Thus, the causal relationship necessary for the 

reference sensor is compromised. Considerable care was taken to minimize the reflection 

noise in the test environment, but in all real-world applications and field environments 

this effect may be present. 

Keeping in mind this observed behavior, for tests conducted with the reference 

microphone, special care was taken to ensure that the microphone was positioned 

between the noise source and stethoscope. This guarantees that the path between this 

reference measurement and the noise corruption at the piezo is predominantly causal—

the reference sensor measures the noise signal before it reaches the piezo. During the 
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course of testing, it was found that the performance of the adaptive algorithm was very 

sensitive to changes in this condition. In order to clearly illustrate this effect, the 100% 

speaker (0% shaker) test was conducted with the microphone placed at three distinct 

locations with reference to the speaker location: (1) ahead of the stethoscope, (2) in-line 

with the stethoscope, and (3) behind the stethoscope. A schematic of the microphone 

placement can be seen in Figure 5-28, and the resulting active noise cancellation 

performance is reported in Table 5-5. 

  

Figure 5-28: Microphone position relative to stethoscope and speaker during active noise 

cancellation tests 

Table 5-5: Signal estimate mean steady-state correlation to desired signal and steady-state 

convergence time (in seconds) after active noise cancellation with LMS adaptive filter using a 

microphone with varying positions 

Microphone Position Steady-State Correlation Convergence Time (s) 

1: Ahead of stethoscope 0.8819 15.064 

2: In-line with stethoscope 0.8572 13.486 

3: Behind stethoscope 0.2867 17.737 

 

The degradation of signal quality observed when the microphone is not positioned 

“upstream” from the piezo presents a difficult challenge for its use in real-world 
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environments. As ambient acoustic noise is commonly omnidirectional, a single reference 

sensor may not be adequately configured to simultaneously mitigate noise from multiple 

directions. In a controlled environment, the microphone can be positioned optimally to 

minimize contributions from the dominant noise source, but often this information is not 

known a priori in real world environments and the requirement for such careful set-up 

could create an increased burden on the user. Alternatively, it may be possible to rely on 

the use of a microphone array in place of a single reference sensor. Using a combination 

of signals from each reference, the noise from multiple sources can be eliminated. 

However, this can considerably increase the computational complexity of the proposed 

solution, and configuring a device with such reference sensors so as to avoid obstruction 

by the user may be difficult. 

5.4.3 Active Noise Cancellation in a Simulated Black Hawk Helicopter Environment 

Using the experimental platform, it was possible to simulate the ambient environment 

present in a Sikorsky UH-60 Black Hawk helicopter from field data obtained during a 

routine flight. The acoustic and vibration signal were taken directly from measured data 

in the field. 

In order to guarantee a close agreement between the simulated and actual helicopter 

environment, the frequency content of each reference signal was calibrated with the 

reference accelerometer and microphone. Differences between the actual and simulated 

reference sensor frequency content levels were accounted for with drive signal 

equalization. Specifically, the frequency response of the drive signal used for the shaker 

and speaker were adjusted to achieve the desired output power spectral density at the 

reference accelerometer and microphone respectively. Shown in Figure 5-29 is a 

comparison of the power spectral density of signals from a UH-60 Black Hawk helicopter 

and the power spectral density of signals from the simulated environment.  
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Figure 5-29: Reference (a) accelerometer and (b) microphone frequency response in a simulated 

UH-60 Black Hawk helicopter environment 

Above approximately 200 Hz, the frequency content of both the simulated and real 

environment are well matched. Below 200 Hz, only the shaker is able to provide the 

required energy to reproduce the specified environment. The speakers provide some low 

frequency signal, but in general it falls below the desired ambient signals. 
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The overall acoustic and vibration level were calibrated to those levels experienced at the 

stethoscope from in-flight data. These levels correspond to the on-board sensor readings 

obtained from the retro-fitted electronic stethoscope used during field tests. Since some 

of the noise energy is dissipated or obstructed prior to reaching the stethoscope, these 

noise levels are lower than the pure ambient sensor readings. For the microphone data, 

this level is considerably reduced due to a reduced effect of wind. The ambient 

microphone was positioned higher in the cabin, and since the cabin windows were open 

during each test, a large portion of the measurements contain a significant level of noise 

due to localized airflow.  

Calibration was also conducted on the auscultation signal sent from the thorax simulator. 

A clean heart sound from a healthy adult male which was recorded with the commercially 

available model 3200 electronic stethoscope was employed. No additional (built-in) 

filtering was implemented to preserve the original frequency content of the reproduced 

signal. However, the signal amplitude was adjusted to ensure that the rms level observed 

at the piezo agreed with those from field testing in the quiet environment. The resulting 

signal-to-noise ratio at the stethoscope transducer closely matches that obtained during 

in-flight auscultation. 

After conducting testing in the simulated environment, the active noise cancellation 

algorithm was implemented in post-processing with both the reference microphone and 

reference accelerometer data. For initial estimates, a constant filter length of 𝑁 = 3000 

was used. The step size for each adaptation algorithm was set to 1/100
th

 of 1/𝜆𝑚𝑎𝑥 for the 

given reference sensor which was being used. This guaranteed that the filter would be 

stable and minimize the misadjustment level. Accordingly, the Least Mean Squares 

adaptive algorithm produced the following signal estimates (see Figure 5-30). 
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Figure 5-30: Time series data of (a) original noise corrupted measurement signal and (b) estimate 

of desired signal 

The estimate from accelerometer based active noise cancellation can be seen to have 

produced a very good estimate of the desired signal. Whereas the desired signal is 

completely indiscernible in the raw measurements, the signal estimate after processing 

successfully captures all the peaks and valleys of the heart sound. Conversely, the 

microphone based ANC estimate still contains a high level of noise. The overall level of 

noise has been reduced, but the heart signal is still indistinguishable. If we look at the 

power spectral density of each estimate, it is possible to see the performance of each 

estimate in the different frequency ranges (see Figure 5-31). 
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Figure 5-31: Power spectral density of signal estimates after accelerometer and microphone 

based ANC in a simulated UH-60 Black Hawk helicopter environment 

Here, it is obvious that at all frequencies the accelerometer based active noise 

cancellation has outperformed the microphone based alternative. By subtracting the 

power spectral density of the estimated signals from the original noise contaminated 

signal, it is possible to examine exactly the level of noise reduction achieved at each 

frequency (see Figure 5-32) 

 

Figure 5-32: Noise reduction after accelerometer and microphone based ANC in a simulated UH-

60 Black Hawk helicopter environment 
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The accelerometer based active noise cancellation was able to achieve 20dB reduction 

below 150 Hz, approximately 10 dB reduction from 150-700Hz, and nearly 30dB 

reduction from 700Hz-1kHz. 

5.5 CONCLUSIONS 

With current stethoscope technology, auscultation is not possible in most patient 

transportation environments due to high levels of ambient noise. In a UH-60 Sikorsky 

Black Hawk helicopter, the elevated noise levels are manifested in both acoustic and 

vibrational components. Due to the severe levels of this noise and its broadband nature, 

none of the current methods published in literature are adequate to enable auscultation. 

Previous studies have relied on the use of a reference microphone which is incapable of 

successfully capturing the structurally transmitted noise components. Data collected from 

field testing has demonstrated that a reference accelerometer, on the other hand, is much 

better correlated with the disturbance noise corrupting the stethoscope’s signal. Thus, a 

reference accelerometer is better suited for active noise cancellation in this application.  

Although ANC based on the accelerometer used during preliminary testing was able to 

achieve high levels of noise reduction over a broad frequency range, the existing design 

was inadequate. Additionally, these findings were limited by the quality of reference 

sensors employed. Based on theory and experimental data, the ideal reference 

accelerometer must be heavily correlated to the original noise source but must not be 

corrupted due to leakage of the desired signal. For this, an external accelerometer can be 

implemented. By placing the reference sensor away from the auscultation site, the 

required noise reference can be obtained without capturing the chest sounds. 

Simulating the Black Hawk helicopter vibration and acoustic noise with an experimental 

test platform, the benefits of accelerometer based active noise cancellation have been 

presented. In the frequency range critical for the measurement of heart and lung sounds, 

the proposed system was capable of providing an estimate with approximately 94% 

correlation to a pure signal which would have been obtained in the absence of noise. 
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Whereas a microphone based system must overcome shortcomings due to acoustic 

resonance and an omni-directional noise field, the accelerometer reference signal has 

been found to have very few limitations in this regard.  

By combining this active noise cancellation approach with passive acoustic shielding at 

the binaurals of the stethoscope, it will be possible to enable successful auscultation for 

the first time in such a military aircraft. 
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