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Abstract

The computational cost to model high Reynolds number flows of engineering interest

scales poorly with problem size and is excessively expensive. This fact motivates the

development of turbulence wall models to lessen the computational burden. These

models aim to provide accurate wall flux quantification on computational meshes that

would otherwise be unable to accurately estimate these quantities. The benefit of using

such an approximation is that the height of the wall-adjacent computational elements

can be increased by one to two orders of magnitude, allowing for comparable increases

in stable explicit timestep. This increase in timestep is critically necessary for the large

eddy simulation of high Reynolds number turbulent flows.

To date, most research in the application of wall models has focused on incom-

pressible flows or flows with very weak compressibility. Very few studies examine the

applicability of wall models to flows with significant compressibility and heat transfer.

The present work details the derivation of a wall model appropriate for compress-

ible flows with heat transfer. The model framework allows for the inclusion of non-

equilibrium terms in the determination of wall shear and heat transfer. The model is

applied to a variety of supersonic and hypersonic flows, and is studied in both Reynolds-

averaged simulations and large eddy simulations. The impact of several modeling ap-

proaches and model terms is examined. The wall-modeled calculations show excellent

agreement with wall-resolved calculations and experimental data. For time accurate

calculations, the use of the wall model allows for explicit timesteps more than 20 times

larger than that of the wall-resolved calculation, significantly reducing both the cost of

the calculation and the time required converge the solution.
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Chapter 1

Introduction

1.1 Motivation

The study of hypersonic vehicles at flight representative conditions poses significant

challenges. Flight experimentation is cost prohibitive in most cases, and is limited as

to the number and type of measurements that can be made on the test vehicle. Ground

testing is a less costly alternative to flight testing, affording greater control of test

conditions and instrumentation. Ground test facilities can be limited, however, by short

run-times, small test sections, and an inability to exactly replicate the flight freestream

environment in terms of Mach number, free stream enthalpy, Reynolds number, and

freestream disturbance level. An alternative to flight or ground experimentation is the

simulation of such flows by solving the governing conservation equations (Navier-Stokes

equations) in a discrete representation on high-performance computers (Computational

Fluid Dynamics, CFD). CFD allows for parametric exploration of hypersonic vehicles

and flows with detailed information available at every point in the solution domain.

The challenges of hypersonic CFD are principally twofold; the accuracy of physical,

chemical, and thermal models, and the excessive computational cost for simulations of

flows at flight representative conditions. This work addresses the latter of these two

challenges.

Turbulence models for Reynolds-Averaged Navier-Stokes (RANS) and Wall-Resolved

Large Eddy Simulations (WR-LES) have stringent grid resolution requirements near

1
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Direct Numerical Simulation N ∼ Re37/14

Wall-Resolved LES N ∼ Re13/7

Wall-Modeled LES N ∼ Re

Table 1.1: Grid requirements for high Reynolds number turbulent boundary layers, from
Choi and Moin. [1]

solid boundaries to produce accurate boundary layers and surface quantities. A typi-

cal requirement is that the maximum height of the wall-adjacent cell across the entire

boundary be kept under one in wall units (y+ ≤ 1). This requirement dictates that a

large percentage of the cells used in a given calculation be allocated to the boundary

layer, limiting the maximum Reynolds number that can be achieved on a given com-

putational resource. Additionally, the small dimensions of the cells near the wall give

rise to restrictive timestep limitations. For unsteady calculations, an overly restrictive

timestep results in greater computational efforts to establish the baseline flowfield and

converge the relevant statistics. In order to rapidly converge high Reynolds number

flows of engineering interest, an alternative solution strategy is required.

Recently, Choi and Moin [1] have revisited Chapman’s [7] classic computational

requirement scaling estimates using a more current understanding of how skin friction

scales at high Reynolds number. Using this revised data, grid requirements for high

Reynolds number simulations scale with Reynolds number as shown in Table 1.1. In

order to compute high Reynolds number flows of engineering interest, WR-LES is not a

feasible solution as the grid requirements are nearly quadratic with Reynolds number.

The alternative is the use of a wall-modeled calculation where the conservation equations

are simplified in the near-wall region and are not solved in the same finite-volume grid

as the rest of the simulation.

A preponderance of the existing literature on wall models for high Reynolds num-

ber flows assume that the turbulent boundary layer experiences a zero or mild pressure

gradient, and that all inertial terms balance [8, 9, 10, 11]. Under these assumptions,

conservation of streamwise momentum reduces to a simple expression of constant shear,

which is appealing due to the straightforward solution procedure required for the ordi-

nary differential equation (ODE) and the availability of analytic solutions in the form

of the well known law of the wall [12]. Fewer works attempt to model heat transfer
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within the wall model framework, but those that do often assume adiabatic walls and

flows with mild density gradients.

1.2 Taxonomy of the Turbulent Boundary Layer

Before conducting an analysis of wall-bounded turbulence, it is important to establish

a common framework in which we can discuss particular aspects of the flow. Turbulent

boundary layers are characterized by a range of turbulent eddy scales that diminish as

they approach the wall [13]. The Direct Numerical Simulation (DNS) of Pirozzoli and

Bernardini [4] shown in Fig. 1.1 clearly shows the range of turbulent length scales in a

compressible turbulent boundary layer.

Figure 1.1: Contours of density in a supersonic turbulent boundary layer direct numer-
ical simulation. DNS by Pirozzoli and Bernardini [4]

In practice, the analysis or simulation of all scales of wall-bounded turbulent motion

is intractable for engineering purposes. For this reason, spatial or temporal averaging is

usually conducted to reduce the scope of the analysis to more energetic motions and the

statistics of the turbulence. Numerical simulations of the spatially-filtered governing

equations are referred to as Large Eddy Simulations (LES), while temporally averaged

simulations are referred to as Reynolds-Averaged Navier Stokes simulations. Reynolds

averaging is also applied to experimental datasets to examine attributes of the flow in

the mean.

When Reynolds averaging is applied to the Navier Stokes equations, an additional set

of terms arise known as the Reynolds stresses, u′iu
′
j . When starting with the momentum

equation:
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∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) =

∂τij
∂xj

(1.1)

we can represent an instantaneous flow quantity as the sum of a mean and fluctuating

component

φ = φ+ φ′ (1.2)

After substituting the decomposed flow quantities back into the momentum equation

and averaging, we arrive at the expression:

∂

∂xj
(ρuiuj + pδij) =

∂

∂xj

(
τ ij − ρu′iu′j

)
(1.3)

These stresses function much like the viscous stresses, but arise from the mean

effect of turbulent motion. Often, the approximation of Boussinesq [14] is applied to

equate the Reynolds stresses to an effective turbulent viscosity, which can be modeled

as augmenting molecular viscosity.

It is traditional in the analysis of wall-bounded turbulent flows to normalize bound-

ary layer quantities by the gas thermodynamic state at the wall and shear at the wall.

The friction (or shear) velocity is a velocity scale defined by the ratio of wall shear to

wall density uτ =
√
τw/ρ. The friction velocity is in turn used to non-dimensionalize

velocity in the boundary layer as u+ = u/uτ and to non-dimensionalize distance as

y+ = yuτ/ν. These normalizations are commonly referred to as “wall units”.

Subject to non-dimensionalization into wall units, zero pressure gradient incom-

pressible turbulent boundary layers across a range of Reynolds numbers collapse into

the famous law of the wall [12]. A representative profile of the collapsed profile is shown

in Fig. 1.2. There are three regions of interest in this figure. First is the viscous

sub-layer which exists from the wall to approximately y+ = 10. In this region, viscous

effects dominate and u+ ≈ y+. The second region extends from the viscous sub-layer

towards the edge of the boundary layer and is known as the log-layer. In this region,

the velocity profile obeys the law of the wall, u+ = 1
κ ln(y+) + C, and is shown as a

dashed line in Fig. 1.2. Between the log-layer and the edge of the boundary layer lies
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Figure 1.2: Incompressible boundary layer expressed in wall units

the third region, the wake or defect layer which is famously described by Coles [15].

The wake region is where the inertial effects of large eddies in the outermost portion of

the boundary layer dominate the equilibrium shear process present in the log-layer.

For compressible boundary layers, variations in boundary layer temperature and

density are significant. In incompressible flows, the gas total temperature is approxi-

mately equal to its static temperature, so no density variation is present in the boundary

layer. For supersonic flows, the static temperature of the gas increases as viscous forces

act upon it. This temperature variation is most pronounced in isothermal, or cold wall

flows, where conduction processes are present to equilibrate the gas temperature with

the wall temperature. An example of such a profile is given in Fig. 1.3.

1.3 Wall-Modeled Solutions of the Governing Equations

Wall models function by solving a simplified set of the Navier-Stokes equations in the

near-wall region of a CFD simulation. The primary benefit of this simplification is that

fewer grid points are needed in the near-wall region, relaxing the often stringent near-

wall cell heights. Since the high aspect ratio cells near the wall are typically the ones

that restrict the global timestep due to the Courant-Friedrichs-Lewy (CFL) restriction,

relaxing this spacing directly results in a larger allowable explicit timestep.
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Figure 1.3: Temperature profile of an isothermal compressible boundary layer

∆t <
∆xmin

|V |+ a
(1.4)

Piomelli and Balaras [16] broadly categorize two approaches to formulating wall

models; the equilibrium stress approach and the zonal approach. Wall models start

from an expression of the streamwise momentum equation:

∂ρu

∂t
+
∂ρuuj
∂xj

=
∂

∂xj
(σ1j − Pδ1j) (1.5)

Wall models developed using the equilibrium stress approach assume steady flow,

no advection imbalance or pressure gradient within the boundary layer, and gradients

in the wall-normal direction are much larger than gradients in the streamwise direction.

Under these assumptions, the streamwise momentum equations reduces to an expression

of constant wall shear.

∂

∂y

[
(µ+ µt)

∂u

∂y

]
= 0 (1.6)

These classes of solutions exactly recreate the law of the wall for zero pressure

gradient boundary layers.
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The other category of wall model approaches defined by Piomelli and Balaras is

the zonal approach. Models using the zonal approach use a different set of equations

to describe the inner layer of the wall-bounded flow than is used in the rest of the

calculation. The Detached Eddy Simulation method of Spalart [17] fits this definition,

as a separate turbulence mode is active based on a computational element’s proximity

to the wall. The oTwo Layer Model (TLM) is a zonal approach where two separate

grids are used; one for the general flowfield and another for the near-wall region. In the

TLM the general grid extends to the wall, but wall fluxes are not constructed from the

data on this grid. Instead, wall shear and heat flux from the wall model grid is imposed

at the wall. Traditional practice has been to use the solution in the wall-adjacent cell

as the input to the wall model grid, but recent studies by Kawai and Larsson [8] have

suggested a change in this practice. The location of data extraction for the wall model

is referred to as the “probe location” in this work, and is often given the symbol h+wm.

1.4 Review of Related Work

Much of the development in wall-modeled turbulent simulations over the last decade has

focused on extending wall models to compressible flows and evaluating their performance

in a variety of flow regimes. The wall model of Nichols and Nelson [10] serves as a very

good primer on how an equilibrium stress model is integrated with a RANS solver with

extensions to compressible flows.

Bond and Blottner used a similar approach in the integration of their two-layer

“Diffusion Model” [18, 19, 20], which was integrated with a RANS solver and used to

examine equilibrium boundary layers with isothermal wall conditions. An important

aspect of Bond and Blottner’s work is that they decoupled the solution of the wall

model equations and instead solved a series of loosely-coupled ODEs.

Increasingly in recent years, LES has been used to study wall-bounded turbulent

flows. Using wall-modeled LES, Kawai and Larsson [8] showed that data from the wall-

adjacent cell should not be used as input data for a wall model, as the data in such cells

are necessarily under-resolved. Instead, the authors suggest using data from several

cells away from the wall to increase the quality of the data used by the wall model.
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A series of authors have examined the performance of Wall-Modeled LES (WM-

LES) in highly compressible flows. Dawson, Bodart, and Lele [9] examined a supersonic

turbulent boundary layer flowing into a compression ramp. Their simulation using

TLM with only equilibrium stress terms failed to consistently reproduce aspects of the

turbulent separation and reattachment, which they attributed to missing physics within

the wall model. Namely, that pressure gradient and convective terms are the dominant

terms in the momentum balance of a boundary layer undergoing a compression STBLI.

Hickel et al. [21] investigated two ways of approximating the non-equilibrium terms

of the wall model using only data from the resolved scale of the LES. The first method

was to approximate the convective term to balance the streamwise pressure gradient, and

to damp the term linearly below a threshold. The second method was to approximate

the profile based on the value of the convective term at the probe location, and damp

the profile proportional to the filtered velocity. To test these formulations, the authors

examined WM-LES of a shock impingement of a turbulent boundary layer. No clear

conclusion was reached over the efficacy of these approximations.

Vane et al. [11] used WM-LES to examine high Reynolds number supersonic duct

flow subject to a normal shock train. Their adiabatic calculations used only the equi-

librium stress terms of the wall model. The authors noted displaced shock locations

relevant to WR-LES for their low Reynolds number condition.

An alternative approach to integrating a TLM with a LES has been proposed by

Park and Moin [22, 23]. Whereas a preponderance of the literature solves a series of

one-dimensional model problems at each wall face, Park and Moin have resorted to

building an auxiliary three-dimensional finite-volume mesh on which the wall model is

solved. Data are interpolated from the LES onto the boundary of the wall model mesh,

and the three-dimensional RANS equations are solved using the finite volume method,

thereby directly incorporating pressure and convective terms within the model. This

model was validated against incompressible transitional and fully-turbulent flat plate

boundary layers, as well as subsonic airfoils at incipient separation.

With the exception of the RANS models, the aforementioned works assumed adia-

batic wall boundary conditions. Compared to an isothermal wall boundary condition,

an adiabatic wall represents a fairly benign level of compressibility for a wall model to
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handle. Adiabatic boundary layers are not subject to temperature overshoots in the

near-wall region and the associated inflection in density gradient.

1.5 Scope of the Current Study

To overcome the wall spacing restriction inherent to high Reynolds number RANS or

WR-LES, a wall model has been developed that accurately predicts surface quantities

and boundary layer profiles on under-resolved grids. Particular attention is paid to

ensure that the derivation of the model is valid for high Reynolds number flows in the

hypersonic regime, including regions of Shock Turbulent Boundary Layer Interaction

(STBLI). Model derivation, performance and limitations are discussed. The baseline

CFD framework that this work is built on is the University of Minnesota hypersonics

research code, US3D [24].

• Chapter 2 assesses the applicability of a closed-form equilibrium wall model based

on an analytic solution of the Spalart-Allmaras turbulence model.

• Chapter 3 describes the derivation of a turbulence wall model suitable for high

Reynolds number flows with heat transfer.

• Chapter 4 provides details on the implementation of the model presented in Chap-

ter 3 in a parallel-unstructured flow solver.

• Chapter 5 assesses the suitability of various eddy-viscosity models for use within

the wall model.

• Chapter 6 presents an analysis of inertial source terms in the wall model.

• Chapter 7 assesses the behavior of the model in a time-accurate large eddy simu-

lation.

• Chapter 8 presents a final discussion of the analyses presented in this dissertation.



Chapter 2

Assessment of Spalart-Allmaras

Based Equilibrium Model

As a preliminary step in this research, a closed-form equilibrium wall model was devel-

oped based on an analytic solution to the Spalart-Allmaras turbulence model, presented

by Allmaras et al. [2]

2.1 Model Overview

The one-equation turbulence model of Spalart and Allmaras [25] has been robustly used

since its introduction in 1992. Allmaras, Johnson and Spalart [2] restated the standard

S-A model in 2012 with a few improvements. In this paper they also analytically solved

the S-A equation subject to boundary layer assumptions. To arrive at this solution, the

following assumptions were used:

• The fluid is incompressible

• The boundary layer is subject to a zero pressure gradient

• The boundary layer edge velocity is constant

• The advection terms in the momentum equation are negligible

• Streamwise gradients are much smaller than wall-normal gradients.

10
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Constant Value

B 5.0333908790505579
a1 8.148221580024245
b1 7.4600876082527945
a2 6.9287093849022945
b2 7.468145790401841
c1 2.5496773539754747
c2 1.3301651588535228
c3 3.599459109332379
c4 3.6397531868684494

Table 2.1: Constants used in Eq. 2.2 from Allmaras et al. [2]

Subject to these assumptions and transformed into wall units, Allmaras et al. re-

duced the S-A equation to

du+

dy+
=

c3v1 + (κy+)
3

c3v1 + (κy+)3(1 + κy+)
(2.1)

which has the exact solution of

u+
(
y+
)

= B + c1 log
((
y+ + a1

)2
+ b21

)
− c2 log

((
y+ + a2

)2
+ b22

)
(2.2)

− c3 arctan
(
y+ + a1, b1

)
− c4 arctan

(
y+ + a2, b2

)
For standard model coefficients of κ = 0.41 and cv = 7.1, the coefficients of the exact

solution are presented in Table 2.1.

The preceding equation is implicit in shear velocity (uτ ) and therefore it is implicit

in wall shear (τw) using the following definitions:

y+ = y
uτ
ν

(2.3)

u+ =
u

uτ
(2.4)

uτ =

√
τw
ρ

(2.5)
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Plate
ReL 5× 106 [1/m]
Mach No 0.2
T 300 [K]

Bump
ReL 3× 106 [1/m]
Mach No 0.2
T 300 [K]

Table 2.2: Flow conditions for subsonic test cases

This solution has the same functional form of Spalding’s formula [12], which has

classically been used as a fit to the turbulent boundary layer of a flat plate. Spalding’s

formula is presented as:

y+ = u+ + e−κB
[
eκu

+ − 1− κu+ − (κu+)2/2− (κu+)3/6
]

(2.6)

Eq. 2.2 can be treated as a governing relation in a wall model. Given the flow vari-

ables as some point above a wall face, a value of wall shear can be uniquely determined

that satisfies the equation.

2.2 Test Cases

To evaluate the performance of this model, two verification cases were chosen from the

NASA Langley Turbulence Modeling Resource [26]. The cases were two-dimensional

and subsonic due to the assumptions inherent in this wall model formulation. The cases

chosen were the 2-D zero pressure gradient flat plate, and the 2-D bump-in-channel.

The bump-in-channel case was selected as a mild streamwise pressure gradient would

be present in the flow, allowing one to examine the errors produced by flowfields that

deviate from the model assumptions. The pressure field associated with the 2-D bump-

in-channel test case is shown in Fig. 2.1. The flow conditions for both cases are given

in Table 2.2.

To establish a reference solution, the NASA-provided grids were used in US3D with

simulation parameters given in Table 2.3. Calculations were run to steady state. For

the flat plate case, the reference grid with 273 points in the streamwise direction was

used. This grid had an initial off-wall spacing of y+ = 0.2. For the bump-in-channel
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Figure 2.1: Pressure field associated with the 2-D bump-in-channel test case (Pa)

Parameter Value

Time Integration DPLR [27]
Inviscid Fluxes 2nd-Order Modified Steger-Warming [28]
Viscous Fluxes 2nd-Order Central
Thermochemistry Perfect Gas - Air

Table 2.3: Simulation settings for subsonic test cases

case, the grid with 321 points in the streamwise direction was used, which had an initial

off-wall spacing of y+ = 0.15.

To create coarsened grids on which to evaluate the wall-model, grids were re-extruded

in the wall-normal direction while preserving grid spacing in the streamwise direction.

To accomplish this extrusion, the initial off-wall spacing was specified to yield the desired

y+, and a constant 8% growth rate was used. Examples of the grid spacings used for

the flat plate are shown in Fig. 2.2. To evaluate the wall shear for a given face, data

were sampled from the fourth cell off the wall.
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(a) y+ = 0.2 (reference)

(b) y+ = 10

(c) y+ = 45

Figure 2.2: Comparison of flat plate grid spacing
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2.3 Analysis

This section presents an analysis of the wall-modeled solutions on the flat plate and

bump-in-channel. Solutions are evaluated on the accuracy of skin friction profiles along

the plate, and various boundary layer quantities.

2.3.1 2-D Flat Plate

Fig. 2.3 shows predictions of skin friction coefficient as a function of streamwise location

on several grids. Skin friction coefficient is defined as defined as:

Cf =
τw

1
2ρU

2
e

(2.7)

Shown in each figure is skin friction coefficient on the reference grid and on the

coarsened grid without the application of a wall model, both using lines. The skin

friction coefficient on the coarsened grid with the wall model applied is shown using

symbols. For both coarsened grids, the application of the wall model results in an

accurate determination of skin friction coefficient. For the y+ = 45 case, the skin

friction values predicted over the first half-meter of the plate exhibit some error due to

the fact that the developing boundary layer is inadequately resolved on the coarsened

mesh. It is not until the boundary layer grows to encompass the wall model probe

location that the wall model is able to function appropriately.

Profiles of velocity within the boundary layer are given in Fig. 2.4. Velocity in wall

units is plotted against the logarithm of wall-normal distance in wall units. Fig. 2.5

shows profiles of the ratio of turbulent S-A variable to freestream dynamic viscosity

(ρν̃/µ) at the same station. Vertical dashed lines in these plots represent the location

of the centroid of the wall-adjacent cell on the coarsened mesh. It is clear from these

figures that the entirety of the viscous sublayer is sub-cell information on these meshes,

and a wall model is required to capture the viscous sublayer.

For both meshes, the application of the wall model results in the accurate prediction

of the velocity boundary layer. Note that the velocity in the wall-adjacent cell is not

predicted accurately. This supports the modeling decision to provide inputs to the wall

model from several cells away from the wall.
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(a) y+ = 10 (b) y+ = 45

Figure 2.3: Flat plate skin friction coefficient for wall-modeled grids. Distance in meters

For the coarsest mesh, while the shape of the S-A profile is correct, the peak is

somewhat overpredicted. It is believed that this is the result of two factors:

1. The coarser mesh less accurately resolves the gradients needed in the solution of

the S-A equation.

2. The lack of cells in the viscous sub layer do not allow the destruction terms of the S-

A equation to appropriately balance production, resulting in a net overprediction.

2.3.2 2-D Bump-in-Channel

Fig. 2.6 presents the skin friction coefficient as a function of streamwise distance for

the 2-D bump-in-channel test case on two coarsened grids. As in the flat plate results,

lines are presented for the reference solution and solution on the coarsened grid without

the application of the wall model. Symbols represent the wall-modeled solution on the

coarsened grid.

Application of the wall model results in an overall accurate prediction of skin friction

on both of the coarsened grids. A few errors are noteworthy:
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(a) y+ = 10 (b) y+ = 45

Figure 2.4: Flat plate velocity boundary layer profiles at x = 1.0 meters

1. As was seen on the flat plate, the coarsest grid produces erroneous skin friction

estimates on the leading edge of the wall surface, where the boundary layer is not

yet interacting with the probe cell.

2. The wall modeled skin friction peak is slightly overpredicted and downstream of

the actual peak.

3. The skin friction predicted by the wall model on the windward side of the bump

is significantly lower than determined by the resolved calculation.

The errors in skin friction coefficient here are attributable to the lack of pressure

gradient effects in the formulation of Eq. 2.2. The boundary layer on the windward

side of the bump experiences a favorable pressure gradient, as shown in Fig. 2.1. The

favorable gradient accelerates the flow, requiring higher shear to balance the momentum

equation.

Figs. 2.7 and 2.8 show boundary layer profiles of velocity and S-A variable ratio

(ρν̃/µ) on the two coarsened grids extracted at two locations. The profiles extracted at

x = .75 meter location are shown in red with lines for the reference solutions and non-

modeled solutions. Symbols again represent the wall-modeled solutions. This location

corresponds to the apex of the bump. Profiles extracted at the x = 1.2 meter location
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(a) y+ = 10 (b) y+ = 45

Figure 2.5: Flat plate eddy viscosity boundary layer profiles at x = 1.0 meters

are shown in black. The boundary layer at this station has experienced several different

pressure gradients associated with conforming to the surface curvature of the bump.

Wall-modeled results for the velocity profile show very good agreement with the

reference solution. The wall-modeled solution for turbulence variable exhibit the correct

peak location, but incorrect peak amplitude. For the coarsest grid, the turbulence

variable is overpredicted at for the entirety of the x = .75 meter profile. On both grids,

the turbulence variable is underpredicted at the x = 1.2 meter station.
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(a) y+ = 8 (b) y+ = 20

Figure 2.6: Bump-in-channel skin friction coefficient for wall-modeled grids

(a) y+ = 8 (b) y+ = 20

Figure 2.7: Bump-in-channel velocity boundary layer profiles at x = 0.75 and x = 1.2
meters
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(a) y+ = 8 (b) y+ = 20

Figure 2.8: Bump-in-channel eddy viscosity boundary layer profiles at x = 1.0 and
x = 1.2 meters



21

2.4 Conclusions

A wall model based on an analytic solution to the S-A equation was integrated into US3D

and tested against two test conditions used for turbulence model verification. For a zero

pressure gradient incompressible boundary layer, the use of the wall model resulted in

accurate predictions of skin friction and velocity profiles for the two coarsened grids

examined. For the 2-D bump-in-channel, the use of the wall model resulted in accurate

boundary layer velocity profiles on the coarsened grids, but somewhat inaccurate skin

friction distributions. For both test cases there were deviations in the profiles of the

turbulence variable.

Despite these initial successes, the model examined in this chapter has limited utility

for further examinations of hypersonic boundary layers and shock turbulent boundary

layer interactions. The following limitations of the model make it unsuitable:

• Incompressible formulation does not allow for density variation due to temperature

gradients.

• Neglecting advection and pressure gradient terms in the wall model omits impor-

tant physics present in shock turbulent boundary layer interactions.

• An additional closure would be required to determine the wall heat transfer and

temperature profiles within the modeled region.

To overcome the issues identified above, a new set of model equations are derived.

The model is defined in detail in Chapter 3, and incorporates compressibility, heat

transfer, pressure gradients, and inertial effects.



Chapter 3

Model Formulation

The primary error caused by under-resolved wall cells is an incorrect viscous flux calcu-

lation due to inaccurate gradients evaluated at the wall. The purpose of a wall model

is to leverage knowledge of the physics of turbulent boundary layers to correct the cal-

culation of wall shear and heat transfer to a physically meaningful value. As discussed

in Sec. 1.4, an equilibrium wall model may not be accurate for STBLI flows with heat

transfer due to the omission of pressure-gradient, convection and compressibility effects.

We have developed a wall model framework that retains the necessary physics to resolve

STBLI flows. The model is summarized as follows.

A reduced set of the Reynolds Averaged Navier-Stokes equations are solved in the

modeled region. This is necessary to account for compressibility, heat transfer and

inertial effects. Input data for the model is sampled several cells away from the wall.

This places the interface location with the parent calculation, or probe point, in the

log-layer and avoids unresolved data in the wall-adjacent cells. A schematic of the

embedded wall grid within the LES grid is shown in Fig. 3.1. The model equations are

solved via a 1-D iterative method on a virtual grid embedded within the LES. In this

framework, fluxes of energy and momentum in directions other than the wall-normal

are accounted for by a series of source terms. One source term accounts for the effect of

pressure gradients within the boundary layer while a second term accounts for convective

imbalances. Together, these terms are referred to as the inertial terms. We believe that

the inertial terms, often ignored in wall modeling, are necessary in non-equilibrium

22
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Figure 3.1: Schematic of wall grid shown within LES grid

Figure 3.2: Schematic of wall model coordinate system

STBLI flows. The wall model solution at the boundary is then used by the LES to

inform the construction of viscous fluxes at the wall.

3.1 Governing Equations

The model is defined in a wall-based coordinate system where x1 and x2 are two arbi-

trary, orthogonal wall-tangent directions and x3 is the wall-normal. It is important to

note that the x1 and x2 directions need not be chosen to align with the local streamlines.

This generality costs little in terms of model complexity, but greatly enhances model

robustness in application. A schematic of the coordinate system is given in Fig. 3.2.

The Navier-Stokes equations in divergence form are:
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∂U

∂t
+
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
= 0 (3.1)

where U and Fj are the vectors of conserved variables and fluxes respectively.

U =



ρ

ρu1

ρu2

ρu3

E


, Fj =



ρuj

ρu1uj + pδ1j − σ1j
ρu2uj + pδ2j − σ2j
ρu3uj + pδ3j − σ3j

(E + p)uj − σkjuk − qj


(3.2)

The viscous stress tensor, σij , and heat conduction vector, qj , are defined as

σij = µ̂

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ̂
∂uk
∂xk

δij (3.3)

qj = κ̂
∂T

∂xj
(3.4)

where the effective viscosity and thermal conductivity are approximated via the

Boussinesq approximation as the sum of a molecular and turbulent component

µ̂ = µ+ µt, κ̂ = κ+ κt (3.5)

Pressure is assumed to be constant in the wall-normal direction, which allows for

the conservation of wall-normal momentum and conservation of mass equations to be

decoupled from the equation set. For a perfect gas, the equation of state allows us to

recover the density field solely from the temperature field for an isobaric gas.

ρ =
Pe
RT

(3.6)

As suggested by the solution strategy of Bond and Blottner [20], the density field

and flow primitives can be updated in an outer loop while each of the remaining gov-

erning equations are solved in a decoupled fashion in an inner loop. Assuming no

time-derivative of density, the conservation equations given in Eq. A.2 are recast as:



25

∂Q

∂t
+

1

ρ

[
∂G1

∂x1
+
∂G2

∂x2
+
∂G3

∂x3

]
= 0 (3.7)

where Q is the solution vector with density decoupled, and Gj is the flux vector of

the reduced set of equations.

Q =


u1

u2

e

, Gj =


ρu1uj + pδ1j − σ1j
ρu2uj + pδ2j − σ2j

(E + p)uj − σkjuk − qj

 (3.8)

The equation for conservation of wall normal momentum is not necessary since

under the boundary-layer assumptions it reduces to the invariance of pressure in the

wall normal direction.

∂P

∂x3
= 0 (3.9)

Constant pressure in the boundary layer then allows us to decouple conservation

of mass and prescribe density from an equation of state. The equations are expressed

in terms of the primitives to decouple the density field, which has severe changes in

gradient, from the ODEs being solved. The resulting velocities and specific energy fields

are monotonic and better conditioned for implicit solution. The complete derivation of

Eq. 3.8 is presented in Appendix A.1.

These equations are discretized on an embedded node-based mesh in the near wall

region. The outermost node coincides with the probe location in the solver, and the

innermost node is on the wall face.

3.2 Eddy Viscosity Modeling

This section examines the formulation of two different eddy viscosity models for the

proposed wall model. The first model examined is a simple mixing length model with

near-wall damping. This type of model is the one most typically found in compressible

wall models [8, 9, 11, 29, 30], and describes the eddy viscosity profile typical of the
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near-wall region of a boundary layer not subject to any pressure gradient. This method

is completely local, requiring only local wall-shear, density, and distance from the wall.

D =
[
1− e−(x?3/A+)

]2
(3.10)

µt = ρκx3

√
τw
ρ
D (3.11)

where A+ = 17 and the von Karman constant is chosen as κ = 0.41. The wall coor-

dinate used in the damping function, D, is modified to account for cold wall conditions.

x?3 = x3

√
ρτw

µ
(3.12)

The second model chosen for this study is the compressible form of the Spalart-

Allmaras turbulence model proposed by Catris and Aupoix [31] (SA-Catris). This is a

one-equation model where the transport, production, and destruction of a turbulence

variable is modeled and calibrated against a series of canonical flows. It has the advan-

tage of modeling the physical processes of turbulence within a boundary layer whereas

the aforementioned mixing-length model simply prescribes the profile that exists in the

near-wall region of the boundar layer. This eddy viscosity model is very similar to the

formulation of the S-A model used by Bond and Blottner [20] in their study. Using

the assumptions inherited so far in this work and only considering gradients in the

wall-normal direction, the SA-Catris model is expressed as:

∂ν̃

∂t
=

1

ρ
(SP − SD +D) (3.13)

where

SP = cb1S̃ρν̃ (3.14)

SD = cw1fwρ

(
ν̃

d

)2

(3.15)

D =
1

σ

[
∂

∂x3

(
µ
∂ν̃

∂x3

)
+

∂

∂x3

(
√
ρν̃
∂
√
ρν̃

∂x3

)
+ cb2

∂
√
ρν̃

∂x3

∂
√
ρν̃

∂x3

]
(3.16)
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The full derivation of Eq. 3.13 is presented in Appendix A.2. Equation 3.13 is added

to the set solved in Eq. 3.7. The model coefficients in Eqs. A.35 - 3.16 are taken from

the standard S-A model. The turbulent Prandtl number for all models is chosen to be

a constant 0.9.

3.3 Solution Form

Given the strong coupling in the wall-normal direction, the flux derivatives in the wall-

tangent directions can be evaluated explicitly and moved to the right-hand side.

∂Q

∂t

∣∣∣∣n+1

+
1

ρ

∂G3

∂x3

∣∣∣∣n+1

= −1

ρ

2∑
j=1

∂Gj
∂xj

∣∣∣∣∣∣
n

(3.17)

The terms on the left-hand side of Eq (3.17) (including the SA-Catris equation)

are cast into delta-form yielding a set of tri-diagonal scalar systems that are solved

iteratively until convergence.

A number of other assumptions simplify the numerical procedure. Namely, viscous

fluxes in the x1 and x2 direction are negligible, the streamwise and spanwise pressure

gradients are assumed to be constant throughout the height of the modeled region,

and are therefore determined by the LES sample location, and that the inner layer

responds instantly to fluctuations in the outer layer, decoupling the timestep taken in

the wall-solve from the global timestep. With the above assumptions the final form of

the equations become:

u-velocity

1

∆t
δuk+1 − 1

ρk
∂

∂x3

[
µ̂k
∂δuk+1

∂x3

]
=

[
1

ρ

∂

∂x3

(
µ̂
∂u

∂x3

)]k
− 1

ρk

 3∑
j=1

∂

∂xj
(ρu1uj + pδ1j)

n
(3.18)
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v-velocity

1

∆t
δvk+1 − 1

ρk
∂

∂x3

[
µ̂k
∂δvk+1

∂x3

]
=

[
1

ρ

∂

∂x3

(
µ̂
∂v

∂x3

)]k
− 1

ρk

 3∑
j=1

∂

∂xj
(ρu2uj + pδ2j)

n
(3.19)

specific energy

1

∆t
δek+1 − 1

ρk
∂

∂x3

[
κ̂k

cv

∂δek+1

∂x3

]
=

[
1

ρ

∂

∂x3

(
uµ̂

∂u

∂x3
+ vµ̂

∂v

∂x3
+ κ̂

∂T

∂x3

)]k
− 1

ρk

 3∑
j=1

∂

∂xj
{(E + p)uj}

n (3.20)

SA variable

Aδν̃k+1 − cb2
σρk
B ∂

∂x3
δν̃k+1 − 1

σρk
∂

∂x3

(
Cδν̃k+1

)
− 1

σρk
∂

∂x3

(
D∂δν̃

k+1

∂x3

)
= E

∣∣∣∣k (3.21)

where the coefficients of the S-A equation are:

A =

[
1

∆t
−
(
cb1S̃ −

cw1fw
d2

ν̃

)
− 2cb2

σρ

(
ν̃
∂
√
ρ

∂x3

∂
√
ρ

∂x3
+
√
ρ
∂
√
ρ

∂x3

∂ν̃

∂x3

)]k
(3.22)

B = 2

(
ρ
∂ν̃

∂x3
+
√
ρν̃
∂
√
ρ

∂x3

)k
(3.23)

C =

(
2
√
ρν̃
∂
√
ρ

∂x3
+ ρ

∂ν̃

∂x3

)k
(3.24)

D = (µ+ ρν̃)k (3.25)

E =
1

ρk

{
SP − SD +

1

σ

[
∂

∂x3

(
µ
∂ν̃

∂x3

)
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∂

∂x3

(
√
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∂
√
ρ

∂x3
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∂x3

)

+cb2

(
√
ρ
∂ν̃

∂x3
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∂
√
ρ

∂x3

)2
]}k

(3.26)
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Where needed, S̃ is limited from reaching negative values using the method suggested

by Allmaras et al. [2] Equations 3.18 - 3.21 are discretized using second-order central

differencing. The index n indicates data from the previous solver timestep, which is

held constant while solving the wall-model. The k index represents data from the

previous iteration. As was done in the work by Bond and Blottner [20], the equations

are solved iteratively using an inner-loop/outer-loop construct. On the inner loop, only

the variable being solved for is updated in each equation. An outer loop exists to sync

the flow variable amongst the equations, and to update the density field.

3.4 Boundary Conditions

The boundary conditions for Eqs. 3.18 - 3.21 are determined by the wall-state and the

LES solution at the probe location. The values on the boundary are held fixed for the

wall-model calculation. Turbulent eddy viscosity is specified to be zero at the wall,

however its determination at the outer boundary differs depending on which viscosity

model is used. If the mixing length model is used, the value is determined by the

model and updated at each iteration. If the SA-Catris model is used, the value of the

S-A variable on the boundary is chosen to produce the eddy-viscosity from the LES or

RANS at that point, and held fixed throughout the wall model calculation.

3.5 Treatment of Inertial Source Term

Evaluation and approximation of the inertial source terms to Eqs. 3.18 - 3.21 are flow de-

pendent and an active area of research. To evaluate these terms exactly, flux evaluations

are required using data from within the wall model. This presents a host of compli-

cations and stability issues, including the determination of appropriate spanwise and

streamwise boundary conditions within the model. Additionally, the choice of temporal

integration scheme within the wall model is now coupled to the convective transport of

information between wall modeled faces, and cannot necessarily be decoupled from the

global timestep.

An approximation is made in this work to allow for some effect of inertial imbalances

while keeping each wall-modeled face independent from each other face. The inertial
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source term is decomposed into a pressure and convective component. For the inertial

source term in the i-direction:

1

ρk

 3∑
j=1

∂

∂xj
(ρuiuj + pδij)

n =
1

ρk

 ∂p
∂xi

+

3∑
j=1

∂

∂xj
(ρuiuj)

n (3.27)

Continuing with our assumption that pressure does not vary in the wall-normal

direction, it follows that pressure gradient in the streamwise and spanwise directions

are not dependent on the distance from the wall. As such, the value of the pressure

gradient evaluated at the interface location between the wall model and LES/RANS

calculation can be enforced all the way to the wall.

The value of the convective component of Eq. 3.27 is identically zero at the wall due

to the no-slip boundary condition. An approximation of this term must vary smoothly

from the value determined by the LES/RANS solution at the probe location to zero

at the wall. The key difficulty in approximating a physically meaningful profile for

this term in a cold-wall flow is the strong variation in density in the near wall region.

As occurs for temperature profiles, there can be an overshoot in this quantity relative

to the value determined at the probe location before returning to zero at the wall.

For temperature, we have a governing equation available to us to accurately determine

this profile for a wide range of conditions. The same is not true for this term. The

approximation used in this work is to treat this term as constant in the outer portion

of the boundary layer, and apply van Driest damping very close to the wall. Eq. 3.10 is

applied with a damping constant A+ of 10.



Chapter 4

Parallel-Unstructured Model

Implementation

This chapter discusses several implementation issues for integrating the wall model

described in Chapter 3 into a RANS or LES solver. While this integration is discussed

from the viewpoint of integrating the model into US3D, extension to other flow solvers

should not be significantly different.

4.1 Definition of Coordinate Frames

As discussed in Sec. 3.1, a wall-based coordinate system is used in the derivation of the

wall model where two axes are tangent to the wall with the third axis being normal to

the wall. A schematic of this coordinate system is presented in Fig. 4.1.

To establish this basis, one can leverage the orthonormal face basis already present in

most flow solvers. The vectors can be arbitrarily reordered so long as right-handedness

is preserved.

Once established, this basis also serves as a rotation matrix from the global frame

to the wall frame. To determine the reverse transformation from wall frame back to

global frame, simply take the matrix inverse of the wall basis.

31
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Figure 4.1: Schematic of wall model coordinate system

4.2 Discretization of Wall Model Mesh

A one-dimensional grid needs to be established between the wall face centroid and the

cell centroid of the cell being used as an input to the wall model. First, a mapping

must be made between each wall face and their respective probe locations. For solvers

using Data Parallel Line Relaxation (DPLR), this information is already present in the

line connectivity. For solvers without line data structures, a search will need to be

performed for the fluid element the desired distance from the wall. Care should be

taken to partition the grid in such a way that processor boundaries are not crossed in

this search.

Once the endpoints of the wall model grid have been established, the node locations

on one-dimensional grids are determined by a hyperbolic-tangent distribution. This

distribution has the advantage of clustering nodes to the wall while having smooth grid

metrics. The distribution of the nodes in the wall model grid is determined as follows:

yi = η

[
1−

tanh
(
α i
N

)
tanh(α)

]
(4.1)

where η is the distance between the wall and the probe location and α is a tuning

parameter taken as 3.0 in this work.



33

4.3 Wall Model Initialization

The equations solved on the wall grid are boundary value problems. They are uniquely

defined by the solution variables and the gradients of solution variables on the boundary.

As such, a numerical method used in solving these equations should arrive at a unique

answer regardless of the initial condition, so long as the initial condition is well-posed.

To ensure a well-posed initial condition, the variables in the wall model are initialized

to vary smoothly from the value at the probe location to the value prescribed at the

wall.

φi = φN

(√
yi
η

)
+ φw

(
1−

√
yi
η

)
(4.2)

where φ represents any flow quantity, η is the distance between the wall and the

probe, and the subscripts N and w correspond to the probe location and wall respec-

tively.

Once a simulation is running, the wall model solution from the previous timestep is

used as the initial condition for the next timestep’s solution. The wall model solver can

sometimes have difficulty converging to a solution if a strong source term is included

along with an artificial initialization. For this reason, it is recommended to allow for

sufficient iterations that an equilibrium boundary layer can be obtained without the

source term, after which the source term is activated.

4.4 Application of Boundary Conditions to Wall Model

and Global Solutions

Wall-modeled CFD calculations inherently are solving two problems concurrently. The

finite-volume CFD calculation requires information from the wall model to inform cor-

rect fluxes on its wall boundary. The wall model requires information from the probe

location to establish boundary values for its line calculation. The process of linking

these calculations is described as follows:
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4.4.1 Establish Wall Model Boundary Values

CFD values of velocity, temperature, density, and pressure are trivially enforced on the

wall model. Since the centroid of the probe cell coincides with the boundary of the 1-D

wall line, these values are simply transcribed from the CFD to the wall model. For

velocity, a coordinate transformation is applied to express the CFD velocity in the wall

coordinate frame

~uw = Sw~u (4.3)

4.4.2 Determine and Store Wall Shear and Heat Flux

Once the wall model has converged sufficiently, the wall shear and wall heat transfer can

be determined from the model data and applied as a boundary condition to the CFD.

For steady-state simulations, iterating the wall model for approximately five iterations

at a wall CFL of approximately 500 is sufficient to maintain stability of both the CFD

and wall model calculations.

Wall shear is computed in each of the wall-tangent directions and stored at each

wall face.

τi = µw
∂ui
∂x3

(4.4)

τ1 ≈ µw
u1
∆

(4.5)

τ2 ≈ µ2
u2
∆

(4.6)

where ∆ is the distance between the wall and the first off-wall node in the wall

model mesh, µw is the fluid viscosity evaluated at the wall temperature, and ui is the

i-direction velocity at the first off-wall node in the wall model mesh. This wall shear is

defined in the local wall coordinate system and must be transformed back to the CFD

frame.

~τ =
[
Sw

]−1
~τw (4.7)
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Similarly, wall heat flux is evaluated as:

qw = κw
∂T

∂x3
(4.8)

qw ≈ κw
T − Tw

∆
(4.9)

where kw is the thermal conductivity of the fluid at the wall temperature and T

is the temperature of the first off-wall node in the wall model mesh. This quantity is

independent of coordinate system, so no transformation needs to be applied.

4.4.3 Apply Wall-Modeled Fluxes to CFD

When the CFD calculation determines viscous fluxes across all faces, the values calcu-

lated on wall-modeled faces will be incorrect. Instead, the wall shear and heat flux from

the wall model should be enforced at this point on the CFD. For finite-volume based

derivations, this will simply entail multiplying the wall-modeled fluxes by the relevant

face area.

F′vS =



0

~τwm

qw


s (4.10)

It should be noted that for LES of very under-resolved grids, the shear enforced by

the wall model can reverse the flow at the wall if the domain is not initialized with

turbulent structure throughout. For this reason, it is recommended that either the

domain be initialized with turbulent structures, or that the model not be active until

turbulent structures impinge on the wall throughout the domain.

The reason for this behavior is simple. The wall model uses some form of the mixing

length hypothesis to prescribe an effective turbulent viscosity in the inner layer of the

boundary layer. If sufficient resolved-scale turbulent structures are not present near

the wall, the subgrid scale stresses are not sufficient to balance the augmented stress

enforced by the wall model, possibly resulting in spurious flow reversal.



Chapter 5

Analysis of Eddy Viscosity

Formulations

While a preponderance of the wall-models in the literature use a mixing-length approach

to determine the eddy viscosity to use within the wall model, there remain two open

questions. How well can a mixing-length based wall model replicate a cold-wall boundary

layer? What is the impact of the choice of probe height with regards to the accuracy of

the wall-model eddy viscosity formulation?

To address these questions, an analysis is performed to evaluate the accuracy of the

wall model, and the performance of the various eddy viscosity models. For this analysis

the forebody data from the Calspan-University of Buffalo Research Center (CUBRC)

LENS-II Hollow-Cylinder Flare (HCF) experiments from the shock wave/turbulent

boundary layer study presented at AIAA Aviation 2014 [3] are used.

5.1 Test Geometry and Flow Conditions

The HCF forebody is a hollow cylinder with an outer diameter of 0.496 meters and a

length of 2.474 meters. A schematic of the test article is given in Fig. 5.1. The test

conditions selected for this analysis are presented in Table 5.1.

This condition is chosen due to the high Mach number, cold-wall isothermal condi-

tions, and large extent of flow over the test article where inertial effects and pressure

36
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(a) Picture of as-built test article with researcher for scale

(b) Schematic of test article, dimensions in inches

Figure 5.1: Hollow Cylinder-Flare test article used for AIAA shock wave/turbulent
boundary layer study presented at AIAA Aviation 2014, from [3]
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Mach ReL Tw/T0
4.97 85.4× 106 0.25

Table 5.1: Test condition for CUBRC LENS-II HCF experiment, run 16 [3]

HCF run 16
x [m] 0.5 1.1 1.5

τw [Pa] 309.18 276.15 263.58
qw [W/cm2] 21.11 18.83 17.96

Table 5.2: US3D wall shear and heat flux on a resolved grid for the HCF run 16 test
condition

gradients are negligible. This allows for the wall-model to be run with only the equilib-

rium terms, focusing the examination on the effect of eddy viscosity formulations.

Simulations are conducted in US3D using modified Steger-Warming flux vector split-

ting [28] with second-order MUSCL on density, velocities, turbulence variable and pres-

sure, gradients evaluated by weighted least-squares, molecular viscosity determined by

Sutherland’s formula, and turbulent viscosity from the SA-Catris Model [31]. Time in-

tegration is accomplished with the DPLR [27] method to drive the flow to steady-state.

The 2-D axisymmetric grids are resolved to the wall with a y+ � 1. Data extraction

locations .5, 1.1, and 1.5 meters from the leading edge are chosen to minimize the in-

fluence from both the leading edge of the geometry and downstream STBLI, but allow

for the streamwise evolution of the boundary layer.

Probe data are extracted from the converged US3D solutions at various heights in

the boundary layer and used as boundary values for evaluation of the wall model. The

heat flux and wall shear determined by the US3D simulations are given in table 5.2.

This test geometry is axisymmetric with no surface curvature in the streamwise

direction in the area of interest. To capitalize on this fact and simplify the model

formulation, the wall-tangent flux derivatives in Eq. 3.17 are neglected in the current

implementation of the wall model. This results in a purely 1-D model involving only

diffusive terms, as is common practice in wall modeling. This assumption may result in

error for regions of flow where pressure gradients and inertial terms are non-negligible.
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5.2 Baseline Solution

Figure 5.2 shows the reference boundary layer profile computed by US3D at the 1.1

meter station in wall units. Notable features include a peak in the S-A variable at a

distance of 2800 wall units above the surface, and a peak temperature overshoot at

28 wall units. There is a very strong temperature gradient in the inner portion of the

boundary layer to recover the cold-wall temperature from the peak temperature location.

Associated with the temperature variation are strong density gradients throughout the

boundary layer which peaks below 30 wall units. The same features are present at the

other stations at different different values of y+.

5.3 Model Performance

To evaluate the various formulations of the proposed wall model, data are sampled

from the baseline boundary layer at specific heights in the boundary layer. Those data

are used as boundary conditions for the wall model’s ODE solve. The models are run

independently of the solution that generated the baseline profiles. For both proposed

eddy viscosity formulations, a single iteration of the inner loop is sufficient to stabilize

the outer loop to convergence. In all cases the models converge to machine zero in

negligible computational time.

The following model factors are examined:

• The impact of choice of eddy viscosity model

• The impact of probe height for the wall-model

To evaluate the above factors, boundary layer profiles computed by the wall model

are compared to those from the reference solution. Additionally, predictions of wall

shear and heat flux from the wall model is compared to the baseline solution.

5.3.1 van Driest Transformed Velocity and Temperature Profiles

van Driest-transformed velocity and temperature profiles computed by both eddy vis-

cosity models with data extracted at various probe locations at the x = 1.1 meter station
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(a) wall-unit

(b) log wall-unit

Figure 5.2: Computed wall-resolved boundary layer profiles for the Hollow Cylinder-
Flare at x=1.1m
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Figure 5.3: Velocity and temperature profiles for HCF at x = 1.1m

of the HCF are shown in Fig. 5.3. The van Driest transformation is accomplished on

the wall modeled solution by performing the following integration:

u+vD =

∫ u+

0

√
ρ

ρw
du+ (5.1)

For probe locations placed more than 1000 wall units from the wall the mixing length

model boundary layer profiles deviate significantly from the reference boundary layer.

Use of the SA-Catris model to determine turbulent eddy viscosity significantly improves

the wall model’s approximation of the boundary layer profile.

5.3.2 Wall Shear and Heat Flux Predictions

Figures 5.4 through 5.6 show the wall shear and heat flux predicted by the two eddy-

viscosity models for varying probe locations. These values are normalized by the quan-

tity produced by the reference solution. The mixing length model significantly overpre-

dicts both wall shear and het transfer for probe location at or beyond 1000 wall units at

all stations. The SA-Catris model shows asymptotic convergence at all stations as the

probe is brought closer to the wall. Compared to the predictions made by the mixing
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length-based model, the SA-Catris model more accurately determines wall shear and

heat transfer at every station and at each probe location.

The wall shear and heat flux calculations produced by the mixing length model are

accurate so long as the probe is placed near the inner region of the boundary layer where

viscous dissipation dominates the solution. Probes placed further into the log region of

the boundary layer towards the wake region led to rapidly diverging predictions of both

wall shear and heat flux. For cases where the probe is placed further into the log-layer,

not only is density variation a factor, but so is non-linear variation of the production

of turbulent kinetic energy, and by extension turbulent eddy viscosity. While most

CFD practitioners refrain from using mixing length models outside of the inner-layer

of a boundary layer, the employment of Kawai and Larsson [8] -like probe placement

methods result in interface points being placed further into a boundary layer than has

traditionally been accepted practice. This occurrence should be accounted for when

choosing a turbulence modeling strategy.

5.4 Integrated Solution

Given that both eddy viscosity formulations produce accurate calculations of wall shear

and heat flux for probe locations in the inner part of the boundary layer, the in situ

performance of the model needs to be addressed. For the results in this section, a

coarsened grid is generated with the wall-adjacent cell centroid located 90 wall units

from the wall, and with the probe place approximately 650 wall units from the wall.

The wall model is run with only equilibrium terms active.

The error bars in Fig. 5.7 are ten-percent of the wall-resolved calculation, and are

present for reference only. Both eddy viscosity formulations produce solutions within

this error band for axial locations of 0.5 meters and greater. Before this axial location,

where the boundary layer is its thinnest, the solutions using different eddy viscosity

formulations deviate from the wall-resolved solution. The wall model using the mixing

length eddy viscosity formulation significantly overpredicts wall shear and heat flux in

the region from 0 to 0.5 meters. The wall model using the S-A eddy viscosity formulation

retains predictive capability up to the 0.2 meter axial location.
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(a) wall shear

(b) heat transfer

Figure 5.4: Wall fluxes determined by two eddy-viscosity models on HCF at x=0.5m
with varying probe heights
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(a) wall shear

(b) heat transfer

Figure 5.5: Wall fluxes determined by two eddy-viscosity models on HCF at x=1.1m
with varying probe heights
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(a) wall shear

(b) heat transfer

Figure 5.6: Wall fluxes determined by two eddy-viscosity models on HCF at x=1.5m
with varying probe heights
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Figure 5.7: Wall-modeled wall shear and heat transfer calculations of HCF geometry
compared to resolved calculation

As the boundary layer begins to develop on the hollow cylinder flare the near-wall

resolution of the coarse mesh is insufficient to capture the boundary layer in any detail.

With a probe location several cells off the wall, it is not until the boundary layer

growth reaches the probe cell that the model has any information other than the post-

shock freestream data to operate on. In this calculation, this occurs around 0.2 meters

downstream of the lip of the cylinder. At this location, the probe is effectively in the

defect region of the equilibrium turbulent boundary layer. As discussed in Sec. 5.3.1,

the mixing length based model has no ability to predict the defect region, whereas the

SA based model retains predictive capability for for probe locations in this region. It is

not until the boundary layer grows sufficiently to place the probe cell in the log layer

that the two wall model solutions predict the same result.

5.5 Review of Findings

In this chapter, we evaluated the performance of the wall model against a cold-wall

test case. The geometry of the problem allowed for a simplification of the wall model

to only equilibrium terms, allowing us to examine several factors independent of the
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more complicated model terms addressed later in this work. The following are the key

take-aways from this chapter:

• The model proposed in Chapter 3 can produce accurate boundary layer profiles

and wall quantities by sampling wall-resolved data from an equilibrium cold wall

boundary layer.

• Both eddy viscosity formulations proposed in Sec. 3.2 are accurate so long as the

probe location is restricted to the log region of the equilibrium boundary layer.

As the probe approaches the defect region, the performance of the mixing-length

based model deteriorates rapidly while the S-A based model retains predictive

capability.

• When integrated with CFD and used on a coarsened mesh, the wall model is able

to accurately simulate flow over the hollow cylinder.



Chapter 6

Analysis of Wall Model Source

Terms

Many wall-bounded flows of engineering interest violate the assumptions incorporated

with equilibrium wall models. Namely, flows with shock waves impinging on boundary

layers subject the boundary layer to pressure gradients and inertial imbalances. Sim-

ilarly, supersonic boundary layers undergoing expansion or compression processes also

experience non-equilibrium effects. Separated flows and stagnation point flows also have

extensive regions where the boundary layer cannot be described as being in equilibrium.

This chapter examines the balance of forces on a non-equilibrium hypersonic bound-

ary layer. The effects of various choices of wall modeling terms in a RANS sense are

discussed.

6.1 Test Geometry and Flow Conditions

The geometry studied in this section is the CUBRC Large Cone Flare (LCF) [3], shown

in Fig. 6.1. The cone portion of the LCF is a 7-degree half-angle cone extending 2.35

meters in the axial direction. The cone is then flared 40-degrees and extends 0.15 meters

in the axial direction. Test conditions for the chosen experimental run are shown in

Table 6.1.

This condition is chosen due to the high Mach number, cold-wall isothermal con-

ditions. The full test article is modeled, which includes the turbulent boundary layer

48
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Figure 6.1: Schematic of CUBRC Large Cone Flare, from [3]. Dimensions in inches

Mach ReL Tw/T0
7.14 52.7× 106 0.52

Table 6.1: Test condition for CUBRC LENS-XX LCF experiment, run 14 [3]

interacting with the 40-degree flare. This allows us to examine the effect of various

model terms in a non-equilibrium boundary layer.

Simulations are conducted in US3D using modified Steger-Warming flux vector split-

ting [28] with second-order MUSCL on density, velocities, turbulence variable and pres-

sure, gradients evaluated by weighted least-squares, molecular viscosity determined by

Sutherland’s formula, and turbulent viscosity from the SA-Catris Model [31]. Time in-

tegration is accomplished with the DPLR [27] method to drive the flow to steady-state.

The 2-D axisymmetric grids used in this study are detailed in Table 6.2. Isotropic

cell density is applied outside of boundary layers with approximate shock alignment.

The only difference between the grids used in this study is the near-wall clustering

applied to the grids. The wall spacing achieved on several of the grids used in this

study is shown in Fig. 6.2. Within the boundary layer, a cell growth rate of eight

percent was applied in the wall-normal direction. Detail views showing a comparison of

the near-wall clustering used are presented in Fig. 6.3.



50

Grid y+-cone y+-flare

Resolved 0.05 0.6
Medium 1.0 12.0

Coarse 4.0 50.0
Very Coarse 8.3 100.0

Table 6.2: Wall-spacing for LCF grids

x (m)

y
+ 1

0 0.5 1 1.5 2
10

­2

10
­1

10
0

10
1

10
2

Resolved

Coarse
Very Coarse

Figure 6.2: Near-wall grid resolution for LCF grids

6.2 Analysis of Wall-Resolved Solution

The LCF flowfield has two distinct regions of interest. The first region is the flowfield

produced by the 7-degree cone. The second region is the area where the turbulent

boundary layer from the cone impinges on the 40-degree flare. Fig. 6.4 shows the

magnitude of the density gradients in the vicinity of the flare. The oblique shock

generated by the cone is shown entering the figure from the left, and not interacting

with either the flare or the shock generated by the flare. The incoming compressible

boundary layer separates in this RANS calculation, with a separation shock apparent

which impinges on the flare.
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(a) Resolved (b) Very Coarse

Figure 6.3: Detail view the wall-resolved, and Very Coarse LCF meshes

The wall-resolved result is compared to experimental measurements of heat flux

in Fig. 6.5. The transition process on the cone is far more rapid in the RANS than

the experiment, but heating levels on the cone compare very favorably between the

simulation and the experiment. Agreement is poor in the heating levels on the flare

portion of the geometry. The heating profile shown in Fig. 6.5(b) is typical of other S-A

RANS calculations in the CUBRC study [3]. Wall-resolved calculations are run both

with a trip, and fully turbulent. The wall heat flux is only significantly affected in the

vicinity of the trip, and the solution on the flare is insensitive to the use of the trip.

To further assess the necessity of tripping the flow for this investigation, we examine

boundary layer profiles of velocity and turbulent viscosity ratio µt/µ at two different

axial locations in Fig. 6.6. The first axial location is approximately half-way along the

cone, 75 centimeters downstream from the onset of transition. The second location is

on the flare approximately 5 centimeters before the shoulder and after the STBLI. The

velocity profiles shown in Figs. 6.6(a) and 6.6(b) are indistinguishable whether or not

the trip is used. The primary difference in the simulations is evident in the profiles of

turbulent viscosity ratio. The difference is greatest at the 1.1 meter station shown in

Fig. 6.6(c) where the two predictions of peak turbulent intensity differ by approximately

10%. This discrepancy is not unexpected due to the proximity of the trip just upstream
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Figure 6.4: Logscale of density gradient magnitude in the flare region of the LCF

of this location. The results closer to the STBLI are of arguably more importance,

due to the potential augmentation of turbulence intensity due to freestream turbulence

passing through the shock. The results shown in Fig. 6.6(d) indicate that the intensities

agree very well between the tripped and un-tripped simulations, with less that a 2%

augmentation evidenced.
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Figure 6.6: Comparison of velocity and turbulent viscosity profiles between the tripped and un-tripped flow
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For the purposes of this chapter, the performance of the wall model will be com-

pared to the solutions produced by the S-A model on the wall-resolved grid, not the

experimental heating levels. The primary interest in this investigation is showing the

consistency of the wall-modeled simulations with their wall-resolved counterparts. Ad-

ditionally, while investigations have been accomplished on wall-modeled grids using a

trip, the calculations using the mixing length model for eddy viscosity proved somewhat

susceptible to instabilities. For this reason, the simulations presented herein are fully

turbulent.

6.3 Effect of Various Terms in Wall-Modeled Solution

Figs. 6.7 - 6.12 compare the effects of the various wall model terms on the prediction

of skin friction coefficient and wall heat flux for each of the three modeled grids. Sim-

ulations are conducted using both mixing length and the SA-Catris formulations for

determining wall model turbulent eddy viscosity. In each of the figures a solid line

denotes the solution on the wall-resolved grid without the use of a wall model. The

dashed line denotes the solution on the coarsened grid without the application of a wall

model. This line bounds the error of the solutions. The wall-modeled solutions are

presented as symbols; filled symbols denote solutions using SA-Catris, hollow symbols

denote solutions using mixing length. Symbol shapes are used to convey which terms

are included in the wall model. Square symbols are solutions using only the equilibrium

terms of the wall model, as is used in Chapters 5 and 7. Triangles indicate a simulation

that uses the pressure gradient at the probe location as a source term in the wall model.

Circles denote solutions using an approximation of the inertial source term detailed in

Sec. 3.5.

6.3.1 Eddy Viscosity Formulation

The most significant differences are observed when examining the effect of eddy viscosity

formulation. All model permutations accurately predict skin friction and heat flux on

the cone portion of the geometry, with predictions from mixing length based models

slightly elevated from the resolved calculations. On the coarsest grid, all models deviate

from the resolved calculation at the tip of the cone, as shown in Figs. 6.11(a) and
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Figure 6.7: Skin friction coefficient the 1-12 grid. Hollow symbols use mixing length for
eddy viscosity, filled symbols use SA-Catris
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Figure 6.8: Wall heat flux for the 1-12 grid. Hollow symbols use mixing length for eddy
viscosity, filled symbols use SA-Catris
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Figure 6.9: Skin friction coefficient the 4-50 grid. Hollow symbols use mixing length for
eddy viscosity, filled symbols use SA-Catris
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Figure 6.10: Wall heat flux for the 4-50 grid. Hollow symbols use mixing length for
eddy viscosity, filled symbols use SA-Catris
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Figure 6.11: Skin friction coefficient the 8.3-100 grid. Hollow symbols use mixing length
for eddy viscosity, filled symbols use SA-Catris
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Figure 6.12: Wall heat flux for the 8.3-100 grid. Hollow symbols use mixing length for
eddy viscosity, filled symbols use SA-Catris
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6.12(a). This effect is also observed in Sec. 5.4, and is due to the boundary layer not

appropriately interacting with wall model probe location.

On the flare, the effect of eddy viscosity formulation is more pronounced. Examining

subfigure (b) of Figs. 6.9 - 6.12 it is clear that the simulations using the mixing length

eddy viscosity formulation deviate significantly from the resolved solution, and show

much poorer agreement than the comparable simulations which use SA-Catris for eddy

viscosity.

The reason for the poor performance of the mixing-length model is attributable

to the very high turbulent viscosity present over the flare, shown in Fig. 6.13. The

incoming turbulent boundary layer on the cone is compressed by the flare, greatly

elevating turbulence intensities beyond that of a zero pressure gradient flat plate, on

which the mixing length model is based. The mismatch in eddy viscosities between the

resolved flow and the wall model introduces significant error in the determination of

wall shear and heat flux.

Given the fundamental issues with the mixing length based model being used in this

RANS calculation, very little information can be gained by examining the influence of

other model terms. For this reason, the rest of this chapter will focus on the analysis

of the wall model using the SA-Catris equation to determine eddy viscosity.

6.3.2 Equilibrium Terms

The equilibrium wall model accurately predicts skin friction coefficient and heat transfer

on the cone portion of the geometry on all grids used in this study. The solutions on

the flare are more dependent on grid resolution than the solutions on the cone.

Table 6.3 compares the flow separation and re-attachment points at the cone-flare

juncture using the equilibrium based model. The trend is for the separation bubble to

shrink as the grid is coarsened. Additionally, the separation point moves forward with

the use of the equilibrium wall model.

Finally, there is a gradual reduction in shear predicted on the flare as the grid is

coarsened, as well as a reduction in peak heating levels on the flare. It is noted that

these effects are slight, and the results from the equilibrium applied to all grids are in

close agreement with the resolved calculation, despite the grids being coarsened by one

to two orders of magnitude.
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Figure 6.13: Ratio of effective turbulent viscosity to molecular viscosity over flare por-
tion of LCF on resolved grid

6.3.3 Pressure Gradient

The wall model with pressure gradient included as a source term accurately predicts

skin friction coefficient and heat transfer on the cone portion of the geometry on all grids

used in this study. The solutions on the flare are more dependent on grid resolution

than the solutions on the cone.

Table 6.4 compares the flow separation and re-attachment points at the cone-flare

juncture using the wall model with pressure gradient source term. The wall model

exactly reproduces the location of separation onset and length of separation from the

resolved simulation on all grids used in this study.

The wall model with pressure gradient source term increasingly overpredicts skin

friction on the flare following reattachment as the grid is coarsened. The predicted

heat transfer after reattachment very closely follows the rise in heating observed in the

resolved calculation, but on both the Coarse and Very Coarse grids it plateaus before
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Grid xsep (cm) xatt (cm) Lsep (cm)

Resolved 228.7 239.7 11.0
Medium 227.9 238.8 10.9

Coarse 228.3 239.1 10.8
Very Coarse 228.3 238.8 10.5

Table 6.3: Details of separation at LCF cone-flare juncture for equilibrium wall model

Grid xsep (cm) xatt (cm) Lsep (cm)

Resolved 228.7 239.7 11.0
Medium 228.7 239.7 11.0

Coarse 228.7 239.7 11.0
Very Coarse 228.7 239.7 11.0

Table 6.4: Details of separation at LCF cone-flare juncture for wall model with pressure
gradient

the peak heating level observed on the resolved grid. The peak heating on the Coarse

grid is 2.5% less than that of the resolved grid, while the peak heating on the Very

Coarse grid is 5.1% less than that of the resolved grid.

6.3.4 Inertial Terms

The wall model with approximate inertial source terms accurately predicts skin friction

coefficient and heat transfer on the cone portion of the geometry on all grids used in

this study. The solutions on the flare are more dependent on grid resolution than the

solutions on the cone.

Table 6.5 compares the flow separation and re-attachment points at the cone-flare

juncture using the wall model with inertial source terms. The wall-modeled solutions

have a separation point that increasingly shifts forward as the grid is coarsened. Also

as the grid is coarsened, the length of separation diminishes, but not to the same extent

as is seen in the equilibrium wall model results.

In the region of the flare after reattachment, the wall model with inertial source

term generally underpredicts skin friction coefficient and heat flux. Once the heat flux

plateaus, however, the predicted values of heat flux are within 3% of the values on the

resolved grid.
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Grid xsep (cm) xatt (cm) Lsep (cm)

Resolved 228.7 239.7 11.0
Medium 228.4 239.3 10.9

Coarse 228.3 239.0 10.7
Very Coarse 228.0 238.7 10.7

Table 6.5: Details of separation at LCF cone-flare juncture for wall model with inertial
terms

A closer examination of streamwise velocity boundary layer in the vicinity of the

cone-flare junction is shown in Fig. 6.14. This figure compares the solution of the wall

model with various model terms agains the resolved calculations at four stations. The

left-most profile is taken on the cone just prior to separation. All model variants produce

the same solution and the profile resembles a classical turbulent boundary layer. The

second profile is just after separation. Note that the result including pressure gradient

produces the correct profile while the results using either equilibrium terms or all inertial

terms are nearly identical. The same is true for the next two profiles which present the

flow just prior to and just after reattachment on the flare.

The fact that the solution with only equilibrium terms and the solution with all

inertial terms produce nearly identical solutions in the vicinity of separation suggests

that, at the probe location, the inertial terms nearly balance and that the source term

is effectively zero for the inertial model. This does not match the solution observed in

the resolved calculation or the modeled calculation with pressure gradient source term,

where it appears that viscosity alone balances the pressure gradient in the inner layer.

Regardless of the reason, it is clear that convective term modeled as described in Sec. 3.5

fails in the vicinity of compression-induced separation, and in general does not increase

the accuracy of the calculation.
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Figure 6.14: Streamwise velocity profiles at four stations on LCF. Prior to and after separation, and prior to and after
reattachment. Solid line denotes resolved calculation, square symbol equilibrium model, triangle model with pressure
gradient, open circle model with complete inertial term
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6.4 Conclusions

Wall-modeled RANS calculations were conducted on the CUBRC LCF geometry at a

high Reynolds number cold wall condition. All wall model variants produced accurate

levels of skin friction coefficient and heat transfer on the cone portion of the geometry

when compared to the wall-resolved RANS calculation using the SA-Catris turbulence

model. Evaluation of the results at the cone-flare juncture and over the flare itself

revealed significant insight in how the various wall model terms influenced the solution.

When compared to the wall model results using SA-Catris for eddy viscosity, the

model that used mixing length produced spurious results. This stems from the fact that

the turbulent viscosity intensities convecting from the cone onto the flare are significantly

augmented by the compression process the boundary layer experiences. This results in

turbulent viscosity levels inconsistent with the mixing length model, which is based on

zero pressure gradient flow. The results from the wall model when using SA-Catris

for eddy viscosity are consistent with the resolved results since the S-A variable in the

freestream is used as a boundary condition in the solution of the wall-modeled SA-Catris

equation.

Wether or not an LES of this flow would show the same error with the mixing length

model is unclear, and should be the subject of future study. The Reynolds stresses that

arise from taking the temporal mean of the Navier-Stokes equations are themselves not

a solution of the un-averaged governing equations. While it may be accurate to say

that a RANS-based wall model should use an eddy viscosity that is consistent with the

RANS parent calculation, the same is not necessarily true for a RANS-based wall model

used in a time-accurate flow.

Considering only the wall-modeled results from the SA-Catris eddy viscosity case,

the wall-modeled results with and without source terms subjectively agree very well

with the wall-resolved calculation. The equilibrium model very accurately predicts skin

friction on the flare, but misrepresents the size and location of separation. Including the

pressure gradient source term allows the wall-modeled calculation to exactly replicate

the wall-resolved separation. In addition, the heat flux rise predicted in this case matches

best with the resolved calculation, but peak heating and skin friction after reattachments

are misestimated. Including an approximation of the convective source term results in
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better estimation of peak heating, however the predicted separation is no more accurate

than the equilibrium case. Additionally the rise in skin friction and heating on the flare

after reattachment lag the resolved solution.

The results from this chapter suggests that while apparent, the effects of the non-

equilibrium source terms on the solutions is slight. Recent DNS results from Coleman

et al. [32] of Couette-Poiseuille flow support this assertion by showing the effect of

pressure gradient to be slight on the mean velocity at a y+ of 50. Bermejo-Moreno et

al. [33] showed favorable agreement with experiment using an equilibrium-based wall

model for incipiently separated flow at a STBLI. Their results suggest that the sum of

the non-equilibrium terms in a turbulent boundary layer may be nearly zero, even if the

terms themselves are not.

The present results supports the assertion by Larsson et al. [34] that equilibrium

models may have utility in non-equilibrium flows given sufficient resolution in the outer

region of the boundary layer. In a properly resolved wall-modeled calculation, 80% of

the boundary layer is properly resolved and able to experience non-equilibrium effects,

the authors state. The portion of the boundary layer that is modeled is dominated by

viscous forces, and all inertial terms approximately balance.



Chapter 7

Validation with Large Eddy

Simulation

7.1 Overview

Once the performance of the model with equilibrium terms has been established in a

RANS calculation, it is of interest to assess the performance of said model in a Large

Eddy Simulation. In the context of an LES, a preponderance of the computational bur-

den stems from the restrictive timestep of the near-wall cells. Relaxing the grid spacing

by an order of magnitude should allow for a wall-modeled calculation to achieve the

same level of statistical convergence as a wall-resolved calculation an order of magni-

tude faster, in terms of computation time. While there will also be a savings in the

number of computational elements in the wall-modeled calculation, a majority of the

computational elements lie outside the viscous sub-layer of a boundary layer, with sizes

limited by the integral length scale of the flow.

This chapter will examine the behavior of the wall model with the solver operating

as an LES. Turbulent structures will be synthetically generated based on a RANS profile

and allowed to spatially and temporally develop. The work presented in this chapter

was an extensive collaboration with Anand Kartha, whose technical support made this

simulation possible. The digital filtering technique discussed in Sec. 7.3 was developed

and implemented by Mr. Kartha, but it is discussed here to provide the reader sufficient

detail on the methodology of these simulations.

69
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Reθ Me δ99 [mm] θ [mm] Ue [m/s] Source

5, 000 2.3 11.0 0.96 550.0 Souverein et al. [5]

Table 7.1: Flow conditions of LES validation

direction extent

x 50 δ99
y 10 δ99
z 4 δ99

Table 7.2: Domain sizes for LES grids

7.2 Test Geometry and Flow Conditions

A necessary but insufficient condition for a wall model to produce accurate LES results

of STBLI flows is for the model to produce accurate turbulent boundary layers for

equilibrium flows. All simulations in this chapter will be for fully-developed turbulent

boundary layers over a zero pressure gradient flat plate. The conditions used for these

simulations are given in Table 7.1.

Two-dimensional RANS simulations were conducted using the S-A Catris [31] turbu-

lence model with the freestream conditions of the experiments in Table 7.1. Boundary

layer profiles were extracted from the RANS data just upstream of the point where the

boundary layer grew to the specified thickness. These profiles were used as the upstream

inflow boundary condition for the LES calculations.

Grids for the LES calculations were constructed as a cartesian mesh with regular

spacing and smooth stretching. The grids had constant spacing in the streamwise (x)

and spanwise (z) directions. The grid in the wall normal (y) direction was created by

establishing a specific height of the first cell, and then smoothly growing at a 5% growth

rate to a constant farfield spacing. This spacing was maintained for five boundary layer

heights above the wall, and then rapidly stretched (20% growth rate) for another five

boundary layer heights. The domain extents for the LES grids is given in Table 7.2 and

the grid spacing is given in Tables 7.3 and 7.4. A representative view of the near wall

grid spacing for each grid is shown in Fig. 7.1.

The flow is modeled as periodic in the spanwise direction. Streamwise boundaries

are supersonic turbulent inflow and supersonic outflow. The wall is treated with a
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direction spacing

∆x δ99/24
∆ye δ99/40
∆z δ99/37.5

Table 7.3: Grid spacing for LES grids

grid y+1
Resolved 0.5
Medium 2.0

Coarse 10.0

Table 7.4: Wall clustering for LES grids

wall-modeled equilibrium isothermal boundary condition at the adiabatic recovery tem-

perature of 281 Kelvin. The reference calculation, which is resolved to the wall, uses

an adiabatic boundary condition. The farfield boundary condition was supersonic out-

flow. The high rate of stretching used near the farfield boundary introduces numerical

dissipation to reduce any reflected characteristic from the outflow boundary.

Time advancement in the LES calculations is accomplished with a third-order Runge-

Kutta (RK3) scheme. Inviscid fluxes are evaluated with the sixth-order kinetic energy

consistent method of Subbareddy and Candler [35] with the limiter by Ducros [36] ap-

plied to introduce dissipation to maintain stability near shocks. Subgrid scale stresses

are determined using the model by Vreman [37]. The generation of turbulent inflow is

described in the next section.
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(a) resolved (b) medium (c) coarse

Figure 7.1: Schematic view of LES grids. Shaded region is the wall face, unshaded region is the periodic boundary
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7.3 Generation of Inflow Turbulence

The digital filtering technique used by Kartha et al. [38] was adapted for use in this

work. In this method, inflow perturbations are generated to reproduced prescribed

Reynolds stresses. These perturbations are added to the mean RANS profile to generate

a time varying inflow with appropriate Reynolds stresses. The review papers by Wu [39]

and Dhamankar et al. [40] provide an excellent overview on the prescription of inflow

turbulence.

To appropriately synthesize a wall-bounded turbulence, the inflow must be set to

provide time varying disturbances at appropriate length scales and amplitudes. In the

temporal mean, these fluctuations should reproduce the Reynolds-averaged turbulent

eddy viscosity that was prescribed at the inflow. Spatially, the distribution of the

disturbances should adhere to an appropriate integral length scale representative of

turbulent boundary layers. Two general philosophies exist in the literature as to the

most appropriate way to prescribe integral length scales at the inflow. The first uses a

constant length scale throughout the boundary layer, while the second method varies the

length scale based on distance to the wall. There are advantages and disadvantages to

both approaches. In this work, the prescribed integral length scale diminishes near the

wall. Figs. 7.2 and 7.3 show the prescribed velocity correlation at the inflow compared

with the average of the computed correlations at several heights in the inflow boundary

layer. Some deviation is observed between the prescribed and computed quantities, but

in general they are in very good agreement. The integral length scale is related to the

velocity correlations as follows:

L =

∫ ∞
0

Ruu(r)dr (7.1)

where the velocity correlation in the i direction is defined as:

Ruu =
〈u(xi)u(xi + r)〉
〈u(xi)2〉

(7.2)

Degraff and Eaton [6] observed an approximate collapse on time-averaged Reynolds

normal stresses for incompressible flows at a wide range of Reynolds numbers using an
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Figure 7.2: Distribution of inflow integral length scales in the spanwise direction
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Figure 7.3: Distribution of inflow integral length scales in the wall-normal direction
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Figure 7.4: Inflow turbulence Reynolds stresses

‘inner-outer’ scaling. The mean velocity perturbation is normalized by the square of the

friction velocity uτ =
√
τw/ρ while the distance from the wall is scaled by boundary layer

height δ99. To apply this profile to a compressible boundary layer, Morkovin scaling was

applied to weight the incompressible Reynolds stress by
√
ρw/ρ [41]. Fig. 7.4 compares

the time averaged Reynolds normal stresses at the inflow with the prescribed values

based on the characterization by Degraff and Eaton.

Finally, Fig. 7.5 shows the wall-normal velocity perturbations at three different in-

stances for the Mach 2.3 turbulent inflow. At all three instances, the disturbance am-

plitudes are approximately equal, but the distributions of the disturbances are unique

in each instance.

7.4 Analysis

The turbulent simulations are initialized using the RANS inflow profile. The flow is

then simulated for approximately five convective flowtimes (τc = δ99/Ue) to allow the

synthetic turbulent inflow to flow through the domain and allow start-up transients

to subside. From this point statistics are collected for approximately ten convective
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(a) initial

(b) 1 flowtime

(c) 2 flowtimes

Figure 7.5: Instantaneous wall-normal velocity perturbation for digitally-filtered LES
inflow
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Figure 7.6: Average heat flux on wall boundary for coarse grid with wall model

flowtimes. 1 Volume statistics are collected for flow primitives and Reynolds stresses,

and are averaged in the spanwise-direction. Surface statistics are collected as well for

wall temperature, pressure, and shear.

Fig. 7.6 shows the average heat flux on the wall boundary for the coarse grid. In the

mean, the heat transfer between the wall and the fluid is 0.03 W/cm2 over the entire

plate, however locally the average peaks at O(.1) W/cm2. As fluctuating quantities at

the surface take the longest time to converge of all turbulent quantities in the simulation,

it is expected that with further simulation the statistics would converge to a value near

zero.

An instantaneous visualization of wall shear is shown in Fig. 7.7. Flow in the figure is

from left to right. Characteristic streaks in wall-shear are evident from larger turbulent

structures impinging and lifting off in the wall. Temperature contours in the same figure

show the spatial development of the compressible turbulent boundary layer.

An effective technique to visualize the presence and development of turbulent struc-

tures is the q-criterion suggested by Hunt et al., [42] given in Eq. 7.3.

Q =
1

2

(
|S|2 − |Ω|2

)
(7.3)

where S is the symmetric strain rate tensor (∂ui/∂xj + ∂uj/∂xi), and Ω is the

vorticity (εijk∂uk/∂xj). Where this criteria falls below a specified threshold, a vortex is

said to exist. These structures are evident in Fig. 7.8, which shows vorticies identified

by q-criterion colored by instantaneous streamwise velocity.

1 The wall-resolved results on the fine grid are only converged to approximately 1.5τc, due to the
extremely slow nature of the simulation.
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Figure 7.7: Instantaneous wall shear and temperature for Reθ = 5000 flow over a flat
plate at Mach 2.3 on the wall-modeled grid
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Figure 7.8: Instantaneous q-criterion isosurface for Reθ = 5000 flow over a flat plate at Mach 2.3
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7.4.1 Mean Flow

Fig. 7.9 shows the span-averaged mean velocity distribution at several stream-wise sta-

tions. The velocity profile is van Driest transformed to allow for comparison to the

classic incompressible law of the wall, given below.

u+ =
1

κ
log y+ + C (7.4)

where κ and C traditionally assume the values of 0.41 and 5.1 respectively. The

two wall-modeled calculations fail to resolve the viscous sub-layer, as it is essentially

sub-cell information and only present within the wall model. Both grids produce a log

layer, however they are offset from one another due to differences in mean wall shear.

The solution from the coarse grid has a log-law constant of slightly over 5.1, as did the

experimental measurements of Souverien [5] as well as the wall-resolved simulation. The

simulation on the medium mesh has a log-law constant slightly lower that 5.1.

Fig. 7.10 shows the mean computed skin friction coefficient, Cf = τw/
1
2ρU

2
e com-

pared to the power-law fit by White [43] given in Eq. 7.5. The van Driest transformation

is applied to compare the compressible boundary layer results with the incompressible

fit by White [44]. Error bars of 5% are applied for reference. The predicted skin friction

on both the medium and coarse grids are within 5% of White’s fit, whereas the coarse

grid without application of the wall model underestimates skin friction by almost 10%

and is denoted in the figure by a dashed line. The wall-resolved solution produces a skin

friction coefficient slightly less than that predicted by White, for which the wall model

applied to the coarse grid provides excellent agreement.

Cf = 0.020Re
−1/6
δ (7.5)

The simulations have an initial establishment region wherein the skin-friction co-

efficient is suppressed due to inhomogeneity in the turbulent boundary layer above.

After the establishment region, the simulated skin friction coefficient decays at a rate

consistent with the one-sixth power law. The simulation on the coarse mesh without

application of the wall model underpredicts the average skin friction coefficient, as is

expected due to inaccuracies in derivative approximations on the unmodeled boundary.
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Figure 7.9: Flat plate van Driest-transformed velocity profiles
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The wall modeled results on both the coarse and medium meshes agrees very well with

the fit by White. While the the wall model results on both meshes are accurate when

compared to the fit by White, they do not produce identical results. The reason for this

difference can be attributed to multiple possible causes. Possible reasons for the error

include:

• Insufficient wall-model convergence. The wall models in the two simulations each

executed 10 sub-iterations to solve the wall model equations. Given that the two

simulations had drastically different timesteps, the number of sub-iterations per

timestep was not constant. Additionally, the finer near-wall mesh in the medium

simulation allowed for smaller flow structures to be present. These structures

would be characterized by higher frequencies and shorter characteristic times.

• More energetic turbulent inflow. The inflow Reynolds stresses peak near the wall,

as shown in Fig. 7.4. The finer near-wall mesh in the medium grid allows for the

introduction of resolved fine-scale energetic structures near the wall.

• Performance of the Vreman subgrid stress model. It is unclear at this point what

the effect is of near-wall resolution on the subgrid stress stress model used in this

study.

7.4.2 Reynolds Stresses

In addition to correctly determining mean values of the flowfield primitives, it is critical

that any augmentation to an LES accurately predict the resolved scale Reynolds stresses.

These include the normal Reynolds stresses (u′u′, v′v′, and w′w′) and the Reynolds

shear stresses (u′v′, u′w′, v′w′). In the case of a wall-bounded flow, analysis is typically

restricted to the streamwise and normal Reynolds stress, and the u′v′ shear.

The Reynolds normal stresses are shown in Fig. 7.11. The profiles collapse for

stations greater than x/δ = 15, indicating that the synthetically generated turbulence

has equilibrated and that self-similarity has been achieved. Reasonable agreement is

observed with the experimental measurements of u′u′ by Souverein [5]. Agreement is

poorer when comparing to the measurement of v′v′. Similar disagreement was observed

by Kawai and Larsson [8] when simulating the Reθ = 50, 000 experiments by Souverein.
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Figure 7.12: Flat plate Reynolds stresses (shear) on Coarse grid

Souverein [45] notes a systemic underrepresentation of v′, so our current disagreement

is likely attributable to experimental error. There is exceptional agreement between

the averaged Reynolds normal stresses and the profile by Degraff and Eaton [6]. This

indicates that the computed Reynolds stresses have not been adversely affected by the

use of the wall model.

The Reynolds shear stresses are shown in Fig. 7.12. As is seen in the normal stress,

the profiles collapse for stations greater than x/δ = 15, however further downstream

reductions in Reynolds shear stress is observed. There is a large spread in experimental

measurements of Reynolds shear stress reported by Souverein [45] at this Reynolds

number. The values predicted in this simulation fall within the experimentally observed

envelope, shown in Fig. 7.12. The computed Reynolds shear stress nearly identically

reproduces the incompressible profile from Degraff and Eaton [6] at this Reθ after the
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Grid Timestep (ns) Number of iterations Wall time (hrs)

Resolved 14 1,250,000 1.20× 106

Medium 60 187,500 1.65× 105

Coarse 250 60,000 4.80× 104

Table 7.5: Computational cost of flat plate calculations

flow has developed. The agreement with the incompressible profile indicates that the

computed stress has not been adversely affected by the use of the wall model.

7.4.3 Computation Time

In any LES, the total number of computational elements is driven by the integral length

scale spacing used throughout the domain, and is a very weak function of near-wall clus-

tering. The three grids used in this study all have approximately the same number of

computational elements ranging from 40-48 million. The maximum stable timestep

varies greatly from grid to grid, and has a significant impact on the cost of the cal-

culations, as shown in Table 7.5. This analysis assumes that time per iteration scales

linearly with grid size an that all calculations are executed on 720 computational cores.

The obvious impact of the wall model is that it accelerated the speed of the calcu-

lation by allowing for a significantly higher timestep than the wall-resolved calculation

without having to resort to point-implicit time-stepping. This means that the wall-

resolved calculation requires more than 20 times the computational resources of the

coarse wall-modeled calculation at this condition.

7.4.4 Impact of Wall Model Parameters

In this section we examine the sensitivity of the solution to permutations in wall model

parameters. Permutations were examined on the Coarse grid to expedite the exploration

of a large parameter space. Figs. 7.13 - 7.16 show the previously discussed results

at the x/δ = 30 station as well as two additional results. The first additional result

involves moving the probe location approximately twice as far from the wall as previously

examined. The second additional result executes ten-times as many wall-model sub-

iterations as was used in the previous calculations.



86

y
+

U
+ v

D

10
­1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

Fine

Medium, h
+

wm
=50

Coarse, h
+

wm
=50

Coarse, h
+

wm
=110

Coarse, 10x  n
outer

Figure 7.13: Flat plate van Driest-transformed velocity profiles for a variety of wall
model settings
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Location of wall model probe

Moving the probe location further from the wall resulted in a slight increase in computed

skin friction, and a corresponding shift in the log region of the van Driest-transformed

velocity profiles. The Reynolds-normal stresses shown in Fig. 7.15 are insensitive to

adjusting the probe location. The Reynolds-shear stress shown in Fig. 7.16 are nearly

identical to the results with the probe placed closer to the wall, demonstrating similar

insensitivity to probe placement.

Degree of wall model convergence

The results previously discussed in this chapter have involved running 10 sub-iterations

of the wall model for each LES RK3 step. We extend the degree of wall model conver-

gence by running 100 wall model sub-iterations and examine the effect on the calculation.

The probe location for this calculation was at h+wm = 50.

The mean skin friction is underpredicted to a greater extent than the other model

permutations, as shown in Fig. 7.14. The van Direst-transformed velocity profile is

identical to the result using fewer wall model sub-iterations. The mean Reynolds stresses

exhibit very slight elevation when compared to the other results, suggesting a slight

dependence of the turbulent statistics on the number of wall model sub-iterations, or at

least the streamwise extent over which they equilibrate.

7.5 Conclusions

A validation was conducted against the experimental measurements of Souverein [5].

This validation served as an important milestone to demonstrate the accuracy of several

key additions to US3D working in concert. Namely:

• Wall model boundary condition operating in an equilibrium boundary layer.

• Digitally filtered turbulent inflow of Karta [38] applied to a wall-bounded flow.

• Vreman [37] subgrid-scale stress model.

• All associated statistics routines.
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Wall-modeled calculations agree with the boundary layer properties measured ex-

perimentally, predicted by analytic theory, and those produced by wall-resolved simu-

lations. The sensitivity of the solutions to permutations of wall model parameters were

examined, and determined to be slight. This suite of models are now prepared host of

research problems in high Reynolds number LES.



Chapter 8

Summary and Conclusions

8.1 Summary

A wall-modeled boundary condition was developed and integrated into the US3D finite

volume solver. The boundary condition was derived so that it would be appropriate for

compressible flows with heat transfer. A set of one-dimensional equations are solved

at each wall face for wall tangent velocity and specific energy. Pressure is assumed to

be constant in the wall-normal direction and density is prescribed from the equation

of state. Solution of these wall model equations allows for the accurate determina-

tion of skin friction and wall heat flux on grids that are severely under-resolved at the

wall boundary. Since the explicit timestep used in a finite volume calculation is deter-

mined by the shortest cell dimension in the entire computational domain, coarsening

the near-wall region allows for significantly larger timesteps and dramatically lowers the

computational cost to converge statistics of time-accurate simulations.

Non-equilibrium effects such as pressure gradient and convective imbalances are

accounted for in the model through a source term. In principle, modeling these effects as

a source term allows for many possible closures and degrees of fidelity without changing

the solution methodology. For the results presented in the work, the pressure gradient

is assumed to be a function of the wall-tangent directions only, and not a function of

the wall-normal direction. This allowed for evaluation of the pressure gradient from

resolved data in the global solution at the wall model probe location to be enforced all

the way to the wall. The convective source term was similarly evaluated from finite

90
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volume data at the probe location, but this term is damped using a van Driest-type

damping very close to the wall. This represents a gross approximation that is accurate

only on the boundaries, and does not take into account variations in this profile due to

compressibility or local discontinuities.

Two different methods of determining an RANS turbulent eddy viscosity were im-

plemented in the model. The first was a mixing-length based model, with cold-wall

correction. This type of model is typically used in large eddy simulations to account

for mixing at the smallest unresolved scales. The second model implemented was the

compressible Spalart-Allmaras turbulence model by Catris and Aupoix. This model

adds a fourth equation to the set of one-dimensional line solutions at each wall face,

and is a means of incorporating information about the state of the turbulence at the

edge of the wall model into its solution.

The model was evaluated against a series of RANS and LES test cases to assess the

suitability of the various modeling choices, and the relative contribution of the model

terms in both equilibrium and non-equilibrium flows. High Reynolds number cold-wall

test cases from the CUBRC LENS facilities were used to assess the performance of

the model in RANS calculations of axisymmetric cold-wall bodies. Wall-modeled LES

calculations were conducted on a Mach 2.3 flat plate at an Reθ of 5,000.

8.2 Conclusions

The wall model presented in this work produces accurate boundary layer profiles and

surface flux calculations on coarsened grids in a variety of applications. RANS calcula-

tions on equilibrium boundary layers were accurate for all combinations of model terms

and choice of eddy viscosity formulations so long as the wall model probe location was

within the log region of the turbulent boundary layer. For scenarios where the probe

fell outside of the log region, wall-modeled results based on the mixing-length eddy vis-

cosity formulation showed significantly greater error than simulations conducted with

the SA-Catris model.

For non-equilibrium RANS flows, simulations using mixing length eddy viscosity

were inaccurate due to the inaccuracies in the wall-modeled eddy viscosity profile. Sim-

ulations using SA-Catris for eddy viscosity produced results qualitatively similar to
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wall-resolved calculations of non-equilibrium flows. This general agreement for all per-

mutation of model terms suggests two things. First, the profile used for the convective

source terms is inaccurate enough where its inclusion does not significantly improve

the solution. Secondly, the inclusion or omission of non-equilibrium effects within the

wall-model is not a first-order effect on the quality of the wall-modeled solution for some

non-equilibrium flows.

Finally, through our examination of the model’s performance in an LES of a com-

pressible boundary layer we demonstrated that the model is suitable for use in wall-

modeled LES. Together with the inclusions of a new subgrid-scale stress model into

US3D along with a synthetically generated turbulent inflow, a new capability has been

added to the research tool to facilitate wall-bounded turbulence research.

8.3 Suggestions for Future Research

Now that the wall model has been integrated into US3D and partially validated, many

new avenues of research are available. Two categories of suggestions are presented:

research into wall models themselves and research that is facilitated by the use of a wall

model.

Research should continue in assessing and improving wall models used in the LES

of compressible flows with heat transfer. In particular, attention should be focused

on flows of engineering interest, which will necessarily include STBLIs and other non-

equilibrium phenomena. To examine the effect of wall-modeled LES on compression

flows, WM-LES should be conducted on the compression ramp of Zheltovodov [46],

CUBRC Hollow Cylinder-Flare of Holden et al. [3] and CUBRC Large Cone-Flare, also

of Holden et al. To examine the effect of shock impingement, the LES discussed in this

work should be extended to include the shock generated in the work by Souverein et al.

[5] Three-dimensional STBLIs could be examined by flowing a turbulent boundary layer

over a vertically mounted fin, as in the experiments by Zheltovodov [47] and Kim [48].

The results of these investigations would further inform the community on the necessity

of non-equilibrium wall-modeled terms, and the applicability of this type of wall models

to the LES of STBLIs. Assuming these investigations are successful, a dataset should
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be identified to allow for the wall model to be evaluated on the internal flowpath of a

scramjet inlet.

A second class of research suggestions focuses on research enabled by the use of a

wall model. Typically, the wall model could be used to relax restrictive timesteps used

in the study of very high Reynolds number configurations. There are current efforts

underway to use the model to develop a wall-bound turbulent boundary layer over a

splitter plate to be used in the simulation of a high Reynolds number mixing layer.
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Appendix A

Derivations

A.1 Wall Model Equation

As stated in Chapter 3, the Navier-Stokes equations in divergence form are:

∂U

∂t
+
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
= 0 (A.1)

where U and Fj are the vectors of conserved variables and fluxes respectively.

U =



ρ

ρu1

ρu2

ρu3

E


, Fj =



ρuj

ρu1uj + pδ1j − σ1j
ρu2uj + pδ2j − σ2j
ρu3uj + pδ3j − σ3j

(E + p)uj − σkjuk − qj


(A.2)

The viscous stress tensor, σij , and heat conduction vector, qj , are defined as

σij = µ̂

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ̂
∂uk
∂xk

δij (A.3)

qj = κ̂
∂T

∂xj
(A.4)

Here, the Bouusinesq approximation has been used to treat the mean effects of

turbulent motion as an approximate eddy viscosity
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µ̂ = µ+ µt, κ̂ = κ+ κt (A.5)

We start by assuming that pressure is constant in the wall normal direction, and as

a result density is uniquely determined by temperature. Using the equation of state for

a perfect gas:

ρ =
P
∣∣
h+wm

RT
(A.6)

With this relationship, conservation of mass has been decoupled from the equation

set, and is no longer required. Density is a consequence of the temperature field and

the pressure at the probe location.

Assuming gradients in the wall-normal direction are much larger than gradients in

the wall-tangent directions, we rearrange the conservation equations to retain only the

time and x3 derivatives on the left hand side.

∂ρu

∂t
+

∂

∂x3

[
ρuw − µ̂ ∂u

∂x3

]
= −

2∑
i=1

∂Fi
∂xi

(A.7)

∂ρv

∂t
+

∂

∂x3

[
ρvw − µ̂ ∂v

∂x3

]
= −

2∑
i=1

∂Fi
∂xi

∂ρw

∂t
+

∂

∂x3

[
ρw2 − 4

3
µ̂
∂w

∂x3

]
= −

2∑
i=1

∂Fi
∂xi

∂ρe

∂t
+

∂

∂x3

[
(ρe+ P )w − µ̂

(
u
∂u

∂x3
+ v

∂v

∂x3
+ w

∂w

∂x3

)
− κ̂ ∂T

∂x3

]
= −

2∑
i=1

∂Fi
∂xi

The right-hand side source terms in Eqs. A.7 are typically neglected in their entirety

for wall wall models. They will be carried forward in this derivation with the short hand

notation of Σ.

The subsequent derivation will examine the u-momentum equation only, however the

extension to v-momentum is trivial. Expanding Eqs. A.7 by chain rule and neglecting

the time derivative of density:
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ρ
∂u

∂t
+ ρ

(
u
∂w

∂x3
+ w

∂u

∂x3

)
+ uw

∂ρ

∂x3
− ∂

∂x3

(
µ̂
∂u

∂x3

)
= −Σ (A.8)

Dividing by density:

∂u

∂t
+ u

∂w

∂x3
+ w

∂u

∂x3
+
uw

ρ

∂ρ

∂x3
− 1

ρ

∂

∂x3

(
µ̂
∂u

∂x3

)
= −1

ρ
Σ (A.9)

If we assume the distance the gradient is evaluated over, δ, to be small, u to be large

and represent it as Ψ, and w to be small represented as ψ. The resulting magnitude

analysis yields:

Ψ

∆t
+ Ψ

ψ

δ
+ ψ

Ψ

δ
+

Ψψ

ρ

ρ

δ︸ ︷︷ ︸
small

− µ̂
ρ

Ψ

δ2︸︷︷︸
large

= −1

ρ
Σ (A.10)

We now assume that the terms that scale as Ψψ/δ are small compared to the other

terms. Therefore, Eq. A.9 reduces to:

∂u

∂t
− 1

ρ

∂

∂x3

(
µ̂
∂u

∂x3

)
= −1

ρ
Σ (A.11)

The source term is fixed in time with regards to the wall model, and is evaluated

from LES data from time level n. The current wall model sub-iteration is denoted as

iteration k, and the previous sub-iteration k − 1. Using these labels, Eq. A.11 becomes

∂uk

∂t
− 1

ρk−1
∂

∂x3

(
µ̂k−1

∂uk

∂x3

)
= − 1

ρ
Σ

∣∣∣∣n (A.12)

Defining uk as the sum of uk−1 and δuk and reordering terms we arrive at:

δuk

δt
− 1

ρk−1
∂

∂x3

[
µ̂k−1

∂

∂x3

(
uk−1 + δuk

)]
= − 1

ρ
Σ

∣∣∣∣n
1

∆t
δuk − 1

ρk−1
∂

∂x3

[
µ̂k−1

∂

∂x3
δuk
]

=
1

ρk−1
∂

∂x3

[
µ̂k−1

∂

∂x3
uk−1

]
− 1

ρ
Σ

∣∣∣∣n (A.13)
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As stated previously, the extension of Eq. A.13 to v velocity is trivial. The source

term on the right hand side of Eq. A.13 can neglected or modeled depending on however

one chooses. The update δuk consists of a tri-diagonal implicit operator and an explicit

evaluation. The implicit operator is built using central differences. Considering point i

within the wall model, we define:

µ̂+ = µ̂

(
T

∣∣∣∣
i+1/2

)

µ̂− = µ̂

(
T

∣∣∣∣
i−1/2

)
∆x+ = xi+1 − xi (A.14)

∆x− = xi − xi−1

∆xf =
1

2
(xi+1 + xi)−

1

2
(xi + xi−1)

We now build the implicit operator by using central differences

1

∆t
δuki −

1

ρk−1
∂

∂x3

[
µ̂k−1

∂

∂x3
δuk
]

=
1

∆t
δuki −

1

ρk−1
∆

∆xf

[
µ̂k−1

∂

∂x3
δuk
]

=
1

∆t
δuki −

1

ρk−1
1

∆xf

[
µ̂+

1

∆x+

(
δuki+1 − δuki

)
− µ̂− 1

∆x−

(
δuki − δuki−1

)]
=

1

∆t
δuki −

1

ρk−1
1

∆xf

[
µ̂+

∆x+
δuki+1 −

(
µ̂+

∆x+
+

µ̂−

∆x−

)
δuki +

µ̂−

∆x−
δuki−1

]
(A.15)

Returning our attention to the energy equation component of A.7, we again expand

by chain rule and neglect products of w.

∂e

∂t
+

1

ρ

∂

∂x3

[
µ̂

(
−u ∂u

∂x3
− v ∂v

∂x3

)
− κ̂ ∂T

∂x3

]
= −1

ρ
Σ (A.16)

For this equation, we choose to evaluate the velocities at the previous wall model

sub-iteration and linearize specific energy and temperature.
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δek

∆t
+

1

ρk−1
∂

∂x3

[
µ̂k−1

(
−uk−1∂u

k−1

∂x3
− vk−1∂v

k−1

∂x3

)
− κ̂k−1

(
∂T k−1

∂x3
+
∂δT k

∂x3

)]
= − 1

ρ
Σ

∣∣∣∣n (A.17)

Neglecting enthalpy of formation, the specific energy of the gas is defined as e =

cvT + 1
2uiui. Holding kinetic energy constant, the change in temperature is related to

the change in internal energy by δT = δe/cv. Rearranging Eq. A.17 and expressing

updates in terms of δe:

1

∆t
δek − 1

ρk−1
∂

∂x3

(
κ̂k−1

cv

∂

∂x3
δek
)

=

− 1

ρk−1

[
∂

∂x3

(
−uµ̂ ∂u

∂x3
− vµ̂ ∂v

∂x3
− κ̂ ∂T

∂x3

)∣∣∣∣k−1 + Σn

]
(A.18)

The implicit operator for specific energy is formulated identically as was done in Eq.

A.15.

1

∆t
δeki −

1

ρk−1
∂

∂x3

[
κ̂k−1

cv

∂

∂x3
δek
]

=

1

∆t
δeki −

1

ρk−1
1

∆xf

1

cv

[
κ̂+

∆x+
δeki+1 −

(
κ̂+

∆x+
+

κ̂−

∆x−

)
δeki +

κ̂−

∆x−
δeki−1

]
(A.19)

A.2 Wall-Modeled Spalart-Allmaras (Catris-Aupoix) Equa-

tion

The SA-Catris turbulence model is expressed as:

∂ρν̃

∂t
+ uj

∂ρν̃

∂xj
= cb1S̃ρν̃ − cw1fwρ

(
ν̃

d

)2

+
1

σ

∂

∂xj

(
µ
∂ν̃

∂xj

)
+

1

σ

∂

∂xj

(
√
ρν̃
∂
√
ρν̃

∂xj

)
+
cb2
σ

∂
√
ρν̃

∂xi

∂
√
ρν̃

∂xi
(A.20)
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with all model constant taken from the standard expression of the model. We assume

that gradients in the 1 and 2 directions are very small compared to gradients in the wall-

normal direction. We further assume that wall-normal velocity is negligible, and that

there is no time derivative of density. Under theses assumptions, the above equation

reduces to:

ρ
∂ν̃

∂t
= cb1S̃ρν̃ − cw1fwρ

(
ν̃

d

)2

︸ ︷︷ ︸
I

+
1

σ

∂

∂x3

(
µ
∂ν̃

∂x3

)
︸ ︷︷ ︸

II

+
1

σ

∂

∂x3

(
√
ρν̃
∂
√
ρν̃

∂x3

)
︸ ︷︷ ︸

III

+
cb2
σ

∂
√
ρν̃

∂x3

∂
√
ρν̃

∂x3︸ ︷︷ ︸
IV

(A.21)

Terms I and II require no further simplification under these assumptions. For term

III:

1

σ

∂

∂x3

(
√
ρν̃
∂
√
ρν̃

∂x3

)
=

1

σ

∂

∂x3

[
√
ρν̃

(
ν̃
∂
√
ρ

∂x3
+
√
ρ
∂ν̃

∂x3

)]
=

1

σ

∂

∂x3

(
√
ρν̃2

∂
√
ρ

∂x3
+ ρν̃

∂ν̃

∂x3

)
(A.22)

Term IV expands to:

cb2
σ

∂
√
ρν̃

∂x3

∂
√
ρν̃

∂x3
=
cb2
σ

(
√
ρ
∂ν̃

∂x3
+ ν̃

∂
√
ρ

∂x3

)(
√
ρ
∂ν̃

∂x3
+ ν̃

∂
√
ρ

∂x3

)
=
cb2
σ

(
ρ
∂ν̃

∂x3

∂ν̃

∂x3
+ ν̃2

∂
√
ρ

∂x3

∂
√
ρ

∂x3
+ 2
√
ρν̃
∂
√
ρ

∂x3

∂ν̃

∂x3

)
(A.23)

The solution variable ν̃ is approximated as the value from the previous iteration,

ν̃k−1 plus an update, δν̃k (ν̃ = ν̃k−1 + δν̃k). This substitution is now made into the

equation, and superscripts are dropped. In the following linearization, the products of

two small quantities (δν̃2) are neglected. Dividing through by density, the terms of Eq.

A.21 become:
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Left-Hand Side:

δν̃

∆t
(A.24)

Term I:

cb1S̃(ν̃ + δν̃)− cw1fw
(
ν̃ + δν̃

d

)2

= cb1S̃ν̃ + cb1S̃δν̃ −
cw1fw
d2

(
ν̃2 + 2ν̃δν̃ + 0

)
=

[
cb1S̃ν̃ − cw1fw

(
ν̃

d

)2
]

+

(
cb1S̃ −

cw1fw
d2

ν̃

)
δν̃

(A.25)

Term II:

1

σρ

∂

∂x3

[
µ
∂

∂x3
(ν̃ + δν̃)

]
=

1

σρ

[
∂

∂x3

(
µ
∂ν̃

∂x3

)
+

∂

∂x3

(
µ
∂δν̃

∂x3

)]
(A.26)

Term III:

1

ρσ

∂

∂x3

(
√
ρ(ν̃ + δν̃)2

∂
√
ρ

∂x3
+ ρ(ν̃ + δν̃)

∂

∂x3
(ν̃ + δν̃)

)
=

1

ρσ

∂

∂x3

[
√
ρ
(
ν̃2 + 2ν̃δν̃ + 0

)∂√ρ
∂x3

+ ρ(ν̃ + δν̃)

(
∂ν̃

∂x3
+
∂δν̃

∂x3

)]
=

1

ρσ

∂

∂x3

[
√
ρν̃2

∂
√
ρ

∂x3
+ 2
√
ρν̃δν̃

∂
√
ρ

∂x3
+ ρν̃

∂ν̃

∂x3
+ ρν̃

∂δν̃

∂x3
+ ρδν̃

∂ν̃

∂x3

]
=

1

ρσ

∂

∂x3

[(
√
ρν̃2

∂
√
ρ

∂x3
+ ρν̃

∂ν̃

∂x3

)
+

(
2
√
ρν̃
∂
√
ρ

∂x3
+ ρ

∂ν̃

∂x3

)
δν̃ + ρν̃

∂δν̃

∂x3

]
(A.27)
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Term IV:

cb2
ρσ

[
ρ
∂

∂x3
(ν̃ + δν̃)

∂

∂x3
(ν̃ + δν̃) + (ν̃ + δν̃)2

∂
√
ρ

∂x3

∂
√
ρ

∂x3
+ 2
√
ρ(ν̃ + δν̃)

∂
√
ρ

∂x3

∂

∂x3
(ν̃ + δν̃)

]
=
cb2
ρσ

[
ρ

(
∂ν̃

∂x3

∂ν̃

∂x3
+ 2ν̃

∂ν̃

∂x3

)
+ (ν̃2 + 2ν̃δν̃)

∂
√
ρ

∂x3

∂
√
ρ

∂x3

+2
√
ρ
∂
√
ρ

∂x3

(
ν̃
∂ν̃

∂x3
+ ν̃

∂δν̃

∂x3
+ δν̃

∂ν̃

∂x3

)]
=
cb2
ρσ

[(
ρ
∂ν̃

∂x3

∂ν̃

∂x3
+ ν̃2

∂
√
ρ

∂x3

∂
√
ρ

∂x3
+ 2
√
ρν̃
∂
√
ρ

∂x3

∂ν̃

∂x3

)
+

(
2ν̃
∂
√
ρ

∂x3

∂
√
ρ

∂x3
+ 2
√
ρ
∂
√
ρ

∂x3

∂ν̃

∂x3

)
δν̃

+

(
2ρ

∂ν̃

∂x3
+ 2
√
ρν̃
∂
√
ρ

∂x3

)
∂δν̃

∂x3

]
(A.28)

Now each of the terms have been factored such that we can easily separate terms

with δν̃ and terms with ∂δν̃
∂x3

from all other terms. Moving all terms containing δν̃ and

its derivative to the left-hand side, and keeping all other terms on the right yields the

following expression:

Aδν̃ − cb2
σρ
B ∂

∂x3
δν̃ − 1

σρ

∂

∂x3
(Cδν̃)− 1

σρ

∂

∂x3

(
D∂δν̃
∂x3

)
= E (A.29)

where,

A =

[
1

∆t
−
(
cb1S̃ −

cw1fw
d2

ν̃

)
− 2cb2

σρ

(
ν̃
∂
√
ρ

∂x3

∂
√
ρ

∂x3
+
√
ρ
∂
√
ρ

∂x3

∂ν̃

∂x3

)]
(A.30)

B = 2

(
ρ
∂ν̃

∂x3
+
√
ρν̃
∂
√
ρ

∂x3

)
(A.31)

C =

(
2
√
ρν̃
∂
√
ρ

∂x3
+ ρ

∂ν̃

∂x3

)
(A.32)

D = (µ+ ρν̃) (A.33)

E =
1

ρ

{
SP − SD +

1

σ

[
∂

∂x3

(
µ
∂ν̃

∂x3

)
+

∂

∂x3

(
√
ρν̃2

∂
√
ρ

∂x3
+ ρν̃

∂ν̃

∂x3

)
+cb2

(
√
ρ
∂ν̃

∂x3
+ ν̃

∂
√
ρ

∂x3

)2
]}

(A.34)

and,
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SP = cb1S̃ρν̃ (A.35)

SD = cw1fwρ

(
ν̃

d

)2

(A.36)

The derivatives in Eq. A.29 are approximated using central differences. Using the

same shorthand as defined in Eq. A.14, the implicit operator is formed as follows:

L =Aiδν̃i −
cb2
ρσ
Bi

1

∆x+ + ∆x−
(δν̃i+1 − δν̃i−1)

− 1

ρσ

1

∆x+ + ∆x−
[Ci+1δν̃i+1 − Ci−1δν̃i−1]

− 1

ρσ

1

∆xf

[Di+1/2

∆x+
(δν̃i+1 − δν̃i)−

Di−1/2
∆x−

(δν̃i − δν̃i−1)
]

(A.37)

Combining terms, the implicit operator is finally expressed in tri-diagonal form:

L =

(
Ai +

Di+1/2

ρσ∆xf∆x+
+

Di−1/2
ρσ∆xf∆x−

)
δν̃i

−
(
cb2
ρσ
Bi

1

∆x+ + ∆x−
+

1

ρσ

1

∆x+ + ∆x−
Ci+1 +

Di+1/2

ρσ∆xf∆x+

)
δν̃i+1

+

(
cb2
ρσ
Bi

1

∆x+ + ∆x−
+

1

ρσ

1

∆x+ + ∆x−
Ci−1 +

Di−1/2
ρσ∆xf∆x−

)
δν̃i−1 (A.38)



Appendix B

Code Description

This appendix provides a brief summary of the source code used in this research. My

intention is that any researcher who receives the source code be able to use these de-

scriptions to help them understand what the software is doing, and how to modify it

for their purposes. The wall model uses an input deck to set many of the model a

parameters. A description of the settings in the input deck is provided in Table B.1

B.1 us3d user.f

This is the standard source file that US3D uses to implement user routines. This

file contains include() statements for the other source files defined in this section

(testbl.f,wall module.f). These are the only routines that interface with or overwrite

data in the parent finite-volume solver. The following routines are used in this file:
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Item Type Description Value used

iwmodel int Which wall model is used 2
iwinit int Wall model initialization method 3
iwinv int Wall model source term selection 0-2
iwturb int Wall model eddy viscosity formulation 2-3
nyw int Number of nodes in 1-D mesh 31
iprobe int Distance from wall in cells for probe location 4
n outer int Number of outer loop iterations 10
k inner int Number of inner loop iterations 1
n iup int Number of timesteps before applying source term 4000
wCFL double CFL used within wall model 500-1000
w omega double Relaxation factor for wall model update 0.2-0.3
w alpha double Damping parameter for convective source term 10.0

Table B.1: Wall model input deck variables

Subroutine Name: user startup()

Purpose: Creates wall model data structures

Description: This routine is executed on all processors in the calculation.

Each processor loops over all zone types to detect wall zones.

If wall zones are encountered, itype is checked to determine

if it is wall modeled. If so, the following activities occur: 1) a

MPI communicator is created of processors with wall model

faces, 2) the wall model input deck section is read, 3) data

structures are allocated, 4) face-basis is determined, 5) wall

model grid is established.

Called by: startup()

Calls: wall model input()
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Subroutine Name: user init()

Purpose: Initialize wall model data structures

Description: This routine is executed on all processors in the calculation.

If the processor contains wall-modeled faces, it initialized the

solution in the wall model data structures per the setting in

the input deck. The routine then initializes the 1-D solver. If

the simulation is a restart, wall model restart files are checked

for, and loaded if available.

Called by: init()

Calls: wall model init(), wall restart()

Subroutine Name: user conv()

Purpose: Provide wall-model convergence information

Description: Passes the L2-norm of δτw and δqw to US3D for inclusion in

the convergence file.

Called by: null

Calls: null

Subroutine Name: user viswallbc()

Purpose: Invoke wall model to determine flux on modeled faces

Description: This routine is executed on all processors with wall model

faces. The routine updates the wall model boundary values

with updated info from US3D. The routine then invokes the

subroutine controlling the wall model

Called by: visflux()

Calls: wallmodel jrk()
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Element Type Dimension Description

ns int scalar number of species in wall model
iprobe int scalar index of element where probe resides
jwall int scalar index of face corresponding to wall model
iff int (4) index of adjacent wall model structures
yn double (0:3,:) location of model grid in global frame
rhos double (ns,:) species density
u,v,w,

double (:) primitivest,tv,p,

mut

sx double (3,3) orthonormal face basis

Table B.2: Description of wall model data structure

Subroutine Name: user fix tau()

Purpose: Correct the viscous flux for wall-modeled faces

Description: This routine is executed on all processors with wall faces.

If the face is a wall-modeled face, the viscous flux already

determined by US3D is corrected with data from the wall

model solution.

Called by: visflux()

Calls: null

B.2 wall module.f

This source file includes most of the management routines for the wall model. Two

modules are included, wall comm which contains the variables needed by the wall model

routines and wall module which contains the subroutines. Of the variables included in

wall comm, the most important is the data structure wms, which is declared as an array

of structures with one element corresponding to each wall modeled face on the processor.

Table B.2 lists the information contained in each element of the data structure, wms.

The subroutines contained in wall comm are described below:
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Subroutine Name: wall exch()

Purpose: Exchange wall model information between processors

Description: This routine is executed on all processors with wall faces.

MPI calls are executed to exchange wms structures amongst

processors. Note: not used in the current implementation.

Called by: null

Calls: null

Subroutine Name: wallmodel jrk()

Purpose: Solve an arbitrarily complex wall model over a range of faces

Description: The source term is zeroed, and then recomputed if required.

Looping over faces, the wall model solution is packed into 1-

D arrays and passed to the line solver. The new solution is

then unpacked from the 1-D arrays and placed in wms. Once

this has been completed, updated wall shear and heat flux is

determined from the wall model solution.

Called by: user viswallbc()

Calls: wall calc duex(), outer loop(), wall solve()

Subroutine Name: wall solve()

Purpose: Determine wall shear and heat flux over a range of faces

Description: For each face, wall shear and heat flux are determined by an

first-order finite difference of wall model data at the wall. The

shear tensor is rotated from wall-frame to the solver-frame.

L2 residual of wall flux is determined and stored.

Called by: wallmodel jrk()

Calls: null
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Subroutine Name: wall calc duex()

Purpose: Determine wall model source term from solver data

Description: The source term used in the wall model line solve is deter-

mined in this routine.

Called by: wallmodel jrk()

Calls: null

Subroutine Name: wall restart()

Purpose: Read and write wall model restart files

Description: Each processor with wall model data either writes or reads

restart info to/from wall data/ as directed by the invoking

routine. Note: restarts do not support changing partitioning

or number of points within the model. In such cases the

default initialization is used.

Called by: user init(), user dataio()

Calls: write wallfile(), read wallfile(), check wallfile()

Subroutine Name: wall model input()

Purpose: Read the wall model section of the input deck

Description: This subroutine is called by all processes with wall faces. Pro-

cess 0 reads the input deck and broadcasts setting to all other

processes.

Called by: user startup()

Calls: null

B.3 testbl.f

This source file contains all of the routines that actually populate and solve the 1-D sys-

tem of equations. It contains four modules, wall constants, wall data, wturb module,

and wall subs. Module wall constants defines a number of parameters used in the

line solve. Module wall data stores all of the common switches and solution variables

for the line solve. Module wturb module holds the S-A model constants and routines
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needed to accomplish a line solve of the S-A equation. Module wall subs contains all

routines that accomplish the line solve.

Subroutine Name: wall turb guess()

Purpose: Determine S-A variable from eddy viscosity

Description: If needed, this routine solves for S-A variable on the boundary

by Newton iteration given a value for eddy viscosity

Called by: outer loop()

Calls: null

Subroutine Name: wall turb duex()

Purpose: Calculate the explicit update to the S-A equation

Description: Given the current line solution from the outer loop, determine

explicit update to S-A equation

Called by: calc duex()

Calls: null

Subroutine Name: wall turb operator()

Purpose: Form implicit operator for S-A equation

Description: Inside the inner loop, calculate the terms of the S-A implicit

operator

Called by: solve line()

Calls: null

Subroutine Name: wall model init()

Purpose: Initialize 1-D line solver

Description: Sets solver switches

Called by: user init()

Calls: null
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Subroutine Name: solve line()

Purpose: Solve 1-D tri-diagonal system

Description: Solves the selected equation using a Thomas algorithm

Called by: solve bl()

Calls: null

Subroutine Name: calc duex()

Purpose: Determine explicit update to 1-D equation

Description: Evaluates the explicit updated associated with the viscous

terms of the 1-D equation

Called by: solve bl()

Calls: wall turb duex()

Subroutine Name: calc gradients()

Purpose: Determines gradients at the faces between the 1-D nodes

Description: Calculates all necessary gradients evaluated at face locations

between the nodes in the 1-D finite-difference mesh

Called by: solve bl()

Calls: null

Subroutine Name: calc thermo()

Purpose: Determine viscosity and thermal conductivity (molecular and

turbulent)

Description: Viscosity is determined by Sutherland’s formula, and thermal

conductivity from constant Prandtl number. Turbulent eddy

viscosity is prescribed either from a mixing length model or

from the S-A equation.

Called by: solve bl()

Calls: null



116

Subroutine Name: update()

Purpose: Update the solution on the inner loop

Description:

Called by: solve bl()

Calls: null

Subroutine Name: update rho()

Purpose: Update density in the outer loop

Description: Based on the updated temperature field, determine density

field from the equation of state

Called by: outer loop()

Calls: null

Subroutine Name: solve bl()

Purpose: Execute inner loop iterations for 1-D solve

Description: Solves 1-D system of equations in an inner loop

Called by: outer loop()

Calls: calc thermo(), calc gradients(), calc duex(),

solve line()

Subroutine Name: outer loop()

Purpose: Drives solution of 1-D system

Description: Receives 1-D arrays to use in solving the wall model on one

face. Passes information to and from the invoking routine

Called by: wallmodel jrk()

Calls: solve bl(), update rho()



Appendix C

Acronyms

Table C.1: Acronyms and Nomenclature

Acronym Meaning

AIAA American Institute of Aeronautics and Astronautics

CFL Courant-Friedrichs-Lewy Condition

CUBRC Calspan-University of Buffalo Research Center

DPLR Data Parallel Line Relaxation

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

HCF Hollow Cylinder Flare

LCF Large Cone Flare

LES Large Eddy Simulation

NASA National Aeronautics and Space Administration

ODE Ordinary Differential Equation

RANS Reynolds-Averaged Navier-Stokes

RK3 Third-Order Runge-Kutta

TLM Two-Layer Model

SA, S-A Spalart-Allmaras turbulence model

STBLI Shock Turbulent Boundary Layer Interaction

Continued on next page
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Table C.1 – continued from previous page

Acronym Meaning

WM-LES Wall-Modeled Large Eddy Simulation

WR-LES Wall-Resolved Large Eddy Simulation


