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Abstract 

 
The objective of this project was to investigate experimental methods for estimating 
rotational moments of inertia. The moments of inertia of an aircraft are important in 

understanding its aerodynamic properties and thus its translational and rotational motion 
during flight. A current method used in the Unmanned Aerial Vehicle (UAV) Laboratory to 

estimate moments of inertia includes a bifilar pendulum, which will be described in this 
report. An investigation of the bifilar pendulum includes determining the accuracy of the 

experiment and understanding its experimental process. It was found that the variance for 
ten experiments was small, allowing confidence to be had when estimating moments of 

inertia of a given aircraft. However, it should be noted that uncertainty in aircraft properties 
could affect the comparative analysis between analytical values and experimental results. 

Additionally, this investigation provides insight into the experimental process of moment of 
inertia estimation and motivates future research in the area. 

 
Overview 
 
A bifilar pendulum consists of suspending an aircraft from two parallel wires, or filars, that 
allow it to rotate freely about a given axis. The experiment is to measure the moment of 
inertia for the axis of rotation parallel to the filars.  A small moment is then applied to the 
aircraft to measure its period of oscillation, which allows further calculation of its angular 
frequency, as denoted by omega (⍵). The moment of inertia can then be calculated using the 
following equation. 

                                                                                   𝐼𝐼 =
𝑚𝑚𝑚𝑚𝑑𝑑2

4𝐿𝐿𝜔𝜔2                                                                                 (1) 
    

Where m is the mass of the aircraft, g is the acceleration due to gravity, d is the distance 
between the filars, and L is the length of the filars. Equation 1 was obtained from the 
nonlinear mathematical model of a bifilar pendulum, which was developed from first 
principles using Lagrange equations.1   
 
It is important to verify that the center of gravity of the aircraft is aligned with the points of 
suspension (i.e. the plane of the filars); a misalignment can lead to significant errors. The 
error associated with a misaligned center of gravity can be bound by the parallel-axis 
theorem.           
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Procedure 
 
The filars were attached parallel to and on opposite sides of the center of gravity via hooks 
(Figure 1). The hooks were approximated as point masses and their moments of inertia  

    Figure 1: Filar suspension points 
 
were subtracted from the total inertia of the model. Kevlar strings were used for the filars, 
and were attached above to pivot points consisting of metal screws atop a metal plate to 
minimize frictional forces, which cause damping, during oscillations (Figure 2). The model  

               Figure 2: Pivot points 
 
used for the experiment was constructed using PVC pipe and configured as a cross (Figure 
3). To verify the location of the center of gravity, a level tool was used to measure the tilt of 
the model (e.g. a center of gravity ahead of the points of suspension would result in a 
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forward tilt). Since the tilt was found to be zero, it was known that the center of gravity was 
aligned with the points of suspension. Per experiment, the period for 10 oscillations was 
measured using a stopwatch for 6 trials. The average value was then used to calculate its 
frequency. Observations shown that the period for 3, 5, and 10 oscillations never exceeded a 
difference of more than one hundredth of a second; the minimal amount of damping in the 
system resulted in a less than 0.01% error in the moment of inertia and consequently was 
neglected. To reduce random error, the filar lengths were adjusted to different heights per 
experiment. A total of 10 experiments were conducted. Table 1 lists the mass and length 
measurements for the setup. 

 
Table 1: Setup mass and length measurements 

Property Value 
Mass (m) 2.150 kg 
Distance between filars (d) .13452 meters 

 
 

 
Figure 3: Bifilar pendulum setup 

 
Additionally, a drawing of the model seen in Figure 1 was created in the CAD program, 
SOLIDWORKS, for analytical purposes (Figure 4). The drawing was able to verify that the 
center of gravity lies symmetrically, in the plane of the filars. 
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Results 
  

Table 2: Bifilar testing data 
Trial Average Period 

(seconds) 
Length of filar (L) 

(meters) 
Moment of inertia 

(kg-m2) 
1 132.51 1.4700 0.2886 
2 133.54 1.4923 0.2887 
3 133.45 1.4963 0.2875 
4 134.31 1.5027 0.2900 
5 134.19 1.5042 0.2892 
6 134.23 1.5113 0.2880 
7 134.67 1.5199 0.2883 
8 135.25 1.5240 0.2900 
9 134.34 1.5034 0.2900 

10 130.01 1.4130 0.2890 
 
Table 3: Moment of Inertia Results 

Predicted 0.2790 kg-g2 

Experimental Mean: 0.2880 kg-g2 

Standard Deviation (σ): 8.81 
Percent Error: +3.6% 

 
 
 

Graph 1: Plot of Moment of Inertia Results 
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Discussion 
 
For 10 bifilar pendulum experiments, the mean of the moment of inertia values was 0.2880 
(kg-g2) with a standard deviation of 8.81. Note that more than 20 total experiments were 
conducted (not shown in Graph 1). However, the experiments that yielded moment of 
inertia values greater than 3σ were deemed to be invalid, and were discarded. The 
discarded data was found to have sources of error that included unequal filar lengths, 
measurement error, un-parallel filars, or a center of gravity that is misaligned with the 
plane of the filars. It was found that a level tool is useful to verify that the model is laterally 
level, which ensures an equal length of the filars. Additionally, it is useful to establish 
reference points, for the pivots, that are equivalent in length to the distance between the 
filars, to ensure that the filars are parallel to each other. 
 
The source of the +3.6% bias that occurs between the experimental mean and predicted 
values is assumed to be due to the non-uniform density of the PVC pipes used in the 
experimental model; the density of the PVC pipes is assumed to be uniform in the analytical 
model. In a further analysis, it was found that the moment of inertia followed a linear 
relationship for small variations in the mass distribution (Graph 2).  
 

Graph 2: Mass Variance for PVC Pipes of Non-Uniform Density 

 
The small variations in mass distribution were modeled as the following. In SOLIDWORKS, 
small percentages of the pipe’s mass were concentrated at the end of each pipe. This 
concentrated mass was modeled as a small washer with the mass of 1%, 1.5%, and 2% of 
each pipe’s mass. For each instance, the moment of inertia value was recorded. 
 
Furthermore, it was found experimentally that flipping the orientation of the pipe-arms 
yielded a significant change in the moment of inertia. Both of these analyses suggest that the 
PVC piping is in fact non-uniform. 
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Conclusion 
 
The variance for 10 given bifilar experiments proved to be small, allowing confidence to be 
had when estimating the moments of inertia of a given aircraft. However, it should be noted 
that uncertainty in the aircraft properties could affect the comparative analysis between the 
analytical and experimental results. Additionally, this investigation provides insight into the 
experiment process for estimating moments of inertia and motivates future research in the 
area, which includes an experimental method for estimating moment of inertia tensors.  
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Figure 4: SOLIDWORKS drawing of PVC model 


