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Abstract

A major challenge in understanding patterning and growth control is how the sig-

naling pathways are balanced to produce normal pattern and growth and how they

interact to respond to aberrant signals. In the dissertation, we aim to develop a mathe-

matical model which incorporates the Hippo pathway locating at the center of different

regulatory pathways in the wing disc of Drosophila so as to be able to understand exist-

ing experimental results, to make experimentally-testable predictions, and to provide a

platform for integrating and testing new results and incorporating other signaling path-

ways. The model we developed addresses the limitation of previous models due to lack

of mechanistic details, and predicts all the primary characteristic phenotypes associated

with the pathway. Moreover, the model supports two hypotheses, one of which have

been confirmed by experiments.

As using a mathematical model to facilitate the development of biology is contingent

on parameters, the other specific aim of our work is to propose a new way to improve

parameter estimation from experimental data. We identify the source for poor estima-

tion in Fluorescence recovery after photobleaching (FRAP), a widely-used technique

for quantitative measurement of molecular dynamics, and propose three feasible ways

to improve parameter estimation. In addition, we also introduce sensitivity analysis to

improve model identification in FRAP.

iii



Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Patterning and growth control . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mathematical modeling of signal transduction networks . . . . . . . . . 2

1.3 Parameter estimation using FRAP . . . . . . . . . . . . . . . . . . . . . 4

1.4 Aims and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Drosophila melanogaster . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Signal transduction and gene control networks . . . . . . . . . . . . . . . 8

2.2.1 Morphogen pathways . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 The Hippo pathway . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Transport mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Parameter estimation and FRAP . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



2.4.2 Parameter Sensitivity Analysis . . . . . . . . . . . . . . . . . . . 20

3 The Hippo pathway 31

3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Model philosophy and introduction . . . . . . . . . . . . . . . . . 32

3.1.2 Module I: Upstream Intercellular Signaling . . . . . . . . . . . . 35

3.1.3 Module II: Intermediate Signal Transduction . . . . . . . . . . . 38

3.1.4 Module III: Downstream Effectors . . . . . . . . . . . . . . . . . 40

3.1.5 The governing equations . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Parameters for binding processes . . . . . . . . . . . . . . . . . . 48

3.2.2 Diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Production and decay rates . . . . . . . . . . . . . . . . . . . . . 50

3.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Non-monotonic Response . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Non-autonomous Response . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 The role of Fj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.4 Signal Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 FRAP 70

4.1 The mathematical framework for parameter estimation and model testing 71

4.1.1 The general framework . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 A special case – diffusion and binding only . . . . . . . . . . . . 79

4.1.3 Justification of the assumption of linear kinetics in FRAP modeling 82

4.1.4 Analysis of eigenvalues and eigenvectors for a two-component system 84

4.1.5 The computational FRAP setup . . . . . . . . . . . . . . . . . . 86

4.2 Theoretical models for FRAP data generation . . . . . . . . . . . . . . 88

4.2.1 FRAP models for closed systems . . . . . . . . . . . . . . . . . . 90

4.2.2 FRAP models with boundary fluxes . . . . . . . . . . . . . . . . 92

4.3 Recovery models for parameter estimation . . . . . . . . . . . . . . . . . 93

4.3.1 Identical recovery model - Methods to improve parameter estimation 93

v



4.3.2 The effect of a reduced recovery model . . . . . . . . . . . . . . 101

4.4 Application of sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1 The use of scatter plots . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.2 Variance-based sensitivity analysis . . . . . . . . . . . . . . . . . 110

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusion and future direction 118

References 121

vi



List of Tables

2.1 Experiments and phenotypes . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Species notations in the model . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Model parameters. All the backward dissociation rates and dephospho-

rylation rates are set to be 0.1min−1, and the phosphorylation rates are

0.5min−1. All the decay rates are 0.1min−1 except for Ds-Dachs com-

plexes which have the decay rate of 0.2min−1. . . . . . . . . . . . . . . . 69

4.1 Summary of the models for the following analysis and simulations. Num-

bers in parentheses refer to the subsections in which the corresponding

model is analyzed (3.x.x) and the computational results are given (4.x.x) . 89

4.2 The influence of the choices of the observation region within the bleaching

region and the observation time on the estimates of parameters in the

diffusion-binding model. The centered observation region has a fixed

width of 0.05, and the bleaching region is enlarged by increasing d. The

FRAP data is generated by the same model with parameters D = 2.5×
10−4 sec−1, k+ = 1× 10−2 sec−1, k− = 1× 10−3 sec−1. . . . . . . . . . . 95

4.3 In conventional FRAP, the estimates of parameters are accurate in the

diffusion-reaction and the reaction-dominant regimes, but not in the pure-

diffusion and effective-diffusion regimes. All the results are simulated by

using the observation time of T = 1000 sec. Default values are used for

the size of the bleaching and observation regions. . . . . . . . . . . . . . 96

4.4 Choosing an appropriate observation time results in better estimation

in the effective diffusion regime. The FRAP data is generated with the

default sizes of the bleaching and observation regions. . . . . . . . . . . 97

vii



4.5 The estimates are improved by reducing the size of the bleaching region

so as to change the time scale of diffusion relative to that of binding. . . 98

4.6 Estimates are better when the size of the bleaching region is smaller or

the diffusion coefficient is larger. . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Spatial FRAP improves parameter estimation as much as reducing the

size of the bleaching region does. . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Reducing the size of the bleaching region and/or using spatial FRAP

improves the estimates when there are multiple binding sites (Model 2).

All the results are based on D = 2.5× 10−4 sec−1, k+ = k− = 0.1 sec−1,

k+
2 = k−2 = 1 sec−1 and an observation time of 100 sec. . . . . . . . . . 102

4.9 Reducing the size of the bleaching region and/or sptial FRAP improve

estimates when there are influx, diffusion, binding and decay (Model 3).

The observation time is 100 sec , and the influx J is given for parameter

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.10 Reducing the size of the bleaching region and/or spatial FRAP improves

estimates when there is influx, diffusion, binding, internalization and de-

cay (Model 4). The true parameter values are D = 2.5×10−4 sec−1, k+ =

1 sec−1, k− = 0.1 sec−1, kin = 2.5641× 10−3 sec−1, kd = 1× 10−2 sec−1,

J = 1× 10−2 sec−1. The observation time is 100sec, and the influx J is

fixed for parameter estimation. . . . . . . . . . . . . . . . . . . . . . . . 103

4.11 Parameter estimation in reduced models when there are multiple binding

sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Parameter estimation in reduced models when there is diffusion, binding,

internalization, decay and influx in the theoretical model. The data is

generated using Model 4 with parameters D = 2.5 × 10−4 sec−1, k+ =

1 sec−1, k− = 0.1 sec−1, ki = 2.6× 10−3 sec−1, kd = 1× 10−2 sec−1. The

flux J is fixed during parameter estimation. . . . . . . . . . . . . . . . . 105

viii



List of Figures

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 The Hh, Dpp and Wg pathways. Ptc: patched, Smo: smoothened,

CiA(R): cubitus interruptus activator (repressor), Ubx: ultrabithorax,

Col: collier, Dfz: Drosophila frizzeled, Dsh: disheveled, Nkd: naked,

Gro: groucho, Pan: pangolin. Constructed from [1, 2, 3, 4, 5, 6, 7]. . . . 25

2.3 The Hippo pathway. App, Approximated; Crb, Crumbs; Dco, Discs over-

grown; Dlg, Discs large; Ds, Dachsous; Ex, Expanded; Fj, Four-jointed;

Hth, Homothorax; Jub, Drosophila Ajuba; Lats, Large tumor suppressor;

Lft, Lowfat; Lgl, Lethal giant larvae; Mer, Merlin; Mats, Mob as a tumor

suppressor; Rassf, Ras-associated factor; Sav, Salvador; Scrib, Scribble;

Sd, Scalloped; Tsh, Teashirt; Yki, Yorkie [8] . . . . . . . . . . . . . . . . 26

2.4 Boundaries of Ds and Fj activity induce Hippo target genes. Third in-

star imaginal discs, which contain clones of cells either overexpressing or

mutant for ds or fj [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Comparison of overgrowth of wing imaginal discs. Typical wing discs for

each genotype are shown at the same magnification. (A) Wild type. (B)

Overgrowth in fat mutant (ft−/−). (C) Rescue of ft−/− overgrowth with

UAS-ft and act-gal4. (D) Rescue of ft−/− overgrowth with UAS-ftECD

and act-gal4. (E) Potentiation of ft−/− overgrowth with UAS-ftICD and

act-gal4. (F) Mild overgrowth in ds mutant (ds−/−). (G) Potentiation

of ft−/− overgrowth by ds−/− [10]. . . . . . . . . . . . . . . . . . . . . . 27

2.6 Ds and Fj expression in wing disc. (Left) Ds protein staining in a wild-

type wing disc; (Right) Fj expression in wild-type revealed by a fj-lacZ

transgene [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



2.7 Arrangement of cells seen in the contexts of proximally-distally increasing

gradient of Fj as well as its activity [12]. . . . . . . . . . . . . . . . . . . 29

2.8 Schematic illustrating a FRAP experiment [13]. . . . . . . . . . . . . . 29

2.9 A typical recovery curve for a FRAP experiment. After subtraction of the

background fluorescence and correction of the observed photobleaching,

a FRAP recovery curve is normalized by the fluorescent intensity before

bleaching. See text for explanation of the symbols. . . . . . . . . . . . . 30

2.10 Scatterplots of output versus input 1 and input 2 . . . . . . . . . . . . . 30

3.1 Schematic diagram of our model of the cell . . . . . . . . . . . . . . . . 34

3.2 A schematic of a 1D network of coupled cells in which cells can interact

at their opposing membranes . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Upstream Events: cadherin phosphorylation, membrane localization, and

heterodimer formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Predicted growth response measured through averaged Yki concentration

as a function of Fat and Ds expression levels. . . . . . . . . . . . . . . . 52

3.5 Horizontal slice of the growth response map shows a non-monotonic de-

pendence of growth on Fat expression level . . . . . . . . . . . . . . . . 53

3.6 The concentrations of localized Dachs (left) and Riq (right) on cell mem-

brane change with respect to Fat expression level. . . . . . . . . . . . . . 53

3.7 Vertical slice of the growth response map shows a non-monotonic depen-

dence of growth on Ds expression level. . . . . . . . . . . . . . . . . . . 54

3.8 The concentrations of localized Dachs (left) and Riq (right) on cell mem-

brane change with respect to Ds expression level . . . . . . . . . . . . . 55

3.9 In fat mutant background, yki activity changes with respect to Ds ex-

pression level. It is generated from slicing the growth response map in

Figure 3.4 vertically at zero Fat production rate . . . . . . . . . . . . . . 55

3.10 In fat mutant background, the concentrations of localized Dachs (left)

and Riq (right) on the cell membrane change with respect to Ds expres-

sion level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



3.11 Predicted autonomous and non-autonomous growth responses around the

boundary induced by overexpressing Ds in a cell clone. Growth response

is measured by averaged Yki concentration. An array of 21 cells in total

are simulated with a patch of 7 clone cells in the middle between the two

vertical dashed lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Level of Dachs and Riq localized on cell membranes with Ds overexpres-

sion clone cells. 42 locations of cell membranes from 21 cells are simulated

with a patch of 14 cell membranes (7 clone cells) in the middle. . . . . . 57

3.13 The effect of Ds expression level in clone cells on autonomous and non-

autonomous growth responses measured by averaged Yki concentration

reflected in color. 21 cells are simulated with a patch of 7 clone cells in

the middle. The dashed line represents that Ds expression level in clone

cells is the same with that in wild-type cells. . . . . . . . . . . . . . . . 58

3.14 The effect of Fj on growth measured by Yki concentration . . . . . . . . 59

3.15 Signal propagation in response to the change of diffusion coefficients of

Fat and Ds in cytosol on . Left:DF = 14µm2/min,DS = 16µm2/min ;

Right: DF = 1.4µm2/min,DS = 1.6µm2/min . . . . . . . . . . . . . . . 62

3.16 Signal propagation in response to the change of the speed of the binding

processes from cytosol to membrane. Left: k+
F = k+

S = 1min−1, k−F =

k−S = 0.1min−1; Right: k+
F = k+

S = 10min−1, k−F = k−S = 1min−1 . . . . 63

3.17 Signal propagation in response to the change of the on rates (affinities)

from cytosol to membrane. Left: k+
F = k+

S = 0.1min−1; Middle(base):

k+
F = k+

S = 1min−1; Right: k+
F = k+

S = 10min−1 . . . . . . . . . . . . . 64

3.18 Signal propagation in response to the change of forward binding rates

(affinities) between Fat and Ds on the membrane. Left: k+
FS = 0.02nM−1min−1;

Middle (base): k+
FS = 0.2nM−1min−1; Right: k+

FS = 2nM−1min−1 . . . 64

3.19 Each figure represents how the amplitude of the boundary effect measured

by the change of Fat-Ds concentration responds to the change of binding

affinities between Fat and Ds on the membrane. Left: αF = αS =

40nM ·min−1 (normal), αS = 80nM ·min−1(clone); Right: αF = αS =

4nM ·min−1 (normal), αS = 8nM ·min−1(clone) . . . . . . . . . . . . . 65

xi



3.20 Signal propagation in response to the change of decay rates of Fat and Ds

on the membrane. Left:γF = γS = 0.02min−1 ; Right: γF = γS = 0.1min−1 65

3.21 Signal propagation in response to the change of decay rates of Fat-Ds com-

plex on the membrane. Left:γFS = 0.02min−1 ; Right: γFS = 0.1min−1 66

3.22 Signal propagation in response to the change of decay rates of Fat and

Ds in cytosol. Left: βF = βS = 0.1min−1; Right: βF = βS = 1min−1 . . 66

4.1 The geometry of a thin fluid layer over receptors embedded in a surface.

Modified from [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 The notation for m-1 binding sites . . . . . . . . . . . . . . . . . . . . . 80

4.3 Left: A region of the wing disc that is scanned (from [15] with permis-

sion). Green indicates GFP-labelled Dpp, the white box is the ROI, and

the scale bar is 10µm, Right: (top) The computational approximation of

the disc as an ellipse and the rectangular ROI, (bottom) the initial data

along a one-dimensional cross-section of the region. . . . . . . . . . . . . 86

4.4 The computational algorithm used throughout the paper. . . . . . . . . 88

4.5 Different regimes in the parameter space for a diffusion binding model . 91

4.6 The Gibbs effect in representing the initial data. The sum is truncated

at M terms left: M=100, right: M=1000 . . . . . . . . . . . . . . . . . . 94

4.7 The relationship between the observation region and the bleaching region 95

4.8 The effect of reducing the size of the bleaching region on the recovery

of bound and unbound molecules. (a) and (b): The recovery curves are

generated with D = 2.5× 10−4 sec−1, k+ = 1 sec−1, k− = 0.1 sec−1; (c)

and (d): The recovery curves are generated with D = 2.5 × 10−4 sec−1,

k+ = 1 sec−1, k− = 1 sec−1; (a) and (c): with default sizes of the

bleaching and observation regions; (b) and (d) with the reduced sizes of

the bleaching and observation regions. . . . . . . . . . . . . . . . . . . . 100

4.9 Reducing the size of the bleaching region helps to identify the appropriate

model. The FRAP data is generated using D = 2.5 × 10−4 sec−1, k+ =

1 sec−1, k− = 0.1 sec−1. The blue curve lies under the green curve in

both panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



4.10 Two minimization functions that may give the same minimum, but very

different parameter sensitivities. (a) A paraboloid, and (b) a parabolic

cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.11 Scatterplots of the errors between the model output and the FRAP data

versus the diffusion coefficient for different time intervals. The FRAP

data is generated by the pure-diffusion model with D = 2.25×10−5 sec−1

to match the data in previous simulations by using the effective diffusion

coefficient. The scatterplots are calculated with parameters uniformly

distributed on a logarithmical scale D ∈ [1× 10−6, 1× 10−3] sec−1. N =

1000 is the number of sample points. . . . . . . . . . . . . . . . . . . . 107

4.12 FRAP recovery data is generated by the pure-diffusion model with D =

2.25× 10−5 sec−1. The large D and small D refer to the upper and lower

limits of the diffusion coefficients used for the scatterplots, respectively.

The figure on the left is plotted on a linear scale, and the one on the right

is plotted on a logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . 108

4.13 Scatterplots of the errors between the model output and the FRAP data

versus diffusion coefficients and binding affinities for different time in-

tervals . Top and middle panels: FRAP data is generated with D =

2.5 × 10−4 sec−1, k+ = 1 sec−1, k− = 0.1 sec−1. In this and the panels

below the parameters are log-uniformly distributed – using D =∈ [1 ×
10−6, 1× 10−3] sec−1, k+ ∈ [1× 10−2, 10 sec−1], k− ∈ [1× 10−2, 10] sec−1.

Bottom panel: The FRAP data is generated by the model with diffu-

sion and two binding processes with different rates and affinities D =

2.5 × 10−4 sec−1, k+
1 = 5 sec−1, k−1 = 0.5 sec−1, k+

2 = 0.1 sec−1, k−2 =

5 × 10−3 sec−1. The parameters are log-uniformly distributed: D ∈
[1×10−6, 1×10−3] sec−1, k+ ∈ [5×10−3, 5] sec−1, k− ∈ [5×10−3, 5] sec−1.

N = 1000 is the number of sample points for all. . . . . . . . . . . . . . 109

xiii



4.14 FRAP data is generated with the intermediate (theoretical) model (Model

2 in Table 4.1) with the unbalanced processes (left) and the balanced pro-

cesses (center and right). The true values of the parameters for the un-

balanced processes are D = 2.5× 10−4 sec−1, k+ = 1× 10−1 sec−1, k− =

5 × 10−2 sec−1, kd = 2 × 10−3 sec−1, and the parameters for the bal-

anced processes are D = 2.5 × 10−4 sec−1, k+ = 1 × 10−2 sec−1, k− =

5× 10−3 sec−1, kd = 2× 10−3 sec−1. Parameters are estimated by using

the simple (recovery) model (Model B2 in Table 4.1, which is also the

same as that in [15]) for the left and center panels, and using the com-

plex (recovery) model (Model ?? in Appendix) in the right panel. The

estimates are (left) D = 7.8322 × 10−6 sec−1, kd = 1.2698 × 10−3 sec−1;

(center) D = 7.0290× 10−6 sec−1, kd = 9.9313× 10−4 sec−1; (right) D =

4.4680 × 10−4 sec−1, k+ = 1.7633 sec−1, k− = 1.1396 × 10−1 sec−1, ki =

1.1131× 10−2, ko = 6.0198× 10−3 sec−1, kt = 1.7574× 10−7 sec−1, kd1 =

2.1856× 10−3 sec−1, kd2 = 1.1563× 10−3 sec−1. . . . . . . . . . . . . . . 112

4.15 FRAP data is generated with the intermediate model (Model 2 in Table

4.1) with parameters D = 2.5 × 10−4 sec−1, k+ = 1 × 10−2 sec−1, k− =

5 × 10−3 sec−1, kd = 2 × 10−3 sec−1. (a) and (b): The first order and

total order sensitivity indices are calculated by using the same inter-

mediate model with parameters with uniform linear distribution D ∈
[0.5 × 10−5, 4.5 × 10−5] sec−1, k+ ∈ [0.2 × 10−2, 1.8 × 10−2] sec−1, k− ∈
[1×10−3, 9×10−3] sec−1, kd ∈ [0.4×10−3, 3.6×10−3] sec−1. (c) and (d):

The first order and total order sensitivity indices are calculated by using

the complex model ?? with parameters with uniform linear distribution

around the estimates ([0.2× Estimate, 1.8× Estimate] ) D ∈ [0.8510×
10−4, 7.6594 × 10−4] sec−1, k+ ∈ [0.3526, 3.1739] sec−1, k− ∈ [0.2849 ×
10−1, 2.5641× 10−1] sec−1, ki ∈ [0.2226× 10−2, 2.0036× 10−2] sec−1, ko ∈
[1× 10−3, 9× 10−3] sec−1, kt ∈ [0.3515× 10−7, 3.1633× 10−7] sec−1, kd1 ∈
[0.3868 × 10−3, 3.4816 × 10−3] sec −1, kd2 ∈ [0.2313 × 10−3, 2.0813 ×
10−3] sec−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.16 A suggested procedure for improving model identification and parameter

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiv



Chapter 1

Introduction

1.1 Patterning and growth control

The control of patterning and growth in developmental biology is currently an active

interdisciplinary area between biologists and physical scientists because the interaction

of experimentation and modeling has produced significant new insights into a number of

model systems. In biology, patterning means the creation of spatial, temporal, or spatio-

temporal structure, while growth control refers to the regulation of growth rate, size,

and shape of an organism or a tissue. For instance, the size of many organisms and their

constituent tissues and organs vary substantially but differ little in morphology; they

appear to be scaled versions of a common pattern. In addition, nutrient availability and

competition within a growing tissue can affect the final size, but individual body parts

scale properly to match overall size even in the face of harsh environmental conditions.

The mechanisms that regulate and coordinate growth and patterning to produce scale

invariance are poorly understood. Meanwhile, defects in the mechanisms that govern

growth and patterning can cause major health issues such as cancer and birth defects.

Of course the control of growth and patterning ultimately depends on the control of

gene expression, but translating molecular-level information into an understanding of

tissue- and organism-level functioning is one of the most challenging problems in biology.

Advances in our understanding of this integrated process in a developing organism will

certainly help to unravel the mechanisms as to how the various levels of biological

complexity are integrated to control growth and patterning in normal development

1
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and provide insight into our understanding of pathological process that contribute to

diseases.

1.2 Mathematical modeling of signal transduction networks

The control of patterning and growth at the cellular, tissue and organism levels involves

complex interactions within and between the diverse signal transduction and gene con-

trol networks. Despite molecular-level discoveries and insights from experiments, the in

vivo behavior of signal transduction networks involved in development cannot be under-

stood solely at the molecular level – integration of the signal transduction and transport

processes involved in development at the tissue and organ level is necessary, and this in

turn requires mathematical modeling and computational analysis. Moreover, because

different pathways are tightly linked, interactions within the pathways are delicately

balanced, and both points further the case for detailed mathematical models of these

pathways and their interactions. A mathematical model, which incorporates the sig-

naling pathways and their interactions, and explains the existing experimental results,

can be used to explore how the developmental regulators influence growth and to eval-

uate postulated mechanisms that are difficult to explain by using verbal arguments and

thought experiments alone. In addition, the plethora of experimental results need to be

synthesized into a more comprehensive structure by modeling, and they provide data

to test the models.

The availability of experimental data for signaling pathways has led to a shift from

predominantly phenomenological models of patterning and growth control to mechanism-

based models, the purposes of which are not only to explain the existing observations

within a mechanistic framework, but also to serve as tools for discovery by experimen-

talists. Mathematical models for Drosophila oogenesis, Bcd patterning, BMP-mediated

patterning, planar cell polarity, EGF patterning, and segment polarity have all led to

experiments that may not have been carried out otherwise, and contributed greatly to

our understanding of those systems [16, 17, 18, 19, 20, 21, 22].

The Hippo pathway functions as the hub of a variety of regulatory mechanisms

that control growth and patterning of the wing disc, therefore, a mechanistic model

that describes the Hippo pathway would provide the framework for integrating other
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pathways. The Hippo pathway involves highly connected networks of interacting com-

ponents. Most, if not all, existing models for this pathway attempt to stay simple to

capture some features of the signaling pathway, and have provided considerable insights

[23, 24, 12, 25, 26, 27]. However, they omit most of the details of the signaling network

and provide little mechanistic understanding as how molecular interactions are trans-

lated to cellular function and tissue organization. Therefore, we sought to develop a

more detailed model that incorporates the major molecular components in this pathway

and the interaction of a cell with its neighbors via cadherins, and thereby to formulate

the first detailed model of this pathway that accounts for signal transduction at cell

level and cell-cell interactions at tissue level. Our detailed model provides a mechanistic

understanding of existing experimental results, makes experimentally-testable predic-

tions, and provides a platform for integrating new results and testing new hypotheses.

We anticipate that our model together with the existing models will better predict the

spectrum of the signaling network behavior, and might elucidate the mechanisms that

control and coordinate growth and patterning at different levels.

An important and usually difficult step in testing models against experimental ob-

servations hinges on the determination of appropriate parameters for the models, since

this involves extracting parameters from limited data in situations where many of the

underlying steps may not be known. This interplay between models and experimental

data raises the question of how useful the former are for extracting parameters from

the available experimental data. When the underlying system involves the interaction

of several transport and reaction steps, the question arises as to what level the system

should be modeled at and how one is to estimate the parameters in the model from

the available data. Here the issue of a phenomenological model versus a mechanism-

based model arises again, and as we discuss later, the parameters estimated using a

phenomenological model may be of marginal value in understanding mechanistic details

in a system. An example described later that arose from studies of the Drosophila wing

disc [15, 28] illustrates this in detail.
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1.3 Parameter estimation using FRAP

FRAP is a widely-used technique for quantitative measurement of molecular dynamics.

In a FRAP experiment, the fluorescence-tagged molecules in a region of interest (ROI)

are first photobleached, and then the recovery of fluorescence within the ROI due to

transport from the surrounding region is recorded [29]. By fitting the recovery data

to a mathematical model, parameters that measure transport due to diffusion, binding

and chemical reactions can be estimated. Traditionally FRAP experiments were used

for cellular or sub-cellular level processes that occur on short time scales, and by fitting

parameters such as diffusion coefficients and binding rates to the data, properties of

cell- or sub-cellular-level processes could be inferred. More recently FRAP has been

used for tissue-level studies that occur on a long time scale, where the results may be

influenced by the interactions of production, transport, decay and other processes.

However, when the underlying system involves the complex interaction of multiple

processes, the question arises as to what level the system should be modeled at and

how one is to estimate the parameters in the model. This latitude can lead to wide

discrepancies in the estimated parameters as one model may omit a process included

in another. In recent studies, the complexity involved in the interactions of transport

process with binding, internalization and kinetic transformation is hidden by analyzing

the spread of morphogens using a simple reaction-diffusion system such as (4.16), and

how one relates the ‘real’ parameters in individual steps to parameters in such a high-

level description is usually difficult to determine analytically. This has lead to dramatic

differences in the estimates of parameters for a simplified description such as (4.16), and

raises the question as to what those parameters represent. In particular, estimates of

diffusion coefficients in the wing disc reported from FRAP analysis in [15] differ by a

factor of 200 from those measured in [28]. Even if the recovery models are identical, the

parameter estimates may vary widely due to differences in the assumptions about the

parameters, as will be described in an example later. Therefore, to the extent possible,

a careful assessment of whether and how the transport and reaction processes couple

should be made before a FRAP model is formulated, because otherwise the results

may bear little relationship to the actual processes that determine the recovery curve.

Our objective is to propose an approach to investigate this discrepancy, and improve
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parameter estimation and model identification for FRAP experiments.

1.4 Aims and outline of the thesis

A major challenge in understanding patterning and growth control is how the signaling

pathways are balanced to produce normal pattern and growth and how they interact

to respond to aberrant signals. In this thesis, we aim to develop a mathematical model

which incorporates the Hippo pathway locating at the center of different regulatory

pathways in the wing disc of Drosophila so as to be able to understand existing experi-

mental results, to make experimentally-testable predictions, and to provide a platform

for integrating and testing new results and incorporating other signaling pathways. As

using a mathematical model to facilitate the development of biology is contingent on

parameters, the other specific aim of our work is to propose a new way to investigate

the discrepancies in parameter estimation, identify the source for poor estimation, and

improve parameter estimation and model identification.

In chapter 2, we first introduce the background on Drosophila melanogaster and its

wing disc as our model system. It is followed by the review of the primary signaling

pathways that control growth and patterning during the development of the wing disc,

with a focus on the Hippo pathway. Then the current state of research on modeling the

Hippo pathway is discussed. In addition to signal transduction pathways within cells,

the signal transport mechanism across cells are also discussed. After that, we discuss

the FRAP background and the application of FRAP in parameter estimation. Finally,

the mathematical basis used in this paper is briefly introduced.

In chapter 3, we first introduce how the model is formulated based on our review

and analysis of literature. It is a significant effort to evaluate all the existing regulatory

mechanisms embedded in numerous studies of this signaling network, and to identify and

incorporate the primary contributors to growth control and patterning, driven by their

known impact and the questions we intend to answer. The model is divided into several

modules based on the function and localization of the components within the network.

For the mechanisms that have not yet been identified, plausible hypotheses have been

made. The model is then validated by matching disc-wide and clone experimental

results, and used to make experimentally-testable predictions. In addition, given the
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large uncertainty in many parameters, we introduce parameter sensitivity analysis and

perturbation analysis to identify key parameters and mechanisms responsible for control

of growth and patterning. The model aims to complement the existing models without

oversimplification. The model can serve as a foundation for future work which can

extend the findings, much as the models for morphogen and hormone pathways have

done.

In chapter 4, we first give the mathematical framework of FRAP analysis in general

and specifically as applied to the wing disc. Then in order to demonstrate the effect

of model assumptions and data utilization on parameter estimation, we generate data

computationally for a known model with known parameters and then test our recovery

of parameters from the data, which avoids the difficulties to evaluate estimates due to

unknown mechanisms and other factors in FRAP experiments. By using a recovery

model identical to the theoretical model, we identified the factors that lead to poor

estimates and proposed feasible ways to improve parameter estimation. By varying

the recovery model from the theoretical model, we investigate the relationship between

parameters in the theoretical model and those in the recovery model, and under what

conditions some processes can be neglected in the recovery model. Lastly, we introduce

sensitivity analysis as a technique to better understand FRAP data and to improve

FRAP model identification and parameter estimation.

Finally, in chapter 5 conclusions and future directions are discussed



Chapter 2

Background

2.1 Drosophila melanogaster

The common fruit fly, Drosophila melanogaster, is one of the most commonly used and

genetically tractable model organisms in biology and physiology, due to their short life

cycle, large brood size,and the availability of well-developed molecular techniques. Stud-

ies of various vertebrates have revealed that the signal transduction and gene regulatory

networks that control growth and patterning in Drosophila are highly conserved across

species. As a result, elucidating the mechanisms that control developmental processes

in Drosophila further our understanding of such processes in other organisms, including

humans, and expands our knowledge and treatment of conditions such as birth defects

and cancer.

The life cycle of Drosophila consists of a number of stages: embryogenesis, three

larval stages, the pupal stage, and the adult stage. Its growth is restricted to the

embryonic and larval stages, and the final size of an adult is determined by the size of

the larva when it stops feeding. Therefore, studies on patterning and growth regulation

usually focus on the larval stages and, in particular, on imaginal discs. Imaginal discs

are pouches of epithelium composed of undifferentiated cells invaginated from embryonic

ectoderm and formed and matured at larval stage, and they are the precursors of the

appendages in the adult. Wing imaginal discs are specified at the embryonic stage in

response to two secreted factors, Wingless (Wg) and Decapentaplegic (Dpp), which are

called morphogens, since they are produced from local sources and spread through the

7
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wing tissue, forming a spatial distribution that specifies cell fate in a concentration-

dependent manner. Dpp and Wg continue to function throughout the larval stages to

affect both patterning and growth of the disc.

At the beginning of the 1st instar (24h After Egg Laying (AEL) ) the wing disc

contains 40 cells. During the larval development, there is 1000 fold increase in cell

number. By late third instar a disc has ∼ 50K cells and the disc pouch is 150 µm

(Dorsal-Ventral, DV) x 300 µm (Anterior-Posterior, AP). Wing discs are two-sided sacs

comprising two layers separated by a lumen (∼ 6µm), a layer of epithelial columnar

cells with their apical side at the lumen and an overlying peripodial epithelium. The

plasma membrane of each columnar cell is divided into apical and basolateral domains.

These domains are separated by adherens junctions (AJs - aka zonula adherens (ZA)),

an adhesive belt around the cell, comprised of cadherins and catenins, and linked to the

cytoskeleton, and by septate junctions (SJs) that lie basal to the AJs and constitute a

second permeability barrier for extracellular apical-basal transmission. These junctions

maintain the cell shape in the epithelium, link cells to their neighbors, and divide the

extracellular fluid into apical and basal layers, separated by a distinct layer between the

AJs and SJs.

2.2 Signal transduction and gene control networks

The Drosophila wing disc is an elegant and self-organizing system that is ideal for the

study of the signal transduction and gene control networks for patterning and growth

control. The pathways that regulate growth and patterning of the wing disc can be di-

vided into two categories: the intrinsic pathways, which control growth and patterning

in response to the local signals, and the extrinsic pathways, which coordinate growth

of the different tissues in the organism. The local signal pathways include morphogen-

controlled pathways such as Dpp and Wg pathways and cell-cell interaction pathways

such as the Hippo pathway. The global signal pathways include nutrient-response path-

ways such as target of rapamycin (TOR) signaling pathways, and hormone pathways

such as insulin and ecdysone pathways. Patterning is coupled to growth control via

interactions between the Dpp-Wg patterning pathways, and the Hippo pathway for
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growth control. Local and global growth control are coordinated via interactions be-

tween nutrient and hormone pathways and the Hippo pathways.

2.2.1 Morphogen pathways

Early patterning of the disc defines compartments, which behave as independent units

of size control, and the boundaries of which are not crossed by cells [31, 2]. The ante-

rior and posterior compartments are divided early in the embryo and are maintained

throughout the larval stage, and are defined by whether or not cells express the selector

gene engrailed (en). En is a transcription factor that identifies cells in posterior com-

partment and changes cell surface properties to set up the compartment boundary. En

autonomously induces hedgehog (hh) expression and represses activation of the tran-

scription factor cubitus interruptus in the posterior compartment. Hh functions as a

short-range signal to induce expression of Dpp, which is both a morphogen and a growth

factor, in a stripe of cells anterior to the AP compartment boundary [32, 2, 33]. This

leads to a spatially graded distribution of Dpp in the AP direction [15, 34].

Dpp binding to the receptor thickvein (Tkv) induces expression of spalt (sal) at high

levels and optomotorblind (omb) at lower levels, and indirectly represses tkv [35, 36].

pMad and Medea, the effectors of Dpp signaling, bind with the repressor protein

Schnurri and thence to the brinker (brk) enhancer, thereby relieving brk -mediated re-

pression of omb and sal . sal activity is required to promote cell proliferation in the

center of the disc [37], and omb exerts a negative feedback on Hh signaling [38], and

both inhibit apoptosis. How Dpp is transported from the production site to establish

the gradient is not well understood [39]. Free or hindered diffusion in the extracellular

space has been suggested [28, 39], but there is also evidence for transcytosis [15]. As

we show later, the elusive transport mechanisms have led to dramatic discrepancies in

estimates of parameters, which, on the other hand, play an important role in studies of

transport and downstream mechanisms.

The second compartment boundary between the dorsal and ventral regions develops

during the second larval instar of development. The DV boundary separates cells that

express the homeobox gene apterous (ap) (D) from those that don’t (V). Wg is initially

expressed throughout the ventral compartment, but during the third instar this is re-

stricted to a strip at the DV boundary [40]. The Wg gradient along the DV axis induces



10

expression of the downstream genes vestigal (vg) and distalless. Wg affects disc growth

through the vestigal protein (Vg) [41, 24]. Thus the initial fate of cells in the DP is

determined by whether or not they express en and/or ap, and the level of Wg, Hh and

Dpp to which they are exposed.

Hh, Dpp and Wg are the primary factors in patterning and much is known about

their spatio-temporal patterns of expression. However, the details of their long-range

transport and the downstream mechanisms that integrate signals from these networks

are not fully understood. Furthermore, recent experimental studies on the wing disc

have elucidated the role of morphogen signaling pathways in growth control, and results

on the interaction of these pathways with the Hippo pathway, which controls cell pro-

liferation and apoptosis, have emerged. These and other genetic studies illustrate the

tight linkage between the patterning and growth processes, but despite such discoveries,

how the morphogen-controlled pathways are integrated with the Hippo pathway to reg-

ulate patterning and growth is not understood. In addition, studies suggest that cell-cell

interactions mediated by the Hippo pathway also play an important role in achieving

normal disc size.

2.2.2 The Hippo pathway

The Hippo pathway, also known as Salvador/Warts/Hippo(SWH) pathway, consists of

a highly conserved core kinase cascade the serine/threonine kinases Hippo (Hpo) and

Warts (Wts) and the adaptor proteins Salvador (Sav) and Mob as tumor suppressor,

and takes its name from the fact that mutation of the hippo gene gives rise to a large

fly with folds of overgrown tissues that resemble the body folds of a hippopotamus.

The key effector in the Hippo pathway is Yorkie (Yki), a co-transcription factor whose

nuclear localization is controlled by the kinase Warts (Wts). Wts phosphorylates Yki

to prevent it from entering the nucleus. Yki acts by binding to transcription factors

such as Scalloped (Sd) to activate the expression of cyclin E, myc, DIAP1, and bantam

that control cell proliferation, and controls expression of genes upstream in the Hippo

pathway, such as expanded, merlin, kibra, and four-jointed (fj).

The Hippo pathway, which regulates many downstream transcription factors in-

volved in cell growth, proliferation and apoptosis, is regulated by many upstream fac-

tors. Two atypical cadherins, Fat and Dachsous (Ds) are key upstream components in
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the Hippo pathway. Both are enormous molecules with intracellular, transmembrane

and extracellular domains, and can be localized in the apical cell membrane. The intra-

cellular domains (ICDs) of each can independently mediate signaling through the Hippo

pathway within the cell, while Fat and Ds on adjacent cell membranes can also bind

with each other to strengthen the signaling and hence mediate cell-cell interaction and

regulate growth.

Signaling from FatICD has been shown to suppress growth via the downstream factor

Dachs, an unconventional myosin. Although the mechanism is still unclear, dachs is

epistatic to fat in terms of both growth and gene expression phenotype, i.e. loss of dachs

completely suppresses the ability of the fat loss-of-function mutant to induce overgrowth

or target gene overexpression. In normal development, Dachs is low in the cytoplasm and

high near the adherens junctions, and preferentially accumulates on the distal sides of

cells. In ds mutants, strong but unpolarized membrane localization of Dachs is detected,

just as it is in fat mutants. In fat mutants, the Dachs protein level does not have visible

change, which indicates that the influence of Fat on Dachs most probably reflects protein

re-localization. Experiments suggest that while the polarization of Dachs controlled by

Fat and Ds is essential for cell polarization, the amount of Dachs localized on the

membrane controls cell growth. Localized Dachs can associate with the kinase Warts

(Wts) and promote the degradation of Wts protein [42]. In the wing, overexpression of

dachs increases wing size, while dachs loss-of-function mutant decreases wing size [43].

Signaling from Ds ICD positively regulates growth via direct interaction with Riquiqui

(Riq), a 343-amino-acid protein with five WD40 repeats predicted to mediate protein-

protein interaction, and Minibrain (Mnb), a DYRK family kinase. Ds is required for

the Riq protein to localize to the apical junction of cells in the wing disc. Localized

Riq alone does not affect Wts ability, but rather in turn potentiates the ability of Mnb

to phosphorylate Wts to reduce its activity and hence increase Yki activity. Depletion

of Riq or Mnb decreases the wing size while overexpression of Riq or Mnb increases

the wing size. While Ds binding to Fat enhances the inhibitory effect of Fat on Dachs

localization, Fat binding to Ds also increases the interaction between Ds and Riq and

thereby enhances Riq localization. Recent studies suggest a potential interaction be-

tween Ds ICD and Dachs [25]. It is likely that the interaction is also reinforced upon

Fat binding to Ds. However, since modulating the expression of either Riq or Mnb does
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not influence Dachs levels or localization in wing discs [44], it is possible that either

Ds ICD has two independent binding sites for Riq and Dachs respectively, or Ds only

interacts with localized Dachs.

The interaction between Ds and Fat mediates cell-cell interaction, and is regulated

by another protein Four-jointed (Fj), which itself is one of the target genes of the Hippo

pathway. Fj functions in the Golgi as a kinase, and it phosphorylates cadherin domains

of Fat and Ds that are destined to be extracellular [45]. By directly phosphorylating

cadherin domains of Fat and Ds, Fj promotes the ability of Fat to bind to Ds, and

inhibits the ability of Ds to bind to Fat [46]. However, the weaker phenotype of fj

mutants in comparison to ds mutants, and the ability of cells expressing high levels

of Fat and Ds to aggregate without exgenous Fj, imply that Fat has some Ds-binding

ability even without Fj [46].

A plethora of experimental observations resulting from mutant clones and various

other interventions raises numerous questions concerning how Fat and Ds regulate the

Hippo pathway to mediate cell-cell interaction and to control cell and tissue growth.

Recent studies have shown the non-monotonic effect of Fat on the growth [47], i.e.

overexpression of fat decreases the wing size and the complete knockout of fat increases

the wing size, but the partial knockout of fat decreases, rather than increases, the

size. Likewise, it appears that the effect of Ds is also non-monotonic given the existing

experimental results. While loss of Ds results in enlarged wings and wing discs [48],

overexpression of Ds using different Gal4 drivers may lead to the opposite effect on

target gene expression and growth, i.e. it may either reduce [48, 49] or enhance growth

[44]. In addition, double mutants of fat and ds overgrow more than either of the single

mutants [10]. Furthermore, the expression level of Fj, the modulator of Fat and Ds as

well as the target gene of this signaling pathway, also causes non-monotonic response

in growth, i.e. either loss of fj or overexpression of fj across the disc is associated with

modest reductions in wing size. Finally, when Fj and Ds are co-overexpressed, the

reduction in wing size is greater than overexpression of either of them [48, 49].

These observations resulting from interference across the disc are not intuitive, given

that Fat and Ds are recognized as the growth suppressors, and so also are the obser-

vations with clone cells. Overexpression of ds in clone cells upregulates Hippo target

genes in cells on both sides of the border [9, 49], while ds lost-of-function mutant clones
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upregulates Hippo target genes outside of clone borders but not in ds mutant cells

[9], which requires both Fat and Dachs since loss of either of them suppresses the ef-

fects. Moreover, although the overexpression of target gene expression is observed both

autonomously and non-autonomously when Ds is overexpressed in posterior compart-

ment, the autonomous effect in the posterior is greatly reduced when either Riq or Mnb

is depleted and the non-autonomous Yki hyperactivation in anterior cells near the AP

boundary is unaffected [44]. Such a non-autonomous effect is also reported when Fat is

overexpressed [50, 51] although no such effect has been observed when Fat is lost par-

tially or completely. In addition, both fj loss-of-function clones and fj overexpression

clones upregulate Hipp target genes on both sides around the clone border. Further-

more, the non-autonomous effects of Fj and Ds are more pronounced on the side that

clone cells and wild-type cells have greater difference. In addition to the observations

in space, investigations have been conducted in time. It has been found that the in-

hibitory effect on growth induced by overexpression of either Fj or Ds is transient, and

the suppressed proliferation begins to recover by 50hrs and is detected throughout the

disc later. The phenotypes and experimental observations related to the Hippo pathway

are summarized in Table 2.1.

The growth in the disc is quite uniform in normal development. However, besides

the fact that morphogens such as Dpp and Wg form gradients along their respective

axes, the Hippo pathway regulators, Ds and Fj, are also expressed unevenly in the disc.

The expression of Ds is lower in the distal region and higher in the proximal domain,

and vice-versa for Fj. The non-uniform expression of growth regulators further show

that growth is controlled and accommodated by multiple pathways. In fact, how the

gradients are converted to uniform growth and how the size of tissue is determined

remain unanswered.

We are interested in the Hippo pathway as it provides an integration point for all

the local effects including Dpp, Wg morphogen signaling pathways, Frizzled-Dishevelled

( Fz-Dsh) planar cell polarity (PCP) pathways, and cell mechanics pathways, and inter-

acts with global regulatory signals such as TOR and insulin pathways. For instance, it

was shown that Dpp signaling through the Fat/Hippo pathway is necessary for the effect

of Dpp on proliferation [54, 49], and the Hippo pathway also modulates morphogen sig-

naling through transcriptional control of dally and dlp [55] that affect Dpp transport and
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gradient in the disc. Driving uniform expression of vg, the target gene of Wg signaling

pathway, downregulates ds expression and upregulates fj expression. fat mutant causes

significant developmental delay, which might be through its impact on the insulin sig-

naling pathway. The interaction between the Hippo pathway with other signal pathways

happens almost on every level and only the part which is closely related to our discus-

sion is touched upon here. A few recent reviews are given in [7, 56, 57, 58, 59, 60, 61].

Given its central role in growth control, it is no surprise that disrupted Hippo pathways

can cause major health issues either directly through pathway mutations or indirectly

through crosstalk from other signaling network. Studies on the Hippo pathway will cer-

tainly shed light on other signaling pathways and the mechanism of overall patterning

and growth control, and might suggest opportunities for therapeutic intervention for

diseases.

Most of the current mathematical models on the Hippo pathway concentrate on

the cell polarity, and address various aspects of the signaling pathway. Some of them

focus on the role of Dachs on cell mechanics and suggest polarized Dachs induced by

the gradient of Ds within the disc promotes anisotropy of cell-cell junction tension,

which contributes to cell orientation arrangement [25]. Others incorporate the Fz-Dsh

pathway and point out that the interaction between the Fat-Ds pathway and Fz-Dsh

pathways is the key to generating the domineering nonautonomy phenomenon, in which

mutations in PCP signaling components cause polarity disruptions of neighboring wild-

type cells [17]. In addition, several groups favor that the opposing gradients of Fj

and Ds in the disc induce subcellular asymmetries of DsFt heterodimers and provide

subcellular asymmetric molecular cues that are available to orient PCP to the tissue

axes [27, 12, 23, 47]. It is also worth noticing that there are some preliminary efforts on

integrating the Hippo pathway and morphogen pathways [24, 26]. Nevertheless, none of

the existing models attempt to model the Hippo pathway mechanistically, and despite

the insights, how change in Fat and Ds is converted to cell response in growth is hard to

be understood from these high-level models. Our research represents the first attempt

to develop a detailed model of this pathway with the goal to understand this type of

questions.
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2.2.3 Transport mechanisms

While the signal transduction pathways within a cell has been extensively studied,

how signals are transported across cells is still unclear. Several mechanisms for signal

transport have been proposed and further discussion of different modes can be found in

[62]. One possible way to transfer the signal produced by source cells is via secretion into

the extracellular space followed by re-uptake for other cells by receptor internalization

or other mechanisms – a process known as transcytosis . For instance, Hh transport

may involve transcytosis, in that Hh is secreted apically, re-internalized in the secreting

cells, and then re-secreted baso-laterally [63, 64].

The second way is called ’Quorum communication’, in which all cells release the

signaling species and all detect and perhaps internalize the signal [65]. While not useful

for establishing a spatial pattern, this mode does serve as a quorum-sensing mechanism

[66, 67, 68] that can control gene expression and cell motility, and may be involved in

size-regulation in some systems [69]. In the context of the Drosophila wing disc, this

form arises if signals are released into the luminal space. For example, inhibition of

Dpp signaling only in the peripodial cells nevertheless disrupts growth and patterning

of the wing [70], suggesting that mechanisms that govern the growth and patterning of

peripodial cells coordinate with those of columnar cells.

Juxtacrine signaling is another way, which invloves direct cell-cell communication,

either via gap junctions or direct receptor-ligand interactions. In the Drosophila wing

disc, direct communication between cells occurs via Fat in the membrane of one cell

binding to Ds in the membrane of a neighboring cell, and this is used for establishing

compartment boundaries or directing neighboring cells to adopt different fates [42].

In addition, active transport, for instance along microtubules or cytonemes [71],

may play a role in polarizing cells. While some evidence supports the idea that Hh is

transported by transcytosis, other evidence suggests that cytonemes are involved in Hh

transport [72, 73, 74].

2.3 Parameter estimation and FRAP

The FRAP technique was originally developed to study protein mobility in living cells

and successfully measured the diffusion on cell membranes. Recent development of both
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fluorescent protein technology and confocal microscopy have led to a marked increase

in the use of FRAP not only for studying molecular mobility in the cell, but also for

assessing molecular dynamics and interactions with others. Nowadays, FRAP has been

adopted as a common technique for studying all aspects of biology, including chromatin

structure, transcription, mRNA mobility, protein recycling, signal transduction, versicle

transport and etc. The literature on FRAP analysis is large and can only be touched

upon here, but a recent review is given in [75]. Some background information relevant

to our analysis is given as follows.

Confocal laser scanning microscopes (CLSMs) are currently the widely used plat-

forms for FRAP experiments. CLSMs are equipped with lasers for photobleaching and

detection. The setup and the sequence of steps in a typical FRAP experiment that

uses a CLSM are as follows. Assuming that diffusion is the only transport process, the

steps are modeled as shown below, which also explains Figure 2.9. We describe them in

generality here, and detailed descriptions of the models used for parameter estimation

are given later. Both bleaching and scanning steps are done pixel by pixel and line by

line.

Step 1: Prebleaching Use a low intensity laser to scan the fluorescence density

in the entire domain Ω which includes the ROI. The evolution of the concentrations of

fluorescent molecules during the pre-bleaching time [0, T0] (cf. Fig. 2.9) is governed by

∂c

∂t
= D52c+R(c)− Ipc

where R(c) represents the reaction processes, and Ip is the pre-bleaching function. The

pre-bleaching process is usually modeled as a first-order process as above, and in a 2D

domain the intensity is given by

Ip(t, x, y) = Ip0exp

(
−2[(x−X(t))2 + (y − Y (t))2]

r2
0

)
,

wherein x = X(t), y = Y (t) and x, y ∈ Ω describes the pre-bleaching path of the laser.

Step 2: Bleaching Use a high intensity beam to bleach the ROI for an interval of

length T1. In this phase
∂c

∂t
= D52c+R(c)− Ic
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with initial conditions obtained from the end of the pre-bleaching period. The differences

between pre-bleaching and bleaching are the laser intensity and pixel dwell time for

scanning, as well as the scanning domain.

Step 3: Postbleaching This usually comprises a waiting time T2 between the end

of bleaching and the beginning of observation. During the observation time use a low

intensity beam to image the fluorescence recovery process. During the waiting time

∂c

∂t
= D52c+R(c)

with initial conditions obtained from the end of step 2.

During the observation period T3

∂c

∂t
= D52c+R(c)− Ipc

with initial conditions obtained from the end of the waiting period.

The notation used in the figure is as follows. Let b = ΩROI/Ω denote the ratio of

the area of the ROI to the area of the entire domain. Let a be the ratio of the remain-

ing fluorescent intensity after bleaching to the fluorescent intensity before bleaching,

assuming that bleaching is homogeneous and instantaneous, and let c be the fraction

of fluorescent molecules which are immobile on the time scale of the experiment. The

loss of fluorescence due to bleaching reflected in a recovery curve is b(1 − a), and the

immobile fraction outside the ROI is c(1− b).
The FRAP recovery curve is usually normalized as

Fnorm(t) =
F(t) - F(T0)

(1-b)(1-c)+ab
,

wherein F is the fluorescence intensity and t ≥ T0 +T1. Later we assume that bleaching

is complete, i.e. a = 0, and that no immobile fraction exists, i.e. c = 0

The data obtained is usually averaged over the ROI and presented as a recovery

curve. The parameter estimation step consists in fitting this data with a ‘suitable’

model, but since the recovery portion typically can be fit with a sum of time-dependent

exponential terms, this leaves wide latitude as to what underlying processes are to be

included, and once that is fixed, what meaning can be ascribed to those parameters.

The inconsistencies in FRAP also come from different assumptions for models. One

of the disparate assumptions lie in that of initial conditions for recovery phase, the
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obtainment of which can be divided into two categories among existing FRAP models.

The first one is modeling all the previous processes before the recovery phase to get the

initial conditions [76, 77, 29, 78]. By modeling the pre-bleaching, bleaching and recovery

phase, the analytical solution representing FRAP data can be derived in some special

cases and with certain assumptions [29]. It provides us insights about how the bleaching

process and others affect the FRAP recovery, however, it requires prior knowledge of

some parameters to model activities of the laser beam. Another way which is more pop-

ular to estimate parameters is to only model the recovery phase with assumptions about

the initial conditions which can be obtained by the first post-bleach image of fluores-

cence. In this category, there are three different kinds of assumptions which all neglect

the bleaching effect with imaging process in recovery phase. One natural assumption

is the piece-wise constant initial conditions from direct measurement of the size of the

photobleaching spot [79]. This is validated when the bleaching is homogeneous and the

bleaching time is negligible. Another one is also the piece-wise constant initial con-

ditions but are deduced from the final recovery concentration and the conservation of

fluorescence [80]. It is an improvement from the first one, but still is limited to the cases

where the boundaries of the bleached region are relatively sharp and the observational

photobleaching is negligible. When the boundaries of the bleached region are smoothed

by diffusion before observation, the piece-wise constant is not able to capture the char-

acteristics of the initial condition, which may cause large errors in parameter estimation

[81]. Thus for the third kind, some Gaussian or Gaussian-edge function fitted by the

initial data, which results from the Gaussian assumption of the laser profile, is used for

the initial condition [81]. It has been shown that using the Gaussian expression of the

initial post-bleach profile alters the estimates of parameters in comparison to the first

or second utilization of initial condition, however, the utilization of Gaussian function

needs to be carefully justified. It is not convincing that the utilization of a Gaussian

function as the initial condition produces better estimations, because in a real biological

system the true values of binding/unbinding rates as well as the diffusion coefficient are

unknown. In our simulations, we only simulate the data with homogeneous and in-

stantaneous bleaching process, and thus we estimate parameters by only modeling the

recovery with piece-wise constant initial conditions.

Traditionally FRAP experiments were used for cellular or sub-cellular level processes
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that occur on short time scales, and by fitting parameters such as diffusion coefficients

and binding rates to the data, properties of cell- or sub-cellular-level processes could

be inferred. More recently FRAP has been used for tissue-level studies that occur on a

long time scale, where the results may be influenced by the interactions of production,

transport, decay and other processes, and a major issue in the use of FRAP in this

context is what model should be used as the basis for parameter estimation. This

latitude can lead to wide discrepancies in the estimated parameters, since one recovery

model may omit a process included in another. Even if the recovery models are identical,

the parameter estimates may vary widely due to differences in the assumptions about the

parameters, as will be described in an example later. Therefore, to the extent possible,

a careful assessment of whether and how the transport and reaction processes couple

should be made before a FRAP model is formulated, because otherwise the results may

bear little relationship to the actual processes that determine the recovery curve.

2.4 Mathematical Background

2.4.1 Perturbation Analysis

Suppose the system at steady state is G(u, p) = 0 where u represents the state variables

and p represents the parameters with solution us

(1) Perturbation of the steady state

Linearize the system around the steady state:

Gu(us, p)ξ = 0

where us = u− ξ

(2) Structural perturbation

G(u, p) +R(u, p) = 0

Linearize around the steady state:

G(us + ξ, p) +R(us + ξ, p) = 0
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G(us, p) +Gu(us, p)ξ +R(us, p) +Ru(us, p)ξ = 0

ξ = −[Gu(us, p) +Ru(us, p)]−1R(us, p)

2.4.2 Parameter Sensitivity Analysis

Given the uncertainty of parameters in the model, sensitivity analysis is necessary for the

investigation of how the change or error of the parameter values affect the model output

and their impacts on conclusions to be drawn from the model. There is a very large

and diverse literature on sensitivity analysis, and we here only focus on the techniques

used in our analysis.

Local sensitivity analysis

The dependence of steady state on parameters is calculated as :

Gu(us, p)up +Gp(u
s, p) = 0

up = −G−1
u Gp

It can be improved in such a way as to obtain a sensitivity measure that would rank

parameters consistently, i.e. ∂u
∂p

p
u

The derivative-based local sensitivity analysis has the attraction of being very ef-

ficient in computational time. However, it is limited when the parameters have large

uncertainty and when the model has non-linearity.

Input/output scatterplots

Input/output scatterplots are in general a very simple and informative way of running a

sensitivity analysis, since they can provide an immediate visual depiction of the relative

importance of the factors. For example, the existence of shape or pattern in the points

of a scatterplot identifies an important factor as shown on the left of Figure 2.10, while

little shape, which presents a rather uniform cloud of points over the range of the input

factor, is a sign of a non-influential factor as shown on the right of Figure 2.10.
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Variance-based sensitivity analysis

The non-local analysis described here is more informative than simply computing the

derivatives of the output at a local state because parameters can be varied over large

intervals. Here we use a form of variance-based sensitivity for models given in the form

Y = f(X1, X2, ...Xk), where Y is a model output and X1, X2, ...Xk are factors with

respect to which the sensitivity of the output is to be determined [82, 83]. In applying

this to parameter sensitivity analysis, the factors X are the parameters, and the model

is written as Y = f(p1, p2, ...pk) = f(P ). In general, and unless otherwise specified, we

assume that the input factors are independent of each other, so that each one can be

independently sampled from its marginal distribution.

One could conceive of using VP∼i(Y | pi) as a measure of the relative importance

of Pi, reasoning that the smaller VP∼i(Y | pi) is, the greater the influence of Pi is. To

remove the dependency on Pi, the average of this measure is taken over all possible pi,

and is written as Epi(VP∼i(Y | pi)). The law of total variance states that

V (Y ) = Vpi(EP∼i(Y | pi)) + Epi(VP∼i(Y | pi)) (2.1)

Hence a small Epi(VP∼i(Y | pi)), or a large Vpi(EP∼i(Y | pi)), will imply that Pi is an

important parameter. Vpi(EP∼i(Y | pi)) is called the first-order effect of Pi on Y and

the first-order sensitivity index of pi on the output Y is defined as

Si =
Vpi(EP∼i(Y | pi))

V (Y )
= 1− Epi(VP∼i(Y | pi))

V (Y )
(2.2)

where V (·) is the variance and P∼i indicates that the expectation of the variance is

taken with respect to all but the ith parameter. Thus EP∼i(Y | pi)) is the expected

value of Y that results from averaging over all but pi. To remove the dependency on

the fixed value of pi, the variance is taken with respect to pi.

The first order index measures the contribution of parameter pi to the total variance,

and since it is normalized, it lies in [0, 1]. A large Si indicates that the parameter

pi contributes a large fraction of the total variance, and thus can be regarded as an

important parameter in setting the error. For an additive model,
∑k

i=1 Si = 1, while

for a non-additive model the first order terms do not add up to one, and higher-order

interactions amongst the parameters account for some of the variance. For example,

if we describe the parabolic cylinder as p2
1 + p2

2, then there is no interaction between
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the parameters and
∑
Si = 1. This is not the case in our model, since the processes

described by the parameters are highly coupled and interacted.

A second measure of sensitivity is obtained as follows [82]. The total variance can

also be written

V (Y ) = Vpi(EP∼i(Y | pi)) + VP∼i(Epi(Y | P∼i)) + Vpi,P∼i

wherein the last term accounts for the variance due to the interactions. If the parameter

pi contributes little to the total variance then the sum of the first and last terms is

approximately zero, which means that

V (Y ) ∼ VP∼i(Epi(Y | P∼i)).

Thus an alternate measure of a parameter’s effect is the total order sensitivity index of

pi on Y , which is defined as

ST i = 1−
VP∼i(Epi(Y | P∼i)))

V (Y )
=
EP∼i(Vpi(Y | P∼i))

V (Y )

From the first equality one sees that ST i is the expected variance due to the first and

higher order effects of pi on Y. For the following simulations the first and total order

indices are calculated by using the method of Sobal’ which costs (k + 2)N model runs,

where k is the number of parameters and N is the number of sample points in parameter

space. N = 1000 is used for all our simulations.

Sensitivity analysis is driven by the setting. When the purpose of the analysis is to

prioritize factors, the first-order sensitivity index is a a natural choice. If the objective

is to fix non-influential factors, the total sensitivity index comes to use. All of these

settings, the computation of derivatives is advisable for a general understanding of the

model.

Implementation of sensitivity analysis

The indices of variance-based sensitivity measures are usually done by the Monte

Carlo Method. In practice, instead of generating pseudo-randomly distributed points

in the parameter space in traditional Monte Carlo Method, the low-discrepancy quasi-

random number generator is used to improve the efficiency of the estimators. This is

known as the Quasi-Monte Carlo method. It is implemented as follows (taken from

[83]).
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1. “Generate an N × 2k sample matrix with respect to the probability distributions

of the input variables- the parameters. N is the number of sample points. k is

the dimension of parameter space, i.e. the number of parameters.

2. Use the first k columns of the matrix as matrix A, and the remaining k columns

as matrix B, which generates two independent samples of N points in the k-

dimensional parameter space

3. Build k further N × k matrices AiB for i = 1, 2, ..., k, such that the ith column of

AiB is equal to the ith column of B, and the remaining columns are from A

4. The A, B, and the k AiB matrices specify N×(k+2) points in the parameter space

(one for each row). Run the model at each point, giving a total of N × (k + 2)

model evaluations, i.e. the correspondingf(A), f(B) and f(AiB) values

5. Calculate the sensitivity indices using the estimators discussed below.”

There are a number of Monte Carlo estimators for both indices. Two that are

currently widely used are according to the rule proposed by Saltelli et al. (2010).

Vpi(EP∼i(Y | pi) ≈
1

N

N∑
j=1

f(B)j(f(Aib)j − f(A)j)

EX∼i(Vpi(Y | p∼i) ≈
1

2N

N∑
j=1

(f(Aib)j − f(A)j)
2

They are used for the estimation of Si and ST i respectively.
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Figure 2.1: Patterning of epithelial cells in the Drosophila wing imaginal disc. The

morphogen Dpp patterns the Anterior/Posterior compartments of the Drosophila wing

imaginal disc in (A) top view showing the pouch and (B) slice (along dotted line in

(A)) showing the geometry of the columnar cells. (C-D) Dpp establishes a non-uniform

distribution to pattern the anterior/posterior axis by transport and reaction. Numerous

processes may contribute to formation of the Dpp distribution including diffusion around

columnar cells (C) or transcytosis through columnar cells (D). Dpp secreted in the

basolateral space cannot enter the lumen and vice versa due to the presence of septate

junctions (SJ) in (D). From [30] with permission.
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Figure 2.2: The Hh, Dpp and Wg pathways. Ptc: patched, Smo: smoothened,

CiA(R): cubitus interruptus activator (repressor), Ubx: ultrabithorax, Col: collier, Dfz:

Drosophila frizzeled, Dsh: disheveled, Nkd: naked, Gro: groucho, Pan: pangolin. Con-

structed from [1, 2, 3, 4, 5, 6, 7].
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Figure 2.3: The Hippo pathway. App, Approximated; Crb, Crumbs; Dco, Discs over-

grown; Dlg, Discs large; Ds, Dachsous; Ex, Expanded; Fj, Four-jointed; Hth, Homoth-

orax; Jub, Drosophila Ajuba; Lats, Large tumor suppressor; Lft, Lowfat; Lgl, Lethal

giant larvae; Mer, Merlin; Mats, Mob as a tumor suppressor; Rassf, Ras-associated

factor; Sav, Salvador; Scrib, Scribble; Sd, Scalloped; Tsh, Teashirt; Yki, Yorkie [8]

.
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Figure 2.4: Boundaries of Ds and Fj activity induce Hippo target genes. Third instar

imaginal discs, which contain clones of cells either overexpressing or mutant for ds or fj

[9].

Figure 2.5: Comparison of overgrowth of wing imaginal discs. Typical wing discs for

each genotype are shown at the same magnification. (A) Wild type. (B) Overgrowth

in fat mutant (ft−/−). (C) Rescue of ft−/− overgrowth with UAS-ft and act-gal4. (D)

Rescue of ft−/− overgrowth with UAS-ftECD and act-gal4. (E) Potentiation of ft−/−

overgrowth with UAS-ftICD and act-gal4. (F) Mild overgrowth in ds mutant (ds−/−).

(G) Potentiation of ft−/− overgrowth by ds−/− [10].
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Table 2.1: Experiments and phenotypes

Experiments Phenotypes Reference

Disc-wide manipulation

fat -/- mutant Discs overgrow, cells grow faster, cell size

smaller, cell density higher, delay development

[52, 53, 43,

47]

Partial knockout of fat Discs undergrow [47]

Overexpression of fat∆ECD in fat -/- back-

ground

Reduce the overgrowth of fat -/- mutant [10]

Overexpression of fat∆ICD in fat -/- back-

ground

Enhance the overgrowth of fat -/- mutant [10]

ds -/-mutant Enlarge wing and wing disc [48]

Overexpression of ds using tub-Gal4 driver Reduce wing size [48, 49]

Overexpression of ds using en-Gal4 driver in

posterior compartment

Reduce compartment size [49]

Overexpression of ds using hh-Gal4 driver in

posterior compartment

Overexpression of target genes [44]

Overexpression of ds∆ECD Very weak effect on growth [51]

Overexpression of ds∆ECD in ds -/- back-

ground

Overexpression of target genes [51]

fj -/- mutant Reduce wing size [48, 49]

Overexpression of fj Reduce wing size [48, 49]

Co-overexpression of fj and ds Greater reduction in wing size than overex-

pression of either of them

[48]

fat -/-, ds -/- double mutant Discs overgrow more than either of single mu-

tants

[10]

Cell clone experiments

Overexpression of ds or ds∆ICD in clones Overexpression of target genes on both sides

of the border

[49, 9]

Overexpression of ds in clones in either fat -/-

or dachs -/- background

No boundary effects [9]

ds -/-mutant clones Overexpression of target genes only in neigh-

bor wild-type cells but not in clone cells

[9]

Overexpression of ds in clones in ds -/- back-

ground

Overexpression of target genes only in clone

cells but not in neighbor cells lacking of Ds

[9]

Overexpression of ds∆ICD in clones in ds -/-

background

No boundary effects [9]

Overexpression of ds using hh-Gal4 driver in

posterior compartment

Overexpression of target genes both au-

tonomously and non-autonomously

[44]

Overexpression of ds using hh-Gal4 driver to-

gether with the depletion of Riq or Mnb in

posterior compartment

The autonomous effect is weakened, and the

non-autonomous effect is unaffected.

[44]

Overexpression of fat or fat∆ICD in posterior

compartment

Overexpression of target genes in neighbor

wild-type cells

[51]

Overexpression of fat or fat∆ICD in poste-

rior compartment in either fat -/- or ds -/- back-

ground

No boundary effects [51]

Overexpression of fat∆ICD in posterior com-

partment in posterior compartment

Overexpression of target genes both au-

tonomously and non-autonomously

[51]

Overexpression of fat∆ICD in posterior com-

partment in posterior compartment in ds -/-

background

The autonomous effect is weakened, and the

non-autonomous effect is gone

[51]

Overexpression of fat∆ICD in posterior com-

partment in posterior compartment in ds -/-

fat -/-double mutant background

Both of the autonomous and non-autonomous

effects are gone

[51]

Overexpression of fj in cell clones Overexpression of target genes on both sides

of the border

[9]

fj -/- clones Overexpression of target genes on both sides

of the border

[9]
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Figure 2.6: Ds and Fj expression in wing disc. (Left) Ds protein staining in a wild-type

wing disc; (Right) Fj expression in wild-type revealed by a fj-lacZ transgene [11].

Figure 2.7: Arrangement of cells seen in the contexts of proximally-distally increasing

gradient of Fj as well as its activity [12].

Figure 2.8: Schematic illustrating a FRAP experiment [13].
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Figure 2.9: A typical recovery curve for a FRAP experiment. After subtraction of

the background fluorescence and correction of the observed photobleaching, a FRAP

recovery curve is normalized by the fluorescent intensity before bleaching. See text for

explanation of the symbols.

Figure 2.10: Scatterplots of output versus input 1 and input 2



Chapter 3

The Hippo pathway

The objective of this chapter is to develop a mechanistic model of the Hippo pathway

to systematically explore the properties and behaviors of this network. We structure

the chapter in the following way.

First, we introduce how the model is formulated by choosing the components that

primarily contribute to phenotypes observed in experiments, and the kinetic processes

that properly capture the interactions between components. Although variations in

network structure are explored in the course of model assembly, only the final configu-

ration is described here. It represents the most compact description of the network that

captures the network behaviors as realistically as possible. From there, we justify model

assumptions and generate hypotheses based on phenotypes and biochemical evidence

in the literature. We then simulate the model, analyze the steady state behaviors and

demonstrate the validity of the model by comparing model predictions and experimental

data. Finally, we analyze the sensitivity of the model with respect to the parameter

uncertainties from local and global points of views. We also present the computational

analysis of two general models embedded in the network, which could be generalized to

help analyze similar modules in other systems.

31
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3.1 The Model

3.1.1 Model philosophy and introduction

To approach the model, we thoroughly evaluated the existing regulatory steps within the

network and experimental data available, and analyzed the balances by incorporating

the primary genes and proteins, and their interactions, with the goal of understand-

ing whether the structure of the known network could predict experimentally-observed

outcomes. In fact, this is how an earlier version of the model was first built with two

hypotheses. The qualitative analysis of our model predicted the necessity of two hy-

potheses: a pathway from Ds that activates Yki, and a pathway from Ds, which is

independent of Fat, that represses Yki. Both are needed to explain the results. While

searching for a biochemical basis for such pathways, a paper describing one of the two

hypotheses, the positive pathway, appeared.

Given the complexity of the network, we do not attempt to incorporate all species

and their interactions in the model, but rather retain the central components. Our

objective is to develop a detailed, but manageable model which involves selecting a

limited set of the protein components that participate in signaling and represent the

aggregate effect of upstream components. The major species that are incorporated in

the model are Fat, Ds, Dachs, Riq, Wts, and Yki, which are subject to constitutive

production rates, and the complexes formed between them. Although there are only

6 distinct species, the number of emerging species complexes due to binding reactions

and phosphorylation is rather large. The notations for all the species in the model are

summarized in Table 3.1. The variables in the model are listed, of which differential

equations can be derived directly.

For each cell in the model, the schematic diagram of the signaling pathway in our

model is shown in Figure 3.1. All protein-protein interactions are described by a re-

versible reaction step for the binding and dissociation of complex partners with the

kinetic rate constants k+ and k− with appropriate subscripts. An irreversible catalytic

step describes subsequent protein modification including decay and phosphorylation

of Wts. For the phosphorylation of Fat and Ds by Fj, dephosphorylation steps are

included.

All species decay via first-order kinetics in the cell with rates denoted as βX and on



33

Table 3.1: Species notations in the model

Notation Protein

Cytosol species

Fc, Fpc Fat and phosphorylated Fat

Sc, Spc Ds and phosphorylated Ds

Jc Fj

JF c Fj-Fat complex

JSc Fj-Ds complex

Rc Riq

Ac Dachs

Wc Wts

Yc, Y pc Yki and phosphorylated Yki

Membrane species

Fm, Fpm Fat and phosphorylated Fat

Sm, Spm Ds and phosphorylated Ds

FSm, FpSm, FSpm, FpSpm Fat-Ds complex

Am Dachs

ASm, ASpm Dachs-Ds complex

AFSm, AFpSm, AFSpm, AFpSpm Dachs-Fat-Ds complex

RSm, RSpm Riq-Ds complex

RFSm, RFpSm, RFSpm, RFpSpm Riq-Fat-Ds complex

WAm Wts-Dachs complex

WASm,WASpm Wts-Dachs-Ds complex

WAFSm,WAFpSm,WAFSpm,WAFpSpm Wts-Dachs-Fat-Ds complex

WRSm,WRSpm Wts-Riq-Ds complex

WRFSm,WRFpSm,WRFSpm,WRFpSpm Wts-Riq-Fat-Ds complex

the membrane with rates denoted as γX . The decay rate of species on the membrane

might result from endocytosis or other degradation mechanisms. In addition, as all

the Wts-complex species on the cell membrane are either degraded or phosphorylated

due to Dachs or Riq, there are no additional decay rates for them. All the species in

the cytosol diffuse. The detailed justifications for each reaction are presented in the

following.

In the model we consider an array of discrete cells, as indicated schematically in
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Figure 3.1: Schematic diagram of our model of the cell

Figure 3.2, and we assume that adjacent cells are in close proximity. The model allows

reactions and transport within cells, reactions between species at the membrane and

either species in the associated cell or on the membrane of adjacent cells, and reactions

between species on each of the opposing membranes. The movement of proteins within

each cell has been modeled as diffusion, although more complex mechanisms may be

involved. We will discuss how the assumptions affect the results later.

i-1 i i+1

Reaction between

species on opposing 

membranes

Reaction and 

transport

within cells

Reaction at 

or transport 

to the membrane

xi-1 xi xi+1 xi+2

Figure 3.2: A schematic of a 1D network of coupled cells in which cells can interact at

their opposing membranes
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The reactions involving Fat in the ith cell are binding to the membrane and binding

to Ds on either of the adjacent cells. (Hereafter c denotes cytosol, m membrane and i the

cell index). The left and right cell membranes of the ith cell are labeled as xi and xi+1,

respectively. As the space between cells is ignored, xi represents the membrane common

to the ith cell and the (i− 1)th cell, while xi+1 represents the membrane common to the

ith cell and the (i+ 1)th cell. Xi
c denotes the concentration of species X in the cytosol of

the ith cell. Xi
m(xi) and Xi

m(xi+1) denote the concentration of species X at the two cell

membranes of the ith cell. It should be noted that FS
i
m represents the concentration of

Fat-Ds complex at the membrane between ith cell and (i− 1)th cell, where the Ds part

is located on the membrane of the ith cell and the Fat part is located on the membrane

of the (i − 1)th cell. Therefore, for the ith cell this complex functions as enhanced Ds,

while for the (i− 1)th cell it functions as enhanced Fat.

3.1.2 Module I: Upstream Intercellular Signaling

The upstream intercellular signaling processes are represented in Figure 3.3, and de-

scribe the dynamics of the cadherins Fat and Ds.

FatDs

FatDs

Fat

Ds

Fat-P

Ds-P
Fj

Fj

Fat-P

Ds

Ds

Fat-P

Signaling

Fat

Ds-P

Ds-p

Fat-P Ds-p
Fat Ds

Ds-P

Fat
Ds Fat

Fat-P

Figure 3.3: Upstream Events: cadherin phosphorylation, membrane localization, and

heterodimer formation
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Cadherin phosphorylation

The phosphorylation of Fat and Ds catalyzed by the kinase Fj are modeled as enzymatic

processes. Dephosphorylation, usually catalyzed by protein phosphatases, is acting

in concert with phosphorylation to balance the protein activity in the cell. Here we

assume that phosphatases are in abundance, i.e., their concentration does not change

significantly over the course of the reaction. Then dephosphorylation processes can

be approximated as first-order reactions which depend solely on the concentration of

the substrates. Although phosphorylation and dephosphorylation processes happen in

the Golgi where Fj is located, we assume that the distribution of Golgi bodies is quite

uniform, and hence these processes occur uniformly in cytosol.

F ic + J ic
k+JF−−⇀↽−−
k−JF

JF
i
c
kc1−−→ Fpic + J ic

Fpic
kc2−−→ F ic

Sic + J ic
k+JS−−⇀↽−−
k−JS

JS
i
c
kc3−−→ Spic + J ic

Spic
kc4−−→ Sic

Cadherin membrane localization

Both Fat and Ds are transmembrane proteins, thus they are assumed to translocate

to the cell membrane reversibly with constant rates. Furthermore, unphosphorylated

and phosphorylated forms are assumed to have the same rates, i.e., Fat and Ds have

intrinsic rates of binding to the cell membrane, and phosphorylation of Fat and Ds does

not change this.

F ic (Fpic)
k+F−−⇀↽−−
k−F

F im (Fpim)

Sic (Spic)
k+S−−⇀↽−−
k−S

Sim (Spim)
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Heterodimer (Fat-Ds) formation

Fat and Ds bind with each other heterophilically, and the binding activity is modulated

by Fj. Specifically, Fj phosphorylates the extracellular domain of Fat and thus enhances

its ability to bind with Ds, and on the other hand, Fj also phosphorylates the extracel-

lular domain of Ds, but decreases its ability to bind with Fat [46]. The opposing effects

of Fj on Fat and Ds are represented by four binding affinities of the reactions between

unphosphorylated and phosphorylated forms, specifically, the binding affinity between

Fat-P and Ds is highest among the possible reactions, and it is much higher than all the

other three [46]. In addition, the binding between Fat and Ds promotes the recruitment

of each other to cell membrane of adjacent cells. This must be taken into account in

the parameter selection process.

Sim (F im) + F i−1,i+1
m (Si−1,i+1

m )
k+FS−−⇀↽−−
k−FS

FS
i
m (FS

i−1,i+1
m )

Sim (Fpim) + Fpi−1,i+1
m (Si−1,i+1

m )
k+FS1−−−⇀↽−−−
k−FS1

FpS
i
m (FpS

i−1,i+1
m )

Spim (F im) + F i−1,i+1
m (Spi−1,i+1

m )
k+FS2−−−⇀↽−−−
k−FS2

FSp
i
m (FSp

i−1,i+1
m )

Spim (Fpim) + Fpi−1,i+1
m (Spi−1,i+1

m )
k+FS3−−−⇀↽−−−
k−FS3

FpSp
i
m (FpSp

i−1,i+1
m )

Studies have shown that the binding process between Fat and Ds (heterodimer

formation) modulates the phosphorylation of the cytoplasmic/intracellular domain of

each other and hence potentiates their intracellular signaling abilities [48, 11]. In order

to represent the effect of phosphorylation of the intracellular domains caused by the

heterodimer formation process without further complicating the model, we assume that

all the Fat-Ds complex forms have a stronger ability to affect downstream factors than

their single forms without introducing another phosphorylated form for each of them.

This assumption is valid when the phosphorylation of the intracellular domain is fast

enough and thereby the concentration of phosphorylated form is proportional to the

total concentration for each species.
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It should be emphasized once more that the phosphorylated forms of Fat and Ds in

our model refer to the phosphorylation of the extracellular domains caused by Fj, which

is different from phosphorylation induced due to heterodimer formation; the former

happens to the extracellular domains of Fat and Ds which changes the strength of

binding between each other, whereas the latter affects the intracellular regions of Fat

and Ds which change their own potency to signal downstream.

3.1.3 Module II: Intermediate Signal Transduction

Dachs localization

Dachs is a major determinant in Fat signal transduction, as dachs mutants show the

opposite phenotype of fat mutants. Although experiments suggest that Fat inhibits

Dachs apical localization and the palmitoyltransferase App can relieve Fat’s inhibition

of Dachs, it is fair to assume a constant background of App when exploring the effect

of Fat on Dachs. It should also be noted that Dachs protein is strongly polarized in

normal disc cells. However, it has been suggested that the direction in which Dachs

localization is polarized influences planar cell polarity (PCP), whereas the amount of

Dachs on the membrane influences Hippo signaling [84].

As Fat, Ds and Dachs tend to accumulate at apical junctions of cell membrane,

the pools at different junctions are decoupled from each other, and are connected via

molecules transported between junctions. At each junction, Dachs localization is as-

sumed to be sensitive to Fat and Ds localized at that junction. .

Aic
k+A−−⇀↽−−
k−A

Aim

Since Fat on the cell membrane hinders Dachs localization with an undefined mech-

anism, this inhibitory effect is modeled as a reduction in the forward binding rates,

which is represented as a decreasing Hill function of the concentration of all forms of

Fat and Fat complex given by

k+
A =

Vm

[1 + (Fm+Fpm
K1

)n1 ][1 + (FStotK2
)n2 ]

where FStot is the sum concentration of all the forms of Fat complex, specifically
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FStot = FS + FpS + FSp+ FpSp

+AFS +AFpS +AFSp+AFpSp

+RFS +RFpS +RFSp+RFpSp

+WAFS +WAFpS +WAFSp+WAFpSp

+WRFS +WRFpS +WRFSp+WRFpSp.

In the function, n1 and n2 are used to approximate the non-linearity in the inhibitory

effect, and are set to be equal in our simulations. K1 and K2 are used to separate the

inhibitory effect by the Fat complex from that by single forms of Fat.

As we discussed before, the fact that fat and ds double mutants overgrow more than

either of single mutants indicates a negative regulatory step from Ds that is independent

of Fat. Meanwhile, the evidence that Dachs binds to the intracellular domain of Ds

observed in Drosophila scutellum cells [25] may account for this type of regulation,

which leads to our first hypothesis: localized Dachs can bind to Ds to form a complex

which decays faster than Dachs alone on the cell membrane, probably via speeding

up some internalization processes. With this hypothesis, Ds has been assigned a role

of negatively regulating growth via promoting the decay of Dachs on the membrane.

Furthermore, the interaction between Fat and Ds usually leads to incremental change

rather than radical change in each other’s signaling potency. Therefore, we assume that

Ds complex also can bind to Dachs with higher affinity.

Sm
+Am (k+AS)

(k−AS)
AS

+Fm (k+FS)(k−FS)

AFS

+Fm (k+FS)(k−FS)

FS
+Am (k+AFS)

(k−AFS)
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Riq localization

Experiments show that Ds is required to recruit Riq to apical junctions, and Fat on ad-

jacent cells binding to Ds promotes the recruitment [47]. Hence we assume that Dachs

on the membrane binds to Riq in the cytosol directly, in contrast to the assumption

that Ds binds to Dachs after Dachs is localized to membrane. The interactions between

species are represented as binding to form complexes. The effect of Fat on Riq localiza-

tion via Ds is represented by the higher binding affinity between Fat-Ds complex and

Riq than that between Ds and Riq.

Sm
+Rc (k+RS)

(k−RS)
RS

+Fm (k+FS)(k−FS)

RFS

+Fm (k+FS)(k−FS)

FS
+Rc (k+RFS)

(k−RFS)

3.1.4 Module III: Downstream Effectors

Wts decay

Localized Dachs can bind to Wts and promote the turnover of Wts. We assume Dachs

on the membrane can recruit cytosolic Wts to membrane directly

W i
c + Ai

m

k+WA−−−⇀↽−−−
k−WA

WA
i
m

kd−→ φ+ Ai
m

and similarly for ASm, ASpm,AFSm,AFpSm,AFSpm,AFpSpm.

Wts phosphorylation

Localized Riq can bind to Wts and promote its phosphorylation which inhibits Wts

activity. This occurs through the interaction of Riq with Mnb to potentiate the ability of
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Mnb to phosphorylate Wts. However, since our aim is to analyze Fat/Ds induced Hippo

pathway behaviors, it is appropriate to lump two successive reactions and represent the

ability of Riq-Mnb complex to phosphorylate Wts by the concentration of Riq. Whether

these proteins interact directly, or if they interact through a series of intermediate

proteins is not expected to alter the nature of this model.

It is worth noting that there are multiple phosphorylation events on Warts kinases.

Expanded(Ex), a cytoplasmic protein that suppresses growth via the Hippo pathway,

has been suggested to regulate Yki activity [85, 86, 87]. Ex phosphorylates Wts on

the activation loop and hydrophobic motif, which is an activating phosphorylation.

Meanwhile, Riq/Mnb phosphorylates Wts on independent sites, which is a repressive

phosphorylation. However, experiments show that overexpression of Ex alone has no

effect on Wts mobility (coexpression of Ex and Merline(Mer) enhances the effect on

Wts mobility induced by overexpression of Mer alone [88]). Since there is no direct

interaction between Fat/Ds signaling and Mer, the model does not include Ex and Mer.

Thus we represent the effect as

W i
c + RS

i
m

k+WR−−−⇀↽−−−
k−WR

WRS
i
m

kp−→ ϕ+ RS
i
m,

and similarly for RSpm, RFSm, RFpSm, RFSpm,RFpSpm.

Yki phosphorylation

Active Wts binds to Yki in the cytosol to promote Yki phosphorylation, which prevents

Yki from entering the nucleus and hence inhibits its activity.

W i
c + Y i

c

k+WY−−−⇀↽−−−
k−WY

WY
i
c

kpy−−→W i
c + Y pic

In normal growth, Yki nuclear localization is not detectable, which suggests that Yki

is a potent growth regulator, and many players inhibit its localization in normal devel-

opment. Therefore, in the model, Yc should be low at the steady state under normal

conditions.
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3.1.5 The governing equations

All the species in the cytosol are assumed to diffuse freely and isotropically within the

cell interior. For each of them, the boundary conditions for two edges are symmetric,

i.e, fluxes with opposite signs. For simplicity, only one of the two boundary conditions

is listed.

We assume that all the species on cell membrane are immobile. For each of them,

there are two governing equations describing its dynamics on two edges of a cell. For

simplicity, only one of the two equations for each species is listed.

Species in the cytosol

The equations for unphosphorylated Fat and Ds share the same forms with different

kinetic parameters. Consider unphosphorylated Fat as an example:

∂Fc
∂t

= DF
∂2Fc
∂x2

+ αF − βFFc − k+
JFFcJc + k−JFJF c + kc2Fpc in Ω (3.1)

−DF

ε

∂Fc
∂x
|∂Ω = −k+

FFc + k−FFm

1

The equations for phosphorylated Fat and Ds share the same form with different kinetic

parameters. Consider phosphorylated Fat as an example:

∂Fpc
∂t

= DFp
∂2Fpc
∂x2

− βFFpc + kc1JF c − kc2Fpc in Ω (3.2)

−
DFp

ε

∂Fpc
∂x
|∂Ω = −k+

FFpc + k−FFpm

Fj concentration:

∂Jc
∂t

= DJ
∂2Jc
∂x2

+αJ−βJJc−k+
JFFcJc+(k−JF+kc1)JF c−k+

JSScJc+(k−JS+kc3)JSc in Ω

(3.3)

−DJ
∂Jc
∂x
|∂Ω = 0

1 The factor ε reflects the conversion to volume and is assumed to be the thickness of the cell
membrane.
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The equations for Fj-Fat complex and Fj-Ds complex share the same form with different

kinetic parameters. Consider Fj-Fat complex as an example:

∂JF c
∂t

= DJ
∂2JF c
∂x2

+ k+
JFFcJc − (k−JF + kc1)JF c (3.4)

−DJF
∂JF c
∂x
|∂Ω = 0

Dachs concentration:

∂Ac
∂t

= DA
∂2Ac
∂x2

+ αA − βAAc in Ω (3.5)

−DA

ε

∂Ac
∂x
|∂Ω = −k+

AAc + k−AAm

Note that k+
A depends on Fat concentration on cell membrane.

Riq concentration:

∂Rc
∂t

= DR
∂2Rc
∂x2

+ αR − βRRc in Ω (3.6)

−DR

ε

∂Rc
∂x
|∂Ω = −k+

RS(Sm + Spm)Rc + k−RS(RSm +RSpm)

− k+
RFSRc(FSm + FpSm + FSpm + FpSpm)

+ k−RFS(RFSm +RFpSm +RFSpm +RFpSpm)

Wts concentration:

∂Wc

∂t
= DW

∂2Wc

∂x2
+ αW − βWWc − k+

WYWcYc + (k−WY + kpy)WY c in Ω (3.7)

−DW

ε

∂Wc

∂x
|∂Ω = −k+

WAAmWc + k−WAWAm

− k+
WRWc(RSm +RSpm) + k−WR(WRSm +WRSpm)

− k+
WRWc(RFSm +RFpSm +RFSpm +RFpSpm)

+ k−WR(WRFSm +WRFpSm +WRFSpm +WRFpSpm)

− k+
WAWc(ASm +ASpm) + k−WA(WASm +WASpm)

− k+
WAWc(AFSm +AFpSm +AFSpm +AFpSpm)

+ k−WA(WAFSm +WAFpSm +WAFSpm +WAFpSpm)



44

Yki concentration:

∂Yc
∂t

= DY
∂2Yc
∂x2

+ αY − βY Yc − k+
WYWcYc + k−WYWY c in Ω (3.8)

−DY
∂Yc
∂x
|∂Ω = 0

Phosphorylated Yki concentration:

∂Y pc
∂t

= DY P
∂2Y pc
∂x2

+ kpyWY c − βY pY pc in Ω (3.9)

−DY P
∂Y pc
∂x
|∂Ω = 0

Wts-Yki concentration:

∂WY c

∂t
= DWY

∂2WY c

∂x2
+ k+

WYWcYc − (k−WY + kpy)WY c − βWYWY c in Ω (3.10)

−DWY
∂WY c

∂x
|∂Ω = 0

Species on the cell membrane

The equations for unphosphorylated Fat and phosphorylated Fat on cell membrane

share the same form with different kinetic parameters. Consider unphosphorylated Fat

as an example:

dF im
dt

= k+
FF

i
c − k−FF

i
m − γFF im

− k+
FSF

i
m(Si−1

m +RS
i−1
m +WRS

i−1
m +AS

i−1
m +WAS

i−1
m )

+ k−FS(FS
i−1
m +RFS

i−1
m +WRFS

i−1
m +AFS

i−1
m +WAFS

i−1
m )

− k+
FS2F

i
m(Spi−1

m +RSp
i−1
m +WRSp

i−1
m +ASp

i−1
m +WASp

i−1
m )

+ k−FS2(FSp
i−1
m +RFSp

i−1
m +WRFSp

i−1
m +AFSp

i−1
m +WAFSp

i−1
m )

on ∂Ω

(3.11)

The equations for unphosphorylated Ds and phosphorylated Ds on the membrane share

the same form with different kinetic parameters. Consider unphosphorylated Ds as an

example:

dSim
dt

= k+
S S

i
c − k−S S

i
m − γSSim

− k+
FSS

i
mF

i−1
m + k−FSFS

i
m − k+

FS1S
i
mFp

i−1
m + k−FS1FpS

i
m

− k+
RSS

i
mR

i
c + k−RSRS

i
m − k+

ASS
i
mA

i
m + k−ASAS

i
m

(3.12)
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The equations for the 4 types of Fat-Ds complex formed on cell membrane, FS, FpS, FSp, FpSp,

share the same form with different kinetic parameters. Consider FS as an example:

dFS
i
m

dt
= k+

FSF
i−1
m Sim − k−FSFS

i
m − γFSFS

i
m

− k+
RFSFS

i
mR

i
c + k−RFSRFS

i
m − k+

AFSFS
i
mA

i
m + k−AFSAFS

i
m

(3.13)

Dachs concentration:

dAm
dt

= k+
AAc − k

−
AAm − γAAm

− k+
ASAm(Sm + Spm) + k−AS(ASm +ASpm)

− k+
AFSAm(FSm + FpSm + FSpm + FpSpm)

+ k−AFS(AFSm +AFpSm +AFSpm +AFpSpm)

− k+
WAAmWc + (k−WA + kd)WAm

(3.14)

The equations for the 4 types of Dachs-Ds complex formed on cell membrane, AS,ASp,

share the same form with different kinetic parameters. Consider AS as an example:

dAS
i
m

dt
= k+

ASS
i
mA

i
m − k−ASAS

i
m − k+

WAW
i
cAS

i
m + (k−WA + kd)WAS

i
m

− k+
FSAS

i
mF

i−1
m + k−FSAFS

i
m − k+

FS1AS
i
mFp

i−1
m + k−FS1AFpS

i
m − γASAS

i
m

(3.15)

The equations for the 4 types of Dachs-Fat-Ds complex formed on cell membrane,

AFS,AFpS,AFSp,AFpSp, share the same form with different kinetic parameters.

Consider AFS as an example:

dAFS
i
m

dt
= k+

AFSA
i
mFS

i
m − k−AFSAFS

i
m − k+

WAW
i
cAFS

i
m + (k−WA + kd)WAFS

i
m

+ k+
FSAS

i
mF

i−1
m − k−FSAFS

i
m − γAFSAFS

i
m

(3.16)

The equations for the 2 types of Riq-Ds complex formed on cell membrane, RS,RSp,

share the same form with different kinetic parameters. Consider RS as an example:

dRS
i
m

dt
= k+

RSS
i
mR

i
c − k−RSRS

i
m − k+

WRW
i
cRS

i
m + (k−WR + kp)WRS

i
m

− k+
FSRS

i
mF

i−1
m + k−FSRFS

i
m − k+

FS1RS
i
mFp

i−1
m + k−FS1RFpS

i
m − γRSRS

i
m

(3.17)
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The equations for the 4 types of Riq-Fat-Ds complex formed on cell membrane, RFS,

RFpS, RFSp,RFpSp, share the same form with different kinetic parameters. Consider

RFS as an example:

dRFS
i
m

dt
= k+

RFSR
i
cFS

i
m − k−RFSRFS

i
m − k+

WRW
i
cRFS

i
m + (k−WR + kp)WRFS

i
m

+ k+
FSRS

i
mF

i−1
m − k−FSRFS

i
m − γRFSRFS

i
m

(3.18)

Wts-Dachs complex concentration:

dWAm
dt

= k+
WAAmWc − (k−WA + kd)WAm (3.19)

The equations for the 2 types of Wts-Dachs-Ds complex formed on cell membrane,

WAS,WASp, share the same form with different kinetic parameters. Consider WAS

as an example:

dWAS
i
m

dt
= k+

WAW
i
cAS

i
m − (k−WA + kd)WAS

i
m

− k+
FSWAS

i
mF

i−1
m + k−FSWAFS

i
m − k+

FS1WAS
i
mFp

i−1
m + k−FS1WAFpS

i
m

(3.20)

The equations for the 4 types of Wts-Dachs-Fat-Ds complex formed on cell membrane,

WAFS, WAFpS, WAFSp, WAFpSp, share the same form with different kinetic pa-

rameters. Consider WAFS as an example:

dWAFS
i
m

dt
= k+

WAW
i
cAFS

i
m − (k−WA + kd)WAFS

i
m + k+

FSWAS
i
mF

i−1
m − k−FSWAFS

i
m

(3.21)

The equations for the 2 types of Wts-Riq-Ds complex formed on cell membrane, WRS,

WRSp, share the same form with different kinetic parameters. Consider WRS as an

example:

dWRS
i
m

dt
= k+

WRW
i
cRS

i
m − (k−WR + kp)WRS

i
m

− k+
FSWRS

i
mF

i−1
m + k−FSWRFS

i
m − k+

FS1WRS
i
mFp

i−1
m + k−FS1WRFpS

i
m

(3.22)

The equations for the 4 types of Wts-Riq-Fat-Ds complex formed on cell membrane,
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WRFS, WRFpS, WRFSp, WRFpSp, share the same form with different kinetic pa-

rameters. Consider WRFS as an example:

dWRFS
i
m

dt
= k+

WRW
i
cRFS

i
m − (k−WR + kp)WRFS

i
m + k+

FSWRS
i
mF

i−1
m − k−FSWRFS

i
m

(3.23)

3.2 Parameter selection

Our model is based on partial differential equations (PDEs) and ordinary differential

equations (ODEs) and consists of 46 state variables and 40 independent parameters.

Compared with the number of state variables, the number of parameters is relatively

small. Several general and feasible strategies have been implemented to ensure the

minimal number of parameters used in the model. Firstly, the same parameters are

used for similar processes unless experimental observations suggest a difference. For

instance, the parameters for the binding process between Fat and Ds on adjacent cells are

exactly the same with those between Fat and Ds complex, as no evidence shows that the

interactions between Ds ICD and species within the cell have an impact on its binding

with Fat on adjacent cells. Secondly, experimental data suggests the difference in the

binding affinities for specific reactions in the system, and we select the corresponding

association and dissociation rates to be in accordance with differential affinities. Lastly,

we make use of common thermodynamic properties of molecules. For instance, molecules

with large molecular weight move slower if they belong to the similar type of protein

and their transport mechanisms are assumed to be the same. Slow movement usually

in turn leads to slower binding process.

As most of the kinetic parameters in the Hippo pathway are unknown at present,

we explored wide ranges of parameter space to understand the properties of the system.

Detailed systematic parameter exploration compatible with experimentally observed

behavior constitute an appropriate approach to tackle the lack of measured parameters.

The model is insensitive to a large number of parameters when varied independently over

3 orders of magnitude. Most of the system behaviors can be observed in all these wide

ranges of parameter choice. The observations are relatively sensitive to some parameters

which will be discussed in detail later. All the parameters in the model parameters are

listed in Table 3.2.3.
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3.2.1 Parameters for binding processes

The binding rates in the model can be categorized into four types based on the types

of interactions.

1. The binding rate constant between a cytosolic species and a membrane species

with a conventional unit M−1min−1: k+
WA, k+

WR, k+
RS , k+

RFS

2. The binding rate constant between two cytosolic species with a conventional unit

M−1min−1: k+
WY , k+

JF , k+
JS

3. The binding rate constant of a species from cytosol to membrane with a conven-

tional unit m·min−1: k+
F , k+

S , k+
A

4. The binding rate constant between two membrane species with a conventional

unit m2mol−1min−1: k+
FS , k+

FS1, k+
FS2, k+

FS3, k+
AS , k+

AFS

Here M is the unit of concentration, and m is the unit of length.

For comparison of the magnitudes of the rate constants for different geometries, it

is convenient to convert all the rate constants and concentrations to effective three-

dimensional rate constants. To do that, we divide two dimensional concentrations by

the membrane thickness ( ε ∼ 10nm) to give an estimated local volume for cell surface

components, and convert them to three-dimensional concentrations. We also multiply

the two dimensional rate constants ( k+
FS , k+

FS1, k+
FS2, k+

FS3, k+
AS , k+

AFS ) by the mem-

brane thickness, and divide the binding rate constants from cytosol to membrane (k+
F ,

k+
S , k+

A) by the membrane thickness. Therefore, all the binding rates and concentrations

have the same units hereafter. This also explains why the boundary conditions have to

be modified by the membrane thickness.

Knowledge of the rate constants of the forward and backward reactions are required

to describe the behaviors of the system. In our model, these rates are restricted to be

within the typical ranges for protein-protein interactions. For example, the association

of protein molecules into dimers for larger complexes occurs in typical rate constants

of the order of 10−3 to 10 nM−1min−1. The equilibrium dissociation constant KD for

ligand-receptor binding process has the typical range 0.1 ∼ 103nM with the range of

association rate constant 10−3 ∼ 10nM−1min−1 and of the dissociation rate constant

10−3 ∼ 1min−1 [89].
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In addition, all the reaction rates are constrained to be no faster than predicted by

the diffusion limit. The coupling reactions between two membrane species are usually

diffusion-limited. The diffusion on cell membrane is much slower than that in cytosol,

which means that the limit of binding rate constant between membrane species is much

smaller, typically 2 orders of magnitude smaller. However, studies have shown that

membrane localization can amplify the number of complexes that are formed between

the signaling partners. When bound molecules are confined to a small volume, it results

in 100-1000 fold increase in the apparent affinity [90]. Fat and Ds are localized to AJs,

and therefore, it is possible that the binding between them can be much faster than

normal binding between two membrane species.

In addition, the relative binding rates are assigned to be consistent with experimental

observations. For example, as experiments show that Fat binding to Ds enhances the

interaction between Ds and Riq, a higher forward rate is assigned for the binding process

between Fat-Ds complex and Riq in comparison with that between Ds and Riq.

3.2.2 Diffusion coefficients

The simplest correlation based on molecular weights, temperature, and viscosity pro-

vides some basis for estimation of the diffusion coefficients. The Stokes –Einstein

–Sutherland equation for diffusion of spherical particles through a liquid with low

Reynolds number is given by

D =
kBT

6π η r

where D is the diffusion constant; kB is Boltzmann’s constant; T is the absolute tem-

perature; η is the dynamic viscosity; r is the radius of the spherical particle.

Although we do not attempt to use this equation to estimate diffusion coefficients

in the model, it shows that D ∝ 1
M

1/3
since r ∝ M1/3 . Therefore, for similar types of

molecules such as cadherins Fat and Ds, their diffusion coefficients maintain the ratio

of the cubic root of the ratio between their molecular weights. For different types of

molecules, the general assumption that molecules with larger weights move slower still

holds.
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3.2.3 Production and decay rates

A typical columnar cell in a wing disc at the larval stage can be approximated by a

cylinder with a diameter ∼ 4µm and a height ∼ 20µm, which gives the cell volume

∼ 250µm3. Receptor synthesis rate 102 ∼ 104min−1 then can be converted to 1 ∼
100nMmin−1. The typical range for receptor degradation rate is 10−3 ∼ 0.1min−1

[89].

3.3 Numerical Methods

For non-linear highly coupled PDEs, it is almost impossible to analytically demonstrate

that there is only one steady state for the system . However, we did use a variety of

initial conditions for simulations to ascertain that all reach the same steady-state. The

PDEs are discretized using standard finite difference methods. The numerical errors

arising from discretization are well controlled so that they do not alter our simulations.

The periodic boundary conditions are used for the intercellular signaling terms, and

the number of cells is large enough, such that the equations for every cell in the model

are the same. When simulating patches of mutant cell clones, we choose the size of

clones so that they are large enough for variations in patterns between cells to decay

before reaching the edge of the simulated array in order to prevent these variations from

interfering with each other.

3.4 Computational Results

The Hippo pathway is complicated yet interesting as all the components are highly

connected and many of them play multiple roles, and the resulting nonlinear behaviors

hamper an intuitive analysis. As opposed to some oversimplified models, our model is

unique in the detail with which we model the Fat/Ds signaling via the Hippo path-

way. By accounting for the specific interactions of proteins using mass action kinetics,

we are able to explain many phenotypes associated with this pathway, including the

non-monotonic effects of Fat, Ds and Fj on growth, the non-autonomous effect induced

by cell clones, and etc. We find that the nature of this signaling pathway, whether it

simulates or inhibits growth, depends on many factors, such as the strength of different
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interactions, and the level of enzymatic activities of kinases. Our detailed model incor-

porates these quantitative properties and makes predictions with reasonable values of

parameters.

Our model includes a large system of nonlinear reaction-diffusion equations, and it

is important to first understand the structure of the system, which consists of three

modules, upstream regulators Fat and Ds, intermediate transducers Dachs and Riq,

and downstream effectors Wts and Yki. We analyze each of the modules as well as

the communication between them, and predict the observed outcomes under various

choices of parameters. The mechanisms of signal transduction within the cell and of

signal transport between cells are discussed.

3.4.1 Non-monotonic Response

We begin by modeling single cell behaviors that allows us to explore the interactions

of different components in the signaling pathway in the cell. If, for the present, we

neglect the concentration gradients of Ds and Fj and assume uniform distributions,

which appears to be a reasonable assumption especially in the wing pouch based on

experimental observations, all the cells in the disc are identical, i.e., the state of this

signaling pathway in each cell is the same and cells respond in the same way to the

intervention. This will reflect the behaviors of this signaling pathway in the disc-wide

experiments, where the expression of genes are changed in all cells across the entire disc.

Under these circumstances, for each cell, the concentration of either Fat or Ds on cell

membrane is exactly same with that on its neighbors. The reciprocal binding process

between Fat and Ds on adjacent cells can be modeled as within a cell where Fat and Ds

bind to each other. The full model is reduced to a single-cell model, which provides a

simple and valid way to explore the behaviors of this pathway to disc-wide experiments.

With this reduction, we investigate Fat/Ds signal transduction via the Hippo path-

way within the cell. We explore the steady-state concentration of Yki as a function of

the production rates of Fat and Ds, and examine how upstream signals are transmitted

downstream, resulting in the complex response of cell growth.

The color in Figure 3.4 corresponds to the concentration of the growth signal, Yki,

as a function of Fat and Ds production rates, which are uniform inputs into the cell.

Although details of this map depend on parameters, it has certain generic features
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Figure 3.4: Predicted growth response measured through averaged Yki concentration

as a function of Fat and Ds expression levels.

that we want to highlight. Slicing horizontally across this signal transduction map,

as indicated by the dashed line in the figure generates a predicted growth curve as

a function of Fat expression level at a normal Ds background. The curve shown in

Figure 3.5 is non-monotonic and predicts that overexpression of Fat causes undergrowth,

complete loss of Fat causes overgrowth, and more importantly, partial loss of Fat reduces,

rather than enhances, growth. This is in good agreement with experimental observations

[47].

Furthermore, the model predicts that although reducing Fat expression level mono-

tonically decreases the level of localized Riq and increases the level of localized Dachs,

the interactions between them and the corresponding nonlinearities lead to the opposite

outcomes from partial and complete loss of fat as shown in Figure 3.6. The decline in

the level of localized Riq dominates when a fraction of fat is lost, and hence leads to rise

in Yki activity. In contrast, when fat is completely knocked out, it completely releases

the inhibition on Dachs localization and thereby activates Yki activity. The different

sensitivities of Dachs and Riq to the Fat expression level follow from the fact that Fat

affects Dachs and Riq through distinct mechanisms. In addition, upregulation of Dachs

localization in fat loss-of-function mutants is primarily due to the loss of Fat-Ds com-

plex, while downregulation of Dachs localization in fat overexpression discs is mainly

due to the increase of localized Fat on membrane. This reflects the relatively different
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Figure 3.5: Horizontal slice of the growth response map shows a non-monotonic depen-

dence of growth on Fat expression level

inhibitory strength of Fat and Fat-Ds complex on Dachs localization.
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Figure 3.6: The concentrations of localized Dachs (left) and Riq (right) on cell membrane

change with respect to Fat expression level.

The model also reveals a non-intuitive effect of the Ds expression level on growth.

Previous work has shown that overexpression of Ds represses Yki activity [49, 48], and

others have found that it simulates Yki activity [44]. Our results suggest that this

paradox is due to difference in Ds overexpression level, which is likely to be caused

by using different Gal4 drivers in experiments. Slicing vertically through the previous
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response map generates a predicted growth curve as a function of Ds expression level

at a normal Fat background shown in Figure 3.7. While strong overexpression of Ds

inhibits Yki activity and growth, moderate or mild overexpression of Ds elevates Yki

activity and stimulates cell growth. Moreover, the threshold that switches the role of

Ds in growth depends on the amount of Fat. Furthermore, the model predicts the

occurrence of a non-monotonic effect on growth when Ds function is lost, i.e. complete

loss of Ds causes overgrowth, and partial loss of Ds reduces growth. This is remarkably

similar to the observation when Fat function is lost, emphasizing the similarity of two

atypical cadherins. It can be easily tested by experiments.
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Figure 3.7: Vertical slice of the growth response map shows a non-monotonic dependence

of growth on Ds expression level.

Another interesting prediction of the model is that double mutants of fat and ds

overgrow more than either of single mutants (Figure 3.9), which is consistent with

experimental observations. Previous work has shown that knockout of ds potentiates

the overgrowth in fat mutants, but failed to elucidate the mechanistic basis. Our model

provides a mechanistic explanation and suggests that the interaction between Ds and

Dachs is responsible for the double mutant phenotype. In the model, we assume that the

Ds-Dachs complex decays faster than Dachs alone on the cell membrane, which gives the

interaction between Ds and Dachs a dual role; with Fat present, the localization of Dachs

on the cell membrane is greatly suppressed, and thereby the interaction between Dachs

and Ds favors the localization of Dachs. However, in the absence of Fat, the localized
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Figure 3.8: The concentrations of localized Dachs (left) and Riq (right) on cell membrane

change with respect to Ds expression level

Dachs on the membrane is in abundance, and this interaction promotes the degradation

of localized Dachs and hence reduces the amount of Dachs on cell membrane. In other

words, the effect of Ds on Dachs is Fat-dependent, and is positive with Fat and negative

without Fat.
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Figure 3.9: In fat mutant background, yki activity changes with respect to Ds expression

level. It is generated from slicing the growth response map in Figure 3.4 vertically at

zero Fat production rate
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Figure 3.10: In fat mutant background, the concentrations of localized Dachs (left) and

Riq (right) on the cell membrane change with respect to Ds expression level

3.4.2 Non-autonomous Response

Apart from the fact that Fat and Ds signal through the Hippo pathway to regulate

cell growth, they also participate in cross-talk between cells, and are involved in signal

transport across the disc. Here we focus on the way the cell detects and responds to

the cues from its neighbors via the Fat/Ds signaling pathway, which in turn can mod-

ulate its growth. Non-autonomous responses, phenotypes induced in wild-type cells by

mutant cells, have been observed in a variety of experiments when Fat/Ds signaling

is disrupted in a patch of clone cells in an otherwise normal disc. For instance, ex-

periments have shown that overexpression of Ds in cell clones stimulates Yki activity

and growth both autonomously and non-autonomously. It induces hyperactivity of Yki

and overexpression of target genes in cells around the boundary between wild-type and

clone cells [9] that gradually declines away from the boundary. The predictions of our

full model shown in Figure 3.11 incorporating cell-cell interactions match experimental

observations. Moreover, the model predicts that the non-autonomous hyperactivity of

Yki is due to elevation of localized Dachs concentration on the cell membrane, whereas

the autonomous effect on Yki activity in clone cells is due to an increase in localized Riq

concentration on the cell membrane (Figure 3.12).The non-autonomous effects suggest

that cells have the potential to respond to abnormal activity and adjust growth. Inter-

estingly, overexpression of Ds evenly in cell clones in a uniform expression of Fat and Ds
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background induces asymmetric localization of Dachs within cells around the boundary.

This is consistent with previous observations on cell polarity. Of course, it is caused

by the asymmetric localization of Fat-Ds complex on the cell membrane. However, a

considerable amplification is observed from Fat/Ds to Dachs.
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Figure 3.11: Predicted autonomous and non-autonomous growth responses around the

boundary induced by overexpressing Ds in a cell clone. Growth response is measured

by averaged Yki concentration. An array of 21 cells in total are simulated with a patch

of 7 clone cells in the middle between the two vertical dashed lines
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Figure 3.13: The effect of Ds expression level in clone cells on autonomous and non-

autonomous growth responses measured by averaged Yki concentration reflected in

color. 21 cells are simulated with a patch of 7 clone cells in the middle. The dashed

line represents that Ds expression level in clone cells is the same with that in wild-type

cells.

Figure 3.13 shows a colormap of the variation of Yki concentration in space, which

represents variation in autonomous and nonautonomous responses, produced by chang-

ing the Ds expression level in clone cells. Each horizontal slice corresponds to an array

of 21 cells where Ds is locally overexpressed in 7 clone cells at the center, and differ-

ent horizontal slices correspond to different Ds expression level in clone cells. With Ds

overexpression cell clones where Ds expression level is higher than in wild-type cells, al-

though Yki hyperactivity in cells around the boundary between wild-type and clone cells

becomes more pronounced as Ds expression level increases, non-autonomous response

extends further from the boundary a bit but not significantly, and can be observed 2 ∼
4 cells outside the cell clone. This agrees well with experimental observations, and sug-

gests that cells maintain a robust response to abnormal input signal from its neighbors

indicated by the difference in Ds expression level. In addition, the colormap shows that

complete loss of Ds in clone cells induces non-autonomous response in wild-type cells,

and simulates Yki activity autonomously. However, the Yki concentration in clone cells
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is uniform, which is different from the autonomous response induced by Ds overexpres-

sion clone cells, where Yki concentration is gradually declining from the boundary to the

inside of the clone. This indicates that Ds is essential for cells to respond to the bound-

ary signal, which is consistent with experimental results [9]. Furthermore, the colormap

also shows that partial loss of Ds in cell clones can elicit similar autonomous and non-

autonomous responses as overexpression of Ds. Therefore, we go further and predict

that the boundary effect can be activated as long as Ds is present and Ds expression

level differs in two adjacent cells. This can be tested by experiments.

3.4.3 The role of Fj

Fj has played multiple roles in the Hippo pathway. One is to facilitate cell-cell com-

munication through phosphorylation of both Fat and Ds, which have opposite effects

on binding processes between each other. The other is to provide a feedback loop for

the signaling pathway. Of course these two effects may contribute significantly to cell

polarization as previous studies suggest. Here we concentrate on their impact on cell

signaling. The model predicts that either overexpression of Fj or loss-of-function of Fj

leads to reduction in growth measured by Yki concentration, and the impact of interfer-

ing Fj expression has relatively mild effect on Yki activity in compared with interfering

Fat or Ds expression. This is consistent with experimental observation.
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Figure 3.14: The effect of Fj on growth measured by Yki concentration
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3.4.4 Signal Propagation

Propagation of the boundary effect, especially the non-autonomous response, is typically

seen to reach 2 ∼ 4 cells away from the boundary between clone and wild-type cells. The

interaction between Fat and Ds controls signal transport between cells, and the intra-

cellular processes regulate signal transduction within a cell. Together, they determine

the spatial response to cell clones and how far the boundary effect propagates.

The interaction between Fat and Ds in our full model is modified by Fj and gets

complicated as they also interact with downstream factors. For simplicity without loss

of generality, here we present the computational analysis of a general model of reciprocal

binding processes between two species (heterodimer formation) and explore the impact

of parameters on signal propagation in the disc. The following analysis is restricted to

two species that form heterodimers on opposing cell membranes and mediate cell-cell

interaction.

Below we will elaborate upon this general view and zoom into specific processes that

influence signal transport between cells, and discuss respectively how transport within a

cell (diffusion), binding processes (speed and affinity), and degradation processes (decay

rate) affect the boundary effect propagation. The predictions of the model show that the

boundary effect induced by overexpression of Ds in cell clones, including autonomous and

non-autonomous responses, are remarkably stable as the nature of signal propagation

does not change when the parameters for different kinetic processes are changed within

an order of magnitude, although the degree and extent are affected. That is to say, it

maintains a sensitivity over a relatively broad range of parameters but it is not highly

sensitive to possible fluctuations.
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At steady state, the governing equations are the following:

Fat concentration in cytosol:

DF
∂2F ic
∂x2

+ αF − βFF ic = 0 (3.24)

with boundary conditions:

−DF

ε

∂F ic
∂x
|xi = −k+

FF
i
c1 + k−FF

i
m1

−DF

ε

∂F ic
∂x
|xi+1 = k+

FF
i
cn − k

−
FF

i
m2

Ds concentration in cytosol:

DS
∂2Sic
∂x2

+ αS − βSSic = 0 (3.25)

with boundary conditions:

−DS

ε

∂Sic
∂x
|xi = −k+

S S
i
c1 + k−S S

i
m1

−DS

ε

∂Sic
∂x
|xi+1 = k+

S S
i
cn − k

−
S S

i
m2

Fat concentration on cell membrane:

k+
FF

i
c1 − k

−
FF

i
m1
− k+

FSF
i
m1
Si−1
m2

+ k−FSFS
i−1
m2
− γFF im1

= 0 (3.26)

k+
FF

i
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−
FF

i
m2
− k+

FSF
i
m2
Si+1
m1

+ k−FSFS
i+1
m1
− γFF im2

= 0 (3.27)

Ds concentration on cell membrane:

k+
S S

i
c1 − k

−
S S

i
m1
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FSS
i
m1
F i−1
m2

+ k−FSFS
i
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− γSSim1

= 0 (3.28)

k+
S S

i
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−
S S

i
m2
− k+

FSS
i
m2
F i+1
m1

+ k−FSFS
i
m2
− γSSim2

= 0 (3.29)

Fat-Ds concentration on cell membrane:

k+
FSF

i−1
m2

Sim1
− k−FSFS

i
m1
− γFSFS

i
m1

= 0 (3.30)

k+
FSF

i+1
m1

Sim2
− k−FSFS

i
m2
− γFSFS

i
m2

= 0 (3.31)
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Diffusion

Physically, transport from one location to the other on cell membrane, which allows

communication between molecules at different locations on the cell membrane, is es-

sential for the boundary effect propagation. In the model, transport between locations

is represented by diffusion. Thus, as expected, faster diffusion leads to further signal

propagation from the boundary between wild-type and clone cells shown in Figure 3.15.

When one side of the cell detects the abnormality of its neighbors via heterodimer for-

mation on the membrane, the corresponding change on the other side is more sensitive

when the diffusion coefficient is increased.

We are aware that in reality, transport between locations could be via either trans-

port in cytosol or movement on the cell membrane, whereas transport via cytosol is the

only way in our model since there is no diffusion on the cell membrane. However, in

general, movement such as diffusion in the cytosol is much faster than that on the cell

membrane, and thereby it is likely that communication via diffusion in the cytosol that

discussed in our model dominates. In addition, it should be noted that in reality signal

transport in a cell is more complex than simple diffusion. Here diffusion coefficient can

be regarded in general as a measure of molecular movement, and we expect that mech-

anisms that facilitate molecular movement will promote boundary signal propagation.
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Figure 3.15: Signal propagation in response to the change of diffusion coefficients of

Fat and Ds in cytosol on . Left:DF = 14µm2/min,DS = 16µm2/min ; Right: DF =

1.4µm2/min,DS = 1.6µm2/min
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Membrane localization

To explore how membrane localization processes influence signal propagation, we ex-

amine two cases: 1) speeding up both on (from cytosol to membrane) and off (from

membrane to cytosol) rates at a fixed ratio; and 2) varying the ratio of on to off rates.

Firstly, expediting membrane localization processes without changing the affinity

enhances the boundary effect on both sides of the boundary in extent and in amplitude

shown in Figure 3.16. Mathematically, it is due to the increase of mass flux from cytosol

to membrane.
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Figure 3.16: Signal propagation in response to the change of the speed of the binding

processes from cytosol to membrane. Left: k+
F = k+

S = 1min−1, k−F = k−S = 0.1min−1;

Right: k+
F = k+

S = 10min−1, k−F = k−S = 1min−1

We then vary the ratio of on to off rates by changing on rates at a fixed off rate, and

find that there exists an optimal on rate that results in the most prominent boundary

effect, as shown in Figure 3.17. Moreover, the optimal ratio of on to off rates depends

on the heterodimer process.

Heterodimer (Fat-Ds) formation

To examine the impact of heterodimer formation, we tested the model in two circum-

stances: 1) speeding up the process without changing the affinity; 2) using three different

binding affinities.

Speeding up forward binding and backward dissociation rates of Fat-Ds heterodimer
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Figure 3.17: Signal propagation in response to the change of the on rates (affinities)

from cytosol to membrane. Left: k+
F = k+

S = 0.1min−1; Middle(base): k+
F = k+

S =

1min−1; Right: k+
F = k+

S = 10min−1

formation simultaneously without changing binding affinities slightly enhances the bound-

ary effect (results are not shown here). Meanwhile, similarly, we use three different

binding affinities by varying the forward rates at a fixed backward rate, and find that

there exists an optimal forward rate which results in the most prominent boundary ef-

fect shown in Figure 3.18. The optimal value of k+
FS depends on the amount of Fat and

Ds available shown in Figure 3.19.
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Figure 3.18: Signal propagation in response to the change of forward binding rates

(affinities) between Fat and Ds on the membrane. Left: k+
FS = 0.02nM−1min−1; Middle

(base): k+
FS = 0.2nM−1min−1; Right: k+

FS = 2nM−1min−1

Degradation processes

We also look at the impact of degradation rates on signal propagation, and find that

they affect the boundary effect in a reverse manner, i.e. increasing degradation rates
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Figure 3.19: Each figure represents how the amplitude of the boundary effect mea-

sured by the change of Fat-Ds concentration responds to the change of binding affini-

ties between Fat and Ds on the membrane. Left: αF = αS = 40nM · min−1

(normal), αS = 80nM · min−1(clone); Right: αF = αS = 4nM · min−1 (normal),

αS = 8nM ·min−1(clone)

reduce the degree and/or spatial extent of the non-autonomous response, and vice versa.

Illustrations of the predicted responses are shown below.

Increasing the decay rates of Fat and Ds on cell membrane significantly decreases

the extent of the boundary effect outside the clone shown in Figure 3.20.
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Figure 3.20: Signal propagation in response to the change of decay rates of Fat and Ds

on the membrane. Left:γF = γS = 0.02min−1 ; Right: γF = γS = 0.1min−1
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Increasing the decay rate of Fat-Ds complex primarily reduces the amplitude of the

boundary effect shown in Figure 3.21.
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Figure 3.21: Signal propagation in response to the change of decay rates of Fat-Ds

complex on the membrane. Left:γFS = 0.02min−1 ; Right: γFS = 0.1min−1

Increasing the decay rates of Fat and Ds in cytosol reduces the boundary effects on

both sides shown in Figure 3.22.
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Figure 3.22: Signal propagation in response to the change of decay rates of Fat and

Ds in cytosol. Left: βF = βS = 0.1min−1; Right: βF = βS = 1min−1
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3.5 Discussion

Given the complex behaviors of this highly coupled signaling network, qualitative argu-

ments fall short of providing insights, and reliable and testable computational models

are required. The goal of our model is to provide a framework that would help to

interpret the complex phenotypes associated with the pathway and make testable pre-

dictions that can guide further experimental study. With the model we developed, we

have reproduced all primary experimental observations, such as non-monotonic effects

in disc-wide intervention of Fat and Ds expression, and non-autonomous effects induced

by cell clones. The model suggests that those seemingly inexplicable observations result

from the perturbation of the delicate balance between positive and negative control from

intra- and intercellular signals. Moreover, we have found that the regulation of Dachs

and Riq location to the cell membrane plays an important role in both non-autonomous

and non-monotonic effects. The model suggests a difference between autonomous and

non-autonomous response simulated by clone cells with disrupted Fat/Ds signaling path-

way. The impact of various kinetic processes on the boundary effect propagation are

also explored. The model also provides a mechanistic explanation for the fat, ds double

mutant phenotype, which supports our hypothesis that Ds interacts with Dachs. The

presented work addresses the limitation of previous models due to lack of mechanis-

tic details. The fact that the model predicts all the primary characteristic phenotypes

demonstrates the feasibility of the underlying biological model.

The non-monotonic response of Fat on growth and the non-autonomous response

induced by overexpression of Ds in cell clones has also been explained by a recent model

which assumes mutual inhibition between the opposite orientations of the heterodimers

while self-promotion of the same orientations [47]. While it sounds appealing, there is

little experimental evidence in support of such assumptions. In contrast, our model does

not assume such roles and yet predicts non-monotonic and non-autonomous responses.

We make use of the positive regulatory step from Ds via Riq and the potential interac-

tion between Ds and Dachs that is detected in vitro but not yet in vivo, and propose

the similar interaction with further hypothesis concerning the effect of interaction on

degradation, focusing efforts on elucidating these interactions would generate important

mechanistic insights.
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A concern following our model and analysis is the role of dimension in model pre-

dictions. As all the major experimental observations can be presented in one dimen-

sional model, our model is a feasible and rational start to understand the behaviors

of this pathway. This is an important step toward the overall goal of developing a

mechanistically-realistic model. Of course, adopting the model into two or three di-

mensions will be one of our future directions. We suspect that it might not change our

conclusions, but rather affect the strength and/or extent of observations that we have

discussed.

It is also important to note that the movement of species in the cytosol has been

modeled as diffusion while in reality more complex mechanisms may be involved. Al-

though our results are not sensitive to diffusion coefficients, we have pointed out that

faster movement for species in cytosol favors further propagation of the boundary effect.

There might be a complex mechanism such as active transport involved which allows

the big molecules such as Fat and Ds to speed up their movement and hence facilitate

signal propagation.

In the future, we will study the mechanism underlying the temporal phenomenon, i.e.

the non-autonomous effect diminishes in time and eventually vanishes, as is observed

experimentally. Furthermore, the non-autonomous response also occurs in neighbor

cells when Dpp signaling is disrupted [54, 91], which implies crosstalk between the

Hippo and morphogen pathways. We will integrate different signal pathways and study

how they interact and are balanced. Our mathematical model will provide a systematic

characterization of the signaling pathways governing tissue patterning and growth in

the disc. It will be easy to vary parameters in each pathway to test the predictions

of the model against observations. This in turn can direct more targeted experiments,

and accelerate progress toward a better integrated understanding of the mechanisms

of patterning and growth control. As disruption of the Hippo signaling pathway is

associated with many cancers, studies on this pathway might also provide insights into

cancer development and potential therapeutics for treatment of the diseases.
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Name Description Values Units

Production rates

αF Fat production rate 8 nM ·min−1

αS Ds production rate 4 nM ·min−1

αJ Fj production rate 6 nM ·min−1

αA Dachs production rate 5 nM ·min−1

αR Riq production rate 4 nM ·min−1

αW Wts production rate 4 nM ·min−1

αY Yki production rate 2 nM ·min−1

Forward binding rates from cytosol to membrane

k+
F Binding F ic → F im 1 min−1

k+
S Binding Sic → Sim 1 min−1

Forward binding rates between two membrane species

k+
FS Binding F im + Si−1

m → FS
i−1
m 4× 10−3 nM ·min−1

k+
FS1 Binding Fpim + Si−1

m → FpS
i−1
m 2× 10−2 nM ·min−1

k+
FS2 Binding F im + Spi−1

m → FSp
i−1
m 2× 10−3 nM ·min−1

k+
FS3 Binding Fpim + Spi−1

m → FpSp
i−1
m 4× 10−3 nM ·min−1

k+
AS Binding between Am and all the forms of Ds on the membrane 1× 10−2 nM ·min−1

k+
AFS Binding between Am and all the forms of Fat−Ds complex on the membrane 1× 10−2 nM ·min−1

Forward binding rates between membrane and cytosolic species

k+
RS Binding between Rc and all the forms of Ds on the membrane 0.01 nM ·min−1

k+
RFS Binding between Rc and all the forms of Fat−Ds complex on the membrane 0.1 nM ·min−1

k+
WR Binding between Wc and all the forms of Ds−Riq, Fat−Ds−Riqon the membrane 0.01 nM ·min−1

k+
WA Binding between Wc and all the forms of Dachs,Ds−Dachs, Fat−Ds−Dachs on the membrane 0.02 nM ·min−1

Forward binding rates between two cytosolic species

k+
JF Binding between Fj and Fat 1 nM ·min−1

k+
JS Binding between Fj and Ds 1 nM ·min−1

k+
WY Binding between Wc and Yc and Y pc 1 nM ·min−1

Diffusion coefficients

DF Diffusion, Fat 14 µm2 ·min−1

DFp Diffusion, Phosphorylated Fat 12 µm2 ·min−1

DS Diffusion, Ds 16 µm2 ·min−1

DSp Diffusion, Phosphorylated Ds 14 µm2 ·min−1

DJ Diffusion, Fj 20 µm2 ·min−1

DJF Diffusion, Fat-Fj complex 12 µm2 ·min−1

DJS Diffusion, Ds-Fj complex 14 µm2 ·min−1

DA Diffusion, Dachs 10 µm2 ·min−1

DR Diffusion, Riq 10 µm2 ·min−1

DW Diffusion, Wts 20 µm2 ·min−1

DY Diffusion, Yki 20 µm2 ·min−1

DY p Diffusion, Phosphorylated Yki 18 µm2 ·min−1

DWY Diffusion, Wts-Yki complex 18 µm2 ·min−1

Table 3.2: Model parameters. All the backward dissociation rates and dephosphoryla-

tion rates are set to be 0.1min−1, and the phosphorylation rates are 0.5min−1. All the

decay rates are 0.1min−1 except for Ds-Dachs complexes which have the decay rate of

0.2min−1.



Chapter 4

FRAP

To demonstrate the effect of different model assumptions and different ways of utilizing

the data from a FRAP experiment, we avoid the above difficulties of unknown mech-

anisms and other factors by generating data computationally for a known model with

known parameters and then testing our recovery of parameters from the data. By using a

recovery model identical to the theoretical model, we show that the choice of observation

time can significantly affect the estimates. We also show that changing the bleaching

region to rebalance the diffusion and binding processes can significantly improve the

estimates. By varying the recovery model from the theoretical model, we investigate

whether the simplified recovery model can, in some circumstances, appropriately de-

scribe the FRAP process, the relationship between parameters in the theoretical model

and those in the recovery model, and under what conditions some processes can be

neglected in the recovery model. Lastly, we introduce sensitivity analysis as a technique

to better understand FRAP data and to improve FRAP model formulation.

In the following section we begin with a simple example in which the parameters

of a complex model can be related to parameters in a simplified description. We then

develop and solve the evolution equation from which the parameters are estimated

in a standard experiment, and we describe the computational setup and the analysis

of the data. We provide a detailed analysis of simplified diffusion-reaction models of

FRAP, and use these to show how the neglect of processes in FRAP lead to erroneous

estimation. For simplicity we assume throughout that diffusion is the only spatial

transport process involved (internalization of receptor-ligand complexes is allowed, as

70
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discussed later). We provide the solution for models with influx (or production) and

decay. We further restrict attention to geometrically one-dimensional systems, but

the method can easily be generalized to 2D or 3D, and can be used to study more

complicated questions in FRAP, for example, when binding is nonlinear. We believe it

advances our understanding of the limitations of the existing FRAP experiments and

models, helps to reconcile the parameter estimates in biological systems, and will direct

the improvement of the FRAP technique.

4.1 The mathematical framework for parameter estima-

tion and model testing

We begin the mathematical description of FRAP with a simplified geometric description

of a wing disc for the purpose of (i) emphasizing the assumptions implicit, but rarely

discussed, in many FRAP analyses, and (ii) showing that coefficients extracted for a

simple description may reflect more complicated processes than the usual interpretation

of parameters would suggest. A general formulation of the linear reaction-diffusion sys-

tems that govern FRAP analysis is given in the Appendix 4.1.1. As shown in Figure

2.1, the geometry of the disc is complex, and morphogen transport in the disc may

involve several different mechanisms that are discussed later, but for simplicity we con-

sider a thin fluid layer (Figure 4.1), equivalent to the lumen in the wing disc, and admit

diffusion, binding to surface-bound receptor, and internalization and re-expression of re-

ceptors to emphasize assumptions implicit in most analyses. We assume that the surface

reactions involve only binding to a receptor and decay of the receptor-ligand complex,

and to simplify the analysis, suppose that whenever a receptor-ligand complex is inter-

nalized it is replaced by a bare receptor [20]. We measure receptor and receptor-ligand

concentrations in molecules or moles per unit area, and we assume that the steps by

which an occupied receptor is internalized and a free receptor is recycled to the surface

reach a steady state rapidly compared with other processes, which implies that the total

amount of receptor is constant at every point on the surface z = 0, i.e., R+RC = RT

where RT is a constant.

The surface z = 0 can be regarded as the outer cell boundary of a sheet of cells

covered by a thin layer of fluid, as in a simplified description of the Drosophila wing
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Figure 4.1: The geometry of a thin fluid layer over receptors embedded in a surface.

Modified from [14].

disc. The lengths in the x, y and z directions are Lx, Ly, and Lz, respectively, and we let

C be the concentration of a morphogen in the fluid and R the concentration of receptor

on the surface z = 0. Suppose, as in the earlier 1D example, that there is a fixed influx

of C on the boundary x = 0, and zero flux on the remaining faces except z = 0; then

the governing equations can be written as follows.

∂C

∂t
= D∆C in Ω (4.1)

∂R

∂t
= −k+RC + (k− + ke)RC on z = 0 (4.2)

∂RC

∂t
= k+RC − (k− + ke)RC on z = 0 (4.3)

−D∂C
∂z

= −k+RC + k−RC on z = 0 (4.4)

−D∂C
∂x

= j on x = 0 (4.5)

D
∂C

∂x
= 0 on x = L (4.6)

where k+ and k− are the binding and dissociation rates between ligand and receptor,

and ke is the decay rate of the receptor-ligand complex.

This system can be simplified by defining the dimensionless variables u = C/C0,

v = R/RT , w = RC/RT , the scaled coordinates ξ = x/Lx, η = y/Ly and ζ = z/LZ ,
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and the dimensionaless time τ = t/T . The system then becomes

∂u

∂τ
=

DT

L2
x

(
∂2u

∂ξ2
+
L2
x

L2
y

∂2u

∂η2
+
L2
x

L2
z

∂2u

∂ζ2

)
in Ω (4.7)

∂v

∂τ
= −Tk+C0RTuv + T (k− + ke)(1− v) at ζ = 0 (4.8)

−
(
DC0

Lz

)
∂u

∂ζ
= −k+RTC0uv + k−(1− v) at ζ = 0 (4.9)

−∂u
∂ξ

=
jLx
DC0

at ξ = 0 (4.10)

∂u

∂ξ
= 0 at ξ = 1 (4.11)

In view of the boundary conditions the solution must be constant in the η direction at

steady state, and we assume this for the transient problem as well. Furthermore, since

the fluid layer is thin Lz << Lx, Ly, and the equations can be averaged over ζ. In this

case the equations reduce to

∂ū

∂τ
=

(
DT

L2
x

)
∂2ū

∂ξ2
− Tk+RT ūv̄ +

(
Tk−RT
C0

)
(1− v̄) in Ω

∂v̄

∂τ
= −Tk+C0ūv̄ + T (k− + ke)(1− v̄) at ζ = 0

(4.12)
−∂ū
∂ξ

=
jLx
DC0

at ξ = 0

∂ū

∂ξ
= 0 at ξ = 1

where ū and v̄ are the averages over ζ. At steady state the system reduces to

d2u

dξ2
= γ2 u

K + u
in Ω

−du
dξ

= J at ξ = 0 (4.13)

du

dξ
= 0 at ξ = 1

where u now stands for the average over ζ, and

K =
k− + ke
k+C0

γ2 =
keRTL

2
x

DC0Lz
J =

jLx
DC0

.
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If u << K then this reduces to

d2u

dξ2
= δ2u in Ω

−du
dξ

= J at ξ = 0 (4.14)

du

dξ
= 0 at ξ = 1

where

δ2 =
kek

+

k− + ke

RTL
2
x

DLz
≡ ks

RTL
2
x

DLz
.

The dimensionless solution u is

u(ξ) =
j1
δ

[
eδ(1−ξ) + e−δ(1−ξ)

eδ − e−δ

]
. (4.15)

The stationary distribution is characterized by two dimensionless parameters: δ and

J . The first is the square root of the ratio of a diffusion time scale τD and a kinetic

time scale τK ≡ k−1, and the second is the ratio of the input flux j to a characteristic

velocity defined by the diffusion constant and the decay rate. The former enters in the

shape function φ via the exponential terms and determines how rapidly the morphogen

concentration decays in space: the larger δ the more rapidly the solution decays from

the value at the source. Thus reducing the kinetic scale by reducing the half-life of the

morphogen, or increasing the diffusion time scale by decreasing the diffusion constant,

leads to sharper, more rapidly-decreasing spatial profiles. It should also be noted that

the second term in both the numerator and denominator of (4.15) arises from the finite

length of the domain, and can only be neglected if δ � 1.

While it is sometimes assumed that δ also controls the approach to the steady state,

the following shows that this is not correct. To illustrate this as simply as possible,

consider the transient version of (4.13), which reads

∂c

∂τ
=
∂2c

∂ξ2
− δ2c ξ ∈ (0, 1)

−∂c
∂ξ

= J ξ = 0 (4.16)

∂c

∂ξ
= 0 ξ = 1

c(ξ, 0) = 0. ξ ∈ (0, 1)
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The approach to steady is governed by the evolution of the difference w ≡ u − us,

where us is the steady state solution (4.15). This satisfies (4.16) with J = 0 and

w(ξ, 0) = −us(ξ), and the solution is

w(ξ, τ) =
∞∑
n=1

ane
−λnτ cosnπξ, (4.17)

wherein the constants an are determined by the steady-state solution. The exponential

decay rates λn are given by

λn = (nπ)2 + δ2 n = 1, 2, . . . (4.18)

and the smallest of these, λ1, defines the relaxation time of the slowest decaying mode

cos(πξ) in the transient solution. The reciprocal of this is a dimensionless relaxation

time, and converting it to dimensional form one finds that the relaxation time to the

steady state is given by

TR ≡
1

Dπ2

L2
+ k

=
1

π2

τD
+

1

τK

. (4.19)

This shows that either morphogen diffusion or morphogen decay can dominate the

relaxation process, and their effect is additive. The relaxation time increases with a

decrease in D or an increase in L, while the effect of the morphogen decay is independent

of the space scale. In the context of the Drosophila wing disc the half life of the

morphogen Dpp has been estimated as 45 min, and the diffusion coefficient is estimated

to be 0.1µm2/ sec [15]. For a disc of 50µ the diffusion factor in the denominator of

(4.19) is 0.0204, while the second factor is 0.022, which leads to a relaxation time of

about 24 minutes. On the other hand, if the diffusion coefficient is 20µm2/ sec [28]

the relaxation time is reduced to ∼ 0.25 minutes. While the basis for the disparity is

obvious in this example, the relaxation to a steady state following a perturbation could

be used experimentally to gain additional information about the underlying processes.

In case the smaller value of D obtains, diffusion and decay are balanced on the scale

of the wing disc, but in other systems the conclusion may be quite different. In the

context of Drosophila embryonic development, the half-life of the transcription factor

Bicoid has been estimated to range from ∼ 8 mins [92] to less than ∼ 30 mins [93],

and if we use 20 mins as an intermediate estimate, k = 0.05 min−1. Estimates of the
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diffusion coefficient range upward from 0.3µm2/ sec [93], and thus for the lowest D and

an embryo length of L = 500µm, the relaxation time of the slowest decaying mode is

∼20 mins, and is determined almost solely by the degradation rate.

Several assumptions are noteworthy. Firstly, u represents the average concentration

over the thickness of the fluid layer due to the averaging over ζ. This is an appropriate

description for most FRAP experiments, in which averaging over the ROI precedes

the parameter estimation, but it must be noted that receptor concentrations have to

be defined appropriately, and that the interpretation of binding constants reflects this.

Secondly, though the steady-state problem with binding and internalization leads to the

simple problem at (4.14), the parameter δ comprises several parameters that describe

binding and internalization, and thus interpreting this as a simple decay constant is

generally not valid.

4.1.1 The general framework

The general form of the system of reaction-diffusion equations that we shall use hereafter

have the following form.

∂c

∂t
= Dc∇2c+ R̄(c, p̄) in Ω (4.20)

n ·Dc∇c = J̄ on ∂Ω (4.21)

c(r, 0) = c0(r), (4.22)

Here the vector c = (c1, c2, · · · , cm) is the vector of chemical concentrations, Dc is

assumed to be a constant diagonal matrix, and J is a prescribed flux on∂Ω. Ω is a

bounded region in <q, q = 1, 2 with a smooth boundary and outward normal n. The

functions R̄i give the net rate of production of the ith species and they are herein

are always linear or quadratic polynomials in the ci’s. The vector p̄ is a parameter

vector, which can include the kinetic constants and perhaps species that appear in

the kinetic mechanism but do not change significantly on the time scale of interest.

As described in the preceding example, we can regard these equations as appropriate

for a thin fluid layer over a 1D or 2D domain. In applications to the wing disc the

geometry of the hexagonal packing of cells is more complex than the description above

and a mathematical description that accounts for the geometric complexity is far more

complex. A 2D model of the disc that incorporates this complexity is given in [94].
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This system can be nondimensionalized as follows. Let L be a measure of the size

of the system, Ci be a reference concentration for species i, and ω−1 be a time scale

characteristic of the reactions1 . Define the dimensionless quantities ui = ci/Ci, τ = ωt,

Di = Dci/ωL
2, and ξ = r/L, where r ≡ (x1, · · · , xq). The dimensionless governing

equations are
∂u

∂τ
= D∇2u+R(u, p) in Ω

n ·D∇u = J on ∂Ω

u(ξ, 0) = u0(ξ),

(4.23)

where D = diag{D1, D2, · · · , Dm}, Ji = J̄i/(ωCi), R(u, p) is the dimensionless form of

R̄(c, p̄), and Ω is scaled. If there are species that do not diffuse the corresponding Di

and Ji are zero, and unless stated otherwise, we assume that all boundary fluxes are

zero, i.e.,we impose homogeneous Neumann boundary conditions.

We show later that in many FRAP experiments the kinetics can be linearized, and

therefore in the majority of what follows we focus on linear kinetic models, and we write

the system (4.23) as

∂u

∂τ
= D∇2u+Ku

n · ∇u = 0, on ∂Ω (4.24)

u(ξ, 0) = u0(ξ)

This system has solutions of the form

u(ξ, τ) =
∞∑
n=0

yn(τ)φn (4.25)

where φn is a solution of the scalar eigenvalue problem

∇2φn = −α2
nφn

n · ∇φn = 0
(4.26)

and yn is given by

yn(τ) = e(K−α2
nD)τyn(0). (4.27)

1 In the simulations done later we set ω = 1 since the time scales of diffusion and kinetic processes
are unknown beforehand. Thus the units of Di are time−1 and similarly for the rate constants of linear
reactions.
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For a reasonable boundary the eigenfunctions φn form a complete orthonornal set under

the standard L2 inner product [u, v] =
∫
u(ξ)v(ξ)dξ, and the solution of (4.24) can be

written as [95]

u(ξ, τ) =
∞∑
n=0

e(K−α2
nD)τyn(0)φn(ξ.) (4.28)

The initial condition can be written

u0(ξ) =
∞∑
n=0

yn(0)φn(ξ) (4.29)

and therefore yn(0) = 〈u0(ξ), φn〉, where here and hereafter 〈·, ·〉 denotes the real or

complex, as appropriate, Euclidean inner product, taken component-wise when one

argument is a vector and the other a scalar.

Remark 1 If the influx is non-zero, i.e.,J 6= 0, we let w = u−us where us is the steady

state solution. Then w satisfies

∂w

∂τ
= D52w +Kw (4.30)

with zero Neumann boundary conditions. The solution w has the representation given at

(4.28), and u is obtained from this. In particular, when m = 1, we obtain the solution

given at (4.17).

The difficulty in FRAP analysis of multicomponent systems, even when they are

linear, stems from the structure of (4.28). To simplify the analysis, suppose that the

family of matrices {K−α2
nD} is semisimple – which means that they can be diagonalized

– for all n. Then the matrix exponential has the representation

e(K−α2
nD)τ =

m∑
j=1

eλjnτPjn (4.31)

where the projections Pjn are associated with a given λjn [96]. Since we assume that

the {K − α2
nD} are semisimple they have the representation

Pjn = Ψjn ∗Ψ∗jn (4.32)

wherein Ψjn is an eigenvector of K − α2
nD associated with λjn and Ψ∗jn is the corre-

sponding adjoint eigenvector. The action of any P on a vector u is defined by

Pu = 〈Ψ∗jn, u〉Ψjn.
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The eigenvector Ψjn = (Ψ1jn,Ψ2jn, · · · ,Ψmjn)T ∈ <m is a solution of the algebraic

eigenvalue problem

(K − α2
nD − λjnI)Ψjn = 0, j = 1, 2, · · · ,m, n = 0, 1, . . . . (4.33)

and the eigenvalues λjn are solutions of the characteristic equation

det(K − α2
nD − λI) = 0. (4.34)

The problem simplifies significantly when K and D commute, for then the eigenvalues

of K − α2
nD are simply λjn = λKj − α2

nλ
D
j .

The characteristic equation is an mth degree polynomial for an m-component system.

Thus, while the representation at (4.31) has the apparently simple form of a sum of

exponentials, the eigenvalues λjn and the eigenfunctions Ψjn are complicated functions

of the kinetic rate parameters and the diffusion constants. The case m = 1 is as

done previously, and only if m = 2 or 3 can one make analytical progress toward

understanding how the eigenvalues and eigenfunctions depend on the rate parameters

[95], and only in these cases can one hope to gain analytical insights into the problem

of extracting rate parameters from FRAP data. We turn to these cases in the following

sections.

If R(u, p) = Ku+ F (u, ξ, τ) the general solution of (4.23) can be written as

u(ξ, τ) =

∫
Ω
G(ξ − ξ′, τ)u0(ξ′)dξ′ +

∫ t

0

∫
Ω
G(ξ, ξ′, τ − τ ′)F (u, ξ, τ ′)dξ′dτ ′ (4.35)

where G(ξ, ξ′, t) is the Green’s function for the linear operator L = D∇2 +K. This has

the representation

G(ξ − ξ′, τ − τ ′) =
∞∑
n=0

m∑
j=1

eλjn(τ−τ ′)Pjnφn(ξ)φn(ξ′) (4.36)

This form (4.35) can be used when diffusion during bleaching and waiting periods are

incorporated in the analysis.

4.1.2 A special case – diffusion and binding only

The general framework allows for first-order reactions of any type (of which there are

four –cf. [97]), but when the only processes are diffusion of the fluorescent species and
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Figure 4.2: The notation for m-1 binding sites

binding to one or more independent immobile sites more can be said about the solutions.

Suppose there are m−1 independent types of binding sites, as shown in Figure 4.2. In

Appendix 4.1.3 we re-derive the known fact [79] that for a single binding site the recovery

process can be modeled as a linear process, even though the binding step is nonlinear,

and point out that the on- and off-rates in the resulting equations are composites of

parameters in the original equations [79]. The analysis given there can be applied to

the case of m− 1 independent types of binding sites, although the amount of unbound

fluorescent molecules is the solution of a higher-order polynomial when there is more

than one type of site. This leads to the linear system

∂u1

∂τ
= D∇2u1 −

m∑
k=2

Bk(u1, uk, τ) for ξ ∈ (0, 1)

duk
dτ

= Bk(u1, uk, τ) ≡ kk1u1 − k1kuk k = 2, · · · ,m (4.37)

u(ξ, 0) = u0(ξ)

Thus the matrices K and D in (4.24) take the following form.

K =


−
∑m

j=2 kj1 k12 k13 · · · k1m

k21 −k12 0 · · · 0
...

km1 0 0 · · · −k1m

 (4.38)

and D = diag(D1, 0, 0, · · · , 0). The columns of the matrix K sum to zero and therefor

K is singular, and if the kij are all non-zero it is irreducible and an application of the

Perron-Froebenius theorem shows that the zero eigenvalue is simple. The fact that the

kinetic steps are mass-preserving implies that the left eigenvector of K corresponding
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to the zero eigenvalue is (1, 1, 1, · · · , 1)T , and therefore

∂

∂τ
(u1 + u2 + · · ·+ um) = D1∇2u1, (4.39)

which reflects the fact that the total local concentration only changes due to diffusion.

The matrix K can be symmetrized, and therefore the eigenvalues are all real and

non-positive. The kinetic interactions involved in binding are restricted to the reaction

simplex defined by the relation
∑m

i=1 ui(t) =
∑m

i=1 ui(0). The foregoing properties of K

also imply that there is a unique steady state of the equation

du

dτ
= Ku

on the simplex defined by the initial condition. Eq. (4.39) shows how the simplices

vary in space due to diffusion, but two useful extreme cases arise when either diffusion

is slow relative to the binding or when it is rapid relative to binding. The first case

arises when either the on-rate or the off-rate of every binding step is large relative to

τ−1
D = D1/L

2. Then a singular-perturbation analysis shows that to leading order in the

small parameter ε ≡ τR/τD, the kinetics reach the steady state on the reaction simplex

defined by the initial data at every point in space, and these simplices then evolve slowly

on the diffusion time scale.

In this limit the free and bound forms are related by

ui =
ki1
k1i

u1 ≡ Kiu1, i = 2, · · · ,m. (4.40)

to within correction terms proportional to ε.2 As a result, (4.39) becomes

∂

∂τ
(1 +

m∑
i=2

Ki)u1 = D1∇2u1 (4.41)

which leads to a diffusion equation for u1 with the effective diffusion coefficient

D1,eff =
D1

1 +
∑m

i=2Ki
(4.42)

This reduction of the diffusion coefficient in the presence of rapid binding was apparently

first observed by Crank [98].

2 This can be obtained directly only if the on- and off-rates are comparable, and otherwise some
additional scaling steps of the free or bound forms may be needed.
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When τD << τR, i.e., D1/L
2 is much larger than the largest kinetic rate constant,

one can show that to lowest order the spatial distribution of fluorescent molecules relaxes

to a uniform state given by

u1(ξ, t) ∼ u1(0)−
m∑
k=2

∫ t

0
Bk(u1, uk, τ)dτ (4.43)

where the overbar denotes the spatial average and Bk(u1, uk, τ) ≡ k+
i u1 − k−i ui. This

solution can then be used in the binding equations to obtain an explicit expressions

for the ūk(τ), k = 2, · · · ,m. Thus the evolution on the slow time scale is simply the

readjustment of the fractions of bound fluorescent molecules. Since the diffusion time

scale depends on the length scale of the domain, the balance between diffusion and

binding can be controlled by altering the size of the bleaching region.

4.1.3 Justification of the assumption of linear kinetics in FRAP mod-

eling

Suppose that there is one diffusing species that can bind to an immobile receptor, and

let (u1, v1) and (u2, v2) be the free and bound concentrations of fluorescent and bleached

molecules, respectively. These satisfy the following equations.

∂u1

∂τ
= D152u1 − k+u1[R] + k−u2

∂u2

∂τ
= k+u1[R]− k−u2 (4.44)

∂v1

∂τ
= D152v1 − k+v1[R] + k−v2

∂v2

∂τ
= k+v1[R]− k−v2 (4.45)

where [R] is the concentration of free binding sites.

The sums w1 = u1 + v1 and w2 = u2 + v2 satisfy

∂w1

∂τ
= D152w1 − k+w1[R] + k−w2

(4.46)

∂w2

∂τ
= k+w1[R]− k−w2. (4.47)
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If adequate time has elapsed before bleaching begins, one can assume that the system

is at steady state prior to bleaching, and further assume that bleaching does not per-

turb the binding reactions, it merely substitutes a bleached for a fluorescent molecule.

Then throughout the bleaching process w1 = ws1, the steady-state value of the free

concentration, and the total free concentration of binding sites is given by

R = RT
K̂

K̂ + ws1
, (4.48)

where RT = R + w2 is the total concentration (free and occupied) of binding sites and

K̂ = k−/k+. Similarly, the concentration of bound sites is

ws2 = RT
ws1

K̂ + ws1
.

Let W = w1 +w2 be the total concentration of all forms of the molecules, which here is

assumed constant pointwise in space and time. Then it follows that ws1 is the solution

of a quadratic equation whose coefficients involve K, W and RT , and the solution of

this quadratic then leads to the free site concentration (4.48), and (4.44) can be written

as

∂u1

∂τ
= D152u1 − k+u1 + k−u2

(4.49)

∂u2

∂τ
= k+u1 − k−u2

where k+ = k+([RT ] − ws2) and k− = k−. This is the linear system widely-used in

this context, and that data what data is used to estimate the coefficients involved.

However, the constant k+ is a composite constant the involves three separate constants

in an experiment, and two other independent measurements are needed to determine

the three independent constants.

To define the initial conditions, let I0(ξ) = u10(ξ)+u20(ξ) be the initial concentration

of the fluorescent molecules in space at the onset of the recovery phase of an experiment,

which is usually measured directly from the first postbleaching image. If we assume

that bleaching in the ROI is instantaneous (i.e. T1 = 0), then the initial condition for

equation (4.49) is

u10 =
I0(ξ)

1 +K−1
d

and u20 =
I0(ξ)

1 +Kd
.
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where Kd ≡ k−/k+ is the dissociation constant. In the simulations described in the text

these are piecewise constant functions. If bleaching is not instantaneous then diffusion

alters the initial condition, and the initial conditions for the recovery period must be

computed using the equations applicable to the interval [T0, T0 + T1] given in Section

??.

4.1.4 Analysis of eigenvalues and eigenvectors for a two-component

system

In the following, we use eigenvalues and eigenvectors to analyze how FRAP data is

determined by the parameters in the model. Let

Q = K − α2
nD =

(
−k+ − α2

nD1 k−

k+ − k−

)

and

γ = k+ − k− + α2
nD1

Then the eigenvalues of the matrix Q are:

λ1n = −1

2
(k+ + k− + α2

nD1) +
√
γ2 + 4k+k−)

λ2n = −1

2
(k+ + k− + α2

nD1)−
√
γ2 + 4k+k−)

λ10 = −(k+ + k−), λ20 = 0.

The averaged fluorescent intensity can be written as

u1 + u2 ≡ (u10 + u20) +

∞∑
n=1

g(n)(u1n + u2n) = y10 + y20 +

∞∑
n=1

g(n)(d1ne
λ1nt + d2ne

λ2nt)

(4.50)

where

u10 =
k+y10 − k−y20

k+ + k−
eλ10t +

k−y10 + k−y20

k+ + k−

u20 =
k−y20 − k+y10

k+ + k−
eλ10t +

k+y10 + k+y20

k+ + k−
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Note that

λ1nλ2n = α2
nD1k

−

d1n =
y1n + y2n

2
− α2

nD1(y2n − y1n)

2
√
γ2 + 4k+k−

− (k+ + k−)(y1n + y2n)

2
√
γ2 + 4k+k−

d2n =
y1n + y2n

2
+
α2
nD1(y2n − y1n)

2
√
γ2 + 4k+k−

+
(k+ + k−)(y1n + y2n)

2
√
γ2 + 4k+k−

Since

y10 + y20 =
1

N

N∑
k=1

I0(k)

y1n + y2n =
1

N

N∑
k=1

I0(k)(cos
nπ

N
(k − 1) + cos

nπ

N
k)

Note that it is positive and independent of the parameters

y2n − y1n =
k+ − k−

k+ + k−
1

N

N∑
k=1

I0(k)(cos
nπ

N
(k − 1) + cos

nπ

N
k) =

k+ − k−

k+ + k−
(y1n + y2n)

If we define

f(n) = g(n)
y1n + y2n

2

we have

u1 + u2 =
1

N

N∑
k=1

I0(k) +
∞∑
n=1

f(n)(c1ne
λ1nt + c2ne

λ2nt) (4.51)

where

c1n = 1−
α2
nD1

k+−k−
k++k−√

γ2 + 4k+k−
− k+ + k−√

γ2 + 4k+k−

c2n = 1 +
α2
nD1

k+−k−
k++k−√

γ2 + 4k+k−
+

k+ + k−√
γ2 + 4k+k−

Note that c1n, c2n > 0, λ1n, λ2n < 0 .

As n increases, c1n increases, c2n decreases, both λ1n and λ2n decrease (algebraically).

Moreover, as n→∞, λ1n → −α2
nD1 , λ2n → −k−, and if k+ > k−,

c1n → 2
k−

k+ + k−
, c2n → 2

k+

k+ + k−
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if k+ < k−,

c1n → 2
k+

k+ + k−
, c2n → 2

k−

k+ + k−

and if k+ = k−,

c1n → 1, c2n → 1.

One may first estimate the eigenvalues and corresponding eigenvectors from FRAP

data based on equation (4.51). Then by using the relationship between paramters

and eigenvalues and eigenvectors, diffusion coefficients and kinetic parameters may be

estimated. Moreover, the quantitative analysis of eigenvalues may lead to more insights

into parameter estimation. These aspects can be explored in the future.

4.1.5 The computational FRAP setup

To investigate different approaches to the analysis of FRAP data, we use a computa-

tional model to generate the FRAP data, which facilitates evaluation of the effect of

experimental parameters such as the size of the ROI and the time of observation. In our

simulations the FRAP data is generated by using the dimensionless form of equations

as (4.24) described except that real time is used, i.e., without scaling.

Figure 4.3: Left: A region of the wing disc that is scanned (from [15] with permission).

Green indicates GFP-labelled Dpp, the white box is the ROI, and the scale bar is

10µm, Right: (top) The computational approximation of the disc as an ellipse and the

rectangular ROI, (bottom) the initial data along a one-dimensional cross-section of the

region.
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The geometry of the tissue can be described as an approximately rectangular com-

partment, and when the bleaching is done in a stripe as in Figure 4.3 ([15, 28]), the con-

centration of fluorescent molecules varies primarily in one direction (x above), variations

are negligible in the y direction under no-flux boundary conditions in that direction,

and are typically recorded as the maximum projection in the z direction. Under these

conditions the data analysis can be reduced to a one dimensional problem. Accordingly,

in this paper the mathematical formulation and all simulations are done only in 1D.

However, the conclusions and numerical procedure in our 1D system can be applied and

easily extended to 2D and 3D systems.

FRAP recovery data is the spatial average of the sum of free and bound fluorescence

in the observation region, which may be smaller that the ROI, so suppose that u1

represents the free molecule and other species ui, i > 1 are bound species. Then the

fluorescence intensity as a function of time τ is described as

ui(τ) =
1

lR − lL

∫ lR

lL

ui(ξ, τ)dξ frap(τ) =
m∑
i=1

ui(τ) (4.52)

where 1 > lR = LR
L > lL = LL

L > 0. Here L is the overall size of the system3 , and

LL and LR define the observation region. The problem of parameter estimation can be

considered as an inverse problem or optimization process, and the algorithm underlying

our method is shown in Figure 4.4, and the mathematical details are given in the next

section. In practice, the number of terms (M) that are retained in the eigenfunction

expansion is determined by setting a threshold for changes and increasing the number

of terms until the parameter estimates do not change within the threshold.

Another issue that arises in parameter estimation concerns the initial condition for

the recovery equation. It is well known that during the bleaching phase bleached and

unbleached molecules diffuse in and out of the ROI, and this results in a transition region

with various levels of photobleaching between the bleached and unbleached region. The

size of the intermediate region depends on the molecular diffusivity, size of the bleaching

region and the bleaching time. It may have substantial effects on the estimation of

molecular motility and binding kinetics. In this paper, we assume that the bleaching

3 The computations that follow are based on a diffusion coefficient of 10µ2/sec and L = 200µ, unless
otherwise noted.
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FRAP Data Generation
(PDE)

Model Parameter Estimation
(Fourier Series)

∂u
∂t

= D ∂2u
∂ξ2

+Ku u(ξ, t) =
∞∑
n=0

e(K−α2
nD)tynφn(ξ)

? ?

Average across the observation region Average across the observation region

? ?

FRAP Experimental Data Cexp(ti) Simulated Data Csim(ti)

q )

Error function: E ≡ 1

N

N−1∑
i=0

(Cexp(ti)− Csim(ti))
2

?

Minimize E using Matlab ’lsqnonlin’ solver

Figure 4.4: The computational algorithm used throughout the paper.

process is instantaneous and use piece-wise constant data as shown in Figure 4.3 as the

initial data for simulations unless specified otherwise.

4.2 Theoretical models for FRAP data generation

We examine two classes of theoretical models – which are summarized in Table 4.1 –

one in which the system is closed and a second one in which there is a specified flux

at the boundary . We briefly present the governing equations and some basic results

in this section to make it easier for the reader to compare the models. In the following

section we use the models in computational studies to show how parameter estimates

depend on the model used and how they can be improved with different protocols.
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FRAP models for closed systems FRAP models with boundary fluxes

Model B1 ( 4.2.1) Model B2 (4.2.3)

1-component model

∂u1

∂τ
= D152u1

−D1
∂u1

∂ξ
|ξ=0 = 0

−D1
∂u1

∂ξ
|ξ=1 = 0

∂u1

∂τ
= D152u1 − kdu1

−D1
∂u1

∂ξ
|ξ=0 = J

−D1
∂u1

∂ξ
|ξ=1 = 0

Model 1 (4.2.1, 4.1.1-4.1.5, 4.2.1, 4.2.2) Model 3 (4.2.2, 4.1.6, 4.2.3)

2-component model

∂u1

∂τ
= D152u1 − k+u1 + k−u2

∂u2

∂τ
= k+u1 − k−u2

−D1
∂u1

∂ξ
|ξ=0 = 0

−D1
∂u1

∂ξ
|ξ=1 = 0

∂u1

∂τ
= D152u1 − k+u1 + k−u2

∂u2

∂τ
= k+u1 − k−u2 − kdu2

−D1
∂u1

∂ξ
|ξ=0 = J

−D1
∂u1

∂ξ
|ξ=1 = 0

Model 2 (4.2.1, 4.1.6, 4.2.2) Model 4 (4.2.2, 4.1.6, 4.2.3)

3-component model

∂u1

∂τ
= D152u1 − k+1 u1 + k−1 u2 − k+2 u1 + k−2 u3

∂u2

∂τ
= k+1 u1 − k−1 u2

∂u3

∂τ
= k+2 u1 − k−2 u3

−D1
∂u1

∂ξ
|ξ=0 = 0

−D1
∂u1

∂ξ
|ξ=1 = 0

∂u1

∂τ
= D152u1 − k+u1 + k−u2

∂u2

∂τ
= k+u1 − k−u2 − kiu2

∂u3

∂τ
= kiu2 − kdu3

−D1
∂u1

∂ξ
|ξ=0 = J

−D1
∂u1

∂ξ
|ξ=1 = 0

Table 4.1: Summary of the models for the following analysis and simulations. Numbers

in parentheses refer to the subsections in which the corresponding model is analyzed

(3.x.x) and the computational results are given (4.x.x) .
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4.2.1 FRAP models for closed systems

Model 1: one mobile species and one type of binding site

In the simplest model there is one diffusible fluorescent species U1 that can bind to an immobile receptor

R to produce the complex U2, according to the reaction U1 +R
k+−−⇀↽−−
k−

U2. As stated earlier, the recovery

process can be modeled as a linear process and this leads to a solution of the form (4.28), where u1, u2

denote the concentration of unbound and bound fluorescent molecules,resp.,4 , and

K =

(
−k+ k−

k+ − k−

)
D =

(
D1 0

0 0

)
and φn = cos(nπξ), and α2

n = (nπ)2. Both K and D are singular, the former due to the conservation

condition5 .

We denote by I0 the total initial concentrations and show in Appendix 4.1.3 that the initial fractions

are

u10 =
I0

1 +K−1
d

and u20 =
I0

1 +Kd
.

where Kd ≡ k−/k+ is the dissociation constant. In addition, k+ = k+([RT ]− uts2 ) and k− = k−, where

RT , u
ts
2 denote the total binding sites and the total concentration of bound molecules, respectively. Note

that these two quantities are constant throughout the FRAP experiment. The initial conditions are(
u1

u2

)
τ=0

=

∞∑
n=0

(
y1n

y2n

)
cos(nπξ) =

(
u10

u20

)
(4.53)

where u10, u20 are the initial concentrations of unbound and bound fluorescent molecules after photo-

bleaching, respectively. The coefficients y1n, y2n are given by

y10 =

∫ 1

0

u10(x)dx y1n = 2

∫ 1

0

u10(x)cos(nx)dx

and

y20 =

∫ 1

0

u20(x)dx y2n = 2

∫ 1

0

u20(x)cos(nx)dx.

The average fluorescence intensities of bound and unbound molecules across the ROI during the

recovery phase are given by(
u1

u2

)
=

1

δ−

∫ lR

lL

(
u1(τ, ξ)

u2(τ, ξ)

)
dξ

= eKτy0 +
1

πδ−

∞∑
n=1

1

n
[sin(nπlR)− sin(nπlL)]e[K−D(nπ)2]τyn (4.54)

= eKτy0 +
1

πδ−

∞∑
n=1

1

n
[sin

(nπδ−)

2
cos

(nπδ+)

2
]e[K−D(nπ)2]τyn (4.55)

4 Since the total concentration of fluorescent molecules is constant one can alternatively regard the
ui as fractions

5 We remind the reader that τ represents real time, and thus the diffusion coefficients and the kinetic
constants for linear steps have dimensions time−1.
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where yn = (y1n, y2)T , and δ± = lR ± lL. Finally, the average fluorescence intensity in time, i.e., the

FRAP data, is given by

frap(τ) = u1(τ) + u2(τ). (4.56)

The parameter space for this two-component diffusion-binding model can be divided into several

regimes that reflect different balances between the component processes. There are three different

1<<1 >>1

<<1

1

>>1

Figure 4.5: Different regimes in the parameter space for a diffusion binding model

characteristic time scales in the system: the diffusion time τD = (δ−)2/D where δ− is the width of the

bleaching region, the binding time τb = 1/k+, and the dissociation time τdis = 1/k−. In the initial

stages of recovery the primary effect of diffusion is from a small region adjacent to the bleached region

into the bleached region, and therefore we use a characteristic diffusion time based on the width of the

ROI. When binding is weak, i.e., τdis/τb << 1, and the diffusion is not much faster than binding, i.e.,

above τD/τb << 1, the recovery process can be described by pure diffusion, in which case the parameters

are located in the pure diffusion regime of Figure 4.5. When binding is tighter, i.e., τdis/τb >> 1, and

much faster than diffusion, i.e., τD/τb >> 1, the recovery process can be approximated as a diffusion

process but with an effective diffusion coefficient Deff = D/(1 +K−1
d ), and the parameters are located

in the effective diffusion regime. When the binding is tighter, i.e. right τdis/τb ≥ 1, and diffusion is

much faster than binding τD/τb << 1, the recovery time is determined by the reaction process when the

parameters are located in reaction-dominant regime. Outside the three special regimes, the remainder

of the parameter space is called diffusion-reaction regime. For the upcoming discussion, it is worth

noticing that the diffusion characteristic time can be manipulated by the spatial scale of the bleaching

region, which could lead to a shift of the location of parameters from one regime to another.
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Model 2: one mobile species and multiple types of binding sites

To illustrate the different scales that arise with multiple binding sites, consider two sites, for which K

and D can be obtained from Appendix (4.1.2). When the binding steps are much faster than diffusion

this is the case treated earlier, and the effective diffusion coefficient given at (4.42) takes the form

Deff = D1/(1 +K2 +K3), where K2 = k+1 /k
−
1 ,K3 = k+2 /k

−
2 .

Suppose however that binding to the second type reaches a quasi-steady state rapidly compared to

binding to the first and to diffusion. Then local equilibrium gives rise to u3 = K3u1, and by adding the

governing equations, we have

∂

∂τ
(u1 + u3) = D52u1 − k+1 u1 + k−1 u2

By dividing the equations for u1 and u2 by 1 +K3 one can reduce to a model with a single binding site,

which reads
∂u1

∂τ
= Drd52u1 − k+u1 + k−u′2 (4.57)

∂

∂τ
(u′2) = k+u1 − k−u′2 (4.58)

where

u′2 =
u2

1 +K3
, Drd =

D1

1 +K3
, k+ =

k21
1 +K3

, and k− =
k12

1 +K3
.

These parameters are what are obtained in the parameter estimation when the two-site model is reduced

to a model with a single binding site as above, and illustrate again that the estimated parameters may

be complex functions of the more fundamental parameters.

4.2.2 FRAP models with boundary fluxes

Model 3: Influx, diffusion, binding and decay

The parameters measured from different time and space scales may reflect different integration of bi-

ological processes such as production, internalization and decay in addition to diffusion and binding

discussed above. In biological systems at tissue level in the long run, the FRAP recovery is amalga-

mation of these processes. Our approach for parameter estimation can be extended to the model with

more than diffusion and binding. Here we derive the analytical solution for these models, and show that

more parameters such as internalization rate and decay rate can be estimated from FRAP in addition

to diffusion coefficients and binding/unbinding rates.

The time-dependent solution formula (4.28) can be used directly for Model 3 with influx, diffusion,

binding and decay, wherein

K =

(
−k+ k−

k+ − (k− + kd)

)
D =

(
D1 0

0 0

)

For the steady state of us1 , the solution formula (4.15) applies with δ =
√
kd/D1 where kd =

k+ − k+k−/(k− + kd), and us2(ξ) = k+/(k− + kd)us1(ξ).
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Model 4: Influx, diffusion, binding, internalization and decay

When the model contains more processes, as in Model 4, the solution form (4.28) and (4.15) can be

used. In those equations, ki is the internalization rate constant and kd is the decay rate constant,

δ =

√
k̃d/D1 where k̃d = k+ki/(k− + ki), and

K =


−k+ k− 0

k+ −(k− + ki) 0

0 ki −kd

 D =


D1 0 0

0 0 0

0 0 0

 .

4.3 Recovery models for parameter estimation

The parameter estimates are extracted from FRAP by fitting a specified model with FRAP data,

using the algorithm described earlier. However, even if a good data fitting is achieved, little biological

information can be inferred from the estimates of parameters without careful examination and analysis.

The potential problems behind a good fit to the recovery curve can be explored from two distinct aspects.

The first one is how accurate the estimates are, assuming that an appropriate model has been used for

data fitting. To address this we propose several methods used later, such as choosing the appropriate

observation time, reducing the bleaching size and using spatial FRAP to improve parameter estimation

when the model used for estimation is identical to the one used for FRAP data generation. The other

problem in FRAP is how well the model reflects the actual processes involved in a FRAP experiment.

We will show the impact of the reduced model on estimates of parameters, and explain how to relate the

complex steps in the realistic model to the higher level description in the reduced model. In addition,

we also show how reducing the bleaching size could help to formulate an appropriate FRAP model. The

models used in our simulations are summarized in Table 4.1.

4.3.1 Identical recovery model - Methods to improve parameter esti-

mation

In the six parts of this subsection the model to estimate the parameters is the same as that to generate

FRAP data. With complete knowledge of the parameters, we will show that even though the recovery

curve fit is good, the estimates may not be accurate. Moreover, we will discuss the ways to improve

parameter estimation via the simple diffusion-binding model (4.1.1-4.1.5), and show that these methods

can be extended to parameter estimation in other models which are common and widely used in studying

the mechanism of pattern formation(4.1.6). In the following simulations, we use a piece-wise constant

initial condition for FRAP recovery, which is widely-used in existing FRAP models and also valid in

reality if there is little fluorescence recovery in the bleaching region before observation. For the record,

a wide range of initial guesses including the true values of parameters have been used, and they result

in similar estimations, which provides a foundation for our conclusions.
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The observation region versus the bleaching region - Model 1

We find that taking a subdomain within the bleaching region (ROI) as the observation region (OR)

considerably improves the estimation, because of the Gibbs effect that results from the piece-wise

constant initial condition 6 . Hereafter we fix the number of terms M = 1000 for minimization (Figure

4.6), and we also fix the ROI at lR − lL = .07 and let d be the distance between the boundary of the

ROI and that of the OR, as shown in Figure 4.7. The quality of estimates is good even though d is

small (Table 4.2). On the other hand, good estimates can be obtained with a small number of terms by

using a smaller subdomain of the bleaching region as the observation region (results not shown here),

which make the computation more efficient, especially in 2D or 3D cases.

Because the initial condition is set as piece-wise constant in all the following simulations, the

default observation region will always be set smaller than the bleaching region – specifically we set

d = 0.2(lR − lL). Thus the size of the bleaching region is 1.4 times that of observation region, and the

truncation is at M = 1000 terms in order to eliminate the Gibbs effect on estimation.
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Figure 4.6: The Gibbs effect in representing the initial data. The sum is truncated at

M terms left: M=100, right: M=1000

Estimation of parameters in different regimes - Model 1

To test our approach for parameter estimation, the diffusion coefficient, binding and

unbinding rates have been estimated in different regimes shown in Figure 4.5: pure dif-

fusion regime (diffusion and weak binding), effective diffusion regime (diffusion and fast

binding), reaction-dominant regime (fast diffusion and binding), and diffusion-reaction

regime. We can accurately estimate the diffusion coefficient and the binding and re-

lease rates in both reaction-dominant regime and diffusion-reaction regime (Table 4.3)7

6 Other basis functions that require fewer terms could be used, but the eigenfunction expansion is
most commonly used and we do so here.
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Figure 4.7: The relationship between the observation region and the bleaching region

Distance Time Estimates for M=100 Estimates for M=1000

d T D k+ k− D k+ k−

0 100 4.9848e-5 1.4840e-2 1.3079e-3 2.2217e-4 1.0431e-2 1.0140e-3

1000 2.4006e-4 1.8935e-2 1.0870e-3 2.3858e-4 1.0527e-2 1.0103e-3

0.01 100 2.8206e-4 9.7154e-3 9.8591e-4 2.5236e-4 1.0019e-2 1.0000e-3

1000 2.6560e-4 9.5765e-3 9.8642e-4 2.5092e-4 9.9987e-3 9.9964e-4

Table 4.2: The influence of the choices of the observation region within the bleaching

region and the observation time on the estimates of parameters in the diffusion-binding

model. The centered observation region has a fixed width of 0.05, and the bleaching

region is enlarged by increasing d. The FRAP data is generated by the same model

with parameters D = 2.5× 10−4 sec−1, k+ = 1× 10−2 sec−1, k− = 1× 10−3 sec−1.

. However, when the parameters are in either the pure diffusion regime or effective

diffusion regime, because it has been proven that the FRAP curve can be well described

by the diffusion only [79], we find that it is difficult to estimate all the three parameters

accurately at the same time. How to improve the parameter estimation in these regimes

will be discussed later.

7 Here and hereafter we use an error tolerance of 10−10, but larger tolerances produce very similar
results.
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Regime True values of parameters Estimates of parameters

D k+ k− D k+ k−

Diffusion-reaction 2.5e-4 1e-2 1e-3 2.5236e-4 1.0019e-2 1.0000e-3

Pure-diffusion 2.5e-4 1e-3 1e-1 2.4999e-4 6.0222e-4 7.3957e-2

Effective-diffusion 2.5e-5 1 1e-1 3.9024e-6 4.6544e-2 6.4715e-2

Reaction-dominant 1e-2 1e-5 1e-6 1.0005e-2 1.0008e-5 1.0051e-6

Table 4.3: In conventional FRAP, the estimates of parameters are accurate in the

diffusion-reaction and the reaction-dominant regimes, but not in the pure-diffusion and

effective-diffusion regimes. All the results are simulated by using the observation time

of T = 1000 sec. Default values are used for the size of the bleaching and observation

regions.

Appropriate observation time - Model 1

One of our most intriguing discoveries is the importance of the choice of observation

time in parameter estimation, especially when the parameters are located in the regime

where effective diffusion applies. When the binding process is relatively faster than

diffusion process, it is more difficult to estimate all three parameters, because FRAP

data can be well interpreted by effective diffusion. We find that using FRAP data

collected in an appropriate observation time period gives rise to quality estimates (Table

4.4). Moreover, the appropriate time is determined by the characteristic time of the

dissocation process.

Mathematically, the effective diffusion is based on the assumption that the bind-

ing and dissociation processes are much faster and equilibrate before diffusion plays a

significant role. Physically, the fluorescence recovery in FRAP is essentially produced

by the unbound fluorescent molecules diffusing into the bleaching region and binding,

which cannot happen until the bound bleached molecules in the bleached region are

dissociated from the binding sites. Therefore, if the observation time is shorter than the

characteristic time of the dissociation process, i.e., the recovery data is obtained before

dissociation ensues, the binding and dissociation processes haven’t reached equilibrium,

and only diffusion and binding contributes to the dynamics of recovery data, which is

distinguished from the effective diffusion process. After that, the process of recovery is

reduced to an effective diffusion process, in which case it is more difficult to estimate all
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the three parameters from the standard recovery curve. In real FRAP experiments, the

time interval for data collection might not be small enough as it is in simulation. The

data also contains noise at some level. Thus, the appropriate observation time might

be different from what it is in theory.

True values of parameters Observation time Estimates of parameters

D k+ k− T (sec) D k+ k−

2.5e-4 1 0.1 100 1.9132e-4 0.7542 0.1013

10 2.5689e-4 0.9684 0.09649

5 2.6533e-4 1.0010 0.09653

2.5e-4 1 1 100 2.0315e-4 0.5236 0.8367

10 2.1076e-4 0.5543 0.8183

5 2.3477e-4 0.7100 0.8379

2.5e-4 0.1 1 100 2.3841e-4 0.02947 0.6054

10 2.4728e-4 0.04320 0.5689

5 2.5934e-4 0.08219 0.6980

Table 4.4: Choosing an appropriate observation time results in better estimation in the

effective diffusion regime. The FRAP data is generated with the default sizes of the

bleaching and observation regions.

Size of the bleaching region - Model 1

In reality, because the parameters such as the dissociation rate are unknown, it is

difficult to determine a priori what the appropriate observation time is for parameter

estimation. However, the time scale of diffusion is determined by the spatial scale of the

bleaching region. Therefore, by changing the size of bleaching region, we can change

the balance of diffusion and binding processes, i.e., we can change the relative location

of parameters in parameter space. Since binding and dissociation are local activities

that are independent of spatial scale, we expect that reducing the size of the bleaching

region to make the characteristic diffusion time smaller than the binding time. That is,

relocating the parameters from the effective-diffusion regime to the reaction-diffusion

regime in Figure 4.5 can improve the estimates when binding is faster than diffusion

with the default bleaching size, and this is validated by our simulation results in Table

4.5. The estimates of parameters are more accurate, and do not depend on the length
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of observation time when the size of the bleaching region is reduced 8 .

True values of parameters Bleaching region Observation T Estimates of parameters

D k+ k− BR T (sec) D k+ k−

2.5e-4 1 0.1 Default 100 1.9132e-4 0.7542 0.1013

10 2.5689e-4 0.9684 0.09649

Reduced size 100 2.4228e-4 0.9666 0.09999

10 2.4364e-4 0.9666 0.09990

2.5e-4 1 1 Default 100 2.0315e-4 0.5236 0.8367

10 2.1076e-4 0.5543 0.8183

Reduced size 100 2.4891e-4 0.9912 0.9997

10 2.4888e-4 0.9916 0.9999

2.5e-4 0.1 1 Default 100 2.3841e-4 0.02947 0.6054

10 2.4728e-4 0.04320 0.5689

Reduced size 100 2.4987e-4 0.09936 0.9995

10 2.4988e-4 0.09935 0.9994

Table 4.5: The estimates are improved by reducing the size of the bleaching region so

as to change the time scale of diffusion relative to that of binding.

Moreover, our approach to improve estimates is also applied to the case where the

binding is weak. Because weak binding makes little contribution to the FRAP recovery,

the diffusion-binding model can be approximated by pure diffusion when the binding

is very weak, which makes it very difficult to estimate the association and dissociation

rates for weak binding. However, our results suggest that by reducing the bleaching

region to make the diffusion time smaller than the binding time, we can achieve good

estimates of binding/unbinding rates as well as the diffusion coefficient (Table 4.6). In

addition, the way of reducing the size of the bleaching region affects the estimation

in the same way as increasing the diffusion coefficient as their characteristic time of

diffusion is similar (Table 4.6).

To further explore how either reducing the size of the bleaching region or increasing

the diffusion coefficient improves parameter estimation, first the recovery of unbound

and bound fluorescent molecules are observed separately (Figure 4.8) and compared

when the size of the bleaching region is reduced. We find that reducing the size of

8 The values 0.007 (0.005) for the bleaching (observation) regions are used hereafter whenever the
size is reduced, unless stated otherwise.
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True values of parameters Bleaching size Observation T Estimates of parameters

D k+ k− BR T (sec) D k+ k−

2.5e-4 1e-3 1e-1 Default 1000 2.4999e-4 6.0222e-4 7.3957e-2

100 2.5098e-4 6.5301e-4 6.9036e-2

10 2.5844e-4 3.9193e-3 1.5256e-1

Reduced size 1000 2.5003e-4 9.9063e-4 9.9615e-2

100 2.5007e-4 9.9101e-4 9.9574e-2

10 2.5049e-4 1.0051e-3 9.9828e-2

1e-2 (Increased) 1e-3 1e-1 Default 1000 1.0006e-2 1.0045e-3 1.0021e-1

100 1.0006e-2 1.0045e-3 1.0021e-1

10 1.0013e-2 1.0176e-3 1.0085e-1

Table 4.6: Estimates are better when the size of the bleaching region is smaller or the

diffusion coefficient is larger.

the bleaching region speeds up the recovery of unbound fluorescence more than that of

bound fluorescence, as shown by comparing (b) to (a) and (d) to (c) in Figure 4.8, which

makes the recovery of unbound fluorescence relatively quicker in the bleaching region in

comparision to bound fluorescence. Therefore, the recovery is dominated by diffusion

initially, and by the binding process later in time, which make the estimation of three

parameters more feasible. Similarly, the FRAP recovery in the bleaching region is

more uniform when the diffusion coefficient is increased since the spatial nonuniformity

relaxes rapidly (results not shown here), which suggests that averaging the data over

the bleaching region has less impact on estimation for fast diffusion than slow diffusion.

Exploiting spatial information in FRAP – Model 1

The effect of either reducing the size of the bleaching region or increasing the diffusion

coefficient on parameter estimation in FRAP suggests that the standard way to average

data across the whole bleaching region to get FRAP data loses information, which is

more prominent when the bleaching region is large or the diffusion coefficient is small.

Therefore, we propose a new way to use FRAP data. Insteading of averaging the data,

first we try to use the FRAP data in space for parameter estimation, which turns out

to greatly improve the estimates as reducing the size of the bleaching region does as
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Figure 4.8: The effect of reducing the size of the bleaching region on the recovery of

bound and unbound molecules. (a) and (b): The recovery curves are generated with

D = 2.5× 10−4 sec−1, k+ = 1 sec−1, k− = 0.1 sec−1; (c) and (d): The recovery curves

are generated with D = 2.5×10−4 sec−1, k+ = 1 sec−1, k− = 1 sec−1; (a) and (c): with

default sizes of the bleaching and observation regions; (b) and (d) with the reduced sizes

of the bleaching and observation regions.

shown in Figure 4.7. The error function when using FRAP data in space is given by

E ≡ 1

MN

N−1∑
i=0

M−1∑
j=0

(Cexp(ti, xj)− Csim(ti, xj))
2.

In conventional FRAP, the recovery data is obtained by averaging the fluoresence

across the entire observation region. Our results suggest the spatial information of

FRAP data, which is lost in the average process, can contribute to parameter estimation.

In reality, the spatial data might contain noise and cannot be used directly. If it is the

case, local average across several pixels instead of average across the entire observation

region can be used to retain part of the spatial information which still help improve

parameter estimation.
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True values of parameters Bleaching size Observation T Estimates of parameters

D k+ k− Method T (sec) D k+ k−

2.5e-4 1 0.1 Default 1000 1.8661e-4 0.7167 9.9335e-2

100 1.9132e-4 0.7542 0.1013

10 2.5689e-4 0.9684 0.09649

Reduced size 100 2.4228e-4 0.9666 0.09999

10 2.4364e-4 0.9666 0.09990

Spatial FRAP 1000 2.5411e-4 1.0176 9.9956e-2

100 2.5397e-4 1.0169 0.09995

10 2.5093e-4 1.004 0.09992

Table 4.7: Spatial FRAP improves parameter estimation as much as reducing the size

of the bleaching region does.

Applications to Model 2, 3 and 4

The conclusions about how to improve parameter estimation via reducing the size of

the bleaching region and/or using spatial FRAP data that are obtained above from

the diffusion-binding model can also be applied to other models. For the simulations

of the models that involve both influx and decay, the initial condition is equal to the

fluorescence profile at the steady state of the corresponding system outside the bleachig

region and is equal to zero in the bleaching region. In addition, the estimation results

are all obtained for a fixed influx. The following results, which are obtained with

different models, i.e., a model with multi-binding sites (Table 4.8), a model with influx,

binding, diffusion and decay (Table 4.9), and a model with influx, diffusion, binding,

internalization and decay (Table 4.10), will show that both reducing the size of the

bleaching region and using spatial FRAP data can improve the parameter estimation,

and that they have synergistic effect on improvements.

4.3.2 The effect of a reduced recovery model

In addition to inaccurate parameter estimation, which is difficult to ascertain when a

visually good curve fit for recovery is obtained, another issue concerns the appropriate-

ness of the model in terms of whether it reflects the biological processes involved in the

system. We will show that the estimates of parameters in the reduced model can be
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Method D k+1 k−1 k+2 k−2

Default 1.9784e-4 7.7553e-2 9.9400e-2 4.8572e-1 8.1734e-1

Reduced size 2.4809e-4 9.8993e-2 9.9982e-2 9.8786e-1 1.0003

Spatial 2.5259e-4 1.0124e-1 1.0008e-1 1.0251 1.0055

Spatial and Reduced Size 2.5091e-4 1.0041e-1 9.9992e-2 1.0060 9.9934e-1

Table 4.8: Reducing the size of the bleaching region and/or using spatial FRAP improves

the estimates when there are multiple binding sites (Model 2). All the results are based

on D = 2.5× 10−4 sec−1, k+ = k− = 0.1 sec−1, k+
2 = k−2 = 1 sec−1 and an observation

time of 100 sec.

True values of parameters Method Estimates of parameters

D k+ k− kd D k+ k− kd

2.5e-4 1 1 1e-2 Default 2.3349 e-4 8.7891e-1 1.0087 1.0705e-2

Reduced size 2.4806e-4 9.7373e-1 9.8147e-1 1.0014e-2

Spatial 2.5048e-4 1.0189 1.0126 9.9287e-3

Spatial and Reduced size 2.5019e-4 1.0150 1.0043 9.9329e-3

2.5e-5 1 0. 1 1e-3 Default 3.3815e-6 1.0022e-1 1.9562e-1 3.5639e-3

Reduced size 3.0862e-5 1.4288 1.0568e-1 1.0226e-3

Spatial 2.8780e-5 1.1685 1.0003e-1 9.7550e-4

Spatial and Reduced Size 2.6132e-5 1.0459 9.9101e-2 9.6777e-4

Table 4.9: Reducing the size of the bleaching region and/or sptial FRAP improve esti-

mates when there are influx, diffusion, binding and decay (Model 3). The observation

time is 100 sec , and the influx J is given for parameter estimation.

dramatically different from those from the theoretical model for data generation, and

thus lead to distinct conclusions about the transport and kinetic processes involved in

FRAP. We will also show that the method of reducing the bleaching size can help to

evaluate the appropriateness of the model used for estimation.

Reduction from Model 1 to Model B1

As it has been discussed above, the diffusion and binding model could be described by

a diffusion-only model when the parameters are in the effective-diffusion regime. By

reducing the bleaching size, the parameters can be moved to the reaction-diffusion or
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Method D k+ k− kin kd

Default 5.5847e-5 3.2081e-1 1.5657e-1 3.3183e-3 1.3302e-2

Reduced size 2.6681e-4 1.0845 9.9709e-2 2.5652e-3 1.0016e-2

Spatial 2.4723e-4 9.8682e-1 9.9630e-2 2.5437e-3 9.9927e-3

Spatial and Reduced size 2.4897e-4 1.0011 9.9895e-2 2.5461e-3 9.9722e-3

Table 4.10: Reducing the size of the bleaching region and/or spatial FRAP improves

estimates when there is influx, diffusion, binding, internalization and decay (Model 4).

The true parameter values are D = 2.5 × 10−4 sec−1, k+ = 1 sec−1, k− = 0.1 sec−1,

kin = 2.5641 × 10−3 sec−1, kd = 1 × 10−2 sec−1, J = 1 × 10−2 sec−1. The observation

time is 100sec, and the influx J is fixed for parameter estimation.

reaction-dominant regime, where all the three parameters can be estimated accurately.

Therefore, the method of reducing the size of the bleaching region could be used to

determine whether binding should be included in FRAP modeling given by experimental

data. In reality, the experimentalist has to specify the model before data fitting in

FRAP, but as was discussed earlier, it can be difficult to distinguish a diffusion-binding

scenario and an effective diffusion regime. Moreover, if the binding is tight, orders of

magnitude difference in the estimate of diffusion coefficient might be produced due to

an inappropriate model.

Therefore, we suggest that reducing the bleaching region can help to distinguish the

diffusion-binding case from the effective diffusion case. When the bleaching region is

large, it is possible to obtain very good data fitting by using a diffusion model, while

in reality there is also a binding process involved (Figure 4.9, left). However, when the

bleaching region is reduced, the diffusion process will equilibrate more quickly, which

makes the binding process more dominant in the experiment. Thus it is less likely to fit

data by a diffusion model when in reality there is an additional binding process (Figure

4.9, right).

Reduction from Model 2 to Model 1

In the case of multiple binding sites (Model 3), without loss of generality, the second

binding process is assumed to the faster one between two binding processes, i.e. τb1 =

1/k+
1 >> 1/k+

2 = τb2. As long as τD > τb2, the curve fitting is good even though
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Figure 4.9: Reducing the size of the bleaching region helps to identify the appropriate

model. The FRAP data is generated using D = 2.5 × 10−4 sec−1, k+ = 1 sec−1,

k− = 0.1 sec−1. The blue curve lies under the green curve in both panels.

the model for parameter estimation is the single binding site model reduced from the

theoretical one. Theoretically, the reduced model gives rise to the estimates of diffusion

coefficient and binding/unbinding rates as follows. Drd = D/(1+k+
2 /k

−
2 ), k+ = k+

1 /(1+

k+
2 /k

−
2 ), k− = k−1 . Practically, the simulation results with normal bleaching size also

support the conclusion. Moreover, the longer time the data collected for parameter

estimation, the closer the simulation results are to the theoretical conclusions.

Theoretical Model (Model 2) Reduced Model (Model 1)

Diffusion + Two binding sites Bleaching size Time Diffusion + Single binding site Curve fitting

D k+1 k−1 k+2 k−2 δ− T (sec) D k+ k−

2.5e-4 1 0.1 10 1 Default 100 2.2629e-5 8.2322e-2 9.2352e-2 good

2.5e-4 1e-3 1e-3 10 1 Default 1000 2.2122e-5 8.4915e-5 9.8877e-4 good

2.5e-5 1e-3 1e-3 1 0.1 Default 1000 2.2413e-6 1.3014e-4 1.3478e-3 good

Reduce Size 1000 1.1746e-6 6.2724e-1 1.5113 bad

Table 4.11: Parameter estimation in reduced models when there are multiple binding

sites.

From both the analytical and simulation results, we can see that when one of the

binding process is fast and tight, it will not only lead to underestimate the diffusion in

orders of magnitude, but also underestimate the binding rate in the same order that

may change the conclusion about binding affinity fundamentally, i.e., the tight binding

may be misinterpreted as loose binding.

In addition, when τD << τb2, it is difficult to get good curve fitting if the model is
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reduced from the theoretical one. Reducing the size of the bleaching region that decrease

the characteristic time of diffusion will help to distinguish the multi-binding site model

from the single-binding site model, and thus help to formulate the appropriate model

for FRAP in order to get meanful estimates of transport and kinetic parameters.

Reduction of Model 4 to Model 3 and Model B2

In the case of FRAP with influx, the data is generated by Model 4 with influx, diffusion,

binding, internalization and decay. The first reduced model is Model 2, i.e. it neglects

the internalization process. The second reduced model is Model B2, i.e. it neglects all

the intermediate processes and only includes influx, diffusion and decay.

Theoretical Model Reduced Model (Model 3) Reduced Model (Model B2)

D 2.5e-4 4.54e-5 1.51e-5

k+ 1 3.38e-2

k− 0.1 2.28e-2

ki 2.6e-3

kd 0.01 3.19e-3 1.85e-3

Table 4.12: Parameter estimation in reduced models when there is diffusion, binding,

internalization, decay and influx in the theoretical model. The data is generated using

Model 4 with parameters D = 2.5 × 10−4 sec−1, k+ = 1 sec−1, k− = 0.1 sec−1, ki =

2.6× 10−3 sec−1, kd = 1× 10−2 sec−1. The flux J is fixed during parameter estimation.

Although the models used for parameter estimation are reduced from the theoreti-

cal model by which the FRAP data is generated, the estimates of parameters in these

reduced model can still give rise to good curve fittings (results not shown). However,

from the results in reduced model 2, in addition to the diffusion coefficient is underesti-

mated in an order of magnitude due to tight binding, the slow internalization rate could

lead to the estimate of the decay rate much smaller when the reduced model is missing

the intermediate processes and involves only influx,diffusion and decay. In addition, in

reduced model 1, the slow internalization process that is missed also has an impact on

the estimates of binding and unbinding rates. Therefore, the estimates of parameters in

a FRAP model only through curve fitting provides little even wrong information about

the actual processes or mechanism involved in biological system.
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4.4 Application of sensitivity analysis

In the preceding sections we have analyzed the consequences of various hypotheses about

the model and the effect they have on the accuracy of parameter determination. The

analysis showed, amongst other things, that different time intervals of observation could

significantly affect the parameter estimation. Of course one usually has experimental

data rather than computer-generated data, and the question arises as to how one can

identify and quantify sensitivity of estimated parameters, other than by the minimiza-

tion techniques used earlier. The following example illustrates the limitations of the

minimization and how sensitivity analysis can give further insights.

Example 2 Consider a two parameter system, and suppose that the graph of the error

function E to be minimized has either the form of a paraboloid (Figure 4.10(a)) or a

parabolic cylinder (Figure 4.10(b)).
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Figure 4.10: Two minimization functions that may give the same minimum, but very

different parameter sensitivities. (a) A paraboloid, and (b) a parabolic cylinder.

Clearly the paraboloid has a well-defined minimum and the slope of the function is

the same along all directions in the p1 − p2 plane. By bending the parabolic cylinder

slightly upward along the p2 axes one can guarantee that the minimimun is at zero,

as for the paraboloid, but clearly the sensitivity of the error function with respect to

variations in the two parameters is very different. In the remainder of this section we

show how scatter plots and sensitivity analysis can be used to detect such differences.
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4.4.1 The use of scatter plots

In this approach one postulates a model, computes the solutions for a wide-range of the

parameters, and then compares the difference between the predictions and the experi-

mental results. With first illustrate this with an example of pure diffusion (Model B1)

so as to demonstrate the utility as clearly as possible.
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Figure 4.11: Scatterplots of the errors between the model output and the FRAP

data versus the diffusion coefficient for different time intervals. The FRAP data is

generated by the pure-diffusion model with D = 2.25 × 10−5 sec−1 to match the data

in previous simulations by using the effective diffusion coefficient. The scatterplots

are calculated with parameters uniformly distributed on a logarithmical scale D ∈
[1× 10−6, 1× 10−3] sec−1. N = 1000 is the number of sample points.

The structure of the scatter plots shown in Figure 4.11 can be understood as follows.

When the time interval is short [0,10] the recovery is small and the error is very small

for small diffusion coefficients since the error as defined in Figure 4.4 is the distance

between the actual and predicted recovery curves (cf. Figure 4.12 (right)). When the

diffusion coefficient is significantly larger than the true value the predicted recovery

curve rises much faster than the true recovery curve and the error increases with the

diffusion rate. In an intermediate interval [0,100] the error is significant for both too

small and too large a diffusion coefficient. When the observation time period is long

[0,1000], the error for larger diffusion coefficients is less significant than for smaller ones

because the predicted recovery curve lies close to the true curve at large times, where

the error is small (cf. Figure 4.12 (left)). These results indicate that the intermediate

time interval [0,100] is optimal for this problem, since the true diffusion coefficient is

most clearly defined at the minimum of the graph of the error.
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Figure 4.12: FRAP recovery data is generated by the pure-diffusion model with D =

2.25× 10−5 sec−1. The large D and small D refer to the upper and lower limits of the

diffusion coefficients used for the scatterplots, respectively. The figure on the left is

plotted on a linear scale, and the one on the right is plotted on a logarithmic scale.

Scatterplots can also give insight for more complicated models such as the diffusion-

binding models (Model 1 and Model 2) . The top row in Figure 4.13 shows that the

addition of binding to the diffusion-only model of Figure 4.12 has little effect on the error

for a short time interval and small diffusion coefficients, and that the error is dominated

by diffusion even for large diffusion coefficients. However the effect of variations in the

binding parameters is more pronounced for longer time intervals, but in all cases the

role of diffusion remains as shown in Figure 4.12.

The center row of Figure 4.13 displays the scatter plots as a function of the binding

affinity k+/k−, for which the true value is 10. For the short time interval T = [0,10] the

recovery is small and the effect of diffusion on the error is negligible for large affinities

because the fluorescent molecules are tightly bound in the unbleached region and the

flux into the bleached region is small. When the binding affinity is small, the influx is

larger and diffusion plays a larger role, which leads to larger errors. As the observation

time period increases, the difference between these two upper limits diminishes. When

the observation time period is long enough, e.g. T ∈ [0, 1000], the situation is reversed.

Therefore, using a scatterplot for variable observation times T will suggest what the

true affinity is when a T that produces the pattern of errors similar to that in the first

figure in the middle panel is found.
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Figure 4.13: Scatterplots of the errors between the model output and the FRAP data

versus diffusion coefficients and binding affinities for different time intervals . Top and

middle panels: FRAP data is generated with D = 2.5× 10−4 sec−1, k+ = 1 sec−1, k− =

0.1 sec−1. In this and the panels below the parameters are log-uniformly distributed –

using D =∈ [1×10−6, 1×10−3] sec−1, k+ ∈ [1×10−2, 10 sec−1], k− ∈ [1×10−2, 10] sec−1.

Bottom panel: The FRAP data is generated by the model with diffusion and two bind-

ing processes with different rates and affinities D = 2.5×10−4 sec−1, k+
1 = 5 sec−1, k−1 =

0.5 sec−1, k+
2 = 0.1 sec−1, k−2 = 5 × 10−3 sec−1. The parameters are log-uniformly dis-

tributed: D ∈ [1×10−6, 1×10−3] sec−1, k+ ∈ [5×10−3, 5] sec−1, k− ∈ [5×10−3, 5] sec−1.

N = 1000 is the number of sample points for all.
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These two rows suggest that the scatterplots of errors against diffusion coefficient

with different observation time periods identify whether the parameters are located

in effective-diffusion regime and if so, what the effective diffusion coefficient is. If in

effective-diffusion regime, by combining the scatterplots against binding affinity and dif-

fusion coefficient, the binding affinity and the effective diffusion coefficient, and thereby

the true diffusion coefficient can be obtained.

The bottom row in Figure 4.13 shows scatterplots of the errors for a one-site recovery

model when the true model has two binding sites. These scatterplots with different

observation time periods not only can provide the experimentalists with the binding

affinities but also can suggest how many different types of binding sites are involved

when they have different binding affinities. A binding process with affinity equal to

∼ 10 appears at the scatterplot with the observation time period T ∈ [0, 10]. And

the other one with affinity equal to ∼ 20 appears at the scatterplot with T ∈ [0, 100].

Although in reality it may be hard to tell the exact values of binding affinities, the

scatterplots with different observation time periods at least help indicate the possiblity

of multiple binding sites. They only suggest how many types of binding sites with

significantly different rates and affinities are involved.

4.4.2 Variance-based sensitivity analysis

The scatter-plot-based procedure in the preceding section gives qualitative information

to parameters, but more precise tests about where the parameter sensitivity lies can

be applied after parameter estimation using other methods of sensitivity analysis. The

objective of this analysis is to obtain insight as to how the E varies with parameter

variation in a neighborhood of the computed minimum. The non-local analysis described

below is more informative than simply computing the derivatives of E at the minimum

because parameters can be varied over large intervals around the minimum. In applying

the general technique to the FRAP problem we define Y = E , the error between the

observed and predicted recovery as defined earlier, and the factors X are the parameters

that are estimated from the data. Thus the model equation is rewritten as

E = f(p1, p2, ...pk) = f(P ), (4.59)
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where P = (p1, p2, ...pk). For the purpose of the sensitivity analysis that follows we

assume that parameters are distributed uniformly.

As we showed previously, the FRAP recovery data generated by a theoretical model

can be fit very well with a reduced model in some circumstances. For instance, data

generated by a diffusion-binding model can be described with a pure-diffusion model

when the binding process is much faster than diffusion as shown in the left panel of

Figure 4.14. We proposed that changing the balance between different processes by

changing the size of the bleaching region gives rise to a different recovery curve and

helps to detect missing processes and to formulate a more appropriate model. When all

the processes in the model that generates FRAP data are balanced, i.e., they all occur

on comparable time scales, it is unlikely to fit the data with a reduced simple model, as

shown in the center panel of Figure 4.14.

However, when a complex model that includes more processes than are important

is used to fit the data, it may be difficult to detect this from the fit of the recovery

curve. As shown in the right panel of Figure 4.14, even though all the processes in

the intermediate model that generates the data are well balanced, we can still fit the

data very well with a complex model, and this is where the sensitivity analysis can be

useful. In this case, when the sensitivity analysis is implemented using the intermediate

(theoretical) model, the sensivity indices of all the parameters are comparable, and none

of the total indices is very small. However, when the sensitivity analysis is applied to the

complex model, the total-order indices of some parameters, such as kt and kd2 shown in

(c) and (d) of Figure 4.15. This suggests the possibility of over-parameterization, i.e.,

the more detailed model might include non-influential processes that are not detectable

using the available data.

It is worth noting that when parameters are estimated using either the reduced

simple model [15] or the complex model [28] with the same FRAP data generated

by the intermediate model, estimates of diffusion coefficients in both recovery models

(4.26 × 10−4 sec−1 vs. 1.41 × 10−6 sec−1) differ by a factor of 60, which is similar to

the large difference in the measurement of the diffusion coefficient of Dpp in [15] and

[28]. However, in our simulations, neither of the estimates are close to the true value

for data generation even though two models can fit the steady-state (results not shown

here) and recovery data.
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Figure 4.14: FRAP data is generated with the intermediate (theoretical) model (Model

2 in Table 4.1) with the unbalanced processes (left) and the balanced processes (center

and right). The true values of the parameters for the unbalanced processes are D =

2.5 × 10−4 sec−1, k+ = 1 × 10−1 sec−1, k− = 5 × 10−2 sec−1, kd = 2 × 10−3 sec−1,

and the parameters for the balanced processes are D = 2.5 × 10−4 sec−1, k+ = 1 ×
10−2 sec−1, k− = 5 × 10−3 sec−1, kd = 2 × 10−3 sec−1. Parameters are estimated by

using the simple (recovery) model (Model B2 in Table 4.1, which is also the same as that

in [15]) for the left and center panels, and using the complex (recovery) model (Model ??

in Appendix) in the right panel. The estimates are (left) D = 7.8322×10−6 sec−1, kd =

1.2698×10−3 sec−1; (center) D = 7.0290×10−6 sec−1, kd = 9.9313×10−4 sec−1; (right)

D = 4.4680 × 10−4 sec−1, k+ = 1.7633 sec−1, k− = 1.1396 × 10−1 sec−1, ki = 1.1131 ×
10−2, ko = 6.0198×10−3 sec−1, kt = 1.7574×10−7 sec−1, kd1 = 2.1856×10−3 sec−1, kd2 =

1.1563× 10−3 sec−1.

4.5 Discussion

In an experimental context the standard approach to use the FRAP technique is to

measure the experimental data and then fit a model to the recovery curve. While

informative, it is difficult to analyze the model and evaluate the quality of estimates

because the parameters underlying physical processes in reality are unknown. Our aim

here was to approach this problem by using a theoretical model to generate FRAP

data and postulating a recovery model to estimate the parameters, and knowing both

a priori enabled us to quantitatively assess the quality of estimates and find ways to

improve them. Firstly, by using a recovery model identical to the theoretical model,

we showed that good fitting of the data may be misleading in some circumstances, in

that it does not always indicate high quality estimates. We identified factors that lead
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Figure 4.15: FRAP data is generated with the intermediate model (Model 2 in Table 4.1)

with parameters D = 2.5× 10−4 sec−1, k+ = 1× 10−2 sec−1, k− = 5× 10−3 sec−1, kd =

2 × 10−3 sec−1. (a) and (b): The first order and total order sensitivity indices are

calculated by using the same intermediate model with parameters with uniform linear

distribution D ∈ [0.5× 10−5, 4.5× 10−5] sec−1, k+ ∈ [0.2× 10−2, 1.8× 10−2] sec−1, k− ∈
[1×10−3, 9×10−3] sec−1, kd ∈ [0.4×10−3, 3.6×10−3] sec−1. (c) and (d): The first order

and total order sensitivity indices are calculated by using the complex model ?? with

parameters with uniform linear distribution around the estimates ([0.2×Estimate, 1.8×
Estimate] ) D ∈ [0.8510× 10−4, 7.6594× 10−4] sec−1, k+ ∈ [0.3526, 3.1739] sec−1, k− ∈
[0.2849 × 10−1, 2.5641 × 10−1] sec−1, ki ∈ [0.2226 × 10−2, 2.0036 × 10−2] sec−1, ko ∈
[1 × 10−3, 9 × 10−3] sec−1, kt ∈ [0.3515 × 10−7, 3.1633 × 10−7] sec−1, kd1 ∈ [0.3868 ×
10−3, 3.4816× 10−3] sec −1, kd2 ∈ [0.2313× 10−3, 2.0813× 10−3] sec−1.
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to poor parameter estimation from FRAP data, and suggested three new, feasible ways

in which the estimation can be improved - using the FRAP data in an appropriate

observation time period, changing the size of the bleaching region to rebalance the

diffusion and kinetic processes, and using the spatial information of FRAP data. Then,

by varying the recovery model from the theoretical model, we showed that a simplified

recovery model can adequately describe the FRAP processes in some circumstances,

and established the relationship between parameters in the theoretical model and those

in the recovery model. Finally, we introduced variance-based parameter sensitivity into

FRAP analysis, and suggested that the important kinetic processes might be detected

by sensitivity analysis before estimation, and the over-parameterization problem in a

FRAP model can be perceived by doing sensivity analysis after estimation.

In using FRAP, it is important to determine which processes should be included

in the recovery model. For example, ignoring binding processes that are present in the

system may lead to underestimation of the diffusion coefficient by an order of magnitude.

Given FRAP data, we proposed two different ways that can facilitate identification of

the appropriate model. We found that changing the size of the bleaching region gives

rise to different FRAP recovery curves and can provide insight into the relative effects

of diffusion and binding kinetics. In particuar, reducing the size of the bleaching region

to speed up the diffusion process relative to the kinetic processes can help uncover

a hidden binding process in the recovery curve, which might be neglected when the

bleaching region is large. In addition, we showed that preliminary sensitivity analysis

using scatterplots with physically reasonable ranges of parameters may also help detect

multiple binding processes. Using the two methods will reduce the chance of neglecting

important processes in the model. In addition, sensitivity analysis after estimation using

the first and total order indices can suggest over-parameterization problem in a FRAP

model, i.e., the model contains non-influential processes. If some of the parameters have

very low total-order indices, the model is more complex than is justified by the data

available, and has to be reduced by eliminating the non-influential processes. This step

can be repeated until none of the parameters in the model have extremely low total-

order indices. The ideal scenario is that the corresponding sensitivity index around

the estimate of each parameter in the model is comparable, which indicates all the

processes are well balanced. Incorporating these methods into the FRAP analysis can
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greatly increase the probability of formulating appropriate models and thereby also

increase the accurary of parameter estimation.

Although we showed that reducing the size of the bleaching region can help to

formulate a more appropriate model and improve parameter estimation in some cir-

cumstances, it is difficult to decide what the size of the bleaching region should be at

the outset of a FRAP experiment. However the knowledge of the effect of a reduction

can be used in the following way. After the estimates of parameters are obtained from a

first FRAP experiment, one can calculate the characteristic time scales of diffusion and

kinetic processes, and depending on the results, the experiment can be re-done with a

bleaching region that leads to a better balance of the processes. Similar remarks apply

to the use of spatial information in FRAP data. Averaging spatial FRAP data over the

whole bleaching region looses some information which might be useful for parameter

estimation. However, for a realistic FRAP experiment, the spatial FRAP data always

contains noise which is greatly tenuated by averaging FRAP data. We suggest that

it is possible to benefit from spatial FRAP data if local averaging rather than global

averaging is implemented. In addition to the quality of parameter estimation, the ad-

vantage of using spatial FRAP data may be explored in many other aspects of model

identification, such as estimation of more parameters in FRAP models.

In summary, we suggest that the procedure shown in Figure 4.16 to better use FRAP

data in the process of model formulation and parameter estimation. This method can

be used for general FRAP modeling and analysis not discussed here. For instance, the

assumptions used here, such as an instantaneous and homogeneous bleaching process,

may not be valid in some circumstances, and it would be interesting to apply our method

to model the whole FRAP processes as described in Appendix ??, and to study how

different assumptions affect the estimates quantitatively.

The establishment of the morphogen profiles in the wing disc is a very complex

process that may involve several distinct morphogen transport processes, endo- and

exocytosis of the morphogen, and intracellular sequestration of it. As a result, parameter

estimates derived from fitting of FRAP recovery curves are not likely to bear a close

relationship to true parameter values, since the FRAP data is inadequate to extract

the true parameters in a complex model. Thus such tissue-level applications of FRAP

must be supplemented with other techniques in order to identify the processes and
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Figure 4.16: A suggested procedure for improving model identification and parameter

estimation.

the attendant parameters. This remains as a significant challenge in the context of

developmental biology.

The simple model described by (4.16) has been used to estimate parameters from

experimental FRAP data in several systems, but it may have very limited applicability

in identifying the parameters that govern the in vivo dynamics, since other kinetic or

transport processes are usually involved. Even in the simple case of Bicoid dynamics

in the early Drosophila embryo, processes other than diffusion and reaction, includ-

ing binding, localization of Bicoid in the nuclei, and non-homogeneities in the cytosol
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and cortical layer of the syncytium, are certainly involved. Moreover, in a cellularized

system such as the Drosophila wing disc there may be several other modes of cell-cell

communication.

The complexity involved in the interactions of multiple transport processes with

binding, internalization and kinetic transformation is hidden by analyzing the spread of

morphogens using a simple reaction-diffusion system such as (4.16), and how one relates

the ‘real’ parameters in individual steps to parameters in such a high-level description

is usually difficult to determine analytically. This has lead to dramatic differences

(cf. [15, 28] in the estimates of parameters for a simplified description such as (4.16),

and raises the question as to what those parameters represent.



Chapter 5

Conclusion and future direction

The complexity of patterning and growth control demands both experimental and mod-

eling work to address different aspects of problems. Our ultimate goal is to formulate

a model that integrates different regulatory mechanisms of patterning and growth con-

trol in the disc so as to be able to understand existing experimental results, to make

experimentally-testable predictions, and to provide a platform for integrating new re-

sults and testing new hypotheses. We are interested in the Hippo pathway, which various

regulatory mechanisms and a myriad of signaling pathways impinge on, and in this phase

we focus on understanding how the Hippo pathway tranduces Fat/Ds signaling to me-

diate cell-cell interaction and to coordinate growth on the tissue level, keeping in mind

how it is coupled with other pathways and interacts with other regulatory mechanisms.

The first and laborious step in the course of developing a model for the signaling

network involves the delineation of all the known individual biochemical processes that

comprise the network. After we thoroughly evaluated experimental evidence in the

literature and identified the proteins within the network that are expressed in cells, the

balance between the scope and level of detail was considered, and the extent to which

species included in the model evolve independently of species excluded from the model

was carefully examined. Finally, our model encompasses a relative small number of

distinct species and all reactions among them taking place in cells and between cells in

order to retain the predictive power of the model without overwhelming uncertainty. As

little investigation has been done for reactions in this network, in our opinion, properties

are more interesting when discovered in the course of analyzing the model based only on
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elementary reactions and mass action kinetics. The model advanced our understanding

of Fat/Ds induced responses via the Hippo pathway and made predictions that can be

tested experimentally at the levels of genes and proteins.

Two hypotheses are generated and predicted in the mechanistic model that we de-

veloped. We posit the interaction between Ds and Dachs, and incorporate the effect of

Ds on Riq, emphasizing the importance of Ds. This adds another aspect to efforts aim-

ing to elucidate the mechanistic basis of genetic phenotypes associated with the Hippo

pathway. One of the hypotheses has been confirmed by experiments, suggesting the

reliability of the model for simulating this complex pathway. The model integrates the

primary signaling components, captures the interactions between them, and quantita-

tively investigates how they are balanced to regulate the growth of the disc. A major

advance of our work over previous modeling is the level of detail that is incorporated for

both signal transduction within cells and signal transport across cells. This newly devel-

oped model demonstrates its sufficiency to explain existing experimental observations,

and predicts new mechanisms that can be tested experimentally.

The interplay between models and experimental data leads to the question of how

the parameters in the model can be obtained from available experimental data, which

led us to take a new look at FRAP and to investigate how to improve model identi-

fication and parameter estimation given FRAP data. We used a theoretical model to

simulate the dynamics of a FRAP experiment and generate the FRAP data that is used

in various recovery models to estimate the corresponding parameters. By postulating

a recovery model identical to the theoretical model, we proposed three feasible ways

to improve parameter estimation in the circumstances that the model is appropriate.

We first established that utilization of FRAP data in an appropriate observation time

period, as opposed to using the whole data set, can significantly improve the quality

of estimates, especially when the diffusion and binding kinetics are not well balanced.

Secondly, we found that changing the balance between diffusion and binding kinetics by

changing the size of the bleaching region enhances the accuracy of parameter estimation.

In addition, we showed that the use of the spatial information in FRAP provides bet-

ter parameter estimation, because the standard way of averaging FRAP data loses too

much information and leads to errors in parameter estimation. By varying the recovery

model from a fixed theoretical model, we showed that a simplified recovery model can
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adequately describe the FRAP process in some circumstances, and establish the rela-

tionship between parameters in the theoretical model and those in the recovery model.

We also showed that changing the size of the bleaching region and global sensitivity

analysis can be used to improve model identification and to help formulate appropriate

FRAP models.

It has been found that Dachs in the Hippo pathway exerts mechanical force at cellcell

junctions to alter the geometry of cell shapes and the orientation of the mitotic spindle.

As cell mechanics have been proposed to play a role in growth control, it is possible

that the Hippo pathway might also regulate growth via mechanical stress. Moreover,

it is involved in crosstalk with the morphogen and hormone signaling pathways, for

which parameters involved in signal transport across the disc and the entire organism

can be measured using FRAP and other techniques. Therefore, making use of our work

on parameter estimation and following our work on modeling the Hippo pathway, we

will integrate it with the morphogen and hormone regulatory mechanisms, and the ef-

fects of mechanical stress on growth to produce an integrated model that can be used

for developing new, experimentally-testable hypotheses. The integrated model will en-

able us to evaluate the importance of various modes of transport and signaling and to

make testable predictions as to what processes dominate under various experimental

interventions. This will result in a comprehensive computational platform for use in

understanding the spatio-temporal control of growth and patterning in wing disc de-

velopment, and will provide significant new insights into the complex interactions that

govern tissue size, shape and patterning.
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