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Abstract  

 
 Nanoparticles, which are defined as objects with characteristic lengths in the 10-9 – 

10-7 m (nanoscale) size range, are used with increasing frequency in a wide of applications, 

leading to increases in nanomaterial interactions with biological and environmental 

systems. There is therefore considerable interest in studying the influence nanomaterials 

can have when inside the human body or dispersed in the ambient environment. However, 

nanoparticles persist as homo aggregates or heterogeneous mixtures with organic matters, 

such as proteins, in biological and environmental systems. A large and growing body of 

research confirm that nanomaterial morphology as well as the degree of aggregation 

between nanomaterials influences nanomaterial interactions with their surroundings. 

Specifically, the structures/morphologies of nanoparticles determine their overall surface 

areas and corresponding surface reactivity (e.g. their catalytic activity).  Nanoparticle 

transport properties (e.g. diffusion coefficient and extent of cellular uptake) are also 

determined by both their structures and surface properties. Unfortunately, techniques to 

characterize nanomaterial size and shape quantitatively, when nanomaterials have complex 

geometries or persist as aggregates, are lacking. Hydrodynamic sizes of nanoparticles and 

their aggregates can be inferred by dynamic light scattering (DLS) or nanoparticle tracking 

analysis (NTA). However, since these techniques are relied on the scattering light intensity 

properties, sizes of polydisperse sub 30 nm particles cannot be effectively measured in 

those techniques. For structure inference of aggregated nanomaterials, microscopy images 

have been used for qualitative visual analysis, but the quantitative morphology analysis 

technique is yet to be developed. Five studies in this dissertation are hence aimed to develop 
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new techniques to provide improved morphology characterization of aggregated 

nanomaterials in various biological and environmental colloidal systems. Aggregation 

mechanism and behavior of nanoparticles in surrounding were examined as a function of 

their quantified aggregate morphologies. The first three studies (Chapters 2, 3, and 4) 

introduced a new gas-phase particle size measurement system, a liquid nebulization-ion 

mobility spectrometry (LN-IMS) technique, to characterize nanomaterials (down to 5 nm 

in characteristic size) and nanoparticle-protein conjugates. In other two studies (Chapters 

5 and 6), three dimensional structures of homo-aggregates were quantified with the fractal 

aggregate model, and resulted fractal structures of aggregates were correlated to their 

transport properties in surroundings.  
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Chapter 1 Introduction 

1.1 Motivation 

 Nanoparticles or nanomaterials, which are defined as objects with characteristic 

lengths in the 10-9 – 10-7 m (nanoscale) size range, are widely used in industrial products 

such as cosmetics [1, 2], paints [3], food ingredients [4, 5], pharmaceuticals [6-8], and heat 

transfer media [9]. In addition, nanoparticles have shown high potential in biomedical 

applications [10], such as in cancer treatment [11-13] and in acting as optical sensors [14, 

15]. These latter applications of nanoparticles necessitate investigation of their physical 

properties in biological media and in the ambient environment, as after use nanoparticles 

may be released into ambient water and soil systems. Nanoparticle physical properties, 

which include size, shape, extent of aggregation and aggregate morphology, as well as 

surface characteristics, strongly influence nanoparticle performance and the influence they 

have on their surroundings [16].  Specifically, the structures/morphologies of nanoparticles 

determine their overall surface areas and corresponding surface reactivity [17, 18] (e.g. 

their catalytic activity).  Nanoparticle transport properties (e.g. diffusion coefficient [19, 

20] and extent of cellular uptake [21, 22]) are also determined by both their structures and 

surface properties. A growing number of studies in nanomedicine [23, 24] and 

nanotoxicology [25] confirm that the behavior of nanoparticles and the influence they have 

on their environment is strongly affected by their morphological states and their chemical 

compositions. Therefore, accurate morphological analysis of nanomaterials is required in 

wide variety of circumstances.  

 However, in large part, synthesized nanomaterials are not morphologically and 

structurally characterized in the media in which they will be applied or dispersed.  
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Subsequent to synthesis, most nanoparticles are dispersed with a surfactant in a solvent 

where aggregation between particles or with other species is prevented (through either 

electrostatic or steric stabilization) [26-29].  Such stabilization is not always possible in 

biological systems and in the ambient environment, as the solvent, pH, ionic strength, and 

surfactant concentration are not controllable in these circumstances [28, 30, 31]. 

Nanoparticles in these environments, including the blood stream and natural water bodies, 

hence often persist as aggregates, which are large clusters with random and complex 

structures [29, 32, 33]. Aggregates may be composed solely of nanoparticles of one type 

(homoaggregates) or may be composed of nanoparticles and macromolecules/proteins [34, 

35] deriving from their surroundings (heteroaggregates).  Examples of homoaggregates 

aggregates are depicted in Figure 1.1. Irrespective of whether aggregates are homogeneous 

or heterogeneous in composition, their existence complicates both physical 

characterization and subsequent prediction of nanoparticle behavior [32, 36]. 

 The need to characterize the onset of aggregation, as well as aggregate morphology 

is the main motivation for the work performed in this dissertation.  Five specific studies 

were performed to develop new approaches to characterize nanoparticles/nanomaterials in 

aqueous systems: (1) Development of a liquid nebulization-ion mobility spectrometry (LN-

IMS) technique for the characterization of nanomaterials (down to 5 nm in characteristic 

size) in aqueous systems, (2)  application of the LN-IMS system to quantify binding of 

bovine serum albumin to gold nanoparticles (the onset of heteroaggregation), (3) 

application of the LN-IMS system to quantify bovine serum albumin binding to 

superparamagnetic iron oxide nanoparticles, (4) development of an image processing 

technique to characterize the extent of aggregation of nanomaterials in intracellular and 
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extracellular media (using cyro-electron microscopy images), and (5) the development of 

non-invasive approaches to characterize the extent of aggregation of nanomaterials in high 

volume fraction (1%) nanoparticles slurries. The specific objectives of each of these studies 

are discussed in the following section.  Subsequent to this, a brief overview of the 

characterization techniques to be employed is provided in this chapter.  Chapters 2-6 

describe the individual studies.  Each chapter is intended to be a stand-alone contribution 

(adapted from a published, peer-reviewed manuscript, or a manuscript in preparation for 

submission), with its own abstract, introduction, methods, results & discussion, 

conclusions, and references section.  For this reason, some information contained in each 

chapter is repetitive with prior chapters.  A general description of conclusions of all 

described studies and future prospects is provided in Chapter 7. 

 

Titanium dioxide (TiO2) Aluminium oxide (Al2O3) 

      
Iron (II,III) oxide 

      
Figure 1.1. Selected transmission electron micrographs of aggregate nanomaterials.  TiO2 

and Al2O3: standard transmission electron microscopy of aggregates dried from aqueous 

suspension.  Iron Oxide: Cryo-EM images of aggregates in aqueous suspension. 
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1.2 Objectives 

The objectives of the studies performed are as follows: 

Chapter 2: Chapter 2 focuses on the application of a liquid nebulizer (LN) with online 

dilution using ultra-high purity water to transition hydrosol particles to aerosol particles.  

This transition enables size distribution function analysis via ion mobility spectrometry 

(IMS), a technique typically restricted to electrosprayed macromolecules and small organic 

compounds.  Importantly, it is shown that ion mobility spectrometry can be used to quantify 

the sizes of both spherical and non-spherical (nanorod) materials, their size distributions 

are preserved during the hydrosol to aerosol transition, and that a size and material 

independent calibration curve linking measurement concentrations in the gas phase to the 

liquid phase concentration can be developed. 

Chapter 3:  Chapter 3 focuses on application of the LN-IMS system described in chapter 

2 to examine the onset of heteroaggregation between gold nanoparticles (nominal 

diameters of 20 nm, 30 nm, and 50 nm) and bovine serum albumin.  A Langmuir-like 

adsorption model is applied in analyzing results and is used to infer the binding site surface 

density (proteins per unit area) on gold nanoparticles as well as effective protein 

concentration above binding sites (which determines the dissociation rate).  Results are 

found to be in good agreement with binding site density measured by alternative 

techniques, verifying that the LN-IMS system can be used to quantify heteroaggregate 

formation.  Further, through constant number Monte Carlo modeling, a demonstration of 

how IMS inferred size distribution functions evolves for irreversible binding, reversible 

binding, and coagulation.   

Chapter 4:  With the ability to examine protein binding via LN-IMS measurement 
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established in Chapter 3, in Chapter 4 the extent of bovine serum albumin binding to 

superparamagnetic iron oxide particles and the formation of serum albumin-iron oxide 

heteroaggregates is quantified.  The extent of aggregation is correlated with extent of heat 

generated when particles are placed with an alternating magnetic field.  The extent of 

protein absorption on bare iron oxide is compared to that on mesoporous silica coated and 

PEGylated iron oxide nanoparticles.  

Chapter 5:  Chapter 5 focuses on the application of an image processing technique to 

extrapolate probable 3-dimensional structures for aggregates observed in 2-d dimensional 

electron microscopy image to infer the morphologies of iron oxide aggregates in intra- and 

extracellular environments of LNCaP cells. For morphological quantification aggregates 

are assumed to be quasifractal in nature, in which there is a power law relationship between 

the number of particles in an aggregate and the aggregate’s radius of gyration (where the 

exponent is termed the fractal dimension). 

Chapter 6:  Chapter 6 focuses on the application of nanoparticle tracking analysis as well 

as viscosity measurements to develop a data inversion approach to infer the most probably 

fractal dimension for aggregates within a nanoparticle slurry. 

 

 

1.3 Nanoparticle morphology characterization techniques 

 

1.3.1 Nanomaterial size characterization techniques 

 
 First and foremost, nanoparticles are characterized by a relative size, which is 

most the diameter for spherical particles and a measurement equivalent diameter for non-

spherical particles. The size distribution function for a suspension quantifies the variation 

in particle number concentration with measurement equivalent diameter. Here I describe 
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three methods for size distribution function inference and their present limitations; the 

latter two of these are employed in the studies described in later chapters.  A number of 

alternative size distribution measurement techniques which are not employed in this study, 

are briefly mentioned in the introduction subsections of individual chapters. 

 First, in the liquid phase, the size distribution function is frequently monitored 

using dynamic light scattering (DLS) [37-40], which is also referred to as photon 

correlation spectroscopy (PCS). The DLS technique relatively simple to apply with 

commercial instruments, and measurements only require a short period of time to complete. 

In this method, a nanosuspension is placed in the path of a laser beam, and the size 

distribution function is inferred from fluctuations of scattered light intensity due to the 

Brownian motion of nanoparticles (hence the equivalent diameter in DLS is a 

hydrodynamic diameter). DLS consistently yields accurate size measurements of 

monodisperse nanoparticles, i.e. those which have narrow distributed size distribution 

functions.  However, DLS measurements are usually biased to larger particles because 

scattered light intensity is proportional to the sixth power of particle diameter [41-43]. For 

this reason DLS measurements are typically used for qualitative characterization; they are 

used to infer a mean equivalent diameter for particles, but there is considerable uncertainty 

in other properties inferred from these measurements. 

  The diffusion of particles is also monitored in recently developed Nanoparticle 

Tracking Analysis (NTA) [43-46], but unlike DLS, single particle motion is monitored. 

For this reason NTA results are less biased towards presence of large particles, and NTA 

is capable of distinguishing different size populations in mixture samples (i.e. polydisperse 

analysis is possible).  Figure 1.2 displays the schematic of a NTA system and a captured 
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NTA video frame of Al2O3 nanoparticles in water as an example. While single particle 

measurement capability is a major advance over DLS, the minimum measurable 

nanoparticle size of NTA is approximately 30 nm [47-49]; particles smaller than this 

equivalent size do not scatter light sufficiently for detection, particularly in samples 

containing larger particles.   

  

 
 

Figure 1.2. (a) Schematic of nanoparticle tracking analysis (NTA) system and (b) an 

example of the NTA video frame of nanoparticles (Al2O3) under Brownian motion 

captured by a CCD camera  

 

 

 The limitations of liquid phase measurements for smaller nanoparticles and 

polydisperse samples are not encountered with existing aerosol instrumentation. In aerosol 

science, the ion mobility spectrometry (IMS) technique, typically composed of a 

differential mobility analyzer (DMA) [50-52] and a condensation particle counter (CPC) 

[53, 54], has been commonly used for accurate aerosol particle size distribution 

characterization in a 2 – 500 nm range. DMAs act as mobility equivalent size filters; they 

isolate particles based on their electrical mobility (Zp). Particle electrical mobility is 

expressed in Equation (1.1). This equation is derived from the balance between electrical 
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force and drag force on a particle [55, 56]; 

 

𝑍𝑝 =
𝑛𝑒𝐶𝑐

3𝜋𝜇𝑑𝑝
                                                                                                                     (1.1) 

 

where n is the number of unit charges on a particle (typically +1 or -1 for charge particles 

and a DMA only selects particles of a prescribed polarity), e is the unit electrical charge 

(1.6 × 1019 C),  𝜇 is the gas kinematic viscosity, Cc  is the Cunningham slip correction factor 

and dp is the mobility equivalent particle diameter. Upon being transmitted through a DMA, 

particles enter a CPC, wherein a working fluid vapor (typically water or butanol) condenses 

onto them, growing them to micrometer sizes, enabling size particle detection (with size 

known from the DMA) at the singe particle level.  By systematically varying the electrical 

mobility selected by the DMA and measuring transmitted particle concentration with a 

CPC, aerosol nanoparticle size distribution functions can be monitored, and algorithms 

have been developed for both automated operation of these two instruments (as a scanning 

mobility particle spectrometer) [57, 58], and to directly invert the size distribution function 

from raw data. Though this type of IMS technique is applied almost universally to examine 

nanoparticles in the ambient atmosphere, emitted from combustion engines, and produced 

in gas phase synthesis systems. However, to apply the DMA-CPC technique to liquid 

suspensions, an appropriate device is necessary to convert colloidal particles into aerosols 

while preserving their size distribution functions [59, 60].  Demonstrations of liquid 

suspension to aerosol conversion have been made and are described in prior studies [60-

62]; unfortunately a universal method (even for samples restricted aqueous suspensions) 

has not been developed. 
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1.3.2 Nanomaterial aggregate structure characterization techniques 

 Precise description of the geometries of aggregates, such as those depicted in Figure 

1.1, is often not feasible, as there is a near-infinite set of possible morphologies, even for 

aggregates composed of tens of primary particles. Instead, for quantitative structural 

characterization of non-spherical aggregates, it is common (and more practical) adopt the 

quasi-fractal aggregate model. The most basic form of this model assumes that all 

aggregates are composed of identical primary particles, and they are spherical with without 

overlap. The quasi-fractal aggregate model can be described by the scaling law [63];   

 

𝑁𝑝 = 𝑘𝑓 (
𝑅𝑔

𝑎𝑝
)
𝐷𝑓

                                                                                                   (1.2) 

where Np is the number of primary particles in an aggregate, kf  is the pre-exponential factor, 

usually in the range from 1.0 to 2.0, Rg is the radius of gyration, ap is the primary particle 

radius, and Df  is the fractal dimension. Df can theoretically vary from 1.0 to 3.0, and lower 

fractal dimension aggregates are more chain-like, while higher fractal dimension 

aggregates are much more spherical. kf has a much more subtle influence on the visible 

structure of an aggregate, is relate to the density of particles in the aggregate structure [64]. 

Therefore, Df and kf can be used as quantitative shape parameters of an aggregate, while 

Np quantifies the size of an aggregate. Simulation techniques exist to produce aggregates 

computationally with prescribed Df, kf, and Np. Figure 1.3 displays examples of simulated 

fractal aggregates with Np= 20, 50, & 100, and selected Df and kf. As depicted in Figure 

1.3, lower values of Df and kf lead more linear aggregates, while more dense aggregates 

have higher values of Df and kf.  
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Figure 1.3. Computational generated (with a cluster-cluster algorithm, CCA) quasifractal 

aggregates with the noted fractal dimension (Df) and pre-exponential factor (kf). 

 

 There have been prior several attempts to infer fractal descriptors (Df, kf, and Np) of 

aggregates by using transmission electron microscopy (TEM), primarily for soot particles 

generated in combustion systems [65-69]. In these studies two-dimensional (2D) geometric 

parameters of projected aggregates were measured and used to predict three dimensional 

(3D) structures. In other studies, empirical correlations have been developed between 

three-dimensional and two-dimensional projected properties with the fractal aggregate 

model. However, prior image analysis approaches relied on only one or two geometric 

parameters, leading to large uncertainties in the 3D structure of the examined aggregates. 

Additionally, the described studies were primarily focused on the prediction of Df, not kf 

and Np, and were limited to a narrow Df range. These limitations motivate the development 

of a more advanced image analysis technique in this dissertation.  
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1.4 Publications from this dissertation 

 
 As noted, subsequent chapters are adapted from works submitted, or to be submitted 

for peer-reviewed publication.  At the time of writing this dissertation, several have also 

been accepted for published and published.  The specific manuscript titles are: 
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“Nanomaterial Size Distribution Analysis via Liquid Nebulization Coupled with Ion 

Mobility Spectrometry (LN-IMS)”  

Seongho Jeon, Derek R. Oberreit, Gary Van Schooneveld, & Christopher J. Hogan Jr; 

Analyst, 2016, 141, 1363-1375 

 

Chapter 3  

“Liquid Nebulization-Ion Mobility Spectrometry Based Quantification of Nanoparticle-

Protein Conjugate Formation” Seongho Jeon, Derek R. Oberreit, Gary Van Schooneveld, 

& Christopher J. Hogan Jr;  

Submitted to Analytical Chemistry, 2016 
 

Chapter 4 

“Quantification of Surface Coating Dependent Binding of Serum Albumin to 
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Schooneveld, Zhe Gao, John C. Bischof, Christy L. Haynes, & Christopher J. Hogan Jr.;  
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Influence on Specific Absorption Rate”  

Seongho Jeon, Katie R. Hurley, John C. Bischof, Christy L. Haynes, & Christopher J. 

Hogan Jr.;  

Submitted to Nanoscale 2016 
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“Evaluation of Nanoparticle Aggregate Morphology during Wet Milling”  

Seongho Jeon, Thaseem Thajudeen, & Christopher J. Hogan Jr.;  

Powder Technology, 2015, 272, 75-84 
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Chapter 2  

Nanomaterial Size Distribution Analysis via Liquid 

Nebulization Coupled with Ion Mobility Spectrometry (LN-

IMS) 
 

 

Summary 

 We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, 

using a differential mobility analyzer coupled to a condensation particle counter) to 

measure the size distribution functions (the number concentration per unit log diameter) of 

gold nanospheres in the 5–30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin 

proteins originally in aqueous suspensions. In prior studies, IMS measurements have only 

been carried out for colloidal nanoparticles in this size range using electrosprays for 

aerosolization, as traditional nebulizers produce supermicrometer droplets which leave 

residue particles from non-volatile species. Residue particles mask the size distribution of 

the particles of interest. Uniquely, the LN employed in this study uses both online dilution 

(with dilution factors of up to 104) with ultra-high purity water and a ball-impactor to 

remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-

aerosol conversion preserving the size and morphology of particles, and also enables higher 

non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS 

measurements we show that the size distribution functions of narrowly distributed but 

similarly sized particles can be distinguished from one another, which is not possible with 

Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to 

electron microscopy measurements, we find that the size distribution functions 

inferred via LN-IMS measurements correspond to the particle sizes coated by 

surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase 

particle concentrations inferred from IMS size distribution functions are functions of only 

of the liquid phase particle concentration, and are independent of particle size, shape, and 

chemical composition. Therefore LN-IMS enables characterization of the size, yield, and 

polydispersity of sub-30 nm particles. 
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2.1 Introduction 

Methods to efficiently determine the size, polydispersity, and concentrations of 

nanomaterials in liquid suspensions are extremely important in nanomanufacturing 

systems, particularly for nanomaterials (nanoparticles) in the sub 30 nm size range. 

Nanoparticles in this size range can exhibit strong size dependent optoelectronic[70, 71] 

and catalytic [72, 73] properties; extremely accurate and reliable techniques to quantify not 

only the mean size, but the polydispersity and yield are hence critical in liquid phase 

synthesis process monitoring. Unfortunately, commonly applied size analysis techniques 

are limited in capabilities below 30 nm. Aside from electron microscopy (which is time 

consuming, particularly to infer size and shape distributions with appropriate counting 

statistics), nanoparticles size distribution functions (the particle number concentration per 

unit diameter or per unit log diameter, quantifying the size, concentration, and 

polydispersity) are frequently determined via photon correlation spectroscopy/dynamic 

light scattering [37-40]. Because of the indirect nature of the measurement, it is difficult to 

apply photon correlation spectroscopy to infer the size distribution functions of highly 

polydisperse or multimodal samples, and inferred distributions are commonly biased 

towards larger particles [74]. Further, quantification of nanoparticle concentrations is often 

not possible. Recently developed Nanoparticle Tracking Analysis (NTA), [43, 48, 75-77], 

in which the motion of individual particles is monitored and used to infer the size 

distribution function, does not require the fitting procedures normally associated with 

photon correlation spectroscopy. However, NTA is difficult to apply to particles 

appreciably smaller than the wavelengths of visible light, i.e. particles smaller than 30 nm 

are not easily detected. Sub 10 nm particles can often be analyzed by size exclusion 
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chromatography [78], but particles can clog columns, and the resolution of this technique 

reduces with increasing size. Finally, flow field fractionation [79] and analytical 

ultracentriguation[80, 81], can be applied for sub 30 nm particle analysis, though both need 

to be coupled to appropriate detectors for particles. 

Overall, the development of easy-to-apply size distribution measurement 

procedures remains a critical issue in nanomanufacturing, as synthesis process monitoring 

must be applied repeatably (i.e. to each “batch” of nanomaterials). Further, different size 

distribution measurement procedures have been found to give results in disagreement with 

one another in several circumstances [74, 82], with the underlying origins of disagreement 

still unclear. Additional comparison of the performance of existing techniques amongst one 

another, as well as comparison to newly developed techniques for a variety of 

nanomaterials, remains necessary. 

In converse to the issues confronted when analyzing nanoparticles in liquids, in 

aerosols, nanoparticle size distribution analysis is facilitated by ion mobility spectrometry 

(IMS), specifically using a differential mobility analyzer [83] coupled with a condensation 

particle counter [53] (DMA-CPC analysis). DMA-CPC measurements require no 

assumptions regarding the shape or modality of the size distribution function, and when a 

proper inversion routine is applied [84], this type of analysis facilitates size distribution 

function determination in the 2–500 nm range. Application of the DMA-CPC technique to 

liquid suspensions is also possible, provided that the particles of interest can be aerosolized 

preserving their size distribution function. Along these lines, several studies [62, 85] have 

examined the use of pneumatic nebulization to spray nanoparticle suspensions and 

evaporate the solvent, leaving aerosol nanoparticles amenable to IMS. Unfortunately, 
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traditional nebulizers produce supermicrometer droplets; such droplets typically contain 

high enough concentrations of non-volatile solute (even with high purity-solvents) such 

that aerosolization leads to a residue coating on nanoparticles and to the production 

nanoparticles composed entirely of previously dissolved solute. Residue coating can shift 

the sizes of sub-30 nm particles by several to tens of nanometers, and the size distribution 

function of residue nanoparticles can mask entirely the particles of interest [86]. This limits 

analysis to >50 nm particles in most circumstances. Additionally, multiple nanoparticles 

can be present within the same droplet, and these nanoparticles will agglomerate with one 

another upon solvent drying. As an alternative to pneumatic nebulization, Fernandez de la 

Mora and coworkers [87], Kaufman and coworkers,[86, 88, 89] Lenggoro and 

coworkers,[90-92] and more recently Tsai, Zachariah & coworkers[93-100] have 

examined the use of electrosprays followed by charge reduction[101, 102] to produce 

submicrometer (down to 100 nm) droplets. Electrosprays facilitate the aerosolization of 

aqueous particles with minimal shifts in the size distribution function. Though this 

technique has been successfully applied to metal nanoparticles [91, 97, 103], polymers 

[104-106], proteins[88, 89, 107], as well as viruses and virus-like particles [108-115], there 

are still drawbacks to using electrosprays for aerosolization; namely, (1) there are rather 

strict requirements on the electrical conductivities of suspensions which can be 

electrosprayed [116, 117], and (2) non-volatile solutes need to be removed from the 

suspension prior to electrospray based aerosolization (i.e. electrospray based aerosolization 

still leads to the formation of residue particles from solutes) [86]. These requirements have 

limited the application electrospray-DMA based analyses to highly purified protein and 

virus samples. In total, because of the lack of robust aerosolization techniques, though fast 
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and relatively inexpensive, IMS approaches have not been widely adopted for nanoparticle 

size distribution analysis in liquids. 

In the interest of improving the utility of IMS in nanoparticle analysis, here we 

apply a recently developed liquid nebulizer (LN) to aerosolize nanoparticles, and 

subsequently show that their size distributions can be analyzed via IMS, i.e.with a DMA-

CPC combination. Unique from most pneumatic nebulizers, the LN applied in this work 

utilizes online dilution with ultrapure water (UPW) with dilution factors (UPW 

flowrate/sample flow rate) in excess of 102, and an inertial impactor to remove large 

droplets prior to analysis. The dilution-impaction combination leads to minimal 

perturbation of the particle size distribution during aerosolization. Using the LN, we made 

IMS measurements of sub 30 nm gold nanospheres (down to 5 nm in nominal diameter), 

gold nanorods, and albumin proteins in aqueous suspensions with variable pH and 

concentration of phosphate buffered saline. Importantly, we show that independent of 

particle size, shape, and solute concentration, a calibration curve can be developed linking 

measured aerosol concentrations to the nanoparticle concentrations in suspension. Results 

are compared to electron microscopy and NTA. To our knowledge, this is the first 

demonstration of quantitative, IMS-based size distribution function measurement of sub-

20 nm nanomaterials in which nanomaterials were aerosolized without the use of 

electrospray. 
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2.2 Materials and methods 

2.2.1 Nanoparticle suspensions 

Gold nanospheres of five nominal diameters (5, 7, 10, 15, and 30 nm, which had 

manufacturer reported mean diameter ± standard deviations of 5.06 ± 0.77 nm, 7.20 ± 0.82 

nm, 12.05 ± 0.99 nm, 17.06 ± 1.70 nm, 30.02 ± 3.86 nm, respectively) as well as 980 nm 

resonant gold nanorods (GNRs, which were nominally 70.5 nm in length × 11.7 nm in 

diameter) were all purchased from Nanocomposix, Inc. (San Diego, CA, USA). To 

stabilize suspensions, gold nanospheres were pretreated with tannic acid and the surface of 

gold nanorods was coated with citrate anions (subsequent to synthesis). Bovine serum 

albumin (BSA, CAS registration #: 9048-46-8) and ovalbumin (OVA, albumin from 

chicken egg white, CAS registration #: 9006-59-1) were also examined and were purchased 

from Sigma Aldrich (Saint Louis, MO, USA). Suspensions were prepared with a variety 

of solutes and with number concentrations in the 2.00 × 109 mL−1 to 8.16 × 

1014 mL−1 range. First, gold nanosphere suspensions were either used directly (with tannic 

acid included) in experiments or diluted offline (to vary concentrations) with UPW, which 

had total organic carbon and non-volatile residue levels below 1 ppbv, was treated with 

165 nm UV-light and was passed 10 nm & 20 nm particle filtration systems as well as a 

mixed bed ion exchange resin. The pH of suspensions was controlled to be 5.0–9.7 by 

adding either acetic acid (BDH Aristar) or ammonium hydroxide (Macron Fine 

Chemicals). Second, gold nanospheres were diluted (to varying concentration levels) in 

0.001×–0.01× phosphate buffered saline (PBS, Corning Life Science, CA, USA). At this 

PBS concentration level, gold nanospheres were found stable in suspension for more than 

seven days (by visual examination). GNR suspensions were found to contain significantly 
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higher concentrations of non-volatile solutes, hence prior to measurement GNR 

suspensions were diluted one-hundred fold in de-ionized (DI) water (produced using a 

SpectraPure, Tempe, USA filtration system, and not filtered to the extent of the UPW), 

centrifuged twice (7600 rpm for 15 minutes with a model 5418 centrifuge, Eppendorf, 

Hamburg, Germany), and finally resuspended in DI water. We note that this preparation 

procedure is considerably simpler than that used in preparing GNRs for electrospray based 

aerosolization previously [118, 119]. BSA and OVA samples were prepared by dissolving 

known weights (from which number concentrations were determined) in UPW, with the 

suspension pH similarly varied by addition of acetic acid and ammonium hydroxide. BSA 

and OVA samples were also prepared in 0.01× and 0.05× PBS. 

 

2.2.2 Liquid nebulizer - ion mobility spectrometry (LN-IMS) 

Measurements 

 
A schematic diagram of the LN is provided in Figure 2.1, and a schematic diagram 

of the LN coupled with a DMA and CPC for IMS measurements is shown in Figure 2.2. 

The LN (LiquiTrak®  Model 7788, Fluid Measurement Technologies, Inc., St Paul, MN, 

USA), similar to the model employed by Fissan et al [62], was designed to have (1) a small 

air-liquid mixing chamber to maximize the breakup of liquid into droplets, (2) a small 

existing orifice diameter, generating back pressure on the sample flow and further 

promoting droplet formation, and (3) a ball-type inertial impactor at the exit of the 

nebulizer to efficiently remove larger droplets from the generated aerosol. The generated 

droplet size distribution function has been measured by the residue method [117], and is 

reported on in the results and discuss section. Briefly, the droplet size distribution function 

is found to be approximately lognormal, with a geometric mean diameter of 99.8 nm and a 



 

19 

 

geometric standard deviation of 2.32. For LN operation, a colloidal suspension is pumped 

at a flow rate in the 0.01 to 1.0 milliliter per minute (mL min-1) range; this flow is mixed 

with UPW flowing at 100 ml min-1, with combined outlet inline with the UPW inlet, and 

the sample flow inlet oriented perpendicular to the UPW inlet and combined outlet. The 

ratio of these two flow rates defines a dilution factor (DF) for the sample, which can be 

varied from 102 to 104.  After mixing, ~98 mL min-1 of the flow is diverted to a waste 

stream, while 2 mL min-1 is directed into a single nozzle, where it is mixed with 0.6 

standard L min -1 of air at 19 o C (monitored continuously during measurement). Upon 

exiting the nebulizer, an evaporator (at 57-60o C) facilitates solvent volatilization, leaving 

a flowing aerosol composed of particles and non-volatile solutes originally in the liquid 

sample.  

 

 

Figure 2.1.  Schematic diagram of the liquid nebulizer (LN)  
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Figure 2.2.  Schematic diagram of the LN coupled with a differential mobility analyzer 

(DMA) and condensation particle counter (CPC) for IMS measurements 

 

For IMS measurements, 1.5 l min-1 of the nebulized particle flow is introduced into 

a soft X-ray ionization chamber (Advanced Aerosol Neutralizer 3087, TSI Inc., Shoreview, 

MN, USA) [120]. Soft X-ray irradiation generates roughly equal concentrations of positive 

and negative ions from trace organic molecules (at part-per-trillion levels) in air 

(photoionization) [121, 122]; these ions subsequently collide with particles and transfer 

charge to them upon collision. After remaining in the ionization chamber for a sufficient 

amount of time, the particles achieve known size-dependent charge distribution function, 

wherein most particles are neutral and the majority of charged particles are singly charged 

[123, 124]. Particles are then directed into a DMA (model 3085, TSI Inc.) [52]; DMAs act 

as narrow band mobility filters, only transmitting particles in a mobility range governed by 

their sheath flowrate (15 l min-1) and the applied potential difference between electrodes. 
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Particles transmitted through the DMA are detected by a CPC (model 3776, TSI Inc.). The 

DMA and CPC are operated in tandem as a scanning mobility particle spectrometer 

(SMPS) [125] with 120 second upward voltage scans applied, 15 second downscans, and 

~60 seconds between scans. 

The LN-IMS measurements reported here were performed as follows. First, the 

gold nanospheres, GNRs, and the two proteins were nebulized separately and examined at 

variable analyte concentrations and dilution ratios, as well as variable PBS concentration 

and pH.  Subsequently, six mixtures, each composed of two different sized sub-30 nm gold 

nanospheres were measured. Tables listing each sample analyzed, its initial number 

concentration, pH, PBS concentration, and online dilution factor is provided in Tables 2.1 

and 2.2. 

 

2.2.3 NanosightTM and transmission electron microscope 

LN-IMS measurements were compared to NTA measurements made with a 

Nanosight™ LM-14 (Malvern Instruments LTD, Malvern, Worcestershire, UK), as well 

as transmission electron microscopy (TEM, FEI, Hillsboro, OR, USA) measurements. 

With NTA, we examined the size distributions of both monodisperse (10, 15, 30, and 60 

nm in diameter) and polydisperse (15 & 30 nm, and 30 & 60 nm, mixtures) gold 

nanospheres. Because the recommended particle concentration for NTA measurements is 

<109 particles per mL, the original gold nanosuspensions were diluted with DI water 

(SpectraPure, Tempe, USA) by a factor of 102–103. At least 5 measurements were 

performed for each sample and the hydrodynamic size distribution function was inferred 
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using the procedure described by Jeon et al.[126], in lieu of using the Nanosight™ software 

program.  

 

Table 2.1. The LN-IMS experiment conditions for 5, 7 and 10 nm gold nanospheres. 

 

Material 
Suspension 

Properties 

particle #  concentration 

(# mL-1) 

Dilution 

factor 

5 nm  

gold nanosphere 
DI Water 

4.80 x 1013 
2000 

5000 

8.00 x 1012 (mixture) 500, 1000 

4.80 x 1012 
500, 1000, 

2000 

4.80 x 1011 500 

4.80 x 1010 200 

7 nm  

gold nanosphere 
DI Water 

1.70 x 1013 1000 

2000 

2.83 x 1012  (mixture) 500 

2.83 x 1012  (mixture) 250, 500 

2.83 x 1012  (mixture) 250 

8.50 x 1012 2000 

1.70 x 1012 500, 1000 

8.50 x 1011 500, 1000 

1.70 x 1011 500, 1000 

8.50 x 1011 200 

8.50 x 109 125 

10 nm  

gold nanosphere 

DI Water 

3.40 x 1012 
2000 

1000 

2.83 x 1012 

(mixture) 

500 

1000 

2.83 x 1012 (mixture) 500 

3.40 x 1011 1000 

3.40 x 1010 
200 

500 

3.40 x 109 125 

pH 6.0 3.04 x 1012 2000 

pH 9.7 3.04 x 1011 500 

PBS 0.01 3.04 x 1012 2000 

PBS 0.005 3.04 x 1012 1000 
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Table 2.2. The LN-IMS experiment conditions of 15 and 30 nm gold nanospheres, GNRs, 

BSA and OVA. 

Materials 
Suspension 

Properties 

particle # concentration 

(# mL-1) 
Dilution factor 

15 nm 

gold nanosphere 

DI Water 

1.10 x 1012 1000 

9.17 x 1011 (mixture) 250, 500 

1.83 x 1011 (mixture) 250, 500 

1.10 x 1011 500 

1.10 x 1010 125 

pH 6.0 1.00 x 1012 2000 

pH 9.7 1.10 x 1011 500 

PBS 0.005 9.90 x 1011 1000 

30 nm 

gold nanosphere 
DI Water 

2.00 x 1012 
125 

200 

1.67 x 1011 (mixture) 250, 500 

1.67 x 1011 (mixture) 250 

1.67 x 1011 (mixture) 
250 

500 

2.00 x 1010 
200 

500 

2.00 x 109 125 

Gold nanorod DI Water 7.45 x 1010 
125 

200 

BSA 

DI Water 

4.53 x 1014 10000 

2.26 x 1014 10000 

4.53 x 1013 2500 

1.13 x 1014 5000 

8.48 x 1013 
2500 

5000 

5.65 x 1013 2500 

2.26 x 1013 2000 

2.26 x 1012 1000 

2.26 x 1011 250 

2.26 x 1010 125 

PBS 0.01 2.00 x 1014 10000 

PBS 0.05 4.04 x 1014 10000 

pH 5.0 2.26 x 1014 10000 

pH 9.7 2.26 x 1014 10000 

OVA 

DI Water 

6.12 x 1014 10000 

6.12 x 1013 
1000, 2000, 

2500 

PBS 0.01 5.54 x 1014 10000 

pH 9.7 8.16 x 1014 10000 
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For TEM measurements, an FEI Tecnai T12 TEM (in the University of Minnesota 

Characterization Facility) was used to image the gold nanospheres and the GNRs. 10–30 

μl of each analyte suspension were dropped onto a carbon grid (200 mesh, Ted Pella INC, 

CA, USA) and the solvent was allowed to evaporate. The software ‘ImageJ’ was employed 

to measure particle sizes in TEM images. More than 300 individual particles were 

examined for each sample to establish an accurate particle size distribution. The TEM was 

calibrated monthly and measurements are expected to be accurate to within 0.1 nm. For the 

GNRs, the measurement of the width and length of each rod enabled the inference of its 

hydrodynamic radius (RH) and projected area (PA), which enabled direct comparison to 

LN-IMS measurements [118].  

 

2.3 Results & discussion 

2.3.1 Size distribution functions 

 Size distribution function measurements involve inversion of the function 

𝑑𝑛

𝑑𝑙𝑜𝑔10(𝑑𝑝)
, the number concentration per unit log10 of particle diameter (dp).  In LN-IMS 

mesaurements, this distribution is determined not in the liquid phase, but the gas phase, via 

measurement of particle number concentrations (ni) with a DMA operated under voltage 

settings “i”. ni and 
𝑑𝑛

𝑑𝑙𝑜𝑔10(𝑑𝑝)
 are linked via the equation: 

 

𝑛𝑖 = ∑ ∫ 𝜂𝐶𝑃𝐶(𝑑𝑝)𝜃𝑖(𝑑𝑝, 𝑧)𝜂𝐷(𝑑𝑝)𝑓𝑧(𝑑𝑝, 𝑧)
𝑑𝑛

𝑑𝑙𝑜𝑔10(𝑑𝑝)
𝑑𝑙𝑜𝑔10(𝑑𝑝)

∞

−∞
𝑧=+∞
𝑧=+1               (2.1) 
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where 𝜂𝐶𝑃𝐶(𝑑𝑝) is size dependent detection efficiency of the CPC, 𝜃𝑖(𝑑𝑝, 𝑧) is the DMA 

tansfer function under settings “i” (with settings corresponding to sheath flowrate, aerosol 

inlet and outlet flowrates, and applied voltage), 𝜂𝐷(𝑑𝑝) is the size dependent fraction of 

particles transmitted through the DMA-CPC system (i.e. those that did not diffusionally 

deposit), and fz(dp,z) is the fraction of particles of integer charge state z exiting the soft X-

ray photoionizer. To determine 
𝑑𝑛

𝑑𝑙𝑜𝑔10(𝑑𝑝)
, measurements must be at a sufficient number of 

settings “i”, an inversion routine must be applied to solve equation (2.1), and all functions 

except ni (the observable) and 
𝑑𝑛

𝑑𝑙𝑜𝑔10(𝑑𝑝)
 must be known a priori.  We applied the built-in 

SMPS software and DMA transfer function available with TSI instruments for inversion 

(Aerosol Instrument Manager), in which the CPC detection efficiency in the size range of 

interest was unity, the Stokes-Millikan equation[127, 128] was used to link the mobility to 

the particle diameter, transmission efficiencies were calcuated using the Gormely-Kennedy 

equations [129], and 𝑓𝑧(𝑑𝑝, 𝑧) was calculated via the regression equations of Wiedensohler 

[124] (which recent studies suggest are reasonably valid for spheres and nanorods [123, 

130]).  None of these functions are strongly dependent on the chemical nature of the 

particles examined. We thus postulate that when plotted against the analyte suspension 

concentration, the dilution corrected number concentration of particles (ntot), described by 

the equation: 

 

𝑛𝑡𝑜𝑡 = 𝐷𝐹 ∫
𝑑𝑛

𝑑𝑙𝑜𝑔10(𝑑𝑝)
𝑑𝑙𝑜𝑔10(𝑑𝑝)

∞

−∞
                                        (2.2) 
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should collapse to an analyte (size, shape, and chemical composition) and solute 

independent function. In the remaining sub-sections, we (1) report the inverted size 

distribution functions from LN-IMS for all samples, (2) examine (numerically) the LN 

conditions required to preserve size distribution functions during aerosolization, (3) 

compare LN-IMS measurements to NTA and TEM analysis, and (4) demonstrate that the 

dilution factor corrected aerosol number concentration is in fact solely dependent on the 

original suspension number concentration. 

 

2.3.2 Droplet size distribution functions 

Most pneumatic nebulizers create droplet size distribution functions which have 

mode diameters between 2 and 5 m; such droplets are not well suited for aerosolization 

of nanoparticles without distortion of the particle size distribution function. To measure the 

droplet diameter, we applied the residue method [117], in which we mixed sucrose with 

UPW at an original sucrose volume fraction (Vf) of 0.0654.  This high concentration 

solution was then nebulized with DFs of 17.39 and 42.11, and after solvent evaporation, 

the size distribution functions of the residual sucrose particles were measured with the 

DMA-CPC.  Droplet diameters (dD) were linked to the measured sucrose particle diameters 

(dS) through the relationship: 𝑑𝐷 = (
𝐷𝐹

𝑉𝑓
)1/3𝑑𝑆. Inferred droplet size distribution functions 

are plotted in Figure 2.3.  The good agreement between measurements with different DFs 

suggests that solutions are well mixed after dilution and prior to nebulization, and further 

suggests that the residue method enabled reliable estimation of the droplet size distribution 

function. The droplet size distribution function is found to be approximately lognormal, 

with a geometric mean diameter of 99.8 nm and a geometric standard deviation of 2.32. 
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This geometric mean diameter is similar to many charge reduction electrospray sources 

[86]; however, the geometric standard deviation is much larger than cone-jet mode 

electrosprays (which are typically closer to 1.1)[117]. Nonetheless, more than 95% of the 

droplets generated and exiting the nebulizer (i.e. transmitted around the impactor) are 

smaller in diameter than 350 nm, suggesting that the LN examined here will minimally 

distort nanoparticle size distributions during aerosolization. 

 

Figure 2.3.  LN generated droplet size distribution functions, inferred using the residue 

method. 

 

 

2.3.3 LN-IMS size sistribution functions 

The size distribution functions (averaged over 10 consecutive scans) of 5, 7, 10, 15 

and 30 nm diameter gold nanospheres and GNRs, nebulized at a pH near 7, are shown in 

Figure 2.4. Best fit lognormal distribution functions are also displayed on these plots, with 

the geometric mean diameter (dpg) and geometric standard deviation (g) are also noted on 

the figure. For all examined particles, g values were below 1.2, indicating that narrowly 

distributed particles were detected. Similar plots for BSA and OVA are shown in Figure 
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2.5, where we obtained mode diameters of 6.4 nm and 5.7 nm, respectively. These protein 

effective diameters are in good agreement with higher resolution IMS measurements of 

low charge state BSA and OVA collision cross sections [131-133]. We additionally found 

the geometric mean diameter and standard deviation to be independent of DF, provided 

that DF was sufficiently high to reduce the sizes of residue particles well below the sizes 

of the particles and to mitigate droplet induced aggregation. While in total these results 

suggest that LN-IMS measurements enable accurate size distribution function inference, 

for the gold nanospheres, all dpg values were slightly larger than the nominal diameters and 

manufacturer reported mean diameters for several samples; we remark further on this 

observation in comparison to TEM measurements in section 2.3.5.   

The non-volatile residue present in the samples examined in Figure 2.4 derives 

from surfactants used in stabilizing nanoparticles in suspension as well as salts used during 

particle synthesis. Of interest is also examination influence additional solutes may have on 

LN-IMS measurements, as well as changes in pH. Figure 2.6 displays the size distribution 

functions of 10 nm and 15 nm gold nanospheres from DI water (with non-volatile residue 

remaining from their original suspension), 0.005X PBS, and in pH 9.7 suspensions. The 

initial suspension concentration and dilution factor are labelled for each measurement. 

Similar results were obtained for gold nanospheres of other sizes, and both protein samples. 

Figure 2.7 shows the size distribution functions of BSA and OVA proteins in DI water, pH 

4.7, and PBS 0.01X suspensions. Evident by comparison of the Figures 2.6 and 2.7 plots 

to one another is that the peak diameter of the distribution functions corresponding to gold 

nanospheres and proteins do not shift from DI water to PBS or pH suspensions. Further, 
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we did not observe any changes to size distribution functions over time, suggesting that 

gold nanoparticles and proteins did not aggregate in any of the test suspensions. 

 

 

 

Figure 2.4.  LN-IMS inferred size distribution functions for gold nanospheres and GNRs. 
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Figure 2.5. LN-IMS inferred size distribution functions for bovine serum albumins (BSA) 

and ovalbumins (OVA) dispersed in DI water. 

 
Figure 2.6.  LN-IMS inferred size distribution functions for nominal 10 nm and 15 nm 

gold nanospheres in DI water (upper), 0.005 X PBS (middle), and a pH 9.7 suspension. 
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Figure 2.7. Size distribution functions of bovine serum albumin (BSA) and ovalbumin 

(OVA) in various suspensions. As with gold nanospheres, peaks below 5 nm in diameter 

correspond to non-volatile residue formed during the aerosolization process.   

 

However, also visible in distribution functions are residue particles at separate, 

smaller diameter, modes in both the PBS and pH solution size distribution functions; such 

peaks arise because (1) these suspensions were of lower concentration than the original and 

lower dilution factors were used, and (2) the concentrations of non-volatile solutes were 

higher in these suspensions. Nonetheless, these results show that it is possible to identify 

and measure the size distribution functions of sub 30 nm particles via LN-IMS in 
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suspensions with non-volatile residue present (which is not possible with electrospray 

based ionization[86]). 

The size distribution functions of six gold nanosphere mixtures (7 & 15 nm, 5 & 

10 nm, 15 & 30 nm, 7 & 10 nm, 7 & 30 nm and 10 & 30 nm in diameter) were also 

examined and are plotted in Figure 2.8. The concentration ratios in suspension as well as 

the dilution factors utilized in measurements are noted. In all instances, we were able to 

clearly identify both particle types in mixtures. These results are compared to NTA 

measurements in section 2.3.5. 

 

Figure 2.8.  LN-IMS inferred size distribution functions for gold nanosphere mixtures. 
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2.3.4 Simulation of hydrosol to aerosol conversion 

The results presented in the previous section demonstrate that the LN-IMS 

approach is applicable to size distribution function analysis of sub 30 nm particles when 

appropriate dilution factors are employed. However, it does not make clear how to select 

such dilution factors. In this section, we present a simulation method, based upon prior 

simulation efforts [134-137] to predict the LN-IMS inferred size distribution function. In 

simulations, first, we sample a droplet diameter from an input droplet size distribution 

function. Second, we compute the average number of analyte particles in the droplet based 

upon the suspension concentration and dilution factor, and use this average to sample the 

number of analyte particles in the droplet from a Poisson distribution. Third, the diameters 

for each particle in the droplet are sampled from an input particle size distribution function. 

Finally, the solid volume and solid diameter (after solvent evaporation) are determined 

based upon the total analyte particle volume present in the droplet as well as the volume of 

non-volatile residue (which is also an input). This sampling procedure is repeated for 106 

droplets and a hypothetical size distribution function is then reconstructed for a given input 

particle size distribution function, non-volatile solute volume fraction, dilution factor, and 

droplet size distribution function. When an appropriate droplet size distribution function 

(determined by the nebulizer operating conditions) and dilution factor are chosen, the size 

distribution function recovered from the simulation should be faithful to the input function. 

As a case study, we examine the aerosolization of nominally 15 nm gold nanospheres as 

well as a mixture of nominally 15 & 30 nm gold nanospheres, with the normalized size 

distribution functions (based on TEM measurements) shown in Figures 2.9 (a.) and 2.9 

(b.), respectively. We assumed a suspension concentration C0 = 1014 mL-1 for the 15 nm 
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spheres and C0 = 2 x 1014 mL-1 for the mixture, respectively. A non-volatile solute 

concentration of 13.7 mM NaCl (equivalent to 0.1X PBS) was also assumed.  

 

 

Figure 2.9.  The input size distribution function for (a.) nominal 15 nm gold nanospheres 

and (b.) a mixture of nominal 15 nm and 30 nm gold nanospheres. The expected LN-IMS 

size distribution functions (normalized by the maximum value in the 10-70 nm range) 

corresponding to (a.) and (b.) are shown in (c.) and (d.), respectively.  The expected IMS 

size distributions with Gaussian distributed droplets (mean 2.5 m, standard deviation 0.7 

m) are shown in (e.) and (f.). 
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With the droplet size distribution function modeled as a Gaussian distribution with 

a mean of 184 nm and standard deviation 140 nm, the expected LN-IMS size distribution 

functions (normalized by the maximum value in all cases) are shown for varying dilution 

factors in Figure 2.9 (c.) and 2.9 (d.), respectively. At low dilution factors, for both cases a 

small residue peak is present (below 10 nm), and the peaks corresponding to gold 

nanospheres are distorted by both the formation of dimers and the presence of non-volatile 

residue. However, increases in the dilution factor shift the residue peak to smaller sizes and 

further reduces the impact of residue and aggregation on the gold nanosphere peaks; under 

these conditions we expect LN-IMS measurement to enable accurate inference of the 

colloid particle size distribution function. For comparison, in Figures 2.9 (e.) and (f.) we 

plot the expected size distribution functions from a nebulizer producing Gaussian 

distributed droplets with a mean diameter of 2.5 m and a standard deviation of 0.7 m 

(expected for traditional nebulizers). Under all conditions but DF = 104, the expected size 

distribution function does not have a peak or peaks corresponding to gold nanospheres, and 

with DF = 104, the size distribution function is still distorted by residue. This highlights 

clearly the need to use a nebulization scheme with small droplets to mimimize the volume 

of non-volatile residue per droplet. 

 

2.3.5 Comparison to NTA and TEM analysis 

 To compare LN-IMS results to NTA measurements, we elected to examine three 

monodisperse samples and one mixture sample. NTA results are summarized in Figure 

2.10, with the 15 nm and 30 nm gold nanosphere mixture with the same concentration ratio 

as the mixture in Figure 2.8. A number of issues arise when using NTA; first, the 10 nm 
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gold nanospheres are not detected efficiently, and the mode in the distribution function 

appears at 30 nm. Second, though 15 nm and 30 nm particles have mode diameters near 

their expected values, the distributions are noticeably polydisperse, in contrast with narrow 

distributions inferred from LN-IMS measurements.  

 

 

Figure 2.10.  A summary of the normalized size distribution functions resulting from NTA 

of gold nanosphere suspensions. 

 

 

Confirmation of the accuracy of LN-IMS measurements in determining 

polydispersity, as compared to NTA, is provided in Figure 2.11, which displays plots of 

the size distribution functions for gold nanospheres and GNRs based upon TEM analysis. 

Size distribution functions were reconstructed by binning results and are directly 

comparable to Figure 2.3. For the GNRs, we used the equations tested by Gopalakrishnan 

et al [118] to estimate the GNR mobility diameter (as inferred from DMA measurements) 

from their lengths and diameters. The geometric standard deviations inferred from LN-
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IMS are in good agreement with those inferred from TEM measurements; with the 

exception of the GNRs, the geometric standard deviations differ by 0.06 or less between 

the two meaurements. Overall, this comparison suggests that size distribution functions 

inferred from NTA in the sub-30 nm size range are not necessarily accurate, with 

overestimation of the geometric standard and width of the distribution likely. 

Corroboration of this result is found in the recent work of Dudkiewicz et al,[82] who 

examined the size distribution functions of silica nanoparticles below 250 nm by IMS (with 

electrospray based aerosolization), NTA, electron microscopy, centrifugal liquid 

sedimentation, and assymetric flow field fractionation, and found that NTA inferred size 

distributions had both larger means and higher polydispersities than the distributions 

inferred from other techniques, including IMS.  

Mobility diameters, inferred by DMAs, are typically ~0.3 nm larger than the 

physical diameter of spherical particles, due to influence of gas molecule size on drag in 

the gas phase [127]. However, there are differences larger than this amount in the geometric 

mean diameter inferred from LN-IMS and TEM measurements in this work.  For gold 

nanospheres, we find that the TEM geometric mean diameters are always within 0.5 nm of 

the nominal diameter, while the LN-IMS geometric mean diameters are 3-4 nanometers 

larger than the nominal diameter. A disparity of ~8 nm in effective diameter is seen for the 

GNRs between the two measurments. There are two possibilities for this difference which 

must be considered. First, the mobility diameter is inferred from the mobility based on the 

assumed validity of the Stokes-Millikan equation. This equation is verified primarily 

through measurement of organic ions [138, 139] and there is some evidence that minor 

deviations arise for metal particles in air [140]. However, these deviations would lead to 
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only an increase in the inferred diameter of several percent, and cannot explain the 

differences in inferred diameters here. We find a second possibility more plausible; 

differences in geometric mean diameters arise because of an organic surfactant coating on 

particles (tannic acid for gold nanospheres and sodium citrate for GNRs, both of which are 

present on particles in suspension, serving to stabilize them against aggregation). These 

surfactants are sufficiently volatile to evaporate during TEM measurement (during pump 

down or in the electron beam) but would persist in the gas phase, increasing particle 

diameter. Support for this result is found in Hinterwirth et al [74], who found that for gold 

nanospheres in the 10 – 30 nm size range introduced into the gas phase via electrospray, 

the mean IMS-inferred diameters were 3-4 nm larger than those inferred from TEM. 

Additionally, in several prior electrospray based aerosolization studies, it was necessary to 

apply heating to remove surfactant coating from metal nanoparticles and without heat 

treatment nanoparticle size distribution functions were shifted to larger sizes by an excess 

of ten nanometers [91, 118]. We therefore suggest that LN-IMS enables measurement of 

the diameters of nanoparticles including any coating bound in suspension, hence it provides 

information in addition to, not in-lieu of TEM measurements. Further characterization of 

the system will be necessary to examine to what exact surfactant coating can desorb during 

aerosolization, and to develop methods to promote surfactant desorption.  
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Figure 2.11. TEM inferred size distribution functions for gold nanospheres and GNRs. 

 

 

2.3.6 Universal calibration curve 

 As remarked upon in section 2.3.1, total particle number concentrations integrated 

from size distribution functions should correlate directly with the particle concentration in 

suspension; independent of particle size, shape or chemical composition. Considering all 

samples, the equation (2.2) inferred number concentrations are plotted versus suspension 

concentration in Figures 2.12 (a) and (b).  The results are separated in these two figures 
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because the LN system was disassembled and cleaned near the midpoint of this study 

(which spanned more than six months).   During reassembly, the position of the ball-

impactor changed slightly, changing the output particle size distribution function (which 

ultimately influences the calibration curve linking gas phase concentration to concentration 

in suspension).  In spite of the change caused by reassembly, apparent in both Figure 

Figures 2.12 (a) and (b) is that the obtained gas phase concentration versus suspension 

concentration relationship does not depend upon particle size or chemical composition (i.e. 

proteins and gold nanospheres show similar results). For each set of results, a fit power law 

is displayed. For both plots the scaling exponent is found to be below unity; such exponents 

arise because at higher concentrations, there are proportionally more particles enclosed 

within large droplets, which are removed by the ball impactor. The differences in exponent 

and pre-exponential factor also arise because of changes in impactor position. Following 

cleaning, the exponent and pre exponential factor can be calibrated using a colloid sample 

standard with a known volume concentration. 

While we do not observe any size dependency for the gas phase concentration 

versus liquid phase concentration relationship, there is noticeable scatter in the LN-IMS 

inferred number concentrations. Therefore, while it appears a universal calibration curve 

can be developed using a single type of nanoparticle (e.g. nominally 30 nm gold can be 

used as a standard for all particles and proteins, and can be used for polydisperse samples), 

suspension number concentration estimates via LN-IMS are only accurate to within +/-

20%. In many instances, this level of accuracy is sufficient; however, applications such as 

instrument calibration [141] may require greater level of accuracies; further refinement of 
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size distribution inversion techniques with LN-IMS will be necessary for improved 

accuracy. 

 
Figure 2.12. Plots of the gas phase particle number concentration as a function of the 

original suspension concentration: (a.) before disassembly and cleaning, (b.) after 

reassembly and impactor repositioning. 

 

 

 

2.4 Conclusions 

 We have applied an LN-IMS measurement system for the measurement of gold 

nanosphere and nanorod as well as albumin protein size distribution function measurement. 

Through both experimental measurements and modeling, we show that it is possible to 

convert hydrosols to aerosols while minimally disturbing the particle size distribution 
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functions. Through comparison to TEM measurements, we show that LN-IMS 

measurements enable accurate inference of particle polydispersity, but that the size 

distribution function is shifted by surfactant coating which is not observed in TEM.  

Importantly, we demonstrate that the gas phase particle number concentration is a size, 

shape, and material property independent function of the liquid suspension concentration. 

In addition to these findings, we note that the ability to aerosolize nanomaterials down to 

5 nm in size, preserving their size distribution, would enable a variety of analytical 

possibilities, including tandem ion mobility spectrometry [142, 143] to examine vapor 

uptake or the evaporation of particles, IMS-inductively coupled plasma mass spectrometry 

[103] to infer size resolved chemical composition, and IMS coupled with aerosol particle 

mass analysis [144]. Though such techniques have been applied to particles in liquid 

suspensions previously, in nearly all circumstances, aerosolization was accomplished with 

an electrospray, which as noted, has strict requirements on suspension salt concentration 

and electrical conductivity, limiting its use. The LN tested is capable of aerosolizing 

colloidal particles from hydrosols from a much wider range of conditions, and further, as 

it has higher throughput, leads to better counting statistics in gas phase measurements. We 

thus anticipate that LN based aerosolization will better facilitate characterization of sub 30 

nm nanomaterials than electrospray based aerosolization.     
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Chapter 3  

Liquid Nebulization-Ion Mobility Spectrometry Based 

Quantification of Nanoparticle-Protein Conjugate 

Formation 
 

 

Summary 

There is a dearth of routine techniques for nanoparticle-protein conjugate 

characterization.  The most prominent change to a nanoparticle population upon conjugate 

formation is a shift in the nanoparticle size distribution function.  However, commonly 

employed dynamic light scattering based approaches for size distribution characterization 

are difficult to apply to non-monodisperse samples, and further they are relatively 

insensitive to size shifts of only several nanometers, which are common during conjugate 

formation. Conversely, gas phase ion mobility spectrometry (IMS) techniques can be used 

to reliably examine polydisperse samples; the challenge with IMS is to convert 

nanoparticle-protein conjugates to aerosol particles without non-specific aggregation. 

Except in limited circumstances, electrospray based aerosolization has proven difficult to 

apply for this purpose.  Here we show that via liquid nebulization (LN) with online dilution 

(with dilution factors up to 10,000) it is possible to aerosolize nanoparticle-protein 

conjugates, enabling IMS measurements of their conjugate size distribution functions. We 

specifically employ LN-IMS to examine bovine serum albumin binding to gold 

nanoparticles. Inferred maximum protein surface coverages (~0.025 nm-2) from 

measurements are shown to be in excellent agreement with reported values for gold from 

quartz crystal microbalance measurements. It is also shown that LN-IMS measurements 

can be used to detect size distribution function shifts on the order of 1 nm, even in 

circumstances where the size distribution function itself has a standard deviation of ~5 nm.  

In total, the reported measurements suggest that LN-IMS is a potentially simple and robust 

technique for nanoparticle-protein conjugate characterization. 
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3.1 Introduction 

 There is a need to develop and advance techniques to examine the extent of binding 

of proteins to nanomaterials/nanoparticles [145-148].  Within the bloodstream or other 

biological milieu, it is known that a protein corona will form on a nanoparticle’s surface, 

altering its bio-identity and eventual fate [149-153].  At present, even in vitro with 

prescribed proteins and protein concentrations, binding is difficult to quantify; to date no 

single technique is universally adopted for nanoparticle-protein conjugate quantification. 

The most notable change to an ensemble of nanoparticles upon protein binding is a shift of 

the nanoparticle size distribution function [154], hence it is the size distribution function 

that is most easily monitored to quantify the extent of protein binding. Size measurements 

of protein-nanoparticle conjugates have been carried out commonly with dynamic light 

scattering (DLS) [40, 155, 156].  However, DLS is only applicable to highly monodisperse 

samples, with results skewed towards larger particles in polydisperse sample 

measurements.  This is problematic for all but the most narrowly distributed particle size 

distributions (i.e. those with geometric standard deviations below 1.1). Polydisperse 

sample size distribution measurements can be better made via nanoparticle tracking 

analysis (NTA) [43, 157, 158]. Unfortunately, NTA has limitations for particles/conjugates 

smaller than 30 nm in size; this prohibits direct examination of a number of nanoparticles 

as well as individual protein molecules.   Further, both techniques are relatively unreliable 

in detecting small (less than ~5 nm) size shifts, i.e. the data deconvolution schemes applied 

can lead to low measurement precision. 

 Techniques to examine protein nanoparticle-binding can be developed which are 

more precise than DLS and NTA. However, many of these techniques are limited to 

specific nanoparticle chemical compositions. For example, techniques relying on 
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fluorescent labelling [145] or shifts in optical/plasmonic properties [159, 160] of 

nanoparticles upon protein binding require specific particle optical properties.  Liquid 

phase size measurement techniques, such as asymmetric flow field fractionation [146, 148] 

and analytical ultracentrifugation [81], enable more rigorous quantification of size  

distribution functions, yet need to be coupled to appropriate detectors. Universal particle 

detectors for a variety of particle chemistries are not widely available [80].  Another 

alternative is gas phase ion mobility spectrometry (IMS) [161] with a differential mobility 

analyzer (DMA) [83, 88, 89], which is a commonly employed technique for size 

distribution measurements of aerosol particles. In conjunction with condensation based 

single particle detectors [53], DMAs facilitate size distribution function analysis in the 2- 

500 nm diameter range, and unlike DLS and NTA, DMA data deconvolution schemes 

require minimal assumptions about the shape of the size distribution [84].  IMS is therefore 

more easily applied to polydisperse and multimodal samples [82], and size shifts of several 

nanometers can be reliably detected [100]. The challenge in applying IMS to nanoparticle-

protein conjugates is naturally that the conjugates must be introduced into the gas phase 

(aerosolized) without perturbing their size distribution functions. To date, aerosolization of 

liquid phase samples has been accomplished almost exclusively with charge reduction 

electrosprays [88, 89, 101].  Notable demonstrations of the potential of IMS in 

nanoparticle-protein and nanoparticle-small molecule conjugate analysis have been carried 

out by Zachariah and coworkers [93, 97-100, 137], with such charge reduction electrospray 

sources. Their measurements have consistently shown that by controlling the droplet size 

and concentration of analyte [137], aerosolization with preservation of size distribution 

functions from the liquid phase is possible. In spite of this success, IMS has not been widely 
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adopted in nanoparticle-protein conjugate size analysis, in large part because electrospray 

based aerosolization requires solutions/suspensions with electrical conductivities in narrow 

range, as well as the a priori removal of non-volatile solutes.  These conditions are often 

mutually exclusive with the conditions needed to maintain nanoparticle stability in 

suspensions, i.e. the addition of salts and removal of surfactants leads to aggregation and 

settling of nanoparticles. As an example, noble metal nanoparticles and nanorods often 

need to be heat treated post-electrospray to remove non-volatile solute coating [91, 118], 

and such nanoparticles do aggregate and settle over the course of several days in 

electrosprayable (1-100 mM ammonium acetate) suspensions [155].   

Liquid nebulizers (LNs) have recently been developed with online, ultrahigh purity 

water dilution (by a factor of up to 104). Such nebulizers enable hydrosol to aerosol 

conversion for nanoparticles as small as 5 nm [62, 162], and LN based aerosolization has 

proven capable of preserving nanoparticle size distributions for polydisperse and 

multimodal samples (where peaks differ by less than 5 nm).  In contrast with electrosprays, 

LN based aerosolization requires neither non-volatile solute removal nor control of the 

suspension electrical conductivity. The purpose of this study is to apply LN-IMS analysis 

for the first time to quantify bovine serum albumin binding to nominally 20 nm, 30 nm, 

and 50 nm gold nanoparticles (GNPs), demonstrating that this approach can be a simple 

and robust method for nanoparticle-protein conjugate analysis. 
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3.2 Materials and methods 

3.2.1 Materials and sample preparation 

 GNPs with nominal diameters of 20, 30, and 50 nm were purchased from 

Nanocomposix, Inc (San Diego, USA). Electron microscopy revealed these samples had 

mean diameters ± standard deviations of 18.6 ± 2.3 nm, 30.8 ± 3.3 nm, and 51.0 ± 5.7 nm, 

respectively. GNP surfaces were pretreated with tannic acid to stabilize them in aqueous 

suspension. Bovine serum albumin (BSA) was purchased from Sigma Aldrich (Saint 

Louis, MO, USA).  BSA solutions were prepared by dispersing BSA powders in deionized 

(DI, obtained with a SpectraPure filtration system) water. GNPs suspensions, with 

manufacturer provided number concentrations (ranging from 3 x 109 to 8 x 1010 particles 

mL-1) were mixed with known concentration BSA samples in a suspension volume of 1 

mL in polypropylene centrifuge tubes. 5-7 GNP:BSA number concentration ratios (ranging 

from 1:3 to 1:12,000) were examined for each GNP size.  Prior to measurements, samples 

were placed in an incubator (Alkali Scientific, FL, USA) at 38.0o C for 16 hours. 

Additionally, for 50 nm GNPs, incubation was also performed at 4o C. No other sample 

preparation was required prior to LN-IMS measurement and nanoparticles were observed 

to remain stable in suspension during incubation; this is distinct from most studies utilizing 

charge reduction electrospray based aerosolization where electrical conductivity 

modulation and analyte preconcentration are needed prior to analysis.   

 

3.2.2 LN-IMS measurements 

The size distribution functions of bare GNPs and GNP-BSA conjugates were 

measured via a liquid nebulizer-ion mobility spectrometry (LN-IMS) system. Chapter 2 
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provides details of the operation and schematics of this system. Briefly, in the LN 

employed (LiquiTrak®  Model 7788, Kanomax Fluid Measurement Technologies, Inc., St 

Paul, MN, USA), the GNP-BSA suspension in 0.01 – 1 mL min-1 is mixed with 100 mL 

min-1 of ultrahigh purity water (which contains total organic carbon and non-volatile 

residues below 1ppbv, was treated with 165nm UV light, and was passed through 10 nm 

and 20 nm particle filtration systems as well as a mixed bed ion exchange resin prior to 

system introduction). The LN produces droplets with a geometric mean diameter of 99.8 

nm and a geometric standard deviation of 2.32. Upon drying, aerosolized GNP:BSA 

conjugates were passed out of the LN using a flow of ultrahigh purity air, with neither 

fragmentation nor specific aggregation caused by the aerosolization process.  For IMS, the 

aerosolized conjugates were sent into a DMA (both models 3081 and 3085, TSI Inc., 

Shoreview MN, were applied in measurements)[52] followed by a butanol based 

condensation particle counter (CPC, model 3075, TSI Inc). The DMA-CPC combination 

was operated as scanning mobility particle spectrometer (SMPS) [125], with 120 second 

scans applied and at least eight measured spectra per sample. Raw data consisted of CPC 

measured concentration as a function of mean voltage across the DMA electrodes. Using 

manufacturer provided software (Aerosol Instrument Manager), data were inverted to 

reveal the size distribution function, dn/dlog10(dp), i.e. the aerosol particle number 

concentration per unit log10 diameter (with diameter in nanometers) as a function of 

diameter.  Diameter was inferred using the Stokes-Millikan equation, found to be valid for 

nearly spherical particles in a variety of studies where air was applied in IMS measurement 

[127, 139].  



 

49 

 

The sample flow:dilution flow was adjusted from 1:100 to 1:10,000 during 

measurements. Higher sample flows (less dilution) were applied to examine the size 

distribution functions of gold nanoparticle conjugates, while lower sample flows were 

applied to directly detect free BSA molecules in the suspension. As described in Chapter 

2, using a LN-IMS specific calibration curve (relating the measured aerosol concentrations 

to liquid suspension concentrations) the size distribution function of the free BSA was used 

to infer the unbound BSA suspension concentration, and the shift in size distribution 

functions for GNP-BSA conjugates was examined as a function of unbound BSA 

concentration. We remark that the unbound BSA concentration was consistently found to 

be a factor of ~2 lower than the nominal BSA number concentration based on what was 

added to GNP:BSA suspensions. This is attributable to protein binding to the wall of the 

polypropylene vial used in incubation, an influence not considered in prior studies of GNP-

BSA conjugation. 

 

3.3 Results & discussion 

3.3.1 Size distribution functions 

After data inversion, which corrects for the transmission through the DMA [163], 

the fraction of multiply charged particles examined [164], and the depositional losses of 

particles in system tubing [129], LN-IMS measurements lead to inference of the gas phase 

size distribution function, which is specifically represented as the parameter dn/dlog10(dp), 

i.e. the gas phase number concentration per unit log10 particle diameter (in nanometers). 

Integration of dn/dlog10(dp) across the entire diameter range yields the gas phase number 

concentration of particles aerosolized by the LN-IMS. Size distribution functions 
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(averaged over more than five spectra) of 20, 30, and 50 nm GNPs are displayed in Figure 

3.1 for selected BSA:GNP number concentration ratios.  Size distributions were corrected 

for the dilution factor employed in the LN, hence the displayed values are proportional to 

the size distribution function in the original suspensions [162].  

 

Figure 3.1.  LN-IMS inferred size distribution functions (expressed as gas phase number 

concentrations per unit log10 diameter, dn/dlog10dp) for GNP-BSA conjugates with varying 

BSA:GNP number concentration ratios in aqueous suspension.  The upper left inset 

displays results for nominally 20 nm GNPs but with size distribution functions normalized 

by the total number concentration for each measurement.   

 

Clearly evident for all samples except the nominally 20 nm diameter GNPs is that 

with increasing BSA:GNP number concentration ratio, the peaks in size distributions 

corresponding to GNPs shift to the right. This is indicative of conjugate formation as well 

as an increased number of proteins bound at higher BSA concentration in suspension. 

However, distributions are noticeably broad relative to the extent of shift, making difficult 
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quantification of the extent of shift simply by comparing mode values in distributions (as 

has been common practice in prior studies[97]).  Moreover, shifts are less evident for 

nominally 20 nm GNPs; instead we observed a decreasing number concentration near 20 

nm and an increasing number concentration about 60 nm in LN-IMS measurements, with 

increasing BSA:GNP ratios.   

A more appropriate method to quantify the extent of shift in size distribution is 

through the determination of a mean diameter (dp,ave), a dilution factor corrected conjugate 

volume concentration (Vtot), and a geometric standard deviation (g), via the equations: 

𝑑𝑝,𝑎𝑣𝑒 =
∫

𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝

∞
−∞ 𝑑𝑝𝑑𝑙𝑜𝑔10𝑑𝑝

∫
𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝

∞
−∞ 𝑑𝑙𝑜𝑔10𝑑𝑝

                                   (3.1) 

𝑉𝑡𝑜𝑡 =
𝜋

6
∫

𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝

∞

−∞
𝑑𝑝

3𝑑𝑙𝑜𝑔10𝑑𝑝                                            (3.2) 

𝜎𝑔 = 𝑒𝑥𝑝(√
∫

𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝

∞
−∞ 𝑙𝑛2(

𝑑𝑝

𝑑𝑝,𝑔
)𝑑𝑙𝑜𝑔10𝑑𝑝

∫
𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝

∞
−∞ 𝑑𝑙𝑜𝑔10𝑑𝑝

)                                   (3.3) 

𝑑𝑝,𝑔 = exp⁡(
∫

𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝
𝑙𝑛(

∞
−∞ 𝑑𝑝)𝑑𝑙𝑜𝑔10𝑑𝑝

∫
𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝

∞
−∞ 𝑑𝑙𝑜𝑔10𝑑𝑝

)                                                                        (3.4)   

These parameters provide information on (1) the growth of conjugates, either by 

BSA binding or conjugate-conjugate binding (aggregation), (2) whether growth is due to 

BSA binding only (increasing Vtot) or conjugate-conjugate binding (which would leave Vtot 

constant), and (3) the mechanism of binding, as different binding models will predict 

differential changes in the geometric standard deviation, respectively.  Excluding the 

portion of the size distribution function attributed to isolated BSA, equation (3.1-3) 

calculated parameters are plotted in Figure 3.2 as a function of unbound BSA concentration 
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in suspensions. Error bars represent the standard deviation of each data point, evaluated by 

performing calculations for each measured size distribution function separately.  

 

Figure 3.2.  A summary of the mean diameter (dp,ave), gas phase volumetric concentration 

(Vtot), and geometric standard deviation (g) as a function of the unbound BSA 

concentration in aqueous suspension.   

 

Focusing first on the nominally 30 nm and 50 nm GNPs, we find for both samples 

that dp,ave increases rapidly at low BSA concentrations but appears to reach a maximum 

value as BSA concentration is further increased.  Unlike alternative techniques, size shifts 

on the order of 1-2 nm are clearly detectable and larger than the measurement to 

measurement variability, despite the conjugate size distribution functions themselves 

having standard deviations larger than 1-2 nm. This demonstrates directly that LN-IMS can 

be used to probe the earliest stages of conjugate formation, even for nanoparticles whose 

size distribution does not shift appreciably due to protein binding.  Volume concentrations 

for these samples show similar behavior, and geometric standard deviations remain 

constant near 1.1 (indicating the samples are not perfectly monodisperse but remain 

narrowly distributed during measurements).  For the nominally 50 nm GNPs, a larger 
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extent of binding is observed at lower temperature. Qualitatively, these measurements 

suggest that BSA binding to GNPs is reversible (i.e. samples are equilibrated) which is in 

line with the conclusions of prior studies of GNP-protein conjugation [40, 155, 165].  We 

examine the mechanism of binding further in the subsequent section. For 20 nm GNPs, 

unique behavior is observed; the dp,ave versus BSA concentration curve is concave upward, 

and the volume concentration stays relatively constant, and geometric standard deviation 

increases drastically (this was expected as samples became bimodal at increasing BSA 

concentration). In total, inverted size distribution functions and quantification of size 

distributions via equations (3.1-3) reveal that LN-IMS is a viable approach to detect ~1-2 

nm shifts in nanoparticle size brought by conjugation with proteins, even in instances 

where the size distribution function varies by more than this amount.   

 

3.3.2 Comparison with binding & aggregation models 

 Poor size shift precision for nanoparticle-protein conjugates can limit the amount 

of information gained via measurements.  For this reason, in studies utilizing DLS,[40] or 

in prior IMS studies in which only the mode diameter was examined,[93, 97] only a 

maximum surface coverage of nanoparticles (expressed as the number of protein binding 

sites per unit nanoparticle surface area) has been inferred.  For BSA binding onto gold, 

reported surface coverages near body temperature reported previously vary from study to 

study.  Using a quartz crystal microbalance (QCM) Brewer et al[165] reported a value of 

0.037 nm-2 and Kaufman et al[166] reported values ranging from 0.020 to 0.033 nm-2 for 

flat surfaces.  Using IMS coupled with mass analysis, Guha et al[93] determined a value 

of 0.027 nm-2 for nominally 30 nm,  but in a previous study with IMS Tsai et al[97] reported 
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values of 0.023 nm-2, 0.017 nm-2, and 0.014 nm-2 for nominally 10 nm, 30 nm, and 60 nm 

GNPs, respectively. By examining precisely calculated mean diameters in inverted size 

distributions, here we show that not only can LN-IMS be used to infer surface coverages 

in line with QCM measurements and two dimensional IMS-mass analyses, but also using 

a Langmuir-like binding model (i.e. an equilibrium, site-dependent binding model) the 

effective protein concentration above a GNP surface (neff) can be determined. This model 

links the nanoparticle-conjugate mean diameter to the [X] (the assumed size-independent 

site surface density or maximum surface coverage) and neff via the equations: 

 

𝑑𝑝,𝑎𝑣𝑒 =
∫

𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝,0
⌋
0
(∑ 𝑑𝑝,𝑖𝑃𝑖

∞
𝑖=0 )𝑑𝑙𝑜𝑔10𝑑𝑝,0

∞
−∞

∫
𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝,0
⌋
0
𝑑𝑙𝑜𝑔10𝑑𝑝,0

∞
−∞

                                          (3.5) 

 

where 
𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝,0
⌋
0

 is the nanoparticle size distribution function in the absence of protein, 

dp,i is the nanoparticle’s effective mobility diameter with i protein molecules bound (dp,0 is 

the bare nanoparticle diameter), and Pi is the probability that a nanoparticle with a diameter 

dp,0 has i protein molecules bound to its surface at equilibrium. Following prior work on 

linking binding to analyte size shifts observed by IMS,[167-169], first, we note that Pi can 

be expressed as: 

 

𝑃𝑖 =
𝑛𝑖

∑ 𝑛𝑘
𝑘=∞
𝑘=0

=

𝑛𝑖
𝑛0

1.0+∑
𝑛𝑘
𝑛0

𝑘=∞
𝑘=1

                                                      (3.6)                                                                                        

 



 

55 

 

where ni is the number concentration of nanoparticles with i proteins adsorbed onto their 

surfaces, and no is the number concentration of bare nanoparticles. At equilibrium, the ratio 

𝑛𝑖

𝑛0
 (or 

𝑛𝑘

𝑛0
)  in equation (3.6) can be linked to the dimensionless equilibrium binding 

coefficients [𝐾𝑒𝑞]𝑗−1→𝑗 for the reaction: 𝑛𝑗−1 + 𝑛𝑎 ⁡⇌ ⁡𝑛𝑗  via the equation: 

 

𝑛𝑖

𝑛0
=

𝑛1

𝑛0

𝑛2

𝑛1
… .

𝑛𝑖−1

𝑛𝑖−2

𝑛𝑖

𝑛𝑖−1
= ∏ [𝐾𝑒𝑞]𝑗−1→𝑗

𝑖
𝑗=1                               (3.7)                                                               

 

Assuming that each nanoparticle has [𝑋]𝜋𝑑𝑝,0
2  specific sites where proteins can bind  that 

the effective protein concentration above a site is 𝑛𝑒𝑓𝑓, and that the protein adsorption and 

desorption rate coefficients are exactly equal in magnitude (i.e. they are diffusion limited 

reactions), [𝐾𝑒𝑞]𝑖−1→𝑖 can be expressed as: 

 

[𝐾𝑒𝑞]𝑗−1→𝑗 =
𝑛𝑎[𝑋]𝜋𝑑𝑝,0

2 −𝑗+1

𝑗𝑛𝑒𝑓𝑓
                                            (3.8) 

 

Substitution of equations (3.7-8) into equation (3.6) leads to:  

 

⁡𝑃0 =
1.0

1.0+∑ ((
𝑛𝑎
𝑛𝑒𝑓𝑓

)

𝑘

∏ (
[[𝑋]𝜋𝑑𝑝,0
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𝑗
)

𝑗=𝑘
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2
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                                                  (3.9) 
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                                             i ≥ 1      (3.10) 
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The distinct point of our Langmuir-like model differs, which differs slightly for the 

traditional Langmuir model, is that our model applied for discrete numbers of proteins.  

Figure 3.3 displays Pi values a at different na/neff ratios with dp,0 = 30.0 nm and [X] = 0.060 

# nm-2, showing the as na/neff increases the mode Pi value increases. 

 

Figure 3.3. The probability Pi that a nanoparticle has i proteins bound (at equilibrium) 

predicted by the Langmuir-like model at various na/neff  ratios (dp,o = 30.0 nm and [X] = 

0.060 # nm-2). 

 

Various models can be developed for dp,i, the effective mobility diameter of a 

nanoparticle-protein conjugate [97, 99]. However, based on prior theoretical 

calculations[128] and mobility measurements of non-spherical aerosol particles [118], we 

find that unless extremely non-spherical particles are expected to result from binding (for 

which there is no evidence), it is reasonable to approximate GNP:BSA conjugates as 

spherical, with mobility diameters equal to their volume equivalent diameters.  Mobility 

diameters, dp,i, are hence calculated as: 
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𝑑𝑝,𝑖 = (𝑑𝑝,0
3 + 𝑖𝑑𝑝𝑟𝑜

3 )
1/3

                           (3.11) 

 

where dpro is the mobility diameter of a BSA monomer, measured to be 6.31 nm via IMS 

and in agreement with prior IMS[131, 133] and ultracentrifugation measurements [80].  

Using best fit values for [X] and neff, equation (3.5) predicted dp,ave values (taking measured 

distributions 
𝑑𝑛

𝑑𝑙𝑜𝑔10𝑑𝑝,0
⌋
0

and concentrations 𝑛𝑎 as inputs) are plotted in comparison to 

experimentally inferred values in Figure 3.4.  

 

Figure 3.4.  The measured (black circles) and calculated (red curves) average diameters of 

GNP-BSA conjugates as functions of the unbound BSA concentration.  [X] refers to the 

site surface coverage parameter employed in the Langmuir-like sorption model, and 

correspondingly neff is the inferred protein concentration above a surface site.   
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For nominally 20 nm gold nanospheres, only three data points were used, as the 

appearance of a second mode near 60 nm cannot be explained via the Langmuir-like 

equilibrium binding model alone.  Binding model parameters inferred for these 

nanoparticles are thus only shown for completeness and are not utilized in comparison to 

prior results.  For the 30 nm and 50 nm GNPs (at both 4o C and 37o C), the two parameter 

model can be fit extremely well to measurements, and the resulting surface coverage 

values, ranging from 0.022-0.030 nm-2 are in excellent agreement with the previous QCM 

measurements and the IMS-mass measurements of Guha et al [93]. This further confirms 

the applicability of LN-IMS analysis to examine nanoparticle-protein conjugates, and 

suggests that in electrospray based aerosolization studies [97], mode mobility diameter 

measurements of nanoparticles may be skewed by the presence of non-volatile residue, 

which would directly influence inferred surface coverage values. Interestingly, the 

effective surface concentrations of proteins (which are linked directly to the dissociation 

constant of proteins from conjugates) are found to decrease by almost an order of 

magnitude as GNP nominal diameter decreases from 50 nm to 30 nm. This suggests that 

with increasing surface curvature, BSA is adsorbed with increasing affinity to GNPs; this 

is also supported by the appearance of a larger mode in nominally 20 nm distributions, 

which is presumably brought about by conjugate-conjugate aggregation. Though 

nanoparticle size dependencies on conjugate formation have been examined previously 

[170, 171], this specific finding appears to be new, and size dependencies in the strength 

of nanoparticle-protein bounds will need to be examined in future work.  

Though the comparison presented in Figure 3.4 suggests that at an equilibrium, 

Langmuir-like binding model (equation 3.5) satisfactorily describes LN-IMS 
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measurements, it is important to compare results to alternative models. One possibility is 

the irreversible condensation of proteins on nanoparticles, forming continuously growing 

conjugates at a rate limited by the diffusion limited aggregation rate of proteins onto 

nanoparticles/conjugates [172]. To compare such a condensation model to measurements, 

we perform constant number Monte Carlo simulations[173] to predict the evolution of the 

size distribution functions of protein-nanoparticle conjugates formed via irreversible, 

diffusion limited protein condensation. 

The constant number Monte Carlo simulation approach, developed by Smith and 

Matsoukas [173], is a relatively simple and accurate method for monitoring the evolution 

of particle size distribution functions. Here, we adapt it to make predictions about the size 

distribution functions of originally lognormally distribution particles as noted in the main 

text. For the Langmuir-like sorption model, evolution of the distribution in time need not 

be considered. Instead, 105 nanoparticle diameters are sampled from the lognormal 

distribution.  For each sampled nanoparticle, using the noted equations for Pi and with 

prescribed values of [X] and na/neff, an integer number of proteins bound (i) is also sampled. 

The bare nanoparticle diameter, number of proteins bound, and protein diameter (assumed) 

are then used to calculate the conjugate diameters.  Binning of conjugate diameters enables 

construction of a size distribution function.  

The size distribution functions of nanoparticles upon irreversible protein binding 

events (termed condensation here) were also simulated by applying constant number Monte 

Carlo simulation. The key differences with the Langmuir-like binding model are that (1) 

binding can occur indefinitely, i.e. there is no maximum surface coverage, and (2) protein 

dissociation from the conjugate is not considered.  For this procedure we again selected 
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105 nanoparticle diameters from prescribed size distribution functions. Subsequently, at 

each timestep 100 of these nanoparticles are sampled to undergo protein 

binding/condensation with the probability of selection proportional to the diffusion limited 

binding rate between protein and nanoparticle/nanoparticle-protein conjugate. The rate 

coefficient, ki, for this reaction, is expressed as: 

 

𝑘𝑖 = 2𝜋(𝑑𝑝,𝑖 + 𝑑𝑝𝑟𝑜)(𝐷𝑝,𝑖 + 𝐷𝑝𝑟𝑜)                                                                           (3.12)                                                                  

 

where D denotes the diffusion coefficient for conjugates and isolated proteins (equivalent 

to ⁡
𝑘𝑇

3𝜋𝜇𝑑
,  where k is Boltzmann’s constant, T is temperature, μ is the solvent’s dynamic 

viscosity, and d is the diameter of the entity in question). The probability of condensation 

Pc,i is calculated as:  

 

𝑃𝑐,𝑖 =
𝑘𝑖

∑ 𝑘𝑗
𝑗=𝑁
𝑗=1

                                                                                                              (3.13)                                                                                         

 

where N is the total number of sampled nanoparticles. After condensation, nanoparticle 

diameters are increased, and the procedure is repeated.  The size distribution function hence 

evolves over time, with the true rate proportional to the number concentrations in 

suspension. Figures 3.5-7 display simulation results the Langmuir-like sorption model and 

the irreversible condensation sorption model. Specifically, for lognormally distributed 

nanoparticles with a geometric mean diameter of 30 nm and geometric standard deviations 

near 1.1, 1.3, and 1.5 (near monodisperse to highly polydisperse), the normalized size 

distributions functions (fraction of particles per nm), mean nanoparticle-conjugate 
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diameter, and geometric standard deviation are plotted as functions of the suspension 

protein concentration (na) to effective protein concentration (neff) ratio for the Langmuir-

like model, and the product of suspension protein concentration and simulation time step 

for the condensation model.  As the abscissas on all plots are directly proportional to protein 

concentration in suspension, results are qualitatively comparable to measurements results 

reported in Figures 3.1 and 3.2.   
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Figure 3.5.  The normalized size distribution functions (a & b), mean diameters (c & d), 

and normalized geometric standard deviations (by the baseline value, e & f) of 

nanoparticle-protein conjugates as predicted by the Langmuir-like model (equation 3.5) 

and an irreversible protein condensation model for lognormally distributed nanoparticles. 

Plots c-f are shown for variable initial geometric standard deviations.   

 

Figure 3.6. Simulated size distribution functions with the constant number Monte Carlo 

algorithm considering the Langmuir-like binding model with g,o=1.1 (left) and 1.5 (right). 

The bare nanoparticle geometric mean diameter was 31.1 nm. 

 

 
Figure 3.7. Simulated size distribution functions with the constant number Monte Carlo 

algorithm considering irreversible condensation with g,o=1.1 (left) and 1.5 (right).  The 

bare nanoparticle geometric mean diameter was 31.1 nm. 

 

Apparent is that the condensation model predicts a steady increase in the mean 

nanoparticle-protein conjugate diameter as well as a steady-decrease in the geometric 
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standard deviation for all samples; neither is observed in measurements, further suggesting 

that nanoparticle-protein binding is a reversible process best described by a Langmuir-like 

binding model. Additionally, the condensation-like model is not qualitative agreement with 

the changes size distribution function observed for nominally 20 nm GNPs, suggesting that 

a more detailed aggregation model, considering conjugate-conjugate binding, is needed for 

this sample. 

 

3.4 Conclusions 

 Electrospray ionization and electrospray based aerosolization techniques have 

arguably been the most important development in biomolecular and macromolecular 

analysis in the past several decades, enabling mass spectrometery, and more recently, ion 

mobility spectrometry of biomolecular complexes.[174]  However, despite initial success 

in analyzing nanoparticle-protein complexes through electrospray based aerosolization 

[93, 94, 97], the intrinsic requirements of electrospray solutions, including proper electrical 

conductivity and low non-volatile solute content are simply incompatible with the 

suspension requirements for many nanoparticle-protein conjugate analyses (i.e. non-

volatile solutes required for nanoparticle stability and/or high salt content to mimic 

biological conditions). Here, we have demonstrated that liquid nebulization with online 

ultra-high purity water dilution can be used in lieu of electrosprays to aerosolize 

nanoparticle-protein complexes, facilitating their examination via ion mobility 

spectrometry. We further show that via integrating across complete size distribution 

functions inferred in IMS measurement, relatively polydisperse samples can be examined, 

as shift in mobility equivalent size of the order 1-2 nm can be examined. Surface coverage 
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parameters inferred from LN-IMS measurements are further shown to be in excellent 

agreement with parameters inferred from quartz crystal microbalance measurements. 

Moving forward, we suggest that LN-IMS measurements are a viable alternative to 

dynamic light scattering, and as prior work has shown that LN-IMS measurements can be 

made in higher salt concentration suspensions [162], LN-IMS analysis will find utility as 

a method to study nanoparticle-protein conjugate formation.  Future coupling of LN-IMS 

with aerosol particle mass analysis [93] and/or inductively coupled plasma mass 

spectrometry [103] should also enable more detailed characterization of nanoparticle-

protein conjugates. 
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Chapter 4  

Quantification of Surface Coating Dependent Binding of 

Serum Albumin to Superparamagnetic Iron Oxide 

Nanoparticles 

 

Summary 

Ultimately the transport and behavior of nanoparticles within a biological system are 

governed by nanoparticle interactions with biomolecules, most notably proteins.  Protein 

binding and protein induced nanoparticle aggregation are known to occur for a variety of 

nanomaterials, with the extent of binding and extent of aggregation highly on nanoparticle 

surface properties.  However, often lacking are techniques which enable quantification of 

the extent of protein binding and aggregation, particularly for nanoparticles below 30 nm 

in diameter and with polydisperse size distribution function.  In this study we adapt ion 

mobility spectrometry (IMS) to examine the binding of bovine serum albumin to 

commercially available, anionic surfactant coated superparagnetic iron oxide nanoparticles 

(SPIONs) which are initially ~21 nm in mean diameter and with a polydisperse size 

distribution function (geometric standard deviation near 1.4).  IMS, carried out with a 

hydrosol-to-aerosol converting nebulizer coupled with a differential mobility analyzer and 

condensation particle counter, enables inference of SPION size distribution functions for 

varying BSA:SPION number concentration ratio.  IMS measurements suggests that 

initially (BSA concentrations below 50 nM), BSA bind reversibly to SPION surfaces, with 

a binding site density in the 0.04-0.08 nm-2 range, similar to that observed previously for 

20 nm gold nanoparticles.  However, at higher BSA concentrations, BSA induces SPION-

SPION aggregation, evidenced by larger shifts in SPION size distribution functions (mean 

diameters beyond 40 nm for BSA concentrations near 100 nM) and geometric standard 

deviations (near 1.3) consistent with self-preserving aggregation theories.  The onset of 

BSA induced aggregation is correlated with a modest, but statistically significant decrease 

in the specific absorption rate (SAR) of SPIONs placed within an alternating magnetic 

field.  Conversely, coating of SPIONs with mesoporous silica (MS-SPIONs) as well as 

PEGylation (MS-SPIONs-PEG) is found to completely hinder BSA binding and BSA 
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induced aggregation; IMS inferred size distribution functions are found insensitive to BSA 

concentration for MS-SPIONs and MS-SPIONs-PEG.  The SARs of MS-SPIONs and MS-

SPIONs are additionally found insensitive to BSA concentration, confirming the SAR 

decrease is linked to BSA induced aggregation.  Our measurements suggest that IMS has 

potential as a general technique to quantify protein binding and protein induced 

aggregation of nanomaterials. 

 

4.1 Introduction 

 Superparamagnetic iron oxide nanoparticles (SPIONs), which become magnetized 

in the presence of an external magnetic field,[175-177] have utility in a number of potential 

in vitro and in vivo applications.  Most notably, SPIONs can be used as MRI contrast 

agents, [178-184] in drug delivery,[179, 185, 186] cell labeling[187, 188] and sorting,[189] 

in thermal therapies,[190-193] and for reheating cryopreserved tissues.[194] The latter two 

applications hinge upon the ability of SPIONs to generate heat when placed within an 

external alternating magnetic field.  The amount of heat generated is quantified as the 

specific absorption rate (SAR, in W/g Fe), i.e. the heat generation rate per unit mass of iron 

(for a prescribed magnetic field strength and frequency).[195, 196]  SAR values in excess 

of 200 W/g Fe have been reported under clinically achievable conditions with 

commercially available SPIONs; with proper loading of SPIONs into biological systems 

this level of heating would enable SPION-based thermal therapies and reheating 

applications in many instances.[197] 

 However, as with other engineered nanomaterials, the loading of SPIONs into 

biological systems and their eventual fate hinges heavily on the particle surface chemistry 

and interactions with surrounding molecules.[149, 150, 152-154, 198, 199] Cellular uptake 
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and transport of nanoparticles is governed largely by the formation of protein corona on 

nanoparticle surfaces; the particular proteins associated with this corona depend upon the 

nanoparticle size and surface properties.[200, 201]  In addition, the binding of proteins to 

nanoparticle surfaces can promote nanoparticle aggregation under conditions where 

nanoparticles would otherwise remain stable in suspension.[202-205]  For SPIONs, 

understanding and control of aggregation has been found to be critically important.[198]  

A number of studies reveal that protein induced (as well as salt-induced) aggregation leads 

to a reduction with SAR,[193, 206-209] with recent work suggesting that the formation of 

superaggregates (composed of more than 103 primary SPIONs) reducing SAR values to 

below 50 W/g Fe (for the same magnetic field conditions where 200 W/g Fe was 

achieved).[210]  

 It is therefore necessary to examine protein corona formation on SPIONs as well as 

the onset of protein-induced SPION aggregation.[211]  Doing so requires measurement of 

the SPION size distribution function and shifts in the size distribution function brought 

about by protein conjugation and particle-particle aggregation.  Regrettably, commonly 

employed techniques to measure nanoparticle size distribution functions, i.e. dynamic light 

scattering[40] and nanoparticle tracking analysis,[43, 157] lack both the precision and 

accuracy necessary to quantify protein conjugation to superparamagnetic particles (with 

cores smaller than 20 nm in diameter) and to measure polydisperse particles size 

distribution functions (i.e. distribution functions with geometric standard deviations in 

excess of 1.3).  Aggregation is also difficult to quantify with these techniques, as aggregates 

have complex and temporally evolving morphologies under most conditions.[212, 213]  

Difficulties in measurement led to a largely trial-and-error approach to developing surface 
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coatings for SPIONs to prevent protein induced aggregation, with coatings chosen from a 

limited number of materials (e.g. silica, polyethylene glycol, dextran).  Though several 

successful surface coating and functionalization strategies have been developed in this 

manner,[209, 214-218] future efforts would be aided by standardization of protein binding 

and aggregation characterization methods.   

 In this study, we make use of recent developments in ion mobility spectrometry 

(IMS) to quantify the extent of binding of bovine serum albumin (BSA) to commercially 

available SPIONs as well as the extent of BSA induced aggregation.  This is compared and 

contrasted with measurements of protein binding to the same SPIONs coated with 

mesoporous silica[202, 219-221] (MS-SPIONs) and coated with mesoporous silica and 

functionalized with silane and polyethylene glycol (MS-SPIONs-PEG).[209]  In engaging 

in these measurements, our purpose is two-fold.  First, we demonstrate a relatively new 

analysis approach for nanoparticle characterization in biological systems; we show that 

IMS, which has been predominantly applied to study multiprotein complex structures[174, 

222] as well as clusters/nanoparticles formed in atmospheric nucleation,[223, 224] can be 

used to quantify protein binding and protein induced aggregation for polydisperse 

nanoparticles in the sub-30 nm size range.  We compare IMS measurements to results of 

nanoparticle tracking analysis, for which characterization of sub-30 nm particles is 

difficult.  Second, we show quantitatively what has been suspected in prior studies,[209] 

that the onset of both protein binding to SPIONs and SPION aggregation is prevented by 

mesoporous silica coating, and remains hindered following PEGylation.  The sections that 

follow describe the preparation of materials and measurement methods applied, as well as 

quantitative analysis of protein binding and aggregation.  We note that although the 
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presented analysis applies to for a specific protein bound to a specific type of nanoparticle, 

the developed methods are sufficiently general for application to other nanoparticle surface 

chemistry, as well as complex ligand mixtures (e.g. blood plasma). 

 

4.2 Materials and methods 

4.2.1 Sample preparation 

EMG 308 suspensions of superparamagnetic magnetite (Fe3O4) nanoparticles 

(SPIONs) were purchased from Ferrotec (USA) Corporation (Bedford, NH).  The core 

particles have a manufacturer reported average diameter ± standard deviation 10 ± 2.5 nm; 

however, SPIONs are stabilized in suspension by the manufacturer via an anionic 

surfactant, with the resulting particles physically larger than the core size. It is this anionic 

surfactant which larger governs the interaction between bare SPIONs and their 

surroundings.  Bovine serum albumin (BSA) was purchased from Sigma Aldrich (Saint 

Louis, MO, USA), and BSA solutions were prepared by dispersing BSA powder in 

deionized water (obtained with a SpectraPure filtration system).  Diluted EMG 308 

suspensions (with nominal number concentrations of 1.5 x 1012 particles ml-1) were mixed 

with BSA suspensions in 1 mL in polypropylene centrifuge tubes.  Seven SPION-BSA 

mixture samples were prepared with different BSA: SPION number concentration ratios 

ranging from 3.0 to 80.0. For each sample, SPION-BSA mixture samples were allowed to 

interact for more than 16 hours in an incubator (Alkali Scientific, FL, USA) at 38.0o C.  

Mesoporous silica coated SPIONs (MS-SPIONs) with and without polyethylene 

glycol (PEG) - Chlorotrimethylsilane (TMS) were also synthesized (as described in the 

supplemental information and based on the methods provided by Hurley et al[209]).  
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Suspensions of MS-SPIONs with BSA were made with BSA:SPION ratios up to 260. 

Mixtures of MS-SPIONs and BSAs were also incubated at 38.0o C for more than 16 hours 

before the measurements.  

 

4.2.2 Synthesis of mesoporous silica coated iron oxide nanoparticles 

For synthesis, the following chemicals were utilized: tetraethylorthosilicate (TEOS, 

98%), hexadecyltrimethylammonium bromide (CTAB, 99%), polyvinylpyrrolidone (PVP-

10, average molecular weight 10,000) were purchased from Sigma Aldrich. Ethanol (99%) 

was purchased from Decon Labs, Inc. Ammonium hydroxide (NH4OH, 28%) was obtained 

from Macron Fine Chemicals. Milipore water generated by Milli-Q water purification 

system was used in all the experiments. 2 - [methoxy (polyethyleneoxy) - propyl] 9 - 12-

trimethoxysilane (PEG-silane, molecular weight 596-725 g/mol, 9-12 EO) was obtained 

from Gelest, Inc. (Morrisville, PA). Chlorotrimethylsilane (TMS, >99%) was purchased 

from Fluka. Ammonium nitrate (NH4NO3) was purchased from Mallinckrodt Chemicals 

(Phillipsburg, NJ). 

The synthesis of MS-SPIONs was modified from the procedure which was reported 

by Hurley et al.[209] First PVP-10 was coated onto SPIONs by sonication (probe sonicator, 

Cole Parmer Ultrasonic Processor). CTAB was added to the suspension while sonicating 

to form a layer of surfactant micelles on the surface of the nanoparticles. The suspension 

was then placed in an oil bath at 50 °C. After temperature equilibration, 28% NH4OH was 

added to the mixture to raise the pH above 7. Ethanolic TEOS (0.88 M) was added dropwise 

to form the mesoporous silica shell. The bare MS-SPIONs were synthesized by continuous 

stirring for 2 hours. The co-modified MS-SPION-PEG particles were prepared by adding 
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PEG-silane to the reaction after stirring with TEOS for 1 hour. After an additional 30 min 

of stirring, TMS was added. The suspension was mixed for additional 30 min after TMS 

addition, then transferred to a beaker and allowed to age at 50°C for 20 h. This aging period 

permitted silica condensation and water evaporation for easier suspension workup. All 

samples underwent deoxygenated hydrothermal treatment and were purified via a series of 

centrifugation steps as described in previous work.[209] A FEI Tecnai T12 microscope 

(FEI, Inc., Hillsboro, OR) operating at 120 kV and room temperature (24oC) was used to 

image MS-SPIONs and MS-SPIONs-PEG, with selected images displayed in Figure 4.1. 

 

 

Figure 4.1. Transmission electron micrographs of (a) MS-SPIONs and (b) MS-SPIONs-

PEG. 
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4.2.3 Liquid Nebulization-Ion Mobility Spectrometry 

While prior applications of IMS to nanoparticle analysis have largely utilized 

electrospray ionization to convert liquid colloids to aerosols,[93, 97, 99, 100] we find that 

the solution requirements for electrosprays (electrical conductivity in a narrowly defined 

range, lack of non-volatile surfactant molecules)[89, 91] are not compatible with the 

suspension conditions needed to analyze protein binding and protein induced aggregation 

for most nanoparticle types,[225] including SPIONs. Instead, we employed a recently 

developed, small droplet generating nebulizer with online, high flowrate dilution for 

aerosolization[162]. This nebulizer ((LiquiTrak®  Model 7788, Kanomax Fluid 

Measurement Technologies, Inc., St Paul, MN, USA) has been shown previously to 

preserve the size distribution function of nanoparticles, nanoparticle aggregates, and 

protein-nanoparticle conjugates during the hydrosol to aerosol transition.[225]  A 

schematic and detailed description of its operation can be found in the supplemental 

information in Chapter 2. As previously described, the main features of the nebulizer, 

which make it uniquely well suited for nanoparticle analysis, are that (1) it continuously 

generates submicrometer diameter droplets (lognormally distributed, with a geometric 

mean diameter of ~100 nm and a geometric standard deviation of 2.3) and (2) it enables 

online (and relatively rapid) high flowrate dilution (by factors up to 5x103) with ultra-high 

purity water (UPW, which contains total organic carbon and non-volatile residues below 

1ppbv after treating  with 165nm UV light, 10 nm and 20 nm particle filtration systems as 

well as a mixed bed ion exchange resin). By tuning the dilution factor applied and noting 

that the number of nanoparticles per droplet is Poisson distributed,[135, 137] nebulization 

conditions can be tuned such that most generated droplets are devoid of particles and non-
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volatile residue, and droplets containing nanoparticles do not contain multiple particles 

(unless the particles aggregated prior to nebulization).  Therefore, upon drying droplets, 

the remaining aerosol particle size distribution function reflects the particle size 

distribution function in liquid suspension.[162, 225] 

 For aerosolization, UPW water dilution factors (UPW flowrate/ sample flow rate) 

from 800 to 3500 were applied to prevent non-specific aggregation during the 

aerosolization process. Hydrosol to aerosol converted particles were analyzed via ion 

mobility spectrometry using a differential mobility analyzer (both models 3081 and 3085, 

TSI Inc., Shoreview MN, were applied in measurements) coupled to butanol based 

condensation particle counter (model 3775, TSI Inc).  These instruments were operated in 

scanning mode,[125] in which the mobility diameter based size distribution function 

(dn/dlog10(dp) the gas phase number concentration of particles per unit log10 diameter 

change) were inverted in the diameter range of 4.0 nm to 151 nm.  Details on this data 

inversion approach are described previously.[162]  Free BSA molecules in each suspension 

were also examined via IMS to infer unbound BSA concentrations.  Unbound BSA 

concentration values were determined using a calibration curve relating the measured 

aerosol concentrations to liquid suspension concentrations; this was established using the 

method provided Jeon et al.[162]  Size shifts of SPION-BSA conjugates with increasing 

BSA:SPION ratios were examined as a function of unbound BSA concentrations.  

Measurements were completed in triplicate (in three separate instances, with more than 10 

IMS scans per sample) because of the known sensitivity of aggregate formation to time. 
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4.2.4 Nanoparticle Tracking Analysis & Specific Absorption Rate 

Measurements 

 
Size distribution functions of three SPION-BSA samples (BSA:SPION ratios of 

3.9, 38.7 and 77.4), incubated for 16 hours at 38 oC, were examined with Nanoparticle 

tracking analysis (NTA).[43] These measurements were carried out with a NanosightTM 

LM14 (Malvern Instruments LTD, Malvern, Worcestershire, UK). The hydrodynamic 

diameter based size distribution functions in the 10 nm to 1 m range for all samples were 

inferred using the procedure described in Jeon et al. Measurements were performed at least 

10 times for each sample, and with extracted hydrodynamic sizes of all tracked individual 

aggregates of each measurement, an average hydrodynamic distribution function was 

established by the procedure described in Jeon et al.[226]  

The specific absorption rates (SARs) of suspensions of BSA with SPIONs and with 

MS-SPIONs were also examined.  The SAR measurement procedure is described 

previously.[206]  Briefly, a 1kW Hotspot inductive heating system (Ambrell Corporation, 

Scottsville, NY) was used to generate an alternating magnetic field at 20.0 kA/m field 

strength and 190 ± 10 % kHz fixed frequency. The temperature change of a 1.0 mL sample 

in a 1.5 mL centrifuge tube was monitored with a Luxtron 3100 fluoroptic thermometry 

system (Luxtron Inc., Santa Clara, CA) for 180 seconds.  The maximum slope of the 

temperature versus time curve for 15 ~ 20 seconds within the initial minute of heating was 

calculated; the SAR was estimated from this slope. At least four SAR measurements were 

performed for each BSA:SPION ratio. 
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4.3 Result and discussion 

4.3.1 Bare SPION –BSA Conjugation 

 IMS inferred size distribution functions, which depend on the gas phase mobility 

equivalent diameter, are displayed in Figure 4.2 for SPIONs (without silica and PEG 

coating) for variable BSA:SPION number concentration ratios. In classical models of 

particle aggregation (i.e. diffusion limited cluster aggregation and reaction limited cluster 

aggregation),[213] aggregation is an irreversible process in which the particle size 

distribution function evolves continuously over time,[227] with the rate of evolution 

increasing as aggregates grow if particles are attracted to one another.[228] For this reason, 

aggregation experiments can exhibit large trial-to-trial variation in measured size 

distributions.[212] We hence elect to plot results from three distinct experimental sets 

separately, but note that each displayed is the result of more than ten consecutively 

measured ion mobility spectra.  In spite of the noted issues with temporal evolution in 

aggregating systems, we find good qualitative agreement between the triplicate 

measurements. Although BSA-SPION suspensions were incubated for similar times, the 

observed agreement suggests that in contrast with irreversible aggregation models, SPION-

BSA conjugates and aggregates of conjugates exist in equilibrium, such that size 

distribution functions achieve a time-independent form (for a given BSA:SPION ratio). In 

addition to the similar shapes of distribution functions between trials, apparent in figure is 

that the bare SPION size distribution function has a mode diameter near ~21 nm, which is 

larger than TEM-inferred primary SPION diameter (~15 nm), suggesting that many SPION 

initially are incorporated into small but stable aggregates (with fewer than 10 primary 

particles per aggregate).  The peak on the left of each distribution function is attributable 
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to free BSA, and is peaked at 6.3 nm (and is larger in magnitude than the SPION peak, as 

BSA was present in suspensions in larger number concentrations).  

 

Figure 4.2.  IMS inferred size distribution function (dn/dlog10(dp), in units of cm-3) for 

SPIONs in aqueous suspension with variable added BSA:SPION ratios.  Measurements 

were repeated in triplicate (three separate samples per condition with more than ten IMS 

spectra averaged for each curve). 
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 Increasing BSA:SPION number concentration is found to continuously shift size 

distribution functions to larger sizes while decreasing the magnitude of mode.  The size 

shifts observed, which are in excess of 10 nm, are significantly larger than those observed 

in recent experiments wherein IMS was used to examine BSA binding to 30 nm and 50 nm 

gold nanoparticles in Chapter 3. Gold nanoparticles were found to remain unaggregated 

during such experiments, and the difference in size shift observed here may be attributable 

to BSA-facilitated aggregation of SPIONs. 

 More rigorously, the influence of BSA on SPION size distribution functions can be 

examined via calculation of the mean diameter (dp,ave), volumetric concentration (Vtot), and 

geometric standard deviation for each size distribution (g), which quantify the average 

SPION aggregate size, total particulate amount in suspension, and the suspension 

polydispersity, respectively.  These parameters are calculated via the equations (as noted 

in Chapter 3):  
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Figure 4.3.  A summary of the average mobility diameter, cumulative volume 

concentration, and geometric standard deviation of the size distribution functions of BSA-

SPION conjugates as a function of the BSA:SPION ratio. 
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By examining the evolution of dp,ave, Vtot, and g with increasing BSA:SPION 

number concentration ratio, the mechanisms driving SPION size distribution function 

shifts can be inferred. For example, if size distribution function evolution occurs only 

because of BSA reversible binding at specific sites on SPION surfaces (i.e. Langmuir-like 

adsorption), dp,ave will first increase, but asymptote once complete surface coverage is 

achieved, Vtot will increase modestly as proteins are incorporated into particles, and g of 

originally polydisperse particles (such as the examined SPIONs) will modestly but 

monotonically decrease (until maximum surface coverage). Conversely, if size distribution 

evolution occurs solely by aggregation, dp,ave will increase continuously, Vtot will remain 

constant, and g will evolve to a near-constant value in the 1.3-1.4 range.[229]  Plots of 

these three parameters are provided in Figure 4.3, with errors bars representing the standard 

deviation between individual IMS spectra. Consistent with the size distribution functions 

themselves, little variation is observed between measurements under the same conditions, 

with the exception of a single trial with BSA:SPION = 45, for which the average diameter 

and volumetric concentration are both anomalously large.  Disregarding this measurement, 

there appear to be two regimes for size distribution function evolution.  For BSA:SPION 

≤ 30, dp,ave increases are modest (< 10 nm), Vtot remains nearly constant, and g decreases 

sharply (from above 1.4 to close to 1.3). Beyond BSA:SPION = 30, dp,ave increases are 

more pronounced (> 20 nm increase from the bare SPION value), and both Vtot and g 

remain close to constant. Combined, these suggest that first, reversible BSA conjugation 

to SPION surfaces occurs, and BSA-SPION complexes are then able to aggregate with one 

another, i.e. BSA can act to binds SPIONs to one another once they are present on SPION 

surface.  As isoelectric point of BSA is ~4.7 and SPIONs are coated with an anionic 



 

80 

 

surfactant, it does not appear that BSA binding to SPIONs is governed by electrostatics; 

conjugation is more plausibly driven by the interaction of hydrophobic regions of BSA 

with SPION surfaces. However, further investigation is required to more clearly identify 

the mechanism by which BSA attaches to SPION, at the amino acid level.   

Determination of the unbound BSA concentration via IMS reveals that the 

reversible BSA conjugation regime applies for BSA concentration range below 3 x 1013 

mL-1 (below ~50 nM); the onset of SPION aggregation occurs above this concentration.  

As in prior IMS investigations in Chapter 3 and Tsai et al[97, 225] of BSA binding to 

nanomaterials, results for reversible conjugation can be compared to a Langmuir-like, 

equilibrium adsorption model, which is a two-parameter fit to the dp,ave versus unbound 

BSA concentration curve.  This model, based upon models of subsaturated vapor uptake 

by gas phase ions,[167, 169] is described in detail in Chapter 3 and is expressed with the 

equations again here: 
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where na is the unbound BSA concentration in aqueous suspension, [X] is the surface 

binding site density (modeling all bare SPIONs as spheres with diameter independent [X]), 

and neff is the effective BSA concentration above a binding site. The latter two parameters 

are fit to IMS measurements, with results shown in Figure 4.4. Though only 3-4 data points 

are applied for each fit, comparison of measurements to equation (2a-c) allow us to estimate 

both the BSA binding site density on SPIONs as well as the effective BSA concentration 

above a site to within an order or magnitude.  All measurements are consistent with [X] = 

0.04 – 0.08 nm-2 and neff of order 1011 –1012 mL-1. We can also compare estimates of [X] 

and neff to those made for gold nanoparticle-BSA reversibly bound conjugates in Chapter 

3; neff is found to be similar in magnitude to values obtained for nominally 20 nm, 30 nm, 

and 50 nm gold particles. Conversely, the estimate of [X] for SPIONs is appreciably larger 

than those inferred for 30 nm and 50 nm gold particles (binding site densities of 0.02-0.03 

nm-2), but similar to that observed for 20 nm gold particles (with a binding site density of 

0.06 nm-2). Noteworthy about this comparison is that like SPIONs, 20 nm gold particles 

were observed to aggregate in the presence of BSA (though at lower BSA concentrations), 

while aggregation of larger gold nanoparticles was not observed. This suggests that protein 

conjugation onto nanoparticles has a greater influence on the size distribution functions 

and morphologies of small (sub 30 nm diameter) particles irrespective of particle chemical 

composition, and is consistent with observations made in prior work.[170, 171]  
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Figure 4.4.  A comparison of measured average diameter for BSA-SPION conjugates as 

functions of IMS measured unbound BSA concentrations to predictions based upon an 

equilibrium protein conjugation model (i.e. a Langmuir-like adsorption model) where the 

base SPION size distribution function, effective binding site surface concentration [X] and 

effective BSA concentration above a binding site (neff) are used as input values.  For the 

displayed curves, [X] and neff are fit to measurements, while the input size distribution 

functions are used directly from IMS measurements in the absence of BSA.   



 

83 

 

 
Figure 4.5.  Normalized size distribution functions (fraction of particles per nm change in 

diameter) for BSA:SPION conjugates as inferred via Nanoparticle tracking analysis 

(NTA).  NTA based distribution functions are expressed in terms of the hydrodynamic 

diameter, which is not equivalent to the IMS inferred mobility diameter in all 

circumstances.   
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The observation of initial SPION growth via reversible BSA binding, followed by 

subsequent BSA facilitated aggregation was made possible by the precision and accuracy 

of IMS measurements in the sub 30 nm size range. For comparison, Figure 4.5 displays 

hydrodynamic diameter based size distribution functions for SPIONs with varying 

BSA:SPION ratio, which were measured by nanoparticle tracking analysis. Evidenced in 

the plots, both the mean (dp,ave) and mode diameter in size distribution functions observed 

by nanoparticle tracking analysis are larger than that determined with IMS, with mean 

diameter values significantly larger for similar measurements. Hydrodynamic diameter 

distribution functions are additionally found to be broader than IMS distributions and have 

geometric standard deviations in excess of 1.5. While some of these differences are 

attributable to differences between the gas phase mobility diameter and the hydrodynamic 

diameter for aggregates,[128] this alone cannot explain the clear differences in distribution 

function mean diameters and polydispersities. Instead, though nanoparticle tracking 

analysis can be used to quantify polydisperse aggregate size distribution functions,[77, 

210] particles present below 30 nm are difficult to detect via light scattering when larger 

particles are present as discussed in Chapter 2. This leads to inaccuracies for SPIONs, as 

many SPION aggregates have effective diameters below 30 nm, but the distribution 

functions are sufficiently polydisperse for larger particles to be present. 

 Noted in the introduction, prior studies have shown consistently that salt induced 

aggregation and protein induced aggregation of SPIONs directly leads to a reduction in 

SAR.[206, 207, 210, 230]  However, protein induced aggregation experiments were 

performed using fetal bovine serum, in which the BSA concentrations are of the order 102 

M; SARs at lower BSA concentrations have not been examined previously.  Figure 4.6 
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plots the SAR (in terms of W per gram of Fe) as a function of BSA:SPION ratio in 

suspension.  Measurements span a free BSA concentration up to 150 nM.  Displayed results 

are the mean values ±standard deviation for 4-6 measurements per sample.  A decreasing 

SAR with increasing BSA concentration is evident, even for such dilute BSA 

concentrations.  Via a Student’s t-test, the observed decrease is found to be statistically 

significant; the SAR for BSA:SPION = 0 differs from the SAR for BSA:SPION = 60 (p = 

0.004),  and SARs for BSA:SPION =  0-15 differ from the SAR for BSA:SPION = 30-60 

(p = 0.017).  This further supports the findings of IMS measurements, that aggregation is 

preceded initial by BSA conjugation to SPIONs.   

 

 
Figure 4.6.  The specific absorption rate of BSA:SPION conjugates as function of 

BSA:SPION number concentration ratio. 
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4.3.2 MS-SPION &MS-SPION-PEG analysis 

 The coating of SPIONs with mesoporous silica leads to an appreciable increase in 

diameter for all SPIONs.  Both MS-SPIONs and MS-SPIONs-PEG have feret diameters 

near 65 nm, and in many instances, multiple SPIONs are incorporated into a single MS-

SPION or MS-SPION-PEG (confirming small aggregates exist even in protein free SPION 

suspensions).  Directly comparable to Figure 4.2, IMS inferred size distribution functions 

at variabla BSA:SPION ratios are provided in Figure 4.7 for both MS-SPIONs and MS-

SPIONs-PEG.  IMS measurements confirm that MS-SPIONs have effective diameters near 

65 nm, and also show that PEGylation brings about a ~1 nm increase in diameter.  Further, 

size distributions functions of both particle types are remarkably consistent in both mean 

diameter and geometric standard deviation for all examined BSA:SPION ratios.  Although 

the binding of individual BSA molecules cannot be easily detected via IMS on particles 

larger than 50 nm, and there remains that possibility that BSA may be incorporated into 

silica pores (which would not shift the diameter), the consistency of the MS-SPION and 

MS-SPION-PEG size distribution functions most likely arises because BSA does not bind 

to MS-SPIONs and MS-SPIONs-PEG, which in turn prevents BSA induced aggregation.  

Combining the results of this study and previous studies of SPION aggregates,[206, 209, 

210] it appears that for biologically relevant albumin concentrations, SPIONs without 

surface treatment would persist as aggregates which are in the submicrometer size range 

and significantly larger than unaggregated MS-SPIONs.   
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Figure 4.7.  IMS inferred size distribution functions (dn/dlog10dp) for MS-SPIONs and 

MS-SPIONs-PEG at varying BSA:SPION number concentration ratios.  Each displayed 

distribution function is the average of more than 10 ion mobility spectra.  Partial peaks in 

distributions near 10 nm are part of the free BSA size distribution function, which has a 

mode at 6.3 nm and is much larger in magnitude than the SPION mode value.  The 

geometric mean diameter (dpg) and geometric standard deviation (g) consider the MS-

SPION and MS-SPION-PEG portion of each distribution function are noted.   
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The lack of MS-SPION and MS-SPION-PEG aggregation is also evident in 

examination of MS-SPION-PEG SARs, which are provided in Figure 4.8. SAR is visually 

observed to be insensitive to BSA:SPION ratio for MS-SPIONs-PEG, and no statistical 

differences in measurements or group of measurements are obtained. 

 

 
Figure 4.8.  The SAR of MS-SPIONs-PEG as a function of BSA:SPION number 

concentration ration.   
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4.4 Conclusions 

 We applied ion mobility spectrometry with a hydrosol-to-aerosol conversion 

nebulizer[162] to examine the evolutions of the size distribution functions of SPIONs due 

to both BSA binding and BSA induced SPION aggregation.  Measurements were consistent 

with BSA first binding reversibly to SPION surfaces, and BSA induced aggregation 

occurring in instances where full surface coverage by BSA was assured.  We also showed 

quantitatively that both BSA binding and BSA aggregation were mitigated by coating 

SPIONs with mesoporous silica.  To our knowledge, this study is also the first to utilize 

ion mobility spectrometry to examine protein aggregation onto metal oxide nanoparticles; 

previous studies were limited to proof-of-concept measurements of noble metal 

nanoparticles and silica.  However, because the IMS technique is relatively insensitive to 

nanoparticle chemical composition and absolute size and does not require analyte specific 

standards for calibration[162], we propose that it should find application as a screening 

technique to examine protein binding and protein induced aggregation for a wide variety 

of nanomaterials.  Further IMS measurements along these lines would enable simple 

comparison between different nanomaterials, suspension conditions (pH and ionic 

strength), and proteins. 
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Chapter 5  

Quantifying Intra- and Extracellular Aggregation of 

Iron Oxide Nanoparticles and its Influence on Specific 

Absorption Rate 
 

 

Summary 

 A promising route to cancer treatment is hyperthermia, facilitated by 

superparamagnetic iron oxide nanoparticles (SPIONs).  After exposure to an alternating 

external magnetic field, SPIONs generate heat, quantified by their specific absorption rate 

(SAR, in W/g Fe).  However, without surface functionalization, commercially available, 

high SAR SPIONs (EMG 308, Ferrotec, USA) aggregate in aqueous suspensions, leading 

to reduction in SAR.  Further reduction in SAR has been observed for SPIONs in 

suspensions containing cells, but the origin of this further reduction has not been made 

clear.  Here, we use image analysis methods to quantify the structures of SPION aggregates 

in the extra- and intracellular milieu of LNCaP cell suspensions. We couple analysis with 

nanoparticle tracking analysis and SAR measurements of SPION aggregates in cell-free 

suspensions, to better quantify the influence of cellular uptake has on SPION aggregates 

and ultimately its influence on SAR.  We find that in both the intra- and extracellular 

milieu, SPION aggregates are well-described by a quasifractal model, with most aggregates 

having fractal dimensions in the 1.6-2.2 range.  Intracellular aggregates are found to be 

significantly larger than extracellular aggregates and are commonly composed of more than 

103 primary SPION particles (hence they are “superaggregates”). By using high salt 

concentrations to generate such superaggregates and measuring the SAR of suspensions, 

we confirm that it is the formation of superaggregates in the intracellular milieu that 

negatively impacts SAR, reducing it from above 200 W/g Fe for aggregates composed of 

fewer than 50 primary particles to below 50 W/g for superaggregates. 
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5.1 Introduction 

 Superparamagnetic iron oxide nanoparticles (SPIONs) show promise in a variety 

of biomedical applications, most notably as contrast agents in magnetic resonance imaging 

[178-183] and in hyperthermia-based cancer therapy.[175, 196, 231-234]  In the latter, 

tissues loaded with SPIONs are subjected to an external alternating magnetic field,[194, 

235, 236] then relaxation of the magnetic moments of the SPIONs after magnetic field 

exposure (either by the Brownian or Neelian mechanisms)[175-177] leads to the 

production of thermal energy (heat), thereby increasing the temperature of the SPION-

loaded region and promoting necrosis.[191, 192]  The extent of heating under prescribed 

magnetic field conditions is quantified by the specific absorption rate (SAR),[175, 195, 

197, 237] the thermal energy production rate per unit mass of iron.  Though encouraging 

results in the level of SAR attainable have been obtained in laboratory-scale studies (SAR 

above 200 W/g Fe) and reduction in tumor size has been observed via SPION-based 

hyperthermia,[190, 192, 194, 238-240] a well-documented issue with application of 

SPIONs is that without additional surface functionalization, commercially available, high 

SAR SPIONs (EMG 308, Ferrotec, USA)  aggregate under biologically relevant 

suspension conditions, and aggregation leads to a reduction in SAR.[206, 207, 230, 241]  

Aggregation of such nanomaterials in biologically relevant systems, which are of relatively 

high ionic strength[31, 242, 243] and contain a wide variety of small molecule solutes and 

proteins,[204, 206, 212, 244] is by no means unexpected.  Increased ionic strength reduces 

the influence of electrostatic repulsion between particles, and the adsorption of proteins 

onto nanoparticle surfaces can further induce aggregation.  More surprising, however, is 

that additional reduction in SAR has been found in the presence of living cells, i.e. 
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suspensions of near identical composition have differences in SAR close to 50%, 

depending upon whether they contain metabolically active cells.[193, 208]  This finding 

remains unexplained to date. 

 Though methods have been developed to mitigate SPION aggregation and its 

influence on SAR,[209, 214-218] it remains necessary to better quantify the extent of 

SPION aggregation in extra- and intracellular media, the structures of SPION aggregates, 

and the influence that aggregation has on SAR.  Such information would inform future 

SPION design for biomedical applications. Unfortunately, other than a qualitative 

description of aggregate formation, little work has been performed to quantitatively 

characterize SPION aggregation in the cellular milieu.  The purpose of this study is hence 

to develop and apply analysis methods to (1) quantify the structures of SPION aggregates 

observed in extra- and intracellular environments in suspensions of human prostate cancer 

cells (lymph node cancer of the prostate, LNCaP-Pro5), (2) develop a functional 

relationship between SAR and the number of SPIONs per aggregate, and (3) use 

information from (1) and (2) to predict the SAR of SPIONs contained in the extra- and 

intracellular milieu.  For (1), we apply an image processing method[206, 245] with 

transmission electron micrographs of LNCaP cells loaded with SPIONs.  Aggregates are 

assumed to be quasifractal[63, 246] in nature; this enables inference of their morphological 

descriptors via comparison to computationally modeled aggregate structures.  For (2) we 

use a combination of the results of image processing analysis, aggregate population 

analysis via nanoparticle tracking analysis (NTA)[43, 157, 226], and direct SAR 

measurements.  Finally, for (3) we apply the results of (1) and (2), and compare predictions 

to observed SAR values in cell suspensions.  In total, this study confirms that it is in fact 
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the aggregation of SPIONs that reduce SAR, and specifically in intracellular environments, 

the formation of superaggregates (containing more than 103 SPIONs) which leads to 

greatest reduction in SAR for non-functionalized SPIONs.   

 

5.2. Experimental methods 

5.2.1 In vitro sample preparation 

Aqueous stock solution (EMG 308) of anionic surfactant-coated superparamagnetic 

magnetite (Fe3O4) nanoparticles (SPIONs) was purchased from Ferrotec Corporation 

(Bedford, NH, USA). This SPION stock has a density of 1.06 × 103 kg/m3 with a pH of 8-

9. The manufacturer reported an average diameter ± standard deviation of SPIONs of 10 ± 

2.5 nm, and iron (Fe) mass concentration of SPIONs in the stock solution was 44.1 mg 

Fe/ml.   

Human prostate cancer cells (lymph node cancer of the prostate, LNCaP-Pro5), 

which have been commonly used in other cancer studies[178, 247], were selected as the 

SPION target. LNCaP cells were placed in monolayers in 75 cm2 T-flasks at 37 °C and 5% 

CO2; they were grown in Dulbecco’s Modified Eagle Medium (DMEM F12) with the 

addition of 10% fetal bovine serum (FBS), 1% penicillin-streptomycin, and 10–9 M 

dihydrotestosterone. When LNCaP cells reached 60-80% confluency, 0.5 mg Fe/ml EMG 

308 solution was introduced in the cell culture media, and LNCaP cells were incubated 

with IONPs for 24 hours. Subsequently, the cells were washed by phenol-red free Hank’s 

balanced salt solution (HBSS) five times to remove excess SPIONs. The cells were then 

detached from the monolayers by using 2.0 mL of 0.05% trypsin with 0.53 mM EDTA for 

6–9 minutes (trypsinization process), and they were pelleted via centrifugation at a relative 
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centrifugal force (RCF) of 400 for 10 minutes.  Finally, the cells were resuspended in fresh 

media. 

 

5.2.2 Transmission electron microscopy & image analysis 

A FEI Tecnai T12 microscope (FEI, Inc., Hillsboro, OR) was used to image 

SPIONs in intra- and extra- cellular matrices of LNCaP cells. For TEM sample preparation, 

first, LNCaP cells were washed twice with 0.1 M cacodylate buffer, and subsequently they 

were exposed to 2.5 M gluteraldehyde in buffer for fixation. After two buffer washes, the 

cell pellet was stained with 1% osmium tetroxide for 1 hour. The pellet underwent two 

more buffer washes, after which it was dehydrated in sequentially varied ethanol 

concentrations (50%, 70%, 80%, 95%, and 100%). Any ethanol remaining in the pellet was 

rinsed three times with propylene oxide. Next, a 2:1 mixture of propylene oxide:EPON 

epoxy mix was infiltrated into the pellet for 2 hours (without covering the sample), and 

then the pellet was infiltrated with a 1:1 mixture of propylene oxide:EPON epoxy mix 

twice without covering the sample (1 hour each time). Finally, a pure epoxy mix was 

allowed to infiltrate into the pellet overnight. The next day, the sample was placed in a 

curing oven at 40 °C for 24 hours, then 60 °C for 48 hours. The polymerized block was 

detached from the casing (1 ml centrifuge tube), and it was cured for another 8 hours at 

60 °C to ensure complete polymerization. The final hardened polymer block was then 

sectioned into ~ 60 nm slices with a Leica EM UC6 Ultramicrotome (Leica Microsystems 

Inc., Buffalo Grove, IL), and the slices were deposited on a TEM copper grid (200 mesh, 

Ted Pella Inc., Redding, CA).  TEM imaging was performed at 120kV and room 

temperature. After taking multiple images in different cellular areas, images were matched 
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to one another to display nearly complete cells. IONPs in and around five cells were imaged 

for morphological analysis.  

Morphological properties of SPION aggregates were inferred using methods 

developed and verified by Thajudeen et al[245] and Etheridge et al.[206]  First, we 

calculated four geometric parameters for each aggregate observable in TEM images; (1) 

the perimeter (P), (2) the maximum extent of the aggregate (Lmax), (3) the 2D radius of 

gyration (Rg,2D) and (4) the 2D projected area (PA).  For calculations, TEM images were 

cropped to isolate individual aggregates (when possible).  Aggregate images were loaded 

into ‘ImageJ’ (National Institute Health) and converted into bit matrices, wherein the 

greyscale intensity was given a value from 0 (black) to 255 (white).  Aggregates were 

visually evident as they were found to be significantly darker than all other image features.  

They could hence be identified by setting greyscale threshold of 250; each matrix value 

was reassigned a value of “1” if original value was less than 250 and “0” if the original 

value was 250 or higher.  After undergoing this procedure, each image bit matrix only 

contained non-zero values where aggregates were located, and could then be used to 

calculate the four aforementioned 2-D properties. Additionally, for each aggregate, primary 

particle radii were measured directly in ‘ImageJ,’ and for each aggregate a projected area 

weighted mean primary particle radius (ap) was obtained.   

Once a TEM image of an SPION aggregate was converted to a bit matrix (aggregate 

pixel=1.0 and background pixel=0.0), four geometry parameters (P, Lmax, Rg,2D and PA) 

were calculable. To determine the perimeter (P), the number of unit pixel edges at the 

boundary of an aggregate image was multiplied by the unit pixel length (Lp), and the 

maximum extent of the aggregate (Lmax) was obtained by finding the longest scalar distance 
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between two pixels within an aggregate image. The 2D radius of gyration (Rg,2D) and the 

2D projected area (PA) were calculated with following equations:  

 

𝑅𝑔,2𝐷 = √
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑐𝑚)

2 + (𝑦𝑖 − 𝑦𝑐𝑚)
2𝑖=𝑁(𝑥,𝑦,𝛼=1)

𝑖=1
⁡⁡                              (5.1)                   

𝑃𝐴 = ⁡𝑁(𝑥,𝑦,) × 𝐿𝑝
2                                                                                                  (5.2)  

                                                                  

where 𝑁(𝑥,𝑦,)  is the number of aggregate pixels, (𝑥𝑖 , 𝑦𝑖)  is a spatial coordinate of an 

aggregate pixel i, and (𝑥𝑐𝑚, 𝑦𝑐𝑚) is a spatial coordinate of aggregate image’s the center of 

mass: 

 

𝑥𝑐𝑚 =
∑ 𝑥𝑖
𝑁(𝑥,𝑦,𝛼=1)
𝑖=1

𝑁(𝑥,𝑦,𝛼=1)
                                                         (5.3)                                                                                                          

𝑦𝑐𝑚 =
∑ 𝑦𝑖
𝑁(𝑥,𝑦,𝛼=1)
𝑖=1

𝑁(𝑥,𝑦,𝛼=1)
                                                                            (5.4)     

                                                                                     

Calculated P, Lmax, Rg,2D, and PA were non-dimensionalized with an aggregate’s projected 

area weighted mean primary particle radius (ap) (i.e. P/ap, Lmax/ap, Rg,2D/ap, and PA/ap
2). 

To then estimate aggregate morphological descriptors and infer probable 

aggregate structures, a series of aggregates (more than 20,000) which were quasifractal in 

structure were generated computationally using the cluster-cluster algorithm (CCA) 

described by Filippov et al.[63]  Quasifractal aggregates approximately obey the 

relationship: 

𝑁𝑝 = 𝑘𝑓 (
𝑅𝑔

𝑎𝑝
)
𝐷𝑓

                                                  (5.5) 
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where Np is the number of primary particles in an aggregate, kf is the pre-exponential factor, 

Rg is the (three-dimensional) radius of gyration, ap is the primary particle radius, and Df is 

the fractal dimension. Df ranges from between 1.0 and 3.0; higher fractal dimensions denote 

more dense aggregates, while aggregates with lower fractal dimensions are more chain-like. 

kf values typically range from 1.0 to 2.0, and reflect the aggregate packing density.[248]  

The CCA enables determination of the locations of primary particles satisfying equation 

(1) with prescribed Np, Df, kf, and ap.  CCA aggregates were generated with Np = 10-3000, 

kf = 1.0-2.0 and Df = 1.3-2.9, with 10 aggregates for each (Np, kf, Df) set generated.  For 

each CCA aggregate, 3 orthogonal projections were examined (i.e. what would be viewed 

on a TEM image) and for each orientation, P/ap, Lmax/ap, Rg,2D/ap, and PA/ap
2 were 

determined. To obtain the four geometric parameters of a CCA generated quasifractal 

aggregate, a projection of the generated aggregate was obtained, and the two-dimensional 

spatial center coordinates of all primary particles of the aggregate were placed on an 

imaginary image domain.  To determine whether an image domain pixel was a part of the 

aggregate projection, the distances between the pixel and the centers of primary particles 

were calculated. If the distance between the pixel and any primary particle of the aggregate 

was less than 1.0 (the dimensionless primary particle radius), 1.0 was assigned to the 

pixel’s bit matrix location, otherwise the pixel was considered background and its bit 

matrix location was assigned a zero value. This pixel identification process was performed 

for all image domain pixels, enabling the calculations of P/ap, Lmax/ap, Rg,2D/ap, and 

PA//ap
2. CCA calculations thus led to a computational dataset with more than 60,000 

entries listing Np, Df, and kf, as well as P/ap, Lmax/ap, Rg,2D/ap, and PA/ap
2.  For all 
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experimentally imaged aggregates, a comparison was made to the CCA dataset via 

calculation of a square error (Ej): 

 

𝐸𝑗 = (1 −
𝑃𝑗/𝑎𝑝

𝑃𝑇𝐸𝑀/𝑎𝑝
)
2

+ (1 −
𝐿𝑚𝑎𝑥,𝑗/𝑎𝑝

𝐿𝑚𝑎𝑥,𝑇𝐸𝑀/𝑎𝑝
)
2

+ (1 −
𝑅𝑔,2𝐷,𝑗/𝑎𝑝

𝑅𝑔,2𝐷,𝑇𝐸𝑀/𝑎𝑝
)
2

+ (1 −
𝑃𝐴𝑗/(𝜋𝑎𝑝

2)

𝑃𝐴𝑇𝐸𝑀/(𝜋𝑎𝑝
2)
)
2

 (5.6)   

        

where the subscript   “j” denotes the “jth” dataset entry and the subscript TEM denotes the 

measured quantity. Subsequently for each experimentally observed aggregate, the most 

probable quasifractal descriptors were calculated as:        

                                                                             

𝐷𝑓,𝑇𝐸𝑀 =
∑ 𝐷𝑓,𝑗
𝑗=𝑗𝑚𝑎𝑥
𝑗=1 ×exp(−𝑏𝐸𝑗)

∑ exp(−𝑏𝐸𝑗)
𝑗=𝑗𝑚𝑎𝑥
𝑗=1

                   (5.7a) 

𝑘𝑓,𝑇𝐸𝑀 =
∑ 𝑘𝑓,𝑖
𝑗=𝑗𝑚𝑎𝑥
𝑗=1 exp(−𝑏𝐸𝑗)

∑ exp(−𝑏𝐸𝑗)
𝑗=𝑗𝑚𝑎𝑥
𝑗=1

                                                   (5.7b)                                                             

𝑁𝑃,𝑇𝐸𝑀 =
∑ 𝑁𝑝,𝑗
𝑗=𝑗𝑚𝑎𝑥
𝑗=1 exp(−𝑏𝐸𝑗)

∑ exp(−𝑏𝐸𝑗)
𝑗=𝑗𝑚𝑎𝑥
𝑗=1

         (5.7c) 

 

where b is a “bias factor”, equal to 300 for our calculations.  For each TEM observed 

aggregate, the CCA algorithm could then be used to predict a possible structure with 

equations (3a-c) results as inputs.  While we employ this method in image analysis and 

note that prior studies have verified that the properties (i.e. diffusion coefficients and 

hydrodynamic radii) of aggregates analyzed via this approach agree well with experimental 

measurements,[245] at the same time we remark that it is not possible to extrapolate three-

dimensional aggregate structures from two-dimensional projections with certainty.  There 

is therefore some ambiguity in the structures inferred for aggregates; while it is likely that 
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the estimations of the numbers of primary particles per aggregate and fractal dimensions 

are reasonably accurate (as are parameters which scale with quasifractal descriptors), more 

detailed features of aggregate structures are not captured in analysis. 

   

5.2.3 Nanoparticle tracking analysis & specific absorption rate 

measurements 

 
To better understand the influence aggregation has on SAR, we additionally made 

measurements of the hydrodynamic radius distribution (RH, linked to the distribution of 

number of primary particles per aggregates in the Results & Discussion section) of SPION 

aggregates and their specific absorption rates in variable concentrations (0.0, 0.25, 0.5, 1.0, 

1.5, 2.0, 3.0, 4.0 and 5.0X) of phosphate buffered saline.  Hydrodynamic radii distribution 

functions were inferred via nanoparticle tracking analysis (NTA)[43] with a NanosightTM 

LM14 (Malvern Instruments LTD, Malvern, Worcestershire, UK).  For NTA, each sample 

was diluted such that it contained 6.0 mg Fe/ml.  SPIONs were allowed to aggregate for 4 

hours prior to NTA.  Measurements were performed more than 10 times for each PBS 

concentration, and hydrodynamic radii of all tracked individual aggregates were extracted 

as output data.  The hydrodynamic radius distribution function of each sample was 

constructed by the procedure delineated in Jeon et al.[226] 

Under identical suspensions conditions (PBS concentration), SAR measurements 

were made as described by Etheridge et al[206] and Hurley et al.[209]  Briefly, a 1.0 mL 

sample in a centrifuge tube was placed within the inductive copper coil (2.75-turn) of a 1 

kW Hotspot inductive heating system (Ambrell Corporation, Scottsville, NY).  An 

alternating magnetic field at a frequency of 190 ± 10% kHz was applied to each sample for 

180 seconds with a field strength of 20.0 kA/m. The temperature increase of each sample 
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during heating was recorded with a Luxtron 3100 fluoroptic thermometry system (Luxtron 

Inc., Santa Clara, CA). The maximum linear fit of time rate of temperature change for 15 

~ 20 seconds within the initial minute of heating was calculated, from which SAR was 

estimated. At least 3 SAR measurements were performed for each suspension; most 

measurements exhibit low measurement-to-measurement variation. 

 

5.3 Results and discussion 

5.3.1 Aggregate morphology quantification in vitro 

Representative TEM images of SPIONs in the intra- and extra-cellular milieu of 

two LNCaP cells are displayed in Figures 5.1 and 5.2.  Enlarged images of selected cell 

regions are also provided.   Evident in all images is that the SPIONs do in fact persist as 

aggregates in both intracellular regions and extracellular regions. Qualitatively we also find 

that intracellular SPION aggregates are highly localized, i.e. they are confined within 

specific vesicles, indicative of uptake via endocytosis. This is in agreement with prior 

studies of SPION cellular distributions.[193, 206, 208]  Uptake of SPION aggregates is 

visually evident in image (c) of Cell 2, where it appears that multiple SPION aggregates 

are being actively taken up into the cell.  The extracellular SPION aggregates are found to 

be more evenly distributed in the volume elements between cells. 
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Figure 5.1.  Transmission electron micrographs of SPION aggregates in the extra- and 

intracellular regions of Cell1 and Cell2.  (a-d) denote zoomed in images of selected regions. 
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Figure 5.2. Transmission electron microscopy images of cells 3, 4 and 5. TEM images of 

Cell 1, 3 and 5 are also presented in Etheridge et al [206]and Hurley et al [209]. 
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As described in the Experimental Methods section, isolated SPION aggregate 

images from both the intracellular and extracellular milieu were used to construct a bit 

matrix for two-dimensional property calculation, and a similar procedure was applied to a 

large number of computationally generated projections for comparison. An example of this 

procedure is provided in Figure 5.3 (a-c), where (a) shows the TEM image of an 

extracellular SPION aggregate, (b) shows the aggregate isolated from its surroundings with 

primary particles identified, and (c) shows a replotting of the aggregate projection based 

upon its bit matrix, with its four two dimensional size descriptors depicted.  Analogously, 

Figure 5.3 (d) displays a computationally generated aggregate (Df 1.7, kf 1.7 and Np 100), 

(e) displays the computationally generated aggregate projection, and (f) shows a replotting 

of the computationally generated aggregate projection based upon its bit matrix. For all 

computationally generated aggregates and for all imaged SPION aggregates, the 

parameters depicted in Figures 5.3 (c) and (f) were compared with equation (5.6), and 

fractal descriptors of imaged SPION aggregates were calculated with equations (5.7a-c).  

Results from selected aggregates are provided in Figure 5.4 for (a) extracelluar SPION 

aggregates and (b) intracellular SPION aggregates. In both subfigures, the determined 

quasifractal descriptors and a CCA generated aggregate with such size descriptors are 

displayed.  In total, we repeated this procedure for 285 extracellular aggregates and 139 

intracellular aggregates. While we can remark that the reconstructed CCA aggregates share 

many similar structural features with the observed projections, what is more important is 

to examine the distribution of properties (quasifractal descriptors) for the inferred 

aggregates.  
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Figure 5.3.  (a)  An image of an isolated SPION aggregate.  (b) The SPION aggregate with 

the background removed.  (c)  Depictions of the two-dimensional size descriptors for the 

aggregate based upon its bit-matrix.  (d) Depiction of a CCA generated quasifractal 

aggregate with Np = 100, kf = 1.7, Df = 1.7.  (e)  A computationally generated two-

dimensional projection of the CCA generated aggregate.  (f)  Depictions of the two-

dimensional size descriptors for the CCA aggregate based upon its bit matrix. 
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Figure 5.4. Depictions of selected aggregate projections and probable aggregate structures 

resulting from two-dimensional size descriptor analysis for extracellular aggregates (a) and 

intracellular aggregates (b).   

 

Considering all imaged and analyzed aggregates, the normalized distribution 

function of number of primary particles per aggregate (i.e. the fraction of aggregates with 

primary particles in a given Np range normalized by the log10 width of the range, as a 
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function of Np) is displayed in Figure 5.5 (a). An overwhelming fraction of intracellular 

aggregates are composed of more than 103 primary particles; meanwhile no such 

“superaggregates” are observed in the extracellular milieu.  For this reason, the average 

number of primary particles that aggregate in intracellular milieu is more than five times 

higher than in extracellular milieu (652 to 125).  This finding correlates the reduction in 

SAR for SPIONs in the presence of cells to the formation of such superaggregates (i.e. 

those with more than 103 primary particles), which likely result from the endocytosis of 

multiple smaller aggregates.  Confirmation that superaggregates are causally linked to SAR 

reduction is provided in the subsequent sections.   

 

 
Figure 5.5.  (a)  The normalized Np distribution function for aggregates based upon image 

analysis and (b) Plots of the kf and Df values inferred for all aggregates.  Data point size is 

proportional to the number of primary particles in each aggregate. 
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Though intracellular SPION aggregates are significantly larger, their other 

quasifractal descriptors do not differ significantly from extracellular aggregates.  Figure 

5.5(b) contains plots of the kf and Df coordinates for all examined aggregates, with the size 

of each data point proportional to the number of primary particles per aggregate. Nearly all 

SPION aggregates, independent of whether they were found in extracellular or intracellular 

matrices, have kf in the 1.2 – 2.0 range and Df in the 1.6-2.2 range. The number of primary 

particles per aggregate weighted fractal dimension (Df,ave) was similar in both the extra- 

and intracellular milieu, as was the average pre-exponential factor kf,ave. Average fractal 

dimension values in the 1.8-2.1 range indicate that the mechanism by which SPION 

aggregates form is simply traditional diffusion-limited cluster aggregation or reaction-

limited cluster aggregation; these two mechanisms, examined in numerous prior 

studies,[213, 249-253] lead to aggregates with fractal dimensions in the noted range, hence 

the results obtained for quasifractal descriptors are not surprising for an unstable colloidal 

system.  Nonetheless, the agreement between the quasifractal descriptors inferred here and 

those expected based on prior experimental and theoretical studies of aggregation (in 

significantly more controlled environments) gives further credence to the application of 

image analysis for quasifractal aggregate description.   

 

5.3.2 Aggregate hydrodynamic sizes and specific absorption rates 

 To test the hypothesis that the formation of superaggregates drives observed 

reductions in SAR, we performed SAR measurements on populations of well-characterized 

SPION aggregates.  For such characterization, we first note that quasifractal descriptors, in 

conjunction with the CCA algorithm to reconstruct candidate aggregate structures, can be 
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used to predict other aggregate properties which link to their structure (e.g. light absorbance 

and scattering properties[254]). Along these lines an easily observable parameter is the 

hydrodynamic radius, which is solely a function of size and morphology. In both 

extracellular and intracellular media, the SPION aggregate Df values and kf values are close 

to 1.9 and 1.7, respectively, for most aggregates. We employed the CCA algorithm to 

reconstruct aggregates with variable Np and with this Df and kf combination, and then 

employed the methods of Hubbard, Douglas, and coworkers [255-257] to infer the 

hydrodynamic radius for each aggregate (specifically using the algorithm provided in the 

Supplemental Information of Gopalakrishnan et al[258]).  Power law regression to these 

results yields the relationship: 
𝑅𝐻

𝑎𝑝
= 0.903𝑁𝑝

0.49 (R2 > 0.999); this equation can be applied 

to infer the number of primary particles per aggregate from hydrodynamic radius 

measurements. The regression equation was applied to NTA measurements of 

hydrodynamic radii distribution functions, with results shown in Figure 5.6(a) (the 

distribution functions themselves) and (b) (values of the mean size, as well as 50% and 

90% sizes based upon cumulative distribution functions). In determining distribution 

functions in terms of Np, we used ap = 6.9 nm, which was the average based upon direct 

analysis of more than 700 SPION primary particles. Additionally, the distribution functions 

are weighted by Np, i.e. they are effectively mass-weighted distribution functions.  Results 

reveal that increasing PBS concentration leads to increased aggregate growth (as 

anticipated) with the formation of superaggregates observed in 2.0X PBS as well as higher 

ionic strength suspensions 
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Figure 5.6.  (a)  Hydrodynamic radius and Np based size distribution functions for SPION 

aggregates in variable PBS concentration suspensions, as measured by NTA. (b)  Plots of 

the mean hydrodynamic radius and Np values for NTA-inferred size distribution functions, 

as well as the 50% and 90% values for cumulative distribution functions. 
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 Corresponding SAR measurements for the nine examined suspensions are 

displayed in Figure 5.7. Error bars represent the standard deviation of measurements (3-5 

replicates).  In line with prior studies,[196, 206, 207] increasing PBS concentration, which 

leads to the formation of larger and larger aggregates, correlates with a reduction in SAR.    

 
Figure 5.7.  Measured SAR for SPIONs in variable PBS concentration suspensions.  Error 

bars represent the standard deviation for 3-5 measurements. 

 

However, preferable to such qualitative correlation is estimation of a functional 

dependency between SAR and Np, the number of primary particles per aggregate.  We 

attempt to invert such a function (SAR(Np))  from the results reported in Figures 5 and 6 

by applying a modified Metropolis inversion algorithm.[259, 260]  Briefly, this approach 

involves initially guessing a relationship between SAR and Np, with the assumption that 
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for a given SPION primary particle size and morphology (quasifractal descriptors), it is 

only Np which influences SAR.  Though the resulting function SAR(Np) should be 

relatively insensitive to the initial guess, the time required to attain a suitable function is 

dependent on it.  Here, we initially use SAR(Np) = 250 W g-1 for all Np.  We describe 

SAR(Np) at 8 specific points, with cubic spline interpolation used for intermediate values 

and those beyond the examined range.  The modified Metropolis algorithm is used to 

modify the SAR(Np) function by making random changes to the function at one specific 

point only.  After this modification, SAR values for all suspensions examined (i.e. each 

PBS concentration) are calculated via the equation: 

 

SAR⌋𝑔 =
∫ SAR(𝑁𝑝)
∞
0 𝑁𝑝

𝑑𝑛

𝑑𝑁𝑝
𝑁𝑝

∫ 𝑁𝑝
𝑑𝑛

𝑑𝑁𝑝
𝑁𝑝

∞
0

                          (5.8) 

 

where 𝑁𝑝
𝑑𝑛

𝑑𝑁𝑝
 is distribution function displayed in Figure 5 (derived from NTA 

measurements).  Predictions of SAR are compared to measured results (Figure 6) via 

calculation of the value PS: 

 

𝑃𝑆 = 𝑒𝑥𝑝 (−∑ |1 − (
SAR⌋𝑔,𝑖

SAR⌋𝑚,𝑖
)
2

|
𝑁𝑆
𝑖=1 )                        (5.9a) 

 

where NS is the number of suspensions examined (9 in this study), SAR⌋𝑔,𝑖 is the guessed 

SAR value for sample i, and SAR⌋𝑚,𝑖 is the measured value for sample i.  We remark that 

the definition of PS used here differs slightly from the traditional P definition in Metropolis 
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inversion routines.[259] Although it is not rigorously derived, it leads to stricter 

requirements on the comparison between predicted and measured values.  If the new guess 

function SAR(Np) leads to an increased PS value over the previous value, then the guess 

function is accepted, and in turn modified to create a new guess function (for which PS 

values are calculated and the process repeats).  However, if the new PS value is less than 

the previous value, then the new SAR(Np) is accepted with a probability PA: 

 

𝑃𝐴 = 𝑒𝑥𝑝 (−(
𝑃𝑆,𝑜𝑙𝑑

𝑃𝑆,𝑛𝑒𝑤
)
2

)                           (5.9b) 

 

where the subscripts “new” and “old” denote the values for the newly guessed and previous 

SAR(Np).  Like equation (5.9a), equation (5.9b) differs from the traditional Metropolis 

algorithm acceptance criteria, and is stricter (i.e. it leads to low PA values).  If the new 

function is not accepted, the old function is modified by a different random perturbation, 

and the PS-PA calculation procedure is repeated.  After ~150 iterations of the modified 

Metropolis algorithm, oscillatory behavior in PS is observed, indicating that the algorithm 

does not further improve the SAR(Np) function.  The algorithm is therefore ceased and 

SAR(Np) at this point is accepted to accurately resemble the true SAR(Np) function (note 

we assume a global minimum is obtained via this approach).    

With the initial guess function, PS = 3.97×10-5, the final SAR(Np) function leads to 

PS = 0.433 (which is considered extremely close to unity). The initial and final SAR(Np) 

functions are plotted in figure 5.8 (a), while the measured SAR values and final predicted 

SAR values are shown in figure 5.8 (b). On average, measured and predicted SAR values 

are within 9% (+/- 4%) of one another for all measured suspensions. The final SAR(Np) 
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function, somewhat surprisingly, shows a modest increase as Np increases from 3 to 10, but 

then rapidly decreases at larger Np. Extreme decreases (below 100 W g-1) are obtained for 

superaggregates with Np > 1000.  While the increase in SAR at small Np may be an artifact 

of the data analysis approach applied, the decrease in SAR with superaggregate formation 

is extremely clear; thus data inversion confirms that it is in fact the formation of 

superaggregates in intracellular milieu which leads to reductions in SAR for SPIONs in 

cell-containing suspensions. 

 

 
Figure 5.8.  (a) A plot of the initial guess (red circles) and final inverted (blue squares) 

SAR (Np) functions.  (b) A comparison of the measured (blue squares) SAR values and 

predicted (green triangles) SAR values based upon the final SAR(Np) function for 

suspension in variable PBS concentration suspensions. 

 

 The inverted SAR(Np) function can be used in conjunction with the results 

presented in Figure 5.5 (image analysis based size distribution results) to develop a SAR 

distribution function for aggregates in an extra- or intracellular milieu. For each imaged 

aggregate, we use its inferred number of primary particles to determine its unique SAR.   
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Figure 5.9.  The inferred SAR distribution function, , for extracellular (red) and 

intracellular (yellow) aggregates. 

 

We then bin aggregates by SAR, weighting each aggregate by its number of primary 

particles.  Dividing each bin’s total by the bin width (dSAR) and the total number of 

primary particles for all aggregates leads to a normalized SAR distribution function,  

(with units of g W-1).  This function is plotted in Figure 5.9 for both extra- and intracellular 

milieu. Apparent in the plot is that a large portion of the intracellular SAR distribution lies 

at SAR values below 100, i.e. our results suggest that many of the intracellular aggregates 

(superaggregates) do not contribute substantially to heating. In addition, integration of the 

SAR distribution function leads to the expected SAR; for extracellular aggregates we find 

that SAR = 198.5 W g-1, while for intracellular aggregates we find that SAR = 44.4 W g-1.  

These two values bound the measured value of SAR = 120 +/- 20 reported by Etheridge et 
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al [206] for the same SPIONs within LNCaP cell suspensions. This provides further 

evidence that the data analysis approach applied in characterizing aggregates and inverting 

the function SAR(Np) are reasonably accurate. 

 

5.4 Conclusions 

 We apply a combination of transmission electron microscopy, image analysis 

techniques, nanoparticle tracking analysis, SAR measurements, and novel data 

deconvolution schemes to examine the structures of SPION aggregates in extra- and 

intracellular milieu in LNCaP cell suspensions, with the ultimate goal of understanding 

why SAR decreases for SPIONs in cell suspensions.  Overwhelmingly, our results suggest 

that cellular endocytosis of multiple extracellular aggregates (formed by diffusion- or 

reaction-limited aggregation, as the environments conducive to cell growth are not suitable 

to maintain colloidal stability) leads to the formation of superaggregates composed of more 

than 103 primary SPION particles.  These superaggregates do not appear to contribute to 

heating substantially, as their inferred SAR values are an order of magnitude below the 

inferred SAR of smaller aggregates.  Therefore, to apply SPIONs in hyperthermia based 

therapies, we suggest that it is not essential to avoid aggregation completely, but that it is 

critical to hinder superaggregate formation.  Prior studies focusing on SPION surface 

functionalization suggest that mitigation of aggregation along these lines is possible.[209, 

217, 218] 

Although our work provides consistent evidence that superaggregates have 

substantially reduced SAR, the mechanism by which this is brought about is not 

investigated, and further studies will be needed to better understand this phenomenon.  
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Recent Monte Carlo based simulations [261] of SPION heating in alternating magnetic 

fields do suggest that the crowding of SPIONs close to one another, as is the case in 

aggregates, leads to a reduction in SAR; however, to-date simulations with aggregates (and 

superaggregates) have not been reported. 

Finally, we remark that the aggregate characterization methods used in this study, 

in which images are quantitatively analyzed to infer aggregate structural descriptors and 

these structural descriptors are employed in the analysis of ensemble measurements (i.e. 

nanoparticle tracking analysis), are quite general. They may find utility in examining 

nanoparticle aggregation and distribution at the cellular level for a variety of other systems.   
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Chapter 6 

Evaluation of Nanoparticle Aggregate Morphology during 

Wet Milling 
 

Summary 

Recently developed wet mills (bead mills) have been shown capable of dispersing 

nanoparticle aggregates into primary particles in suspension, even with nanoparticles with 

primary particle radii as small as 5 nm and at high nanoparticle volume fractions (> 1%).  

However, to date what has not been examined is the change in aggregate morphology 

during milling itself, i.e. it is not clear if wet milling simply fragments aggregates into 

smaller, similarly structured entities, or if milling can simultaneously lead to aggregate 

restructuring.  Here we develop and apply methods to examine the change in morphology 

in titania and alumina nanoparticle aggregates (primary particle radii of ~8.25 nm and 7.20 

nm, respectively) during wet milling with a Kotobuki Industries UAM-015 wet mill.  

Specifically, via nanoparticle tracking analysis (NTA) with a Nanosight LM-14 and 

simultaneous viscosity measurements, we characterized the hydrodynamic radius 

distribution functions and average intrinsic viscosities of both titania and alumina 

aggregates milled at 1% volume fraction in water.  With NTA we found that for both 

particle types, milling led to a reduction in hydrodynamic radii. Conversely, the average 

intrinsic viscosity of titania decreased, while it increased for alumina with increasing 

milling time.  By assuming aggregates were quasifractal in morphology (and hence 

characterized by the number of primary per particles per aggregate, the pre-exponential 

factor, and the fractal dimension) and by using Monte Carlo based techniques to link 

quasifractal aggregate descriptors to both the hydrodynamic radius and the intrinsic 

viscosity for an aggregate, measured hydrodynamic radius distribution functions and 

average intrinsic viscosities were used to infer titania and alumina aggregate quasifractal 

descriptors as functions of milling time. Through this analysis we found that both particle 

types were initially dense aggregates (fractal dimensions > 2.9), and for titania milling did 

not alter aggregate morphology (i.e. titania aggregates remained dense).  However, alumina 
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aggregates were found to decrease in fractal dimension with increasing milling time, 

reaching a value near 1.6 after 180 minutes of milling. Such chain-like structures give rise 

to an increase in suspension viscosity despite the fact that alumina aggregate size decreased 

with milling. Overall, we show that depending on the particle material (and surfactant 

employed), milling may simultaneously lead to aggregate size reduction and restructuring, 

and may be a viable approach to the production of controlled morphology aggregates. 

 

6.1 Introduction 

 Most industrial and medical applications of inorganic (metal and metal oxide) 

nanoparticles require that the particles remain stable (i.e. do not aggregate) in a particular 

solvent [262-266].  However, nanoparticles are rarely synthesized in the solvent in which 

they will be later dispersed for application, and subsequent to synthesis (either via liquid 

or gas phase processes) nanoparticles are frequently stored as dried powders [267-270], 

wherein van der Waals interactions bind nanoparticles together as aggregates.  Upon 

introduction to a given solvent, dried powder aggregates are not necessarily immediately 

dispersed (even if surfactants which stabilize suspensions are added), as there remains a 

van der Waals energy barrier to aggregate breakup.  The creation of stable nanoparticle 

dispersions hence typically requires the use of a high energy grinding process, such as wet 

milling [271-274]. Along these lines, a number of advances have been made in the 

development of wet bead mills in the past decade. In particular, recently devised bead mills 

[275-283] can utilize micrometer sized ZrO2 beads in a slurry to disperse aggregates into 

individual primary nanoparticles with characteristic sizes as small as 10 nm. With proper 

suspension conditions, milled nanoparticles can remain dispersed over the course of days, 

even with nanoparticle mass fractions as high as 10%.  Key to the development of such 

mills has been the addition of a centrifuge downstream of the bead vessel (where bead-
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bead collisions occur) which is capable of separating out beads as small as 15 m from 

suspensions flowing through the milling system [275]. 

 The efficacy of such bead mills when proper milling conditions are applied and 

reaggregation is mitigated is not in question. However, lacking are studies which examine 

changes in the morphologies of aggregates as milling proceeds, both under conditions 

where a stable nanoparticle dispersion is produced, and under conditions where complete 

dispersion is not achieved. Aggregate characterization during the milling process is not 

only of fundamental interest, but could also further aid in advancing milling technology; 

stable dispersion production can require 6-10 hours [276] and determination of the 

appropriate surfactant type and concentration needed to maintain suspension stability is 

often performed with a trial-and-error approach.  Additionally, certain applications may 

benefit not from having stably dispersed primary particles, but rather stably dispersed 

aggregates where the extent of aggregation is controlled [284-289].  Therefore, techniques 

to evaluate aggregate morphology during milling would save substantial time in milling 

protocol design.   

 In this study, we develop and apply methods to quantitatively characterize 

aggregate morphologies during bead milling processes for aggregates in the sub-100 nm 

size range, which are difficult to structurally analyze by static light scattering [290].  

Specifically, we used a Kotobuki Industries ultra-apex mill (UAM 015) with 50 m ZrO2 

beads to disperse commercially produced titania (TiO2) and alumina (Al2O3) nanoparticles 

in water. The former was chosen as a model system as stable primary particle dispersions 

have been produced with it previously[275], while studies show the dispersion of the latter 

is much more challenging [291]. To characterize aggregate morphology during milling, 
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hydrodynamic radii distribution functions and suspension intrinsic viscosities were 

measured periodically, and by modeling the aggregates as quasifractal structures [292-295] 

(described by the number of primary particle per aggregate, the primary particle 

size/radius, the fractal dimension, and the pre-exponential factor), the fractal descriptors of 

particles were inferred from measurements. In the sections that follow, the results of titania 

and alumina dispersion experiments are described in greater detail as is the procedure we 

have developed to infer aggregate morphology in suspensions. We show that in these two 

instances aggregate morphologies were initially quite similar, but as milling proceeded, the 

titania aggregates, while decreasing in size, changed little in morphology, while alumina 

aggregates both fragmented and underwent substantial restructuring into chain-like 

aggregates.   

 

6.2 Materials and methods 

6.2.1 Materials 

Metal oxide nanopowders of anatase titania (TiO2,CAS registration # 637254) and 

gamma-phase alumina (Al2O3, CAS registration # 544833) were purchased from Sigma-

Aldrich (Saint Louis, USA).  Titania and alumina nanoparticles were added to ultrapure 

water (SpectraPure, Tempe, USA) at a volume fraction (Vf) of 1% and a total suspension 

volume of 500 ml.  Sodium hexametaphosphate (Sigma-Aldrich (CAS # 71600)), an ionic 

surfactant often used to stabilize metal oxide nanoparticles in water, was added to each 

suspension at a concentration of 50% the mass concentration of nanoparticles. Specific 

information on the compositions of suspensions is provided in Table 6.1.    
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6.2.2 Bead milling 

A schematic of the UAM 015 bead mill is provided in Figure 6.1, and is also 

presented in detail in earlier studies [275, 276, 296]. Briefly, the bead mill is composed of 

a 500 mL suspension reservoir, where samples are initially loaded, a peristaltic pump to 

facilitate the recirculation of suspensions through the mill, a vessel wherein the beads 

remain, and a centrifuge to remove beads at the vessel outlet. As milling proceeds, 

suspensions are recirculated from the reservoir to the vessel and centrifuge and back to the 

reservoir.  For the presented experimental results, the vessel volume of 170 mL was loaded 

with highly monodisperse ZrO2 beads with a diameter of 50 m (obtained directly from 

Kotobuki Industries) at a volume fraction of 60%.   The bead mill functions by harshly 

agitating beads within the vessel, such that during bead-aggregate-bead three-body 

collisions, aggregates break at nanoparticle-nanoparticle contact points.  As described 

subsequently for nanoparticle aggregates, beads were periodically imaged via transmission 

electron microscropy; visible wear of beads subsequent to experiments was not evident in 

such images. The rotation speed settings of the vessel and the centrifuge region as well as 

the peristaltic pump must be controlled to ensure that (1) bead impacts do not fragment 

primary particles and (2) beads are separated from the flowing suspension in the centrifuge 

region.  Such speeds are determined empirically; for the presented results the vessel and 

centrifuge speed setting was level “4” (out of 5, corresponding to rotation speed of 10 m/s 

for the centrifuge outer cylinder) and the peristaltic pump speed setting was 1.5 (out of 10).  

To maintain the vessel at a constant temperature, a sealed cooling water jacket was 

employed.  During all experiments the water temperature was set to 7.5 oC via use of a 

recirculating chiller (Kodiak®  Recirculating Chiller, Lytron, Woburn, USA).  For both test 
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suspensions milling was carried over 180 minute periods, and 5-15 mL samples were 

extracted at time periods of 0, 5, 15, 30, 60, 90, 120, & 180 minutes for either 

hydrodynamic radius distribution function or intrinsic viscosity measurements.  Milling 

experiments were performed twice for titania suspensions and three times for alumina 

suspensions to ensure that results were repeatable.  For all suspensions, after milling for 15 

minutes or more, sedimentation of particles from suspension was not observed for at least 

two week subsequent to experiments. 

 

 

 
Figure 6.1.  Schematic of the UAM-015 bead mill. 
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Table 6.1. A summary of the properties of the nanoparticles examined, as well as the 

nanoparticle masses, surfactant masses, and solvent volumes used in preparing 

suspensions. 

Size 

Aluminum oxide (Al2O3) Nanopowder, < 50nm particle size (TEM) 

Titanium oxide (TiO2) Nanopowder, 25nm, 99.7% metals basis 

Density (g/cm3) 

Al2O3 3.95 Water 1 

TiO2 4.23 Surfactant 2.48 

Material compositions of nanosuspension 

𝑉𝑓 1% Al2O3 nanosuspension 𝑉𝑓 1% TiO2 nanosuspension 

𝑚𝑝 19.75g 𝑚𝑝 21.15g 

𝑉𝑤 491.02ml 𝑉𝑤 490.74ml 

𝑚𝑠 9.88g 𝑚𝑠 10.58g 

 

 

6.2.3 NanosightTM
 and hydrodynamic size distribution 

Aggregate hydrodynamic radii (RH) distribution functions (i.e. the number 

concentration of aggregates per unit hydrodynamic radius) were measured using 

‘Nanoparticle Tracking Analysis (NTA)’[297] with a NanosightTM LM-14 (Malvern 

Instruments).  In NTA, the Brownian motion of aggregates is monitored, yielding the scalar 

diffusion coefficient (D) for each aggregate. Via application of the Stokes-Einstein 

equation, 𝐷 =
𝑘𝑇

6𝜋𝜇𝑅𝐻
 (k: Boltzmann constant, T: temperature, solvent dynamic 

viscosity), the hydrodynamic radius of each aggregate can be inferred, and entities with 

hydrodynamic radii as small as 5 nm may be directly observed with the LM-14.  From 

measurement results, a fitting procedure can be used to reconstruct a probable 

hydrodynamic radius distribution function, or alternatively the hydrodynamic radii of all 

detected particles/aggregates may be directly output.  For LM-14 measurements samples 

taken from the bead mill at specific times were diluted with ultrapure water by a factor of 

102-103.  The LM-14 temperature was set to 23oC.  Prior to sample measurements, for 
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calibration NTA was performed on citrate stabilized near-monodisperse 80 nm gold 

nanoparticles (Nanocomposix, USA). NTA was performed 4 or more times for each 

sample, and rather than use a fitting procedure to determine the hydrodynamic radius 

distribution function, we elected to output directly the hydrodynamic radii of all examined 

particles at milling times of 15, 60, 120 and 180 minutes for both titania and alumina 

suspensions. 

 

6.2.4 Viscosity measurement and intrinsic viscosity calculation 

A glass ubbelohde viscometer (CANNON Instrument Company, PA, USA) was 

used to measure the kinematic viscosities of both titania and alumina suspensions after 

selected milling times. The viscometer employed has four measurement bulbs, enabling 

viscosity measurement at four different shear rates, and further enabling evaluation of 

Newtonian behavior via comparison of kinematic viscosities measured with different 

bulbs. We elected to use the first and second bulbs, which had viscosity constants of 

0.003412mm2/s2 and 0.0031496mm2/s2, respectively, and corresponding shear rate 

constants 415687 and 219720, respectively, and in which measurement times varied 

between 300-800 seconds (the kinematic viscosity is calculated as the product of the 

viscosity constant and the residence time in the bulb, while the wall shear rate is the ratio 

of the shear rate constant to the residence time in the bulb). The temperature during all 

measurements was 20 ~ 23oC (room temperature). For calibration, the kinematic viscosity 

of ultrapure water was measured, as was the kinematic viscosity of the control solution 

(ultrapure water with the surfactant).  Viscosity measurements were made for suspensions 

milled for 15, 60, 120 and 180 minutes, immediately after collecting samples from the 
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suspension reservoir. At least three viscosity measurements were performed for each 

sample to ensure repeatability. From the known density and volume fraction for each 

suspension, the intrinsic viscosity [] was calculated via two approaches.  First, neglecting 

high concentration effects, we used the equation: 

 

𝜇

𝜇𝑜
= 1 + []𝑉𝑓                                                                                                             (6.1) 

 

where 𝜇 is the dynamic viscosity of the suspension and 𝜇𝑜 is the dynamic viscosity of the 

solvent and solute together, without nanoparticles.  The intrinsic viscosity is known be 

highly dependent on particle shape [298, 299]; for spheres, [] = 2.5, while [] is higher 

than 2.5 for other nonspherical objects, particularly those of high aspect ratio. These can 

lead to higher volume effects, hence, we also calculated [] using the equation [300, 301]: 

 

𝜇

𝜇𝑜
= 1 + []𝑉𝑓 + 𝑘𝐻[]

2𝑉𝑓
2 + ∅(𝑉𝑓

3)                             (6.2) 

 

where kH is the Huggins coefficient, for which we assume a value of 1.0, that which has 

been found for hard spheres [300]. Inferred []  values and the hydrodynamic radii 

distribution functions for aggregates were used in conjunction with one another to infer 

aggregate morphologies, using the procedure described in the ‘Results & Discussion’ 

section. We remark that in using equation (6.1), we neglect any electroviscous influences 

[302, 303], which are anticipated to be small. 
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6.2.5 Transmission electron microscopy 

In conjunction with NTA and viscosity measurements, transmission electron 

microscopy (TEM) was used to characterize samples, both to (1) qualitatively examine the 

morphologies of aggregates at various milling times and (2) determine the primary particle 

size (radius) distribution functions. For samples milled for 15, 60, and 120 minutes, 

respectively, we used an FEI Tecnai T12 transmission electron microscope (University of 

Minnesota Characterization Facility Lab) to image aggregates. TEM samples were 

prepared by diluting milled suspensions ~1500 fold and drying the diluted suspension on a 

carbon grid carbon grid (200 mesh, Ted Pella INC, CA, USA). For primary particle radius 

size distribution evaluation, approximately 500 primary particles for both titania and 

alumina were examined at various milling times.   Energy-dispersive X-ray spectroscopy 

(EDS) was also employed during TEM analysis to confirm that the observed particles were 

either completely titania or alumina, and that zirconia beads did not fragment or 

contaminate experiments.  

 

6.3 Results and discussion 

6.3.1 Hydrodynamic radius distribution functions and intrinsic 

viscosities 

 
Prior to discussing the procedure we developed to infer the fractal descriptors for 

milled aggregates, we report directly the measured hydrodynamic radius distribution 

functions as well as the intrinsic viscosities of both titania and alumina samples. In all 

experiments, milling for 15 minutes or more produced stable suspensions. Particles were 

not observed to settle out of suspension for several days subsequent to milling and 
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measured hydrodynamic radii distribution functions remained unchanged during this time 

period. Figure 6.2 displays normalized hydrodynamic radius size distribution functions for 

both suspension types after 0, 15, 60, and 120 minutes of milling (for specific milling cases, 

with highly repeatable results obtained from trial to trial). These plots were constructed by 

binning the inferred hydrodynamic radii of in bin widths of 5 nm, then dividing the number 

of aggregates per bin by both the total number of aggregates and the bin width. As is 

expected in wet milling, with increased milling time the hydrodynamic distribution 

functions shifted to smaller sizes, confirmed in Figure 6.3, wherein the 50% and 90% 

hydrodynamic radii of the cumulative distributions functions for the hydrodynamic radius 

are plotted as functions of milling time. In prior studies [275-277], such shifts alone have 

been used to characterize the change in aggregate size and shape as milling proceeds, and 

alone they suggest that milling simply leads to progressively smaller aggregates. However, 

inference of intrinsic viscosities for milled aggregates alters this picture.  

Figure 6.4 displays the intrinsic viscosities inferred from both equations (6.1) and 

(6.1), respectively, at various milling times, for all measured samples.  For TiO2, equations 

(6.1) and (6.2) inferred intrinsic viscosities are similar (difference of 3-5%) to one another, 

and as milling proceeds, they decrease from ~4.8 after 15 minutes of milling to ~3.5 after 

120-180 minutes of milling.  This is consistent with the results of NTA, milling appears to 

fragment aggregates into progressively smaller entities, approaching (spherical) primary 

particles. Conversely, for alumina, after 15 minutes of milling the inferred intrinsic 

viscosity is 11.7 and 10.5 from equations (6.1) and (6.2), respectively, and increases 

drastically as milling proceeds; after 180 minutes of milling the average equation (6.1) 
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intrinsic viscosity is 108 and the average equation (6.2) intrinsic viscosity is 65 (with clear 

trial-to-trial variation evident, though in all cases the intrinsic viscosity increases).   

 

Figure 6.2. Normalized hydrodynamic radius distribution functions for milled titania and 

alumina aggregates, as measured by nanoparticle tracking analysis.  Bin widths of 10 nm 

were used for construction of all distribution functions. 
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Figure 6.3. The 50% and 90% hydrodynamic radius values from the cumulative 

distribution functions of milled titania and alumina aggregates, as a function of milling 

time (min: minutes).   

 

Figure 6.4.  The equation 1a (open symbols) and equation 1b (closed symbols) inferred 

average intrinsic viscosities for titania and alumina suspensions as a function of milling 

time.  Different lines denote different trials.   
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6.3.2 Transmission electron microscopy analysis 

The finding that alumina aggregate hydrodynamic radii distribution functions are 

shifted to smaller sizes is inconsistent with the drastic increase in intrinsic viscosity 

observed with increasing milling time. Three possible reasons for this observation are: (1).  

Alumina primary particles might be highly non-spherical and more aspherical than 

aggregates themselves; (2) bead milling may have led to the fragmentation of zirconia 

beads, hence bead fragments were incorporated in alumina suspensions at appreciable 

concentrations (increasing Vf); (3) milling might lead to a reduction in the number of 

primary particles per aggregate, but simultaneously might lead to alumina aggregate 

restructuring into more ramified structures of higher intrinsic viscosity. We will argue here 

that (3) is the origin of the intrinsic viscosity increase for alumina suspensions. To rule out 

(1) and (2), TEM images of three suspensions (milled for 15, 60 and 120 minutes) of both 

titania and alumina aggregates were analyzed. Two TEM images for each suspension are 

provided in Figures 6.5 and 6.6. For both titania and alumina, while the primary particles 

(which have sub-15 nm radii) are slightly non-spherical, they are by no means as aspherical 

as the observed aggregates, dismissing (1).  Through EDS, we were only able to observe 

carbon, copper, and either titanium or aluminum and oxygen in samples, indicating that 

zirconia bead fragments were not introduced into samples. Figure 6.7 shows examples of 

EDS analysis of alumina. Regions of highly concentrated alumina were intentionally 

investigated to confirm the absence of zirconia bead fragments in the nanosuspension. 

Further, as noted prior, no visible wear was observed on the zirconia beads themselves. 

These observations lead us to dismiss (2) as well. While we caution that the drying of 

samples prior to TEM analysis may have altered aggregate architectures from what was 
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present in suspensions, progressively smaller titania aggregates are evident in Figures 6.5 

images with increasing milling time, and qualitatively, the titania aggregates observed are 

dense (i.e. of low aspect ratio). Conversely, Figures 6.6 images of alumina aggregates after 

longer milling times display much more branched/linear structures (though smaller in size 

than the unmilled aggregates) and in several circumstances we observed large, 

interconnected networks of alumina particles (as seen in the upper 120 minute alumina 

image). Therefore TEM images provide support for (3), i.e. they suggest that milling 

differentially fragments and restructures titania and alumina aggregates. As the formation 

of large alumina nanoparticle networks was undoubtedly facilitated by suspension drying, 

however, we elect not to perform further analysis of aggregate images, though we note that 

such analysis is possible when unperturbed aggregate images are obtainable [65, 304-306].  

 

Figure 6.5. TEM images of titania (TiO2) nanoparticles after selected milling times.   
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Figure 6.6 TEM images of alumina (Al2O3) nanoparticles after selected milling times.   

 

  

  

Figure 6.7. EDS analysis of Al2O3 aggregates in a 60 min milling sample (individual 

aggregate-top, highly concentrated aggregates-bottom)   
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6.3.3 Quasifractal aggregate analysis     

With TEM images likely influenced by drying and with the characteristic sizes of 

aggregates analyzed often in the sub-100 nm range (well below the wavelengths of visible 

light), we utilize an alternative to infer the structures of aggregates in suspension, which 

we have also recently employed in the examination of iron oxide nanoparticle aggregates 

[306]. For structural characterization, we approximate all aggregates as quasifractal 

structures, approximately obeying the scaling law [307, 308]: 

 

𝑁𝑝 = 𝑘𝑓(
𝑅𝑔

𝑎𝑝
)𝐷𝑓                                                                                                           (6.3)      

                        

where 𝑁𝑝  is the number of primary particles in an aggregate, 𝑘𝑓  is the pre-exponential 

factor, typically in the range from 1.0 to 2.0, 𝑎𝑝 is the primary particle radius, 𝑅𝑔 is the 

aggregate’s radius of gyration, and 𝐷𝑓 is the fractal dimension which can theoretically vary 

from 1.0 to 3.0.  

For each suspension, we infer kf and Df at different milling times; we assume these 

two parameters apply approximately to all aggregates, while there is a distribution in Np. 

This assumption is based upon prior examinations of aggregates formed via collisions 

[309]. Inference of kf and Df is carried out as follows: We directly determine the average 

primary particle radius for alumina and titania particles via direct measurements of primary 

particles for each material. Milling was not found to change the primary particle size for 

either material, and mean values of ap = 8.25 nm and ap = 7.20 nm are obtained for titania 

and alumina particles, respectively. Complete primary particle radius histograms are 

provided Figure 6.8. To compare measured hydrodynamic radii distribution function and 
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intrinsic viscosities to the expected values for quasifractal aggregates we computationally 

generate 10-20 quasifractal aggregates of prescribed kf, Df, and Np using the cluster-cluster 

algorithm described by Filippov et al [63] for 1.5 ≤ Df ≤ 2.7, kf = 1.2, 1.3, 1.5, and 1.7, and 

4 ≤ Np ≤ 1000.  Similarly, for Df = 1.3 & 2.9, with the same kf and Np ranges, we generate 

10 quasifractal aggregates using the sequential algorithm (also described by Filippov et al).  

 

 

 
Figure 6.8. Sample TEM images of titania and alumina aggregates, as well as histograms 

of the primary particle radius distributions. 
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Sample structures with Np = 20, 100, & 200, and selected kf and Df values are 

depicted in Figure 6.9. For each simulated aggregate we compute the ratio of the 

hydrodynamic radius to the primary particle radius (RH/ap), by invoking the Hubbard-

Douglas approximation [310] (i.e. equating the orientationally averaged hydrodynamic 

radius with a diffusion limited collision radius) and specifically using the Monte-Carlo 

algorithm provided in the supplemental information of Gopalakrishnan et al [258] to infer 

the average value of RH/ap (for all aggregates with the same quasifractal descriptors) as a 

function of kf, Df, and Np. For kf = 2.0 and selected Df values the calculated RH/ap versus Np 

relationships are plotted if Figure 6.10 (a). Such curves are observed to be near log-linear; 

however, as noted elsewhere [311, 312] for most kf and Df combinations Np does not scale 

with (
𝑅𝐻

𝑎𝑝
)𝐷𝑓 , i.e. the scaling in equation (2) only applies for the radius of gyration. 

Similarly, we use Monte Carlo algorithms based on those described by Mansfield and 

coworkers [298] and which we have applied previously [288] to determine the intrinsic 

viscosity for each simulated aggregate, and hence express the intrinsic viscosity as a 

function of kf, Df, and Np (denoted as [𝜂]𝑘𝑓,𝐷𝑓,𝑁𝑝 to distinguish calculated values from those 

determined through measurements).  Again for kf = 2.0 and selected Df values, these 

relationships are plotted in Figure 6.10 (b). The intrinsic viscosity is observed to be 

extremely dependent on aggregate morphology, increasing drastically with both increasing 

number of primary particles and decreasing fractal dimension. 
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Figure 6.9.  Depictions of computational generated quasifractal aggregates composed of 

20, 100, & 200 monodisperse primary particles, with prescribed pre-exponential factors (kf) 

and fractal dimensions (Df).  Such structures are used to develop functional relationships 

linking quasifractal descriptors to the hydrodynamic radius and intrinsic viscosity. 
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Figure 6.10.  The ratio of aggregate hydrodynamic radii to primary particle radii (RH/ap) 

(a.) and intrinsic viscosities (b.) as functions of the number of primary particles per 

aggregate, for selected fractal dimensions and kf = 2.0. Functional relationships were 

established by computationally generating aggregates with prescribed quasifractal 

descriptors and directly calculating hydrodynamic radii and intrinsic viscosities for each 

generated structure. 



 

138 

 

For each sample, from experiments we obtained an intrinsic viscosity, as well as a 

list of observed values for RH/ap, where ap is the mean primary particle radius. By assuming 

a specific kf and Df for a given suspension and milling time, using relationships such as 

those shown in Figure 6.10 (a), RH/ap values are converted to Np values, and additionally a 

value for [𝜂]𝑘𝑓,𝐷𝑓,𝑁𝑝is obtained using relationships such as those in Figure 6.10 (b). For the 

assumed Df and kf, an average intrinsic viscosity for the sample (denoted [𝜂]𝑘𝑓,𝐷𝑓) is then 

calculated using the equation: 

 

[𝜂]𝑘𝑓,𝐷𝑓 =
∑ 𝑁𝑝,𝑗[𝜂𝑗]𝑘𝑓,𝐷𝑓,𝑁𝑝

𝑗=𝑚
𝑗=1

∑ 𝑁𝑝,𝑗
𝑗=𝑚
𝑗=1

                                         (6.4) 

 

where the subscript j denotes the properties for the jth aggregate observed in NTA analysis, 

wherein m total aggregates were observed. Equation (6.4) is used with 85 distinct kf, Df 

pairs. A relative probability (P(𝐷𝑓 , 𝑘𝑓)) that a particular kf, Df pair appropriately describes 

aggregates in a suspension is calculated as: 

 

P(𝐷𝑓 , 𝑘𝑓) = exp⁡(− [[𝜂]𝑘𝑓,𝐷𝑓 − [𝜂]]
2

)                                                   (6.5)  

 

Contour plots of P-values at various milling times are shown in Figures 6.11 and 12 for 

titania and alumina, respectively. In all plots, [𝜂] values were calculated from equation 

(6.2), i.e. including a Huggins coefficient of 1.0. P-values near unity indicate that the kf, Df 

pair in question fits well the measured aggregates. Early in the milling process (after 15 

minutes), measurements of alumina and titania aggregates suggest that aggregates are 
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extremely dense; the highest P-values are obtained for kf of 2.0 and Df of 2.9. That the P-

values are extremely low for all cases for alumina at 15 minutes suggestions that the 

quasifractal model may not be an appropriate way to describe aggregates initially.   

 

 

Figure 6.11. Contour plots displaying P-values (equation 4) as functions of kf and Df for 

titania aggregates in milled suspensions. 
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Figure 6.12. Contour plots displaying P-values (equation 4) as functions of kf and Df for 

alumina aggregates in milled suspensions. 

 

As milling proceeds, for the titania aggregates, high pre-exponential factor, high 

fractal dimensions are consistently found to agree best with experimental measurements. 

This suggests that in the case of titania, milling serves to break aggregates, and the 

fragmentation products also adopt compact structures. Conversely, for the alumina 

aggregates, contour plots show clearly that as milling proceeds, progressively smaller 
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fractal dimensions lead to the best agreement with experimental measurements (note, 

although kf varies in a non-monotonic manner, we find that kf does not influence aggregate 

hydrodynamic radii and intrinsic viscosities to the extent that Df does).  After 180 minutes, 

alumina aggregates appear to have fractal dimensions near 1.6, which are highly chain-like 

structures, which, with less than 100 primary particles, can have an intrinsic viscosity an 

order of magnitude higher than spherical particles. 

In total, quasifractal analysis appears to explain well how the alumina suspension 

viscosity can increase with milling time while hydrodynamic radius distribution functions 

shift to smaller sizes. Using the most probable kf, Df pairs in Figures 6.11 and 12, we now 

transform hydrodynamic radius distribution functions in Figure 6.2 to express measured 

distributions in terms of the number of primary particles per aggregate (i.e. using the 

established link between RH/ap and Np for a prescribed kf and Df), with results plotted in 

Figure 6.13. Clearly evident for both materials is that milling does lead to a reduction in 

the numbers of primary particles in aggregates; simply in the case of titania little aggregate 

restructuring occurs, while in the case of alumina, restructuring (or finite reaggregation 

leading to different morphologies than the morphologies of the original aggregates) is 

significant. To our knowledge, this finding has not been reported previously, though drastic 

increases in alumina suspension viscosities brought about by the formation of chain-like 

aggregates have been observed previously [313].    
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Figure 6.13. The results of NTA analysis recast in terms of the number of primary particles 

per aggregate. 
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6.4 Conclusions 

 We use a combination of nanoparticle tracking analysis, viscosity measurements, 

and quasifractal modeling to analyze the change in morphology of aggregates undergoing 

wet milling.  Based on this combination of experiments and computations, we conclude 

the following: 

1.  Wet milling is found to breakdown nanoparticle aggregates into progressively 

smaller structures for both titania and alumina.  However, analysis suggests that 

milling simultaneously leads to alumina aggregate restructuring and 

fragmentation, while does not lead to any restructuring for titania.  Such 

conclusions only apply to the test case examined here (using the noted 

surfactant and nanoparticle volume fractions); the analysis performed is 

intended to demonstrate how aggregate structural analysis can be performed, 

but does not allow us to describe universally how aggregate morphology 

evolves during wet milling.  Further, this work does not elucidate whether the 

change in alumina aggregate morphology is caused directly in the mill vessel 

(directly by bead grinding), or is brought about by reaggregation post-milling. 

2. While normally only size distribution analysis is performed during wet milling 

to monitor the process, viscosity measurements are found to yield orthogonal 

information, as an increase in intrinsic viscosity suggests there is also a change 

in aggregate structure brought about by milling.  However, a modest decrease 

in aggregate intrinsic viscosity does not necessarily imply aggregate structure 

is changing beyond a reduction in the number of primary particles per 

aggregate.   
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3. The quasifractal analysis procedure developed, in which NTA and viscosity 

measurements are used to infer the most probable kf, Df pair for a suspension, 

is not limited to the analysis of wet-milled suspensions, and may prove useful 

in other instances when aggregates are difficult to analyze by static light 

scattering or other techniques.  The method can be applied when suspensions 

have Newtonian behavior, have sufficiently low volume fraction, and remain 

stable under viscosity measurements (i.e. do not aggregate orthokinetically).   
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Chapter 7 Conclusion  

 The five studies described herein emphasize the importance of the physical 

structures of nanomaterials and nanomaterial aggregates on their behavior in biological and 

environmental systems, and serve as demonstrations of new techniques to quantitatively 

analyze nanomaterial morphology.  Specifically, liquid nebulization coupled with ion 

mobility spectrometry (LN-IMS), introduced in Chapter 2 enables accurate size 

measurements of sub 30 nm polydisperse particles, which are difficult to perform by 

conventional techniques.  The universal calibration curve developed also indicates that LN-

IMS can be used to measure colloidal particle concentrations directly, without the need for 

particle-specific calibration techniques. The capabilities of LN-IMS additionally enable 

size shifts of nanoparticles upon interacting with small molecule or macromolecule, as 

demonstrated in Chapters 3 and 4. Ideally, LN-IMS will find utility as a general technique 

to both characterize nanomaterial size distribution functions or a variety of nanomaterial 

chemistries, and additionally to quantify the extent of ligand binding to nanomaterials. 

 As the extension of Chapter 4, the extent of aggregation of SPIONs via endocytosis 

of human prostate cancer cells was quantified and its influence on SAR was investigated 

in Chapter 5. With the fractal aggregate model based image processing technique, three 

dimensional structures of SPION aggregates in intra- and extra- cellular matrices were 

inferred from two dimensional microscopy images.  A significant fraction of intracellular 

SPION aggregates are composed of more than 103 primary particles, and the Metropolis 

inversion algorithm combined with SAR and NTA measurements revealed that SARs of 

SPIONs in these super aggregates are below 100 W/gFe. Superaggregate formation in 

intracellular structures should hence be avoided in order for the better SPION hyperthermia 
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applications in clinical therapies. As suggested in Chapter 4, SPION surface 

functionalization is one of ways to mitigate super-aggregation of SPIONs in cellular 

environments.  

 In addition to the image processing technique, the ensemble method introduced in 

Chapter 6 enables inference of the fractal descriptors of an entire aggregate population 

from their transport properties, namely the intrinsic viscosities and hydrodynamic radius 

distribution function. With the developed data inversion process, morphological changes 

of titania and alumina aggregates during the wet mil process were quantified. 

Morphological characterization helps to explain why an alumina nanosuspension can 

become more viscous while a titania nanosuspension exhibited reduced viscosity over the 

course of milling, even if the hydrodynamic sizes of both materials decreased with milling 

time.    

 The studies completed and described here fall broadly within the subdispline of 

nanomaterial analysis, which is an interdisciplinary topic at the interfaces of chemistry, 

engineering, and physics.  Largely, the advances made deal with quantitation of 

nanomaterial polydispersity and morphological heterogeneity.  Quite often, in controlled 

studies of the behavior of nanomaterials, researchers seek to avoid both polydispersity and 

heterogeneity, largely because those have been difficult to quantify.  Therefore, it is my 

hope that the techniques applied in this dissertation will find application as characterization 

techniques in studies focusing on nanomaterial performance (i.e. nanoparticle catalytic 

activity, or plasmonic properties).   Furthermore, the methods and techniques proposed and 

developed can be further modified for more detailed analyses. The LN-IMS system can in 

principle be coupled with inductively coupled plasma mass spectrometry (ICP-MS) or with 



 

147 

 

aerosol particle mass (APM) analysis; such coupled systems would provide size resolved 

atomic composition or two dimensional size and mass distributions, respectively.  

Moreover, in the combination with the Langmuir-like adsorption model, LN-IMS can be 

employed to quantify binding of polymers, natural organic matter or other ligand molecules 

on nanomaterials in complex environmental. The presented image processing technique 

can be used to infer aggregate structures of any nanoparticles in a variety of other systems, 

including natural water bodies or in wastewater treatment systems.  In total, I believe that 

the presented techniques make possible new ways to quantify nanomaterial size and shape 

distributions, which should help in developing structure-function relationships in nanoscale 

systems. 
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