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Abstract

The exchange graph of a quiver is the graph of mutation-equivalent quivers whose
edges correspond to mutations. The exchange graph admits a natural acyclic orienta-
tion called the oriented exchange graph. Oriented exchange graphs arise in many areas
of mathematics including representation theory, algebraic combinatorics, and noncom-
mutative algebraic geometry. In representation theory, an oriented exchange graph is
isomorphic to a poset of certain torsion classes of a finite dimensional algebra.

Of particular interest to mathematicians and string theorists are the finite length
maximal directed paths in oriented exchange graphs, which are known as maximal green
sequences. Maximal green sequences were introduced to obtain quantum dilogarithm
identities and combinatorial formulas for refined Donaldson-Thomas invariants. They
were also used in supersymmetric gauge theory to compute the complete spectrum of
BPS states. For quivers mutation-equivalent to an orientation of a type A, Dynkin
diagram, we show that the oriented exchange graphs can realized as quotients of other
posets of representation theoretic objects. For the same class of quivers we also show

how to explicitly construct some of their maximal green sequences.
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Chapter 1

Introduction

Cluster algebras were discovered by Fomin and Zelevinsky [FZ02] in 2002 in order to
develop a combinatorial framework with which to study total positivity and canonical
bases of algebraic groups. Since their introduction, cluster algebras have been the object
of intense mathematical research. Their study has brought together mathematicians
and physicists from across world. In mathematics, cluster algebras appear in areas
such as the representation theory of quivers |[CCS06b, BMR™*06a], noncommutative
algebraic geometry [Bri07, Nagl3], Poisson geometry [GSV03], and Teichmiiller theory
[FG06, [F'T12]. In physics, cluster algebras appear in areas such as discrete integrable
systems [DFKT1] and string theory [ACCT13].

Cluster algebras are a class of combinatorially defined commutative rings. A cluster
algebra comes equipped with a family a overlapping subsets of its generators called
clusters and a family of rules for moving between these clusters called mutations.
Any cluster algebra A defines a graph called the exchange graph of A whose vertices
are the clusters of A and whose edges indicate which two clusters are reachable from
each other by a single mutation. The exchange graph thus describes the combinatorics
of mutation in cluster algebras.

Given a cluster algebra A and a choice of initial cluster x, the exchange graph of
A admits an acyclic orientation with x as its unique source. This acyclic orientation is
known as the oriented exchange graph of A [BDP14] with respect to x, and is the

focus of this thesis.
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By viewing cluster algebras through the lens of representation theory of finite dimen-
sional algebras, these oriented exchange graphs are very natural objects. The oriented
exchange graph turns out to be the Hasse diagram of many important posets in represen-
tation theory [BY13] related to Jacobian algebras A [DWZ0§| (an algebra naturally
associated with the initial cluster x). These include posets of support 7-tilting mod-
ules [ATR14, [AS81] and torsion pairs [HRS96] in the module category of A and posets
of bounded t¢-structures [BBD83, [HRS96| in the bounded derived category of A. Ex-
amples of oriented exchange graphs also include flip graphs of triangulations of Riemann
surfaces with oriented edges [FT12].

An especially important part of the data of an oriented exchange graph is its set of
maximal directed paths. These maximal directed paths are known as maximal green
sequences, which were introduced by Keller [Kell12] to study the refined Donaldson-
Thomas invariants of Kontsevich and Soibelman [KS08]. Maximal green sequences
were also discovered independently in the context supersymmetric gauge theory where
they were used to compute the complete spectrum of BPS states [ACCT13].

In this thesis, we focus on understanding both the global and local structure of
oriented exchange graphs. To study these objects globally, we use techniques from rep-
resentation theory of finite dimensional algebras and combinatorics. More specifically,
we regard oriented exchange graphs as posets of certain torsion classes in the mod-
ule category of A. When A has finitely many indecomposable modules, the oriented
exchange graph is a finite lattice [[RTT13]. In this situation, we make use of lattice
theory to understand the global lattice theoretic structure of oriented exchange graphs
(see Chapter |3)).

We also investigate the local structure of oriented exchange graphs. More specifically,
in Chapter 4] we show how one can construct maximal green sequences for particular
families of quivers. In particular, we show how given any initial seed in a type A
cluster algebra, one can explicitly construct some of the maximal green sequences in the
corresponding oriented exchange graph.

All of our work in this thesis, begins with the input of an initial seed x of a cluster
algebra. For the family of cluster algebras that we consider here, this initial data is
equivalent to a choice of quiver (i.e. directed graph). The quivers that we work with

in Chapters [3| and 4| are type A quivers (i.e. those obtained by a finite sequence of



mutations from a quiver whose underlying graph is a type A Dynkin diagram).

In Chapter [5| we restrict our study to only the quivers whose underlying graph is a
type A Dynkin diagram, also known as type A Dynkin quivers. By restricting to such
quivers, we are able to study the connection between cluster algebras and complete
exceptional sequences of quiver representations, which are only defined for acyclic
quivers. Exceptional sequences were originally used by algebraic geometers [GR87,
BKR9L [Rud90] to study exceptional vector bundles on projective spaces. When one
is given the initial data of an acyclic quiver there is a bijection between vertices of
the corresponding oriented exchange graph (i.e. seeds) and complete exceptional
sequences of quiver representations as shown by Speyer and Thomas in [ST13]. In
Chapter bl we interpret this correspondence combinatorially. Along the way, we obtain
a diagrammatic classification of all exceptional sequences associated with Dynkin quivers

of type A.

1.1 Summary of Results

1.1.1 Results in Chapter

The results presented in this chapter are joint work with T. McConville. Our first main
results describe the lattice structure of all oriented exchange graphs with finitely many
vertices. The class of such oriented exchange graphs are exactly those defined by Dynkin

quivers of type A, D, or E.

e We establish that lattices of torsion classes of representation finite k-algebras are
semidistributive lattices (Theorem and Lemma 3.4.10)), which relies on a
description of the join of two torsion classes (Lemma [3.4.9)).

e By regarding oriented exchange graphs defined by type A quivers as posets of

torsion classes, we obtain that these have the structure of a semidistributive lattice

(Corollary |3.4.7)).

In order to further describe the lattice structure of oriented exchange graphs, we

define an auxiliary poset of biclosed sets of paths in a graph, denoted Bic(AP), from
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which we will obtain the oriented exchange graph by a lattice quotient map. Identi-

fying the oriented exchange graph as a lattice quotient implies that it will inherit nice

lattice properties from Bic(AP).

The poset Bic(AP) has the structure of a semidistributive, congruence-uniform,
and polygonal lattice (Theorem [3.5.4]).

The lattice Bic(AP) has the property that every interval containing exactly two
maximal chains is either a square or a hexagon, as in Figure (Corollary 3.5.5)).

When considering a quiver () that is mutation-equivalent to a type A Dynkin
quiver or one that is an oriented cycle, the corresponding lattice Bic(Q) :=
Bic(AP) is canonically isomorphic to a lattice of biclosed subcategories of the
module category of A, denoted BZC(Q) (Proposition [3.6.5]).

There is a lattice quotient map 7 : BZC(Q)) — tors(A) where the target of this
map is the lattice of torsion classes of A, and this map identifies the oriented
exchange graph of @ as a lattice quotient of BZC(Q) (Theorem . Using this
map, the oriented exchange graph of () inherits the semidistributive, congruence-

uniform, and polygonal properties from BZC(Q).

Using this lattice quotient map, we obtain that every interval of the oriented
exchange graph of () containing exactly two maximal chains is either a square or
a pentagon. That the oriented exchange graph of @) is polygonal implies that its
maximal chains (i.e. the maximal green sequences of )) are connected by a finite

sequence local moves using only squares and pentagons (Corollary |3.6.10)).

The oriented exchange graph of () has the property that if () has a maximal green
sequence of length ¢ and one of length j, then for any k € N where ¢ < k < j there
exists a maximal green sequence of ) of length k (Corollary [3.6.11)).

Lastly, we obtain some additional lattice theoretic information about torsion classes

corresponding to vertices of oriented exchange graphs defined by a quiver @ that is

mutation-equivalent to a type A Dynkin quiver or one that is an oriented cycle.

We describe the canonical join and canonical meet representations of torsion

classes (Theorem and Corollary (3.8.4]).



1.1.2 Result in Chapter

In this chapter, we show how one can actually construct some of the maximal green
sequences of certain types of quivers. The results presented here are joint work with G.
Musiker.

e Suppose that a quiver ) can be obtained from two quivers Q1 and Qs by adding
finitely many arrows starting at vertices of ()1 and ending at vertices of ()2 in
such a way that for any vertex a in @)1 and any vertex b in (Q2, at most one arrow
starts at ¢ and ends at b in ). If i; is a maximal green sequence of ()1 and iy is

a maximal green sequence of (Jo2, then iz oi; is a maximal green sequence of )

(Theorem 4.3.12)).

e If ) is a quiver that is mutation-equivalent to a type A Dynkin quiver, we show

how to construct at least one of its maximal green sequences (Definition and
Theorem [4.6.5)).

1.1.3 Results in Chapter

We define a family of objects called strand diagrams, which are collections of non-
crossing curves in the plane. We use these strand diagrams in a combinatorial model
for exceptional sequences of representations of type A Dynkin quivers. The results

presented here are joint work with J. P. Matherne, K. Igusa, and J. Ostroff.

e We show that strand diagrams are in bijection with exceptional collections,
which are sets of exceptional representations that can be linearly ordered so that

they define an exceptional sequence (Theorem [5.3.6]).

e We show that strand diagrams whose curves have a good labeling are in bijection

with exceptional sequences (Theorem [5.3.9)).

e We show that by allowing certain orientations of the curves in strand diagrams,
the resulting class of oriented strand diagrams are in bijection with mixed
cobinary trees, a family of combinatorial objects appearing in the theory of

semi-invariants of quiver representations (Theorem [5.4.2)).
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e Using the latter correspondence, we obtain a combinatorial classification of the

vertices of the oriented exchange graph in terms of oriented strand diagrams (The-

orem [5.3.15)).

e As an application of Theorem [5.3.15] we provide a combinatorial proof that ori-
ented exchange graphs defined by type A Dynkin quivers have a unique source
and a unique sink, previous proofs of which all involve algebraic and geometric
methods (Theorem [5.6.3).



Chapter 2

Preliminaries

2.1 Quiver mutation

A quiver @ is a directed graph without loops or 2-cycles. In other words, @ is a 4-
tuple (Qo, @1, s,t), where Qo = [m] := {1,2,...,m} is a set of vertices, Q1 is a set
of arrows, and two functions s,f : )1 — Qg defined so that for every a € @1, we
have s(a) = t(a). An ice quiver is a pair (Q,F) with Q a quiver and F < Qg a
set of frozen vertices with the additional restriction that any ¢, j € F' have no arrows
of @ connecting them. We refer to the elements of Qo\F as mutable vertices. By
convention, we assume Qo\F' = [n] and F = [n+ 1,m] := {n+1,n+2,...,m}. Any
quiver () can be regarded as an ice quiver by setting Q = (Q, ).

The mutation of an ice quiver (@, F') at mutable vertex k, denoted pug, produces a
new ice quiver (ux@, F') by the three step process:

(1) For every 2-path i — k — j in @), adjoin a new arrow i — j.

(2) Reverse the direction of all arrows incident to k in Q.

(3) Delete any 2-cycles created during the first step.
We show an example of mutation below depicting the mutable (resp. frozen) vertices

in black (resp. blue).

(Q.F) = 1/2>3 - A = (12Q.F)
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The information of an ice quiver can be equivalently described by its skew-symmetric
exchange matrix. Given (Q,F), we define B = Bg ) = (bij) € Z™™ = {n x
m integer matrices} by b;; 1= #{i > j € Q1} — #{j = i € Q1}. Furthermore, ice
quiver mutation can equivalently be defined as matrix mutation of the corresponding

exchange matrix. Given an exchange matrix B € Z"*™, the mutation of B at k € [n],

/

also denoted jiy, produces a new exchange matrix uy(B) = (b;;) with entries

Yo —bij ifi=korj=k

" bij + sgn(bix)[bikbrj]l+ : otherwise
where [z]; = max(x,0). For example, the mutation of the ice quiver above (here
m =4 and n = 3) translates into the following matrix mutation. Note that mutation
of matrices (or of ice quivers) is an involution (i.e. pgur(B) = B). Let Mut((Q, F))

denote the collection of ice quivers obtainable from (@, F') by finitely many mutations.

0 2 0| 0 0 -2 2| 0
Bor = | -2 0 1| 0| 0 =11 0| = Buuen:
0 -1 0|-1 2 1 0 |-1

Given a quiver ), we define its framed (resp. coframed) quiver to be the ice
quiver @ (resp. é) where @0 (= éo) = Qou[n+1,2n], F = [n+ 1,2n], and
Qi =Qiu{i >n+i:icn]} (resp. Q1 := Qru{n+i—i:iec[n]}). Now
given @ we define the exchange tree of @, denoted ET(@), to be the (a priori infinite)
graph whose vertex set is Mut(@) and with an edge between two vertices if and only
if the quivers corresponding to those vertices are obtained from each other by a single
mutation. Similarly, define the exchange graph of @, denoted EG(@), to be the
quotient of ET(@) where two vertices are identified if and only if there is a frozen
isomorphism of the corresponding quivers (i.e. an isomorphism of quivers that fixes
the frozen vertices). Such an isomorphism is equivalent to a simultaneous permutation
of the rows and first n columns of the corresponding exchange matrices.

In this paper, we focus our attention on type A quivers (i.e. quivers R € Mut(1 «
2 « .-+ « n) for some positive integer n.) We will use the following classification due

to Buan and Vatne in our study of type A quivers.

Lemma 2.1.1. [BV0S, Prop. 2.4] A quiver Q is of type A if and only if Q satisfies the
following:
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i) All non-trivial cycles in the underlying graph of Q are oriented and of length 3.

i1) Any vertex has at most four neighbors.

i11) If a vertex has four neighbors, then two of its adjacent arrows belong to one 3-cycle,

and the other two belong to another 3-cycle.

i) If a vertex has exactly three neighbors, then two of its adjacent arrows belong to a

3-cycle and the third arrow does not belong to any 3-cycle.

2.2 Oriented exchange graphs

In this brief section, we recall the definitions of c-vectors and their sign-coherence
property. We use these notions to explain how to orient the edges of EG(@) for a given
quiver ) to obtain the oriented exchange graph of @, denoted ﬁ(@) Oriented
exchange graphs were introduced in [BDP14] and were shown to be isomorphic to many
important partially-ordered sets in representation theory in [BY13].

Given @, we define the c-matrix C(n) = Cr(n) (resp. C = Cg) of R € ET(CA))
(resp. R € EG(Q)) to be the submatrix of Br where C(n) := (bij)ie[n],je[n+1,2n] (TESD.
C := (bij)ie[n] je[n+1,2n])- We let c-mat(Q) := {Cr: R € EG(Q)}. By definition, Bg
(resp. C) is only defined up to simultaneous permutations of its rows and its first n
columns (resp. up to permutations of its rows) for any R € EG(@)

A row vector of a c-matrix, c;, is known as a c-vector. We will denote the set of c-
vectors of @ by c-vec(Q). The celebrated theorem of Derksen, Weyman, and Zelevinsky
[DWZ10, Theorem 1.7], known as the sign-coherence of c-vectors, states that for any
R e ET(@) and i € [n] the c-vector ¢; is a nonzero element of ZZ, or ZZ,. Thus we
say a c-vector is either positive or negative. A mutable vertex i of an ice quiver
(R, F) € Mut(@) is said to be green (resp. red) if all arrows of (R, F') connecting an
element of F' and i point away from (resp. towards) i. Note that all vertices of @ are
green and all vertices of Cj are red. We use the notion of green and red vertices to orient

the edges of EG(@) to obtain m(@)

Definition 2.2.1. |[BDP1j|] Let Q be a quiver. The oriented exchange graph of Q is

~

the directed graph whose underlying unoriented graph is EG(Q) with its edges oriented
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as follows. If (R, F) and (R% F) are connected by an edge in EG(@), then there is a
directed edge (R', F) — (R% F) if R* = puxR' where k € R} is green, otherwise there
is a directed edge (R, F) «— (R? F).
We define a maximal green sequence of @), denoted i = (i1,...,ix), to be a
sequence of mutable vertices of@ where

~

a) ij is green in ji;_, © -0, (Q) for each j € [k],

~

b) i, oo pi, (Q) has only red vertices.
Let green(Q) denote the set of mazimal green sequences of Q). By [BDP14, Propo-

sition 2.13], mazximal green sequences of Q) are in bijection with the mazimal chains in
the poset ﬁ(@) Furthermore, if we define len(i) := k to be the length of i, then the
mazximal chain C; of m(@) corresponding to i also has length k (here the length of a

chain C = ¢1 < -+ < cq in a poset is defined to be d —1).

Example 2.2.2. Let Q =1 — 2. Below we show E?(@) and we also show all of the
c-matrices in c-mat(Q ). Additionally, we note that 4 = (1,2) and 4, = (2,1,2) are the

two mazimal green sequences of Q.

Figure 2.1: The oriented exchange graph of Q =1 — 2.

2.3 Path algebras and quiver representations

Following [ASS06], let @ be a given quiver. We define a path of length ¢ > 1 to be an

expression ajas - - - ay where a; € Q1 for all i € [¢] and s(«;) = t(aj41) for all i € [ —1].
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We may visualize such a path in the following way

[e%1 [e D) Qp
Furthermore, the source (resp. target) of the path ajas---ay is s(ay) (resp. t(aq)).
Let Qg denote the set of all paths in @ of length ¢. We also associate to each vertex
1 € Qo a path of length £ = 0, denoted ¢;, that we will refer to as the lazy path at i.

Definition 2.3.1. Let Q be a quiver. The path algebra of Q) is the k-algebra generated
by all paths of length ¢ = 0. Throughout this paper, we assume that k is algebraically
closed. The multiplication of two paths aq---ayp € Qp and B1 -+ B € Qr 1is given by the

following rule

{ ar-apBre Br € Qerr 1 s(ae) = t(B1)
s(ay) # t(By).

We will denote the path algebra of Q by kQ. Note also that as k-vector spaces we have

kQ = DkQe

£=0

where kQy is the k-vector space of all paths of length .

In this paper, we study certain quivers () which have oriented cycles. We say a
path of length £ > 0 ay - - - ap € Qp is an oriented cycle if t(a;) = s(ay). We denote by
kQ¢ cye < kQ the subspace of all oriented cycles of length £ > 0. If a quiver () possesses
any oriented cycles of length £ > 1, we see that k(@ is infinite dimensional. If () has no
oriented cycles, we say that () is acyclic.

In order to avoid studying infinite dimensional algebras, we will add relations to
path algebras whose quivers contain oriented cycles in such a way that we obtain finite
dimensional quotients of path algebras. The relations we add are those coming from an

admissible ideal I of k@) meaning that
0
Ic (—B]k@.
(=2

If I is an admissible ideal of k@, we say that (@, ) is a bound quiver and that kQ/I

is a bound quiver algebra.
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In this paper, we study modules over a bound quiver algebra kQ/I by studying
certain quiver representations of () that are “compatible” with the relations coming
from I. A representation V = ((Vi)icq,, (¥a)acq,) of a quiver @ is an assignment of
a k-vector space V; to each vertex 7 and a k-linear map ¢q : V(o) — Vi(q) to each arrow

a€ Qq. If pe k@, it can be expressed as
m
o= ol o)
i=1
(%

where ¢; € k and « --~aik) € @, so when considering a representation V' of @, we

define

i

(@)
1

m
Pp = Z Ci(pa(_i) e '(,Oa(_i).
i=1 ‘1 tk

If we have a bound quiver (@, I), we define a representation of @) bound by I to be a
representation of () where ¢, = 0 if p € I. We say a representation of () bound by I is
finite dimensional if dimy V; < oo for all 7 € Q.

Let V = ((Vi)ieQo, (Pa)acq:) and W = ((Ws)ieQos (0a)acq,) be two representations
of a quiver (Q bound by I. A morphism 0 : V — W consists of a collection of linear
maps 6; : V; — W; that are compatible with each of the linear maps in V' and W. That
is, for each arrow a € @1, we have 0;(4) © 94 = 04 © O5(q)- An isomorphism of quiver
representations is a morphism 6 : V. — W where 6; is a k-vector space isomorphism
for all i € Qo. We define VW = ((V; ® Wi)icqy, (Yo ® 0a)acq,) to be the direct
sum of V and W. We say that a nonzero representation V is indecomposable if it is
not isomorphic to a direct sum of two nonzero representations. Note that the collection
of finite dimensional representations of a quiver ) bound by I and the morphisms
between them form an abelian category denoted repy(Q,I), with the indecomposable
representations forming a full subcategory called ind(repy (@, I)). We define rep, (Q) :=
repy (@, I) when I = 0.

It turns out that one has a k-linear equivalence of categories
kQ/I-mod — rep, (Q, I).

In the sequel, we use this fact without mentioning it further. Additionally, the dimen-
sion vector of V' € k@)/I-mod is the vector dim (V') := (dimg V;);eq, and the dimension
of V is defined as dimy (V') = ZiEQO dimy V;. The support of V € kQ/I-mod is the set
supp(V) :={ie Qo : V; # 0}.



Chapter 3

Lattice Properties of Oriented
Exchange Graphs and Torsion

Classes

3.1 Introduction

The exchange graph defined by a quiver ( admits a natural acyclic orientation called
the oriented exchange graph defined by @ (see [BY13]). If @ is an orientation of a
Dynkin diagram of type A, D, or E, then its oriented exchange graph is a Cambrian
lattice of the same type (see [Rea06]). In the Dynkin case, we may extract combinatorial
information about oriented exchange graphs from the Cambrian lattice structure. The
purpose of this chapter is to uncover similar information about oriented exchange graphs
associated to some non-Dynkin quivers of finite type. We summarize our approach below
and distinguish it from other approaches. Most of the definitions will be given in later
sections.

The orientation of an exchange graph associated to a quiver is known to be acyclic.
However, this fact is far from obvious (see [Nagl3]). One approach to proving this fact
invokes a surprising connection to representation theory. Given a quiver @), there is
an associative algebra A = k@Q/I whose functorially finite torsion classes are in natural

bijection with vertices of the oriented exchange graph of (). Ordering by inclusion, the

13
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covering relations among functorially finite torsion classes correspond to edges of the
exchange graph in such a way that the orientation is preserved. As an inclusion order
on any family of sets is acyclic, it follows that the oriented exchange graph is acyclic.

The set of torsion classes of A is known to form a lattice, of which the functorially
finite torsion classes form a sublattice when A has certain algebraic properties [IRTT13]
(we will focus on algebras A having finite lattices of torsion classes so we do not need
to distinguish between lattices and complete lattices). In the situation where the func-
torially finite torsion classes of A form a lattice, we use a formula for the join of two
torsion classes found by Hugh Thomas [Tho] to prove that these functorially finite tor-
sion classes form a semidistributive lattice (see Theorem [3.4.5). We believe that the
lattices of functorially finite torsion classes of A are congruence-uniform, though we do
not have a proof in general.

A Cambrian lattice can be constructed either as a special lattice quotient of the
weak order of a finite Coxeter group or as an oriented exchange graph of a Dynkin
quiver. We construct a similar lattice quotient description when @ is an oriented cycle
or mutation equivalent to a path quiver. First, we define a closure operator on its set
of positive c-vectors. We then show that biclosed sets of c-vectors can be interpreted
algebraically as what we call biclosed subcategories of the module category of A. After
that, we construct a map 7| from biclosed subcategories of A-mod to functorially finite
torsion classes of A. We prove that the set of biclosed sets ordered by inclusion forms
a congruence-uniform lattice, and the above map has the structure of a lattice quotient
map. Moreover, the Hasse diagram of the lattice structure on functorially finite torsion
classes of A induced by this map is the oriented exchange graph. Thus the oriented
exchange graph of () inherits the congruence-uniform property via the quotient map .

The chapter is organized as follows. In Section we introduce the class of path
algebras with relations that we consider in this chapter. They are the cluster-tilted al-
gebras of type A (i.e. these algebras are defined by quivers that are mutation-equivalent
to a path quiver) and the cluster-tilted algebras defined by a quiver that is an oriented
cycle. We carefully describe these algebras and their properties in Sections and
Throughout this chapter, when we speak about one of these algebras, we denote
it by A.

In Section [3.3] we review basic notions related to lattice theory that will be useful to
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us. Of particular importance to us will be the notions of semidistributive, congruence-
uniform, and polygonal lattices.

In Section [3.4], we review the concepts of torsion classes and torsion-free classes.
Using the fact that the lattice of functorially finite torsion classes of A is isomorphic to
the oriented exchange graph of (), we prove that when @) is mutation-equivalent to a
Dynkin quiver its oriented exchange graph is a semidistributive lattice.

In Section [3.5] we develop the theory of biclosed sets. We introduce the notion of
biclosed sets of acyclic paths in a graph, denoted Bic(AP). We prove that Bic(AP) is a
semidistributive, congruence-uniform, and polygonal lattice (see Theorem. When
@ is mutation-equivalent to a path quiver or is an oriented cycle, we can identify the c-
vectors of () with acyclic paths in ). In this way, we can consider the lattice of biclosed
sets of c-vectors of @), denoted Bic(Q), and conclude that this lattice is semidistributive,
congruence-uniform, and polygonal.

In Section we show that Bic(Q) is isomorphic to what we call the lattice of
biclosed subcategories of A-mod, denoted BZC(Q). Using this categorification, we de-
fine maps 7, and 7! on BZC(Q). Our main Theorem is that 7, : BIC(Q) — tors(A)
is a lattice quotient map (see Theorem . We remark that it is not clear a priori
that the image of 7| is contained in tors(A). We conclude this section by giving an
affirmative answer to a conjecture of Briistle, Dupont, and Pérotin (see [BDP14, Con-
jecture 2.22]) when @ is mutation-equivalent to a path quiver or is an oriented cycle
(see Corollary [3.6.11)).

In Section we prove several important properties of 7| and 7! that are needed
for the proof of Theorem Much of this section is dedicated to proving that the
image of 7 is contained in tors(A). A crucial step in this argument is the use of a basis
for the equivalence classes of extensions of one indecomposable A-module by another
given in |CS14].

In Section 3.8, we apply our results about biclosed subcategories to classify canonical
join and canonical meet representations of torsion classes.

In Section [3.9] we record a few necessary results whose statements and proofs do
not fit with the exposition in other sections.

In this chapter, we only present a lattice quotient description of oriented exchange
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graphs defined by quivers that are mutation-equivalent to a path quiver or are an ori-
ented cycle. We believe that one needs a more refined notion of biclosed subcategories
in order to produce a lattice quotient description of oriented exchange graphs defined

by any finite type quiver.

3.2 Preliminaries

3.2.1 Cluster-tilted algebras and c-vectors

In this section, we review the definition of cluster-tilted algebras [BMROT7] and their
connections with c-vectors [Chal3|. As we will focus on cluster-tilted algebras of type
A, we recall a useful description of these algebras as bound quiver algebras and we recall
a useful classification of the indecomposable modules over these algebras.

To define cluster-tilted algebras, we need to recall the definition of the cluster cate-
gory of an acyclic quiver @), which was introduced in [BMR06a]. Let @ be an acyclic
quiver. Let D := Db(kQ-mod) denote the bounded derived category of kQ-mod. Let
7 : D — D denote the Auslander-Reiten translation and let [1] : D — D de-
note the shift functor. We define the cluster category of @, denoted Cg, to be
the orbit category D/7![1]. The objects of Cq are 7~ 1[1]-orbits of modules, denoted
M := ((t71])*M )jez, where M € kQ-mod. The morphisms between M, N € C are
given by

Home,, (M, N) := @@ Homp (M, (r7HIDIN).
i€Z

Cluster categories were invented to provide an additive categorification of cluster
algebras. We will not discuss cluster algebras in this chapter, but we remark that

cluster-tilting objects in Cq, which we will define shortly, are in bijection with clusters

of the cluster algebra Ag associated to Q.

Definition 3.2.1. ([BMR* 06a]) We say T € Cq is a cluster-tilting object if
(1) Extt (T, T) = 0 and
(2) T = @;_,T; where {T;}? , is a mazimal collection of pairwise non-isomorphic

indecomposable objects in Cq.

Now we define a cluster-tilted algebra to be the endomorphism algebra A :=

Endc,, (T)% where T = @ T; is a cluster-tilting object in Cq. If the @ is a Dynkin
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quiver, (i.e. the underlying graph of @ is the Dynkin graph A € {A,,,D,,,E¢, E7, Eg}
with n > 1 and m > 4) we say that A is of type A or of Dynkin type. It follows
from [Buan-Marsh-Reiten, Cor. 2.4] that A is representation finite if and only if k@ is
representation finite. Thus a cluster-tilted algebra A is representation finite if and only
if @ is of Dynkin type.

Cluster-tilted algebras of Dynkin type can be described explicitly as bound quiver
algebras (see [BMROGD]). In the sequel, we use the following description of cluster-tilted
algebras of type A as bound quiver algebras. The following result appeared in [CCS06D]
and was generalized in [CCS06a] and [BMRO6D].

Lemma 3.2.2. A cluster-tilted algebra A is of type A if and only if A = kQ/I where Q
is a type A quiver and I is generated by all 2-paths af € Q2 where a and B are two of
the arrows of a 3-cycle of Q.

Using Lemma [3.2.2] and the language of string modules, we can explicitly parame-
terize the indecomposable modules of a type A cluster-tilted algebra. A string algebra

A =kQ/I is a bound quiver algebra where:

i) for each vertex i of ) at most two arrows of @) start at ¢ and at most two arrows
of () end at 1,

ii) for each arrow § € Q1 there is at most one arrow « € )1 and at most one arrow
~v € @1 such that af ¢ I and B ¢ I.

A string in A is a sequence

aq g Qm
w = X2 Tm+1

where each x; € Q¢ and each «; € Q1 or «; € Qfl := {formal inverses of arrows of Q}.
We require that each «; connects z; and x;11 (i.e. either s(o;) = x; and t(o;) = 41
or s(c;) = xiy1 and t(a;) = x; where if a; € Q7' we define s(a;) := t(a; ') and
t(a;) := s(a; 1)) and that w contains no substrings of w of the following forms:

-1 -1

i) azi>y<—xorx<iy—>x,

. 61 63 71 Vs
i) @, — @i, Ty, —> Ty, OF Ty «— Ty, -+ Ty, <— Tj,,, where B;--- (1 € [ or

s s

Yi-oys €1
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In other words, w is an irredundant walk in () that avoids the relations imposed by I.
Additionally, as in [CS14], we consider strings up to inverses.
Let w be a string in A. The string module defined by w is the bound quiver
representation M (w) := ((V;)ieQo, (Pa)acq,) Where
Vo {ksﬂ' : i =x; for some j € [m + 1]
0 : otherwise

with s; := #{k € [m + 1] : x;, = z;} and the action of ¢, is induced by the relevant
identity morphisms if « lies on w and is zero otherwise.

If kQ/I is a representation finite string algebra, it follows from [BR&7], that
ind(k@/I-mod) := {indecomposable k@ /I-modules}
consists of exactly the string modules over kQ/I so
ind(kQ/I-mod) = {M(w) : w is a string in kQ/I where w ~ w™'}.

Furthermore, if M(w) = ((Vi)ieQy, (Pa)acq,) is a string module over kQ/I and @ is a
type A quiver, then the relations in kQ/I require that dimy V; < 1 for all i € Q.

Example 3.2.3. Let QQ denote the type A quiver shown below. Then kQ/I is a string
algebra where I = {Ba,vB, ay).

M) = 7 N M1-%2) = 7 N

0\ g DR
M((2) = 050 M2-—3) = 0~k
0 0 0 0 0 0
M(@3) = RN M(3i>1) = RN
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The final result that we present in this section allows us to connect the represen-
tation theory of cluster-tilted algebras A = k@Q/I of finite representation type with the

combinatorics of the c-vectors of Q. The following result appears in [Chal3].

Proposition 3.2.4. [Chal3, Thm. 6] Let Q be a quiver that is mutation-equivalent
to a Dynkin quiver and let A = kQ/I denote the cluster-tilted algebra associated to Q.

Then we have a bijection

ind(kQ/I-mod) — {ce€ c-vec(Q): c is positive}
V o dim(V).

Thus c-vec(Q) = {dim (V) : V € ind(kQ/I-mod)} | {—dim(V) : V € ind(kQ/I-mod)}.

Example 3.2.5. Let Q be the quiver appearing in Example[3.2.3. By Proposition[3.2.

we have that

c-vec(Q) = {+(1,0,0), +(0,1,0),+(0,0,1), +(1,1,0), £(0,1,1),+(1,0,1)}.

3.2.2 Cyclic quivers

In this section, we describe the second family of bound quiver algebras that we will
study. To begin, let Q(n) denote the quiver with Q(n)o := [n] and Q(n); :=={i > i+1:

i€ [n—1]} u{n — 1}. For example, when n = 4 we have

_—

[\)

1
4) —
Q) 1

e

-

As discussed in [BMRO6D, Prop. 2.6, Prop. 2.7], the algebra

A=kQ(n)/[ar- - an_1: a;€ Q(n)1)

is cluster-tilted of type D,. As such, A is representation finite. Furthermore, one
observes that A is a string algebra and thus the indecomposables A-modules are string

modules. One can verify the following lemma.

Lemma 3.2.6. Let wy = xgz) — x,(f?) and wy = :cgl) — x,(cll) be strings

in A. Then Hom(M (w3), M (w1)) # 0 if and only if 331(@22) = azgl) for some i € [k1] and
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$§2) ¢ {ajgl), . ,mgl_)l}. Furthermore, if Hom(M (w2), M (wy)) # 0, then {6} is a k-basis
for Homp (M (w2), M (w1)) where

1 ifjelq]
0.0 =
¥ 0 : otherwise.

It will be convenient to introduce an alternative notation for the indecomposable A-
modules. Let X (7, 7) where i € [n] and j € [n — 1] denote the unique indecomposable A-
module containing M (i) and whose length is j. For example, if A = kQ(n)/{ay -+ a1 :
a; € Q(n)1), then X(n,i) = M(n « - «—n—1i+1).

Example 3.2.7. Let A = kQ(4)/{a1azsas : a; € Q(4)1). Then the Auslander-Reiten

quiver of A is

Remark 3.2.8. For any quiver Q(n), the Auslander-Reiten quiver of the correspond-
ing cluster-tilted algebra may be embedded on a cylinder. In general, the irreducible

morphisms between indecomposable A-modules are exactly those of the form
X(i,j) — X(i,j7+1) and  X(i,j) » X(@E—1,j—1).

Also, if X(i,7) € ind(A-mod) and j € [n — 2], then 781X (3,5) = X(i + 1, ) where we
agree that TX(n,j) = X(1,5) and 771X (1,5§) = X(n,j). Roughly speaking, T acts on
non-projective modules by rotation of dimension vectors. The modules {X (i,n — 1) }ien]
are both the indecomposable projective and indecomposable injective modules since A is

self-injective. Thus 71X (i,n — 1) = 0 for any i € [n].

We conclude this section by classifying extensions of indecomposable modules M (w1 ),
M (ws) € ind(A-mod) where A = kQ(n)/{ay - an—1: a; € Q(n)1) (i.e. extensions of
the form 0 — M(wz) - Z — M(w;1) — 0 where Z € ind(A-mod).) This classification

will be an important tool in the proofs of our main results. The first Lemma we present
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can be easily verified by considering the structure of the Auslander-Reiten quiver of A.

Recall that
Hom, (M, N) := {f € Hompa(M,N) : f factors through a projective A-module}.
Lemma 3.2.9. Let i€ Z/nZ and 1 < j <n — 1.

a) The set of indecomposable A-modules X satisfying Homp (X (i,7), X) # 0 has the

form

X (s,t) € ind(A-mod) :
j—d(i,s) <t<n-—1

seli—j+1,iln, }

b) The set of indecomposable A-modules X satisfying Hom, (X (i,7), X) # 0 has the

form

{X(s, t) € ind(A-mod) : seli=i+Lil, } .

j—d(i,s) <t<n—2-4d(is)

Here we define d(a,b) := #{arrows in the string w = a «— --- — b} and [i —j+ 1,i], to
be the cyclic interval in [n] (i.e. there is a stringi « (i —1) «— -+ — (i —j 4+ 2) <
(t —j + 1) and the arithmetic is carried out mod n).

We now use Lemma to classify extensions. By Lemma the dimension of
Exth (X (k,£), X (i,7)) is at most 1 for any indecomposables X (k,#) and X (i,5). Thus
there is at most one nonsplit extension of the form 0 — X(i,5) — Z — X (k,¢) — 0 up
to equivalence of extensions.

Proposition 3.2.10. Leti, k€ Z/nZ and 1 < j, £ < n—1. IfExti (X (k,£), X (i,7)) # 0,
then

i) if supp(X (i,7) N X (k,0)) = &, then the unique nonsplit extension is of the form

0— X(i,j) > X(1,7+ ) > X(k,£) — 0,
i1) if supp(X (i,7) n X (k,0)) # &, then the unique nonsplit extension is of the form

Proof. By the Auslander-Reiten formula,

dim Ext} (X (k, £), X (i, 7)) = dim Hom, (77 X (4, 5), X (k, £))
= dim Hom, (X (i — 1, j), X (k, £)).
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Hence, if Ext} (X (k,€), X (i,5)) # 0 then supp(X (i — 1,45)) n supp(X (k, £)) # &.

i) If supp(X (4, 7)) N supp(X (k,€)) = &, then supp(X (i — 1,7)) n supp(X (k,()) =
{i—j} since supp(X (i—1, j))\supp(X(4,5)) = {i—j}. Since there is a nonzero morphism
X(i—1,j) - X(k,¢), we must have k = i—j by the description of morphisms in Lemma
a). Then X (k,¢) = X(i — j,¢) and the extension must be of the form

0— X(i,j) = X(i,j +£) —> X(k, £) — 0.

ii) Assume supp(X (7, j)) nsupp(X(k,¢)) # . Here it is enough to show that there
are inclusions (resp. surjections) X(i,7) — X (i,d(i, k) + ¢) and X (k,j — d(i,k)) —
X (k,0) (resp. X(i,j) - X(k,j —d(i,k)) and X (4,d(i, k) + £) = X (k,?)).

To do so, we first show that d(i, k) + ¢ < n — 1. Observe that £ <n —2—d(i —1,k)
by Lemma [3.2.9 b) since Hom (X (i — 1, j), X (k, £)) # 0. Since d(i, k) — d(i — 1,k) = 1,
we have that d(i,k) + ¢ <n—1. Thus X (i,d(i, k) + ¢) € ind(A-mod) and therefore there
is an inclusion X (i,7) — X (¢,d(i, k) + £).

Next, we show that and j — d(i,k) > 1. By Lemma a), we deduce that k €
[i—j+1,i], since k # i —j. Therefore, we conclude that d(i, k) < j—1so j—d(i, k) > 1.
Thus X (k,j —d(i, k)) € ind(A-mod) so there is an inclusion X (k,j —d(i, k)) — X (k, ¢).

Lastly, we show that the desired surjections exist. Observe that since d(i, k) =
#{arrows in the string i < (i — 1) < -+ « (k+ 1) « k} we have that i — d(i,k) = k
where this equation holds mod n. Thus, by composing surjective irreducible morphisms,

we obtain the desired surjections
X@,j)—»X(i—-1,j—1)—» - > X(k+1,7+1—4d(i, k) » X(k,j—d(i, k))
and
X(i,d(i,k)+0) » X(i—1,d(i,k)+£—1) > - —» X(k+ 1,0+ 1) » X(k, ).
Hence, the unique extension is of the form
0— X(i,j) » X(©4,d(i, k) +0)® X (k,j —d(i, k) > X(k,£) — 0.
O]

When we use this classification of extensions to prove our main results, we will want
to use only the notation for string modules. Thus we give the following translation of

Proposition [3.2.10| using the notation for string modules.
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Lemma 3.2.11. Let Q = Q(n) for some n = 3 and let A denote the corresponding
cluster-tilted algebra. Let M(ws), M (wy) € ind(A-mod) where Extk (M (wy), M (ws)) #
0. Let
£E=0— M(wz) > Z —> M(w;) -0

denote the unique nonsplit extension up to equivalence of extensions with Z € A-mod.

Then either

i) supp(M(w2)) N supp(M(w1)) = & and Z = M (wy «— wy) or

i) we = u «— w with wy = w «<— v for some strings u,v, and w where w =
o .
T S xp--mp_y <= xp, satisfies supp(M(wz)) N supp(M(wy)) = {Ti}ie)s

(Qn))o\(supp(M (w2)) A supp(M (w1))) # &, and Z = M(u — w — v) @ M(w).

3.3 Lattice properties

In this section, we give some background on lattices. After establishing notation in
Section we discuss semidistributive, congruence-uniform, and polygonal lattices

in the remaining sections.

3.3.1 Basic notions

A lattice L is a poset for which every pair of elements x,y € L has a least upper bound
x v y and greatest lower bound x A y, called the join and meet, respectively. A lattice
is complete if meets and joins exist for arbitrary subsets of L. As we will mainly
deal with finite lattices, these two conditions coincide. Any complete lattice has a top
element \/ L and bottom element /\ L, which we denote 1 and 0, respectively.

Many properties of posets come in dual pairs. Given a poset (P, <), its dual poset
(P°P, <°P) has the same underlying set and = <°P y if and only if y < z. If P is a
lattice, then P°P has the same lattice structure with A and v swapped.

A lattice congruence O on a lattice L is an equivalence relation that respects the
lattice operations; i.e. for z,y,z € L, x =y mod O implies (x v z) = (y v z) mod ©
and (x A z) = (y A z) mod O. The lattice operations on L induce a lattice structure on
the set of equivalence classes of ©, which we denote L/©. The natural map L — L/©

is a lattice quotient map.



24

Figure [3.1] contains two examples of lattice quotient maps. The BLUE arrows in
each of the upper lattices are contracted to form the lower lattices.

To prove that a given equivalence relation is a lattice congruence, we will make use

of the following well-known result.

Lemma 3.3.1. Let L be a finite lattice with idempotent, order-preserving maps 7r¢,7rT :
L — L. Let © be the equivalence relation x =y mod © if w(z) = 7 (y). Ifmon! =m

and 7t o T = 71, then © is a lattice congruence of L.

The maps in part (2) of the above lemma are typically called 7| and 7!, Both of
these maps are idempotent endomorphisms on L. However, we may identify 7| with
the natural lattice quotient map L — L/© when convenient.

An element j of a lattice L is join-irreducible (dually, meet-irreducible) if j # 0
and for z,y € L, j = x v y implies j = x or j = y. For finite lattices, an element j is
join-irreducible exactly when it covers a unique element, denoted j,. Dually, a meet-
irreducible element m is covered by a unique element m*. We let J(L) (resp. M(L))

be the set of join-irreducible (resp. meet-irreducible) elements of L.

3.3.2 Semidistributive lattices

A lattice L is meet-semidistributive if for x,y,z € L,
(xvy)Az=x Az holds whenever zAz=1yA z.

A lattice is join-semidistributive if its dual is meet-semidistributive. It is semidis-
tributive if it is both join-semidistributive and meet-semidistributive. Clearly, every
distributive lattice is semidistributive. On the other hand, the five-element lattice of
Figure is semidistributive but not distributive. As semidistributivity is defined by
equations in the lattice operations, it is preserved under lattice quotients.

For a finite lattice L, any element = admits a representation of the form =z = \/ A
where A is a subset of J(L). The representation is irredundant if z > \/ A’ for any
proper subset A’ of A. Given antichains A, B < J(L), we say A < B if every element of
A is less than some element of B. A join-representation z = \/ A forz e L, A < J(L)
is called a canonical join-representation if it is irredundant and A < B whenever
B < J(L) with x = \/ B. Canonical meet-representations are defined dually. The

following Lemma gives an explicit definition of canonical-meet representations.
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Figure 3.1: Two examples of lattice quotient maps.
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Lemma 3.3.2. Given an element x of a lattice L, the expression x = \/é:1 Ji is a
canonical join-representation of x in L if and only if x°P = /\izljfp 18 a canonical

meet-representation in the dual lattice L°P.

A finite semidistributive lattice admits canonical join-representations for all of its
elements [FJNO5, Theorem 2.24]. These canonical join-representations often take a
very nice form. One of our main applications of semidistributivity is a description of

canonical join-representations and canonical meet-representations of torsion classes (see

Theorem and Corollary (3.8.4)).

3.3.3 Congruence-uniform lattices

Given a closed interval I = [z,y]| of a poset P, the doubling P[I] is the induced
subposet of P x {0,1} with elements

P[I] = (P<y x {0}) u [(P — P<y) U I] x {1},

where P, = {z € P: z<y}. If Pis a lattice, then P[I] is a lattice. A finite lattice L
is congruence-uniform (or bounded) if there exists a sequence of lattices Ly, ..., L;
such that L; is the one-element lattice, Ly = L, and for all i, there exists a closed
interval I; of L; such that L; 1 =~ L;[L;].

As interval doublings preserve semidistributivity, finite congruence-uniform lattices
are always semidistributive. Congruence-uniform lattices admit other characterizations
in terms of lattice congruences [Day94], edge-labelings [Rea03|, or as ”bounded” quo-

tients of free lattices.

3.3.4 Polygonal lattices

A finite lattice is a polygon if contains exactly two maximal chains and those chains
only agree at the bottom and top elements. A finite lattice L is polygonal if for all

rel:
e if y and z are distinct elements covering x, then [z,y v z] is a polygon, and

e if y and z are distinct elements covered by x, then [y A z,z] is a polygon.
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Given two maximal chains C, C’ in a lattice L, we say C' and C” differ by a polygonal

flip if there is a polygon [, y] such that C' n[0,2] = C' n[0,z], C~ [y,1] = C" n [y, 1]
and C' N [z,y] and C' N [z,y] are distinct maximal chains of [z, y].

Our main use of polygonal lattices is the following connectivity result.

Lemma 3.3.3 (Lemma 1-6.3 [Reang]). Let L be a polygonal lattice. If C' and C" are
mazimal chains of L, then there is a sequence of mazximal chains C' = Cy,Cq,...,Cn =
C" such that C; and C;, 1 differ by a polygonal flip for all i.

3.4 Semidistributivity of oriented exchange graphs

In this section, we prove that if ) is mutation-equivalent to a Dynkin quiver, then
m(@) is a semidistributive lattice. To do so, we begin by identifying m(@) with the
lattice of functorially finite torsion classes of the cluster-tilted algebra A = kQ/I (see
[BY13]). After that, we prove that the lattice of torsion classes of any finite dimen-
sional algebra of finite representation type is semidistributive. Since A is representation
finite, all torsion classes are functorially finite and thus we conclude that E?(@) is

semidistributive.

3.4.1 Torsion classes and oriented exchange graphs

In this brief section, we recall the definition of torsion classes and the connection between
torsion classes and oriented exchange graphs.

Let A be a finite dimensional k-algebra. A full, additive subcategory C < A-mod is
extension closed if for any objects X,Y € C satisfying 0 - X - Z - Y — 0 one
has Z € C. We say C is quotient closed (resp. submodule closed) if for any X € C
satisfying X —%» Z where « is a surjection (resp. Z b, X where B is an injection),
then Z € C. A full, additive subcategory 7 < A-mod is called a torsion class if T is
quotient closed and extension closed. Dually, a full, additive subcategory F < A-mod
is called a torsion-free class if F is extension closed and submodule closed.

Let tors(A) (resp. torsf(A)) denote the lattice of torsion classes (resp. of torsion-free
classes) of A ordered by inclusion. We have the following Proposition, which shows that

a torsion class of A uniquely determines a torsion-free class of A and vice versa.
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Proposition 3.4.1. [[RTT13, Prop. 1.1 a)] The maps

tors(A) o) torsf(A)
T > T+:={XeA-mod: Homy(T,X) =0}
and
torsf(A) — tors(A)
F +— 1F:={X e A-mod: Homy(X,F) =0}

are inverse bijections.

The lattices tors(A) and torsf(A) have the following description of the meet and join

operations. In Lemma [3.4.9 we present an alternative description of the join operation.

Proposition 3.4.2. [[RTTI13, Prop. 1.3] Let A be a finite dimensional algebra. Then
tors(A) and torsf(A) are complete lattices. The join and meet operations are described

as follows

a) Let {T;}ier < tors(A) be a collection of torsion classes. Then we have N,.;Ti =
ﬂz’e[ Ti and \/;e; Ti = + (miel 7;J_)

b) Let {Fitiecr < torsf(A) be a collection of torsion-free classes. Then we have
1
/\ieI]:i = ﬂief]:i and \/;c; Fi = (ﬂie[ l]:i) .

An important subset of tors(A) is the set of functorially finite torsion classes, denoted
f-tors(A). By definition, 7 € tors(A) is a functorially finite torsion class if there exists
X € A-mod such that

T = Fac(X) :={Y € A-mod : 3X™ — Y for some m € N}.

Dually, a torsion-free class F € tors(A) is functorially finite if there exists X € A-mod
such that
F =Sub(X) :={Y € A-mod : 3Y — X' for some m € N}.

We let f-torsf(A) denote the set functorially finite torsion-free classes of A. The sets
f-tors(A) and f-torsf(A) are clearly partially-ordered by inclusion. The bijection given
in Proposition restricts to a bijection f-tors(A) — f-torsf(A). We also have the

following useful Lemma.
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Lemma 3.4.3. [[RTT13, Prop. 1.4 a), ¢)] The maps

tors(A) e, torsf(A°P)
T — DT
and
torsf(A) A, tors(A°P)
F +— DF
are isomorphisms of lattices where D(—) := Homp(—,k) is the standard duality.

Furthermore, the functor D((—=)%) : tors(A) — tors(A°P) = tors(A)°P is an anti-

isomorphism of posets.

Let A = kQ/I be a cluster-tilted algebra. The next result, which appears in [BY13]
in much greater generality, shows that oriented exchange graphs can be studied using

functorially finite torsion classes of A.

Proposition 3.4.4. Let QQ be a quiver that is mutation equivalent to a Dynkin quiver
and let A = kQ/I denote the associated cluster-tilted algebra. Then m(@) ~ f-tors(A)

as posets.

Theorem 3.4.5. Let A be a finite dimensional k-algebra where tors(A) = f-tors(A).
Then f-tors(A) is a semisdistributive lattice. In particular, if A is a finite dimensional

k-algebra of finite representation type, then f-tors(A) is a semidistributive lattice.

Proof. Tt is enough to show f-tors(A) = tors(A) is meet-semidistributive (i.e. for any
T1, T2, T3 € tors(A) satisfying 71 A T2 = T2 A T3 we have that (T3 v T2) A T3 = T1 A T3)
since tors(A) is join-semidistributive if and only if tors(A°P) is meet-semidistributive.
This is proved in the next section (see Lemma .

It is well-known that f-tors(A) = tors(A) holds when A is a finite dimensional,

representation finite k-algebra. Thus the second assertion holds. O

Remark 3.4.6. In [DL]15, Thm. 1.2], finite dimension algebras A satisfying tors(A\) =
f-tors(A) are shown to be exactly those algebras that are T-rigid finite algebras (i.e.
A has only finitely many indecomposable modules M satisfying Homp (M, 7M) = 0.)
Additionally, in [IRTT13, Thm. 0.2] it is shown that f-tors(A) is a complete lattice if
and only if A is a T-rigid finite algebra.
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Corollary 3.4.7. Let Q) be a quiver that is mutation equivalent to a Dynkin quiver.
Then EG(Q) is a semidistributive lattice.

Proof. Since @ defines a representation finite cluster-tilted algebra A, we know that
f-tors(A) = tors(A). By Proposition we have that EG(Q) = tors(A). By Theo-
rem we now have that EG (@) is semidistributive. O

Example 3.4.8. Let QQ be the quiver appearing in Example . Note that Q = Q(3).
We show the Auslander-Reiten quiver of the cluster-tilted algebra A = kQ(3)/{a1ae :
a; € Q(3)1) below (see Figure and use it to describe the oriented exchange graph
of Q as the lattice of torsion classes and torsion-free classes of A. Any T € tors(A) or
F € torsf(A) is additively generated (i.e. a full, additive subcategory A of A-mod is
additively generated if A = add(®;c[r)M (w;)) for some finite subset {M (w;)}ie(r) ©
ind(A-mod) where add(®;e[r) M (w;)) is the smallest, full additive subcategory of A-mod
that contains {M(w;)}ier)) so T and F are completely determined by the set of in-
decomposable modules they contain. Using this fact, we show the torsion classes of
A (resp. torsion-free classes of A) below in blue (resp. red) in Figure . For
example, T = add(X(3,2) ® X(2,1)) and its corresponding torsion-free class F =
add(X(1,1) ® X(1,2) @ X(3,1)) are depicted in Figure . Recall that ﬁ(é@) is

oriented by inclusion of torsion classes.

Figure 3.2: 7 = add(X(3,2) ® X(2,1)) and F = add(X(1,1)® X (1,2) ® X (3,1))

X(3,2) X(2,2) X(1,2)
1

Mhmod) = 0N N N
—X —X —X

X(3,1)< (2,1)< (1,1)< (3,1)

Figure 3.3: The Auslander-Reiten quiver of A.
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T

Figure 3.4: The oriented exchange graph of Q(3) modeled using tors(A) and torsf(A).

3.4.2 Meet semidistributivity of tors(A)

In this section, we prove that the lattice of torsion classes of a finite dimensional k-
algebra A is meet semidistributive. As a prelminary step, we give an explicit description
of the join of two torsion classes (see Lemma [3.4.9). We thank Hugh Thomas for

mentioning this description of the join to us [Tho].

Lemma 3.4.9. If T,U € tors(A). Then
T vU = Filt(T,U)

where Filt(T,U) is defined to be the subcategory of all A-modules X with a filtration
0=Xoc Xy - c X, =X with the property that X;/X;_1 belongs to T or U for
any j € [n].

Proof. We can express T v U as

TvU= /\ Ta
T.U T,
Ta € tors(A)
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and the expression on the right hand side makes sense since tors(A) is a complete lattice
by Proposition If X € T or X € U, then the filtration 0 < X of X shows that
X € Filt(T,U). If X € Filt(T,U), and 0 = Xy < X < --- < X,, = X is a filtration
that witnesses this, one obtains an extension 0 - X; - X — X/X,,_; — 0 where X
and X/X,_1 = X,,/X,,—1 each belong to one of 7 or Y. Thus X must belong to any
torsion class 7, containing both 7 and U as torsion classes are extension closed. This
implies that Filt(7,U) < T,. Thus it is enough to show that Filt(7,U) is a torsion
class.

We first show that Filt(T,U) is additive. Assume X,Y € Filt(T,U). Let 0 = Xy <
Xic--cX,=Xand0=Yyc Y, c--- Y, =Y be filtrations where each of the
quotients X;/X;_1 and Y;/Y;_1 belong T or U. Consider the filtration

0=XpcXjc---cX,cX,®Y1c---cX,®Y,,=XDY.

We have that (X, ®Y1)/X, = Y] belongs to T or U. We also have that for each i € [m]
the quotient (X, ®Y;)/(X,, ®Y;—1) =~ Y;/Y;_1 belongs to T or U. Thus Filt(T,U) is
additive.

Next, suppose X — Y is a surjection and suppose that X has filtration 0 = Xy <
X1 c -+ c X, = X where for each i € [n] the quotient X;/X;_1 belongs to T or U.

Then we have a short exact sequence
0-K—-X->Y -0
We see that (X, + K)/K =Y because X, + K = X, as K < X,,. We claim that
Oc(X1+K))Kc---c(X,+K)/K=Y
is a filtration of Y where for each i € [n] we have
(X + K)/K) / (Xim1 + K)/K) = (X; + K)/(X;o1+ K)e T or U

and where the isomorphism is obtained from the Third Isomorphism Theorem. As
X; € X; + K for any i € [n], the map X;/X;_1 — (X; + K)/(X;—1 + K) defined by
a+ X;—1— a+ X;—1 + K is well-defined and surjective. Since X;/X;_1 € T or U, we
have that (X; + K)/(X;—1 + K) € T or U so Filt(T,U) is quotient closed.
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Lastly, we show that Filt(7T,U) is extension closed. Suppose that Z € A-mod is
of minimal length (we denote the length of a module M by ¢(M)) with the property
that there is an extension 0 - X — Z — Y — 0 where X,Y € Filt(T,U), but
Z ¢ Filt(T,U). Let 0 = Xg € X3 < --- € X,, = X be a filtration witnessing that
X € Filt(T,U). The assumption that Z ¢ Filt(T,U) implies that the filtration 0 =
Xoc Xy c---c X, =X c Z has the property that Z/X = Y does not belong to T
and does not belong to U.

Now observe that there exists Z() € A-mod such that X ¢ Z() < Z, otherwise
Z/X =Y is simple and thus Y € 7 or Y € U. Since £(Z) > £(Z")), we have that Z(1) e
Filt(T,U). Let 0 = Z(()l) c Zg) c---C Zflll) — Z() be a filtration that witnesses this.
Since Z ¢ Filt(T,U), we have that the filtration 0 = Z((]l) c Z{l) c---C Zéll) =270 <
ZW) satisfies Z/ZM) ¢ T and Z/Z(") ¢ U. However, since Filt(T,U) is quotient closed
and since we have a surjection Y =~ Z/X — Z/Z(") we know that Z/Z"1) e Filt(T,U).
This implies that there exists 72 ¢ A-mod such that Z() = AL C Z, otherwise
Z/ZW is simple and therefore must belong to 7 or U. Since ¢(Z) > £(Z?), we have
that Z®) e Filt(T,U). If 0 = ZO(Q) c Z£2) - C Z,%) — Z® is a filtration witnessing
that Z(®) e Filt(T,U), then the filtration 0 = Z(()Q) c Z£2) c--C Z%) — 7@ < Z has
the property that Z/Z?) ¢ T and Z/Z®?) ¢ U. However, Z/Z? e Filt(T,U) since we
have a surjection Y ~ Z/X — Z/Z®3.

Inductively, one obtains a A-module Z*) e Filt(T,U) with 1 < k < ¢(Z/X) and
where Z/Z®) e Filt(T,U) is simple. Since Z/Z®*) is simple, it belongs to either T or
U 180 =2 c 2" < ... < zH = 20 witnessing that Z(*) € Filt(T,U), then the
filtration 0 = Z(()k) c ka) c---C Z,(ZIZ) = Z®) < Z shows that Z e Filt(T,U). This
contradicts our assumption that Z ¢ Filt(T,U). O

Next, we complete the proof that tors(A) is meet semidistributive using Lemmam

Lemma 3.4.10. The lattice tors(A) is meet semidistributive.

Proof. Let T, T2, T3 € tors(A). We show that if 71 A T3 = Ta A Tg, then (T1 v T2) A T3 =
Ti A Ts. Tt is clear that (71 v T2) A T3 © T1 A T3 so it is enough to show (71 v T2) A T3 <
Ti A Ts.

Let X € (71 v T3) A T5. By Lemma [3.4.9] we see that X has a filtration 0 = X, <
X1 < -+ c X,, = X where for each i € [n] the quotient X;/X;_1 belongs 77 or Ts.
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To complete the proof, it is enough to show that the module X /X, _; € Ti A T2 A T3
for any j € [n]. Since 73 is a torsion class and since there is a surjection X — X /X,,_;
for any j € [n], it is clear that X /X,,_; € T3 for any j € [n]. Thus we need to show that
X/Xn—jeTi AT for any j € [n].

To show that X/X,,_; € Ti A T for any j € [n], we induct on j. Let j = 1. We
observe X /X,,_1 € T1 or Tz by the properties of the filtration of X. Since X/X,,_1 € T3
and since we assume 71 A T3 = T2 A T3, we obtain that X/X,,_1 € T1 A Ta.

Now suppose X/X,,—j € Ti A T2 and consider X/X,,_;_1. We have a short exact
sequence

0— anj/anjfl — X/Xn,j,l — X/Xn,j — 0

where X,,_;/X,,_j_1 belongs to 71 or T2 by the properties of the filtration of X and
X/Xn—j € Ti A T2 by induction. Thus X/X,,_j_1 € T1 or Tz since torsion classes are
extension closed. By assumption, 71 A T3 = Ta A T3 50 X/Xp—j—1 € Ti A T2. We conclude
that X/X,,_;j € T1 A Tp for any j € [n]. O

3.5 Biclosed sets

A closure operator on a set C' is an operator X + X on subsets of C' such that for
X, Yycs:

X

N

° X,
e X =X, and

e if XCVY, then XCV.
In addition, we assume that & = §. A subset X of C is closed if X = X. It is
co-closed (or open) if C'— X is closed. We say X is biclosed (or clopen) if it is both
closed and co-closed. We let Bic(C') denote the poset of biclosed subsets of C, ordered
by inclusion.

For many closure operators, the poset of biclosed sets is not a lattice. However, in
some special cases, Bic(C) is a lattice with a semidistributive or congruence-uniform
structure. For example, if C' is the set of positive roots of a finite root system endowed

with the convex closure, then Bic(C) is a congruence-uniform lattice [Rea03]. In this
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setting, biclosed sets of positive roots are inversion sets of elements of the associated
Coxeter group, so Bic(C') may be identified with the weak order.

Some sufficient criteria for semidistributivity, congruence-uniformity, and polygonal-
ity was given in [McC15]. However, these criteria are not necessary. We say a collection
B of subsets of C' is ordered by single-step inclusion if whenever X,Y € B with
X ¢ Y, there exists c € Y — X such that X u {c} € B.

Theorem 3.5.1 ([McCI5] Theorem 5.5). Let C be a set with a closure operator. Assume
that

1. Bic(C) is ordered by single-step inclusion, and

2. WU (X uY)—W is biclosed for W, X,Y € Bic(C) with W < X nY.
Then Bic(C) is a semidistributive lattice.
Bic(C) is congruence-uniform if it satisfies (1), (2), and it has a poset structure
(Bic(C), <) such that
3. ifx,y,zeC with z € {x,y} — {x,y} then z < z and y < z.
Bic(C) is polygonal if it satisfies (1), (2), and

4. for distinct x,y € C, Bic({z,y}) is a polygon.

Example 3.5.2. For X < ([Z]), say X is closed if {i,k} € X holds whenever {i,j} € X
and {j,k} € X for 1 <i<j<k<mn. Itis easy to check that biclosed subsets of ([g])
are inversion sets of permutations. Moreover, ordering {j,k} < {i,l} ifi < j <k <,
this closure space satisfies the hypotheses of Theorem|3.5.1. Hence, one may deduce that
the weak order is a congruence-uniform and polygonal lattice. We refer to [McC15] for

more examples.

3.5.1 Biclosed sets of paths

A path in a graph G = (V, E) is a finite sequence of vertices (vp, ..., v;) such that v; is
adjacent to v;1 for i < t. If p = (vo,...,v;) is a path, its reverse pyey = (vy,...,00) is

also a path. We say a path (vo,...,v;) is acyclic if v; and v; are not adjacent whenever
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|i—j| = 2. Given paths p = (vg,...,v:) and p’ = (vy, ..., v)), if v; is adjacent to vj then

rrs

we say p and p’ are composable, and their concatenation is the sequence

/ / /
pop = (Vo,..., U0y, ...,0s).

Observe that an acyclic path is determined up to reversal by its set of vertices. For
our purposes, we will not distinguish between an acyclic path and its reversal.

Let AP be the collection of acyclic paths of G. For X € AP, we say X is closed if
for p,p’ € X, if pop’ € AP then pop’ € X. As before, we say X is biclosed if both X
and AP —X are closed.

The closure of any subset of acyclic paths may be computed by successively con-

catenating paths. We record this useful fact in the following lemma.

Lemma 3.5.3. Let X € AP. If pe X, then there exist paths qi,...,q € X such that
p:qlo.--oqt'

Theorem 3.5.4. Bic(AP) is a semidistributive, congruence-uniform, and polygonal

lattice.

Proof. To prove this result, we verify properties (1)-(4) of Theorem [3.5.1]

Let X,Y € Bic(AP) such that X < Y. If p,q,¢ are paths such that p € Y and
qoq = p, then either gor ¢’ isin Y. If pe Y — X is chosen of minimum length, then
either g or ¢’ must be in X.

Among the elements p of Y — X such that if p = ¢ o ¢/ then either g€ X or ¢’ € X,
choose pp to be of maximum length. We prove that X U {po} is biclosed. By the choice
of po, it is immediate that X U {po} is co-closed.

Assume that X U {po} is not closed. Then there exists p € X such that p o pg is an
acyclic path but is not in X. Among such paths, we assume p is of minimum length.
Since Y is closed, popg is in Y. By the maximality of pg, there exist acyclic paths ¢, ¢’
both not in X such that popy = go¢’. Let popy = (vo,...,v:). Up to path reversal,
we may assume p = (v, ..., 0i—1), Po = (Vi,...,0), ¢ = (vo,...,vj—1), ¢ = (Vj,..., )
for some distinct indices 4, j.

If i < j, then p e X, ¢ ¢ X implies (v;,...,vj—1) ¢ X since X is closed. But,

(viy...,vj—1) 0 ¢ = po, contradicting the choice of py.
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If j <4, then p e X, ¢ ¢ X implies (vj,...,v;—1) € X since X is co-closed. But
(vj,...,vi—1) o po = ¢, contradicting the minimality of p.

We conclude that X u {pg} is biclosed. Hence, Bic(AP) is ordered by single-step
inclusion. This completes the proof of .

Now let W, X,Y € Bic(AP) such that W< X nY.

Assume WU (X UY) — W is not closed. Choose p,qe W u (X uY) — W such that
pogq is of minimum length with pog ¢ W um. As W and m are
both closed, we may assume p e W and q € m Ifge (XUY)—W, then poq €
X uY as X and Y are both closed. Otherwise, ¢ = ¢’ oq; where ¢’ € m, q €
(X UY)—W. By the minimality hypothesis, pog e WU (X UY) —W. If poq e W,
then pog = poq’og; € X UY as X and Y are both closed. If poq’ € m, then
so is po ¢’ o q;. Either case contradicts the assumption that pog¢ W u m

Hence, this set is closed. Using properties of closure operators, we deduce

WoXuvY)-W=WuXuvY)-W=Wu((XuvY)-W)=XuUY.

Now assume X U Y is not co-closed. Choose p € X UY of minimum length such
that p = go ¢’ for some paths ¢,¢’ notin X uY. If pe X UY, then either ge X UY or
¢ € X UY since both X and Y are co-closed. Otherwise, there exist py e X UY, p' €
X UY such that p = pjoyp'.

Suppose p; is a subpath of ¢ and let » € AP such that pjor = ¢. Thenroq¢ = p/,
so either re X UY or ¢ € X UY by the minimality of p. But if r is in X UY then so
is ¢ = py or. This contradicts the hypothesis on q.

Suppose ¢ is a subpath of p; and let r € AP such that q o r = p;. This implies
rop = ¢. Since X and Y are co-closed, either r € X UY or g € X Y. But if
reX uY,then ¢ =rop € X uY holds. This contradicts the hypothesis on ¢'.

Hence, X U'Y is co-closed. Putting this together, we deduce that Wu (X 0Y) — W
is biclosed, establishing (2.

Partially order the set of acyclic paths by inclusion; that is, for p,q € AP set p < ¢
if p is a subpath of q.

For p,q € AP, the set {p,q} is {p,q} if they are not composable and is {p,q,p o q}
otherwise. In either case, it is easy to verify both and . O
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Using the properties of Theorem we may determine the structure of all poly-
gons in Bic(AP).

Corollary 3.5.5. FEvery polygon of Bic(AP) is either a square or hexagon as in Fig-
ure 3.3,

Figure 3.5: The polygons of Bic(AP).

Proof. A polygon of Bic(AP) is an interval of the form [W, X v Y] where W, XY €
Bic(AP) such that W < X and W < Y. By (1), there exist unique paths pe X — W
and ge Y —W. By (2), X vY = W u {p,q}. If p and ¢ are not composable, then

{p,q} = {p,q}, which implies that the interval [WW,X v Y] is a square. Otherwise,
{p,q} = {p,q,poq}, and the interval [W, X v Y] is a hexagon as in Figure O

Let @ be the framed quiver of @ with positive c-vectors c-vec™ (Q). We say that a
subset X of c-vec™(Q) is closed if x +y € X whenever z,y € X and x +y € c-vect(Q).
The relation to the previous closure operator is that if () is of type A or is an oriented
cycle, then the positive c-vectors of () are in natural bijection with acyclic paths on Q.
Moreover, the closure operators are identified via this bijection. Thus we define Bic(Q)

to be the lattice of biclosed sets of c-vectors of Q.

3.6 Biclosed subcategories

Throughout this section, we assume that A = kQ/I is the cluster-tilted algebra define
by a quiver ), which is either a cyclic quiver or of type A. In this section, we show
how to translate the information of Bic(Q) into a lattice of biclosed subcategories

of A-mod that we will denote by BZC(Q). More specifically, each biclosed set B €
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Bic(Q) will determine a unique subcategory B of A-mod and an inclusion of biclosed
sets B1 < By will translate into an inclusion of biclosed subcategories B1 < By. Using
the additional algebraic data that accompanies these subcategories, we prove that the

oriented exchange graph defined by @ is a lattice quotient of BZC(Q).

Definition 3.6.1. Let C be a subcategory of A-mod. We say that C is biclosed if

i) C = add (G—)ie[k]M(wi)) for some set of A-modules { M (w;)}ie[r) (add(@jefr) M (w;))
denotes the smallest full, additive subcategory of A-mod containing each M (w;)).

ii) C is weakly extension closed (i.e. if 0 — M(w;) — M(ws) — M(wz2) — 0 is
an exact sequence with M (wy), M (w2) € C, then M(w3) € C).

i11) C is weakly extension coclosed (i.e. if 0 — M (w;) — M(ws) - M(w2) — 0
is an exact sequence with M (w1), M (wy) ¢ C, then M (w3) ¢ C).

Let BIC(Q) denote the collection of biclosed subcategories of A-mod ordered by inclusion.

Part ¢) in Definition says that the elements of BZC((Q)) are additively generated
subcategories C of A-mod. Since we are restricting our attention to representation finite
algebras and thus to module categories with finitely many indecomposable objects, there
is an obvious self-duality defined on the collection of additively generated subcategories
of A-mod. Let ADD(Q) denote the collection of additively generated subcategories of
A-mod. Let A := {M(w;)};cr) be a set of indecomposable A-modules. We define the
complementation of an additively generated subcategory by

ApD(Q) L ADD(Q)

A:=add(@®M (w;) : M(w;) e A) +— A°:=add(®M (w;) : M(w;) ¢ A).
Clearly, (A°)¢ = A. It is also clear from the definition of biclosed subcategories of A-mod
that complementation restricts to a duality (—)¢ : BZC(Q) — BIC(Q).

Additionally, we remark that the standard duality (i.e. D(—) := Homp(—,k)) gives
us the following bijection

ADD(Q) 25 ADD(Q)

A :=add(@®M (w;) : M(w;) € A) — DA:=add(@DM (w;): M(w;) € A).
As with the complementation functor, one has D(DA) = A. The following obvious

lemma shows that the standard duality and the complementation functor interact nicely.
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Lemma 3.6.2. For any Ae ADD(Q), we have that (D.A)¢ = D(A).

Lemma 3.6.3. Let B € Bic(Q). Then B = add(@®epM(w(c))) € BIC(Q) where
M(w(e)) denotes the string module satisfying dim(M (w(c))) = c.

Proof. Given B € Bic(Q) it is clear that B is additive. Suppose that0 - Y — X — Z —
0 is an exact sequence where X, Z € ind(B) and Y € ind(A-mod). Thus Y = M (w(cq)),
Z = M(w(ca)), and X = M(w(c3)) for some c1,co € B and some c3 € c-vec(Q). Then,
by exactness, we have that dim(M (w(ec3))) = dim(M (w(eq))) + dim(M (w(ez))). This
implies that ¢3 = ¢1 + ¢2. Thus ¢3 € B so X = M(w(c3)) € B. We conclude that B
is weakly extension closed. An analogous argument shows that B is weakly extension
coclosed. Thus we have that B € BZC(Q). O

Lemma 3.6.4. Let B € BZIC(Q). Then B := {dim(M(w)) € Z" : M (w) € ind(B)} €
Bic(Q) (here ind(B) denotes the indecomposable A-modules that belong to B).

Proof. Assume that cj,co € B and that c3 = ¢; + c2 € c-vec(Q). We have that
M(w(cy)), M(w(cz)) € ind(B) and M(w(c3)) € ind(A-mod). Without loss of gener-
ality, we have that 0 — M (w(c1)) — M(w(cz)) — M(w(cz)) — 0 is exact. Since
B € BZIC(Q), we have that M (w(c3)) € ind(B). Thus c3 € B so B is closed. An analo-

gous argument shows that B is coclosed. O

Proposition 3.6.5. We have the following isomorphism of posets

Bie(Q) — BIC(Q)
B — B:=add(@epM(w(c)))
B :={dim(M(w)) e Z": M(w) € ind(B)} «— B.

In particular, BIC(Q) is a lattice.

Proof. By Lemmas [3.6.3] and [3.6.4] we have that the maps in the statement of the

proposition map biclosed sets to biclosed subcategories and vice versa. These maps are

clearly order-preserving bijections. That BZC(Q) is a lattice now follows immediately

from the fact that Bic(Q) is a lattice. O
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Let A := add(@jen M (w;)), A2 := add(®jepn M (v5)) € ADD(Q). We define

A U Ag = add (@ Mw)® P M(vﬁ) € ADD(Q)

i€[n] j€lm]
and
A1\Ay = add (6—) M(w;) : M(w;) ¢ {M(vj)}je[m]> € ADD(Q).
i€[n]

If M is a module in A = add(@je[,,) M (w;)) € ADD(Q), we define A\M to be the largest
additively generated subcategory of A not containing any summands of M. Additionally,
we define A € ADD(Q) to be the smallest additively generated subcategory of A-mod
containing 4 that is weakly extension closed.

We can now translate the formula for the join of two biclosed sets of c-vectors into

a formula for the join of two biclosed subcategories.
Corollary 3.6.6. If By, By € BZC(Q), then By v By = By U Bs.

Proof. We prove this identity by showing that Bic(Q) and BZC(Q) are isomorphic as
closure spaces. A subcategory A of BZC(Q) is weakly extension closed exactly when
M(w) € A whenever there exists a short exact sequence 0 — M(u) — M(w) —
M (v) — 0 for some M (u), M(v) € A. But this short exact sequence exists exactly when
dim(M(w)) = dim(M (u)) + dim(M (v)), which is the condition for the corresponding
subset of Bic(Q) to be closed. O

Lemma 3.6.7. There is an inclusion of posets tors(A) — BIC(Q).

Proof. Let T € tors(A). Since A is representation finite and since 7T is a torsion class,
T = add(@je[r) M (w;)) for some collection of indecomposables { M (w;)}ie(x]- Since T is
extension closed, it is weakly extension closed.

Assume 0 - X — Z — Y — 0 is an exact sequence with X,Y ¢ 7. Suppose Z € T.
Then since T is quotient closed, Y € T, a contradiction. Thus 7 is weakly extension
coclosed so T € BZIC(Q). O

Let B € BIC(Q). Define X(B) to be the set of objects X of B up to isomorphism
with the property that if one has a surjection X — Y then Y € B. Observe that B is
quotient closed if and only if X(B) = B. Also, define Y(B) to be the set of objects X
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of B up to isomorphism with the property that there exists an object Y of B such that
Y — X. Now define maps 7, 7' : BIC(Q) — ADD(Q) by

7 (B) := add (C—BM : Me ind(X(B)))

and
7(B) == add (P M : M €ind(Y(B))).

Clearly, m(B) c B< n'(B), myom, =7, and 7l ol = 7T,

Proposition 3.6.8. If B e BIC(Q), then m(B) € tors(A). Furthermore, 7w (BIC(Q)) =
tors(A).

Proof. Given B € BZC(Q), Lemma shows that 7| (B) is a full, additive, quotient
closed subcategory of A-mod. That 7 (B) is extension closed follows from Lemma
Thus | (B) € tors(A). The second assertion now follows from Lemma [3.6.7] O

Theorem 3.6.9. Let O be the equivalence relation on BZC(Q) where By = By mod ©
if and only if | (B1) = m(B2). Then m : BIC(Q) — tors(A) is a lattice quotient map.
In particular, EG(Q) ~ BIC(Q)/0.

Proof. We prove this Theorem by appealing to Lemma m By definition, 7 and
7! are idempotent. By Proposition and Lemma we know that 7| (B) €
BZIC(Q) for any B € BZIC(Q). By Lemma a), we have that 7' (B) e BIC(Q) for
any B € BZIC(Q). By Lemma and Lemma b), we know that both | and 7'
are order-preserving. Lastly, by Lemma a) and b), we know that 7| o l=x , and
7lo T = 7!, By Lemma we obtain that 7| is a lattice quotient map. The last
assertion immediately follows from the fact that tors(A) =~ EG (@) O

Corollary 3.6.10. Let Q be either a type A quiver or a cyclic quiver. Then any two
mazimal green sequences of (Q are connected by a sequence of polygonal flips. Moreover,

every polygon in m(@) 1s either a square or pentagon.

Proof. Since BZC(Q) is polygonal by Theorem and polygonality is preserved by
lattice quotients, Theorem implies that ﬁ(@) is a polygonal lattice. Since maxi-
mal green sequences correspond to maximal chains in EG (@), Lemma implies that

any two maximal green sequences are connected by polygonal flips.
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Let Q,Q1,Q, € m(@) such that @, and Q, are distinct ice quivers covering Q.
Let B € BZC(Q) such that 7 (B) is the torsion class corresponding to @ and «'(B) = B.
Then there exist By, Bz € BIC(Q) both covering B such that 7| (B;) is the torsion class
corresponding to @, for i = 1,2. Then [B,B; v Bs] is a polygon of BIC(Q), so it is
either a square or hexagon. Restricting © to the interval [B,B; v Ba], the polygon
[Q,Q; v Q-] is a lattice quotient of a square or hexagon as in Figure Hence, this
interval is either a square, pentagon, or hexagon.

Suppose [B,B; v Bs] is a hexagon, and let M(u;) and M (ug) be the unique in-
decomposables in B\B; and B\Bz, respectively. By the description of polygons in the
proof of Corollary there exists an extension of the form 0 — M (u;) — M(w) —
M (uz) — 0. Then the covering relation By < By u add(M(w)) is contracted by ©.
Hence, [Q,Q; v Q5] cannot be a hexagon. O

We now address a conjecture on the lengths of maximal green sequences (see [BDP14,
Conjecture 2.22]) and give an affirmative answer when @ is a type A quiver or a cyclic
quiver. Let green,(Q) := {i € green(Q) : fen(i) = ¢} be the set of maximal green

sequences of length /.

Corollary 3.6.11. Let Q) be either a type A quiver or a cyclic quiver. Then the set
{¢ € N: green,(Q) # I} is an interval in N.

Proof. Since m(@) is a finite lattice, it has at least one maximal chain. Moreover, it
has only finitely many maximal chains. Thus @) has only finitely many maximal green
sequences. Let ipin (resp. imax) be a maximal green sequence of @) of smallest (resp.
largest) length. Let i := fen(imin) and fpax := fen(imax). By Lemma and by
regarding maximal green sequences as maximal chains in EG (@), there exists maximal
green sequences imin = io,11,...,ix = imax Where i; € green()) and where i; and i1
differ by a polygonal flip for all j. By Corollary [3.6.10} [¢en(i;) —fen(ij_1)| < 1 for each
J € [k]. Thus for each £ € [{in, max] there exists i € green(Q) such that len(i) = ¢. O

Remark 3.6.12. In [KaslJ], it is shown that if Q is a path quiver, then {{ € N :

greeny(Q) # I} = [n, W] . f Q is mutation-equivalent to a path quiver, we only

know that {€ € N : green,(Q) # &} is an interval in N that is contained in [n, @] .
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For example, if Q is the cyclic quiver appearing in Ezample [3.2.3, then its mazimal

green sequences are of length 4 or 5.

Example 3.6.13. Let Q = Q(3) and let A = kQ(3)/{a1c2 : «; € Q(3)1). In Fig-
ure we show how m; maps elements of BIC(Q(3)) to elements of tors(A) using

the notation in FExample for additively generated subcatgories of A-mod. For in-
[ ] ([ ] [e]

stance, add (X (3,2)® X (2,1)® X (2,2)) € BZC(Q(3)) is represented as o o o .
As in Figure[3.1], blue edges of BIC(Q(3)) indicate edges that will be contracted to form
tors(A).

3.7 Properties of 7, and '

In this section, we prove several Lemmas that establish important properties satisfied
by 7, and 7!, Throughout this section, we assume that A = kQ/I is the cluster-tilted
algebra defined by a quiver @), which is either a cyclic quiver or of type A. Before
presenting these Lemmas and their proofs, we introduce some additional notation for

string modules. Let M (w) € ind(A-mod) be a string module with

a1 [e73 Qam
W=T1 <X Ty «<>Tj41" Ty <> Tm+1-

aq Q51 Q41 «@
Define Pred(q;) := x1 «— 29+ 2j—1 < x; and Succ(q;) := Tj11 < Tjpo - Ty <>

Tm+1-

Lemma 3.7.1. If B € BZC(Q), then 7 (B) is a full, additive, quotient closed subcategory
of A-mod.

Proof. By the definition of m|(B), it is clear that 7| (B) is a full, additive subcategory
of A-mod.

Next, we show that 7| (B) is quotient closed. Since

mi mso
HomA(@?lllXiv @?ﬂbjl}/j) = (‘D @ HOHIA(XZ‘, Y])?
i=1j=1
it is enough to show that if M(wi) — M(w2) and M (wq) € m(B), then M(ws) €
7 (B). The latter statement is clear, by the definition of 7 (B). Thus 7| (B) is quotient
closed. 0
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Lemma 3.7.2. If Be BIC(Q), then (B) is weakly extension closed.

Proof. Let 0 - M(wz) — Z — M(w;) — 0 be an extension where M (ws), M (w;) €
7 (B) and where Z € ind(B) since B is weakly extension closed. Thus it is easy to

2 al?_
see that Z = M(wy <— wy). Let wy = :E§2) DEEN ajg)- g) 1 225 x%) and let

(1) o
_ (1) & 1.0 T (1)
W1 =T Ty Ty > Tny -

To show that 7| (B) is weakly extension closed we must show that for any surjection
p: M(wy <~ wy) — M(u) one has M(u) € B. Suppose we have such a surjection and

suppose that w is substring of wy. Then we have

(1)

Z(}r)l .. 5”51—1 St $§1)
where i,j € [n1] and i < j. Let 8 € @1 be an arrow that appears in ws <
with exactly one of its vertices belonging to u. Such an arrow 3 belongs to the set
{a, ,...,ozflll)fl}. Since p is a surjection, the unique vertex of 5 that belongs to u
is the source of 8. Thus we have that M(wi) — M (u). Therefore, M(u) € m(B) by
Lemma so M (u) € B. An analogous proof shows that M (u) € B if u is a substring
of M(ws).

To complete the proof, we need to show that if p : M(wy < wy) — M(u) for
some string u = %(2) — xg-l) with i € [ne] and j € [n1], then M(u) € B.
Suppose to the contrary that M (wy <= w1) is of minimal dimension with the property
that p : M(wy <— w;) — M(u) is a surjection where u is a string of the above
form, but M(u) ¢ B. Since M(ws <>~ wy) € B, we can assume that dimy (M (u)) <
dimy (M (wg «*— w1)). Thus i # 1 or j # n1. We will assume that i # 1 and j # ny and
the proof in the case where exactly one of these conditions is satisfied is analogous.

((2))—x()and

Now, since p is a surjection, we know that 7 # 1 implies that s
t(ag)l) = x( ) . Similarly, j # n; implies that s(a; a )) ( ) and t(x (1)) = :z:§+)1 Observe

that we have the exact sequence
0 M o odP)eMEl) o o zl)) > Mw < wy) - M(u) — 0.
From these facts, we deduce that we have the following two exact sequences



O—»M(m;21<—>~--<—>ﬂcgl))—>M(w1)—>M($§1)<—>---<—>x§-1))—>0.

By Lemma |3.7.1, we have that M(a:z(?) oo x%)),M(xgl) oo xgl)) e 7 (B).

Now notice that we have the exact sequence

0 M@z o oa®) - Mu) - M o oDy o

Since dimy (M (u)) < dimy (M (wy <> wy)) and since M (wy «<— w;) was a counterex-
ample of minimal dimension, we have that M (u) € B, a contradiction.

We conclude that M (wg <~ wy) € 7 (B). Thus 7, (B) is weakly extension closed. [J
Lemma 3.7.3. If Be BIC(Q), then | (B) is extension closed.

Proof. Since
mi1 mo

Ext} (@} 4 X, @12Y) = @@EXtA i Yj)

i=1j=1

and since elements of Ext} (X,Y) are in natural bijection with extensions of the form
0 >Y - 72— X — 0 for some Z € A-mod (up to equivalence of extensions), it is
enough to prove that 7| (B) is closed under extensions of the form 0 — M (w2) — Z —
M (wq) — 0.

Suppose £ = 0 — M(w2) - Z — M(w;) — 0 is an extension and M (w;), M (w2) €
7 (B). We know that 7| (B) is additive so we can assume that £ is a nonsplit extension.
By Lemma we know that dimy Ext} (M (w1), M(ws)) = 1 so up to equivalence
of extensions ¢ is the unique nonsplit extension of M(wi) by M (ws). We can assume
Z ¢ ind(A-mod) since B is weakly extension closed by Lemma

If Q is a type A quiver, then by [CS14, Thm 3.5, Thm 4.2] £ has the following form

§=0— M(wz) > M(wz) ®M(ws) — M(w) — 0.

Here M(w;) = Pred(y) <— w N Succ(8), M(w1) = Pred(a) > w L Succ(p)

aq (e} Qm,

where w = 1 T2 ZTm+1 such that supp(M (wi)) N supp(M(ws)) =

{Zi}iefm+1)- Furthermore,
M (ws) = Pred(a) - w 2> Succ(d)

and
M (wy) = Pred(y) «—w L Suce(f).
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Thus it is enough to show that M (w3), M (ws4) € 7 (B).
First, we show that M (ws) € 7 (B). Observe that M (ws) — M(w LN Succ(9))
so M(w LN Succ(d)) € m(B) by Lemma Similarly, M (w;) — M (Pred(«)) so
M (Pred(«)) € m(B). Now notice that we have the extension

0 — M(w -2 Suce(5)) — M(ws) — M(Pred(a)) — 0

where M (w 2, Succ(6)), M (Pred(a)) € m(B) so M(ws) € 7 (B) by Lemmam

Next, we show that M(ws) € 7 (B). Observe that M(ws) — M (Pred(y) <« w)
so M(Pred(y) <>~ w) € m(B) by Lemma m Similarly, M(w;) — M (Succ(B)) so
M (Succ(B)) € 7 (B). Now notice that we have the extension

0 — M(Pred(a) «— w) — M(wy) — M (Succ(8)) — 0

where M (Pred(y) «<— w), M(Succ(B)) € m(B) so M(wys) € 7 (B) by Lemma m
Thus we conclude that if @ is a type A quiver, 7| (B) is extension closed.

Now suppose that @) = @Q(n) for some positive integer n > 3. Since we can as-
sume that Z ¢ ind(A-mod) and that £ is nonsplit, we know that supp(M(w2)) N
supp(M(w1)) # &. By Lemma we have that the nonsplit extension & is of

the following form
E=0— M(wy) > M(u<«—w<«—v)®Mw)—> Mw)—0

where we = u «— w with w; = w «— v for some strings u,v, and w where w =
21 << gy mp_y <= ay, satisfies supp(M (ws)) A supp(M (w1 )) = {zi}ic[r-
Here we show that M(u <« w «— v), M(w) € m(B). Since M(w;) — M(v) and
M (wz) — M(w), we have that M (v), M (w) € m;(B) by Lemma [3.7.1] Thus we have
the extension
0— M(ws) > M(u <+« w<«—v) > M(v)—0
and so Lemma implies that M(u < w <« v) € 7 (B). Thus we conclude that if

@ = Q(n) for some n > 3, then 7 (B) is extension closed. O

Lemma 3.7.4. The map | : BZC(Q) — tors(A) is order-preserving.

Proof. Let B,B' € BIC(Q) where B ¢ B'. Let X € ind(X(B)) and let X — Y be
a surjection. Then Y € B < B so X € ind(X(8')). Thus 7 (B) < = (B') so 7| :
BIC(Q) — tors(A) is order-preserving. O
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Lemma 3.7.5. The maps 7, and ! satisfy Dr'(B)¢ = 7, (DB) for any B € BIC(Q).

Proof. We have that

Dr'(B) = D({XeBeBIC(Q): Y — X = Y eB%)
— {DX e DB°e BIC(Q?): DX - DY — DY e DB}
= m (DB°).

Lemma 3.7.6. The map w| : BZC(Q) — ADD(Q) satisfies the following
0) (B) e BIC(Q),

b) = is order-preserving.

Proof. To prove both a) and b), we use that 7' (B) = D(7(DB°))¢ for any B € BIC(Q),
which follows from Lemma [3.7.5] Let B € BZC(Q), then we have that DB° € BZC(Q°P).
By Proposition [3.6.8 and Lemma we have that 7 (DB¢) € BZC(Q°P). Now it
follows that 71(B) = D(m(DB°))¢ € BIC(Q).

To prove b), let By, By € BZC(Q). Then we have

B c By Bf o BS

DBS © DBS

7 (DBS) < m (DBS) (by Lemma
(m (DB§))* > (m(DBS))*

D (DBY))° < D(r, (DBS))°

71 (By) < 1 (By).

NN

Thus 7! is order-preserving. O
Lemma 3.7.7. The maps 7| and 7l satisfy the following
a) ©,(B) = (m, o7 (B) for any B € BIC(Q),

b) 7 (B) = (m, o) (B) for any B € BIC(Q) if and only if n'(B) = (7! o m)(B) for
any B € BIC(Q).

Proof. We first prove a). Since B < 7'(B), by Lemma we know that 7| (B) <
7, (71 (B)). Thus we need to show that 7 (7"(B)) < = (B). To do so, let M(u) €
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ind(X(7"(B))) and suppose that M (u) — M (w) is a surjection where M (w) ¢ B such
that any other such indecomposable M (w') with dim(M (w')) < dim(M (w)) belongs to
B.

Since M(w) € w'(B), there exists M(w;) € B and an inclusion M (w;) < M (w).

This inclusion gives rise to an exact sequence
0— M(wy) »> M(w) - M(w)/M(wy) — 0.

Note that dim(M (w)/M (wy)) < dim(M (w)) and we have a surjection M (u) - M (w) —
M (w)/M(w1) so by assumption M (w)/M (wy) € B. If M (w)/M (w) is indecomposable,
then by the fact that B is biclosed, M (w) € B, a contradiction. Thus we can assume
M (w)/M (w1) is not indecomposable.

Observe that since M (w;) is indecomposable and since w; is a substring of w, we
have that M (w)/M (w1) = M(wz) @ M (ws) for some substrings of w, denoted wy and

ws. Now observe that we obtain an exact sequence
0— M(wy) = M(w; < wz) = M(wz) — 0.

Since M (w)/M (w1) € B, we know that M (ws), M(ws) € ind(B). By the fact that B is
biclosed, we have that M (w; < w2) € ind(B). We now notice that w = w3 — wy < ws

so M (wy < wy) <> M (w) and thus we have the exact sequence
0 — M(w; «— wz) = M(w) - M(w3) — 0.

Now by the fact that B is biclosed, we obtain that M (w) € B, a contradiction. Thus
M (u) € ind(X(B)) and so 7 (71(B)) < 7, (B).
To prove b), assume 7 (B) = 7, (71 (B)) for any B € BIC(Q). Then we have that

D(x'(B))* = D(r,(DB))
= m(x'(DB)

(by Lemma
(by assumption)
(
(

)
— n (D(m(B)f)  (by Lemma[ET3)
= D(r'(m (B)))° by Lemma [3.7.5).

Thus we have that 71(B) = (7! o 7} )(B). The converse is proved analogously. O
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3.8 Canonical Join Representations

In this section, we use our previous results to classify canonical join and meet rep-
resentations of torsion classes T € tors(A). Throughout this section, we assume that
A = kQ/I is the cluster-tilted algebra defined by a quiver @), which is either a cyclic
quiver or of type A.

Lemma 3.8.1. Let M(w) € ind(A-mod). Then

a) there are no extensions of the form 0 — M(wy) — M(v) — M(wz) — 0 where
M (w;) € Fac(M(w)) fori=1,2,

b) Fac(M(w)) € tors(A).

Proof. a) Suppose we have an extension 0 — M (w;1) — M(v) — M(wz2) — 0 where
M (w;) € Fac(M(w)) for i = 1,2. Then by exactness one has that v = w; «<— ws.
Since M (w;) € Fac(M(w)) and since M (w;) is indecomposable, M (w) — M (w;).
Thus wy «— w; is a substring of w. However, the orientation of a contradicts that
Homy (M (w), M (w1)) # 0.

b) We observe that since Fac(M (w)) is quotient closed, one has 7| (Fac(M(w))) =
Fac(M (w)). Also,

Fac(M(w)) = add(®@M (v;) : IM (w) — M (v;))

so Fac(M (w)) is additively generated. Thus, by Lemma [3.6.7] it remains to show that
Fac(M (w)

Since Fac(M
with M (v) € Fac(M (w)) has M (ws) € Fac(M (w)). This means there are no extensions
of the form 0 — M(w;) — M(w) — M(w2) — 0 with M (w;) ¢ Fac(M(w)) for i =
1,2. Thus Fac(M(w)) is weakly extension coclosed. We conclude that Fac(M(w)) €
BIC(Q). O

) € BIC(Q). By part a), Fac(M(w)) vacuously is weakly extension closed.
(w)) is quotient closed, any extension 0 — M (w;) — M (v) - M(wz) — 0

Lemma 3.8.2. A torsion class T € tors(A) is join-irreducible if and only if T =
Fac(M (w)) for some M (w) € ind(A-mod).

Proof. Suppose T = Fac(M (w)) for some M (w) € ind(A-mod). Let 71, T2 & Fac(M (w)).
This means that M(w) ¢ 71 and M(w) ¢ T2. Recall that by regarding 7; and 73 as
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elements of BZC(Q), we have that 71 v T2 = 71 u T2 by Corollary [3.6.6, By part
Lemma a), every additively generated subcategory A c Fac(M(w)) is weakly
extension closed. Now since 71 v T2 < Fac(M(w)), we have that 71 v T2 = T1 U Ta.
Thus M(w) ¢ T1 v T2 so T1 v T2 & Fac(M (w)).

Conversely, suppose that 7 € tors(A) is join-irreducible. Since tors(A) = f-tors(A),
we have that 7 = Fac(X) for some X € A-mod. Let X = @f_, M (w;)% for some positive
integers a; € N.

We claim that Fac(X) = \/f:1 Fac(M (w;)). Observe that for any j € [£], we have
M(w;) € \/_, Fac(M (w;)). Since \/'_; Fac(M(w;)) € tors(A), it is additive and thus
X € \/11?:1 Fac(M (w;)). We conclude that Fac(X) \/f:1 Fac(M (w;)). On the other
hand, M(w;) € Fac(X) for any j € [{] since Fac(X) is quotient closed so we have
that Fac(M(w;)) < Fac(X) for any j € [¢]. Since Fac(X) € tors(A), we have that
\/!_| Fac(M (w;)) < Fac(X).

Since T = \/f:1 Fac(M (w;)) and since T is join-irreducible, we know that 7 =
Fac(M (wj;)) for some j € [£]. O

Theorem 3.8.3. Let T € tors(A). Let M(w),...,M(w;) be a complete list of non-

isomorphic indecomposables such that for all i € [{],
1. M(w;) is in T and no proper submodule of M (w;) is in T, and

2. if M(w;) € Fac(M(w)) and M(w) € T then M(w) has a proper submodule M (u)
inT.

Then T = \/f=1 Fac(M(w;)) is a canonical join representation of T .

Proof. We first prove that the equality 7 = \/f:1 Fac(M (w;)) holds. Since Fac(M (w;))
is contained in T for all 7, it is clear that T contains \/f:1 Fac(M (w;)). Suppose this
containment is proper, and let M (w) € T be an indecomposable of minimum dimension
such that M (w) ¢ \/f:1 Fac(M (w;)). Suppose first that M (w) contains no proper sub-
module in 7. Then there must exist some M (w’) € T such that M (w) € Fac(M (w’)) but
M (w'") has no proper submodule in 7. Choosing such an M (w') of maximal dimension,
we have w’ = w; for some i and M (w) € Fac(M (w;)), contrary to the assumption that
M(w) ¢ \/f:1 Fac(M (w;)). Hence, M(w) contains a submodule M such that M € T.
Since T is quotient-closed, M (w)/M € T. But M (w)/M decomposes into a direct sum
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of indecomposables, each of smaller dimension than M (w). By the minimality hypoth-
esis, M(w)/M € \/f=1 Fac(M (w;)). As \/f=1 Fac(M (w;)) is extension-closed, it must
contain M (w), contrary to our assumption.

Next, we show that 7\M (w;) is in BZC(Q). It is clear by (1) that 7T\M (w;) is weakly
extension closed. Assume that it is not co-closed. Let M (w) be an indecomposable in
T\M (w;) of minimum dimension such that there exists an extension 0 — M(u) —
M(w) — M(w') — 0 for which M(u) and M(w’) are not in 7T\M (w;). Since T is
quotient-closed, we deduce M (w') = M (w;). By (2), there exists some M (u') € T such
that M (u') is a submodule of M (w). By (1), the composition M (u") — M (w) — M (w;)
must be 0. Hence, there is an inclusion M (u') — M (u), which gives an exact sequence
of the form

0— M(u)/M@') - M(w)/M(u") — M(w;) — 0.

Since T is extension closed, M (u)/M(u') is not in 7. But, since T is quotient closed,
M(w)/M(u') is in T.

If M(w)/M(v') is an indecomposable, then so is M (u)/M(u'), and we obtain a
contradiction to the minimality of M (w). Otherwise, M (w)/M(v') is a direct sum of
two string modules M (v) @ M (v"). In this case, w; must be a substring of one of these
strings, so we may assume M (v) — M (w;) is a quotient map. Since there is an extension
of the form 0 — M(u) — M(w) — M (w;) — 0, the string v must decompose into two
strings w; and u” where 0 — M (u”) — M(v) — M(w;) — 0 is exact. But this implies
M(u)/ M) = M(u")® M), so M(u") ¢ T while M(v) € T. Again, this contradicts
the minimality of M (w). Hence, we conclude that 7T\M (w;) is in BZC(Q).

Now suppose 7 = \/J_; Fac(M(w})) is some other join representation of 7" For a

J
given i € [/], if none of the factors Fac(M (w})) contains M (w;), then \/7_; Fac(M (w})) =
T\M (w;), in contradiction with our assumption. Hence, for all ¢ € [{], there exists
j € [m] such that Fac(M (w;)) < Fac(M(wj})). This means that our join representation

T = \/f:1 Fac(M (w;)) is canonical. -
Dually, every torsion class has a canonical meet-representation.

Corollary 3.8.4. Let T € tors(A). Let M(wn),...,M(ws) be A-modules such that
D(TH) = \/g=1 Fac(DM (w;)) is a canonical join representation of D(T+). Then T =

le LSub(M (w;)) is a canonical meet representation of T.
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Proof. We first show that 7 = /\le LSub(M (w;)). Observe that

T = HD(D(TH)

= +(D \/f L Fac(DM (w;) ))>
= +(D \/ L DSub(M (w; )>>

(\/] 1 DDSub(M (w; )))
= << L tSub(M ) ) (by Propostion [3.4.2]b) )
f;l LSub(M (w;)) (by Propositions [3.4.1] and [3.4.2] a)

Since the functor D((—)*) : tors(A) — tors(A°P) = tors(A)°P is an anti-isomorphism by
Lemma and since V§:1 Fac(DM (w;)) is a canonical join representation of D(7+),

we have by Lemma that /\f:1 LSub(M (w;)) is a canonical meet representation of
T. O

3.9 Some Additional Lemmas

In this section, unless otherwise stated, we let @ be a type A quiver and let A = kQ/I

denote the cluster-tilted algebra corresonding to Q.

Lemma 3.9.1. Let M(u), M (v) € ind(A-mod) with supp(M (u)) N supp(M(v)) # .

Then there is a unique string w = x1 <> Xy -+ Tp_1 < T} in A such that supp(M(u)) N

supp(M (v)) = {xz}ze

Proof. By the classification of type A quivers in Lemma and the relations in A, any
string in A includes at most two vertices from any 3-cycle in ). Thus a string u = y; <
Yo+ Ys—1 <> Ys is the shortest path connecting y; and ys in the underlying graph of Q.
This implies that for any y; and y; appearing in u, the string y; < yi41---yj—1 < ¥;
is the shortest path connecting y; and y; in the underlying graph of Q. Therefore if
supp(M (u)) m supp(M (v)) # &, there is a unique string w = x1 <> x2 -+ Tp_1 < T} in
A such that supp(M (u)) N supp(M (v)) = {Z;}ic[] O

Lemma 3.9.2. Let M(u), M (v) € ind(A-mod). If M(u) — M(v) or M(u) - M(v),
then
dimy Homp (M (u), M (v)) = 1.
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Proof. Let M(u) = ((Us)ieQo, (Pa)acq,) and M (v) = ((Vi)ieQys (0a)acq, ). We prove the
result in the case that M (u) - M(v). The case where M (u) < M (v) is similar.

Since M(u) — M(v), v is a substring of u. Let v = z] <> 29 <25 - &% g0y,
Now let 0 : M (u) — M (v) be a surjection. Clearly, 0, = 0 if s ¢ {z; : i€ [m + 1]}. If

0s # 0 for some s € {z; : i € [m + 1]}, then 65 = X for some A € k* (i.e. 0, is a nonzero

scalar transformation). As 6 is a morphism of representations, it must satisfy that for
any a € (@)1 the equality 0;4)Pa = 0abs(q) holds. Thus for any a € {a; : i€ [m]}, we
have 0y(4) = 0(a)- We conclude that {0} is a k-basis for Homy (M (u), M (v)). O

Lemma 3.9.3. Let M(u), M(v) € ind(A-mod). Then dimyg Homp (M (u), M (v)) < 1.

Proof. We can assume that Homp (M (u), M (v)) # 0. Thus, by Lemma there exists

a unique string

o (e 2 o
w = T T2 Tm+1

that is a substring of both w and v such that = : M (u) - M (w) and ¢ : M (w) — M (v).
It is easy to see that any map 6 : M(u) — M (v) factors as § = cuw where ¢ € k.
Combining this with Lemma we have that dimg Homp (M (u), M (v)) = 1. O

Lemma 3.9.4. Assume Q is of type A or of the form Q = Q(n) and let A = kQ/I
denote the corresponding cluster-tilted algebra. Let M (u), M(v) € ind(A-mod). Then
dimy, Ext} (M (u), M (v)) < 1.

Proof. By the Auslander-Reiten Formula (see [ASS06]), we have that

dimy, Ext} (M (u), M (v)) dimy Hom (77 M (v), M (u))
dimy Homy (77 M (v), M (u))

1

NN

where the last inequality follows from Lemma if @ is of type A and Lemma [3.2.6
if @ = Q(n) and the fact that 7=1M(v) is either zero or indecomposable. O
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Figure 3.6: The map 7 : BZC(Q(3)) — tors(A).



Chapter 4

On Maximal Green Sequences for

Type A Quivers

4.1 Introduction

A very important problem in cluster algebra theory, with connections to polyhedral
combinatorics and the enumeration of BPS states in string theory, is to determine when
a given quiver has a maximal green sequence. In particular, it is open to decide which
quivers arising from triangulations of surfaces admit a maximal green sequence, although
progress for surfaces has been made in [Ladl3], [Bucl4], [BM15] and in the physics
literature in [ACCT13]. In [ACC™13]|, they give heuristics for exhibiting maximal green
sequences for quivers arising from triangulations of surfaces with boundary and present
examples of this for spheres with at least 4 punctures and tori with at least 2 punctures.
They write down a particular triangulation of such a surface and show that the quiver
defined by this triangulation has a maximal green sequence. In [Bucl4, BM15], this
same approach is used on surfaces of any genus with at least 2 punctures. In [Lad13],
it is shown that there do not exist maximal green sequences for a quiver arising from
any triangulation of a closed once-punctured genus g surface. It is still unknown the
exact set of surfaces with the property that each of its triangulations defines a quiver
admitting a maximal green sequence.

Outside the class of quivers defined by triangulated surfaces there has also been

progress in proving that certain quivers do not have maximal green sequences. In

56
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IBDP14], it is shown that if a quiver has non-degenerate Jacobi-infinite potential, then
the quiver has no maximal green sequences. This is used in [BDP14] to show that a
certain McKay quiver has no maximal green sequences, and in [Sev14] it is shown that
the X7 quiver has no maximal green sequences. Other work [Mull5| illustrates that it
is possible to have two mutation-infinite quivers that are mutation equivalent to one
another where only one of the two admits a maximal green sequence.

Even for cases where the existence of maximal green sequences is known (e.g. for
quivers of type A), the problem of exhibiting, classifying or counting maximal green
sequences has been challenging and serves as our motivation. By a quiver of type A,
we mean any quiver that is mutation-equivalent to an orientation of a type A Dynkin
diagram. In the case where (@) is acyclic, one can find a maximal green sequence whose
length is the number of vertices of ), by mutating at sources and iterating until all
vertices have been mutated exactly once. In general, maximal green sequences must
have length at least the number of vertices of (). However, even for the smallest non-
acyclic quiver, i.e. the oriented 3-cycle (of type Ag), a shortest maximal green sequence
is of length 4. (While we were in the process of revising this chapter, it was shown in
[CDR15| that the shortest possible length of a maximal green sequence for a quiver Q
of type A,, is n+t where t = #{3-cycles of Q}. See Remark and Sections for
more details.) With a goal of gaining a better understanding of such sequences, in this
chapter we explicitly construct a maximal green sequence for every quiver of type A. As
any triangulation of the disk with n + 3 marked points on the boundary defines a quiver
of type A,,, our construction shows that the disk belongs to the set of surfaces each of
whose triangulations define a quiver admitting a maximal green sequence. We remark
that the latter result has also been proved in [CDR 15| by constructing maximal green
sequences of type A, quivers of shortest possible length. Additionally, the maximal
green sequences constructed in [CDR*15] are almost never the same as the maximal

green sequences constructed in this chapter.

In Section we present preliminary notions on mutation sequences and maximal
green sequences. Section describes how to decompose quivers into direct sums of
strongly connected components, which we call irreducible quivers. We remark that
this definition of direct sum of quivers, which is based on a quiver glueing rule from

[ACC™13|, coincides with the definition of a triangular extension of quivers appearing
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in [Ami09]. As shown in Theorem to construct a maximal green sequence of
a quiver, it suffices to construct maximal green sequences for each of its irreducible
components. We refer to the class of such quivers for which Theorem holds as t-
colored direct sums of quivers (see Deﬁnition. In Section we show that almost
all quivers arising from triangulated surfaces (with 1 connected component) which are
a direct sum of at least 2 irreducible components are in fact a t-colored directed sum.

For type A quivers, irreducible quivers have an especially nice form as trees of 3-
cycles, as described by Corollary [£.5.1} This allows us to restrict our attention to signed
irreducible quivers of type A, which are constructed in detail in Section We then
construct a special maximal green sequence for every signed irreducible quiver of type
A in Section [4.6] which we call an associated mutation sequence. This brings us to the
main theorem of the chapter, Theorem which states that this associated mutation
sequence is a maximal green sequence. Section also highlights how the results of
Section [.3] can be combined with Theorem to get maximal green sequences for
any quiver of type A (see Corollary .

The proof of Theorem [4.6.5] is somewhat involved. The proof of Theorem [4.6.5
essentially follows from two important lemmas (see Lemma m and Lemma .
Our proof begins by attaching frozen wvertices to a signed irreducible type A quiver
Q@ to get a framed quiver @ (see Section for more details). We then apply the
associated mutation sequence p alluded to above, which is constructed in Section
but decompose it into certain subsequences as y = B, OO O p, and apply each
mutation subsequence W, one after the other. In Lemma we explicitly describe, for
the resulting intermediate quivers, the full subquiver that will be affected by the next
iteration of mutations p, . We will refer to this full subquiver of p, , o---op o HO(Q)
affected by K, as Rj,. Lemma then explicitly describes how each of these full
subquivers, Ry, is affected by the mutation sequence Hy - Together these lemmas lead
us to conclude that the associated mutation sequence py = B, OO O py is a maximal
green sequence.

Furthermore, these two lemmas imply that the final quiver B, OO0 Ho(@) is
isomorphic (as a directed graph) to @, the co-framed quiver where the directions of
arrows between vertices of () and frozen vertices have all been reversed. In particular,

such an isomorphism is known as a frozen isomorphism since it permutes the vertices
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of @ while leaving the frozen vertices fixed. We refer to this permutation, of vertices
of @, as the permutation induced by a maximal green sequence (we refer the reader
to Section for precise definitions of these notions). One of the benefits of proving
Theorem using the two lemmas mentioned in the previous paragraph is that we
exactly describe the permutation that is induced by an associated mutation sequence
of a signed irreducible quiver of type A. (See the last paragraph in Section and
Definition M) This is a result that may be of independent interest.

Finally, Section [£.8|ends with further remarks and ideas for future directions, includ-
ing extensions to quivers arising from triangulations of surfaces besides the disk with

marked points on the boundary.

4.2 Preliminaries and Notation

In this chapter, we focus on successively applying mutations to a fixed ice quiver. As
such, if (@, F) is a given ice quiver we define an admissible sequence of (Q, F),
denoted i = (i1, ...,1q), to be a sequence of mutable vertices of (@), F') such that i; # i1
for all j € [d —1]. An admissible sequence i = (i1, ...,%4) also gives rise to a mutation
sequence, which we consider to be an expression p = p;, o -+ o p;; with 7; # 45414
for all j € [d — 1] that maps an ice quiver (@, F) to a mutation-equivalent one. Let
Mut((Q, F')) denote the collection of ice quivers obtainable from (@, F') by a mutation
sequence of finite length where the length of a mutation sequence is defined to be d,
the number of vertices appearing in the associated admissible sequence i = (i1, .. .,iq).
Given a mutation sequence v of @Q € Mut(@) we define the support of v, denoted
supp(v), to be the set of mutable vertices of @) appearing in the admissible sequence
which gives rise to v.

Let p = p, o --- o p;; be a mutation sequence of Q. Define {Q(k)}o<k<dq to be
the sequence of ice quivers where Q(0) := Q and Q(j) := (pi; © -+ 0 piy) (@) (In
particular, throughout this chapter, we apply a sequence of mutations in order from
right-to-left.) A green sequence of () is an admissible sequence i = (i1, 12, ...74) of @
such that i; is a green vertex of Q(j — 1) for each 1 < j < d. The admissible sequence i
is a maximal green sequence of () if it is a green sequence of () such that in the final

quiver Q(d), the vertices 1,2,..., N are all red. Note that maximal green sequences
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also induce maximal green mutation sequences, as they are referred to in [Qiul5]. In
other words, Q(d) contains no green vertices.

Proposition 2.10 of [BDPI14] shows that given any maximal green sequence p of
Q, one has a frozen isomorphism Q(d) = é Such an isomorphism amounts to a
permutation of the mutable vertices of é, (ie. Q(d) = 6\2?7 for some permutation
o € Gy where (:2/0 is defined by the exchange matrix Bo = B@O’ that has entries
(B0)ij=DBiojo). We call this the permutation induced by p. Note that we can

regard o as an element Sy where i -0 =i for any i € [N + 1,2N].

4.3 Direct Sums of Quivers

In this section, we define a direct sum of quivers based on notation appearing in
[ACCT13, Section 4.2]. We also show that, under certain restrictions, if a quiver Q
can be written as a direct sum of quivers where each summand has a maximal green
sequence, then the maximal green sequences of the summands can be concatenated
in some way to give a maximal green sequence for ). Throughout this section, we
let (Q1,F1) and (Q2, F») be finite ice quivers with N; and Ny vertices, respectively.
Furthermore, we assume (Q1)o\F1 = [N1] and (Q2)o\F> = [N1 + 1, Ny + Na].

Definition 4.3.1. Let (a1,...,ax) denote a k-tuple of elements from (Q1)o\F1 and
(b1,...,br) a k-tuple of elements from (Q2)o\F2. (By convention, we assume that the
k-tuple (ai,...,ax) is ordered so that a; < aj if i < j unless stated otherwise.) Ad-
ditionally, let (Ry, F1) € Mut((Q1,F1)) and (Re, F3) € Mut((Q2, Fy)). We define the
direct sum of (Ry, F1) and (R, F»), denoted (Ry, F1) (—B(bl""’b’“) (R2, F3), to be the ice

(al 7"'7ak)
quiver with vertices

<(RhF1) @Ebl’""bk) (Rz,Fz))O = (R1)ou (R2)o = (Q1)ou (Q2)0 = [N1+ NoJu Fr 1 Fy

a17~"’ak)

and arrows

((Rb Fl) ®Ezl17,:..‘.’,lz)1kk)) (RQ, FQ))l = (Rl, Fl)l [ (Rg, F2)1 [ {a,- ﬁ bz Tl € [k‘]} .
Observe that we have the identification of ice quivers

Q160 ") @y= Gl ) G

ai,...,ar)
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where the total number of vertices is M = 2(Ny + Na) in both cases.
We say that (Ry, Fy) G—)(bl""’bk) (R, Fy) is a t-colored direct sum if

(a1,...,a)

t = #{distinct elements of {ay ..., ar}}
and there does not exist v and j such that
#{a; = bj} = 2.

Remark 4.3.2. Our definition of the direct sum of two quivers coincides with the def-
inition of a triangular extension of two quivers introduced by C. Amiot in [Ami09],
except that we consider quivers as opposed to quivers with potential. We thank S. Lad-
kani for bringing this to our attention. He uses this terminology to study the represen-
tation theory of a related class of quivers with potential, called class P by M. Kontsevich
and Y. Soibelman [KS08, Section 8.4).

Remark 4.3.3. The direct sum of two ice quivers is a mon-associative operation as is

shown in Ezample [{.3.5
Definition 4.3.4. We say that a quiver Q) is irreducible if
N (b1,..,bk)
Q - Ql @(ahm’ak) QQ
for some k-tuple (ay...,a;) on (Q1)o and some k-tuple (b,...,bx) on (Q2)o implies

that Q1 or Q2 is the empty quiver. Note that we define irreducibility only for quivers

rather than for ice quivers because we later only study reducibility when F = (.

Example 4.3.5. Let Q denote the quiver shown in Figure[[.1 Define Q1 to be the full
subquiver of Q on the vertices 1,...,4, Qs to be the full subquiver of QQ on the vertices
6,...,11, and Q3 to be the full subquiver of Q on the vertex 5. Note that Q1,Q2, and

Q3 are each irreducible. Then
- (5,8,11,8,9,11)
Q=Ci&1 1340 23

where Qo3 = Qo @Eg; Q3 so Q is a 3-colored direct sum. On the other hand, we could

write

Q = Q12 @82; Q3
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Figure 4.1: The quiver @ used in Example

where Q12 = Q1 ®8§,}1é8494)11) Q2 so Q is a 2-colored direct sum. Additionally, note that

(5,8,11,8,9,11) (5,8,11,8,9,11) (5) (5,8,11,8,9,11) (5)
Q1 ("9(1,171,3,4,4) Q23 = Q1 @(1,1,1,3,4,4) (Q2 @(6) Q3) # (Ql @(1,1,1,3,474) Q2> @(6) Q3

where the last equality does not hold because Q1 6—)8’?’113’8494)11) Q2 is not defined as 5 is
not a vertex of Q. This shows that the direct sum of two quivers, in the sense of this

chapter, is not associative.

Our next goal is to prove that ) has a maximal green sequence if () is a t-colored
direct sum and each of its summands has a maximal green sequence (see Proposi-
tion [4.3.12)). Before proving this, we introduce a standard form of ¢-colored direct sums

of ice quivers from which we will work:

N R RO

(RF) = Qi@ "t )

geees @1 ey Ot yeeny 0t ) 2

where Qy € Mut(Qa), ar,...,a; € (Q)o\[N1], b7,... .69 € (Qa)o\[No]', and p is a
fixed mutation sequence ju;, o - - - o i, where supp(p) < (Q1)o-

We consider the sequence of mutated quivers (R*), F), for each k € [0,d], where
Rk .= i, © - -0 R By convention, £ = 0 implies that the empty mutation sequence

has been applied to (R, F) so R(?®) = R. For every k € [0,d], we define Q,(k) :=
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(fip0---0 uil)(él) and the following set of arrows

A(k) = {a e (R®, F), : s(@) or t(a) € (Q1(k))o\[N1]’ and the other end of }

aisin {a,....a}} o B, o 0 by

Observe that the sets A(k) only contain arrows in the partially mutated quivers
which have exactly one of their two ends incident to a vertex in (Q1)p. The next lemma

illustrates how the set of arrows A(k — 1) transforms into the set A(k).

Lemma 4.3.6. If (i > j) € A(k), but a,a® ¢ A(k—1), then there is a 2-pathi < iy 23 j
in (R*=V, F) and ezactly one of the arrows ay, g € (RF=Y | F); belongs to A(k —1).

Proof. By the definition of quiver mutation, the arrow (i > j) € A(k) ¢ (R®), F); =
(11:, R*=Y | F); was originally in A(k — 1), was the reversal of an arrow originally in
A(k — 1), or resulted from a 2-path.

By hypothesis, we must be in the last case. By the definition of A(k), either the
source or target of a is in (Q1(k))o\[V]] but not both. Hence the 2-path i % i), %3 j

must contain one arrow from (Q1(k))o\[V]] to itself and one arrow in A(k — 1). O

In the context of this lemma, we refer to this unique arrow in A(k—1) as @. We use
Lemma to define a coloring function to stratify the set of arrows A(k). This will

allow us to keep track of their orientations as will be needed to prove a crucial lemma

(see Lemma |4.3.10]).

Definition 4.3.7. Let (R, F) be a t-colored direct sum with a direct sum decomposition
of the form shown in and let 1 be a mutation sequence where supp(p) < (Q1)o.

Define a coloring function with respect to Q1 by
A0 — o, a)
a — s(a).
We say that o € A(0) has color f°(a) in (R, F). Now, inductively we define a coloring
function on each ice quiver (R®), F) where k € [0,d]. Define f* : A(k) — {a1,...,a;}
by

ff @)+ ifa,a® ¢ A(k - 1)
o) = fFa%?) ¢ ifa¢ A(k—1), a?e Ak —1),
fFa) @ ifaeA(k—1).
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We say that o € A(k) has color f¥(a) in (R®), F).

Example 4.3.8. Using the notation from Example and writing
3= 0,608 (0060005
we have a1 = 1 and b(l) =5, b(l) = 8§, b(l) =11, as = 3 and b(2) = 8, and az = 4 and

b( ) = =9, b(3) 11. In Fzgureu we show Q and ,qu The label written on an arrow
a of Q or ,qu indicates its color with respect to Q1.

Our first result shows how the coloring functions {f*}o<r<q defined by an ice quiver
(R, F) of the form in and a mutation sequence yu = p;, o --- oy, partition the

arrows connecting a mutable vertex z € (Q1)¢ and a vertex in {b(] i€ [rjl}uia)}

Lemma 4.3.9. Let (R F) be a t-colored direct sum with a direct sum decomposition of
the form shown in and let p be a mutation sequence where supp(p) < (Q1)o. For
any k € [0,d], we have that the coloring function f* is defined on each o € A(k).

Proof. We proceed by induction on k. If £ = 0, no mutations have been applied so the
desired result holds. Suppose the result holds for (R(kfl),F ) and we will show that
the result also holds for (R®), F). We can write (R®), F) = (u, R*~1 F) for some
y € (Q1)o- Let a € A(k) such that s(a) =z € (Q1)o and t(a) = z € {bgj) vie [ry]}ufa}

or vice-versa. There are three cases to consider:

a) z =y,
b) z is connected to y and there is a 2-path  — y — z or & < y « z in (RE=1 F),

c) x does not satisfy a) or b).

In Case a), we have that all arrows o € A(k — 1) connecting = and z are replaced
by a°P € A(k). By the definition of the coloring functions, these reversed arrows obtain
color f*(a) = fE=1(a®P).

In Case b), it follows by Lemma[4.3.6|that an arrow a € A(k) resulting from mutation
of the middle of a 2-path has a well-defined color given by f*~!(@). Further, mutation
at y would reverse both arrows of such a 2-path hence vertex y is in the middle of a

2-path in A(k) if and only if it is in the middle of a 2-path in A(k — 1).
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Finally, in Case c), the mutation at y does not affect the arrows « connecting x and

z and therefore the colors of such an arrow is inherited from its color as an arrow in
A(k—1). Note that an arrow between z and y would connect vertices of (Q1)o and thus

has no color. O

For the proofs in the remainder of this section, we denote the exchange matrix of
(R, F), as Br py = (bk(iﬂ,y))xe[N1+N2],ye[2(N1+N2)]' Here bF(x,y) := #{(x > y) €
(R F) 1} — #{(y > ) e (R®), F);}. (This differs from the notation of Section [4.2] to
differentiate it from our notation for the set of vertices {bgj )iie [;]}.) Furthermore,

we refine this enumeration according to color using the following terminology.

Vi(z,y,0) = #{(xSy)e (R(k),F)l : « has color ¢}
—#{(y > z)e (R® F); : «a has color £}.

We proceed with the following two technical lemmas.

Lemma 4.3.10. Let (R, F') be a t-colored direct sum with a direct sum decomposition
of the form shown in and let i be a mutation sequence of (R, F') where supp(p)
(Q1)o. For any k € [0,d], £ € [t], and x € (Q1)o, all of the arrows of A(k) with color ay
and incident to vertex x either all point towards vertex x or all point away from vertex

x. Moreover they do so with the same multiplicity.

Proof. We need to show that for any = € (Q1)o, k € [0,d], j € [t], and £ € {a1,...,a:}
we have that b¥(z, bgj),ﬁ) = b¥(x, a;-,E) for all i € [rj]. We proceed by induction on k. If
k = 0, no mutations have been applied so the desired results holds. Suppose the result
holds for (R =1, F) and we will show that the result also holds for (R*), F'). We can
write (RF), F) = (u, R*=D F) for some y € (Q1)o. Let 2 € (Q1)o and z € {bgj) 11 €
[r;]} w {a];} be given. There are three cases to consider:

a) x=y,

b) x is connected to y and sgn(b*~!(z,y)) = sgn(b¥~1(y, 2)) # 0,

¢) x does not satisfy a) or b).
By Lemma we know that

Vi (x, z) = 2 Ve (x, 2, 0)

Lefa;ielt]}
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and

0y, = ), By 0).
le{a;:ie(t]}

Thus, from the definition of j,, and the proof of Lemma [4.3.9 we have that

—v" 1z, 2,0) : Case a)
Ve(z,2,0) = Ve (2, y)bF(y, 2, 0) + VPN (2, 2,6) : Case b)
b, 2, 0) . Case c).

By induction, each expression on the right hand side of the equality is independent
of the choice of z € {bz(-j) ri € [rj]}u{a}}. Thus v*(z, 2, £) is independent of of the choice
of ze (o) i e [r)]} u{d)}). 0

Lemma 4.3.11. Let (R, F) be a t-colored direct sum with a direct sum decomposition of
the form shown in , let pu be a mutation sequence of (R, F') where supp(p) < (Q1)o,
and let k € [0,d]. In any (R F), the arrows incident to the frozen vertex a} (for all

i € [t]) have color a;.

Proof. Let a} € {a},...,a;} be given. We proceed by induction on k. If & = 0, no
mutations have been applied so the desired result holds. Suppose the result holds
(R*=1_ F) and we will show that the result holds for (R*), F'). We can write (R*), F) =

(,uyR(kfl), F) for some y € (Q1)o- As y # a}, there are only two cases to consider:
b) ) is connected to y and there is a 2-path @} — y — z or @} < y « z in (RE~1 F),
c) a} does not satisfy b).

First, in Case b), if there is a 2-path /! — y — z in (RF~V F) (resp. a} « y « 2
in (R*®1, F)), then by induction the arrow (a} — y) € (R¥V, F); (resp. (a} «
y) € (R*Y F);) has color a;. Thus if there is a 2-path a; — y — z in (R*F~1 F)
(resp. a} < y <« z in (R*=V F)), then there is an arrow a} — z € (R®) F); (resp.
a — ze (R® F);) of color a;.

In Case c¢), the mutation at y does not affect the arrows « connecting a) and any
vertex z € (R(), F)g. Therefore the color of such an arrow is inherited from its color as

an arrow in A(k — 1). By induction, such arrows have color a;. O
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We now arrive at the main result of this section. It shows that if @ is a t-colored
direct sum each of whose summands has a maximal green sequence, then one can build
a maximal green sequence for @) using the maximal green sequences for each of its

summands.

Theorem 4.3.12. If u, € green(Q1) and p, € green(Q2), then p, o p, € green(Q)
where (1) (1) (t) (t)
(RIS AR
Q - Ql G_)(all,~~-,a1,~1~-,at7--1~,at) t QQ'
Proof of Theorem [[.53.13. Let o; denote the permutation of the vertices of @; induced
by .. Observe that under the identification in Definition we let

~ —~ (b(l) p) ) b(t)) —~

_ 1 o0 Org 9001 ey Oy
Q = @ @(m,...,a1,...,at,.~,at) Q2.

b(l) b(l) b(t) b(t)) —~

We also have that 6/2\1 @E e S Qg s a t-colored direct sum of the form

shown in (4.1).

We first show that H1© is a s-colored direct sum (for some s). Let p, = p1;,0---op;, .

1
A1,y 5oy O e, @)

Since K€ green(Q)1), we have that 316/2\1 = ngl and so for each frozen vertex ag- with
J € [t], we obtain that x; := a; - 01 € (Q1)o is the unique mutable vertex of @) that is
connected to @) by an arrow. Furthemore, (z; & aj) € (Hlé)l is the unique arrow of
H1Q connecting these two vertices.

By Lemmam for any a); we have that v (z;, a%) = Diefas: icf]} (x5, a;,£). Since
Q101 has no 2-cycles, sgn(b?(x;, a;,0)) <0 for any £ € {a; : i€ [t]}. By Lemma
a; has color a; so b%(z;, al) = (x5, as,aj). By Lemma given any z; := a; - 01 €
(Q1)o we have that b%(z;, 2) = b%(xj,2,a;) = —1 for any 2 € {bgj) cod e [y} u{a))

Thus we have that 1, Q = Q2 @E:(ll’)' "’z;("l')"zt’l;'('t’)wt) o Q1071 is a s-colored direct sum where
- 1 o0 Org 5ees07 e Oy

{bgl), . ,bg), cee bgt), ce bg)} is a multiset on (Q2)o\F2 (with s distinct elements) and
{x1,...,21, ..., T4, ..., 2} is a multiset on (Q1)o\F1. Note that in this s-colored direct
(7)s

sum, the b,”"’s are not necessarily given in increasing order.

Next, we show that p,(p, (@)) is a t-colored direct sum. Since Hlé is a s-colored
direct sum and Ky = Hj, © -0 py is a mutation sequence with supp(ﬁ2) < (Q2)o,
one defines coloring functions {g*}o<p<a on H1Q with respect to Q2 in the sense of

Definition Now an analogous argument to that of the previous two paragraphs
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shows that
A (y(l), i)yl ——
1y (1, (Q)) = Q101@ ooty (8202

where y@ :

;= bg-i) - o9 with i € [t], j € [r;]. One now observes that

A 5 (y?), iy Lyl —— pe
(byopy)(Q) = Qo1 @,y " " Q02 = Q

Ty Tt ey L)

and thus all mutable vertices of (p, o p 1)(@) are red.
Finally, since p, € green(Q;) for i = 1,2, each mutation of @ along p, o p, takes
place at a green vertex. Thus p,op, € green(Q). O

Remark 4.3.13. We believe that Theorem holds for any quiver that can be

realized as the direct sum of two non-empty quivers, but we do not have a proof.

4.4 Quivers Arising from Triangulated Surfaces

In this section, we show that Theorem can be applied to quivers that arise from
triangulated surfaces. Our main result of this section is that quivers @ arising from
triangulated surfaces can be realized as t-colored direct sums (see Corollary .
Before presenting this result and its proof, we recall for the reader how a triangulated
surface defines a quiver. For more details on this construction, we refer the reader to
[ESTOg].

Let S denote an oriented Riemann surface that may or may not have a boundary
and let M < S be a finite subset of S where we require that for each component B
of 0S we have B n M # 7. We call the elements of M marked points, we call the
elements of M\(M n 0S) punctures, and we call the pair (S, M) a marked surface.
We require that (S, M) is not one of the following degenerate marked surfaces: a
sphere with one, two, or three punctures; a disc with one, two, or three marked points
on the boundary; or a punctured disc with one marked point on the boundary.

Given a marked surface (S, M), we consider curves on S up to isotopy. We define an
arc on S to be a simple curve v in S whose endpoints are marked points and which is not
isotopic to a boundary component of S. We say two arcs 1 and 2 on S are compatible
if they are isotopic relative to their endpoints to curves that are nonintersecting except

possibly at their endpoints. A triangulation of S is defined to be a maximal collection
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of pairwise compatible arcs, denoted T. Each triangulation T of S defines a quiver Qr
by associating vertices to arcs and arrows based on oriented adjacencies (see Figure .

One can also move between different triangulations of a given marked surface (S, M).
Define the flip of an arc v € T to be the unique arc 7’ # ~ that produces a triangulation
of (S, M) given by T/ = (T\{}) u {7’} (see Figure [4.4). If (S,M) is a marked surface
where M contains punctures, there will be triangulations of S that contain self-folded
triangles (the region of S bounded by ~3 and -4 in Figure is an example of a
self-folded triangle). We refer to the arc 73 (resp. ~4) shown in the triangulation in
Figure as a loop (a radius). As the flip of a radius of a self-folded triangle is not
defined, Fomin, Shapiro, and Thurston introduced tagged arcs, a generalization of
arcs, in order to develop such a notion.

We will not review the details of tagged arcs in this chapter, but we remark that any
triangulation can be regarded as a tagged triangulation of (S,M) (i.e. a maximal
collection of pairwise compatible tagged arcs). In Figure we show how one regards
a triangulation of (S, M) as a tagged triangulation of (S,M). We also note that any
tagged triangulation T of (S, M) gives rise to a quiver Qr (see Example for a
quiver defined by a tagged triangulation or see [FSTO08] for more examples and details).

We now review the notion of blocks, which was introduced in [FST08] and used to

classify quivers defined by a triangulation of some surface.

Definition 4.4.1. [FST08, Def. 13.1] A block is a directed graph isomorphic to one
of the graphs shown in Figure [{.6 Depending on which graph it is, we call it a block
of type I, II, III, IV, or V. The vertices marked by unfilled circles in Figure [{.6 are
called outlets. A directed graph T is called block-decomposable if it can be obtained
from a collection of disjoint blocks by the following procedure. Take a partial matching
of the combined set of outlets; matching an outlet to itself or to another outlet from
the same block is not allowed. Identify (or “glue”) the vertices within each pair of the
matching. We require that the resulting graph T be connected. If T' contains a pair of
edges connecting the same pair of vertices but going in opposite directions, then remove

each such a pair of edges. The result is a block-decomposable graph I'.

As quivers are examples of directed graphs, one can ask if there is a description of
the class of block-decomposable quivers. The following theorem answers this question

completely.
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Theorem 4.4.2. [FSTO0S, Thm. 13.3] Block-decomposable quivers are exactly those

quivers defined by a triangulation of some surface.

Remark 4.4.3. Let Qr be a quiver defined by a triangulated surface with no frozen
vertices. In other words, we are assuming that every v € (Qr)o is a mutable vertex.
Then

#{ae (Qr)1: = >y for somey e (Qr)o}

2
#{ae (Qr)1: y— x for someye (Qr)o} 2.

NN

We now consider the quivers that are defined by triangulations, but are not irre-
ducible. We show that any such quiver is a t-colored direct sum. The following lemma is
a crucial step in showing that a quiver defined by a triangulation that is not irreducible

will not have a double arrow connecting two summands of Q).

Lemma 4.4.4. Assume that Q) is defined by a triangulated surface (with 1 connected
gy

component) and that a b is a proper subquiver of (). Then there exists a
az

path of length 2 from b to a.

Proof. Since @ is defined by a triangulated surface, there exists a block decomposition
{R}}je[m) of @ by Theorem m By definition of the blocks, a7 and ay come from
distinct blocks. Without loss of generality, a; is an arrow of Ry and «q is an arrow of
Ry. Furthermore, in R; with ¢ = 1,2 we must have that s(«;) and t(«;) are outlets.
Thus R; with ¢ = 1,2 is of type I, I, or IV, but by assumption R; and Ry are not both of
type I. When we glue the Ry to R to using the identifications associated with @, a case
by case analysis shows that there exists a path of length 2 from b to a. Furthermore, the
vertices corresponding to a and b are no longer outlets. Thus attaching the remaining

R;’s will not delete any arrows from this path. O

Corollary 4.4.5. Let Q be a quiver defined by a triangulated surface (with 1 connected
aq

component) that is not irreducible. If Q # a b , then Q is a t-colored direct

_—
a2

sum for some t € N.

Proof. Since we are assuming that () is not irreducible, there exists subquivers 1 and

Q2 of @ such that we can write Q = Q1 @Ebl’""bk)

alv""ak)

(Q1)o and {b1,...,bx} is a multiset on (Q2)o. Let a; € {a1,...,ar} and b; € {b1,..., by}

Q2 where {a1,...,ax} is a multiset on
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be given. We claim that #{a € (Q)1: a; — b;} < 1. Suppose this were not the case,

aq

then @ would have a proper subquiver of the form a; bj . By Lemma |4.4.4]

_—
a2

there must be a path of length 2 from b; to a;. This contradicts the fact that all arrows
between {aj,...,ar} and {by,...,bx} point towards the latter. Hence, @ is not only a

direct sum but is a t-colored direct sum. O

4.5 Signed Irreducible Type A Quivers

In this section, we focus our attention on type A, quivers, which are defined to
be quivers R € Mut(l < 2 « --- <« n) where n > 1 is a positive integer. We
begin by classifying irreducible type A, quivers. After that, we explain how almost
any irreducible type A, quiver carries the structure of a binary tree of 3-cycles. In
section we will show how regarding irreducible type A, quivers as trees of 3-cycles
allows us to construct maximal green sequences for such quivers. The next result follows
from Lemma 2.1.11

Corollary 4.5.1. Besides the quiver of type A1, the irreducible quivers of type A are
exactly those quivers () obtained by gluing together a finite number of Type II blocks
{Satae[n) in such a way that the cycles in the underlying graph of Q are in bijection
with the elements of {Sa}ae[n]- Additionally, each S, shares a vertex with at most three

other Sg’s. (We say that S, is connected to Ss in such a situation.)

Proof. Assume that () is a quiver obtained by gluing together a finite number of Type
IT blocks {Sa}ae[n) in such a way that the cycles in the underlying graph of @ are in
bijection with the elements of {Su}ae[n). Then Q satisfies i) in Lemma [2.1.1, By the
rules for gluing blocks together, each vertex i € (Q)o has either two or four neighbors
so i) and iv) in Lemma hold. It also follows from the gluing rules that if ¢ has
four neighbors, then two of its adjacent arrows belong to one 3-cycle and the other two
belong to another 3-cycle so 4ii) in Lemma holds. Additionally, since each arrow
of () is contained in an oriented 3-cycle, there is no way to partition the vertices into
two components so that the arrows connecting them coherently point from one to the
other. Thus the quiver @ is irreducible.

Conversely, let Q be an irreducible type A quiver that is not the quiver of type
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A;. We first show that any arrow of ) belongs to a (necessarily) oriented 3-cycle of Q.
Suppose (i — j) € (Q)1 does not belong to an oriented 3-cycle of Q. Then there exist
nonempty full subquivers Q; and Q2 of @ such that QQ = Q1 @Ez)) Q2. (By property i),
there cannot be an (undirected) cycle of length larger than 3.) This contradicts the fact
that @ is irreducible.
Not only is it true that every arrow of ) belongs to an oriented 3-cycle of @), property
i) also ensures that @) is obtained by identifying certain vertices of Type II blocks in a
finite set of Type II blocks {Sa}ae[n]. Furthermore, property 4) in Lemma implies
these identifications are such that all vertices have two or four neighbors. By properties
i) and i), these identifications do not create any new cycles in the underlying graph of
Q. Thus @Q is obtained by gluing together a finite number of Type II blocks {Sa}ae[n]
in such a way that the cycles in the underlying graph of () are in bijection with the
elements of {Sa}ae[n]- O

Definition 4.5.2. Let Q be an irreducible type A quiver with at least one 3-cycle. Define
a leaf 3-cycle S, in Q to be a 3-cycle in Q) that is connected to at most one other 3-cycle

in Q. We define a root 3-cycle to be a chosen leaf 3-cycle.

Lemma 4.5.3. Suppose @Q is an irreducible type A quiver with at least one 3-cycle.
Then Q has a leaf 3-cycle.

Proof. If @) has exactly one 3-cycle R, then Q = R is a leaf 3-cycle. If @) is obtained
from the Type II blocks {.S;};e[n], consider the block S;,. If S;, is connected to only one
other 3-cycle, then S;, is a leaf 3-cycle. If \S;, is connected to more than one 3-cycle,
let S;, denote one of the 3-cycles to which S;, is connected. If S;, is only connected
to Si,, then S;, is a leaf 3-cycle. Otherwise, there exists a 3-cycle S;, # S;, connected
to Si,. By Lemma there are no non-trivial cycles in the underlying graph of @
besides those determined by the blocks {Si}ie[n] so this process will end. Thus @ has a
leaf 3-cycle. O

Consider a pair, (Q,S) where @ is an irreducible type A quiver @ with at least one
3-cycle, and S denotes a root 3-cycle in ). We now define a labeling of the arrows of @,
an ordering of the 3-cycles, and a sign function on the set of 3-cycles of ). Adding this
additional data to (Q,S) yields a binary tree structure on the set of 3-cycles {Sa}ae[n]-
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We begin by letting 57 := S denote the chosen root 3-cycle, Sy denote the unique

3-cycle connected to Si, and z; denote the vertex shared by S; and Ss. (In the event

that @ is a single 3-cycle, we choose z; to be a vertex of S; arbitrarily.) Next, we let

a1, f1 and 1 denote the three arrows of Sp in cyclic order such that s(v1) = 21 = t(51),

s(B1) = t(a1), and s(a1) = t(y1). We next label the arrows of Sy such that s(ag) = 21 =
t(y2), t(ag) = s(B2), and t(B2) = s(72). See Figure for examples of this labeling.

For 7 > 2, we order the remaining 3-cycles by a depth-first ordering where we

(1) inductively define S;;+1 to be the 3-cycle attached to the vertex t(c;),

(2) define a1 such that s(a;+1) = t(ay) and then B;y1, 741 follow ;41 in cyclic

order,

(3) if no 3-cycle is attached to t(cy), define S;;1 to be the 3-cycle attached to ¢(53;)
and s(ajt1) = t(f5;) instead, and finally

(4) minimally backtrack and continue the depth-first ordering until all arrows and

3-cycles have been labeled.

Given a 3-cycle S; in the block decomposition of @, define z; := s(a;), y; := s(5i),
and z; = s(;). The vertex z; of S; was already defined in the previous paragraph and
that definition of z; clearly agrees with this one. We say that a 3-cycle S; is positive
(resp. negative) if s(a;) = t(j) (resp. s(oy) = t(B;)) for some j < i. We define
sgn(S;) := + (resp. —) if S; is positive (resp. negative). We define T; := (.5;, sgn(S;))
to be a 3-cycle in the block decomposition of ) and its sign. We will refer to T; where
i € [n] as a signed 3-cycle of Q). For graphical convenience, we will consistently draw
3-cycles as shown in Figure with the convention that sgn(S;) = + (resp. —) in
the former figure (resp. latter figure). We refer to the data Q := (Q, S, {T}}i[n)) as a
signed irreducible type A quiver.

Remark 4.5.4. If Q is an irreducible type A quiver with more than one 3-cycle, then
the choice of a root 3-cycle completely determines the sign of each 3-cycle of Q. Thus
Q = (@, 5, {Ti}icn)) depends only on (Q,S) and thus it makes sense to refer to the
signed irreducible type A quiver defined by (Q,S).
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The next lemma follows immediately from Corollary [£.5.1] and from our definition

of the sign of a 3-cycle S; in Q.

Lemma 4.5.5. If Q is an irreducible type A quiver with at least one 3-cycle, S is a
root 3-cycle of Q and Q = (Q, S,{T}}ie[n)) is a signed irreducible type A quiver defined
by (Q,S), then Q is equivalent to a labeled binary tree with vertex set {S;}icn) where S;
is connected to Sj by an edge if and only if S; is connected to S; (i.e. S; and S share a
vertex). Furthermore, a 3-cycle S; € {Si}ic(n) has a right child (resp. left child) if and
only if S; shares the vertex y; (resp. z;) with another 3-cycle, .

For the remainder of this section, we assume that () is a given irreducible type A
quiver and S a root 3-cycle of (). We also assume Q is a signed irreducible type A
defined by the data (@,S). For convenience, we will abuse notation and refer to the
vertices, arrows, 3-cycles, etc. of @ with the understanding that we are referring to
the vertices, arrows, 3-cycles, etc. of @), respectively. Since we will often work with @,
the framed quiver of @), it will also be useful to define O to be framed quiver of () with
the additional data of S, the root 3-cycle of @, and the data of a sign associated with
each 3-cycle of (). Now for convenience, we will abuse notation and refer to the mutable
vertices, frozen vertices, arrows, and 3-cycles of Q with the understanding that
we are referring to the mutable vertices, frozen vertices, arrows, and 3-cycles of @,
respectively. We will refer to Q as a signed irreducible type A framed quiver.
Additionally, we define a full subquiver R of Q or 0 to be a full subquiver of ) or @,
respectively, with the property that the sign of any 3-cycle C' of R is the same as the
sign of C' when regarded as a 3-cycle of Q or Q.

Example 4.5.6. In Figure [{.9, we show an ezample of a signed irreducible type Aagg
quiver, which we denote by Q. The positive 3-cycles of Q are T1,T3,T4,Ts,T7. For
clarity, we have labeled the arrows of Q in Figure[{.9, but we will often suppress these

labels in later examples. We also note that many of the vertices, e.g. z1,Y2,Y3,...,23
could also be labeled as xo,x3,T4,...,x11, but we suppress the vertex labels x; except for
xX1.

It will be helpful to define an ordering on the vertices of Q. We label the mutable

vertices of @ according to the linear order

1=s(a1) <tlag) <t(B1) <tlag)<t(f2) <... <tlap) <t(Bp)=N
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and the frozen vertices of @ according to the linear order
N+1=s(a1)  <tlag) <t(B) <tla) <t(B2) <... <tlan) <t(Bn) =2N.
We call this the standard ordering of the vertices of Q

Example 4.5.7. Let O denote the signed irreducible type Aoz framed quiver shown in

Figure . We have labeled the vertices of Q in Figure according to the standard
ordering. Note that we have suppressed the arrow labels in Figure [{.10

4.6 Associated Mutation Sequences

Throughout this section we work with a given signed irreducible type A quiver Q
with respect to a fixed root 3-cycle S. Based on the data defining the signed irre-
ducible type A quiver Q, we construct a mutation sequence of () that we will call the
associated mutation sequence of Q. After that we state our main theorem which
says that the associated mutation sequence of Q is a maximal green sequence (see The-

orem [4.6.5). We then apply our main theorem to construct a maximal green sequence
for any type A quiver @ (see Corollary [4.6.8]).

4.6.1 Definition of Associated Mutation Sequences

Before defining the associated mutation sequence of Q, we need to develop some termi-

nology.

Definition 4.6.1. Let Ty be a signed 3-cycle of Q. Define the sequence of vertices
(@(0,k), z(1,k),...,x(d, k)) of Q

DTty vy € (@)1 satisfies s(ym,) = (j — 1, k).

Note that such a sequence is necessarily finite, and we choose d to be mazimal, or
equivalently so that sgn(Sm,) = +. When k is clear from context, we abbreviate x(s, k)
as x(s). It follows from the definition of x(j) that x(j) = zm; for any j € [d], and that
xz(d) = x1 or Ymy—1. However, x(0) can be expressed as x5 for some s € [n] only if
deg(z(0)) = deg(zy) = 4. See Figure[.11 Note that if sqn(Sk) = +, then this sequence
of vertices is simply (x(0),z(1)).
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Definition 4.6.2. For any verter v of QQ which can be expressed as v = yg, i.e. as a
point of some signed 3-cycle Ty, of Q, we define the transport of yi by the following
procedure. We will denote the image of the transport as tr(v). Consider the full subquiver
of @ on the vertices of the signed 3-cycles T1,T5,. .. Ty, which we denote by Q. Inside

this subquiver,

i) move from yy, along By to t(Bk),

ii) move from t(By) along the sequence of arrows Ym,, Ymss - - - » Ym, of mazimal length

to t(ym,) where the integers {mi}ie[d] are those defined by the signed 3-cycle Ty,
(see Definition ,

iii) if possible, move from t(vm,) to tr(yx) := t(Bk,) along the sequence of arrows of
the form shown in each of which belongs to a signed 3-cycle T; for some
1 < k, under the assumption that the the subsequences A1 and As are of mazimal
length, and As must be nonempty. If no such sequence exists of this form, we

instead define tr(yg) := t(Ym,)-

Qs Brys Qs Bras -+ s Qg 15 Bro_1s Qhps Q15 Brpsrs Qkpros Bhippor -+ 0 Oy, By (4:2)
L ] L 1
A1 A2

See Figures and [{.13

We now use the above notation to define the associated mutation sequence of

Q.

Definition 4.6.3. Let Q = (Q, S, {T;}ic[n]) be a signed irreducible type A quiver. Define
Ko i= Hay- For each k € [n] we define a sequence of mutations, denoted Ky, as follows.

Note that when we write & below we mean the empty mutation sequence. We define

K = Ba B le P Fp
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where Hasbp Bos and K, are mutation sequences defined in the following way

Bp = Hy

B i= Ha(d—1)© " © fg(1) © Ha(0)
" { Pir(e(a) i z(d) # 21
- G} cifx(d) = 2
By = Hir(yg):

Note that z(d) = x1 or Ym,—1 so the transport tr(z(d)) in p, is well-defined. Now
define the associated mutation sequence of Q to be p := B, OOy O [y, We
will denote the associated mutation sequence of Q by p or by HQ if it is not clear from

context which signed irreducible type A quiver defines u. At times it will be useful to

Wi [y = Ha gy © B © Eow) © Epay-

Example 4.6.4. Let Q denote the signed irreducible type Az quiver appearing in Fig-
ure . In the table in Figure we describe . for each 0 < i < 15. Thus, the

associated mutation sequence defined by Q is Py ©Hyg © v O py O fhy
We now arrive at the main result of this chapter.

Theorem 4.6.5. If Q = (Q,S,{Ti}ie[n)) s a signed irreducible type A quiver with

associated mutation sequence i, then we have p € green (Q).

We present the proof Theorem in the next section, as the argument requires

some additional tools.

Remark 4.6.6. For a given irreducible type A quiver with at least one 3-cycle, the length
of p can vary depending on the choice of leaf 3-cycle. Let Q denote the irreducible type
Ay quiver shown in Figure . By choosing the 3-cycle 1,2,3 (resp. 5,6,7) to be the
root 3-cycle, one obtains the signed irreducible type A quiver Qi (resp. Qs) shown in
Figure . Then the associated mutations of Q1 and Qs are

oft

=
|

H1© H3 0[5 © [7 O [e © [h1 © (3 © b5 © fbg © b1 © (43 © [2 © i1
HQQ = 430 [lg O 42 O [41 O [ig O b5 O [q O [43 O [ig O b5 O 7 O Lg.

Furthermore, the mazimal green sequence produced by Theorem[4.6.5, i.e. the associated

mutation sequence of a each signed irreducible type A quiver associated to @), is not
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necessarily a minimal length mazximal green sequence. For example, it is easy to check
that v = 430 41 O 44 O [43 O 7 O 46 O 2 O b5 O 1 O [44 O l7 1S @ maxzimal green sequence of
Q, which is of length less than that of ﬁgl or HQQ.

Remark 4.6.7. Note that while we were revising this chapter, Cormier, Dillery, Resh,
Serhiyenko, and Whelan [CDR™15|] found a construction of minimal length mazimal
green sequences for type A quivers. Therein, they construct a mazximal green sequence
for any drreducible type A quiver QQ with at least one 3-cycle by mutating first at all
leaf 3-cycles of @Q, then mutating at the 3-cycles connected to the leaf 3-cycles of @,
continuing this process, and then mutating a subsequence of the vertices in reverse. This
contrasts with the mazximal green sequences we construct in this paper, which involve
some extraneous steps but whose process can be defined locally and inductively, akin to

writing down the reduced word for a permutation using bubble sort.

We conclude this section by using Theorem to show that any type A quiver

has at least one maximal green sequence.

Corollary 4.6.8. Let Q € Mut(l - 2 — --- — n). Then Q has a maximal green

sequence.

Proof. By Corollary Q can be expressed as a direct sum of irreducible type A

. . (b1,1):b2,1) -0y, 1)) ;o
quivers {Q1,Q2,...,Q}. In other words, @ = @ (—B(a(171)7a(2’1)"_.7a(d1,1)) Q5 where Q) =
Q;®

If @Q; is of type Ay and a; denotes the unique vertex of @);, then H(i) = llg; 1S a

(01,5):b2,5)r+b;.5))

. ;L
(@(1,5)0(2)0(d.5)) I for 2<j<k—1,and Q) = Q.

maximal green sequence of Q;. If Q; is not of type Aj, then we form a signed irreducible
type A quiver, Q¥ associated to Q; by picking a leaf 3-cycle. Now by Theorem m

the associated mutation sequence of Q. denoted H(i), is a maximal green sequence of
Q. By applying Proposition {4.3.12| iteratively, we obtain u = H(k) 0---0 H(Q) o H(l) is a

maximal green sequence of Q. O

4.7 Proof of Theorem [4.6.5|

In this section, we work with a fixed signed irreducible type A quiver Q = (Q, S, {Ti }ie[n)
with N vertices. We write u = B, 0 O R OH, for the associated mutation sequence

of Q.
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Definition 4.7.1. For each K, appearing in p we define a permutation 7; € &(g), = SN
where & (q), denotes the symmetric group on the vertices of Q. In the special case
where i = 0, we define 19 to be the identity permutation. Then for i € [n] where
B, = Hig OO Wiy we define 7; := (i2,...,1q) in cycle notation (i.e. ij-1; = ij41 for

jeld—1] and ig-1; = i2). Note that iy = y;. We also define

g; = T;-T170

= ’Ti...Tl

where the last equality holds since Ty is the identity permutation. We say that o, is the

associated permutation corresponding to Q.

Theorem will imply that o, is exactly the permutation induced by u (see the
last paragraph of Section .

Let T}, and T; where k < t be signed 3-cycles of Q. Let Oy ; denote the full subquiver
of Q on the vertices of T1,...,T} and the vertices of T}, ,...,T,,, where the integers
mi,...,mq € [n] are those defined by T} as in Definition m For example, Qy j is
the full subquiver of @ on the vertices of the signed 3-cycles 11, ...,T,. By convention,
we also define Qg to be the full subquiver of Q consisting of only the vertex x1. Now

define tr|j; to be the restriction of the transport to Qy ;.

Lemma 4.7.2. For each k € [n] there is an ice quiver Ry that is a full subquiver of p,_,©
op OHO(@) of the form shown in Figure (resp. Figure where the vertices
2z = x(0),z(1),...,z(d—1), tr(z(d)), and tr(yx) (resp. zp = x(0),z(1),...,z(d—1), and

tr(yx)) are those appearing in the mutation sequence 4 and the integers

(k) “EB(k) “Ee(r)
mi,ma,...,mg are those defined by Ty, in Definition [{.6.1. Note that we only mutate

at tr(x(d)) if x(d) # x1. Furthermore, the ice quiver Ry, has the following properties:

e Ry, includes every frozen vertex that is connected to a mutable vertex appearing in

Figure |4.18 (resp. Figure|4.19) by at least one arrow in By O op 0 HO(CA))
where Z(1) := 2] tr(z(d)) 1= @l tr(yy) = 2, and 3(s) := Ting f07E|

mg—1?

se[2,d—1] (resp. triyg) := Ty, and T(s) 1= xy,, f07E| se[l,d—1]),

o vertices Ym, Y, Zm, and 2. appear in Ry, if and only if deg(yx) = 4 in Q,

L Ifd =1, then ﬁ(w(d)) = Ty, = Tk.
2 Ifd =1, then ir(z(d)) = T, = xk. Furthermore, d = 1, in this case, if and only if k = 1.
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e vertices Y, Yy, 20, and z) appear in Ry if and only if deg(z;) =4 in Q,
e wvertices y; and vy, appear in Ry if and only if there exists a signed 3-cycle Ty in
Q with k <t such that trly(y:) = 21 and such that in p,  o---op, OHO(Q) the
vertex x; has been mutated exactly oncd| , and

e in Figure (resp. Figure Cig = Tmy—1- o*,;_ll, ézlk = CL’{md_l, Csp 1=

Ym, ~0k__11, and 6’;g = yjnj forse[2,d] and j =d—s+2 (resp. Csp := Ym, '01;—11

(mdé;g =Y, forse[l,d—1] and j =d—s+2).
Additionally, for each k € [n] we have By OO H Oﬁo(ék,\k) = ak/k - O

We will prove Lemma in the case where the vertex tr(z(d)) appears in the
mutation sequence p, (i.e. when z(d) # z1). Under this assumption, the following
lemma will allow us to prove Lemma inductively. The proof of Lemma when

tr(z(d)) does not appear in g, is very similar so we omit it.

Lemma 4.7.3. Letk € [n] be given and let Ry, be the ice quiver described in Lemma.
(See Figure[{.18 ) Then

) Hk(ﬁk) has the form shown in Figure (here, the vertices Ym, Y, Zm; Zims Yes
Yy, 205 Zp, Ui, and y; appear in Hk(ﬁk) if and only if they appear in Ry,),

~

o ﬁk(ﬁk) is a full subquiver of p, oo, op (Q),
e as one mutates R, along My, one does so only at green vertices,

° /i, (Ry) includes every frozen vertex that is connected to a mutable vertex appearing

wn Figure by at least one arrow in p, ©---op © Ho(@)’

e the full subquiver of p,  ©---op, Oﬁo(@) on the vertices (Q)o\(Ry)o is unchanged

by the mutation sequence By -

e the vertices z¢ and zy, (rather than zy) are the only mutable vertices in p, (Ry)

that are incident to multiple frozen vertices.

3 Note that this can only happen if there exists j < k such that z; = ¢ and x(d, k) = y; as in

Definition .
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Additionally, for each k € [n], the full subquiver of p, o+ op, o HO(@) restricted
to the green mutable vertices outside of (Ry)o, as well as the incident frozen vertices,

equals the original framed quiver @ restricted to those vertices.

Proof of Theorem[{.6.5. By the third assertion in Lemma the associated mutation
sequence p = i o---pi o of Qis a green mutation sequence of Q. By Lemma

~ ~

B0 o p op(Q) =p O"'OHIOHO(Qn,n):én,n'an:é'an

n n

and so every mutable vertex of p o---op, o HO(Q) isred. Thus p=p o---p op, €
green(Q). O

Remark 4.7.4. It follows from Lemma that as one mutates Ry along By, = i, ©
“ 0 Wiy, we have that ij in pi; o o i, (Ry,) is incident to at most four other mutable

vertices.

Proof of Lemma[].7.3. The first assertion follows inductively by mutating the vertices
of Ry, in the specified order By, = Hir(yg) © Hr(e(d)) © Ha(d—1) © Hao(d—2) © *** Ha(1) © He(0) ©
[y, , reading right-to-left. In particular, as this mutation sequence is applied to Ry,
Remark [£.7.4] shows that the mutable vertices incident to y, are located further and
further to the right in Figure 19 until we see that they are tr(yx) and z,, at the end
of the sequence. In fact, we observe after mutating Rj at yj that z; is the unique
green vertex of R (with the exception of the vertices ys, zs, Yi, Ym and z,, if they
appear in Ry). As we continue to mutate yu,, (Rg) along the remaining mutations in
H,, the unique green vertex is z(s) for some s € [0,d — 1] or as tr(z(d)) or tr(y) (as
before, with the exception of the vertices vy, z¢, yt, Ym and z,,). Iteratively mutating
at this unique green vertex exactly corresponds to performing the mutation sequence
By © L) © Lo O Lo For)- A

The second assertion, y, (Ry) is a full subquiver of p, o---op, op (@), follows since
the vertices of () at which one mutates when applying M, are all vertices of Ry. One
can see that the third assertion follows from the above observation that a unique vertex
becomes green as we iteratively mutate. The fourth assertion holds for p, (Ry) since it
holds for Rj. The fifth assertion follows since the vertices in the support of K, are all

disconnected from the vertices in (u, , ©---op o HO(@))O\(ﬁk)O. Further, the sixth
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assertion is demonstrated inductively as we mutate z(s) for s € [0,d — 1]. Lastly, by
restricting to the green mutable vertices outside of (R}, )¢ and the incident frozen vertices,

it is clear that the mutation sequence Ky, leaves this full subquiver unaffected. ]

Proof of Lemmal[{.7.3. We prove the lemma by induction. For k = 1, observe that
HO(Q) has the full subquiver R shown in Figure where we assume that n > 1. We
show that R has all of the properties that Ry must satisfy. Note that tr(y;) = x; and
for k = 1 one has that z(1) = x,,, = x1. Since deg(y1) = 2, no vertices Yy, Y, 2m, and
2! appear in R, as desired. Since only vertex x; has been mutated to obtain HO(CA)), no
arrows between vertices of a signed 3-cycle T; with 1 < t and vertices of signed 3-cycle
T; with ¢ < 1 have been created. Furthermore, there is no signed 3-cycle T of Q with
1 < t where tr|;¢(y:) = z1. Note that in this degenerate case, tr(y;) = (1) and so no
Cia’s or 6’;78 appear in Ry, and T(1) = tr(y;) = x}. Thus the quiver R satisfies all
of the properties that R; must satisfy. Further, in this special case éo\p contains only
the vertex z1 and 2 and og is the identity permutation. Thus Hoé(:() indeed equals
Gro - o0,

Now assume that k£ > 1 and that p,  ©o---op, OHO(@) has a full subquiver R}, with
the properties in the statement of the lemma. To show that By OO py OHO(Q) has the

desired full subquiver Ry 1, we consider four cases:
i) deg(yy) = 2 and deg(zx) = 4,
ii) deg(yx) = 4 and deg(z) = 2,
iii) deg(yx) = 4 and deg(zx) = 4, and
iv) deg(yx) = 2 and deg(zx) = 2.

Suppose that we are in Case i). By the properties of the ice quiver Ry, this means
that vertices ¥, ¥/, 2m, and 2/ do not appear in Rjy. This also implies that ¢ = k + 1.
Now Lemma implies that s, (Ri) has the form shown in Figure where the
vertices y; and y; appear Hk(Rk) if and only if they appear in R;. Note that the quiver
in Figure is the same as the quiver in Figure with the notation updated
accordingly. In particular, the integers mng) mgﬁl), e ,m[(i]iﬁl)
z(1,k+1),...,2(d+1,k+1) € (Q)o are those defined by Tj1 following Definition [4.6.1]

€ [n] and the vertices

Y
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Since the signed 3-cycles Tj, and T} share the vertex zj (i.e. zx = zx11), we have that

mng) =k+1, (kH) =mi, ..., mg-kﬂ) =Mj_1, -, mgfll) =my (4.3)
and
(1, k+1) = 2z, x(2,k+1) = z(1), ..., z(s,k+1) =2z(s—1), ...,x(d+1,k+1) = z(d).

This implies that tr(z(d + 1,k + 1)) = tr(x(d, k)) and tr(yx+1) = tr(yg). Now we also
obtain that

.%(].,k;'i‘l) Z (k+1) Z;ndfl :.%(].,k)
Mgy —1
and
F(s,k+1) =2 41 = 93;n(k+1> = 37;nj71 = (s, k)

M1 s+2 3

for s € [2,d] where j = (d + 1) — s + 2 and that
tr(z(d+ 1,k +1)) =2’ 441 = Ty, = tr(yr)
my

and

ﬁ“(ykﬂ) = x;n(lk+l) = Tjy1 = 2%
where the last equality follows from the fact that T} and T}, share the vertex 2. Thus
we have labeled the vertices of Hk(ﬁk) accordingly in Figure Furthermore, that
the signed 3-cycles T}, and T4 share the vertex zj implies that zp; = tr|pr1(ye) if
and only if 2, = tr|.(y).

Next, observe that for any s € [d] we have Cy, - 7 ! = O, since we do not mutate

Cs r when applying My - Additionally x mED 1 = Tp,—1 and v, (k+1) m,; (for j =
(d+1)—s+2 where s € [2,d]) follows from ). Comparing with the ﬁfth bullet point
of Lemma we obtain Csp, = Cyp, - Tk = Cs p+1 and Cs,k = 6’:; . Tk = C 41 for
any s € [d].

Now let Cgi1 k41 = yr and Cmﬂ = y}.- Note that y, - ak__ll =y since gy has not
been mutated in p, o0 Ho(Q)‘ Furthermore, y; - 012_117',;1 =Yg 71;1 = y; by the
definition of 74 so Cyy1k+1 = Yk - ak_l, as desired.

We now construct an ice quiver R that is the full subquiver of By 0 Op 0 Ho(@) on

the vertices of p, (R},), as well as the vertices x, ¥y, 2z and corresponding frozen vertices
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xl,yl, 2zl of any signed 3-cycles T, of Q where k < r and 241 or yg,1 is a vertex if
T,.. Comparing this construction of R to the quiver R, appearing in Figure we
verify that R indeed equals Ry, and satisfies the five properties listed as bullet points
in Lemma [£.7.2

Next, suppose that we are in Case ii). In this situation, we have that m =k + 1
and the vertices yy, ¥, 2z¢, and z; do not belong to Rj.. Now Lemma implies that
K, (R},) has the form shown in Figure We let T}, (resp. Tj) be the signed 3-cycle
not equal to Tg1 that contains zpi1 (resp. yxi1), if they exist. Define R to be the ice

~

quiver that is a full subquiver of By 0o o HO(Q) on the vertices

Yt 1 Ykt 15 2+ 1 2ot 15 T (YR 21os Uks Y t(2(d)), Ty Yps Ups 25 Zps Yais Yo 205 2
where we include y, and y, (resp. 2, 2}, Yq,Ys, 2, and 2)) in R if and only if y, and
Yy, (resp. 2q, 24, Yq, Yy» 7, and z) appear in Hk(ﬁk), i.e. depending on if deg(yx+1) =4
and if deg(zx11) = 4. See Figure

Just as above, we claim that the ice quiver R equals Ry and satifies the five bullet
points in the statement of Lemma It is easy to see that R is a full subquiver of
By 0o 0 HO(Q) that includes every frozen vertex that is connected to a mutable
vertex appearing in Figureby at least one arrow in By 0 O OpL 0(@). In particular,
Hk(Rk) has this property and no vertices of T, or T, and neither y;; nor z;,; have
been mutated in p, o -op, OHO(Q)‘ Furthermore, defining mgkﬂ) € [n], z(0,k+1), and
z(L,E+1)e (@)0 just as we did in Case i), following Deﬁnition and using the fact
that sgn(Tx4+1) = +, we have mgkﬂ) =k+1,2(0,k+1) = zg41, and z(1,k+ 1) = zp41.

Hence we obtain that
(o1, b+ 1)) = tr(epen) = tr(y) and oy | = 7%,
as desired. Additionally, the fact that sgn(7y+1) = + also implies that
tr(Yrs1) = Tr+1 = Yx and x;ngkm = 952 = y;m

as desired. These calculations are reflected in the quiver R shown in Figure thus
verifying the first three bullet points of Lemma [4.7.2
Furthermore, since deg(zx) = 2, there is no signed 3-cycle T; with k£ + 1 < ¢ such

~

that tr/k11,.(ye) = 2k41 inp o+ op op (Q) vertex z; has been mutated exactly once.
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The fourth bullet point follows. Now observe that tr(yy) = ry,, = xj. Since we have
applied a maximal green sequence to Qp and since tr(z(d, k)) is only connected to the
frozen vertex z, Proposition 2.10 of [BDP14] implies that tr(z(d,k)) = a1, - o '. We
thus have the fifth bullet point.

Case iii) is similar to Case ii), but with some key differences. In this situation, we
again have that m = k + 1 but this time both y, and 2, are relevant. Now Lemma [4.7.3
implies that Ek(ﬁk) has the form shown in Figure We let T), (resp. T,) be the
signed 3-cycles incident to zx+1 (resp. yg41) if they exist. Define R to be the ice quiver

~

that is a full subquiver of p, o---op, op (Q) on the vertices

Ykt 1s Yk 1> Zh4 15 2ot 15 0 (YR) s s Yhes Yoo 00 (2())s Ty Y, Yo Yps Yo 25 s Ya» Yo 200 2
where we include y, and y, (resp. 2, 2, Yq,Ys, 2, and 2) in R if and only if y, and
Yp (resp. zg, 2gs Yq» Vg 2> and zg) appear in p, (Ry), i.e. depending on if deg(yx+1) = 4
and if deg(zx11) = 4. See Figure

We claim that the ice quiver R has the properties in the statement of Lemma m
It is easy to see that R is a full subquiver of Ky OOy OHO(@). That R includes every
frozen vertex that is connected to a mutable vertex appearing in Figure by at least
one arrow in g, o---op o Ho(@) follows from the fact that p, (Rj) has this property and
from the fact that no vertices of T}, or Tj, and neither y;; nor 2341 have been mutated
inp, o-op oﬁo(é)' Now observe that tr(yy) = ), = x,. Asin Case ii), Proposition
2.10 of [BDP14] implies that tr(v(d, k)) = x% - o, .

Let mng) € [n] be the integer from the definition of Hoy > and let x(0,k+1), (1, k+

1) € (Q)o be the vertices from the definition of p, . As in Case ii), we are using the

fact that sgn(Ty,1) = +. Now notice that mgkﬂ) = mékﬂ) =k+1,2(0,k+1) = 241,

and z(1,k + 1) = x41. We now obtain that
tr(z(d, k + 1)) = tr(zgs1) = tr(ye),
as desired. The fact that sgn(7y,1) = + implies that
tr(Ye+1) = Tht1 = Y-

Since deg(zr+1) = 4, the vertices y, and y;, both appear in R. Now it is clear that
deg(zi+1) = 4 if and only if tr|y41,¢(ye) = 241 and the signed 3-cycle Ty has the property
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that vertex z has been mutated exactly once in p, o---op, OHO(@). Hence we see that
the vertex y is positioned in R exactly where y; is positioned in R} 1, see Figure
These calculations are reflected in the quiver R shown in Figure and we see that
this quiver has the properties that the desired quiver Ry should have. The proof of
the five bullet points of Lemma in Case iii) concludes in the same way as the proof
for Case ii).

In addition, we illustrate how in Case iii), for each ¢ € [n] satisfying k < ¢ < ¢ there
is an ice quiver Rc’g that is isomorphic to Ry and that appears as a full subquiver of
B, O op, 0 Ho(@)’ Furthermore, we show that RM = R,. This analysis will be used
in the argument for Case iv), which is given below.

As we are in Case iii), we know that both vertices y and z; are of degree 4 and the

signed 3-cycles Ty, Tyy1, and Ty appear in a full subquiver of Q of the form shown in
Figure or It follows that ¥y, and z,, which are incident to zx in By O rOp 0

~

HO(Q)’ will not be mutated until after applying the mutation sequences p, , Boppreeo
where k < r < £ (see Figure . To be precise, the quiver in Figure is a full
subquiver of By OO p 0 HO(Q)’ which we define as follows. Letting k < r < £
be the integer such that z, = tr(y,) and e such that z(e,r) = zr41 = yi, this full
subquiver includes the vertices of Ry_; as well as the mutable vertices of the signed
3-cycles ng) = Tk“’ngffl’ . ,ng"),ngr) = T,, as in Definition @7 and their
corresponding frozen vertices.

We now mutate the quiver shown in Figure along Hy - By Lemma m this
does not affect the full subquiver of p1, | o+ op, op (Q) on the vertices (Q)o\(£)o-
Thus we conclude that p, o---op, o Ho(@) has the quiver shown in Figure as a full
subquiver. We observe that the permutation 0'];_11 has the vertices y, and z; as fixed
points. However, 7, L maps zj, — tr(yx) and fixes y,. These equalities are illustrated in
Figure [£.31]

Next, we relabel the vertices of the quiver in Figure to obtain the quiver shown
in Figure In particular, since sgn(7Ty) = — with 2y = z, note that zp = x(1,4),
x(s, k) = z(s + 1,¢), and tr(yx) = tr
Wy 0o p, OHO(@) on the red vertices appearing in Figure the neighbors of y, and

2y, as well as the frozen vertices to which these all are connected. One observes that

k.0(ye). Define Ry, to be the full subquiver of

R’cﬂ,ﬁ and R, are isomorphic as ice quivers. Furthermore, we will see that Ek+1,€ has
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the same vertices as Ry with the exceptions of yx and tr|x(ye).

For k < ¢ < ¢, we define Rc,g analogously as the full subquiver of B, OO, OHO(@)
on the set of vertices (Rj+1,0)0 - Ty, +117'k_ +12 ST 11. With this definition, we observe that
ECJFM is identical to R, except possibly at two vertices. In particular, for k < ¢ < ¢,
if T, does not appear in Figure W (resp. Figﬂlre , then the mutation sequence K,
does not involve any vertices that appear in R.,. Consequently, after mutation by K
we obtain Rey10 = Ry

On the other hand, when T, for k < ¢ < ¥, i.e. ¢ = mg) for some s, does appear
in Figure W (resp. Figure , then the mutation sequence B, as indicated by bold

arrows in Figures and involves vertices yy, - Jc__ll and zy - oc__ll. In this case,

1

Rei1s = R, with the relabeling yi - oY — yi - oo and z - 0% — 25 - oo ! since
+1, y g y c—1 y c c—1 c

1

each application of K, permutes these two vertices by 7. . This isomorphism of full

subquivers follows from Lemma [4.7.3

We obtain the identity zj - o, ! = tr|m<§r>/(yg) for m{") < ¢ < mgi)l when s € [2, €]
orr = mgr) < ¢ < £ when s = 1, which is i\mplicit in Figure M by Lemma m We
leave this argument until after completing the proof of Lemma m (see below). We
also observe, by the specialization ¢ = £ — 1, that y; - U[fl = Cgy1 and 2z, - (7@:11 =
tr(ys). Consequently, we eventually arrive at the configuration in Figure with
configurations of the form as in Figure as intermediate steps. In summary, we
conclude that Eg,g = Ry as desired.

Next, suppose we are in Case iv). Since deg(zx) = 2, this case is similar to Case
i). However, here we have deg(yyx) = 2 as well, and so the quiver Hk(ﬁk) looks like
Figure but without ye, yp, 2, 2, Ym, Yum, Zm, DO 2,,. The green vertex y; and y;
may or may not appear in the quiver Bk(ﬁk). In the latter case, kK = n and we have
applied the entire mutation sequence p to Q. In the former case, we see that t = k + 1,
and T; can be realized as a signed 3-cycle Ty appearing in one of Figures or
Now by the argument at the end of Case iii), R;+ = Ry is indeed a full subquiver of
Figure 4.34] with the desired properties. The five bullet points of Lemma follow
immediately.

Lastly, for all four cases, we wish to describe the quiver obtained by By © O py O

Ho(é"%\k)' To this end, we decompose the vertices of é;:k into two sets: (1) (ék:,\k)o\(ﬁk)o
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and (2) (Rg)o N (ék,\k)(). By induction, we have

—_—

By 0o py 0 p (Qu—1—1) = Qk—1k-1 " Ok—1

and we observe that (é;;)o\(ﬁk)o c (Q:L\k_l)o. The fifth bullet point of Lemma

4.7.3| implies that the quiver By OOy O py (ékv\k‘(@\k)o\(ﬁk)J is unchanged by
the mutation sequence p, , and the permutation 7, fixes all vertices in (élg,\k)o\(ﬁk)o. It
follows that

[, © 0, 0y (Qk,k‘(é,:k)o\(ﬁk)o) = (Q’f”f’@k;)o\(ﬁk)o) Tk

Additionally, the first bullet point of Lemma indicates how the vertices of the
second set, i.e. (Ry)o N (@;)0, is affected by p,. Comparing Figures and
we see that the vertices of Rj have been permuted cyclically exactly as described by 7.

We conclude that
By, 00 phy 0 P (Qiek) = Qe ThOk—1 = Qi * O

which completes the proof of Lemma [4.7.2
O

Lemma 4.7.5. Using the notation from the proof of Lemma for any s € [2,¢e] and

any c € [n] satisfying mg) <c< mgr_)l, one has zk-ac_l = t7"|m(r) é(yz) (see Figure|].35).

Additionally, for any c € [n] satisfying r = mgr) < c <l we have z, - o, b = tr(yy).

Proof. For ¢ =k + 1, we have

2T = % Of T
= tr(yk) '7_1;_11
= tr(z(l,k+1)) 'Tk_+11

(see Figure

(
= z(0,k+1) (by the definition of 7j41)

(

(

using that sgn(Tx11) = +)

by Definition [4.6.1)
by Definition |4.6.2))

= trrg1,e(ye),

4 We define ék\,k|(§);€)0\(§k)0 (resp. Q;;|(Q/1;c)o\(§k)o) to be the ice quiver that is a full subquiver

of Ok (resp. Ox.x) on the vertices of (Qk.x)o\(Rk )o.
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(r)

s—1°

(

as desired. Now suppose that zj, -0, ! = tr|m(r> e(W) where s € [e] and er) <c<m

Then for ¢ € [n] satisfying mg;)l <c< mg@2 we have

_ 1 1 _
Zk UC ! = 2k - Jm(r) 1 m(r) ' TC !
s—1 s5—
= tr|_m Z(W) T o T (by induction)
s—1
_ "y, -1 _—1 -1 (r)y _ _
= z(1,my ) ngi)l SO 7, (note that x(1,m, ;) = z(s — 1,r))
= x(O,mgi)l) 7'7(1T> " ! (note that 13(07777,&1;1) =x(s—2,r))
s—1
- R s () y —
= tr|m§"_>1,f(y5) ng?ﬁl T, (note that z(0,m ;) = tr|mgr_)l7€(y4))

= tr|mgr_)1’z(yg),

as desired. We remark that the last equality in the previous computation follows
from observing that tr| ) ,(y¢) is not mutated in any of the mutation sequences
s—17

o and thus it is unaffected by any of the permutations 7'_(1” TRRE ,Tc_l.
- Mg

Hm(rjl-&-l’ ..
By induction, this completes the proof. ]

4.8 Additional Questions and Remarks

In this section, we give an example to show how our results provide explicit maximal
green sequences for quivers that are not of type A. We also discuss ideas we have for

further research.

4.8.1 Maximal Green Sequences for Quivers Arising from Surface Tri-

angulations

The following example shows how our formulas for maximal green sequences for type
A quivers can be used to give explicit formulas for maximal green sequences for quivers

arising from other types of triangulated surfaces.

Example 4.8.1. Consider the marked surface (S, M) with the triangulation T shown
in Figure |4.35] on the left. The surface S is a once-punctured pair of pants with trian-

gulation
T="TuTyu{ne(}
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where oy, ag, a3 € Ty and B1, B, B3, v € To. We assume that the boundary arcs b; with
i € [5] contain no marked points except for those shown in Figure . The other
boundary arcs may contain any number of marked points. As in Section [{.], let Qr
be the quiver determined by T and let vs € (Q)o denote the vertex corresponding to arc
oeT.

We can think of the marked surface (S1, M) determined by c1, f1, b1, c2, B2, ba, B3, b3
as an mi-gon where my = # My and we can think of Ty as a triangulation of S1. Simi-
larly, we can think of the marked surface (So, M) determined by i, c3,m, bs, ¢, i3, C5, ba,
a2, c4,b1 as an mo-gon where mo = # My and we can think of To as a triangulation of

So. Thus quiver Qr;, determined by T;, is a type A quiver for i = 1,2. Furthermore,

we have
_ (v8y:985,V83) (vn)
QT - QTl @(’Uall ’UD‘227UD‘33) QT2 @('UZ) R
where
/ :
R =
\ Ve.

By Corollary Qr, and Qr, each have a mazimal green sequence HQTi fori=1,2.
Since R is acyclic, we can define HR to be any mutation sequence of R where each
mutation occurs at a source (for instance, put HR = [y, © Hog © [, ). Then HR 15 clearly
a mazimal green sequence of R. Now Theorem implies that HR o HQTz o HQTl 18
a maximal green sequence of Q.

Suppose that Ty and Ty are given by the triangulations shown in Figure[4.35 on the
right. Then we have that Qr, and Qr, are the quivers shown in Figure where we
think of the irreducible parts of Qr, and Qr, as signed irreducible type A quivers with
respect to the root 3-cycles Sgl) and 552), respectively. In this situation, Qr, and Qr,

have the maximal green sequences
Qi = iy O [y © o, Oﬁgl) Oﬁgl)

Qm, _ [, © flaos OH?) Oﬁf) Oﬁg)

Oﬁgn OH(()D

OH&Q) Oﬁgz)

=

(2)

H ° Ky



91

respectively where

- 2
B 12
uV o= = e op e op e
) b o b
ﬁgl) =, 0K O By ﬁé) = M) O H,@ O 1@ O )
= e} le) e} = (@) @] o
H?n Ha O B © ) O 0 H?z) By ) O Ky 2) O B2 O (2)
= O O O = (@] (@] O
M3 Fy( @ B0 © i) © fi 1) J(; | By O 1) 9 821 O i 02
2
Hs' = M, O ) O H @ O @) OH, o).

and HROHQTz OHQTl is a maximal green sequence of Q. In general, if we have a quiver
QT that can be realized as a direct sum of type A quivers and acyclic quivers, we can

write an explicit formula for a maximal green sequence of Q.

Problem 4.8.2. Find explicit formulas for mazximal green sequences for quivers arising

from triangulations of surfaces.

Using Corollary [£.4.5] we can reduce Problem [.8.2]to the problem of finding explicit
formulas for maximal green sequences of irreducible quivers that arise from a triangu-
lated surface. In [ACCT13|, the authors sketch an argument showing the existence of
maximal green sequences for quivers arising from triangulated surfaces. However, we
would like to prove the existence of maximal green sequences by giving explicit formulas
for maximal green sequences of such quivers.

Some progress has already been made in answering Problem In [Lad13], Lad-
kani shows that quivers arising from triangulations of once-punctured closed surfaces of
genus g > 1 have no maximal green sequences. In [Bucl4, BM15|, explicit formulas for
maximal green sequences are given for specific triangulations of closed genus g > 1 sur-
faces. In [CDR*15], a formula is given for the minimal length maximal green sequences
of quivers defined by polygon triangulations. It would be interesting to understand, in
general, what are the possible lengths that can be achieved by maximal green sequences

of a given quiver.

4.8.2 Trees of Cycles

Our study of signed irreducible type A quivers was made possible by the fact that
such quivers are equivalent to labeled binary trees of 3-cycles (see Lemma [4.5.5)). It is
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therefore reasonable to ask if one can find explicit formulas for maximal green sequences
of quivers that are trees of cycles where each cycle has length at least kK > 3. In our
construction, we define a total ordering and a sign function on the set of 3-cycles of an
irreducible type A quiver (with at least one 3-cycle), and this data was important in
discovering and describing the associated mutation sequence. One could use a similar
technique to construct an analogue of the associated mutation sequence for quivers that

are trees of oriented cycles.

Problem 4.8.3. Find a construction of mazrimal green sequences for quivers that are

trees of oriented cycles.



93

Figure 4.2: The quivers @ and Mg@ with the coloring functions f' and f2, respectively.
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~ /N

1——=2

Figure 4.3: The quiver Qr defined by a triangulation T.

OO

Figure 4.4: A flip connecting two triangulations of an annulus.

2
o

Figure 4.5: The map identifying a triangulation of a punctured disk as a tagged trian-
gulation of a punctured disk.
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_anngX

II IIIa IIIb

Figure 4.6: The Fomin-Shapiro-Thurston blocks.

Y3 i (7 ()
& B1 a2
as S3 z3 ai S1 Z1 Sy | B2
[
yl y2:333 ,:Ul ZQZ.'L',?,
B1 Qs or s
a1 S1 21 So B2 as S3 23
[
%zz\x %

I 22 Y3 t.

Figure 4.7: Labeling arrows of an irreducible quiver of type A.

I N

Figure 4.8: A positive (resp. negative) 3-cycle is shown on the left (resp. right).
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Figure 4.9: A signed irreducible type Ass quiver.



L I~ R —

S P

DY 5 _/._.
Q(—: =

\_ —

o TN

i

97

Figure 4.10: The framed quiver of a signed irreducible type Aos quiver with vertices

labeled using the standard ordering.
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Figure 4.11: The sequence (z(0), z(1),...
transport of gy is also illustrated for quivers where there is no sequence of the form in

[42) of Definition [4.6.2]
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Figure 4.12: The sequence of arrows one follows to compute the transport of y;. Note

that in this case, the sequence A; is non-empty.
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del\ /

=Tm, st
’Ym\ /
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Figure 4.13: The sequence of arrows one follows to compute the transport of y;. Note
that in this case, the sequence Ap is empty.
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/) 1 ) 1

0 m 8 W13 01 O 7 O lg O f15 O (17 O 16

T propgops 9 H13 © p1 © p7 © g © 15 © 17 © fi19 © H18
2 1030 50 pyg 10 p1s © p13 © p21 © H20

3 4 011 © p7 O g 1T 20 © pi1s © p23 © floo

4 140 1 © p7 O fi9 O g 12 pgg o g © p2s © pag

5 4§ O f14 © 111 © H10 13 a2 0 pioo © pas © plor © H2e

6 g O 14 © H11 O [113 O H12 14 pi92 0 o © fo5 © o7 © fi29 O fi28

7 1301 O [ O fg O f15 O fi14 15 a3 o i3 © p21 © (31 © H3o

Figure 4.15: The associated mutation of the signed irreducible type A3y quiver in Fig-
ure 4141

2 4 6
Q = N /N SN
1 3 5 7.

Figure 4.16: The type A7 quiver from Remark [£.6.6]
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W
(@)}
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w
)
[l

Figure 4.17: The two signed irreducible type A quivers that can be obtained from Q.
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Figure 4.18: The local configuration around y; and z; just before K, is applied.
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Figure 4.19: The local configuration in the special case when z(d) = x; since tr(zy) is
not defined.
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Figure 4.20: The quiver p, (Ri) before rearrangement.
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Figure 4.21: The quiver My (Ry,) rearranged to look more like Ry 1.
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/ /
Yo ?1 T Y1

Figure 4.22: The subquiver R = Ry of HO(@)'
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Q&»i Qgi}i =Yk

/NN
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~

T(d,k+1) tr(z(d+ 1,k + 1)

~

tr(Yrt1)

<Yk+1

/
Yk+1

Figure 4.23: The quiver y, (Ry) obtained by mutating Ry in Case i).
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Figure 4.24: The quiver obtained by mutating Ry in Case ii).
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Figure 4.25: The quiver R’ = R}, that we obtain in Case ii).
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Figure 4.26: The quiver obtained by mutating Ry in Case iii).
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Figure 4.27: The quiver R = Ry that we obtain in Case iii).
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Figure 4.28: A full subquiver of Q showing one possible configuration of the signed
3-cycles Ty, Ti11, and Ty, as described in the proof of Lemma at the end of Case

iii).
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Figure 4.29: A full subquiver of Q showing the other possible configuration of the signed
3-cycles Ty, Tj41, and Ty, as described in the proof of Lemma at the end of Case
iif).
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Y1 =Y \ikﬂ
A OR e T p—
. mgi)1
Ca k. /
l /tr(yk) 2(e —2,1) = z(e — 2,r)
dk / \
tr(xz(d, k)) tr(yr) x(1,r) a3 Yn A
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/ \~ I(() l>>$(0,7")/
o / ¥2. k)
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yg Ul\ v )

Figure 4.30: The full subquiver of p,  o---op, o ﬁo(@) on the vertices and frozen
vertices shown here.
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Figure 4.31: The full subquiver of y, o---op op, (@) on the vertices and frozen vertices
shown here.



117

/ /
Yk+1 “k+1

Yk+1 “k+1 T o ‘[/m;:\ %y;z(erjl
mer—l
Y, / \\ /
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Figure 4.32: The quiver that appears in Figure with its vertex labels updated so
that the part of Rkﬂ’g that appears here looks like the corresponding part of the quiver

Ry.
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e—1

5 ("

Figure 4.33: The effect of applying p_o--- opy 4 top o op, OHO(Q) where mg/; <

(r)

c<mg

Note that, as in the statement of Lemma

4.7.5

we have that tr| o ,(ye) =z -0; .
Mst1s

Lfe= mg) — 1, the mutation sequence K is indicated by the bold arrows.

1



119

Yi+1
—1
Cd-i-l,@ Yk+1 - U£—1Zk+1
Cat1, / \ l
Cay tr(ye) Rk+1 " 0p_ 1 — ymi’j Tp—1 = m",

f / \m /
w(d+1, (x(e—2,1) 0]

Figure 4.34: The effect of applying p,  ©---op,  top o---op o HO(@) where
Cat1 = Yk a[fl and Cm = y;, as desired. The mutation sequence K, is indicated

by the bold arrows.



Figure 4.35:
ygl) yél) Vo
S R .
Qr, = o 21) (0 yé) Z w1 w2
N7/
0
e
SN
2 4 2
?A?) y§)<—z(
RN /N
O, = <00 CIPL R 2
Ty — xl Zl T(Q) y2 23 Tr<2) y5
N7/ A4
Zéz) w3 ZéQ) w4

Figure 4.36:
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Chapter 5

Combinatorics of Exceptional

Sequences

5.1 Introduction

We now shift our focus to the connection between vertices of the oriented exchange
graphs defined by type A Dynkin quivers and exceptional sequences of quiver repre-
sentations. Exceptional sequences are certain sequences of quiver representations with
strong homological properties. They were introduced in [GR87] to study exceptional
vector bundles on P2, and more recently, Crawley-Boevey showed that the braid group
acts transitively on the set of complete exceptional sequences (exceptional sequences
of maximal length) [CB93]. This result was generalized to hereditary Artin algebras
by Ringel [Rin94]. Since that time, Meltzer has also studied exceptional sequences for
weighted projective lines [Mel04], and Araya for Cohen-Macaulay modules over one
dimensional graded Gorenstein rings with a simple singularity [Ara99]. Exceptional se-
quences have been shown to be related to many other areas of mathematics since their

invention:
e chains in the lattice of noncrossing partitions [Bes03, [HK13l, TT09],
e factorizations of Coxeter elements [[S10], and

e t-structures and derived categories [Bez03, BK89, [Rud90].
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Despite their ubiquity, very little work has been done to concretely describe exceptional
sequences, even for path algebras of Dynkin quivers [Aral3 (GM15]. In this paper, we
give a concrete classification of exceptional sequences of representations of quivers whose
underlying graph is a type A,, Dynkin diagram. We will refer to such quivers as type
A, Dynkin quivers. This work extends a classification of exceptional sequences for the
linearly-ordered quiver obtained in [GM15] by the first and third authors.

Exceptional sequences are composed of indecomposable representations which have a
particularly nice description. For a Dynkin quiver Q. of type A,,, where € is a vector that
encodes the orientation of the quiver, the indecomposable representations are completely
determined by their dimension vectors, which are of the form (0,...,0,1,...,1,0,...,0).
Let us denote such a representation by X7 o where 7 + 1 and j are the positions where
the string of 1’s begins and ends, respectively. The path algebra k@, is an example of
a string algebra and so X7 ; is a string module. However, it is simpler in this setting to
use the notation Xf; rather than expressing this module as M (w) for some string w.

This simple description allows us to view exceptional sequences as combinatorial
objects. We define a map ®,. which associates to each indecomposable representation
X ; an isotopy class of simple curves in the plane whose endpoints we think of as ¢ and

j and whose path between these points is dictated by €. We refer to such curves as

(o
Xkl 5 w 3
lez:o%k — —l_ N_

Xop=k<=l_k — oS+

strands.

Figure 5.1: The indecomposable representations of () = 1 « 2 and their representations
as strands

As exceptional sequences are collections of representations, the map ®. allows one to
regard them as collections of strands. The following lemma is the foundation for all of our
results in this paper (it characterizes the homological data encoded by a pair of strands

and thus by a pair of representations). Since exceptional sequences are sequences of
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representations, each pair of which satisfy certain homological properties, Lemma [5.3.5]

allows us to completely classify exceptional sequences using strand diagrams.

Lemma 5.1.1. Let Q¢ be a Dynkin quiver of type A, and let U and V be two distinct

indecomposable representations of Q..

a) The strands ®.(U) and ®.(V) intersect nontrivially if and only if neither (U, V')

nor (V,U) are exceptional pairs.

b) The strand ®.(U) is clockwise from ®(V') if and only if (U,V) is an exceptional

pair and (V,U) is not an exceptional pair.

¢) The strands ®.(U) and ®(V') do not intersect at any of their endpoints and they
do not intersect nontrivially if and only if (U, V) and (V,U) are both exceptional

pairs.

The chapter is organized in the following way. In Section [5.2] we give the prelimi-
naries on exceptional sequences of quiver representations which are needed for the rest
of the paper.

In Section 5.3.1], we introduce strand diagrams, which we will use to model collections
of indecomposable representations. We will decorate our strand diagrams with strand-
labelings and oriented edges so that they can keep track of both the ordering of the
representations in a complete exceptional sequence as well as the signs of the rows in
the c-matrix it came from. While unlabeled diagrams classify complete exceptional
collections (Theorem , we show that the new decorated diagrams classify more
complicated objects called exceptional sequences (Theorem . Although Lemma
5.3.9] is the main tool that allows us to obtain these results, we delay its proof to
Section

The work of Speyer and Thomas (see [ST13]) allows complete exceptional sequences
to be obtained from c-matrices. In [ONAT13], the number of complete exceptional
sequences in type A, is given, and there are more of these than there are c-matrices.
Thus, it is natural to ask exactly which c-matrices appear as strand diagrams. By
establishing a bijection between the mixed cobinary trees of Igusa and Ostroff [[O13]

and a certain subcollection of strand diagrams, we give an answer to this question in

Section 5.4
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In Section we ask how many complete exceptional sequences can be formed
using the representations in a complete exceptional collection. We interpret this num-
ber as the number of linear extensions of the poset determined by the chord diagram
of the complete exceptional collection. This also gives an interpretation of complete
exceptional sequences as linear extensions.

In Section |5.6] we give several applications of the theory in type A, including combi-
natorial proofs that two reddening sequences produce isomorphic ice quivers (see [Kell2]
for a general proof in all types using deep category-theoretic techniques) and that there
is a bijection between exceptional sequences and certain chains in the lattice of non-

crossing partitions.

5.2 Preliminaries

In this section, we recall some basic definitions. We will be interested in the connection
between exceptional sequences and the c-matrices of an acyclic quiver ) so we begin
by defining exceptional sequences. which serve as the starting point in our study of
exceptional sequences. We then explain the notation we will use to discuss exceptional

representations of quivers that are orientations of a type A,, Dynkin diagram.

5.2.1 Exceptional sequences of representations

An exceptional sequence & = (V1,...,V;) (k < n:= #Qq) is an ordered list of ex-
ceptional representations V; of Q (i.e. V; is indecomposable and Extg(V;,V;) = 0
for all s > 1) satisfying Homyq(V;, Vi) = 0 and Extio(V;, Vi) = 0 if i < j for all
s = 1. We define an exceptional collection & = {Vi,...,V;} to be a set of excep-
tional representations V; of @) that can be ordered in such a way that they define an
exceptional sequence. When k = n, we say & (resp. £) is a complete exceptional se-
quence (CES) (resp. complete exceptional collection (CEC)). For Dynkin quivers,
a representation is exceptional if and only if it is indecomposable.

The following result of Speyer and Thomas gives a beautiful connection between
c-matrices of an acyclic quiver @ and CESs. It serves as motivation for our work.

Before stating it we remark that for any R € ET(Q) and any i € [n] where @ is an

acyclic quiver, the c-vector ¢; = ¢;(R) = +dim(V;) for some exceptional representation
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of @ (see [Chal2]). In general, not all indecomposable representations are exceptional.
The c-vectors are exactly the dimension vectors of the exceptional modules and their

negatives.

Notation 5.2.1. Let @ be a c-vector of an acyclic quiver Q. Define

< : if T is positive
{ -7 if @ is negative.
Theorem 5.2.2 ([ST13]). Let C' € c-mat(Q), let {€}ic[n) denote the c-vectors of C,
and let |€;| = dim(V;) for some indecomposable representation of Q. There exists a
permutation o € &, such that (V,(1y, ..., Vo(n)) is a CES with the property that if there
exist positive c-vectors in C, then there exists k € [n] such that % is positive if and
only if i € [k,n], and Homyq(V;,V;) = 0 if €, ¢j have the same sign. Conversely, any

set of n vectors having these properties defines a c-matriz whose rows are {E;’}ie[n].

5.2.2 Quivers of Dynkin type A,

For the purposes of this paper, we will only be concerned with quivers of Dynkin type
A,,. We say a quiver @ is of Dynkin type A, if the underlying graph of @) is a Dynkin
diagram of type A,,. By convention, two vertices ¢ and j with ¢ < j in a type A,, Dynkin
quiver ) are connected by an arrow if and only if j =i+ 1 and i € [n — 1].

It will be convenient to denote a given type A,, Dynkin quiver () using the notation

Q., which we now define. Let € = (eg, €1,...,¢6,) € {+,—}""! and for i € [n — 1] define
ai’ € Q1 by
. ie—itl e =—
a;' = ) )
t—1+1 =+

Then Q. := ((Qe)o := [n], (Qe)1 := {af' }ie[n—1]) = Q- One observes that the values of
€ and €, do not affect Q..

+ +
al a. a3

Example 5.2.3. Letn =5 and e = (—,+,—, +,—,+) so that Q. = 1 — 2 <2 3 2>
4 & 5. Below we show its framed quiver @e.

Let Q. be the quiver where ¢ = (eg,€1,...,6,) € {+,—}""L. Let i,5 € [0,n] :=
{0,1,...,n} where i < j and let X{, = ((W)Ze(Qe)oa(Soz{j)ag(Qé)l) € rep(Q.) be the

indecomposable representation defined by
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SERRE:

Figure 5.2: An example of a framed quiver

k @ i+1<0<y
Ve =
0 : otherwise
goi’j B 1 : a=af wherei+1<k<j—1
b -
0 : otherwise.

The objects of ind(repy(Q.)) are those of the form Xy where 0 < i < j < n, up to

isomorphism.

5.3 Strand diagrams

In this section, we define three different types of combinatorial objects: strand diagrams,
labeled strand diagrams, and oriented strand diagrams. We will use these objects to
classify exceptional collections, exceptional sequences, and c-matrices of Dynkin type

A, quivers. Throughout this section, we work with a given Dynkin type A,, quiver Q).

5.3.1 Exceptional sequences and strand diagrams

Let S, © R? be a collection of n + 1 points arranged in a horizontal line. We identify
these points with €, €1, ..., €, where €; appears to the right of ¢; for any ¢, j € [0,n] :=

{0,1,2,...,n} where i < j. Using this identification, we can write ¢; = (x;,7;) € R2.

Definition 5.3.1. Let i,j € [0,n] where i # j. A strand c(i,j) on Sy, is an isotopy
class of simple curves in R? where any v € c(i, j) satisfies:
a) the endpoints of v are € and €;j,
b) as a subset of R%, v < {(z,y) e R? : 2; < z < x;}\{€i41, €it2, .-, €5-1},
c) if ke[0,n] satisfiesi < k < j and e, = + (resp. € = —), then 7y is
locally below (resp. above) ey,.
There is a natural map ®. from ind(rep (Qc)) to the set of strands on S, given by

<I>6(Xi6,j) = C(Z7])
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Remark 5.3.2. It is clear that any strand can be represented by a monotone curve
v € c(i,j) (i.e. ift,s € [0,1] and t < s, then YV (t) < v(U(s) where () denotes the

x-coordinate function of v.).

We say that two strands c(i1,71) and c(iz,j2) intersect nontrivially if any two
curves 7y € c(ig,je) with ¢ € {1,2} have at least one transversal crossing. Other-
wise, we say that c(i1,j1) and c(iz,j2) do not intersect nontrivially. For exam-
ple, ¢(1,3),¢(2,4) intersect nontrivially if and only if eo = e3. Additionally, we say
that c(iz, j2) is clockwise from c(i1, j1) (or, equivalently, c(i1, j1) is counterclockwise
from c(iz, j2)) if and only if any v; € ¢(i1, j1) and 2 € c(i2, j2) share an endpoint €; and

locally appear in one of the following six configurations up to isotopy.

v v
w1\/w2 1/ 2 71\%

’YQA’Yl 72/71 72\71
€ = +

€ = + € = +

Figure 5.3: Configurations for the strand c(iz, j2) to be clockwise from c(i1, j1)

Definition 5.3.3. A strand diagram d = {c(i¢, jo)}ee[r) (k < n) on Sy is a collection
of strands on Sy, . that satisfies the following conditions:
a) distinct strands do not intersect nontrivially, and

b) the graph determined by d is a forest (i.e. a disjoint union of trees)
Let Dy, . denote the set of strand diagrams on S, with k strands and let D, denote the

set of strand diagrams with any positive number of strands. Then

De= | | Dre
ke[n]

Example 5.3.4. Let n = 4 and ¢ = (—,+,—,+,+) so that Q. = 1 — 2 «—
+

3 2, 4. Then we have that dy = {c(0,1),¢(0,2),¢(2,3),¢(2,4)} € Dy and dy =

{c(0,4),¢(1,3),c(2,4)} € D3 . We draw these strand diagrams below.

The following technical lemma classifies when two distinct indecomposable repre-

sentations of Q. define 0, 1, or 2 exceptional pairs. Its proof appears in Section [5.3.2
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A\ U RN o U

Figure 5.4: Two examples of strand diagrams

Lemma 5.3.5. Let Q). be given. Fix two distinct indecomposable representations U,V €
ind(repy (Qe)).

a) The strands ®.(U) and ®.(V) intersect nontrivially if and only if neither (U, V)

nor (V,U) are exceptional pairs.

b) The strand ®.(U) is clockwise from ®(V') if and only if (U, V') is an exceptional

pair and (V,U) is not an exceptional pair.

¢) The strands ®.(U) and ®(V') do not intersect at any of their endpoints and they
do not intersect nontrivially if and only if (U, V) and (V,U) are both exceptional

pairs.

Using Lemma [5.3.5| we obtain our first main result. The following theorem says that
the data of an exceptional collection is completely encoded in the strand diagram it

defines.

Theorem 5.3.6. Let &, := {exceptional collections of Q.}. There is a bijection € —
D, defined by

& ={X5, ey = {Pe(X5, ) el -

Proof. Let &, = {Xfw-z }ge[k] be an exceptional collection of ().. Let & be an exceptional
sequence gotten from &, by reordering its representations. Without loss of generality,
assume & = (X[, ; )ecpr) is an exceptional sequence. Thus, (Xfmé,Xpr-p

tional pair for all £ < p. Lemma a) implies that distinct strands of {®e(X;, ;,)}ee[x)

do not intersect nontrivially.

) is an excep-

Now we will show that {®c(X], ; )}eeqx) has no cycles. Suppose that

<I>€(Xfl1 jel)""’(be(Xfe e ) is a cycle of length p < k in ®.(&). Then, there exist

’ P/ Etp

la, Uy € [K] with £, > {, such that ®.(X} ) is clockwise from ®.(Xf . ). Thus, by
bt aJta

Lemma W b), (XZZ e ,Xfeb 7 j@b> is not an exceptional pair. This contradicts the fact
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that (X, j, s X, ) c

{®c(XF, j,) bee[r) 1s a tree. We have shown that ®(€,) € Dy
Now let d = {c(ir,je)}ee[r] € Dre- Since c(ig, je) and c(im, jm) do not intersect

is an exceptional sequence. Hence, the graph determined by

nontrivially, it follows that for every ¢ # m, either

(@ (i, ), @7 (c(ims jm)))
(@7 (c(ims jm)), 2 (clir, o))

is an exceptional pair. Notice that there exists c(iy, , js, ) € d such that

(@e_l (C(ih ) jh))v (I)e_l(c(iﬁa ]ﬁ)))

is an exceptional pair for every c(ig,js) € d\{c(i¢,,je,)}. This is true because if such
c(igy, jeo,) did not exist, then d must have a cycle. Set Ey = ®-!(c(i,,je,)). Now,
choose ¢(ig,, js,) such that (®7'(c(ie,, je,)), @7 (c(ie, j¢))) is an exceptional pair for
every c(ig, jo) € d\{c(ie,, jo,), -, (ie, je,)} inductively and put E, = & (c(ig,, jr,))-

By construction, (E1,..., Ex) is a complete exceptional sequence, as desired. O

Our next step is to add distinct integer labels to each strand in a given strand
diagram d. When these labels have what we call a good labeling, these labels will
describe exactly the order in which to put the representations corresponding to strands

of d so that the resulting sequence of representations is an exceptional sequence.

Definition 5.3.7. A labeled diagram d(k) = {(c(ir,jc), $¢)}re[r] On Sn,e is a strand
diagram on Sy ¢ whose strands are labeled by integers s; € [k| bijectively.

Let ¢; € Sy and let ((c(i,71),51),--.,(c(4,jr),sr)) be the complete list of labeled
strands of d(k) that involve €; and ordered so that strand c(i, ji) is clockwise from c(i, jx)
if k' < k. We say the strand labeling of d(k) is good if for each point ¢; € Sy, ¢ one has
51 < --- < sp. Let Dy (k) denote the set of labeled strand diagrams on Sp. with k
strands and with good strand labelings.

)

+
Example 5.3.8. Let n =4 and € = (—,+,—, 4+, +) so that Q. = 1 A,082

+
as

3 — 4.

Below we show the labeled diagrams
di(4) = {(c(0,1),1),(¢(0,2),2),(c(2,3),3),(c(2,4),4)} and
dy(3) = {(c(0,4),1),(c(2,4),2), (c(1,3),3)}.
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Figure 5.5: Two examples of labeled strand diagrams

We have that di(4) € Da(4), but da(3) ¢ D3 (3).

Theorem 5.3.9. Let k € [n] and let E(k) denote the set of exceptional sequences of Q¢
of length k. There is a bijection o, : Ec(k) — Dy (k) defined by

Ee = (X5, )eerr) = {(clie, jo), b + 1 — )} oep-

Proof. Let & := (Vi,..., Vi) € E(k). By Lemma a), ®.(&) has no strands that
intersect nontrivially. Let (V3,V2) be an exceptional pair appearing in & with V; cor-
responding to strand ¢; in CTDG(@) for ¢ = 1,2, where ¢; and co intersect only at one of
their endpoints. Note that by the definition of &)E, the strand label of ¢ is larger than
that of ¢3. From Lemma m b), strand ¢ is clockwise from co in &)E(fe). Thus the
strand-labeling of ®.(&.) is good, so (&) € Dy, (k) for any & € E(k).

Let W, : Dy (k) — E(k) be defined by the formula

{(c(ie, e)s O)boetr) = (X5 g Xin 1 ess = Xiyjn)-

We will show that W (d(k)) € E(k) for any d(k) € Dy (k) and that ¥, = &', Let
U ({(c(ig, jo), OYeerry) = (X5, 5 Xsy L jero- -+ X415, )- Consider the pair (X7 ;, X7 )
with s > s'. We will prove that the pair (st7js,XfS,7jS/) is an exceptional pair and
conclude that W ({(c(i¢, je), ) }re[r]) € Ee(k) for any d(k) € Dy, (k). Clearly, c(is, js) and
c(ig, js) do not intersect nontrivially. If ¢(is, js) and c(ig, js¢) do not intersect at one

of their endpoints, then by Lemmaw c) (Xf ., Xf§

f.j. X5, ;) is exceptional. Now suppose
) s's

c(is, js) and ¢(ig, jo) intersect at one of their endpoints. Because the strand-labeling of
{(c(ie, Je); €)}eefr] 1s good, c(is, js) is clockwise from c(iy, jy). By Lemma b), we
have that (Xf , , X5, iy
To see that ¥, = &);1, observe that
(T)e (\T’e({@(iéajﬁ)ve)}ée[k])) - (56 <<X7:Ek7jk7X;k—lajk—17 T ’X;17j1>>
(cliv; jo), b+ 1 — (k+1—=20))} e
(clies Je), €) oefr-

) is exceptional.

(
-
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Thus &)E o \Tl6 = lp, (k) Similarly, one shows that \I’E o &)e = le. (k) Thus CT)E is a
bijection. n

The last combinatorial objects we discuss in this section are called oriented dia-
grams. These are strand diagrams whose strands have a direction. We will use these

to classify c-matrices of Dynkin type A,, quivers Q..

Definition 5.3.10. An oriented diagram d = {C(ie, o) boew) on Sne is a strand

diagram on Sy whose strands € (¢, je) are oriented from €;, to €;,.

Remark 5.3.11. When it is clear from the context what the values of n and € are, we
will often refer to a strand diagram on S, simply as a diagram. Similarly, we will
often refer to labeled diagrams (resp. oriented diagrams) on Sy . as labeled diagrams

(resp. oriented diagrams).

We now define a special subset of the oriented diagrams on S,, .. As we will see, each
element in this subset of oriented diagrams, denoted Y_D)n,e, will correspond to a unique
c-matrix C' € c-mat(Q.) and vice versa. Thus we obtain a diagrammatic classification
of c-matrices (see Theorem [5.3.15)).

Definition 5.3.12. Let Dy be the set of oriented diagrams d = {7 (ie, Je) Yoepn) on
Sn,e with the property that any oriented subdiagram 71 ofE) consisting only of oriented

strands connected to €x, in Sy, for some k € [0,n] is a subdiagram of one of the following:
i) {C(k,i11),C(k,i2), C(J,k)} whereiy <k < iz and e = +

(shown in Figure (left)),

i) {€(i1, k), € (i2, k), € (k,j)} where iy <k <ig and e = —

(shown in Figure (right)).

RN

€ = + €k = —

Figure 5.6: Allowable subdiagrams in Y_D)n,g

Lemma 5.3.13. Let {¢]}icr) be a collection of k c-vectors of Qc where k < n. Let

¢ = £dim(X7 ;,) where the sign is determined by ;. If {€}icx) is a noncrossing
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collection of c-vectors (i.e. ®(X; ;) and ®(X} ,,) do not intersect nontrivially for
) 1%

any 1,1 € [k]), there is an injective map

{ noncrossing collections } { oriented diagrams }
Ciielr) of Qe d = {7 (ie,je) beepa

defined by
N T (i1,12) : T is positive
G NI . .
¢ (i2,71) : ¢ is negative.

In particular, each c-matrix Ce € c-mat(Q.) determines a unique oriented diagram

denoted ECE with n oriented strands.

- +
a3

+
Example 5.3.14. Letn =4 and € = (+,+,—, +,—) so that Q. = 1 H,082 3%,

After performing the mutation sequence us o o to the corresponding framed quiver, we

4.

have the c-matriz with its oriented diagram.

1 1 0 O
c W
0 -1 -1 0
0 0 0 1

Figure 5.7: A c-matrix and its oriented diagram

The following theorem shows oriented diagrams belonging to Z_D)n,e are in bijection
with c-matrices of Q.. We delay its proof until Section because it makes heavy use

of the concept of a mixed cobinary tree.

Theorem 5.3.15. The map c-mat(Q.) — Z_D)n76 induced by the map defined in Lemma
s a bijection.

5.3.2 Proof of Lemma [5.3.5|

The proof of Lemma [5.3.5] requires some notions from representation theory of finite
dimensional algebras, which we now briefly review. For a more comprehensive treatment

of the following notions, we refer the reader to [ASS06].
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Definition 5.3.16. Given a quiver QQ with #Qo = n, the Euler characteristic (of
Q) is the Z-bilinear (nonsymmetric) form Z"™ x Z™ — Z defined by

(dim(V'), dim(W)y = ) (=1)" dim Extiq(V, W)
=0

for every V,W € repy(Q).

For hereditary algebras A (e.g. path algebras of acyclic quivers), it is known that
Ext? (V,W) = 0 for i > 2 and the formula reduces to

(dim(V'), dim(W)) = dim Homyq(V, W) — dim Exti (V, W)

The following result gives a simple formula for the Euler characteristic. We note that

this formula is independent of the orientation of the arrows of Q).

Lemma 5.3.17 ([ASS06, Lemma VIL.4.1]). Given an acyclic quiver Q with #Qp = n
and integral vectors x = (21,2, ..., Tpn), Yy = (Y1,Y2, .-, Yn) € Z", the Euler characteristic

of Q has the form
)= D) Ty — ) Toa)Wia)

i€Qo aeQ
Next, we give a slight simplification of the previous formula. Recall that the support
of V € repy(Q) is the set supp(V) := {i € Qo : V; # 0}. Thus for quivers of the form @,
any representation X, € ind(repy(Q)) has supp(X;,) = [i + 1,].

Lemma 5.3.18. Let Xj ,, X, € ind(repy(Qe)) and A := {a € (Q)1 : s(a),t(a) €

supp(X}, o) N supp(X{;)}. Then (dim(X} ), dim(XF ;) is given by the formula
s(a) € supp(Xg o),
Xsu L) Nsu; ?,_# a€ Q€ : ' A
P dnmenits) <{ @ t(a) € supp(X;;) '

where X gupp(xe Jrsupp(X ) = 14f supp(X,;K) N supp(X; ;) # & and 0 otherwise.

k.l
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Proof. We have that (dim(X} ,),dim(X;;)) is equal to

Z dim ( Xy, ¢)mdim(X; ;) Z dim (X}, ¢) s(o)dim (X ;)i(a)
me(Qe)o ag(Qo)1
€ € s(a) € supp(X5 ,),
= # (supp(X}, o) N supp(X§;)) — # {a € (Qo : (a) ( fg)) }

t(a) € supp(X;;
= # (supp(X}, o) N supp(Xf;)) — #A

s(a) € supp(X (),
— # <{ae Qo) : MAY
t(a) € supp(X7 ;)
Observe that if supp(Xf ,) nsupp(X; ;) # &, then #A4 = #(supp(Xf ;) nsupp(X; ;))—1.
Otherwise #A = 0. Thus (dim(Xy ,), dim(X} ;)) is given by

s(a) € supp(X} ),
su € YAsu ey —# a€ (Qe: ’ 4
Xsupp(X§ ) nsupp(X{ ) ({ (@ch t(a) € supp(X7 ;) '

as desired. O

In the sequel, we will use this formula for the Euler characteristic without fur-
ther comment. We now present several lemmas that will be useful in the proof of
Lemma [5.3.5] The proofs of the next four lemmas use very similar techniques so we
only prove Lemma The following four lemmas characterize when Homyg, (—, —)
and Extﬂnge(—, —) vanish for a given Dynkin type A, quiver Q.. The conditions de-
scribing when Homyg, (—, —) and EXt]]}{QE (—, —) vanish are given in terms of inequalities
satisfied by the indices that describe a pair of indecomposable representations of (). and

the entries of e.

Lemma 5.3.19. Let X[ ,, X{,; € ind(rep(Qc)). Assume 0<i<k<j<l<n
i) Hokae(ij,ng) # 0 if and only if e, = — and ¢j = —.
i) Homgq, (Xf 4, X ;) # 0 if and only if e, = + and ¢j = +.
ii1) Exth (X5, Xio) # 0 if and only if ex = + and ¢ = +.
iv) Exth (X0 X5;) # 0 if and only if ey = — and ¢; = —.
Proof. We only prove i) and iv) as the proofs of ii) is very similar to that of i) the
proof of iii) is very similar to that of iv). To prove i), first assume there is a nonzero

morphism 0 : X{; — Xj ,. Clearly, 0, = 0if s ¢ [k+1, j]. If 65 # 0 for some s € [n], then
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0s = X for some X € k* (i.e. 05 is a nonzero scalar transformation). As € is a morphism

of representations, it must satisfy that for any a € (Q¢)1 the equality Gt(a)gpg’j = wﬁ’EHS(a)

€k+1

holds. Thus for any a € {a,"7,..., a;’’y

'}, we have 0t(a) = Us(a)- As 0 is nonzero, this

implies that 6, = X for any s € [k + 1, j]. If a = a}*, then we have

o ot
O aypa’ = @a Os(a)
Ht(a) = 0
Thus €, = —. Similarly, ¢; = —.
Conversely, it is easy to see that if ey = €¢; = —, then 0 : X7, — Xi , defined by

0s =0if s ¢ [k +1,j] and 65 = 1 otherwise is a nonzero morphism.
Next, we prove iv). Observe that by Lemma [5.3.18/ we have

dlmExth (X,‘;Z,Xe) = dim Homyg, (XEWX ) — <d1m( ),@(XZ])>
dim Homyq, (X} 4, X; ;) —

. ({be @ " S“pp(X’ivf))’ }m) .

£(b) € supp(XE,

Note that # <{b € (Qe)1 : s(b) € supp(Xy ), t(b) € supp(vaj)}\A> < 2. In addition, the
argument in the first paragraph of the proof shows that dim Homyqg, (X fos X ;) <1. By
i1), we conclude that Exth (X X5;) #0if and only if e = ¢; = —. O

Lemma 5.3.20. Let X[ ,, X7 € ind(rep(Qc)). Assume 0<i<k<l<j<n

i) Homyq, (X{;, X} ,) # 0 if and only if e, = — and e, = +.

) Homyq (X} 4, X; ;) # 0 if and only if e, = + and ¢y = —.
iii) Extyg, (X5, X50) # 0 if and only if e, = + and ¢ = —
iv) Exth (X X5 ;) # 0 if and only if e, = — and eg = +

Lemma 5.3.21. Assume 0 <i <k <j<n. Then
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i) Homyq, (Xf,, Xj ;) =0 and Homkq, (X} ;, Xf) = 0.

) o

) Extyg, (X5 Xk ;) # 0 if and only if e =j +.

) Extyg (X5, X5) # 0 if and only if e = —.

) Homyq, (X[, X5 ;) # 0 if and only if e, = —
v) Homxq (X[ ;, X{y) # 0 if and only if e =

)

)

)

)

i
111

1

Z]’

Exthq, (X{y, X{;) = 0 and Extlq, (Xf;, X; > =0

Hokae(Xk]’XE ) # 0 if and only if e, = +.
Hokas(XzejaX]f:j) #= 0 lf and Only ZfEk. = —,
Extyq, (X, X¢;) = 0 and Bxtyg (X¢;, X5 ) = 0.

Z]’

(%)
Vit
VLT

1T

Lemma 5.3.22. Let X} ,, X7 € ind(repy(Qc)). Assume 0 <i<j <k <{<n. Then
i) Homyq, (X ;, X} ,) = 0, Homyq (X} ,, X7 ;) =0,
it) Extig (Xg;, Xf,) =0, Extig (Xg,, X£;) =0.
Next, we present three geometric facts about pairs of distinct strands. These geo-

metric facts will be crucial in our proof of Lemma

Lemma 5.3.23. If two distinct strands c(i1,j1) and c(iz, j2) on Sy intersect nontriv-
ially, then c(i1,j1) and c(iz, j2) can be represented by a pair of monotone curves that

have a unique transversal crossing.

Proof. Suppose c¢(i1, j1) and c¢(iz, j2) intersect nontrivially. Without loss of generality,
we assume i1 < ig. Let v € c(ig, jx) with k € [2] be monotone curves. There are two
cases:

a) i1 <iz <j1 <jo

b) i1 < iz < j2 < 1.

Suppose that case a) holds. Let (2/,y') € {(z,y) € R? : 2;, < z < x;,} denote a
point where ~; crosses o transversally. If ¢;, = — (resp. €, = +), isotope ~v; relative
to €, and (2/,7’) in such a way that the monotonocity of ; is preserved and so that v,
lies strictly above (resp. strictly below) 42 on {(z,y) € R? : z;, <z < 2'}.

Next, if €;, = — (resp. €j, = +), isotope 7 relative to (z’,y’) and €;, in such a way
that the monotonicity of 7 is preserved and so that -, lies strictly above (resp. strictly
below) v1 on {(z,y) € R? : 2’ < x < xj,}. This process produces two monotone curves
v € c(i1,j1) and 2 € c(ig, j2) that have a unique transversal crossing. The proof in

case b) is very similar. O
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Lemma 5.3.24. Let c(i1,j1) and c(iz,j2) be distinct strands on Sy that intersect

nontrivially. Then c(i1,j1) and c(iz, j2) do not share an endpoint.

Proof. Suppose c(i1,71) and c(i2,j2) share an endpoint. Since c(i1, j1) and c(ig, j2)
intersect nontrivially, then there exist curves v € c(ig, ji) with k£ € {1,2} that have a
unique transversal crossing. However, since c(i1, j1) and c¢(iz, j2) share an endpoint, v
and -y are isotopic relative to their endpoints to curves with no transversal crossing.

This contradicts that c(i1, j1) and ¢(i2, j2) share an endpoint. O

Remark 5.3.25. If c(i1, j1) and c(iz, j2) are two distinct strands on S, that do not
intersect nontrivially, then (i1, j1) and c(ia, jo) can be represented by a pair of monotone
curves g € c(ig,j¢) where € € [2] that are nonintersecting, except possibly at their

endpoints.

We now arrive at the proof of Lemma [5.3.5l The proof is a case by case analysis
where the cases are given in terms of inequalities satisfied by the indices that describe

a pair of indecomposable representations of (). and the entries of e.

Proof of Lemma a). Let X;; = U and Xpo = V. Assume that the strands
P (X ;) and @.(X} ,) intersect nontrivially. By Lemma we can assume without
loss of generality that either 0 < i <k <j<f<nor0<i<k<{<j<n By
Lemma we can represent @ (X7 ;) and (X} ,) by monotone curves 7; ; and g
that have a unique transversal crossing. Furthermore, we can assume that this unique
crossing occurs between ¢ and €, 1. There are four possible cases:
i) €k = €kr1 = —,

ii) € = — and €41 = +,

i) € = €gr1 = +,

) €=+ and g1 = —.
We illustrate these cases up to isotopy in Figure We see that in cases i) and i)
(resp. iii) and iv)) ke lies
above (resp. below) «; ; inside of {(z,y) € R? : 741 <z

Suppose Y ¢ lies above 7, ; inside {(z,y) € R? : xj41

+ : min{l,j} =4
€min{¢,j =
o min{t,j} = j
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€e+1 =t

Esz ek_i_l:f Esz

ek:+ 6k—|—1:+ ek:_'_

€kt+1 = —

Figure 5.8: The four types of crossings

otherwise 7 ¢ and +; ; would have a nonunique transversal crossing. If min{/, j} = ¢,

then 0 < i <k <l < j<n, ¢ = —, and ¢ = +. Now by Lemma [5.3.20
have that Homgq, (X[ ;, Xj,) # 0 and Exth (X5 X5;) # 0. If min{l,j} = j, then
0<i<k<j<l<mn, ¢ = —,and ¢ = —. Thus, by Lemma [5.3.19, we have that
Homyg, (X, X{ ) # 0 and Extlo (X, X¢,) # 0.

Similarly, if v; ; lies above g ¢ inside {(z,y) € R? : 2341 < 7 < Tmin{e,j} ) it follows
that

- mln{f,]} =/
€min{¢,j =
{3} + mm{ﬁ,j} = ]

If min{¢, j} = ¢, then Lemma 5.3.20 implies Homyq, (Xf ,, X7 ;) and ExtﬂiQ (X5, Xio)
are nonzero. If min{/,j} = j, then Lemma [5.3.19) implies that Homyq, (X} ,, X ;)

and Extﬂng (Xf;, X} ) are nonzero. Thus we conclude that neither (X7,

(X% X5 ;) are exceptional pairs.

X}, ;) nor

Conversely, assume that neither (U, V) nor (V, U) are exceptional pairs where X ;=
U and X, := V. Then at least one of the following is true:
a) Homgq, (X;;, X} ) # 0 and Homgg, (X ,, X5 ;) # 0,

1,57
b) Homgq, (X ;, Xf,) # 0 and Exth (Xio X5;) #0,
) Extig (Xf;, Xf,) # 0 and Homyg, (X,gf,X ) #0,
d) Extyo (Xf;, Xi,) # 0 and Extyg (X, X5 ;) # 0.
As X7, and Xj, are 1ndecomposable and dlstlnct we know Homyq, (X[ ;, Xj,) o
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Homyq, (X} 4, Xy ;) is zero. Without loss of generality, assume Homyq, (X} ,, X ;) = 0.
Thus b) or d) hold so we have Ext]kQ (XgXi;) # 0. Then Lemma and
Lemma [5.3.22)imply that 0 < i<k <j<f<nor0<i<k<l<j<n
fO0<i<k<j</{l<n,thene =¢ =— by Lemmaas Homyq, (X7, X§ /)
and Extﬂnge(X;;Z,Xf’j) are nonzero. Let v;; € ®(X[;) and v € Pc(Xf,). We can
assume that there exists §(k) > 0 such that 7;; and v, have no transversal crossing
inside {(z,y) € R? : 2, < o < x; + 0(k)}. This implies that v; ; lies above i, inside
{(z,y) e R? : o, < 2 < 2 + 0(k)}. Similarly, we can assume there exists 6(j) > 0 such
that v;,; and v have no transversal crossing inside {(z,y) € R? : z; — 6(j) < z < x;}.
Thus ; ; lies below 7y ¢ inside {(z,y) € R* : z; — 6(j) < # < x;}. This means v; ; and
Vk,c must have at least one transversal crossing. Thus ®(X{ ;) and ®(Xf ,) intersect
nontrivially. An analogous argument shows that if 0 <7 <k < /f < j < n, then ® (X )

and ®.(X} ,) intersect nontrivially. O

Proof of Lemma b). Assume that ®.(U) is clockwise from ®(V'). Then we have
that one of the following holds:

a) Xﬁj=Uadefk=Vf01rsome()<z<l<:<]<n7

b) Xf’szandX,‘;j=Vf0rsom60<2<k<j<n,

c) Xﬁszandekz‘/forsomeng j<nand 0<i<k<n,
d) XZJ-=UandX,§’j=Vf0rsome()<z<]<nand0<k<]<

In Case a), we have that e, = — since (X} ;) is clockwise from ®(Xf,). By
Lemma i) and 7i), we have that Homyq, (X;,, X} ;) and ExthE (X5 Xk ;) are
zero. Thus (XIEJ,X6 ) is an exceptional pair. By Lemma ii1), we have that
ExtungE (X% Xip) # 0. Thus (X, X} ;) is not an exceptional pair.

In Case b), we have that e, = + since ®(X[,) is clockwise from ®.(X ;). By
Lemma i) and ii1), we have that Homyq, (X} ;, X ;) and ExtHiQ (X% X5p) are
zero. Thus (X;,lei,j) is an exceptional pair. By Lemma i1), we have that
Extﬂnge (X{p Xf;) # 0. Thus (Xf ;, X)) is not an exceptional pair.

In Case ¢), if j < k, it follows that €¢; = —. Indeed, ®¢(Xf i
<I>€(Xf7k) and so by Lemma the two do not intersect nontrivially. Now by Re-
mark we can choose monotone curves v, € ®(Xf;) and v;; € ®(X[ ;) such

) is clockwise from

that v, lies strictly above 7;; on {(z,y) € R* : #; < # < z;}. Thus ¢; = —. By
Lemma |5.3.21v) and vi), we have that Homyq, (Xf,, X; ;) = 0 and Ext]ng (X g X5 5) =
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0 so that (Xf;, X{,) is an exceptional pair. By Lemma [5.3.21 iv), we have that

Homgq, (X; ;, X5 ;) # 0. Thus (X, X7 ,) is not an exceptional pair.

Similarly, one shows that if k¥ < j, then ¢, = +. By Lemma iv) and vi), we
have that Homyg, (X5, X; ;) = 0 and Ext]kQ (Xf g, X7 ;) = 0. It follows that (X[, X7))
is an exceptional pair. By Lemma v), we know Homgq, (X7 ;, X{,) # 0. Thus
(XlE o0 X5 ) is not an exceptional pair. The proof in Case d) is completely analogous to
the proof in Case ¢) so we omit it.

Conversely, let U = X{ jand V = X, and assume that (X i X,;f) is an exceptional
pair and (X} o X5 ) is not an exceptional pair. This implies that at least one of the
following holds:

1) Homyq. (X} 4 X5 ;) =0, Exth (X5 Xi;) =0, and
Homyq, (X7, Xt ) # 0,
2) Homug, (X[, X{;) = 0, Extho, (X[, X¢,;) =0, and
Extyq (X5, Xf,) # 0.
By Lemma we know that [i, 7] n [k, ] # . This implies that either
i) Pc(Xf;) and @ (X} ,) share an endpoint,

i<k<j<fl<n

v)

We will show that ®.(X; ;) and ®¢(X} ,) share an endpoint.
Suppose 0 < i < k < j < ¢ < n. Since Homgq, (X}, ,, X{;) =0 Exth (X5 X5j) =
0, we have by Lemma [5.3.19| 74) and iv) that either ¢, = — and ¢; = + or ¢, = + and

e; = —. However, as Homyq, (X[ ;, X ;) # 0 or Exth (X5, Xio) # 0, Lemma|5.3.19]7)
and i) we have that €, = ¢; = — or ¢, = ¢; = +. This contradicts that 0 <i <k < j <

£ < n. An analogous argument shows that i, j,k, £ donot satisfy 0 < k <i</l{<j<n

Suppose 0 < i < k < ¢ < j < n. Since Homyg, (XM,X6 ) = O,Extﬂnge(X,;@,Xf’j) =
0, we have by Lemma i7) and iv) that either ¢ = ¢ = + or ¢ = ¢ = —.
However, as Homyg, (X”,Xk o) # 0 or Extyy (X7, X5,) # 0, Lemma i) and
ii1) we have that ¢, = — and ¢y = + or ¢, = + and ¢ = —. This contradicts that
0 <i<k<?<j<n An analogous argmuent shows that i, j, k,¢ do not satisfy
0<k<i<j<il<n

We conclude that ®.(U) and ®.(V) share an endpoint. Thus we have that one of
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the following holds where we forget the previous roles played by 1, 7, k:
a) Xp,=Uand X{, =V forsome0<i<k<j<n,

b) Xfp="Uand X, =V forsome0<i<k<j<n,
¢) X;;=Uand X{ =V forsomeO0<i<j<nand0<i<k<n,

d) Xf;="Uand X{ =V for some 0 < <
Suppose Case a) holds. Then since (U, V') is an exceptional pair, Exth e Xhg) =

0. By Lemma [5.3.21] 74), we have that ¢, = —. Thus ®.(U) is clockwise from ®(V').
Suppose Case b) holds. Then since (U, V') is an exceptional pair, Extﬂnge (X,g i Xf B) =

0. By Lemma[5.3.21] iii), we have that €, = +. Thus ®.(U) is clockwise from ®.(V).
Suppose Case ¢) holds. Assume k < j. Then Lemma iv) and the fact that
Homygq, (X[, Xf;) = 0 imply that ¢, = +. Thus we have that ®(U) = @(X[,) is
clockwise from ®(V) = ®(X{,). Now suppose j < k. Then Lemma v) and

1<j<nand 0<k<j<n.
(X5

Homyq, (Xf, Xf;) = 0 imply that ¢; = —. Thus we have that ®(U) = ®c(X};) is
clockwise from ®.(V) = ®.(X¢,). The proof in Case d) is very similar so we omit
it. O

Proof of Lemma ¢). Observe that two strands c(i1, j1) and c(iz, j2) share and end-
point if and only if one of the two strands is clockwise from the other. Thus Lemma/|5.3.5
a) and b) implies that ®.(U) and ®.(V') do not intersect at any of their endpoints and
they do not intersect nontrivially if and only if both (U, V) and (V,U) are exceptional
pairs. ]

5.4 Mixed cobinary trees

We recall the definition of an e-mixed cobinary tree and construct a bijection between
the set of (isomorphism classes of) such trees and the set of maximal oriented strand

diagrams on Sy, ..

Definition 5.4.1 ([IO13]). Given a sign function € : [0,n] — {+,—}, an e-mizred
cobinary tree (MCT) is a tree T embedded in R? with vertex set {(i,y;)|i € [0,n]} and

edges straight line segments and satisfying the following conditions.
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) None of the edges is horizontal.
) Ife; =+ then y; = z for any (i,2z) € T. So, the tree goes under (i,y;).
¢) Ife;=— theny; <
)

If €; = + then there is at most one edge descending from (i,y;) and

z for any (i,z) € T. So, the tree goes over (i,y;).

at most two edges ascending from (i,y;) and not on the same side.
e) Ife; = — then there is at most one edge ascending from (i,y;) and

at most two edges descending from (i,y;) and not on the same side.
Two MCT’s T,T' are isomorphic as MCT'’s if there is a graph isomorphism T =~ T’

which sends (i,y;) to (i,y:) and so that corresponding edges have the same sign of their

slopes.

Given a MCT T, there is a partial ordering on [0,n] given by i <p j if the unique
path from (4,y;) to (4,¥;) in T is monotonically increasing. Isomorphic MCTs give the
same partial ordering by definition. Conversely, the partial ordering <7 determines T’
uniquely up to isomorphism since 1" is the Hasse diagram of the partial ordering <.
We sometimes decorate MCTs with leaves at vertices so that the result is trivalent,
i.e., with three edges incident to each vertex. See, e.g., Figure [5.10] The ends of these
leaves are not considered to be vertices. In that case, each vertex with ¢ = + forms
a “Y” and this pattern is vertically inverted for ¢ = —. The position of the leaves is

uniquely determined.

(1,1)

(27 _1)

Figure 5.9: A MCT with €; = e = —, ¢35 = + and any value for €g, €4

In Figure the four vertices have coordinates (0,yo), (1,41), (2,y2), (3,y3) where
1; can be any real numbers so that yg < y1 < y2 < y3. This inequality defines an open
subset of R* which is called the region of this tree 7. More generally, for any MCT T,
the region of T, denoted R(T), is the set of all points y € R"*! with the property that
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Figure 5.10: This MCT (in blue) has added green leaves showing that € = (—, +, —, —)

there exists a mixed cobinary tree 7" which is isomorphic to 7" so that the vertex set of
T is {(i,y) |i < [n]}.

Theorem 5.4.2 ([IO13]). Let n and € : [n] — {+,—} be fixred. Then, for every MCT T,
the region Re(T) is conver and nonempty. Furthermore, every point y = (Yo, - ,Yn)
in R with distinct coordinates lies in Re(T) for a unique T (up to isomorphism). In

particular these regions are disjoint and their union is dense in R"*1.

For a fixed n and € : [n] — {4+, —} we will construct a bijection between the set 7.
of isomorphism classes of mixed cobinary trees with sign function € and the set T))me
defined in Definition [5.3.12

Lemma 5.4.3. Let d = {7C (ie; Je) beepn) € ﬁn,e. Let p, q be two points on this graph so
that q lies directly above p. Then each edge of d in the unique path v from p to q is

oriented in the same direction as .

Proof. The proof will be by induction on the number m of internal vertices of the path
~. If m = 1 with internal vertex ¢; then the path v has only two edges of 'd: one going
from p to ¢;, say to the left, and the other going from ¢; back to q. Since de 7_))”,6, the
edge coming into ¢; from its right is below the edge going out from ¢; to ¢q. Therefore
the orientation of these two edges in 'd matches that of .

Now suppose that m > 2 and the lemma holds for smaller m. There are two cases.
Case 1: The path ~ lies entirely on one side of p and ¢ (as in the case m = 1). Case 2:
~ has internal vertices on both sides of p, q.

Case 1: Suppose by symmetry that ~ lies entirely on the left side of p and ¢. Let j

be maximal so that ¢; is an internal vertex of . Then v contains an edge connecting ¢;
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to either p or ¢, say p. And the edge of v ending in ¢ contains a unique point r which
lies above €;. This forces the sign to be ¢; = —. By induction on m, the rest of the
path v, which goes from ¢; to r has orientation compatible with that of d. So, it must
be oriented outward from €;. Any other edge at € is oriented inward. So, the edge from
p to ¢€; is oriented from p to €; as required. The edge coming into 7 from the left is
oriented to the right (by induction). So, this same edge continues to be oriented to the
right as it goes from r to ¢g. The other subcases (when €; is connected to ¢ instead of p
and when ~ lies to the right of p and ¢) are analogous.

Case 2: Suppose that v on both sides of p and ¢q. Then v passes through a third
point, say r, on the same vertical line containing p and ¢q. Let 7y and 7; denote the
parts of v going from p to r and from r to g respectively. Then g, y; each have at least
one internal vertex. So, the lemma holds for each of them separately. There are three
subcases: either (a) r lies below p, (b) r lies above ¢ or (c) r lies between p and ¢. In
subcase (a), we have, by induction on m, that 7,1 are both oriented away from r. So,
r = €, = + which contradicts the assumption that ¢ lies above r. Similarly, subcase
(c) is not possible. In subcase (b), we have by induction on m that the orientations of
the edges of d are compatible with the orientations of vg and ;. So, the lemma holds
in subcase (b), which is the only subcase of Case 2 which is possible. Therefore, the

lemma holds in all cases. O

Theorem 5.4.4. For each d = {7C (e, 3e) Yeen) € Z_))n,e, let 7?,(7) denote the set of all
y € R"™ so that y; < y; for any < (i,j) in d. Then 7?,(7) = Re(T) for a uniquely
determined mized cobinary tree T'. Furthermore, this gives a bijection
671,6 ~ 7.

Proof. We first verify the existence of a mixed cobinary tree T' for every choice of
y € R(ﬁ) Since the strand diagram is a tree, the vector y is uniquely determined by
yo € R and yj, —y;, > 0, £ € [n], which are arbitrary. Given such a y, we need to
verify that the n line segments Ly in R? connecting the pairs of points (ig, y;,), (je, Yj,)
meet only on their endpoints. This follows from the lemma above. If two of these line
segments, say Ly, Ly, meet then they come from two distinct points p € € (ig, jr) and
q = € (ig, je) in the strand diagram which lie one the same vertical line. If ¢ lies above p

in the strand diagram then, by Lemma the unique path v from p to ¢ is oriented
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positively. This implies that the y coordinate of the point in L; corresponding to p is
less that the y coordinate of the point in Ly corresponding to ¢. Thus, this intersection
is not possible. So, T' is a linearly embedded tree. The lemma also implies that the
tree T lies above all negative vertices and below all positive vertices. The other parts
of Definition follow from the definition of an oriented strand diagram. Therefore
T e 7T.. Since this argument works for every y € R(U), we see that R(U) =Re(T) as
claimed.

A description of the inverse mapping 7. — Y_D)n,E is given as follows. Take any MCT
T and deform the tree by moving all vertices vertically to the subset [n] x 0 on the
z-axis and deforming the edges in such a way that they are always embedded in the
plane with no vertical tangents and so that their interiors do not meet. The result is an
oriented strand diagram d with R(?) =R(T).

It is clear that these are inverse mappings giving the desired bijection T))n,e ~ 7. O

Example 5.4.5. The MCTs in Figures and above give the oriented strand

diagrams:

I VN ANYAS

Figure 5.11: Oriented strand diagrams gotten from the MCTs in Figures and

and the oriented strand diagram in Example gives the MCT:
\mj — ‘y

Figure 5.12: An example of the bijection given in Theorem [5.4.4
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We now arrive at the proof of Theorem This theorem follows from the fact
that oriented diagrams belonging to Z_?)m6 can be regarded as mixed cobinary trees by

Theorem [5.4.4]

—>

Proof of Theorem [5.3.15 Let f be the map c-mat(Q¢) — Dy induced by the map
defined in Lemma [5.3.13 and let g be the bijective map 7. — Z_D)me defined in Theo-
rem We will assert the existence of a map h : c-mat(Q¢) — 7¢ which fits into the

diagram

The theorem will follow after verifying that h is a bijection and that f = g o h.

We will define two new notions of c-matrix, one for MCTs and one for oriented
strand diagrams. Let T' € 7. with internal edges ¢; having endpoints (i;,y;,) and
(42, Yi, ). For each £;, define the ‘c-vector’ of ¢; to be ¢;(T) := X, _;;, sen(l;)e;, where
sgn(¥;) is the sign of the slope of ¢;. Define ¢(T') to be the ‘c-matrix’ of T whose rows
are the c-vectors ¢;(T"). Now, let d = {C (i, Je) boepn) € T))n,e. For each oriented strand

@ (ig, je), define the ‘c-vector’ of @ (ig, j¢) to be

05(7) = {Zi£<k<jesgn( (ifajl))ek ot < Jp

<
X, <ki, S80(C (ie, Jo))ex o> jo

where sgn (7@ (ig, j¢)) is positive if iy < jp, and negative if iy > j;. Define 0(7) to be the
‘c-matrix’ of d whose rows are the c-vectors c[(g).

It is known that the notion of c-matrix for MCT’s coincides with the original notion
of c-matrix defined in Section and that there is a bijection between c-mat(Q.) and
Te which preserves c-matrices (see [I013, Remarks 2 and 4] for details). Thus, we have
a bijective map h : c-mat(Q.) — T.. On the other hand, the bijection g : 7. — 1_5,“
defined in Theorem also preserves c-matrices. The map f : c-mat(Q.) — Te
preserves c-matrices by definition. Hence, we have f = go h and f is a bijection, as

desired. O
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Remark 5.4.6. For linearly-ordered quivers (those with either € = (+,...,+) or € =
(—,...,—)), this bijection was established by the first and third authors in [GM15)] using
a different approach. The bijection was given by hand without going through MCTs.
This was more tedious, and the authors feel that some aspects (such as mutation) are

better phrased in terms of MCTs.

5.5 Exceptional sequences and linear extensions

In this section, we consider the problem of counting the number of CESs arising from a
given CEC. We show that this problem can be restated as the problem of counting the
number of linear extensions of certain posets. Throughout this section we fix a strand

diagram d = {c(i¢, je)}re[n] ON Sne-

Definition 5.5.1. We define the poset Py = ({c(i¢, ji)}ie[n], <) associated to d as the
partially ordered set whose elements are the strands of d with covering relations given
by c(i,j) < c(k,£) if and only if the strand c(k,?) is clockwise from c(i,j) and there
does not exist another strand c(i', j') distinct from c(i,j) and c(k,£) such that c(i',j') is

clockwise from c(i,7) and counterclockwise from c(k,?).

The construction defines a poset because any oriented cycle in the Hasse diagram of
P4 arises from a cycle in the underlying graph of d. Since the underlying graph of d is
a tree, the diagram d has no cycles. In Figure we show a diagram d € D4 where
€:=(—,+,—,+,+) and its poset Py.

P
W H

Figure 5.13: A diagram and its poset

Let P be a finite poset with m = #P. Let f : P — m be an injective, order-
preserving map (i.e. z < y implies f(z) < f(y) for all z,y € P) where m is the

linearly-ordered poset with m elements. We call f a linear extension of P. We
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W

Figure 5.14: Two diagrams with the same poset

denote the set of linear extensions of P by .Z(P). Note that since f is an injective map
between sets of the same cardinality, f is a bijective map between those sets.

In general, the map D, c — & (D) := {Pq : d € Dy} is not injective. For instance,
each of the two diagrams in Figure[5.14/have P; = 4 where 4 denotes the linearly-ordered
poset with 4 elements. It is thus natural to ask which posets are obtained from strand
diagrams.

Our next result describes the posets arising from diagrams in D, . where € =
(—,...,—)or e =(+,...,+). Before we state it, we remark that diagrams in D,,
where € = (—,...,—) or € = (+,...,+) can be regarded as chord diagramsﬂ The

following example shows the simple bijection.

AN :

Figure 5.15: An example of the bijection between strand diagrams with e = (+,...,+)
or e =(—,...,—) and chord diagrams

Let d € D, where € = (—,...,—) or € = (+,...,+). Let ¢(4,j) be a strand of
d. There is an obvious action of Z/(n + 1)Z on chord diagrams. Let 7 € Z/(n + 1)Z
denote a generator and define 7c(i,7) := c¢(i — 1,7 — 1) and 7 t¢(4,5) := c(i + 1,5 + 1)

1 These noncrossing trees embedded in a disk with vertices lying on the boundary have been studied
by Araya in [Aral3], Goulden and Yong in [GY02], and the first and third authors in [GM15].
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where we consider i = 1 and j = 1 mod n + 1. We also define 7d := {7c(iy, je) }se[n) and
7 Yd := {77 (i, jo) boepn). The next lemma, which is easily verified, shows that the

order-theoretic properties of CECs are invariant under the action of 7%!.

Lemma 5.5.2. Let d € Dy, where e = (—,...,—) ore = (+,...,+). Then we have the

following isomorphisms of posets Py = Prq and Pg = P -14.

Theorem 5.5.3. Let € = (—,...,—) orlete = (+,...,+). Then a poset P € P (D)
if and only if

i) each x € P has at most two covers and covers at most two elements,

1) the underlying graph of the Hasse diagram of P has no cycles,

i1i) the Hasse diagram of P is connected.

Proof. Let Py e (D). By definition, Py satisfies 7). It is also clear that the Hasse
diagram of Py is connected since d is a connected graph. To see that P, satisfies ii),
suppose that C'is a full subposet of P; whose Hasse diagram is a minimal cycle (i.e.
the underlying graph of C' is a cycle, but does not contain a proper subgraph that is a
cycle). Thus there exists xc € Py such that ¢ € C is covered by two distinct elements
y,z € C. Observe that C' can be regarded as a sequence of chords {ci}fzo of d in which y
and z appear exactly once and where for all i € [0, /] ¢; and ¢;+1 (we consider the indices
modulo ¢ + 1) share a marked point j and no chord adjacent to j appears between c¢;
and c; 1. Since the chords of d are noncrossing, such a sequence cannot exist. Thus the
Hasse diagram of P, has no cycles.

To prove the converse, we proceed by induction on the number of elements of P
where P is a poset satisfying conditions i),4i), 7). If #P = 1, then P is the unique
poset with one element and P = P, where d is the unique chord diagram associated to
the disk with two marked points that is a spanning tree. Assume that for any poset P
satisfying conditions ), 1), 4ii) with #P = r for any positive integer r < n + 1 there
exists a chord diagram d such that P = P;. Let Q be a poset satisfying the above
conditions and assume #Q = n + 1. Let x € Q be a maximal element.

Assume x covers two elements y, z € Q. Then the poset Q — {z} = Q1 + Qo where
y € Q1, z € Qy, and Q; satisfies i), 1), ¢i7) for i € [2]. By induction, there exists positive

integers ki, ko satisfying ki + ko = n and diagrams

di € Dy, .o = {chord diagrams {c;(ir, j¢) }re[r,] With k; + 1 marked points}
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where Q; = Py, for i € [2] and where € € {+, —}¥i*1 has all of its entries equal to the
entries of . By Lemma [5.5.2] we can further assume that the chord corresponding to
y € Qp (resp. z € Qa)is c1(i(y), k1) € dy for some i(y) € [0, k1 —1] (resp. c2(j(2), k2) € da
for some j(z) € [1, k2]). Define dy i da := {c/(iy, jy) }se[n to be the diagram in the disk

with n + 2 marked points as follows:

Ji i = c1(ie je) cif L e [k ]
o =0 ey (ig gy, joory) ¢ if L€ [ky +1,m].

Q-0

Figure 5.16: An example with k1 = 3 and ko =2 so that n = k; + ko =5

Define ¢/ (iy,, 1, Jy,41) := c(k1,n + 1) and then d := {c/(i}, j;) }re[n+1] satisfies i), i7), i17),
and Q = Py,.

If the Hasse diagram of Q — {z} is connected, then by induction the poset Q — {z} =
Pq for some diagram d = {c(is, je) }se[n] € Dn,e where we assume iy < jo. Since the Hasse
diagram of Q — {x} is connected, it follows that z covers a unique element in Q. Let
y =c(i(y),j(y)) € @ —{z} (i(y) < j(y)) denote the unique element that is covered by
z in ©. This means that there are no chords in d obtained by a clockwise rotation of
c(i(y), j(y)) about i(y) or there are no chords in d obtained by a clockwise rotation of
c(i(y), j(y)) about j(y). Without loss of generality, we assume that there are no chords
in d obtained by a clockwise rotation of ¢(i(y), j(y)) about i(y).

Regard d as an element of D, where € € {+, —}7*+2 has all of its entries equal
to the entries of € as follows. Replace it with d := {c(i}, 49)}te[n] € Pny1,e defined by

(we give an example of this operation below with n = 6)

pte(ie, jo) : ifip <i(y) and j(y) < jo,
iy, gp) = 3 T elie, jo) ¢ if G(y) <,

c(ig, Jr) : otherwise.
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a- | | — 7 -
\

Figure 5.17: An example with n = 6

Define ¢'(i}, 1, Jpn41) = c(i(y),i(y) + 1) and put d' := {c'(iy, j)) beepns1]- As Q — {z}
satisfies 7),i7), and #ii), it is clear that the resulting chord diagram d’ satisfies P =

Pd’ . O

Theorem 5.5.4. Let d = {c(iy,je)}oe[n] € Dn,e and let &, denote the corresponding
complete exceptional collection. Let CES(E,) denote the set of CESs that can be formed
using only the representations appearing in .. Then the map x : CES(E.) — Z(P,)
defined by (X5, ;.- X£ ;) = {(clie, jo), n+ 1= e == (F(c(ic, jo)) == n+1—1)

s a bijection.

Proof. The map x2 = ® : CES(£,) — Dp(n) is a bijection by Theorem m Thus it
is enough to prove that x1 : Dy (n) — £ (Py) is a bijection.

First, we show that xi(d(n)) € Z(Py) for any d(n) € Dy (n). Let d(n) € Dy (n)
and let f := x1(d(n)). Since the strand-labeling of d(n) is good, if (c1, 1) and (¢, ¢2)
are two labeled strands of d(n) satisfying ¢; < cg, then f(c1) = €1 < ly = f(c2). Thus f
is order-preserving. As the strands of d(n) are bijectively labeled by [n], we have that
f is bijective so f € Z(Py).

Next, define a map

ZL(Pa) > Dpeln)
o A{(clic, jo), f(clic, je))) }ee[n)-
To see that ¢(f) € Dy (n) for any f € £(Py), consider two labeled strands (c1, f(c1))
and (cg, f(c2)) belonging to ¢(f) where ¢; < ¢p. Since f is order-preserving, f(c1) <

f(c2). Thus the strand-labeling of ¢(f) is good so ¢(f) € Z(Pq).
Lastly, we have that

x1(p(f)) = x1({(c(ie, Je), f(clies Jo)) Yeepn)) = f
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and

PO ({(clie 3), O} eemm))) = #(f(clie 3o) = £) = {(c(ie, 3o), ) }eeln)

SO p = Xl_l. Thus x1 is a bijection. O

5.6 Applications

Here we showcase some interesting results that follow easily from our main theorems.

5.6.1 Labeled trees

In [SWS86, p. 67], Stanton and White gave a nonpositive formula for the number of
vertex-labeled trees with a fixed number of leaves. By connecting our work with that
of Goulden and Yong [GY02], we obtain a positive expression for this number. Here we
consider diagrams in D,, . where € = (—,...,—) or € = (+,...,+). We regard these as

chord diagrams to make clear the connection between our work and that of [GY02].

Theorem 5.6.1. Let T),.1(r) := {trees on [n + 1] with r leaves}. Then

#Tor1(r) = > #.L (Pa)-
deDpe: dhasr chords c(ij,i; + 1)

Proof. Observe that

Z #L(Py) = Z #{good labelings of d}
deDye:d hasr deD,c:dhasr
chords c(ij,i; + 1) chords c(ij,i; + 1)

d(n) has r chords
# 1< d(n) € Dpe(n) : c(ij,i; + 1) for some

z’l,...,ire[(),n]

where we consider i;4+1 mod n+1. By [GY02, Theorem 1.1], we have a bijection between
diagrams d € Dy,  with r chords of the form c(i;,4; + 1) for some iy,...,%, € [0,n] with

good labelings and elements of T,,11(r). O

Corollary 5.6.2. We have (n+1)""!' =Y, #ZL(Py).
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Proof. Let T),11 := {trees on [n+1]}. One has that

(n + 1)11—1 = #Tn-l-l
= Z #Tn+1(r)
r=0
= ;) Z #.2(Py) (by Theorem

deDy,e:d hasr
chords c(i;,4; + 1)

= > #Z(P).

deDyp,e

5.6.2 Reddening sequences

In [Kel12], Keller proves that for any quiver @, any two reddening mutation sequences
applied to @ produce isomorphic ice quivers. As mentioned in [Kell3|, his proof is
highly dependent on representation theory and geometry, but the statement is purely
combinatorial-we give a combinatorial proof of this result for the linearly-ordered quiver
Q.

Let R € EG(@) A mutable vertex ¢ € Ry is called green if there are no arrows
j — i in R with j € [n + 1,m]. Otherwise, i is called red. A sequence of mutations
(i, oo, is reddening if all mutable vertices of the quiver 4 o- - - o u;, (Q) are red.
Recall that an isomorphism of quivers that fixes the frozen vertices is called a frozen

isomorphism. We now state the theorem.

Theorem 5.6.3. If j1;, o--- 0 u; and p;, o---o puj are two reddening sequences of
@5 for some € € {+,—}"*1, then there is a frozen isomorphism i, o --- o ,ul-l(@E) ~
w00 gy (Qe).

Proof. Let ;. o--- o u; be any reddening sequence. Denote by C' the c-matrix of
i, © -+ O ,ul-l(@e). By Corollary C' corresponds to an oriented strand diagram
do e 7_))”,6 with all chords of the form @ (j,i) for some i and j satisfying ¢ < j. As
70 avoids the configurations described in Defintion we conclude that 70 =
{€(i,i — 1)}ie[n) and C' = —1I,,. Since c-matrices are in bijection with ice quivers in
EG(@G) (see [NZI2, Thm 1.2]) and since Q. is an ice quiver in EG(@E) whose c-matrix

is —1I,,, we obtain the desired result. O
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5.6.3 Noncrossing partitions and exceptional sequences

In this section, we give a combinatorial proof of Ingalls’ and Thomas’ result that com-
plete exceptional sequences are in bijection with maximal chains in the lattice of non-
crossing partitions [IT09]. We remark that their result is more general than that which
we present here. Throughout this section, we assume that Q. has e = (—,...,—) and
we regard the strand diagrams of (). as chord diagrams.

A partition of [n] is a collection 7 = {Bg}acr € 21" of subsets of [n] called blocks
that are nonempty, pairwise disjoint, and whose union is [n]. We denote the lattice of
set partitions of [n] by IL,. A set partition m = {By}aer € I, is called noncrossing if
for any i < j < k < ¢ where i,k € By, and j,{ € B,,, one has B,, = B,,. We denote
the lattice of noncrossing partitions of [n] by NC*(n).

Label the vertices of a convex n-gon S with elements of [n] so that reading the
vertices of & counterclockwise determines an increasing sequence mod n. We can thus
regard m = {Bga}acr € NC*(n) as a collection of convex hulls B, of vertices of S where
B, has empty intersection with any other block B, .

Let n = 5. The following partitions all belong to II5, but only my, T2, 73 € NCA(5).

T = {{1}3 {23435}7 {3}}’ T2 = {{1a4}7{2’3}7 {5}}a

T3 = {{172a3}7{4’5}}a T4 = {{1>3’4}> {275}}

Below we represent the partitions 7y, . . ., m4 as convex hulls of sets of vertices of a convex

pentagon. We see from this representation that w4 ¢ NC(5).

1 1 1 1
~ AT
3 4 \ 4 3 4/ 3 4

Figure 5.18: Some partitions of [5] represented geometrically as convex hulls to illustrate
the ‘noncrossing’ condition

Theorem 5.6.4. Let k € [n]. Also, let S(k + 1) denote the set of chains

{i hiepns) <™ <+ <mp € (NCH(n +1))F!
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such that m; = (mj—1\{Ba, Bg}) u {Bqs 1 Bg} for some B, # Bg in mj_1. There is a
natural bijection between Dy (k) and S(k + 1).

In particular, when k = n, there is a bijection between Dy, (n) and mazimal chains

in NC*(n+1). We remark that each chain in S(k+1) is saturated (i.e. each inequality

appearing in {{i}}icint1] < M1 < -+ < T is a covering relation).

Proof. Let d(k) = {(c(ir, je), ©)}eefr) € Dr,e(k). Define myy 1 = {{i}}iefn+1] € Hnt1.
Next, define 7y = (mamya\{{i1 + 1}, {j1 + 1}}) u {i1 + 1,51 + 1}. Now assume
that 74, has been defined for some s € [k]. Define Tq(k),s+1 to be the partition
obtained by merging the blocks of gy s containing is + 1 and js + 1. Now define
f(d(k)) == A{maq),s - s € [k + 1]}

It is clear that f(d(k)) is a chain in I, with the desired property as m; < mg in
11,41 if and only if 7o is obtained from m; by merging exactly two distinct blocks of
m. To see that each myy) s € NC(n + 1) for all s € [k + 1], suppose a crossing of two
blocks occurs in a partition appearing in f(d(k)). Let myy)  be the smallest partition
of f(d(k)) (with respect to the partial order on set partitions) with two blocks crossing
blocks By and Bj. Without loss of generality, we assume that By € g, s is obtained
by merging the blocks By, , Ba, € Ty(k),s—1 containing is—; +1 and js—1 + 1, respectively.
This means that d(k) has a chord c¢(is—1, js—1) that crosses at least one other chord of
d(k). This contradicts that d(k) € Dy (k). Thus f(d(k)) is a chain in NC*(n + 1) with
the desired property.

Next, we define a map g that is the inverse of f. To this end, let C = (m =
{1} iepna1) < m2 < - < mgy1) € (NCA(n + 1))**! be a chain where each partition
in C satisfies m; = (mj—1\{Ba, Bg}) u {Ba u Bg} for some B, # Bg in mj_;. As
my = (m\{{s1}, {t1}}) w {s1,t1}, define c(i1,71) := c¢(s1 — 1,t; — 1) where we consider
s1 — 1 and t7 — 1 mod n + 1. Assume s; < t;1. If t1 is in a block of size 3 in w3, let
t denote the element of this block where t # s1,t;. If ¢ satisfies s; < t < t;, define
c(ig, j2) = c(s1 — 1,t — 1). Otherwise, define c(ig, j2) := ¢(t; — 1,¢ — 1). If there is
no block of size 3 in 3, define c(is, j2) := c(s2 — 1,t2 — 1) where {s2} and {to} were
singleton blocks in 79 and {sg,t2} is a block in 3.

Now suppose we have defined c¢(i,,j,). Let B denote the block of .o obtained
by merging two blocks of m..1. If B is obtained by merging two singleton blocks

{sr41}, {tr+1} € mrya, define c(ir41, jrv1) 1= c(sr41—1,t41—1). Otherwise, B = BBy
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where B, By € m.11. Now note that, up to rotation and up to adding or deleting

elements of [n + 1] for By and Be, By L By appears in 7,19 as follows.

Figure 5.19: An illustration of how the union of two blocks appears in a partition

Thus define ¢(iy4+1, jr41) := ¢(s1 —1,t2 —1). Finally, put g(C) := {(c(is, je), L) : £ € [k]}.
We claim that g(C') has no crossing chords. Suppose that (c(s;,t;),%) and (¢(sj,t5),7)

are crossing chords in g(C) with i < j and 4, j € [k]. We further assume that
j=min{j" € [i + 1,k] : (c(sj,t5),5") crosses (c(s;,¢),7) in g(C)}.

We observe that s; + 1,¢; + 1 € By for some block By € m; and that s; +1,¢; + 1€ By
for some block By € ;1. We further observe that s; +1,%; + 1 ¢ By otherwise, by the
definition of the map g, the chords (c(s;,t;),4) and (c(sj,t;),j) would be noncrossing.
Thus B, By € mj41 are distinct blocks that cross so mj41 ¢ NCA(n + 1). We conclude
that g(C') has no crossing chords so g(C) € Dy, (k).

To complete the proof, we show that g o f = 1p, (). The proof that f o g is the
identity map is similar. Let d(k) € Dy (k). Then f(d(k)) = {{i}}icn+1) < m1 < <7k

where for any s € [k] we have
s = (ms—1\{Ba, Bg}) 1 {Ba, Bs}
where i,_1 + 1€ B, and js—1 + 1 € Bg. Then we have
g(f(d(k))) = {c((ie +1) = 1,(Ge + 1) = 1), 0) bper) = {(c(ies Je), ) eefr-

O

Corollary 5.6.5. If e = (—,...,—), then the exceptional sequences of Q. of size k are
in bijection with the elements of S(k + 1).

Example 5.6.6. Here we give examples of the bijection from the previous theorem with
k=4.
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Figure 5.20: Two examples of the bijection between Dy (4) and S(5)
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